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Interactive tools can be used to complement books and
lectures [1]–[4]. This article describes three interactive
learning modules that are designed to develop intuition

as well as a working knowledge of proportional-integral-
derivative (PID) control. These three modules comprise a
package called interactive learning modules for PID (ILM-
PID). By illustrating concepts such as tuning, robustness,
loop shaping, and antiwindup, ILM-PID can be used for
demonstrations, exercises, and self-study. 

The main objective of the interactive modules is to
explain basic concepts of PID control without considering
implementation aspects. Although most PID controllers
are implemented as sampled-data control systems, analy-
sis and design are traditionally performed in continuous
time assuming that the sampling rate for subsequent digi-
tal implementation is sufficiently fast. Implementation
issues, such as aliasing, selection of the sampling time, sig-
nal prefiltering, influence of the discretization algorithms,
and bumpless parameter changes, may be the aim of a
future interactive modules focused on implementation
aspects for PID control. 

The modules of ILM-PID have menus for selecting
process transfer functions and controller structures. In
addition, parameters can be set, and results can be stored
and loaded. A graphic display of time and frequency
responses is a central part. The plots can be manipulated
directly by dragging points and lines and by using sliders.
Parameters that characterize performance and robustness
are displayed. Each module has two icons called Instruc-
tions and Theory. Instructions provides access to a docu-
ment that contains suggestions for exercises, while Theory
provides access to relevant theory by means of the Inter-
net. The modules are implemented in Sysquake [5], a Mat-
lab-like language with fast execution and capabilities for
interactive graphics. 

The following sections describe three modules that
illustrate closed-loop fundamentals (PID Basics), loop-
shaping design (PID Loop Shaping), and integrator
windup (PID Windup). Readers are encouraged to visit
the Web site [6] to experience the interactive features of
ILM-PID. The modules are available for Windows, Mac,

and Linux operating systems and can be freely down-
loaded from the Sysquake Web site [7] as described in
“Downloading and Using ILM-PID.”

PID BASICS
The module PID Basics is designed to explore the proper-
ties of a simple feedback loop by showing the time and fre-
quency responses of a closed-loop system and
demonstrating how these responses are influenced by the
choice of controller parameters.

A block diagram of a basic feedback loop is shown in
Figure 1, where P and C are the process and controller
transfer functions, respectively, and F is the filter transfer
function for the setpoint. The system has three inputs rep-
resenting the setpoint ysp, the load disturbance d, and the
measurement noise n. It is assumed that the load distur-
bance acts at the process input and that the measurement
noise acts at the process output. The controller must
reduce the effect of the load disturbance and make the
process variable x follow the setpoint ysp, while not inject-
ing too much measurement noise. In addition, the closed-
loop system must be insensitive to variations in the
process dynamics. 

At least three signals are of interest, namely, the process
output signal x, the measured output signal y, and the con-
trol signal u. Tracing signals in the block diagram in Figure
1 gives the relations

X = PCF
1 + PC

Ysp + P
1 + PC

D − PC
1 + PC

N

= FTYsp + PSD − TN, (1)

Y = PCF
1 + PC

Ysp + P
1 + PC

D + 1
1 + PC

N

= PCFYsp + PSD + SN, (2)

U = CF
1 + PC

Ysp − PC
1 + PC

D − C
1 + PC

N

= CFSYsp − TD − CSN, (3)

where capital letters denote Laplace transforms of the cor-
responding time functions, S = 1/(1 + PC) is the sensitivi-
ty function, and T = PC/(1 + PC ) is the complementary
sensitivity function. Notice that the input-output relations
are completely characterized by the six distinct transferDigital Object Identifier 10.1109/MCS.2008.927332
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functions in (1)–(3). These transfer functions are called the
gang of six in [8]. To analyze the closed-loop system it is
necessary to consider all six transfer functions. 

The time responses of the six transfer functions are
illustrated by showing the response of the process output
and control signals to a step in the setpoint, a step in the
load disturbance, and wideband measurement noise, as
illustrated in Figure 2. A mix of time and frequency
responses can also be displayed.

Process models in the form of rational transfer func-
tions with a time delay can be chosen from a menu that
provides a collection of transfer functions. An arbitrary
transfer function can also be entered using the standard
Matlab format. The process gain and time delay can be
changed interactively using sliders. The PID controller has
the structure

U = K
(

bYsp − Y + 1
sTi

(Ysp − Y) − sTd

1 + sTd/Nd
Y

)
,

where K is the proportional gain, Ti is the integral time, Td
is the derivative time, Nd is a parameter of the derivative
term, and b is the setpoint weight. 

FIGURE 1  Basic feedback loop having two degrees of freedom. P
and C are the process and controller transfer functions, respective-
ly, and F is the filter transfer function on the setpoint. The variable
ysp is the setpoint, e is the tracking error, u is the controller output, d
is the load disturbance, x is the process variable, n is the measure-
ment noise, y is the measured output signal, and v is the controller
output corrupted by the load disturbance d.
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Downloading and Using ILM-PID

Interactivity, which is the main feature of the tools described in this work, is difficult to explain in written text. The best way to appreciate the

tools is to use them. We strongly recommend that the reader download and use them in parallel with reading this article. Executable ver-

sions for PC, Mac, and Linux are freely available for download from the Calerga Web site [7]. No licenses are required, and the executable

modules can be freely distributed to students and colleagues.
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The Interactive Tool
The main screen of the tool is shown in Figure 3. The
process is characterized by the parameter group located
on the left-hand side of the screen, just below the icons
(see Figure 3). The process is shown symbolically together
with several interactive elements for changing the repre-
sentative parameters of the process. The transfer function
in Figure 3 is 

G(s) = Kp

(s + 1)n ,

where the gain Kp and order n are the interactive elements,
with numerical values Kp = 1 and n = 4.

When the user modifies any plant parameter, the sym-
bolic representation of the process transfer function is
immediately updated, and its effect is reflected on the
remaining graphic elements.

Five buttons are available for selecting the desired con-
troller. The buttons correspond to proportional (P), inte-
gral (I), proportional-integral (PI), proportional-derivative
(PD), and proportional-integral-derivative (PID). Several
sliders are available below the radio buttons for modifying
the controller parameters. The number of sliders shown
depends on the chosen controller. For instance, Figure 3
shows five sliders since the PID controller is selected.

Performance and Robustness Information
Parameters that characterize performance and robustness
are also displayed on the screen. The performance criteria
are based on the setpoint response, the load disturbance
response, and the noise response. The setpoint response is
characterized by the integral absolute error (IAE) and the

overshoot (overshoot). The load disturbance response is
characterized by the integral absolute error (IAE), the inte-
gral gain ki = K/Ti (ki), the maximal error (emax), and the
time to reach the maximum (tmax). The integral absolute
errors and the maximal error values are normalized to unit
step changes in setpoint and load disturbances. The
response to measurement noise is characterized by the
standard deviations of the process variable x (sigma_x),
measured output y (sigma_y), and control signal u
(sigma_u). The robustness measures are maximal sensitivi-
ty (Ms), maximal complementary sensitivity (Mt), gain
margin (Gm), and phase margin (Pm). This information
can be duplicated to compare two designs, as shown
below. A more detailed description of these measures can
be found in [8]. 

Graphics
Two graphics are shown on the right-hand side of the tool
(Figure 3). Three representation modes can be selected
from the Settings menu. These modes are time domain,
frequency domain, and frequency/time domain. 

The time domain mode is shown in Figure 3, where the
time responses for the system output (Process Output) and
input (Controller Output) are displayed. The initial part of
the plots (0 < t < 30) shows the response to a step change
in the setpoint represented by the transfer functions FT
and CFS in (1)–(3). The middle portions of the plots
(30 < t < 60) show the response to a step in the load dis-
turbance represented by the transfer functions PS and T in
(1)–(3). The last portions of the plots (t > 60) show the
response to wideband measurement noise, which is repre-
sented by the transfer functions S and CS in (1)–(3).

Several elements on the graphics are available for inter-
acting with the application. The vertical green line at time

FIGURE 3  The user interface of the module PID Basics. The plots
show the time response of the transfer functions in (1)–(3) [8]. Sev-
eral graphical elements, shown on the same screen, are used to
interactively analyze feedback fundamentals using PID control. This
example provides a comparison between PI (blue) and PID (red)
controllers.

FIGURE 2  Control system responses illustrating basic feedback sys-
tem properties. To analyze the feedback loop, it is essential to con-
sider six responses. These responses, which are referred to as the
gang of six [8], are described by transfer functions in (1)–(3). One
way to present this information is to show the process output y and
the controller output u for step commands in setpoint and load distur-
bances, as well as the response to sensor noise, as shown here.
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t = 0 allows the setpoint amplitude to be modified. The
green and black vertical lines located in the middle of the
graphics allow setting the value and time instant for load
disturbances and measurement noise, respectively. The ver-
tical and horizontal scales can be changed using the black
triangles (�, �) available in the graphics. For instance, in
Figure 3, the setpoint is set to one, the load disturbance is
set to 0.9 at t = 32, and the measurement noise is set to 0.02
at t = 60. It is also possible to find the value for the input or
output signal at a specific time by placing the mouse over
the curve. Figure 3 shows an example in which, at the time
instant t = 37.78, the output and input signals are 1.62 and
0.38, respectively. All of these options are available in both
graphics, that is, Process Output and Controller Output. 

The checkboxes save and delete above the Process
Output graphic provide the ability to store a simulation for
comparison. When the save button is selected, the current
design is frozen and displayed in blue, and a new design
in red appears, allowing the two designs to be compared.
Performance and robustness parameters are duplicated,
displaying the values in blue and red colors associated
with each design. The Process Output and Controller
Output graphics indicate the values of the controller para-
meters for both designs. Figure 3 presents an example that

compares the response of PI (K = 0.43, Ti = 2.27, b = 0)
and PID (K = 1.13, Ti = 3.36, Td = 1.21, b = 0.54, Nd = 10)
controllers. Although the PID controller provides a better
response to load disturbances by reacting faster, the noise
also generates more control action. The delete option can
be selected to remove a design. If the transfer function of
the process or an input signal such as a setpoint, load dis-
turbance, and measurement noise are altered, both sets of
results are affected simultaneously. Only two designs are
stored to keep the user interface simple.

Additional options for the time-domain mode are
shown above the Controller Output graphic. These options
show the proportional (P), integral (I), and derivative (D)
signals of the controller. 

The frequency domain mode is shown in Figure 4.
When this mode is selected from the Settings menu, the
left side of the tool remains unchanged. However, in this
case the time responses are replaced by the magnitude and
phase plots Transfer Function Magnitude and Transfer
Function Phase. The vertical and horizontal scales can be
interactively modified in the same way as in the time
domain. The magnitude and phase for a specific frequency
can be found by placing the mouse over the signals as
shown in Figure 4(a). 

FIGURE 4  Time- and frequency-domain analysis using the interactive tool. (a) Frequency domain. The graphical part of PID Basics is shown
for the frequency-domain mode, where the Transfer Function Magnitude and the Transfer Function Phase graphics are displayed. In this
mode the user can study the transfer functions in (1)–(3) in the frequency domain using checkboxes placed above the Transfer Function
Magnitude graphic. (b) Time and frequency responses, simultaneously. Above the graphics, the two buttons let the user choose between
the output or input for the time domain, and magnitude or phase for the frequency domain.
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The frequency response for the gang of six transfer
functions and the open-loop transfer function
L(iω) = P(iω)C(iω) can be shown in the graphics using
checkboxes placed above the Transfer Function Magnitude
graphic. In Figure 4(a), all transfer functions are displayed.

Time and frequency responses can be shown simulta-
neously, as illustrated in Figure 4(b). The upper part rep-
resents the time responses, while the lower part shows
the frequency responses. The default screen shows the
output and the magnitude for the time and frequency
domains, respectively. Above the graphics, the two but-
tons let the user choose between the output or input for
the time domain and magnitude or phase for the frequen-
cy domain. This mode is useful since it is possible to view
the effect of parameter modifications on both domains
simultaneously. 

Settings Menu
The Settings menu of PID Basics is divided into six
groups. Arbitrary transfer functions can be selected using
the first entry, Process Transfer Function. The numerator
and denominator are introduced using a Matlab form.

Specific values for controller parameters can be entered
using the Controller Parameters menu. Time and frequen-
cy responses can be selected from the third entry,
Time/Frequency Domain, which has the options Time
Domain, Frequency Domain, and Both Domains. The
results can be stored and recalled using the Load/Save
menu, which has the options Save Design and Load
Design. All data on the screen can be saved using the
option Save Report. From the menu selection Simulation
the user can modify the simulation time, change the maxi-
mal time delay to avoid slow simulations, and activate the
Sweep option to show the results for several controller
parameters simultaneously. Parameters are swept between
specified limits. This option is available only in the time-
domain mode. When active, new radio buttons appear in
the controller-parameters zone to permit the selection of
the desired parameter to be swept. The last menu option,
Examples Advanced PID Book, loads examples from [8],
which the user can explore by modifying parameters.

Analysis and Control Design for Load Disturbances
Load disturbances are typically low-frequency signals that
drive the system away from its desired behavior. The

FIGURE 6  Frequency-domain interpretation of the load-disturbance
response. Figure 5 shows that high values of the integral gain ki

provide better response to load disturbances. Although this rule is
true, it must be used carefully. The frequency-domain responses of
Gyd and S for two PI controllers with (a) ki = 0.85 and (b)
ki = 0.30, respectively. As can be seen, large values of ki imply
large peaks of the sensitivity function S = 1/(1 + PC). Therefore, a
tradeoff occurs between load disturbance rejection and robustness.
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FIGURE 5  Load-disturbance response and influence of the integral
gain ki . For a system with P(0) �= 0 and a controller with integral
action, the low-frequency approximation is Gyd ≈ sP(0)/ki , where
ki = K/Ti is the integral gain. For load disturbances with low-fre-
quency content, the integral gain ki is a measure of load-distur-
bance attenuation. The (a) process outputs and (b) control signals
to load disturbances, respectively, are shown for two PI controllers
with ki values of 0.36 (in red) and 0.30 (in blue). The controller with
larger integral gain provides a faster response to load disturbances.
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response to load disturbances is a key issue in process con-
trol, since most controllers attempt to keep process vari-
ables close to desired setpoints [9]. The following example
shows the effects of load disturbances and the influence of
the controller parameters. The setpoint and noise ampli-
tudes are set to zero, and the load disturbance is set to 0.9
at t = 0. The process transfer function is given by
G(s) = (s + 1)−4 . The response of the
process variable to load disturbances
is given by the transfer function

Gyd = P
1 + PC

= PS = T
C

.

If P(0) �= 0 and the controller has
integral action, then the low-frequen-
cy approximation is Gyd ≈ sP(0)/ki ,
where ki = K/Ti is the integral gain.
For load disturbances with low-fre-
quency content, the integral gain ki is
a measure of load-disturbance atten-
uation. Figure 5 shows the load-
disturbance responses for two PI
controllers with ki given by 0.36 (in
red) and 0.30 (in blue). Although the
controller with larger integral gain
provides faster response and smaller
values for IAE and emax to load dis-
turbances, the stability margins are
reduced. Figure 6 shows the frequen-
cy responses of Gyd and S for two PI
controllers with large and small val-
ues of ki (0.85 and 0.30, respectively).
This figure reflects that large values
of ki imply large peaks of the sensi-
tivity function. Therefore, a tradeoff
becomes necessary between load-dis-
turbance rejection and robustness.

Some tuning methods allow a
tradeoff between robustness and
load disturbance response. The
approximate M-constrained integral-
gain optimization (AMIGO) method
[8], [10]–[12] maximizes integral gain
under a robustness constraint; see
“AMIGO Design Method.” The
result of applying AMIGO to this
example is shown in Figure 7. The
AMIGO-step method is used to
design a PI controller with K = 0.414
and Ti = 2.66. The response to load
disturbances is slower than the
results presented in Figure 5, but sta-
bility margins result are improved,
with Ms = 1.32 and Mt = 1.

PID LOOP SHAPING
This section briefly describes the main aspects of PID Loop
Shaping. The main screen of the tool is shown in Figure 8.

Process
The process transfer function can be selected and modified
depending on the option selected from the Settings menu.

AMIGO Design Method

A lthough load disturbances are often the major consideration in process control, robust-

ness and measurement noise must also be considered. Requirements on setpoint

response can be dealt with separately by using a controller with two degrees of freedom.

The Ziegler-Nichols rules for tuning PID controllers are especially influential. These rules,

however, have severe drawbacks, since they use insufficient process information and can

yield closed-loop systems with poor robustness [11]. Loop shaping [13] can also be used

for PID control, which gives a flexible design method that allows a tradeoff between perfor-

mance and robustness. The design approach maximizes the integral gain subject to con-

straints on the maximum sensitivity. This method is called M-constrained integral gain

optimization (MIGO) [8], [11].

AMIGO (approximate MIGO) design, which is a tuning method in the spirit of Ziegler

and Nichols, is the result of finding simple tuning rules for the MIGO method. A large

batch of representative processes is selected, including a wide variety of systems with

essentially monotone step responses that are typically encountered in process control.

Controllers for each process in the batch are then obtained by applying the MIGO

design. Having obtained the controller parameters, correlations with normalized process

parameters are found by deriving the AMIGO tuning rules. Tables S1 and S2 show

these tuning rules for PI and PID controllers in the time and frequency domains. Analysis

of these rules can be found in [8]. The main feature of this design method is that it facili-

tates tradeoffs between robustness and performance. The method thus focuses on load

disturbances by maximizing the integral gain and adding a robustness constraint.

TABLE S1 Time-domain AMIGO tuning rules for first-order time delay (FOTD)
models. L represents time delay, T is the time constant, and Kp is the static
gain of the process. K , Ti , and Td are proportional gain, integral time, and
derivative time parameters of PID controllers.

Controller K Ti Td

PI 15
Kp

+
(
0.35 − LT

(L+T)2

)
T

KpL 0.35L + 13LT2

T2+12LT+7L2 –

PID 1
Kp

(
0.2 + 0.45 T

L

)
0.4L+0.8T

L+0.1T L 0.5LT
0.3L+T

TABLE S2 Frequency-domain tuning rules. K180 is the process gain value at
frequency ω180 , T180 = (2π)/ω180 is the corresponding period, and
κ = K180 /Kp is the gain ratio. K , Ti , and Td are proportional gain, integral
time, and derivative time parameters of PID controllers.

Controller K Ti Td

PI 0.16
K180

T180
1+4.5κ

–

PID (0.3 − 0.1κ4)/K180
0.6

1+2κ
T180

0.15(1−κ)

1−0.95κ
T180
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Several process models are available, and their parameters
can be modified using sliders as described in PID Basics.
In addition, a free transfer function can be selected (menu
option Interactive TF), where poles and zeros can be
defined graphically as shown in Figure 8. 

Controller
The Controller part of the tool shows the various parameters
and properties of PID Loop Shaping to perform loop shap-
ing. The design point of the process transfer function is
determined at a specified frequency ω. The design point is
shown by a green circle on the L-plane graphic. The corre-
sponding point of the loop transfer function at the frequency
ω is called the target point.

The controller used in PID Loop Shaping is parame-
terized as

C(s) = k + ki

s
+ kds,

which yields the loop transfer function

L(s) = C(s)P(s) = kP(s) +
(

ki

s
+ kds

)
P(s).

The point on the Nyquist curve of the loop transfer func-
tion corresponding to the frequency ω is given by

L(iω) = kP(iω) + i
(

− ki

ω
+ kdω

)
P(iω). (4)

PID Loop Shaping provides three methods for tuning
the parameters to move the process transfer function from
the design point to the target point. These methods are
listed in the Tuning zone as Free, Constrained PI, and
Constrained PID. Free tuning allows an unconstrained
loop to be shaped by dragging on the control parameters.
Constrained PI and Constrained PID permit the calcula-
tion of the controller parameters based on some con-
straints on the target point. That is, the focus can be
placed on how the loop transfer function changes when
controller parameters are modified, which reveals the
parameter values required to obtain a given shape of the
loop transfer function. For PI and PD control the mapping
is uniquely given by one point. For PID control it is also
possible to obtain an arbitrary slope ϑ of the loop transfer
function at the target point. When the Free tuning option
is selected, sliders are used to modify the controller gains
k, ki, and kd, as shown in Figure 8. The controller gains can
also be changed by dragging arrows, as illustrated in the
same figure. From (4), the proportional gain changes L(iω)

in the direction of P(iω), the integral gain ki changes L(iω)

in the direction of −iP(iω), and the derivative gain kd
changes L(iω) in the direction of iP(iω). 

For the Constrained PI and Constrained PID tuning
options, the target point can be limited to move on the
unit circle, the sensitivity circles, or the real axis. In this

FIGURE 8  The user interface of the module PID Loop Shaping,
showing both Free and Constrained PID tuning. The loop transfer
function is shown for two designs under the Free design option. Pro-
portional, integral, and derivative action are manipulated directly by
drawing the arrows. In the Constrained PID, tuning the target point
is constrained to lie on the sensitivity circle.

FIGURE 7  Load disturbance response for a PI controller using the
approximate M-constrained integral gain optimization (AMIGO)
step method. This method enables the compromise described in
Figure 6, focusing on load disturbances by maximizing integral gain
and adding a robustness constraint. The (a) process output and (b)
control signal to load disturbances, respectively, for a PI controller
designed using AMIGO and with K = 0.414 and Ti = 2.66. The
slow response compared with Figure 6 corresponds to increased
stability margins.
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way loop shaping is enabled with specifications on gain
and phase margins or on the sensitivities. In the case of
Constrained PI it is necessary to find controller gains pro-
viding the desired target point. Dividing (4) by P(iω) and
separating the real and imaginary parts gives

k = �
(

L(iω)

P(iω)

)
, (5)

− ki

ω
+ kdω = �

(
L(iω)

P(iω)

)
= A(ω). (6)

With kd = 0, (5) and (6) yield the two parameters of the PI
controller.

An additional condition is required for the Constrained
PID tuning option. Hence, it is observed that

L ′(s) = C ′(s)P(s) + C(s)P ′(s)

= C ′(s)P(s) + L(s)P ′(s)
P(s)

=
(

− ki

s2 + kd

)
P(s) + L(s)P ′(s)

P(s)
. (7)

The slope of the Nyquist curve is then given by

iL′(iω) = i
(

ki

ω2 + kd

)
P(iω) + iC(iω)P ′(iω). (8)

The complex number represented by (8) has the phase
angle ϑ if

�(iL ′(iω)e−iϑ) = 0. (9)

Results (7)–(9) imply that

ki

ω2 + kd =
�

(
L(iω)

P ′(iω)

P(iω)
e−iϑ

)

�(P(iω)e−iϑ)
= B(ω). (10)

Combining (10) with (5)–(6) gives the controller parameters

ki = −ωA(ω) + ω2B(ω), (11)

kd = A(ω)

ω
+ B(ω), (12)

where A(ω) and B(ω) are given by (6) and (10), respectively. 
The design frequency ω can be chosen using the slider

wdesign or graphically by dragging the green circle on the
process Nyquist curve (black curve in Figure 8). The target
point on the Nyquist plot and its slope can be dragged
graphically. The slope can also be changed using the slider
slope. Furthermore, it is possible to constrain the target
point using the Constraints radio buttons to the unit circle

(Pm), the negative real axis (Gm), circles representing con-
stant sensitivity (Ms), constant complementary sensitivity
(Mt), or constant sensitivity combinations (M). When sensi-
tivity constraints are active, the associated circles are drawn
in the L-plane plot, and sliders can be used to modify their
values. The circles are defined in Table 1.

Figure 8 illustrates designs for two PID controllers and
a given sensitivity. The target point is moved to the sensi-
tivity circle, and the slope is adjusted so that the Nyquist
curve is outside the sensitivity circle. The red design
shows a PID controller using Free tuning, while the blue
design shows a Constrained PID tuning. Specifications that
cannot be reached are indicated in the tool by giving the
integral or derivative gain negative values in these cases.

Robustness and Performance Parameters
Robustness and Performance parameters are displayed on
the screen below the controller parameters (Figure 8), and
these parameters characterize robustness and performance
in the same manner as in PID Basics. The values are maxi-
mal sensitivity (Ms), sensitivity-crossover frequency (Ws),
maximal complementary sensitivity (Mt), complementary
sensitivity-crossover frequency (Wt), gain margin (Gm),
gain-crossover frequency (Wgc), phase margin (Pm), and
phase-crossover frequency (Wpc). 

L-Plane Graphic
The L-plane graphic is given in the right-hand side of the
PID Loop Shaping menu, as shown in Figure 8. This graphic
contains the Nyquist plots of the process transfer function
P(s) in black and the loop transfer functions L(s) = P(s)C(s)
in red. Three different views can be shown depending on
the tuning options. Figure 9 shows two views, the left one
for Free tuning and the right one for Constrained PID tun-
ing. A third view is shown in Figure 8, where two designs
are shown simultaneously. The design and target points can
be modified interactively on this graphic. The design point
is shown in green on the Nyquist curve of the process. The
target point is represented in light green in the case of Free
tuning and in black for constrained tuning, as shown in Fig-
ure 8. The slope of the target point can also be changed

TABLE 1 Sensitivity circles. This table describes the center
and radius of circles that define the loci for constant
sensitivity Ms, constant complementary sensitivity Mt ,
constant mixed sensitivity, and equal sensitivities
M = Ms = Mt [8].

Contour Center Radius
Ms-circle −1 1/Ms

Mt -circle − M2
t

M2
t −1

Mt

M2
t −1

M-circle − x1+x2
2

x1−x2
2

x1 = max
(

Ms+1
Ms

, Mt
Mt −1

)
x2 = max

(
Ms−1

Ms
, Mt

Mt +1

)
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interactively. For Free tuning, the controller gains are
shown as arrows in the Nyquist plot. The controller gains
can be modified interactively by dragging the ends of the
arrows. Figures 8 and 9 show examples of these arrows. The
scale of the graphic can be changed using the red triangle
located at the bottom of the vertical axis.

As noted above, it is possible to impose constraints on the
target point. The graphical representation of the target point
is modified depending on the constraint selected, restricting

its value based on its meaning. Options save and delete can
be found above the L-plane graphic. These options have the
same meaning as in PID Basics, making it possible to save
designs to perform comparisons. Once the save option is
active, two pictures appear, one of which shows the current
design in red while the other shows the current design in
blue (see Figure 8). Modifications of the controller parame-
ters affect the current (active) design, which can be changed
using the options Design 1 and Design 2, which appear on
the top of the L-plane graphic. Once a design is chosen, the
associated curve is switched to red, and the controller zone is
modified based on that design. The controller gain values
can be seen by moving the cursor on the curves.

Settings Menu
The Settings menu, which is available in the main menu of
PID Loop Shaping, is divided into four groups, following
the same structure as in PID Basics. The first entry, called
Process Transfer Function, is used to choose between sev-
eral predefined transfer functions or to include an user-
specified transfer function through two options. The String
TF option allows a transfer function to be entered symboli-
cally. For instance, P(s) = 1/ cosh

√
s can be represented as

P=’1/cosh(sqrt(s))’. Results can be stored and recalled
using the Load/Save menu. The option Save Report can be
used to save all essential data in text format, which is use-
ful for documenting results. Specific values for control
parameters can be entered with Parameters menu option.
As in PID Basics , the last menu option (Examples
Advanced PID Book) allows loading examples from [8]. 

Examples
Some of the capabilities of PID Loop Shaping are illustrated
by the following examples.

Effect of Controller Parameters
The purpose of this example is to illustrate how the
Nyquist plot of the loop transfer function changes when
the controller parameters are modified.

Consider the process P(s) = 1/(s + 1)4 . When a P con-
troller is used, the proportional gain changes the loop trans-
fer function L(iω) = kP(iω) in the direction of P(iω). Figure
10(a) shows the effect of modifying L(iω) using a P con-
troller with gain k = 2 (blue curve) and k = 2.6 (red curve).
These curves show how the proportional gain modifies the
Nyquist plot of the process (black curve) at the frequency ω
(green circle on the black curve) in the direction of P(iω).
Figure 10(b) shows the same study for an I-controller with
ki = 1 (red curve) and ki = 0.6 (blue curve). It can be seen
that the integral gain ki changes L(iω) in the direction
−iP(iω). The derivative gain has the same effect in the direc-
tion of iP(iω). When a PI or PD controller is used, the com-
pensated point at the frequency ω is calculated as the sum of
two vectors, namely, the proportional vector and the inte-
gral or derivative vector. Examples of this capability are

FIGURE 9  The L-plane graphic. The Nyquist plots of the process
transfer function P(s) (black line) and the loop transfer function
L(s) = P(s)C(s) (red line) are shown. (a) An example of the Free
tuning design. The controller gains can be changed by dragging
arrows, the proportional gain changes L(iω) in the direction of
P(iω) (blue arrow), the integral gain ki changes L(iω) in the direc-
tion of −i P(iω) (cyan arrow), and the derivative gain kd changes
L(iω) in the direction of i P(iω) (magenta arrow). (b) An example of
the Constrained PID tuning design. In this case, once the user
moves the target point (black circle), the controller parameters are
calculated using (5)–(12).
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shown in Figure 10(c) and (d), where the process is con-
trolled by a PI controller (k = 2.3 and ki = 0.7) and a PD
controller (k = 2.1 and kd = 3.35), respectively.

Simple exercises can be used to provide training in loop
shaping. For instance, with the above process, it is instruc-
tive to calculate the gain for a proportional controller for
which the closed-loop system changes from stable to
unstable. Before using PID Loop Shaping, the result can be
calculated analytically, which yields

� L(iω) = � C(iω)P(iω) = −180,

� k
1

(iω + 1)4 = −180, ω = 1.

|L(iω)| = |C(iω)P(iω)| = | − 1 + 0i| ,∣∣∣∣k 1
(iω + 1)4

∣∣∣∣ = −1, k = 4.

PID Loop Shaping can be used to verify the result inter-
actively, as shown in Figure 11. This exercise challenges

students and encourages them to make observations while
relating theory to images to develop a broader and deeper
understanding. 

On the other hand, free interactive designs can also be
performed to compare the results with other design
methods. For instance, PID Loop Shaping can be used to
design a PID controller interactively for the process
P(s) = 1/(s + 1)4, where the maximal sensitivity value Ms

must be less than 1.5. A PID controller that satisfies this
constraint is obtained when k = 0.92, Ti = 1.8, ki = 0.5,
Td = 1.03, and kd = 0.95. The AMIGO-frequency method
can also be used for design, and the results can be com-
pared. The resulting controller is given by k = 1.2,
Ti = 2.48, ki = 0.48, Td = 0.93, and kd = 1.12. Figure 12
shows the Nyquist plots and time responses using PID
Basics for both designs, in blue for the free PID con-
troller and in red for the AMIGO method. The resulting
values of Ms are 1.49 for free PID and 1.46 for the
AMIGO method. 

FIGURE 10  Nyquist plot modifications depending on the controller type. (a) P controller, (b) I controller, (c) PI controller, and (d) PD con-
troller. (a) The modification of L(iω) in the direction of P(iω) using a P controller with gain k = 2 (blue curve) and k = 2.6 (red curve). The
same study for an I-controller is shown in (b) with ki = 1 (red curve) and ki = 0.6 (blue curve), where L(iω) is modified in the direction
−i P(iω). (c), (d) PI or PD controllers are used, respectively. In these cases, the compensated point at the frequency ω is calculated as the
sum of two vectors, namely the proportional vector and the integral or derivative vector.

(a) (b)

(c) (d)
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Effect of the Target Point
The target point on the Nyquist plot can be reached using
an unconstrained design by selecting the Free option. The
controller gains are interactively adjusted as shown in the
free tuning example. Another approach is to use (5)–(12),
where the controller gains are calculated after the target
point is defined. As discussed above, the target point can
be fixed or constrained in various ways, either at any
point, to specific values for phase margin and gain margin,
or to maximal values of the sensitivity functions. Figure 13
shows an example in which the target point is set to the
point −0.5 − 0.5i. Two constrained designs are shown for
the design frequency ω = 0.6 rad/s. The red curve repre-
sents a system compensated by a constrained PID with
k = 1.32, ki = 1.02, and kd = 2.15, while the blue curve rep-
resents a constrained PI with k = 1.32 and ki = 0.15.
Although both controllers reach the target point, better
results are obtained for the PID controller because the
slope can be freely adjusted (the value for this example is
ϑ = 22). The PID controller provides better robustness
properties with Ms = 1.45, ki = 1.02, Gm = 5.32, and
Pm = 40.15, versus a PI controller with Ms = 1.83,
ki = 0.15, Gm = 2.69, and Pm = 75.77.

Similar examples can be used to restrict the target point
for phase margin, gain margin, or maximal values of the
sensitivity functions. Figure 14(a) shows an example where
a combined sensitivity constraint is required for Ms ≤ 2
and Mt ≤ 2. This constraint is fulfilled in two different
ways, namely, by using Constrained PID (red curve) and
Constrained PI (blue curve). Another example combining
sensitivity function and gain margin constraints is shown
in Figure 14(b), with the specification that the gain margin
be equal to three and Ms ≤ 2. These specifications are

established by maximizing the integral gain ki. Hence, the
constraint gain margin is chosen, and the target point is
located in such a way that Gm = 3. Then, a Constrained
PID controller is selected, where the design point and the
slope are modified until Ms ≤ 2 and the integral gain is
maximized. The final controller is given by k = 1.38,
ki = 0.52, and kd = 0.54 for ω = 1.02 and ϑ = 32.

FIGURE 11  Stability limit on the critical point −1 + 0i . A typical
example for presenting loop shaping is to search for the lowest gain
that makes the system unstable. This task can be interactively per-
formed with PID Loop Shaping as shown in this figure.

FIGURE 12  Example of loop shaping with Ms < 1.5. PID Loop Shap-
ing can be used to compare various designs. In this figure, (a)
Nyquist plots and (b) time-domain responses generated with PID
Basics are shown to compare an unconstrained design (k = 0.92,
Ti = 1.8, ki = 0.5, Td = 1.03, and kd = 0.95) with an alternative
design developed using the AMIGO-frequency method (k = 1.2,
Ti = 2.48, ki = 0.48, Td = 0.93, and kd = 1.12).
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The Derivative Cliff
We again consider the process transfer function
P(s) = 1/(s + 1)4 . It is desirable to maximize the integral
gain ki subject to the robustness constraint Ms ≤ 1.4. The
resulting controller has the parameters k = 0.925, ki = 0.9,
and kd = 2.86, where the Nyquist plot of the loop transfer
function is shown in red in Figure 15(a). It can be seen that
the Nyquist curve has a loop, called a derivative cliff. As
explained in [8], this feature, which is due to excessive con-
troller phase lead, results from having a PID controller with
complex poles, which occurs when Ti < 4Td. In this exam-
ple the relation is Ti = 0.33Td. Figure 15(b) shows, in red,
the time response of the controller, which yields oscillatory
outputs. For comparison, the results for a controller with
Ti = 4Td are shown in blue in Figure 15(a) and (b) with the
controller parameters k = 1.1, ki = 0.36, and kd = 0.9. The
responses for this controller are improved, despite larger
overshoot in response to load disturbances. This example is
available in the Settings menu of PID Loop Shaping. 

PID WINDUP
The purpose of the PID Windup module is to facilitate
understanding of integral windup and a method for com-
pensating it [8]. For a control system with a wide range of
operating conditions, it may happen that the control vari-
able reaches the actuator limits. When this situation occurs
in loops using a controller with integral action, the feed-
back loop is broken and the integral may reach large val-

ues, maintaining the control signal saturated for a long
time, resulting in large overshoot, and undesirable tran-
sients. This problem is known as windup phenomenon [8].

Windup can be avoided in different ways. Back calcula-
tion and tracking [8] is illustrated in the block diagram in
Figure 16. The system remains unchanged when the satu-
ration is not active. However, when saturation occurs, the
integral term in the controller is modified until the control
signal is out of the saturation limit. This modification is not
performed instantaneously but dynamically with a time
constant Tt called the tracking time constant [8].

The module PID Windup shows process outputs and
control signals for unlimited control signals, limited

FIGURE 14  Example of a constrained design with sensitivity and
gain-margin constraints. These plots show an example where the
target point is constrained to reach specified values for the (a) com-
bined sensitivity functions with Ms ≤ 2 and Mt ≤ 2, and (b) gain
margin with limited sensitivity values with Gm = 3 and Ms ≤ 2.
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FIGURE 13  Example of a constrained design with a target point of
−0.5 − 0.5i . The target point can be constrained to reach arbitrary
specifications. Once a point is constrained, the controller parame-
ters are automatically calculated. This plot shows PI (k = 1.32,
ki = 0.15) and PID (k = 1.32, ki = 1.02, kd = 2.15) controllers, both
reaching the target point. The PID controller provides better results
due to the use of the slope as an allowable third degree of freedom
as described in (11) and (12), where the slope ϑ takes the value 22.
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control signals without antiwindup, and limited control
signals with antiwindup. The user interface is shown in
Figure 17. Process models and controller parameters can
be selected in the same way as in the other modules. The
saturation limits of the control signal can be determined
either by entering the values or by dragging the lines in the
saturation scheme.

The Interactive Tool
We now describe the main aspects of PID Windup. 

Process
The Process area is similar to that described in PID Basics
and PID Loop Shaping. The time delay is modified using a
slider instead of a text edit, so that the time delay effect on
the antiwindup mechanism can be analyzed. 

Controller
The Controller area contains information about the con-
troller parameters and actuator saturation. Three kinds of

FIGURE 15  Derivative cliff example. (a) Nyquist plot and (b) time-
domain responses. This example shows that optimization of ki ,
which is aimed at fulfilling robustness specifications, can provide
controllers with excessive phase lead, as represented by the loop in
the red curve. This behavior is a consequence of the presence of
complex zeros due to Ti < 4Td . The same example is shown in blue
for Ti = 4Td , where this problem is avoided [8].
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FIGURE 16  PID controller with antiwindup scheme, where K is the
controller proportional gain, Ti is the controller integral time, Td is
the controller derivative time, ysp is the setpoint, y is the process
output, e is the tracking error, v is the controller output, u is the sat-
urated controller output, and es is the difference between the con-
troller output v and the saturated controller output u. In this scheme
the control signal remains unconstrained when the saturation is not
active. When saturation occurs, the integral control action is modi-
fied until the control signal is out of the saturation limit. The modifi-
cation of the integral element is performed dynamically by adjusting
the tracking time constant Tt [8].
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FIGURE 17 The user interface of the module PID Windup, showing
the windup phenomenon and application of the antiwindup tech-
nique. Several graphical elements are used to interactively analyze
typical problems and solutions associated with windup. The exam-
ple shown in the figure illustrates the windup phenomenon (in blue)
and the result of applying the antiwindup technique (in green).
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controllers with integral action can be selected (I, PI, PID),
where several sliders are available to change the controller
parameters, including the tracking time constant Tt. A sat-
uration graphic is also available in this zone. The Actuator
Saturation graphic allows the saturation limits to be deter-
mined by dragging the small red circle located on the
upper saturation value. In this graphic, a symmetric satu-
ration is selected for pedagogical purposes.

Graphics
Time responses for process output, control signal, and
integral action are available in three graphics, namely,
Process Output, Controller Output, and Integral Term. In
the same way as in PID Basics, multiple interactive graph-
ical elements can be used to change the setpoint, load dis-
turbance, measurement noise, or horizontal and vertical
scales (see Figure 17). These graphics can simultaneously
represent the controlled system in linear, nonlinear with
windup, and nonlinear with antiwindup modes. These
representations can be configured using the checkboxes
located above the Process Output graphic. For instance,
Figure 17 shows an example containing the nonlinear with
windup and nonlinear with antiwindup modes.

The dotted pink vertical line in Figure 18 is helpful for
comparing the outputs of the different plots at the same
time instant. The saturation limits can be altered using the

dotted blue horizontal lines available in the Controller
Output graphic (see Figure 17).

The notion of proportional band is useful for under-
standing the windup effect, and is included in PID
Windup. The proportional band is defined as the range of
process outputs such that the controller output is in the
linear range [ymin, ymax]. For a PI controller, the propor-
tional band is limited by

ymin = bysp + I − umax

K
, (13)

ymax = bysp + I − umin

K
, (14)

where I is the integral term of the controller, and umax and
umin are the control signal limits.

Expressions (13) and (14) hold for PID control when the pro-
portional band is defined as the band where the predicted output
yp = y + Td(dy/dt) is in the proportional band [ymin, ymax].
The proportional band has the width (umax − umin)/K, and is
centered around bysp + I/K − (umax + umin)/(2K). 

Two additional checkboxes called PB Windup and PB
Antiwindup, appear near the top of plot Process Output. The
activation of these options shows the proportional bands for
the windup and antiwindup cases in the Process Output
graphic. The proportional bands are shown as dotted green
and blue curves, respectively, as shown in Figure 18.

FIGURE 18  Example of the windup phenomenon with proportional band for (a) K = 1 and (b) K = 0.4. In [8] the notion of proportional band
is described as being a useful tool for understanding the effects of windup. The proportional band is an interval such that the actuator does
not saturate when the instantaneous value of the process output or its predicted value is inside this band. These plots show two examples
demonstrating how the control signal is saturated when the process output is inside the band shown in blue. The interactive pink line of
the graphics can be used to test this idea.
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Settings Menu
The Settings menu has the same structure as in PID Basics
and PID Loop Shaping. The process transfer function can
be chosen from the entry Process Transfer Functions, and
numerical values of the parameters can be introduced
using Controller Parameters. Essential data and results can
be saved and recalled using the Load/Save menu options.
The menu selection Simulation makes it possible to choose
the simulation time and activate the Sweep option, which
can be used to show the results for several values of the
tracking time constant. Several examples from [8] can be
loaded from the Examples entry. 

Examples
The following examples illustrate properties of the PID
Windup module.

Understanding the Windup Phenomenon
Windup can be studied using the first entry from the
Examples option menu. This example from [8] uses the
pure integrator process P(s) = 1/s controlled by a PI con-
troller with parameters K = 1, Ti = 1.2, and b = 1, and
with the control signal limited to ±0.2. Figure 17 shows the
time responses for this example. The control signal is satu-
rated from t = 0. The process output and the integral term
increase while the control error is positive. Once the

process output exceeds the setpoint, the control error
becomes negative, however the control signal remains sat-
urated due to the large value of the integral term. The time
responses are shown in Figure 17.

The proportional band can be drawn in this example
using the PB Windup checkbox shown in Figure 18(a).
Using the vertical line, the user can see that the process
output remains inside the band while the control signal is
working in linear mode and outside the proportional band
when the control signal is saturated. Large controller gains
provide narrow proportional bands, with more energetic
control signals and therefore longer saturation times, while
small controller gains give wider proportional bands.
Figure 18(b) illustrates this effect, where the proportional
controller gain is reduced to 0.4, producing a wider
proportional band.

Antiwindup
The process P(s) = 1/s is also useful for visualizing the
antiwindup technique. The same controller parameters,
namely, K = 1, Ti = 1.2, b = 1, are used, and the tracking
time constant is set to Tt = 1. Figure 19(a) shows the
responses for both cases control with and without anti-
windup. The system with antiwindup remains in satura-
tion for only a short period of time, with the magnitude of
the integral term considerably reduced. The proportional

FIGURE 19  Example of the effect of the tracking time constant Tt on in the antiwindup technique. (a) Antiwindup and (b) effect of Tt . These
plots show the results of applying the antiwindup technique to the example shown in Figure 17. The integral signal is considerably reduced,
allowing the control signal to remain in saturation during a shorter period of time. The proportional band for the antiwindup technique is
shown in green. The process output remains inside the band most of the time.
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band for the PI controller with antiwindup is shown in the
same figure. It can be seen that the proportional band is
wider than for PI without antiwindup [Figure 19(a)],
where the process output remains most of the time. The
effect of the tracking time constant is illustrated in Figure
19(b) for Tt = 0.1, 10, 50. In this scenario, the Sweep
menu option is used. High values of Tt make the anti-
windup too slow to be effective, while low values reset the
integral term quickly with improved results. It may thus
seem advantageous to always have small values of Tt.
However, the next example shows some situations where
this choice is not advisable.

The Tracking Time Constant
The tracking time constant is an essential parameter because
it determines the reset rate for the integral term of the con-
troller. It may seem advantageous to have a small value for
this constant. However, measurement errors may acciden-
tally reset the integral term when the tracking time constant
is too small. The following example illustrates this phenom-
enon, when a measurement error occurs in the form of a
short pulse. The transfer function of the process is

P(s) = 1
(0.5s + 1)2 ,

and the controller is a PID controller with K = 3.5,
Ti = 0.52, Td = 0.14, Nd = 10, b = 1, and Tt = 1.

Figure 20(a) shows the control results. A large transient
appears after the pulse, and the integral term is excessively
reduced.

Various rules are suggested in [8] for choosing the
tracking time constant. One choice is Tt = (Ti + Td)/2. Fig-
ure 20(b) shows an example with Tt = (Ti + Td)/2 = 0.33,
where the response is considerably improved.

CONCLUSIONS
In this work a set of interactive modules that comprise
ILM-PID is presented to support the teaching and learn-
ing of basic automatic control concepts. These tools are
intended mainly to include interactivity in the visual con-
tent of [8]. The modules focus on PID control, studying
feedback fundamentals from the standpoint of the time
and frequency domains, including robustness issues, mea-
surement of noise filtering, load-disturbance rejection, and
windup phenomenon. 

The importance of interactivity in automatic control
education has been shown in the context of teaching
and learning. In the authors’ experience, interactivity
offers excellent support to education and learning by
enhancing the motivation and participation of future

FIGURE 20  Tuning the tracking time. (a) Reset by measurement noise and (b) tuning using rules. (a) illustrates the disadvantage of using a
short tracking time constant. The short pulse disturbance at time t = 10 results in excessive reduction of the integral term and a large distur-
bance in the process output. In (b) the choice is Tt = (Ti + Td)/2.
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engineers. The interactive learning modules developed
in this work are freely available from the authors [7] to
test these interactive features in control education and
professional training.
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