
Robot Navigation and Mapping with

Vision-Based Obstacle Avoidance

Erik Rufelt

July 20, 2009



Abstract

This report describes solutions to two important problems for mobile

robot control, mapping of a static environment and avoidance of dynamic

obstacles. There are many possibilities to achieve an appropriate behav-

ior, and this project is based on ultrasound sonars and a webcamera,

present on the MobileRobots Pioneer P3DX robot used for the project.

The operating environment is an indoors o�ce-like environment, and the

project is about realizing a working control software, allowing the robot

to explore its environment, as well as avoid humans moving in the robot's

vicinity while doing so. The end result is a map of the world, and the

ability to view it through a web-interface on a wireless connection. The

map must correspond to the real world with enough accuracy to be used

for path�nding and orientation.

Sammanfattning

Denna rapport beskriver lösningar på två viktiga problem vid använd-

ning av en mobil robot, kartläggning av en fast omgivning och undvikande

av rörliga hinder. Det �nns många möjligheter att uppnå ett nöjaktigt

beteende och detta projekt baseras på ultraljud och en webbkamera, som

�nns installerade på den robot av typen MobileRobots Pioneer P3DX som

används för projektet. Arbetsmiljön är en inomhus kontrolsmiljö, och pro-

jektets huvudsakliga tema är att implementera en fungerande mjukvara,

som låter roboten utforska sin omgivning, samt undvika människor som

rör sig i robotens närheten. Slutresultatet är en karta av världen och möj-

ligheten att visa den i en webbläsare, via trådlöst nätverk. Kartan måste

stämma tillräckligt överrens med verkligheten för att kunna användas till

att hitta vägar i den verkliga omgivningen.

2



Contents

1 Introduction 4

2 Background 6

2.1 Robot speci�cations . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Ultrasound sonars . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Odometry and SLAM . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Dynamic obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Mapping 12

3.1 Sonar mapping from odometry orientation data . . . . . . . . . . 12
3.2 Path�nding in the map . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Odometry drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Sonar problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Dynamic obstacles 18

4.1 Sonar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Experiments and results 21

5.1 Control program and interface . . . . . . . . . . . . . . . . . . . 21
5.2 Robot movement . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 The robot handler . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Map results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Conclusions and future work 26

References 27

A User's Guide 28

3



1 Introduction

Mobile robotics is an interesting �eld, with a multitude of possibilities, given a
su�ciently intelligent control program. There are several problems that need
solving to get a functioning robot, which, depending on the goals for the robot,
can be more or less complex. The most basic method of movement for a mobile
robot is to drive forward until an obstacle is detected, and then turn to avoid
hitting the obstacle. To reach a more intelligent and useful behavior there are
issues such as mapping and planning to solve.

There are many types of mobile robots, some of which appear in Figure 1. The
usage possibilities are vast, already including tasks such as cleaning, fetching,
scouting and mapping, among others [8]. Future possibilities include most tasks
carried out by humans today, as long as the robot can navigate the environment
where the task is to be carried out, and have instruments capable of doing the
necessary work.

Figure 1: Various mobile robots.

The main goals of this thesis is to develop a method capable of good enough
control for the robot to safely move around in an o�ce-like environment, have
it avoid crashing into humans moving in the operating environment, as well
as map the environment it has visited. The robot should also be able to seek
out areas it has not yet visited, and explore those areas, rather than only drive
around randomly. In addition, it should be possible to order the robot to return
to a previously visited area, visible in a human-readable map set up by the robot
during exploration. The robot should be controllable through wireless commu-
nication, using a web-interface to provide compatibility with di�erent devices,
allowing a human to tell it what to do.

Chapter 2 discusses the robot used for the project, and common techniques for
achieving the desired behavior for the various events and situations the robot

4



must be able to handle. Chapter 3 deals with the mapping of the environment,
speci�cally how the map is represented, and how to overcome some of the prob-
lems that arise during the mapping process. In chapter 4 the matter of dynamic
obstacles is discussed. Chapter 5 describes the control program, robot move-
ment, and results from driving the robot. The last chapter describes the needs
and possibilities for improvements in future work.

5



2 Background

2.1 Robot speci�cations

The target robot for this project is a Pioneer P3DX mobile robot (Figure 2)
[10], capable of driving forward and backwards, turning, and detecting obsta-
cles using ultrasound sonars, in eight di�erent directions in front of and to the
sides of the robot. It also keeps track of its current position relative its startup
position, using odometry calculations from wheel movement. In addition, a
camera is available and to be used to provide additional detection of humans.
The camera is an AXIS 207MW Network Camera [2], mounted on the robot and
accessed through a local ethernet connection. It has the capability of provid-
ing high-resolution JPEG images of 1280x1024 pixels at 12 frames per second,
through an ethernet network connection.

Figure 2: The Pioneer P3DX robot, with the AXIS 207MW Network Camera
mounted on the front.

Sonar input is achieved through bouncing ultrasound o� the environment. Each
of the eight sonars on the robot continuosly return the distance to the closest
obstacle, in the direction of that sonar. The directions are static relative the
robot. The distance detection range is up to 5000 mm, and the detection rate
is about 25 Hz. Figure 3 shows the sonar setup on the robot. Since the used
robot only have sonars in front of it, moving backwards can be dangerous, if a
dynamic environment is to be expected.

The robot is controlled by an onboard computer, running the software control-
ling the robot. It has a single-core Pentium III processor, operating at 850 MHz,
and 256 MB of RAM, the computation power which must be taken into account
when determining what methods are viable to use in controlling the robot. The
control program interacts with the robot instruments using the ARIA API [1],
Advanced Robotics Interface for Applications, provided with the robot. It is

6



Figure 3: Pioneer 3 sonar array

a C++-based development environment, with a class-based system for control-
ling the robot, allowing a custom program to poll sensor data and control robot
behavior through a higher level interface than the actual physical connections
to the robot instruments. It provides cross-platform compatibility for develop-
ing on a simulator and on the actual robot, allowing for speedier testing of a
program before running it on the robot. The API also provides a networking
interface, for use in communication with other devices.

2.2 Ultrasound sonars

The sonars work by emitting ultrasound from the sensor, and listening for a
returning sound, determining the distance to the obstacle the sound hit by
measuring the time since the sound was emitted [9]. The sound spreads in a
cone-shape outward, resulting in less accuracy on the actual obstacle position
with increasing distance, as displayed in Figure 4. The exact distance is also not
entirely accurate, but it is quite close, if the sound bounces back to the sensor
without problems.

There are many known problems with sonars, such as that the sound can be
re�ected instead of bouncing back. When this happens, the sound bounce at an
angle when hitting an obstacle, like a mirror, and does not return to the sonar.
Sometimes the sound may bounce twice before returning to the sonar, resulting

7



Figure 4: The sonar model. When the sound is returned it can be determined
that the white area is free from obstacles, and that somewhere in the darker
gray area there is an obstacle. No information is obtained about the lighter gray
area.

in an erroneous distance estimate for the obstacle.

2.3 Map

To perform tasks taking into account the world, apart from what is currently
seen by the sonars, the robot must have some memory of the areas it has visited.
Such tasks include exploration, path�nding and many more functions. To ac-
complish these tasks some map structure is required, keeping track of the robot's
view of its operating environment. There are several di�erent map structures
that may be used for this purpose.

A common map structure is a grid, where each cell represents some area in the
physical world. Each cell contains the available data of that particular area,
creating a map that can be more or less detailed, depending on the size chosen
for the areas each cell represents. The simplest form is a binary map, where
each cell is either passable or impassable, and the robot only drives through
passable cells. The sonars are used to �nd obstacles, and the appropriate cells
will be marked impassable when such are detected. Figure 5 displays how a
few boxes in an environment can be represented in a grid-map, where the grid
covers the ground plane. A two-dimensional map is often su�cient, when the
robot is used only on planar �oors.

8



Figure 5: A grid map representation of a simple environment. On the right is
the map, where the lighter cells can not be entered by the robot.

It is often hard to say with certainty that a particular cell is passable or im-
passable, so instead of a binary map a probability map can be used. Each cell
contains the estimated probability that the cell is impassable, and the robot
stays away from cells with a high enough probability [8]. Whenever a sonar de-
tects an obstacle, the corresponding cells will have their probability increased,
while a cell passed by a sonar signal has its probability decreased. This results
in a more dynamic map, where false detections or relocated objects are erased
from the map when newer information is gathered, and a more robust map is
obtained. Figure 6 shows how such a map might look like after the robot has
surveyed the environment. The lighter a cell is, the greater the probability that
it is impassable.

Figure 6: A probability-grid.

There is also the possibility of creating geometric or topological maps [11]. In
a geometric map the world is represented by some geometric shapes, such as
lines or squares. These can also be constructed from sonar input, but often

9



require more data to reliably map the environment with acceptable precision,
so a grid map is often used as a �rst step, and then a geometric map can be
constructed from that data. The same is true for topological maps, where the
main map structure is a graph of positions in the world, and the edges are paths
for the robot to move. Such a map is perhaps the most bene�cial to obtaining
optimal movement in a mapped environment, since it can be constructed from
a complete grid-map, calculating the safest or fastest routes to travel between
two known locations. Figure 7 shows how a few key positions can be chosen in
a grid-map, and this data can be used to have the robot travel between them.
With such a structure most of the map can be ignored, since only a few points
are considered relevant targets.

Figure 7: Topological data from a grid-map. The robot can use the information
of key positions to only travel chosen routes.

2.4 Odometry and SLAM

Odometry is a method of measuring movement, and works by measuring the
rotation of the robot's wheels. By knowing the circumference of the wheels, the
distance traveled can be calculated from the rotation, and an estimate of the
robot's position in the world is obtained. Odometry is far from perfect, and
errors will almost always be present. These errors are not static, but accumu-
late with time, often resulting in very large di�erences between where the robot
thinks it is located, and where it is truly located [8].

SLAM stands for simultanous localization and mapping, and is the problem of
constructing a map that correctly describes the true environment. As errors in
the robot's estimated position grow large, a map constructed using the position
estimate as a base will become severely distorted. Correcting this problem can

10



be very complex, and is an area of much research in mobile robotics. There
is no known �awless method, but several methods exist, taking probabilistic
approaches to estimating a map true to the environment [12].

2.5 Dynamic obstacles

In addition to static objects being recorded in the map, there can be dynamic
objects moving around, such as humans or other robots. These should preferably
not be visible in the map, since they are temporary, and can also require addi-
tional strategies to avoid. There is no currently known algorithm that perfectly
solves the problem of dynamic environments, but several best e�ort techniques
have been tried [11], the most commong being to use camera input to distin-
guish between various object types. With a probability map, as described in
section 2.3, dynamic worlds are handled fairly well by sonar, but multiple dif-
ferent inputs can be very beni�cial to detecting moving objects. One possibility
is to use the camera image to detect humans or other objects known to move,
that are indistinguishable from a static environment by the sonar input. This
requires some type of image processing algorithm, capable of detecting wanted
features in the image, and is often achieved through pattern recognition on the
input image. Various features can be recognized in the image, providing more
information for the robot, allowing it to avoid an area where for example a hu-
man face is located. Other than visual input, high-resolution distance sensors,
such as laser range �nders, can be used to give better resolution than the sonars.
These are however not capable of recognizing objects in the same way as camera
image processing.

11



3 Mapping

This section explains the mapping process, as well as how the map is used for
path �nding, to allow the robot to navigate in the environment.

3.1 Sonar mapping from odometry orientation data

The method of choice for world representation in this thesis is a simple grid-
structure. Each cell in the grid represents some area of the robot's operating
environment, and contains the known properties of that particular area. The
robot uses the sonars to detect obstacles in the world, and together with the
odometry position information it can determine what part of the grid the obsta-
cle resides in. The cells within some distance of that position are then marked
as a blocked part of the map, and are to be avoided by the robot when explor-
ing further. When such blocked cells are detected, it is reasonably likely that
the cells in between the robot and the detected obstacle are not blocked, since
otherwise the sonar would have detected a closer obstacle instead, as discussed
in section 2.2.

Every cell represents a 100mm x 100mm area of the world, and contains the
probability that an obstacle resides in that area. Everytime a sonar-signal trav-
els through a cell and fails to detect an obstacle there, that probability is de-
creased slightly. This method removes false detections, or detections of dynamic
objects such as humans moving around, so that the robot will eventually cease
to avoid an area previously occupied, if it is later vacated. Figure 8 shows how
estimated positions of obstacles in a room are converted into a probability-map,
used by the robot for navigation.

The method chosen for mapping probabilities is to set cell values to certain ob-
struction whenever an obstacle is detected, and decrease this probability slowly
if later sonar data suggests otherwise. This model was chosen because false
detections in open areas proved non-existant, and it leads to a faster change
in paths chosen in the map when new obstacles are detected. Negative e�ects
of the method can include unnecessary recalculation of paths when passing hu-
mans in the environment leave traces in the map, but it has shown over-all good
results during the project. The probability is decreased by slightly less than 1%
of maximum everytime a subsequent sonar detection indicates the cell to be
open. The map is updated from current sonar data every 40 ms, resulting in
about a 5 second investigation time for a cell to be considered completely safe
to move through, after it has once been considered occupied. The robot will
stay farther away from a cell the higher the probability of it being occupied
is, but is allowed to enter cells of less than 80% probability of occupancy, so
only one second of investigation is necessary before a previously occupied cell
becomes passable again. Section 3.2 on path�nding discusses the cell avoidance
algorithm in more detail.

The algorithm executed at every map update is as follows:

• Gather data from all eight sonars, determining the position of each de-
tected obstacle.

12



(a) Sonar detections (b) Map constructed from the de-
tected positions

Figure 8: Estimated positions of sonar-detected obstacles are used to construct
a probability-map. Lighter colors means a higher probability of the area being
obstructed.

• Decrease obstruction probability in cells within an area between the robot
and a detected obstacle.

• Mark cells in proximity of each obstacle position as occupied.

Subsequent detections by the same sonar are used to obtain a better approxima-
tion of cell occupancy. If two updates has the same sonar detecting obstacles in
close proximity, the area in between these obstacles is stretched in the direction
of each detection and considered as a larger obstacle. This helps in avoiding
gaps in walls when the robot turns quickly, while allowing a shorter safety dis-
tance in a direction likely to be away from the wall.

Accuracy can very well become a problem when using sonar data, depending on
what detail is desired in the map, since the actual obstacle position is only de-
termined to within some area. Though reasonable accuracy is usually obtained,
the sonars are far from perfect, and cases of false detections and obstacles being
missed by the signals must also be taken into consideration. Depending on the
robot's movement speed at the time of detection, calculated obstacle positions
may also be slightly out of place. Some of these problems are visible in Figure
8, and will be discussed further in section 3.4.

Once the robot has moved around a bit, an approximation of the world is ob-
tained from the sonar signals, and can be used to plan the next move. For
exploration, this is to �nd the closest cell not yet classi�ed, and drive to a point
where it can be investigated. This is accomplished by following a path towards
the nearest cell, a path which can be calculated with a simple graph-search from

13



the cell in the grid where the robot is currently located. Once the robot is on
the path to its target, its map might very well change quite drastically, so the
path will need continous recomputation, to make sure the robot keeps going in
the correct direction, or abandons its target if upon closer inspection it is found
to be blocked.

3.2 Path�nding in the map

When in exploration mode, the robot continously search for the area still un-
known to it with the lowest cost, according to a cost function for the path to
that area, and proceeds by driving along the chosen path. The method of �nd-
ing a path was designed to keep the robot far away from obstacles as much as
possible, abandoning a shorter path for a safer one, while still allowing move-
ment through narrow passages if necessary. The behavior is achieved through
deciding cell costs as the total probability of obstruction in cells closer than
500mm, with a weight multiplier decreasing quadratically with distance. The
actual path is calculated with Dijkstra's algorithm [6], beginning on the cell the
robot is currently occupying, stopping when an unknown cell is found as the
closest target. In addition, a cell with a probability of 80% or higher of being
occupied is never entered, even if there is no other path to explore.

Path�nding is handled seperately from actual movement. Once a path is found,
the robot's movement program is instructed to move along the path. Local
obstacle avoidance from both sonars and the camera is used when carrying out
the actual movement. This works by applying a basic local movement method
on top of the path, where the robot is told to drive forward, and turns away if
it would ever get too close to an obstacle, even if the object is not visible in the
map.

3.3 Odometry drift

Keeping track of the robot orientation through wheel movement is not an exact
science. Slippery �oors, or slight di�erences between the wheels, can make the
robot's perceived orientation vary signi�cantly from its true orientation. For
example, if the robot drives in a straight line, its odometry program might be-
lieve it has turned slightly. Though the robot will still function correctly in the
place its currently at, these errors accumulate to unacceptable distortions in the
map, if the robot is to be able to �nd its way back to a previously visited area.

As can be seen in Figure 9, where sonar detections of a rectangular room the
robot explored are plotted, the perceived walls are nowhere near their true places
after a while. At the end of the run, the whole image has turned 90 degrees, in
just the couple of minutes it took the robot to wander a couple of laps around
the room. This obviously makes a correct map of larger areas impossible to
obtain without means of correcting this error.

Compensating for drift in rotation can be achieved by searching for walls that
are not seen at the angle they should be. For arbitrary environments this is a
hard problem, since there might very well in some environment be a wall that

14



Figure 9: Map distortion from odometry drift.

is curved. If there are known attributes of the environment however, the prob-
lem is easier to solve. In a normal indoors environment, most walls intersect at
90 degree corners, and do not bend, something that can be exploited to keep
the robot on track. By inspecting recent sonar hits, looking for points forming
straight lines, walls can be identi�ed and their angle in the map be determined.
Such lines are located using the Hough transform [7]. When a wall is found at
an angle close to but not perfectly vertical or horizontal, it is likely that the
robot has drifted slightly in its orientation. The control program searches for
straight lines every 2 seconds, stores information about the most prominent line,
and compares it to the results from the last 4 searches before it. If 5 lines are
found to be bent in the same direction, no more than 20 degrees from straight
horizontal or vertical, then these lines are estimated to be 90-degree walls in
the real world, and the robot is considered to have drifted. The robot's internal
direction estimate is corrected at this point, to align with the true world, as
estimated from the detected lines.

Figure 10 displays the di�erence when using the correction algorithms to avoid
the error, when exploring a corridor. The real corridor is completely straight,
but the odometry position su�ers from an increasing error, making the perceived
world severely distorted without correction.

If it takes some time to determine a good enough estimation of the drift, the
robot can already have moved some distance in a direction other than what the
data suggests, o�setting its position estimate. This can make the map distorted,
even though the direction is kept correct. To correct for this behavior, the robot
must also be repositioned to account for the incorrect movement data. It is as-
sumed that once the robot is ordered to move, it will have an approximately
constant drift in perceived relative real orientation, and therefore the robot's
perceived movement path is stored. Once a drift is detected and adjusted, the
stored perceived path is re-calculated, each part of the path redirected to coun-
teract the total error, �nding the likely real movement path. Figure 11 shows
how the path is corrected, if the correction algorithm detects that the robot has

15



(a) Without correction.

(b) Corrected map.

Figure 10: By using map data for localization the robot attempts to compensate
for the odometry error.

moved straight, when the odometry indicates that it has turned.

3.4 Sonar problems

As can be seen in Figure 12 showing a map of the rectangular room, the odom-
etry correction algorithm keeps the room reasonably straight, and the robot
can �nd its way back to a previously explored position with good accuracy, but
other problems are visible. Though there are no openings in the walls of the
room, there are several sonar detections far behind them, which cause the robot
to believe that the world has changed, modifying the map to include areas not
really there. During the experiments in this project no wall was ever found to
always give false detections, so the robot's avoidance program will still keep it
away from the wall, even though there are enough false detections to cause the
map to show a very low probability of an obstacle there. The local movement
program avoids an area if there is currently any obstacle detected in the way,
even if it is only a single detection.

16



(a) Drifting path. (b) Adjusted path, estimating the
robot's true movement.

Figure 11: Corrected path.

Figure 12: In the map on the right it can be clearly seen how the sonars return
faulty distance information.

17



4 Dynamic obstacles

Avoiding humans is often done automatically by the sonars, treating them as
just another obstacle in the environment. The sonars are not fail-safe how-
ever, since the sonar directions might be far enough apart for small objects to
slip between them. This will also pose problems for other thin obstacles, such
as table-legs and similar kinds of objects. Image-processing algorithms can be
used on the camera image to detect objects of known types, avoiding them
separately in addition to sonar-detected obstacles. It can also be desirable that
the safety-distance to a human be greater than to a wall or an inanimate object.

4.1 Sonar

Since the sonar will detect humans close to the robot, it will avoid them with
the same strategies as avoiding the rest of the world. This way humans will
also leave traces in the map, though once relocated the robot will correct this
with subsequent sonar detections of the same area. Everytime a sonar measure-
ment indicates that no obstacle is visible the map probability will be decreased
slightly. Experimentally a time of 5 seconds has been chosen for a detected
obstacle to be completely removed from the map, if the sonars sees the area as
unobstructed.

4.2 Video

A camera is used to image the environment in front of the robot, and the image
is analyzed to �nd humans present in the image. There are many methods that
can be used to detect relevant features in the image, for example human face
and gesture recognition [3, 5]. The detection algorithm chosen here is a simpler
one, and works by �nding close to vertical edges from human legs in the image.
This method is not too good, and can often give false positive detections, but it
is reasonably cheap in processing time and detects humans with a good enough
probability to allow the system to function. To easily achieve a reasonable esti-
mate of whether there is a human in front of the robot, and at what distance,
the camera is inclined to image the �oor close to the robot, as shown in Figure
13.

The algorithm �rst detects possible vertical edges by searching for horizontally
adjacent pixels where the di�erence in color or luminance is large, as in the
Canny edge detection algorithm [4]. These edge pixels are then traced, search-
ing for vertical lines, allowing some noise and bend in the line, to �nd lines that
might be the edges of human legs. This can be done for example by using the
Hough transform, as in [11], but since only near-vertical lines are interesting an
easier trivial approach is taken. A loop checks edge pixels from top to bottom,
counting how many occur adjacent to each other, and if a vertical line of signif-
icant length is found it is stored as a probable edge in the image. After all such
edges are found, they are inspected for pairs at an appropriate distance from
each other, in which case a human is considered present at that position in the
image. The image resolution and framerate chosen for the camera can be an

18



Figure 13: The camera is inclined to image the �oor in front of the robot.

issue, requiring balance between image detail, reaction time, and performance.
A resolution of 480x360 and an update frequency of 5 frames per second was
found to work well, in all these regards.

The camera is statically placed on the robot, so each pixel imaging the ground
will always correspond to some �xed distance from the robot. These distances
need to be mapped at some acceptable resolution, and then each detected ob-
ject's lowest point in the image is used to decide at what position that object
is located. Since the robot only moves on the �oor this method works well, as
long as the �oor is not too re�ective, so that the point where the object meets
the �oor is properly detected.

Figure 14 shows how an image is projected onto the ground-plane, and how the
distance vectors to the detected object is determined. The grid size is 20 cm.
As can be seen, precision is much better closer to the robot, since many more
pixels will be mapped to a smaller area.

19



Figure 14: A camera image projected on a ground-plane, allowing distances to
be calculated.

20



5 Experiments and results

5.1 Control program and interface

On the onboard computer, the actual robot sensor control is handled by the
ARIA API in the background using threading. The API is controlled by adding
action class objects that are called by the API, when the robot wants informa-
tion on how to behave. Because of the single-core CPU, there is rarely anything
to gain from threading computations or control, but it can lead to performance
penalties in synchronization, so the software does as much as possible in a single
thread. Each cycle the current sonar input is checked, the map updated, and if
needed path-�nding and changed orders are handled to determine the desired
robot behavior. The appropriate actions are then activated to give the robot
instruments instructions via ARIA. In addition, the network is checked regu-
larly for incoming data, and requests for map updates and other information by
connected clients are handled.

Figure 16 shows the main parts of the program. The logic is handled in RobotH-
andler, in the update cycle run every 40 ms. This part of the program interfaces
with the ARIA API for robot control, and with the map for updates and path-
�nding. The localization map is given the same input as the probability map,
but uses it to �nd walls that can be used to correct odometry orientation errors.
The image provider part is connected to the camera, and continously receive the
latest video image seen by it. The image is queried by the robot handler, and
searched for humans in vicinity of the robot, which are then remembered and
avoided when moving further. The HTTP server accepts incoming connections
from a web-browser, and allows monitoring and control of the robot. When
connecting to the robot a page with an image of the current map is visible,
along with information on the robot's current orders and intentions. Changes
to these can be intiated from the web-page, such as telling the robot where to
travel next. Figure 15 shows the web-page.

Figure 15: The web-page for controlling and monitoring the robot.

21



Figure 16: The main parts of the robot control software.

5.2 Robot movement

When the program tells the robot to actually move, it does so by instructing
ARIA with what velocity and in what direction the robot should drive. This
is achieved by using objects called actions, added to the ARIA active action
group. Each action has its execution method, called by ARIA when the robot
instruments want instructions, and a priority depending on how important it
is. It is the control software's responsibility to set the appropriate priorities,
telling ARIA which action is most important. The actions themselves can be
custom-written, if input is needed from the map or another construct of the
control software, or some of the built-in actions to move or stop that only use
the current input from the robot's instruments. The highest priority actions are
those stopping the robot from crashing into the environment, and their execution
methods works by checking if there is an obstacle in the way, in which case they
instruct the robot to stop or turn. There are a few of these actions, turning
for obstacles some distance in front of the robot and stopping for those very
close, both for sonar and camera detected obstacles. The action with slightly

22



lower priority is the movement action, telling the robot to drive forward or turn,
depending on where it is instructed to go. This method guarantees that even if
the robot is ordered to follow a path, a higher priority safety action will stop it
if an obstacle appears in the way. Figure 17 illustrates how this works.

Figure 17: ARIA requests behavior suggestions from all actions, and uses the
highest priority suggestion to determine robot behavior. This �gure shows three
examples, where the ObstacleAvoidance action has higher priority than the
Movement action. The Movement action only considers where it wants the
robot to go when suggesting an action, and the ObstacleAvoidance action only
considers if and how the robot needs to act to avoid crashing.

5.3 The robot handler

The RobotHandler is the main component of the control software, directing in-
put and output from the other components, and making decisions on what the
robot should do next. It mainly interfaces with the ProbabilityMap, the Image-
Provider, through obtaining camera images from it, the LocalizationMap, and
the underlying ARIA API. The purpose of the LocalizationMap is to �nd errors
in the robot's perceived position, as described in Section 3.3. It is given the
sonar input every update, and if it �nds indication of an error it reports back
with this information, which is used by the RobotHandler to correct the error.
The ImageProvider connects to the camera, continously receiving video frames
from it, and the RobotHandler requests the latest available image whenever dy-
namic obstacles should be detected in it. The HTTPServer communicates with
the RobotHandler whenever it is necessary to serve a request for information,
or when orders for the robot have been received. The main update sequence

23



run by the RobotHandler follows:

• Gather data from all sonars, and input to the ProbabilityMap.

• Request the latest video image, and try to detect humans in the image.
This step is not run every frame, since the image is not updated that often.

• Input the sonar data to the LocalizationMap, and handle positional errors
if present.

• Handle current orders, updating robot actions if necessary.

• Calculate movement paths from the ProbabilityMap, when necessary.

5.4 Map results

The map is kept aligned with the world quite well, but the simple correction
algorithm used to compensate for odometry errors is not perfect. Since it does
not actually determine the robot's position by comparing sonar data to the map,
but rather simply adjusts the robot orientation depending on the estimated drift
from wall angles, there is often slight accumulating errors. During exploration
of a larger area the map can su�er from errors, when the true robot position is
not obtained with good enough precision from correcting the perceived move-
ment path based on the direction found from wall angles. Depending on sonar
precision, and movement during the correction process, detected walls may not
align exactly with their true counterparts, which can also result in the robot
aligning itself to a faulty perceived environment. The result is that though the
map is kept well aligned angle-wise, the robot can experience positional o�sets
when returning to a previously explored area, as visible in Figure 19. Though
there are problems, the map is usually kept reasonably close to the true world.
Figure 18 shows how the robot has moved a longer distance through a corridor.

Figure 18: In this image the robot started out in the right end, �rst exploring
with the odometry correction algorithm disabled. This lead to signi�cant errors,
but after the correction was enabled the map was kept reasonably straight. The
robot then drove from right to left through a corridor, passing a few humans
that can be seen to have left tracks in the map at certain positions.

24



Figure 19: Plotted in this �gure are sonar detections as the robot has traveled
from the lower right corner, up to the top, then back down. Drift is compensated
well horizontally, but a vertical o�set error has occured.

25



6 Conclusions and future work

In areas such as this there is always room for improvement, since the instru-
ments rarely give perfect data. Fine-tuning implementation and algorithms
might gain signi�cant improvement, and calibration of variables is an impor-
tant part of achieving good results. Apart from this �ne-tuning, there are many
algorithmic improvements and additions that can give the robot a better over-
all behavior.

The robot usually moves well and safe in its operating environment, but there is
room for much improvement. When moving through narrow passages the robot
will often pause and move very slowly trying to keep away from the walls, conti-
nously recalculating the best path. Using a more advanced map structure, such
as a topological map, could lead to better paths being calculated quicker, al-
lowing for faster and safer movement through previously mapped environment.
This can also enable the robot to move faster, and avoid excessive calculations
during movement, saving both time and processing power.

During the planning of the project odometry drift was not taken into account,
but it quickly proved itself necessary to correct, to achieve acceptable behav-
ior. The correction for the drift in this project is very basic, and assumes a lot
about the operating environment, and true SLAM could signi�cantly extend the
possibilities for the robot to map complex environments. It is often impossible
to say beforehand how the robot will drift, and in order to achieve a reliable
behavior in di�cult situations a better localization algorithm is needed, one less
reliant on odometry. In more complex usage scenarios, where the robot might
even get in�uenced or moved by external forces, localization by examination of
the environment around it would be a necessity.

Dynamic objects are handled fairly well separately from the map, but as dis-
cussed in section 4.1 they still leave traces in the map. Avoiding this by disre-
garding sonar-detected obstacles known to be human can be a good idea. The
algorithm used in this project is very basic, and can easily give false positives,
which is not acceptable if obstacles are to be removed from the map. A more
accurate algorithm, detecting humans with a very high probability, can make
such a method viable, if there is enough processing power for it to run.

26



References

[1] Mobilerobots support site, http://robots.mobilerobots.com/ (veri�ed 2009-
06-22).

[2] AXIS 207W / AXIS 207MW Network Camera User's Manual, 2007.

[3] H.-J. Boehme, U.-D. Braumann, A. Brakensiek, A. Corradini, M. Krabbes,
and H.-M. Gross. User Localisation for Visually-based Human�Machine�
Interaction. In Proceedings of the Third IEEE International Conference on
Automatic Face and Gesture Recognition, pages 486�491, 1998.

[4] J Canny. Trans. Pattern Analysis and Machine Intelligence 8(6). IEEE,
1988.

[5] H.I. Christensen, D. Kragic, and F. Sandberg. Vision for Interaction. In
Hager, Christensen, Bunke, and Klein, editors, Lecture Notes in Computer
Science, volume 2238, pages 51�73. Springer, October 2002.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord
Stein. Introduction to Algorithms (2). MIT Press and McGraw-Hill.

[7] David A Forsyth and Jean Ponce. Computer Vision A Modern Approach.
Prentice Hall, 2003.

[8] Robin R. Murphy. Introduction to AI Robotics. 2000.

[9] Ulrich Nehmzow. Mobile Robotics: A Practical Introduction. Springer,
2000.

[10] Pioneer 3 Operations Manual, Mobile Robotics Inc., 2007.

[11] Roland Siegwart and Illah R. Nourbakhsh. Introduction to Autonomous
Mobile Robots. 2004.

[12] Sebastian Thrun. Robotic mapping: A survey. 2002.

27



A User's Guide

Using the robot program is fairly straight-forward. First a wireless connection
must be set up between the robot and the device used to control it, and then
the RobotAI program must be started from a terminal. Once the program is up
and running it will listen for incoming HTTP connections on port 80, and any
web-browser can be used to control the robot, as seen in Figure 20. The page
displays the robot's current orders and the action it is presently performing, as
well as whether the camera and sonars are enabled. By pressing the available
buttons the sonars and the camera can be enabled and disabled, and the robot
can be told to either explore, wander, or stop. It is not recommended to disable
the sonars unless the robot is ordered to stop, or if there are no obstacles in the
vicinity, since it will not be able to detect and avoid obstacles without them.
The image on the page shows the map as the robot currently sees it, and it is
automatically reloaded to re�ect changes every two seconds. In addition to the
order-buttons, the map image can be clicked to order the robot to move to the
point clicked.

Figure 20: When connecting to the robot using a web-browser, the control page
can be used to give the robot orders.

The source code for the program is available at http://�leadmin.cs.lth.se/ai/xj/ErikRufelt/RobotAI.zip.

28


