Mclennan Servo Supplies Ltd.

PM600 Motion Controller USER Manual

PRODUCT MANUAL FOR PM600 Digiloop ®

SAFETY NOTICE !

Position control systems are inherently hazardous. Even a small motor, if coupled to a leadscrew, gearbox, or any other form of mechanism that provides a mechanical advantage, can generate considerable force and could cause serious injury. Incorrect operation can also lead to damage to the motor or associated machinery. It is essential that the purpose of the various safety features built into the PM600 be fully understood and used correctly.

Caution

STATIC SENSITIVE DEVICES

This unit has static sensitive devices. Observe handling precautions: Hold card by edges only. Do not touch components or connector pins. Ship only in anti-static packaging.

Mclennan Servo Supplies Ltd. 22 Doman Road, Yorktown Industrial Estate, Camberley, Surrey, GU15 3DF UK Telephone: +44 (0)1276 26146 FAX: +44 (0)1276 23452

Sales EMAIL: sales@mclennan.co.uk Technical support EMAIL: tech@mclennan.co.uk

This manual is written for firmware version - V3.25a

The manufacturer reserves the right to update the data used in this manual in line with product development without prior notice.

This manual printed: Wednesday, 28 March 2001

1 Commands – How to talk to the PM600

1.1 COMMAND WORD SYNTAX

The PM600 has a wide range of command options extending beyond the main move functions. The aim is to provide a flexible and comprehensive control device for integration of motion control into larger systems.

1.1.1 Commands

Most commands are two letters, the function of each, being described in the Programmer Reference section. Each command is preceded by the appropriate address to identify the axis for which the command is intended. Where applicable (e.g. move commands, setting of system parameters, etc.) the command should then be followed by the desired value:

aXXnnn<cr>

a = address
XX = command
nnn = value (if required)
<cr> = carriage return.

Command strings should be terminated with a carriage return character (ASCII 0D hex). Upper or lower case characters may be used for the command. Spaces within the command line are ignored. If no value is given, then zero is assumed.

All commands except for **Control C** and **ESCAPE** are buffered. Commands are executed in consecutive order. Commands will be acted on sequentially, as they have been entered. If any command cannot be executed immediately (because it may need to wait for some condition or a previous command to finish) then the command and any that follow it will be buffered internally (up to 256 characters). The responses for each command are returned as the command is executed.

NOTE: Delete, backspace and cursor movement characters are **NOT** detected by the controller. With some terminals or emulators these keystrokes will be translated as an escape sequence, i.e. a sequence of characters beginning with an escape character (ASCII 1B hex). The controller will detect the escape character and act on it accordingly.

Please note that due to the loop nature of the RS232 communications, all characters that are sent to the controllers are echoed back to the host.

1.1.2 Replies

Response to a command, once it has been accepted, is either an **OK** string or an alpha-numeric string. Responses terminate in a carriage return character (0D) and a line feed character (0A) and are preceeded by the address number and a colon character. An appropriate message is sent if a mistake or conflicting instruction creates an error. The first character of an error message is !

1.1.3 Non-volatile Memory

All set-up parameters (control coefficients, acceleration, deceleration, velocities, jog speeds, creep speed, etc.), sequences and profiles will be read from the on board FLASH memory to the controllers normal RAM memory on power-up. The parameters may then be modified in the volatile RAM by the relevant commands, but these modifications will not persist after power down. Use the backup (BA, BC, BD, BP & BS) commands to write the current set-up back to the non-volatile FLASH memory, so that they will be 'remembered' on power up.

2 PROGRAMMERS REFERENCE

CONTROL C (ASCII 03) Hard Stop.

Moves, sequences and profiles halted immediately. Motion stopped at the **LD** rate. Command buffer cleared. Sets status to **Idle**. Sequences and profiles retained in memory. Operates on all axes.

ESCAPE (ASCII 27) Soft Stop

Moves, sequences and profiles halted immediately. Motion stopped at the **SD** rate. Command buffer cleared. Status returns to **Idle**. Sequences and profiles retained in memory. Operates on all axes.

ABORT AB

The control of the motor may be aborted by sending AB. When aborted, the servo loop is disabled and the status display will show C for command abort. A user abort may be reset with the RS command. The encoder positions are still read while aborted.

Syntax <ad>AB</ad>	Units N/A	Range N/A	to	Initial State N/A	Privilege level 0
Condition Requirements None.			Notes: The response to a CO command will be Command Abort. It will override any other abort situation.		
Responses: ! COMMANE	ABORT	Command ha	as been accepted.		

Example:

AD

1AB Abort axis 1.

AUTO-EXECUTE SEQUENCE - DISABLE

Switches off any auto-execute sequences that may have been set by the AE command. Note that this setting is written to the non volatile FLASH memory and is therefore retained after power down.

Syntax <ad>AD</ad>	Units	Range	to	Initial State Disabled	Privilege level 5
Condition Requirements			Notes: Value stored in FLASH		
Responses: OK		Command ha	s been accepted.		

Example:

1AD Disable auto execute of axis 1.

AE **AUTO-EXECUTE SEQUENCE - ENABLE**

Set sequence *n* to run on power-up of the controller (auto-execute). This may be used in stand alone systems where there is no permanent host computer or terminal. Note that this setting is written to the non volatile FLASH memory and is therefore retained after power down.

Syntax <ad>AEn</ad>	Units Seq. No.	Range 0	to 7	Initial State Disabled	Privilege level 5
Condition Requi Idle	rements		Notes: Value store	d in FLASH	
Responses: OK ! INVALID SEQUENCE NUMBER ! SEQUENCE UNDEFINED		JMBER	Command has been Argument is out of v Sequence specified		

Example:

1AE5

Sets auto execute of axis 1 to run sequence 5 on power-up.

READ ANALOGUE INPUT AI

Read Analogue Input. If the argument is 1 or 2 then the value will be read from the bi-polarAnalogue inputs 1 or 2 respectively. These return a value between -2047 and +2047 at a scaling of 5mV per unit ($\pm 10V$). For arguments 3 to 5 will give the unipolar values for Joystick1, Joystick2 and JoystickCT respectively for the range 0 to 4095 for 0V to 5V.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>Aln</ad>	N/A	1	5	N/A	0
Condition Requi	irements		Notes:		

Response:

The response is a string of numeric characters. If the communications are in Verbose Mode, the reply is preceded by something of the format ADC1 = or ! NOT VALID ADC CHANNEL

Example:

- If the controller of axis 1 currently has a Command Position of 45280 then the command:
- in Verbose Mode will respond: 01:Joystick 1 = 2040 (approx 2.5V) 1AI3
- 1AI3 in Quiet Mode will respond: 01:2040

AG WAIT FOR ANALOGUE INPUT GREATER THAN

Wait until an Analogue Input is greater than a value. If the first argument is 1 or 2 then the value will be read from the bi-polar Analogue inputs 1 or 2 respectively. The value is between -2047 and +2047 at a scaling of 5mV per unit (±10V). If the first argument is 3 to 5, then the unipolar values are for Joystick1, Joystick2 and JoystickCT respectively for the range 0 to 4095 for 0V to 5V.

Syntax <ad>AGn/xxx</ad>	Units N/A	Range 1	to 5	Initial State N/A	Privilege level 1		
Condition Requi None	rements		Notes:				
Response: OK The condition has come true or Image: NOT VALID ADC CHANNEL							
Example: 1AG2/100 1AG3/204			out 2 is greater than out is greater than 2				

AL WAIT FOR ANALOGUE INPUT LESS THAN

Wait until an Analogue Input is less than a value. If the first argument is 1 or 2 then the value will be read from the bi-polar Analogue inputs 1 or 2 respectively. The value is between -2047 and +2047 at a scaling of 5mV per unit $(\pm 10V)$. If the first argument is 3 to 5, then the unipolar values are for Joystick1, Joystick2 and JoystickCT respectively for the range 0 to 4095 for 0V to 5V.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>ALn/xxx</ad>	N/A	1	5	N/A	
Condition Requirements None			Notes:		

Response:

OK The condition has come true or **! NOT VALID ADC CHANNEL**

Example:

1AL2/-1000 Wait until Analogue Input 2 is less (more negative) than 2.5V 1AL3/2047 Wait until Joystick 1 Input is less than 2.5V

AM SET ABORT MODE

Set the conditions that cause an abort and disable the control (servo) loop.

Syntax <ad>AMab where</ad>	 b - 0 -Abort Stop 1 - Abort Stop 1 - Abort Stop 1 - Stall Error 1 - Stall Error 1 - Tracking I 1 - Tracking I e - 0 - TimeOut I 1 - TimeOut I f - Reserved for g - Reserved for h - 0 - Enable out 	p Input stops a p Input is latche p Input is only r disables cont r is indicated b Error disables Error is indicat Error disables Error is indicat future use. future use. utput switched	all moves only ed requiring RS of momentary rol loop ut control loop re control loop ed but control loo control loop ed but control loo	op remains active op remains active sabled control loop	Privilege level 6	
Condition Requirements Idle			Notes: Bit a = 0 and bit b = 1 is not appropriate and should not be used.			
			d has been acce ument range or f			
Examples						

Examples:

1AM00010100 Set axis 1 to abort on all conditions except Tracking Error, enable output stays ON. 1AM11000000 Set axis 1 to abort on all conditions except momentary Abort Stop input only stops or moves.

AO SET ANALOGUE OUTPUT

Set the voltage of an Analogue Output. The first argument is 1 or 2 and the value will be written to the bi-polar Analogue outputs 1 or 2 respectively. The value is between -2047 and +2047 at a scaling of 5mV per unit (±10V).

The Analogue Output channel needs to be available, so AO2/xxx only may be used single channel servo mode, and both may be used in stepper motor modes.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>Aon/xxx</ad>	N/A	1	2	N/A	3
Condition Requirements None		Notes:			

Response:

OK Command has been accepted or **! NOT VALID DAC CHANNEL**

Examples:

1AO1/1024	Set the Analogue output 1 to +5V
1AO2/-2047	Set the Analogue output 2 to -10V

AP SET ACTUAL POSITION

Set the actual position (position of motor or mechanism) value to that given in the argument.

Syntax <ad>APnnn</ad>	Units Steps	Range -2147483647	to 2147483647(±2 ³²)	Initial State 0	Privilege level 3		
Condition Requi Idle, Constant vel		юх	Notes: Value zero on pow	ver-up.			
Response: OK		Command ha	as been accepted.				
Examples: 1AP5000 or 1AP0	1AP5000 Set the axis 1 Position to 5000.						
BA E	BACKUP ALL						
Saves parameters, sequence definitions, profile definitions and cam definitions to <i>flash</i> memory. These are then restored on power-up.							
Syntax <ad>BA</ad>	Units n/a	Range n/a	to	Initial State n/a	Privilege level 5		
Condition Requi Idle	rements		Notes:				
Response: OK		Command ha	as been accepted.				
BC E		IS					
			se are then restored	on power-up.			
Syntax <ad>BC</ad>	Units n/a	Range n/a	to	Initial State n/a	Privilege level 5		
Condition Requi Servo mode, Idle	Condition Requirements Notes: Servo mode, Idle						
Response: OK Command has been accepted. ! NOT ALLOWED IN STEPPER MODE Only works in servo mode							

BD BACKUP DIGILOOP PARAMETERS

Saves Digiloop parameters to *flash* memory. These are then restored on power-up.

Syntax <ad>BD</ad>	Units n/a	Range n/a	to	Initial State n/a	Privilege level 4
Condition Re	quirements		Notes:		
Response: OK		Command	d has been acce	epted.	
во	SET BACK	OFF			

Set number of back-off steps that are executed at the end of a move. The motor will decelerate to the creep speed at the back-off position relative to the required end position. The controller will then complete the move at the creep speed. The controller will therefore always approach the final position at the creep speed and from the same direction. This may be useful in combating backlash in a mechanism.

Syntax <ad>BOnnn</ad>	Units Steps	Range -2147483647	to 2147483647(2 ³²)	Initial State 0	Privilege level 6
Condition Requ	iirements		Notes: Value stored in FL	ASH by BD command.	
Response: OK ! OUT OF R	· · · · · · · · · · · · · · · · · · ·				
Examples: 1BO500		Set the back-o	ff distance to 500 st	eps on axis 1.	

BP	BACKUP	PROFILES
----	--------	----------

Saves all profile definitions to *flash* memory. These are then restored on power-up.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>BP</ad>	n/a	n/a		n/a	5
Condition Requi			Notes:		

 Response:
 Command has been accepted.

 OK
 Command has been accepted.

 ! NOT ALLOWED IN STEPPER MODE
 Only works in servo mode

BS BACKUP SEQUENCES

Saves all sequence definitions to *flash* memory. These are then restored on power-up.

Syntax <ad>BS</ad>	Units n/a	Range n/a	to	Initial State n/a	Privilege level 5
Condition Requirements			Notes:		
Response: OK		Command ha	s been accepted.		

CD **CLEAR CAPTURED DATUM** Clears the current captured datum position. **Syntax** Units Range to **Initial State Privilege level** <ad>CD n/a n/a n/a **Condition Requirements** Notes: None **Response:** OK Command has been accepted. CM SET CONTROL MODE Sets the current control mode. When changing from servo mode to a steeper mode or vice versa, the controller will be forced into a command abort and will reset all parameters to the default values for the new mode. **Syntax** Units Range **Initial State Privilege level** to 1, 11, 12, 13 or 14 <ad>CMnn n/a 8 1 CM1 Servo mode CM11 Open loop stepper mode CM12 Checking stepper mode CM13 External loop stepper mode CM14 Closed loop stepper mode **Condition Requirements** Notes: Idle Forces a Command Abort if changing between servo/stepper **Response:** OK Command has been accepted (no servo/stepper change). Command has been accepted (servo/stepper change forced abort). **! COMMAND ABORT** CO QUERY CURENT OPERATION This command will return the current operation being executed by the controller. **Initial State Syntax** Units Range **Privilege level** to <ad>CO n/a n/a n/a 0 **Condition Requirements** Notes: None **Responses: Mode =** and one of the following: Backoff Executing backoff correction Cam Executing Cam profile Waiting for synchronisation in cam mode **Cam synchronisation Command Abort** Aborted due to command abort (AB) command **Constant velocity** Constant velocity Correcting Closed loop stepper correcting Creep Creep steps at end of move Delay Executing delay command Gearbox Gearbox mode

PM600 User Manual

Searching for datum

Home to datum

Idle	
Input abort	Aborted due to Abort Stop input
Jogging	Jogging or Joystick move
Move	Move (MA or MR command)
Profile	Executing profile
RS232 abort	Illegal serial character(s) received
Settling	Settling at end of move
Stopping	Decelerating due to limit, Ctrl-C or ESCAPE command
Stall Abort	Aborted due to Stall Error
Tracking Abort	Aborted due to Tracking Abort
Not Complete /Timeout Abo	ort Aborted due to Timeout Abort
Wait for condition	Waiting for specific pattern on read port

CP SET COMMAND POSITION

Set the command position value to that given in the argument. The command position is the position generated by a move command.

Syntax <ad>CPnnn</ad>	Units Steps	Range -2147483647	to 2147483647(±2 ³²)	Initial State N/A	Privilege level 3
Condition Requi Idle, Constant vel		DOX	Notes: Value zero on pow	<i>v</i> er-up.	
Response: OK		Command ha	as been accepted.		
Examples: 1CP5000 or 1CP0			nd Position to 5000. nd Position to zero.		

CR SET CREEP DISTANCE

Set number of creep steps at the end of a move. The motor will decelerate and execute this number of steps at the creep speed.

Syntax <ad>CRnnn</ad>	Units Steps		to 2147483647(2 ³²)	Initial State 0(servo) 10(stepper)	Privilege level
Condition Required		-	Notes:	ASH by BD command.	-
Response: OK ! OUT OF R	ANGE		has been accepted. is out of valid range.		
Examples: 1CR50		Set the creep distand	ce to 50 steps on axis	1.	

CV CONSTANT VELOCITY MOVE

A Constant velocity move is used to move continuously at the required speed. Initially the move will ramp up to the speed given in the argument, where the sign dictates the direction of movement. The argument therefore

controls the velocity. Subsequent CV commands may then be sent to change the required velocity, including changes in direction.

The speed is changeable whilst motion is in progress. The **SA** and **SD** rates define the rate at which the change of speed will be made. Constant velocity mode is exited by an **ST** command, **ESCAPE** or Control **C**. The soft limits are active in CV mode. For continuous applications they must be disabled with the SL command.

Syntax <ad>CVnnn</ad>	Units steps/sec	Range -400,000	to 400,000	Initial State N/A	Privilege level 1
Condition Requi Idle or Constant v			Notes:		
Responses: OK ! HARD LIMI ! SOFT LIMI ! INPUT ABC ! STALL ABC ! TRACKING ! TIMEOUT A	DRT DRT DRT ABORT	Hard limit for Soft limit for An input abo A stall abort A tracking ab		ion is already activated on has already been read ected sted etected	ched
Examples: 1CV2000 1CV-100				re direction at 2000 steps ve direction at 10,000 ste	

DC	DEFINE CAM		

This command will start a Cam profile definition. There are eight cams that may be defined and the argument selects which profile is to be defined (0 to 7). The only command that is used during a Cam profile definition is **XY.** Any other commands except for **EC** will cause a **!ILLEGAL CAM INSTRUCTION** error.

The commands that follow this **DC** command will not be executed, but will be stored in the on board volatile memory until the End Cam definition (**EC**) command is received. If a Control-C or ESCAPE command is received or the controller runs out of memory, the Cam definition will cease, the Cam will not be stored and the controller will return to the idle state. The Cam Modulo (profile length) is calculated automatically.

Syntax	Units	Range	to	Initial State	Privilege level	
<ad>DCn</ad>	Cam number 0		7	N/A	5	
Condition Requirements Servo mode, Idle			defined, that fact is showr mmand to store profiles in	1 0		

memory.

 Responses:
 OK: START OF CAM
 Command has been accepted.

 ! NOT ALLOWED IN STEPPER MODE
 Only works in servo mode

Example:

1DC3 1XY200/500	Start definition of Cam 3. Second Cam profile point. (First Cam profile co-ordinates 0,0.)
1XY400/500	Next Cam Profile point.
1XY600/-200	"
1XY700/-200	"
1XY750/0	ű
1EC	End of Cam profile definition.

DE DELAY

This command will start a delay timer for the length given in the argument. After the expiry of this time, the controller will return to the idle mode.

If the following command should not be executed until the end of this delay time, and does not wait for the idle state itself, then you must follow it with a Wait for End (**WE**) command. This will wait until the controller returns to the idle mode and will therefore sense the expiry of the delay time.

Syntax <ad>DE</ad>		Units Milliseconds	Range 1	to 2147483647(2 ³²)	Initial State N/A	Privilege level 1
Conditi Idle	on Require	ements		Notes:		
Respon OK	ses:		Command ha	s been accepted.		
Exampl	e:					
	1DE5000 1WE 1WP22222	Wait for	or 5 seconds end of delay e port 1 on after	delay.		

DM SET DATUM MODE

Set the mode of operation for datum searches.

Syntax	Units	Range	to	Initial State	Privilege level			
<ad>DMat</ad>	ad>DMabcdefgh Bits 0 1 0000000 6							
where	a - 0 – Encoder	index input pol	arity is normal					
	1 – Encoder	index input pol	arity is inverted					
	b - 0 –Datum po	int is captured	only once (i.e. a	fter HD command)				
	1 – Datum po	pint is captured	l each time it ha	opens				
	c - 0 – Datum po	osition is captu	red but not char	ged				
	1 – Datum po	osition is set to	Home Position	(SH) after datum search (HD)				
	d - 0 – Automatio							
	1 – Automatio	c direction sea	rch enabled					
	e - 0 – Automatio	c opposite limi	t search disable	t				
			t search enabled					
	f - Reserved for							
	g - Reserved for	r future use.						
	h - Reserved for	r future use.						
Condition	Requirements		Notes:					
Idle								
Response	:							
OK Command has been accepted.								
! OUT OF RANGE Illegal argument range or format								
Examples	:							

1DM00100000 Set axis 1 to normal datum capture with automatic setting the captured position to Home position.

DP DEFINE PROFILE

This command will start a Profile definition. There are eight profiles that may be defined and the argument selects which sequence is to be defined (0 to 7). The only command that is used during a Profile definition is **MR** any other commands except for **EP** will cause a **!ILLEGAL PROFILE INSTRUCTION** error.

The commands that follow this **DP** command will not be executed, but will be stored in the on board volatile memory until the End Profile definition (**EP**) command is received. If a Control-C or ESCAPE command is received or the controller runs out of memory, the Profile definition will cease, the Profile will not be stored and the controller will return to the idle state.

Syntax <ad>DPn</ad>	Units Profile No.	Range 0	to 7	Initial State N/A	Privilege level 5
Condition Requ Servo mode, Idle memory.				e is defined, that fact is sho ommand to store profiles ir	
	ROFILE INST WED IN STEI		Command	d has been accepted. d has not been accepted s in servo mode	
Example:					
1DP		Profile definition			

IDE	
1MR200	First Profile move.
1MR500	Next Profile move.
1MR-500	"
1MR-200	"
1MR50	"
1EP	End of Profile definition.

DS DEFINE SEQUENCE

This command will start a sequence definition. There are eight sequences that may be defined and the argument selects which sequence is to be defined (0 to 7). All valid commands that follow this **DS** command will not be executed, but will be stored in the on board volatile memory until the End Sequence definition (**ES**) command is received. If a command is not suitable for inclusion in a sequence, the controller will respond **!ILLEGAL SEQUENCE INSTRUCTION**.

If a Control-C or ESCAPE command is received or the controller runs out of memory, the sequence definition will cease, the sequence will not be stored and the controller will return to the idle state. . Note that a **BS** command will be needed to copy the sequences to the non volatile FLASH memory, otherwise it will be lost on power down.

Syntax <ad>DSn</ad>	Units Seq. No.	Range 0	to 7	Initial State N/A	Privilege level 5	
Condition Requi Idle	rements		Notes: The sequences defined are shown on the QA page. Use BS command to store sequences in non-volatile flash			
RAM						
Responses OK: START OF SEQUENCECommand has been accepted.						
Example:						
1DS4	Start d	efinition of sequ	ience 4.			
1SV2000	Set sle	w speed.				
1MA8000	First m	ove (absolute).				

1MA8000	First move (absolute).
1MR5000	Next move (relative).

1MR3000	Next move (relative).
1SV50000	Set new slew speed.
1MA0	Next move (return to start position).
1XS4	Execute sequence 4 (loop to start of this sequence).
1ES	End of sequence definition.
	•

EC END CAM DEFINITION

This command will end a Cam profile definition. The Cam definition must have been started by the Define Cam (DC) command. No argument is necessary as the sequence number is specified with the Define Cam (DC) command.

Syntax <ad>EC</ad>	Units N/A	Range N/A	to	Initial State N/A	Privilege level 5
Condition Requ Servo mode, Def			Notes:		
	NSTRUCTION WED IN STE		mand has been acco ed when NOT alread Only works in se	y defining a Cam.	

Example:

1DC	Start definition of Cam.
1XY200/500	Second Cam profile point.
1XY400/500	Next Cam Profile point.
1EC	End of Cam definition.

EP END PROFILE DEFINITION

This command will end a Profile definition. The Profile definition must have been started by the Define Profile (DP) command. No argument is necessary as the sequence number is specified with the Define Profile (DP) command.

Syntax <ad>EP</ad>	Units N/A	Range N/A	to	Initial State N/A	Privilege level 5	
Condition RequirementsNotes:Servo mode, Define Profile						
Responses: OK Command has been accepted. !ILLEGAL INSTRUCTION EP attempted when NOT already defining a Profile. !NOT ALLOWED IN STEPPER MODE Only works in servo mode						
Example: 1DP 1MR200 1MR500 1EP		Profile definition. First Profile m Next Profile m f Profile definitio	ove. Iove.			

ER ENCODER RATIO

Set encoder ratio. The encoder ratio is specified by two arguments separated by a *I* character, and is therefore specified as a fraction with the format: numerator/denominator. The incoming position encoder pulses and then scaled by this ratio to derive the Actual Position.

Great care must be exercised in setting this ratio as it will affect the stability of a servo loop (K constants etc.). Beware that if you scale the position up (fraction of greater than 1), then certain positions will then become unobtainable.

Syntax <ad>ERnnn/nnn</ad>	Units	Range	to	Initial State	Privilege level 7
Numerator	N/A	-32768	32767 (±2 ¹⁵) 32767 (2 ¹⁵)	1	
Denominator	N/A	1	32767 (2 ¹⁵)	1	
Condition Requirements Idle.			Notes: Value stored in FL	ASH by BD command.	
Responses: OK ! OUT OF RA	NGE		as been accepted. out of valid range.		

Example:

1ER400/2000 (1ER1/5) Axis 1 Set encoder gearbox ratio to 1:5 - i.e. for every 5 steps of the position encoder the Actual Position will change by 1 steps. This may be used if for example a 400 step/rev motor is fitted with a 2000step/rev encoder.

ES END SEQUENCE DEFINITION

This command will end a sequence definition. The sequence definition must have been started by the Define Sequence (**DS**) command. No argument is necessary as the sequence number is specified with the Define Sequence (**DS**) command.

Syntax <ad>ES</ad>	Units N/A	Range N/A	to	Initial State N/A	Privilege level 5	
Condition Requi			Notes:			
ResponsesOKCommand has been accepted.! ILLEGAL INSTRUCTIONES attempted when NOT already defining a sequence.						
Example: 1DS2 1MR400 1MR-400 1XS5 1ES	Next m	efinition of sequ First move (re nove (relative). te sequence 5 (sequence defir	lative). transfer control to sta	art of this sequence 5).		

GA GEARBOX ABSOLUTE MODE

This command will enter gearbox mode when the value of the Input (master) encoder is equal to the value of the Actual Position (slave) encoder. The slave motor will then be driven at a ratio of the Input encoder speed. The ratio is specified by the gear ratio command **GR**. Gearbox mode is exited by a **ST** command, **ESCAPE** or Control **C**.

Syntax <ad>GA</ad>	Units N/A	Range N/A	to	Initial State N/A	Privilege level
Condition Requi Servo mode, Idle			Notes: In absolute gearbo active.	ox mode SA, SD and SV	values are not
Responses: OK ! INPUT ABC ! STALL ABC ! TRACKING ! TIMEOUT A ! NOT ALLO	ORT ABORT	An input abor A stall abort h A tracking ab A timeout abo	is been accepted. t has been detected has been detected ort has been detected ort has been detected Only works in serv	ed ed	
Example: 1GA	Axis 1	enter absolute g	earbox ratio mode.		

GB GEARBOX MODE

Enter gearbox mode. The slave motor is now driven at a ratio of the Input encoder speed. The ratio is specified by the gear ratio command **GR**. Gearbox mode is exited by an **ST** command, **ESCAPE** or Control **C**.

Syntax <ad>GB</ad>	Units N/A	Range N/A	to	Initial State N/A	Privilege level 1		
Condition Requirements Servo mode, Idle.			Notes: In gearbox mode, SA, SD and SV values are not active.				
! INPUT ABORTAn input al! STALL ABORTA stall abo! TRACKING ABORTA tracking		An input abo A stall abort I A tracking ab A timeout ab	as been accepted. rt has been detected has been detected ort has been detect ort has been detect Only works in serv	ted ed			

Example:

1GB

Axis 1 enter gearbox ratio mode.

GD GEARBOX RATIO DENOMINATOR

Set gearbox ratio denominator. This command may be used in conjunction with GN gearbox numerator. The ratio is therefore specified as a fraction with the format: numerator(GN)/(GD)denominator. The GR gearbox ratio command may also be used to set the ratio.

Syntax ≺ad>GDnnn	Units N/A	Range 1	to 32767 (2 ¹⁵)	Initial State	Privilege level 4
Condition Requirements Idle or Gearbox.			Notes: Value stored in FLASH by BD command. GR is Not available in sequence definition – use GN & GD.		
Responses: OK ! OUT OF R	ANGE		nas been accepted. s out of valid range.		

Example:

1GN2 1GD5 Axis 1 Set electronic gearbox ratio to 2:5 - i.e. for every 5 steps of the input encoder the command position will change by 2 steps.

GM GEARBOX MOVE RELATIVE

When in gearbox mode, this command may be used to superimpose a relative move on top of the gearbox slaving. This way, a correction in the synchronism of the two positions may be changed without exiting the gearbox mode. This move is presently done at the creep speed.

Syntax <ad>GMnnn</ad>	Units Steps	Range -2147483647	to 2147483647(±2 ³²)	Initial State 0	Privilege level 1
Condition Requirements Servo mode, Gearbox mode.			Notes:		
! INPUT ABC ! STALL ABC ! TRACKING ! TIMEOUT A	ORT ORT GABORT	MODE Not in An input about A stall abort I A tracking ab A timeout about	as been accepted. Gearbox mode rt has been detected has been detected fort has been detected ort has been detected Only works in serv	ed ed	

Example:

1GM100

Superimpose a move of 100 steps (posative) on top of gearbox ratio mode.

GN GEARBOX RATIO NUMERATOR

Set gearbox ratio numerator. This command may be used in conjunction with GD gearbox denominator. The ratio is therefore specified as a fraction with the format: numerator(GN)/(GD)denominator. The GR gearbox ratio command may also be used to set the ratio.

Syntax <ad>GNnnn</ad>	Units N/A	Range -32768	to 32767 (±2 ¹⁵)	Initial State	Privilege level 4
Condition Requi Idle or Gearbox.	rements		Notes: Value stored in FL	ASH by BD command.	
Responses: OK ! OUT OF RA	NGE		as been accepted. out of valid range.		

Example:

1GN2 1GD5 Axis 1 Set electronic gearbox ratio to 2:5 - i.e. for every 5 steps of the input encoder the command position will change by 2 steps.

GR	GEARBOX RATIO
----	---------------

Set gearbox ratio. In gearbox modes the ratio is specified by two arguments separated by a *I* character. The ratio is therefore specified as a fraction with the format: numerator/denominator. This ratio is also used for input encoder jog scaling.

Syntax	Units	Range	to	Initial State	Privilege level

<ad>GRnnn/nnn</ad>				
Numerator	N/A	-32768	32767 (±2 ¹⁵)	1
Denominator	N/A	1	32767 (2 ¹⁵)	1

Condition Requirements

Idle or Gearbox.

Notes: Value stored in FLASH by BD command. Not available in sequence definition – use GN & GD.

4

Responses:

ОК	Command has been accepted.
! OUT OF RANGE	Argument is out of valid range.

Example:

1GR2/5 Axis 1 Set electronic gearbox ratio to 2:5 - i.e. for every 5 steps of the input encoder the command position will change by 2 steps.

HD HOME TO DATUM

This command is used to find a datum point of a mechanism.

Refer to the Datum Search section of this manual and the DATUM MODE **DM** command for details on datum search use.

The **HD-1** command will perform the search in the negative direction.

Soft limits are **not** used during a Home to Datum search.

N/A

Syntax	Units	Range	to	Initial State	Privilege level
<ad>HDn</ad>	N/A	-ve	+ve	N/A	3

Condition Requirements Idle.	Notes:
Responses: OK ! HARD LIMIT ! SOFT LIMIT ! INPUT ABORT ! STALL ABORT ! TRACKING ABORT ! TIMEOUT ABORT	Command has been accepted. Hard limit for required direction is already activated Soft limit for required direction has already been reached An input abort has been detected A stall abort has been detected A tracking abort has been detected A timeout abort has been detected

Examples:

1HD	Search for datum point of axis 1 in positive direction.
1HD-1	Search for datum point of axis 1 in negative direction.

Help pages. The commands **HE** (first help page) and **HN** (help next) and **HP** (help previous) return pages showing Digiloop commands. These help pages give a concise list of the commands available and their function. It also shows the privilege level required to perform the command. **HM** (help modes) give a indication of the bit patterns used in the Abort Mode (AM), Datum Mode (DM) and Jog Mode (JM) commands

Syntax	Units	Range	to	Initial State	Privilege level
<ad>HE</ad>	N/A	N/A		N/A	0
<ad>HN</ad>	N/A	N/A		N/A	0
<ad>HP</ad>	N/A	N/A		N/A	0

Notes:

Condition Requirements

None.

Responses:

AB	<0> Abort
AD	<4> Disable auto-execute
AE	<4> Enable auto-execute
BA	<4> Backup all
BC	<4> Backup cams
BP	<4> Backup profiles
BD	<4> Backup Digiloop parameters
BS	<4> Backup sequences
CD	<0> Clear motor datum
CP <position></position>	<1> Command position
CR <steps></steps>	<1> Set creep steps
CV <speed></speed>	<0> Constant velocity mode
DC <cam num<="" td=""><td>ber> <3> Define cam</td></cam>	ber> <3> Define cam
DL	<2> Disable soft limits
DP <profile nu<="" td=""><td>mber> <3> Define profile</td></profile>	mber> <3> Define profile
	number> <3> Define sequence
EC	<0> End cam
EL	<2> Enable soft limits
EP	<0> End profile
ES	<0> End sequence
GA	<0> Absolute gearbox mode
GB	<0> Relative gearbox mode
For more help p	bages type: HN for next page; HP for previous page

Example:

1HE

Show the first help page of the controller of axis 1.

ID	IDENTIFY					
This command is used to give the type of controller and its internal software revision.						
Syntax <ad>ID</ad>	Units N/A	Range N/A	to	Initial State N/A	Privilege level 0	
Condition Req None	juirements		Notes:			
Response: Mclennan Digiloop Motor Controller V2.21a(0.4)						
Example: 1ID Identify controller of axis 1. 01:Mclennan Digiloop Motor Controller V3.25a(0.5)						

IF IF FALSE DO NEXT COMMAND

This command will examine the read port inputs and compare them with the specified bit pattern argument. If the inputs are NOT equal to the specified bit pattern (false), then the controller will execute the next command it receives, in its buffer or in its sequence. If the bit pattern IS equal (true) then the controller will skip over, i.e. not execute the next command. If the next command is skipped, the controller will give the response 'SKIPPED' instead of 'OK' or any other response for that command.

The bit pattern is specified as a eight digit binary number of either **0**, **1** or **2** characters starting with read port 8, through to 1. A **0** defines that the input must be low (**0**), a **1** defines that the input must be high (**1**) and a **2** defines that the input is not relevant or 'don't care'. If less that eight digits are specified in the argument, then the preceding ones are assumed as low (**0**).

This command may be used to introduce a conditional response to some machine functions, and may be used to create 'clever' sequences. See also the If True (**IT**) command.

Syntax <ad>IFbbbbbbbb</ad>	Units Bits	Range 0	to 2	Initial State N/A	Privilege level 1
Condition Requi None	rements		Notes:		
Response: OK ! OUT OF RA	NGE		is been accepted. but of valid range.		

Example:

This following sequence has been constructed to repeat a loop of moving in 400 step intervals, until read port 4 goes high (possibly activated by a switch).

1DS3	Start sequence definition
1MR400	Move 400 steps
1IF22221222	This condition is FALSE so next command is executed (i.e. NOT skipped).
1XS3	Condition was FALSE; therefore execute this sequence i.e. repeat this loop
(1XS0)	Return to main or another sequence (optional).
1ES	End sequence

The sequence starts by moving 400 steps. The IF command will then compare with the readports, in this case it is only bit 4 that is relevant. If the condition is FALSE (the switch is not on), then the next command is executed which will restart the current sequence of move 400 steps and compare. If the condition becomes TRUE (the switch goes on), then the XS3 command will be skipped and go on to the one after. This could be the end of the sequence or a command to then do another sequence such as returning to a master sequence.

	IN	INITALISE				
--	----	-----------	--	--	--	--

This command will set all the programmable parameters back to their initial values, clear sequences and profiles. This is used to re-initialise all the volatile memory values to 'safe' values - e.g. if the controller was to be used in a new application. A BA command is required to then write these values into the flash non-volatile memory.

Syntax <ad>IN</ad>	Units N/A	Range N/A	to	Initial State N/A	Privilege level 8
Condition Re Idle.	quirements		Notes:		
Response: OK		Command	d has been acce	epted.	
Example:1INSet all parameters on axis 1 back to their initial values.					
IP	SET INPUT	POSITION			

-	-	 -

Set the Input Encoder position value to that given in the argument.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>IPnnn</ad>	N/A	-2147483647	2147483647(±2 ³²)	N/A	3
Condition Requ	uiromonts		Notes:		

Condition Requirements	Notes:
Idle, Constant velocity or Gearbox	Value zero on power-up.

Response:

Examples:

1IP5000

Set the axis 1 Input Encoder Position to 5000.

IT IF TRUE DO NEXT COMMAND

This command will examine the read port inputs and compare them with the specified bit pattern argument. If the inputs are equal to the specified bit pattern (true), then the controller will execute the next command it receives, in its buffer or in its sequence. If the bit pattern is NOT equal (false) then the controller will skip over, i.e. not execute the next command. If the next command is skipped, the controller will give the response '*SKIPPED*' instead of '*OK*' or any other response for that command.

The bit pattern is specified as a eight digit binary number of either 0, 1 or 2 characters starting with read port 8, through to 1. A 0 defines that the input must be low (0), a 1 defines that the input must be high (1) and a 2 defines that the input is not relevant or 'don't care'. If less that eight digits are specified in the argument, then the preceding ones are assumed as low (0).

This command may be used to introduce a conditional response to some machine functions, and may be used to create 'clever' sequences. See also the If False (IF) command.

Syntax <ad>ITbbbbbbbb</ad>	Units Bits	Range 0	to 2	Initial State N/A	Privilege level 1	
Condition Requi None	rements		Notes:			
Response: OK ! OUT OF RA	NGE		s been accepted. out of valid range.			
Example:						
If the following states are present on the inputs: PORT : 8 7 6 5 4 3 2 1 STATE : High Low Low High High Low Low Low 1IT2222200 This condition is TRUE so next command is executed (i.e. NOT skipped). 1MR200 Move 200 steps 1IT22222201 This condition is FALSE so next command is skipped (i.e. is NOT executed). This command is skipped						
If the following states are present on the inputs: PORT: 8 7 6 5 4 3 2 1 STATE: High Low Low High High Low Low High 1IT22222200 1MR200 1IT22222201 1MR400 This condition is TRUE so next command is executed (i.e. NOT executed). Move 400 steps						
I.E. In the above example, read port 1 is used to select a move lengthand read port 2 will disable the move: PORT: 8 7 6 5 4 3 2 1 STATE : (Ignored) (Ignored) (Ignored) (Ignored) (Ignored) (Ignored) Low Low Move 200 steps STATE : (Ignored) (Ignored) (Ignored) (Ignored) (Ignored) Low High Move 400 steps						

JM SET JOG MODE

Set the mode of operation for jog switch, joystick and encoder jog moves. There are three methods of commanding JOG or manual moves:

Jog switch inputs using fast (**SF**) and slow jog speeds (**SJ**) such as with a jog box. Joystick input measures an analogue voltage such as from an analogue joystick or potentiometer Input encoder jog uses the quadrature signals on the Input encoder such as with a trackersball

Syntax Units F <ad>JMabcdefgh Bits 0</ad>	Range to	Initial State 10000000	Privilege level			
where a - 0 – Jog switch in	· · · · · ·	10000000	0			
1 – Jog switch in						
b - 0 – Joystick input						
1 – Joystick input						
c - 0 – Input encode						
•	r jog input enabled					
d - Reserved for fut	,					
e - Reserved for future use.						
f - Reserved for fut						
g - Reserved for future use.						
h - Reserved for future use.						
Condition Requirements	Notes:					
luie						
Response:						
OK	Command has been a	accepted.				
! OUT OF RANGE	Illegal argument range	•				

Examples:

1JM01000000 Set axis 1 to use Joystick only (jog switches and Input encoder jog disabled).

JS SET JOYSTICK SPEED

Set the normal speed for all following manual joystick moves. This speed is that if the joystick output was at 10% of full swing. Please note that few joysticks can achieve full voltage swing and therefore this sets the speed for full movement of the joystick.

Syntax <ad> JSnnn</ad>	Units Steps/sec	Range 1	to 400000	Initial State 10000	Privilege level 4
Condition F	equirements	Notes:	Value stored in Fl	LASH by BD command.	
Responses: OK ! OUT OF R	ANGE		as been accepted. out of valid range.		
Example:	,	Soto iog opooo	l of avia 1 controllar	to 2000 Stops/soo	

1JS2000

Sets jog speed of axis 1 controller to 2000 Steps/sec.

KF SET FEEDFORWARD COEFFICIENT

Set velocity feedforward servo coefficient. This compensates for the position offset caused by the velocity lag introduced by KV. For positioning moves KF is normally set at zero, but for Profiles and Cam moves where the actual position should not lag behind the command position, KF should be set equal to KV.

In dual encoder feedback systems **KX** also causes a velocity lag. The value of complete **KF** compensation needed is equal to **KX** multiplied by the ratio of Auxiliary encoder pulses to Position Encoder pulses plus the value of **KV**. It is not usually necessary for complete compensation of the velocity lag as this adversely effects the settling time of the system.

This command is only appropriate in the servo motor control mode (not for stepper motor control)

Syntax	Units	Range	to	Initial State	Privilege level
<ad>KFnnn</ad>	Number	0	32767	0	7
Condition Requi			Notes: Value stored in FL	ASH by BD command.	

Responses

OK Command has been accepted. **! OUT OF RANGE** Argument is out of valid range. **! NOT ALLOWED IN STEPPER MODE** Only works in servo mode

Examples:

1KF500

Set velocity feedforward on axis 1 to 500.

KP (IN SERVO MODE) SET PROPORTIONAL GAIN COEFFICIENT

Set proportional gain servo coefficient. The stiffness and accuracy of the servo loop are controlled by the magnitude of the proportional gain.

See next section for use in stepper motor mode

Syntax <ad>KPnnn</ad>	Units Number	Range 0	to 32767	Initial State 10	Privilege level 7
Condition Requ i	irements		Notes: Value stored in FL	ASH by BD command.	
Responses OK ! OUT OF RA	ANGE	Command has been a Argument is out of val			
Examples:					

1KP100 Set the proportional gain on axis 1 to 100.

KP (IN STEPPER MODE) SET PROPORTIONAL GAIN COEFFICIENT (CORRECTION GAIN)

Set proportional gain for auto-correction moves. . The amount of attempted correction for each iteration is the difference between the Command Position and the encoder read Actual Position, scaled by this value. If the result is less than one step then it will use one step of correction. Each successful iteration, separated by settling time, should therefore result in less of an error and the next attempt will be less. Error correction will continue until the error is within the window (WI) or the Time Out (TO) period has expired. Care must be taken with remote feedback encoders, not to set too higher value that might give rise to an oscillatory system.

See previous section for use in servo mode

Syntax <ad>KPnnn</ad>	Units %	Range 0	to 100	Initial State 70	Privilege level 7
Condition Requirements			Notes: Value stored in FLASH by BD command.		
Responses OK ! OUT OF RA	NGE	Command has been accepted. Argument is out of valid range.			

Examples:

KS SET SUM GAIN COEFFICIENT

The Sum servo coefficient is the sum of the integral and proportional components of the servo control loop. The accuracy of the servo loop depends on having a non-zero value of **KS** at the expense of transient response. This command is only appropriate in the servo motor control mode (not for stepper motor control)

Syntax <ad>KSnnn</ad>	Units Number	Range 0	to 32767	Initial State 0	Privilege level 7
Condition Requirements Servo mode, Idle			Notes: Value stored in Fl	LASH by BD command.	
Responses					

ÖK	Command h	as been accepted.
! OUT OF RANGE	Argument is	out of valid range.
! NOT ALLOWED IN STEP	PER MODE	Only works in servo mode

Examples:

1KS50

Set the Sum gain on axis 1 to 50.

KV SET VELOCITY FEEDBACK COEFFICIENT

The value of this coefficient defines the magnitude of the velocity feedback signal derived from the position encoder. This coefficient influences the transient response by producing a damping effect. It effects the system by reducing overshoot and enhancing stability, but too high a value can create a *buzzy* system, and ultimately an unstable system.

This command is only appropriate in the servo motor control mode (not for stepper motor control)

Syntax <ad>KVnnn</ad>	Units Number	Range 0	to 32767	Initial State 0	Privilege level 7
Condition Requirements Servo mode, Idle			Notes: Value stored in FL	ASH by BD command.	
Responses OK		Command ha	s been accepted.		

! OUT OF RANGE	Argument is out of valid range.
! NOT ALLOWED IN STEPP	PER MODE Only works in servo mode

Examples:

1KV500 Set the Velocity feedback on axis 1 to 500.

KX SET EXTRA VELOCITY FEEDBACK COEFFICIENT

The Extra Velocity Feedback coefficient. It is used in Dual Encoder feedback mode. The value of this coefficient defines the magnitude of the velocity feedback signal derived from the auxiliary (third) encoder. This coefficient influences the system transient response by producing a damping effect. This command is only appropriate in the servo motor control mode (not for stepper motor control)

Syntax	Units	Range	to	Initial State	Privilege level
<ad>KXnnn</ad>	Number	0	32767	0	7
Condition Requi Servo mode, Idle			Notes: Value stored in FL	ASH by BD command.	

Responses

 OK
 Command has been accepted.

 ! OUT OF RANGE
 Argument is out of valid range.

 ! NOT ALLOWED IN STEPPER MODE
 Only works in servo mode

Examples:

1KX5000 Set the Extra Velocity feedback on axis 1 to 5000.

This command will list a previously defined Cam profile.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>LCn</ad>	Cam Numbe	r 0	7	N/A	0

Condition Requirements

Servo mode, Idle

Notes:

Responses

The command will either respond with the axis address identifier followed by each line of the Cam definition Profile, or an error message:

OK	Command has been accepted.
! OUT OF RANGE	Argument is out of valid range.
! CAM UNDEFINED	Cam has not been defined yet.
! NOT ALLOWED IN STEPP	ER MODE Only works in servo mode

Example:

A controller that had previously been programmed with:

1DC3	Start Cam 3 definition.
1XY200/500	First Cam Profile point.
1XY400/500	Next Cam Profile point.
1XY600/-200	Next Cam Profile point.
1XY700/-200	Next Cam Profile point.
1XY750/0	Next Cam Profile point.
1EC	End of Cam profile definition.

The command 1LC3 would give:

01:Cam 3:					
XY	0/	0			
XY	200 /	500			
XY	400 /	500			
XY	600 /	-200			
XY	700 /	-200			
XY	750 /	0			

LD SET LIMIT DECELERATION

Set the deceleration rate for stopping when hitting a Hard Limit or a Soft Limit. It is also used during a soft stop such as after an ESCAPE. This value would normally be set to a high value to prevent limit overrun, but may be used to reduce the harshness of stopping on a limit. This should also be used to prevent stepper motors desynchronising and losing steps through excessive deceleration.

Syntax	Units	Range	to	Initial State	Privilege level	
<ad>LDnnn</ad>	Steps/sec ²	1	20000000	2000000 (servo) 5000	0 (stepper) 4	
Condition Requi	rements		Notes:			

Value stored in FLASH by BD command.

Responses:

OK ! OUT OF RANGE Command has been accepted. Argument is out of valid range.

Example:

1LD1000000 Sets Limit Deceleration of axis 1 controller to 1000000 Steps/sec².

LL SET LOWER SOFT LIMIT POSITION

This command will set the Lower Soft Limit Position to the value given in the argument. Subsequent moves by the Move Absolute (**MA**) or Move Relative (**MR**), constant velocity and manual Jog moves will not be allowed below this Lower Limit if the Soft Limits are enabled.

Syntax <ad>LLnnn</ad>	Units Steps	Range -2147483647	to 2147483647 (±2 ³²	Initial State) -2000000000	Privilege level 3
Condition Requi Idle	rements		Notes: Value stored in FL	ASH by BD command.	
Responses OK ! OUT OF RA ! LIMITS COI		Argument is o	is been accepted. out of valid range. set lower limit abov	re or equal to upper limit	t

Example:

1LL-4000

Set the axis 1 Lower Soft Limit Position to -4000.

LP	LIST PROFILI	E			
This comman	d will list a previo	usly defined v	velocity Profile.		
Syntax	Units	Range	to	Initial State	Privilege level
<ad>LPn</ad>	Profile No.	0	7	N/A	0

Condition Requirements

Servo mode, Idle

Responses

The command will either respond with the axis address identifier followed by each line of the Profile definition, or an error message:

Notes:

OKCommand has been accepted.! OUT OF RANGEArgument is out of valid range.! PROFILE UNDEFINEDProfile has not been defined yet.

! NOT ALLOWED IN STEPPER MODE Only works in servo mode

Example:

A controller that had previously been programmed with:

1DP6	Start definition of Profile.
1MR2000	First move.
1MR7000	Next move.
1MR1000	Next move.
1MR0	Next move.
1EP	End of Profile definition.

The command 1LP6 would give: 01:Profile 6:

Idle

MR	2000
MR	7000
MR	1000
MR	0

LS LIST SEQUENCE

This command will list a previously defined Sequence.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>LSn</ad>	Seq Number	0	7	N/A	0
Condition Requi	rements		Notes:		

Condition Requirements

Idle

Responses

The command will either respond with the axis address identifier followed by each line of the Sequence definition, or an error message:

OK	Command has been accepted.
! OUT OF RANGE	Argument is out of valid range.
! SEQUENCE UNDEFINED	Sequence has not been defined yet.

Example:

A controller that had previously been programmed with:

	1 3 1 5
1DS2	Start definition of sequence 2.
1MA2000	First move (absolute).
1MR7000	Next move (relative).
1DE1000	Delay for 1 second.
1MA0	Next move (return to start position).
1XS2	Execute sequence 2 (loop to start of this sequence).
1ES	End of sequence definition.
	-

The command 1LS2 would give:

01:Sequence 2:

MA	2000
MR	7000
DE	1000
MA	0
XS	2

MOVE TO ABSOLUTE POSITION MA

This command will move the motor to the position given in the argument. This position is relative to the Command Position of zero.

Syntax <ad>MAnnn</ad>	Units Steps	Range -2147483647	to 2147483647 (±2 ³²	Initial State	Privilege level 1
Condition Requ	uirements		Notes:		
Responses OK ! HARD LIM ! SOFT LIM ! INPUT AB ! STALL AB ! TRACKING	IT ORT SORT	Hard limit for Move attemp An input abou A stall abort I	as been accepted. required direction is ted that exceeds the rt has been detected has been detected fort has been detected	e Soft limit in the requ	iired direction

! TIMEOUT ABORT A timeout abort has been detected

Example:

If axis 1 has a current Command Position of 5000 then the command:

1MA4000 Will move 1000 steps in the negative direction to arrive at a Command position of 4000.

MD MOVE TO DATUM POSITION

This command will move the motor to the datum position if one has already been captured.

Syntax <ad>MD</ad>	Units N/A	Range N/A	to	Initial State N/A	Privilege level 1
Condition Requirements Idle, Valid captured datum.		Notes:			
Responses OK ! NO VALID ! HARD LIM ! SOFT LIMI ! INPUT AB ! STALL AB ! TRACKING ! TIMEOUT	IT T ORT ORT G ABORT	A datum poir Hard limit for Move attemp An input abo A stall abort A tracking ab	as been accepted. In thas not yet been for required direction is outed that exceeds the rt has been detected has been detected port has been detected out has been detected	s already activated e Soft limit in the require d ted	ed direction

Example:

If axis 1 has a current valid Datum Position of 12496 then the command:

1MD Will move to the position of 12496.

MR MOVE TO RELATIVE POSITION

This command will move the motor to the position given in the argument relative to the current Command Position.

Syntax <ad>MRnnn</ad>	Units Steps	Range -2147483647	to 2147483647 (±2 ³²)	Initial State) N/A	Privilege level 1
Condition Requi Idle	rements		Notes:		
Responses OK ! HARD LIMI ! SOFT LIMIT ! INPUT ABC ! STALL ABC ! TRACKING ! TIMEOUT A	DRT DRT DRT ABORT	Hard limit for Move attemp An input abor A stall abort h A tracking ab	as been accepted. required direction is ted that exceeds the rt has been detected has been detected ort has been detected ort has been detected	e Soft limit in the require I ed	d direction

Example:

If axis 1 has a current Command Position of 5000 then the command: 1MR4000 Will move 4000 steps in the positive direction to arrive at a Command position of 9000.

NP SET NEW PIN SECURITY NUMBER

Set the PIN security number to that given in the argument. You must enter the existing PIN using the PI command first.

Syntax <ad>NPnnn</ad>	Units Number	Range 0000	to 9999	Initial State 9999	Privilege level 9
Condition Requi	rements		Notes:		
Response: OK		Command ha	as been accepted.		
Examples: 1PI0001 Enter existing PIN numb 1NP0666 Set the axis 1 PIN numb					

OA OUTPUT ACTUAL POSITION

This command will give the current Actual Position read from the position encoder. This position is derived from the incoming position encoder pulses (scaled by the encoder ratio (**ER**).

Syntax	Units	Range	to	Initial State	Privilege level
<ad>OA</ad>	N/A	N/A		N/A	0

Notes:

Condition Requirements

None

Response:

The response is a string of numeric characters. If the communications are in Verbose Mode, the reply is preceded by **Actual pos =**

Example:

If the controller of axis 1 currently has an Actual Position of 70551 then the command:

- 1OA in Verbose Mode will respond: 01:Actual pos = 70551
- 1OA in Quiet Mode will respond: 01:70551
- OC OUTPUT COMMAND POSITION

This command will give the current Command Position.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>OC</ad>	N/A	N/A		N/A	0

Condition Requirements Notes:

None.

Response:

The response is a string of numeric characters. If the communications are in Verbose Mode, the reply is preceded by **Command pos =**

Example:

- If the controller of axis 1 currently has a Command Position of 45280 then the command:
- 10C in Verbose Mode will respond: 01:Command pos = 45280
- 10C in Quiet Mode will respond: 01:45280

OD CAPTURED DATUM POSITION

This command will give the current captured datum position.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>OD</ad>	N/A	N/A		N/A	0
Condition Requ	irements		Notes:		

Condition Requirements None.

Response:

The response is a string of numeric characters. If the communications are in Verbose Mode, the reply is preceded by **Datum position =**

! NO VALID DATUM if no datum has been captured.

Example:

If the controller of axis 1 currently has a datum position of 28456 then the command:

10D in Verbose Mode will respond: **01:Datum position = 28456**

10D in Quiet Mode will respond: 01:28456

OF OUTPUT FOLLOWING ERROR BETWEEN COMMAND AND ACTUAL POSITIONS

This command will give the difference between the current Command Position and the current encoder read Actual Position. Numerically it is the Command Position (**CP**) - Actual Position (**AP**).

Syntax	Units	Range	to	Initial State	Privilege level
<ad>OF</ad>	N/A	N/A		N/A	0

Condition Requirements

Notes:

None.

Response:

The response is a string of numeric characters. If the communications are in Verbose Mode, the reply is preceded by **Following error =**

Example:

If the controller of axis 1 currently has a Current position of 1000 and an Actual Position of 1050 then the command:

1OF in Verbose Mode will respond: 01:Following error = -50
1OF in Quiet Mode will respond: 01:-50

OI OUTPUT INPUT POSITION

This command will give the current encoder read Input Position. This position is derived from the incoming Input encoder pulses.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>Ol</ad>	N/A	N/A		N/A	0
Condition Requi	irements		Notes:		

None

Used in *electronic gearbox* and *Cam profiles* etc.

Responses:

The response is a string of numeric characters. If the communications are in Verbose Mode, the reply is preceded by **Input pos =**

Example:

- If the controller of axis 1 currently has an Input Position of 30401 then the command:
- 10I in Verbose Mode will respond: 01:Input pos = 30401
- 10I in Quiet Mode will respond: 01:30401

OS	OUTPUT STATUS	

This command will give a binary string that will represent the current status of the controller.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>OS</ad>	N/A	N/A		N/A	0
Condition Requi	irements		Notes:		

Response:

The response is a string of 8 numeric characters of either 0 or 1. If the communications are in Verbose Mode, the reply is preceded by **Status = .** Each bit is described as follows:

Status = abcdefgh	where	9:		
a -	0 —	Controller is busy (doing something)		
	1 —	Controller is idle		
b -	0 —	ОК		
	1 –	Error (abort, tracking, stall, timeout etc.)		
C -	0 —	Upper hard limit is OK		
	1 –	Upper hard limit is ON		
d -	0 —	Lower hard limit is OK		
	1 –	Lower hard limit is ON		
e -	0 —	Not jogging or joystick moving		
	1 –	Jogging or joystick moving		
f -	0 —	Not at datum sensor point		
	1 –	On datum sensor point		
g -	0 —	For future use		
	1 –	For future use		
h -	0 —	For future use		
	1 –	For future use		

Example:

If the controller of axis 1 is currently moving to a position (using a **MA** command):

- 1OS in Verbose Mode will respond: 01:Status = 00000000
- 1OS in Quiet Mode will respond: 01:0000000
- If the controller of axis 1 is currently stopped on the upper hard limit:
- 1OS in Verbose Mode will respond: 01:Status = 10100000
- 1OS in Quiet Mode will respond: 01:10100000

OT OUTPUT (THIRD) AUXILIARY POSITION

This command will give the current encoder read Auxiliary Position. This position is derived from the incoming position encoder pulses of the second encoder (dual encoder feedback).

Syntax	Units	Range	to	Initial State	Privilege level
<ad>OT</ad>	N/A	N/A		N/A	0
Condition Requirements			Notes:		

None

Response:

The response is a string of numeric characters. If the communications are in Verbose Mode, the reply is preceded by **Auxiliary pos =**

Example:

10T

If the controller of axis 1 currently has an Auxiliary Position of 20501 then the command:

in Verbose Mode will respond: 01:Auxiliary pos = 20501

1OT in Quiet Mode will respond: 01:20501

OV OUTPUT VELOCITY

This command will give the current velocity of the Actual Position (position encoder), unless in open loop stepper mode where the velocity of the command position is used. This value is averaged over the time given in the argument in milliseconds. You would therefore choose a time to give the accuracy you require at the expense of the time to complete the command.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>OVnnn</ad>	mS	1	1000	N/A	0

Condition Requirements Notes:

None

Response:

The response is a string of numeric characters. If the communications are in Verbose Mode, the reply is preceded by **Velocity =**

Example:

If the controller of axis 1 currently at 20000 steps per second but instantaneously currently very slightly lagging then:

10V250 in Verbose Mode will respond: 01:Velocity = 19994

10V250 in Quiet Mode will respond: 01:19994

Notice that as the average time is a quarter of a second, then the speed is a multiple of four.

PI ENTER PIN NUMBER

This command allows you to enter the PIN security number. This then allows you to change the Privilege level, using the privilege level (**PL**) command.

Syntax <ad>Plnnnn</ad>	Units N/A	Range 0000	to 9999	Initial State N/A	Privilege level 0
Condition Requ None	uirements		Notes:		
Response: OK		Command	has been accept	ted.	
Example: If the co	ntroller of axi	s 1 currently ha	s a security PIN r	number of 4423	

1PI4423 will allow the privalege level to be changed.

PL SET PRIVALEGE LEVEL

Set the privilege level. This command allows you to set a privilege level that will restrict the commands available to the user. This may be used to prevent accidental changing of important set-up parameters.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>PLn</ad>	N/A	0	9	8	0

Condition Requirements	Notes:
The PIN number must have been entered (PI)	Value stored in FLASH by BD command.

Responses

OK	Command has been accepted.
! OUT OF RANGE	Argument is out of valid range.

Example:

1PL1 Sets the privilege level to 1 (queries and moves only).

PT	PROFILE TIME	
----	--------------	--

This command allows you to enter the time to complete each element in a profile definition.

Syntax <ad>PTnnn</ad>	Units mS	Range 0	to 32000	Initial State 1000	Privilege level 4			
Condition Requi Servo mode, Idle	rements		Notes:					
Response: OK Command has been accepted. INOT ALLOWED IN STEPPER MODE Only works in servo mode								
Example: 1PT50	•							
QA Q	QUERY ALL P	ARAMETERS						
Query All. Returns all of the current settings and modes of the controller along with the current positions in a single page format.								
Syntax <ad>QA</ad>	Units N/A	Range N/A	to	Initial State N/A	Privilege level 0			
Condition Requirements Notes:								

Condition Requirements None

Response:

The response is alpha-numeric strings of characters. Each line gives the parameter names and their values. See example for the format.

Example:

1QA Will generate a response of the form:

Mclennan Digiloo	Mclennan Digiloop Motor Controller V2.10a(1.2)						
Address = 1							
Privilege level = 4							
Mode = Aborted							
Kf = 1000 Kp =	= 500	Ks = 2000	Kv = 1000	Kx = 0			
Slew speed = 100	0000						
Acceleration = 20	0000	Decele	ration = 40000	00			
Creep speed = 400 Creep steps = 0							
Jog speed = 100 Joystick speed = 10000							
Settling time = 200							
Window $= 4$		Threshold :	= 2000				

Tracking = 4000 Lower soft limit = -21474 Soft limits enabled	183647 Upper soft limit = 2147483647
Lower hard limit on	Upper hard limit on
Jog enabled	Joystick disabled
Gbox num = 1	Gbox den = 1
Command pos = 0	Motor $pos = 1$
Pos error $= -1$	Input pos = 0
Valid sequences: none	Autoexec disabled
Valid cams: none	
Valid profiles: none Pr	ofile time = 1000 ms
Read port: %00000000	Last write: %00000000

QK QUERY K COEFFICIENTS

Query servo loop coefficients. Returns the current settings of the KP, KS, KV, KF and KX coefficients.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>QK</ad>	N/A	N/A		N/A	0

Notes:

Condition Requirements

None

Response:

The response is an alpha-numeric string of characters showing the parameter name and its value. See example for the format.

Example:

1IN	Set to initial values.			
1KP2909	Set proportional gain to 2909.			
1KV357	Set velocity feedback to 357.			
1KS3258	Set Sum coefficient to 3258.			
1QK	Will generate a response of the form:			
KP=2909,KS=3258,KV=357,KF=0,KX=0				

QL QUERY CURRENT PRIVALEGE LEVEL

This command will give the current privilege level. The higher the level, the more commands you can use.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>QL</ad>	N/A	N/A		N/A	0

Condition Requirements Notes:

Responses:

The response is a numeric character.

Example:

If the controller of axis 1 currently has a privilege level of, then the command: 1QL will respond: 01:Privilege level = 6

QM QUERY MODES

This command will give the current Control Mode (CM), Abort Mode (AM), Datum Mode (DM), Jog Mode (JM).

Syntax	Units	Range	to	Initial State	Privilege level
<ad>QM</ad>	N/A	N/A		N/A	0

Notes:

Condition Requirements

None

Responses:

The response is the axis address identifier, followed by the following (see example for format):

CM = currently set control mode (in decimal)

AM = currently set abort mode (as binary bit pattern)

DM = currently set datum mode (as binary bit pattern)

JM = currently set jog mode (as binary bit pattern)

Example:

If the controller of axis 1 is set to servo motor controller

1QM may give a response of:

01:CM = 1 AM = 00000000 DM = 00010000 JM = 11000000

QP QUERY POSITIONS

Query the current position information. Returns the current values for Command Position (CP), Actual Position (AP), Input (IP) Position Auxiliary Position (TP) and Datum Position (OD)

Syntax	Units	Range	to	Initial State	Privilege level
<ad>QP</ad>	N/A	N/A		N/A	0

Notes:

Condition Requirements

None

Response:

The response is an alpha-numeric string of characters showing all the current position variables. See example for the format.

Example:

1QP May generate a response of the form: 01:CP = -1026 AP = -1026 IP = 1050 TP = 0 OD = -2050

QS	QUERY SPEEDS				
----	--------------	--	--	--	--

Query the current settings for the speeds and accelerations. Returns the current settings of SV, SC, SA,SD and LD.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>QS</ad>	N/A	N/A		N/A	0

Condition Requirements Notes:

None

Response:

The response is an alpha-numeric string of characters showing all the speed related variables. See example for the format.

Example:

1SC700	Set creep speed to 700 steps/sec.
1SV16200	Set slew speed to 16200 steps/sec.
1SA50000	Set deceleration to 50,000 steps/sec ² .
1SD100000	Set deceleration to 100,000 steps/sec ² .

1SD20000	0 Set limit deceleration to 200,000 steps/sec ² .
1QS	Will generate a response of the form:
01:SC = 700	SV = 16200 SA = 50000 SD = 100000 LD = 200000

RP READ INPUT PORT

This command will examine the read port inputs and return their current state as an eight digit numeric string of either 0 or 1 characters. The string starts with read port 8. A 0 indicates that the input is low (0V or open-circuit) and a 1 indicates that the input is high (+24V).

Syntax	Units	Range	to	Initial State	Privilege level	
<ad>RP</ad>	N/A	N/A		N/A	0	
Condition Requirements None			Notes: If an RP command is executed with the read ports open circuit, a reply of 00000000 will be returned			

Responses

The response is a string of 8 numeric characters of either 0 or 1. If the communications are in Verbose Mode, the reply is preceded by Port: .

Example:

lf th	ne follow	ving states ar	e presen	t on the	inputs:					
		PORT :	8	7	6	5	4	3	2	1
		STATE :	Low	Low	Low	HIGH	Low	Low	Low	HIGH
Then										
	RP 1RP	in Verbose I in Quiet Mo		•						

RS RESET

This command will reset the *tracking abort, stall abort, time out abort* or *user(command) abort* conditions and re-enable the servo control loop. It will also set the Command position to be equal to the Actual position (except open loop stepper mode).

Syntax	Units	Range	to	Initial State	Privilege level
<ad>RE</ad>	N/A	N/A		N/A	3

Notes:

Condition Requirements

None

 Responses
 Command has been accepted

 ! INPUT ABORT
 Stop Input still active.

Example:

1RS

Reset abort on axis 1 controller.

SA SET ACCELERATION

Set the acceleration rate for changes of velocity for all following moves.

Syntax	Units	Range	to	Initial State	Privilege level
< ad>SAnnn	Steps/sec ²	1	20000000	2000	4
Condition Requirements			Notes:		

Idle

Value stored in FLASH by BD command.

Condition Requirements

Notes:

Responses:

OK	Command has been accepted.
! OUT OF RANGE	Argument is out of valid range.

Example:

1SA10000 Sets acceleration of axis 1 controller to 10000 Steps/sec².

SC SET CREEP SPEED

Set the creep speed for all following moves. This is the speed that at which moves with a non-zero creep distance will stop. It is also the speed that slow datum search will be moved at (**HD** command).

Syntax <ad>SCnnn</ad>	Units Steps/sec	Range 1	to 400000	Initial State 800	Privilege level 4	
Condition Requi Idle	rements		Notes: Value stored in FL	ASH by BD command.		
			s been accepted. out of valid range.			
Example: 1SC700		Sets creep speed of axis 1 controller to 700 Steps/sec.				

SD SET DECELERATION

Set the deceleration rate for changes of velocity for all following moves.

Syntax <ad>SDnnn</ad>	Units Steps/sec ²	Range 1	to 20000000	Initial State 3000	Privilege level 4
Condition Requ i	irements		Notes: Value stored in FL	ASH by BD command.	
Responses: OK ! OUT OF RA	ANGE		as been accepted. out of valid range.		

Example:

1SD100000 Sets deceleration of axis 1 controller to 100000 Steps/sec².

SE SET SETTLING TIME

Set the settling time for all following moves. This time elapses at the end of each move to allow the motor to settle. The end of a move is defined by the **OF** (following error or position difference) value being less than the **WI** (end of move window) value for the **SE** (settling) time. If the following error exceeds the window, then the settling counter will be reset and therefore it must be within the window for the whole length of the settling time.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>SEnnn</ad>	milliseconds	0	20000	100	6

Condition Requirements	Notes:
Idle	Value stored in FLASH by BD command.

Responses

OK		
! OUT	OF	RANGE

Command has been accepted. Argument is out of valid range.

Example:

. 1SE1000 Sets settling time of axis 1 controller to 1 second.

SF SET FAST JOG SPEED

Set the fast speed for all following manual *jog switch* moves. The jog movement will accelerate up to this speed when a jog input and the jog fast inputs are active.

Syntax <ad>SFnnn</ad>	Units Steps/sec	Range 1	to 200000	Initial State 500	Privilege level 4		
Condition Requirements Idle.			Notes: Value stored in FLASH by BD command.				
Responses OK ! OUT OF R	ANGE		as been accepted. out of valid range.				
Example:							

Example:

1JF1000

Sets fast jog speed of axis 1 controller to 1000 Steps/sec.

SH SET HOME POSITION

Set the Home position value to that given in the argument. The Home Position may be used during a datum search to automatically set the datum point to the given value, when using the Home to Datum (HD) command, if the correct Datum Mode is set (see Datum Search section and DM command).

Syntax <ad>SHnnn</ad>	Units Steps	Range -2147483647	to 2147483647(±2 ³²)	Initial State 0	Privilege level 6
Condition Requ i	rements		Notes: Value stored in FL	ASH by BD command.	
Response: OK		Command ha	as been accepted.		
Examples: 1SH-342	77 Set the	e axis 1 Home Po	osition to -34277.		

SJ	SET JOG SPEED	
00		

Set the normal speed for all following manual *jog switch* moves. The jog movement will be at this speed when a jog input is active, but not the jog fast input.

Syntax	Units	Range	to	Initial State	Privilege level
<ad> SJnnn</ad>	Steps/sec	1	20000	100	4
Condition Requi None.	rements		Notes: Value stored in FL	ASH by BD command.	

Responses: OK ! OUT OF RANGE

Command has been accepted. Argument is out of valid range.

Example:

1SJ50

Sets jog speed of axis 1 controller to 50 Steps/sec.

SL ENABLE/DISABLE SOFT LIMITS

This command is used to enable or disable the soft limit protection. If the soft limits are disabled, further movement is NOT bounded by the upper and lower soft limits. Hard limits will still be active and cannot be disabled.

Syntax <ad>SLb where</ad>		s Range limits disabled limits enabled	to	Initial Value Enabled (1)	Privilege level 6
Condition Idle.	Requiremen	its	Notes: Value stored	in FLASH by BD comman	d.
Response: OK	:	Command	l has been accep	ted.	
Example: 1SI 1SI		Sets the soft limits C Sets the soft limits C			

ST	STOP
----	------

This command will stop any current move, decelerate the motor speed down at the **SD** rate, then stop and return to *idle* mode.

This command is buffered and is only responded to when it reached in the command queue. Care must therefore be taken that there are no commands that hold up the queue between the move command and the **ST** command.

Syntax <ad>ST</ad>	Units N/A	Range N/A	to	Initial State N/A	Privilege level 0
Condition Requi	irements		Notes: Will exit constant v	velocity mode or gearbo	x mode.
Responses OK ! NOT ALLO	WED IN THIS		and has been accep ontroller is already st		
Example: 1CV1000 1ST			in constant velocity current move of axis	r mode (1000 steps/sec) 1.	

SV SET VELOCITY	
-----------------	--

Set the Slew (maximum) velocity for all following moves.

Syntax	Units	Range	to	Initial State	Privilege level

<ad> SVnnn Steps/sec 1 400000 1000

Condition Requirements	Notes: Value stored in FLASH by BD command.
Responses OK ! OUT OF RANGE	Command has been accepted. Argument is out of valid range.

Example:

1SV5000

Sets slew speed of axis 1 controller to 5000 Steps/sec.

TH	SET THRESHOLD	
----	---------------	--

4

This command will set the motor stalled threshold. Failure of an encoder is indistinguishable from a stalled motor, and messages from the PM600 refer to *stall abort* rather than encoder failure.

A stalled motor (or encoder failure) is detected by looking for changes in the position encoder signals (or equivalently the changes in observed motor position). If the motor does not move, and the voltage output value from the PM600 exceeds the value set by the **TH** command for a time of 256ms, then the PM600 will set its output to zero and set Stall Abort condition. The threshold is expressed as a percentage of full scale output of the Analogue output.

The servo system will have coulomb friction and the voltage required to overcome this friction, varies from system to system, so the value of **TH** must be large enough not to nuisance trigger but small enough to detect any failure.

If a *stall abort* condition occurs, the front panel status display shows a **S**, and movement is stopped. Subsequent moves will not function but will return the response **! STALL ABORT** until reset by either a Reset (**RS**) command or by powering off. The stall abort function may be enabled or inhibited by using the **AM** (abort mode) command.

The response to a **CO** command is **! STALL ABORT**.

Syntax <ad>THnnn</ad>	Units %	Range 1	to 100	Initial State 50	Privilege level 6
Condition Requ Idle.	irements		Notes: Value stored in F	LASH by BD command.	
Responses: OK ! OUT OF RA	ANGE		as been accepted. out of valid range.		

Example:

1TH40

Set the Threshold before *motor stalled* condition for axis 1 to 40%.

TO SET TIME-OUT/NOT COMPLETE TIME

This command will set the Not Complete/Time-Out time. This is the maximum time allowed at the end of a move, from when the Command Position reaches its target, until the move has settled and completed (including auto-correct stepper mode). If the error correction is not completed within this time then a Time Out will be detected and Abort if set using the Abort Mode (**AM**) command.

Syntax <ad>TOnnn</ad>	Units milliseconds	Range 1	to 60000	Initial State 8000	Privilege level 6
Condition Requi	rements		Notes: Value stored in FL	ASH by BD command.	
Response: OK		Command ha	s been accepted.		

Examples:

1TO4000 Set the axis 1 Time out to 4 seconds (4000mS).

TP SET (THIRD) AUXILIARY POSITION

Set the Auxiliary (third) Position value to that given in the argument. This position is derived from the incoming position encoder pulses of the second encoder (dual encoder feedback).

Syntax	Units	Range	to	Initial State	Privilege level
<ad>TPnnn</ad>	Steps	-2147483647	2147483647(±2 ³²)	N/A	3
Condition Requi Idle, Constant vel		ох	Notes: Value zero on pow	ver-up.	

Response: OK

Command has been accepted.

Examples:

1TP-5000 Set the axis 1 Auxiliary Position to -5000.

TR SET TRACKING WINDOW

This command will set the tracking window. The *Tracking window* is the allowable difference between the *Command Position* and the *Actual Position*. When the motor is stationary this is the allowable static error. During a move, a changing *command position* is generated. The *Tracking Window* operates on the difference between the *actual position* and this moving *command position*. The servo system will have a *following error*, so the value of **TR** must be large enough not to nuisance trigger but small enough to detect any failure.

If the *tracking* window is exceeded the front panel display will show a **t**, The Error output signal will be activated and (if abort is enabled) the controller *aborts*.

The abort function may be enabled or inhibited by using the **AM** (abort mode) command. If aborted, subsequent moves will not function but will return the response **! TRACKING ABORT** until reset by either a Reset (**RS**) command or by powering off.

Syntax <ad>TRnnn</ad>	Units Steps	Range 0	to 2147483647 (2 ³²)	Initial State 4000	Privilege level 6
Condition Req Idle	uirements		Notes: Value stored in FL	ASH by BD command	I
Responses: OK ! OUT OF F	RANGE		has been accepted. is out of valid range.		
Example:					

1TR400

Set the Tracking Window for axis 1 to 400 steps.

TUNE TUNE SERVO COEFFICIENTS

An approximate set of servo coefficients can usually be derived by invoking the **TUNE** command. The controller will *exercise* the motor over a small displacement for a few seconds and obtain a set of values for the *K* coefficients that should be stable and provide a reasonable disturbance rejection.

The tuning algorithm may fail if there is excessive backlash, if the low frequency loop gain is either very small or very large or the feedback encoder phasing is wrong. Further optimisation of system response may be required to achieve the desired performance.

The TUNE command only affects KP, KV, KS and KV therefore its use in a double encoder system is inappropriate and may produce a ! TUNE FAILURE error.

The TUNE command is only appropriate in the servo motor control mode (not for stepper motor control)

Syntax <ad>TUNE</ad>	Units N/A	Range N/A	to	Initial State N/A	Privilege level 7					
Condition Requi Servo mode, Idle	rements		Notes:							
Responses:										
Reversais =	nn Amplitud									
				to the system response.	i .					
				ptimisation programs.						
OK		Command ha	as been accepted.							
! TUNE FAIL	URE	Auto tuning fa	ailed							
! HARD LIMI	Т	Hard limit for	required direction is	already activated						
! SOFT LIMI	Г	Soft limit for r	equired direction ha	is already been reached	1					
! INPUT ABC	ORT	An input abor	t has been detected	1						
! STALL ABO	ORT	A stall abort h	has been detected							
! TRACKING	ABORT	A tracking ab	ort has been detect	ed						
! TIMEOUT A	BORT	•	ort has been detecte							
INOT ALLO	WED IN STEP		Only works in serv							
				0 111000						

Example:

1TUNE

Tune coefficients on axis 1 controller.

UC **UNDEFINE CAM**

This command will undefine or cancel a Cam definition. Note that this will only remove the cam definition from the volatile memory and to change the non-volatile flash memory this command must be followed by a backup cam (BC) command.

Syntax	Units	Range	to	Initial State	Privilege level		
<ad>UC</ad>	Cam numbe	r 0	7	N/A	5		
Condition Requirements			Notes:				
Servo mode, Idle.			Value stored in FLASH by BC command.				
Responses OK		Command ha	as been accepted.				

! NOT ALLOWED IN STEPPER MODE

Only works in servo mode

Example:

1UC

Delete Cam from axis 1 controller.

UL SET UPPER SOFT LIMIT POSITION

This command will set the Upper Soft Limit Position to the value given in the argument. Subsequent moves by the Move Absolute (MA), Move Relative (MR), Constant Velocity or manual Jog moves will not be allowed above this Upper Limit if the Soft Limits are enabled (see SL command).

Syntax	Units	Range	to	Initial State	Privilege level
<ad>ULnnn</ad>	Steps	-2147483647	2147483647 (±2 ³²)) 200000000	3
Condition Requi Idle	rements		Notes: Value stored in FL	ASH by BD command.	

Responses OK ! LIMITS CONFLICT

Command has been accepted. Attempting to set upper limit below or equal to lower limit

Example:

1UL8000

Set the axis 1 Upper Soft Limit Position to 8000.

UP UNDEFINE PROFILE

This command will undefine or cancel a Profile definition. **Note** that this will only remove the profile definition from the volatile memory and to change the non-volatile flash memory this command must be followed by a backup profile (**BP**) command.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>UP</ad>	Profile No.	0	7	N/A	5
Condition Requirements Servo mode, Idle.		Notes: Value stored in FL	ASH by BP command.		

Responses:

OK Command has been accepted. ! NOT ALLOWED IN STEPPER MODE Only works in servo mode

Example:

1UP

Delete Profile from axis 1 controller.

US UNDEFINE SEQUENCE

This command will undefine or cancel a sequence definition. **Note** that this will only remove the sequence definition from the volatile memory and to change the non-volatile flash memory this command must be followed by a backup sequence (**BS**) command.

Syntax <ad>US</ad>	Units Sequence No	Range	to 7	Initial State N/A	Privilege level 5
Condition Requ Idle.	irements		Notes: Value stored in	I FLASH by BS comman	d.
			as been accepted equence number	d.) is out of valid range.	
Example:					

Example: 1US6

Delete sequence 6 from axis 1 controller.

WA WAIT FOR INPUT PORT CONDITION

This command will examine the read port inputs and compare them with the specified bit pattern argument. It will wait until the inputs are equal to the specified bit pattern before issuing its '**OK**' response and moving on to the next command.

The bit pattern is specified as a eight digit binary number of either 0, 1 or 2 characters starting with read port 8, through to 1. A 0 defines that the input must be low (0V or open-circuit), a 1 defines that the input must be high (+24V) and a 2 defines that the input is not relevant or 'don't care'. If less that 8 digits are specified in the argument, then the preceding ones are assumed as low (0).

Syntax Units Range to Initial State Privil	ege level
--	-----------

<ad>WAbbbb</ad>	Bit pattern	8 digits of	0, 1 or 2		Ν	/A		1	
Condition Requ None.	uirements		No	tes:					
Responses OK ! INVALID BINARYCommand has been accepted. Invalid argument i.e. bit specified was not 0, 1 or 2 OR the 									
Example: 1WA221	Example: 1WA22112210 Will wait until the following condition is on the read input port before continuing:								
PORT : 8 STATE : (Ignore	7 ed) (Ignored)	6 High	5 High (I	4 gnored)	3 (Ignored)	2 High	1 Low		
WE	WAIT FOR EN	ID							
This command will wait for the end of a move or delay. It will wait until any current move or delay has finished and detects the return to the <i>idle</i> state. The 'OK' response will not be issued until the move or delay has been completed. Therefore WE can be used to execute I/O commands after a move is complete.									
Syntax <ad>WE</ad>	Units N/A	Range N/A	to			nitial State /A		Privilege level 1	
Condition Requirements Notes:									

Condition Requirements

Idle (by definition).

Response:

ΟΚ

Command has been completed.

Examples:

1MR4000	Move 4000 steps positive.
1WE	Wait for End of above move
1WP22222221	Turn LED on (write port 1) when move has finished.
1DE1000	Delay for 1 second.
1WE	Wait for End of Delay
1WP22222220	Turn LED off (write port 1).

WI SET WINDOW

This command will set the window for end of move checking. At the end of a move, when the Actual Position comes within the WI range of this final target, the SE (settling time) counter counts down. When the settling time reaches zero the controller will either accept the next command or go to the *idle* condition. If the Position overshoots the window before to the settling time reaches zero, the settling time counter is reset and started again.

Syntax <ad> WInnn</ad>	Units Steps	Range 0	to 2147483647 (2 ³²)	Initial State 4	Privilege level 6
Condition Requ Idle	irements		Notes: Value stored in FL	ASH by BD command.	
Responses OK ! OUT OF R/	ANGE		as been accepted. out of valid range.		

Example:

1WI2

Set the Window for axis 1 to 2 steps.

WP WRITE TO OUTPUT PORT

Write to output port. The PM600 controller has eight user output ports, known as write ports 1 to 8. This command will set the write port outputs to a state defined by the specified bit pattern argument. The bit pattern is specified as an eight digit binary number. The digits will be either **0**, **1** or **2** characters starting with write port 8 through to 1

	Form	at:	Eight digit bina consisting of 0 0 = Off 0V or 1 = On +24V 2 = Don't char)s, 1s open (depe	or 2s. -circuit	olta	ge of Write Port \	/ _{sourc}	ce)	
Syntax <ad>WPbbbb</ad>	Units Bit patt	ern	Range 8 digits of 0, 1	to or 2		Ini N/	i tial State A		Privilege level 1	
None.				Init	Notes: Initial state on power-up: all $0 = Off$ The last <i>write</i> is shown on the QA page.					
Responses:OKCommand has been accepted.! INVALID BINARYInvalid argument i.e. bit specified was either not 0, 1 or 2 or the number of bits was greater than eight.							or the			
Example: If a PM600 on a	xis 1 curre	ently l	has the following	n stat	es on its output	t wri	te ports:			
	PORT:	8	7	6 6	5	4	3	2	1	
	STATE:	off	off	on	on	off	on	on	on	
1WP12001200		Wi	ill set the output							
	PORT:	8	7	6	5	4	3	2	1	
	STATE:	on	off	off 0	off 0	on	-	off 0	off	
		1	2 (unchanged)	0	U	1	2 (unchanged)	0	0	
WS	WAIT FO	R SY	NCHRONISAT	ON						
	This command will make the PM600 wait and not execute any more commands until the Input position equals the Motor Position. This command is used in Absolute gearbox mode.									
Syntax <ad>WS</ad>	Units N/A		Range N/A	to		Ini N/	i tial State A		Privilege level 1	

Condition Requirements Synchronised in absolute gearbox.

Response:

Command has been completed.

Notes:

Example:

ΟΚ

1GA	Axis 1 enter absolute gearbox mode.
1WS	Axis 1 wait for synchronisation.
1WP22222221	Axis 1 switch output ON

XC EXECUTE CAM

This command will execute the defined Cam profile. The argument sets the number of times that the Cam repeats. A zero value will cause the Cam to repeat continuously.

Syntax <ad>XCnnn</ad>	Units Cam number	Range 0	to 7	Initial State N/A	Privilege level 2
Condition Requi Servo mode, Idle	rements		Notes:		
Responses OK ! HARD LIMI ! SOFT LIMIT ! CAM UNDE ! INPUT ABO ! STALL ABO ! TRACKING ! TIMEOUT A ! NOT ALLOW	FINED RT DRT ABORT	Hard limit for Soft limit for r Cam profile h An input abor A stall abort h A tracking abo A timeout abo	s been accepted. required direction is equired direction ha asn't yet been defin t has been detected ont has been detected ort has been detected ort has been detected only works in serv	as already been reached led d ed ed	Ι

Example:

1XC1

Axis 1, execute Cam number 1.

XP EXECUTE PROFILE

This command will execute the defined Profile. The move occurs at a rate, defined in milliseconds by the **PT** command, for each **MR** segment to be completed.

Syntax <ad>XPn</ad>	Units Profile No.	Range 0	to 7	Initial State N/A	Privilege level 2
Condition Requ Servo mode, Idle			Notes:		
Responses: OK ! HARD LIMI ! SOFT LIMI ! PROFILE U ! INPUT ABO ! STALL ABO ! TRACKING ! TIMEOUT A ! NOT ALLO	T JNDEFINED ORT ORT ABORT	Hard limit for Soft limit for I Profile hasn't An input about A stall abort I A tracking ab A timeout about	as been accepted. required direction is required direction ha typet been defined rt has been detected has been detected oort has been detected ort has been detected Only works in ser	as already been reached d ted ed	t

Example:

1PT1001XP5

Axis 1, execute Profile number 5. Each segment takes 100 mS.

XS EXECUTE SEQUENCE

This command will start execution of a sequence. The argument selects which sequence is to be executed (0 to 7). The sequence must have already been defined with a Define Sequence **DS** command. If the Execute Sequence (**XS**) command is encountered during a sequence, it will explicitly transfer control to the beginning of the sequence specified, whether it is the sequence already running or another sequence. It may therefore be used to make a loop type sequence or jump to any other sequence. Please note that it should not be considered as a subroutine. It is like a GOTO rather than a GOSUB.

A sequence execution may be stopped before completion, or if in a continuous loop, by a Control-C or ESCAPE command.

Control-C will stop any movement immediately, exit the sequence and return to idle. Escape will decelerate any move to a stop, exit the sequence and return to idle.

Syntax	Units	Range	to	Initial State	Privilege level
<ad>XSn</ad>	Sequence N	o. 0	7	N/A	2

Notes:

Condition Requirements

Idle, Gearbox or Constant velocity

Responses:

! INVALID SEQUENCE NUMBER Argument (sequence number) is out of valid range. **! SEQUENCE UNDEFINED** Sequence specified has not been defined yet.

Other responses may be generated by commands within the sequence. At the completion of the sequence, the response to the last command is sent.

Example:

1XS1 Execute sequence 1

XY **CAM CO-ORDINATES**

Set Cam co-ordinates. In Cam mode the slave motor is driven at a ratio of the Input encoder speed. This Cam profile is specified by two arguments separated by a / character.

The first point is always x=0, y=0. Co-ordinate pairs must be defined in order of increasing x co-ordinate.

The x co-ordinate of the last pair defines the modulo, that is the repeat distance. In the example given below the modulo is 750, so that the y values for x=200, x=950, x=1700, etc. are the same. Exit from *cam mode* can be achieved by either ESCAPE or ST commands.

To obtain the most accurate cam action the feedforward coefficient should be made equal to the velocity coefficient. KF=KV.

Cam positions are absolute, not relative, so that the motor position should be around zero before starting cam. The motor will only start to move when the *input* position divided by the *cam modulo* is equal to the equivalent motor position defined by the cam.

Syntax

<ad>XYnnn/nnn</ad>					
	Units	Range	to	Initial State	Privilege level
x-value	N/A	0	32767 (2 ¹⁵)	N/A	5
y-value	N/A	-32768	32767 (±2 ¹⁵)	N/A	

Condition Requirements

Servo mode. Define Cam.

Notes:

Responses:

ÖK	Command has been accepted.			
! OUT OF RANGE	Argument, either X or Y is out of valid range.			
! CAM FULL				
!ILLEGAL CAM INSTRUCTION Command may only be used in cam definition				
	Cam co-ordinate non-monotonic.			
! NOT ALLOWED IN STEPP	ER MODE Only works in servo mode			

Example:

Cam profiles are *piecewise linear*, with the first co-ordinate implicitly (x=0, y=0). A cam profile would be defined using the following commands:

1DC	Open Cam definition.
1XY200/500	Second Cam co-ordinate.

1XY400/50	0
1XY600/-20	00
1XY700/-20	00
1XY750/0	
1EM	

Next Cam co-ordinate. Next Cam co-ordinate. Next Cam co-ordinate. Last Cam co-ordinate. End Cam Definition.

3 Status display

Idle

Move

Constant velocity

Gearbox

Home to datum

Profile running

Cam running

Jog or Joystick move

Stopping

Upper limit activated

Lower limit activated

Wait for signal/condition

Stop Input Abort

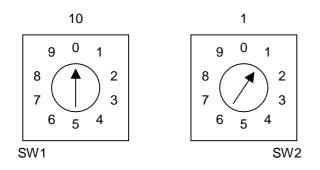
Command abort (AB)

Stall error

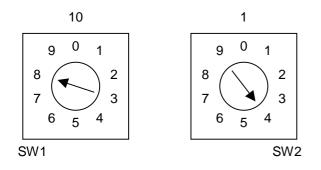
Tracking error

Time Out error (not got there)

Communication error

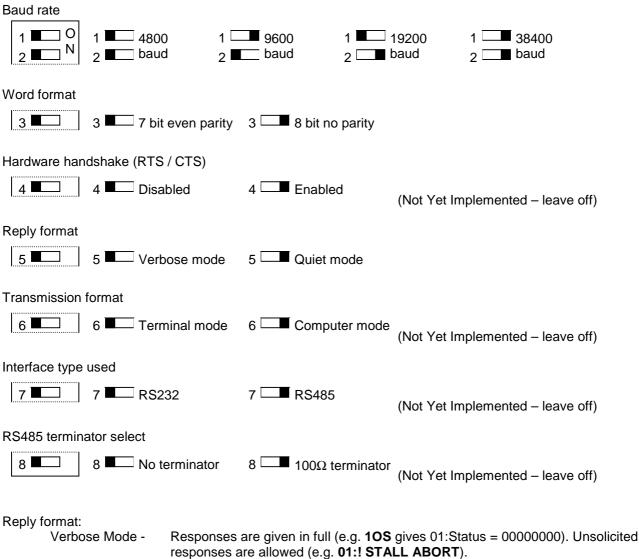

Tune

Controller failed self test


4 Switch settings

4.1 Axis address number SW1 & SW2

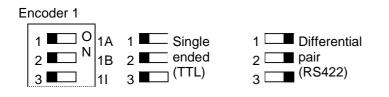
Rotary switches SW1 and SW2 are used to set the units axis address. This is the address of the serial commands that it will respond to. Typically, each controller in a system will be set to differing addresses. The left hand switch SW1 sets the decade value and SW2 sets the units. They may be set using a small screwdriver.


This example shows the address set to 1 (01).

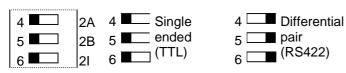
This example shows the address set to 84.

4.2 Communication Configuration Switch SW3

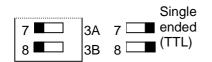
DIP Switch SW3 is used to set the serial communication parameters. These should be set to match those of your host terminal or PC, and all PM600 units should be set the same. If the unit receives characters that do not match the set parameters it will cause a communication error abort.

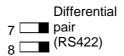

Quiet Mode -

Responses are given in full (e.g. **10S** gives 01:Status = 0000000). Unsolicity responses are allowed (e.g. **01:! STALL ABORT**). Responses are given abridged (e.g. **10S** gives 01:0000000). Unsolicited responses are NOT allowed (e.g. **01:! STALL ABORT**).


4.3 Encoder Termination Configuration Switch SW4

Switch SW4 selects the termination for the encoder signals. These may be set to OFF for open ended, TTL or open collector type encoder outputs or ON for 5V differential, RS422 type encoder outputs There are switches for Channel-A, Channel-B and Index point inputs. The A and B switches should be set as a group for each encoder input


The correct termination should be set for maximum noise immunity.



Encoder 2

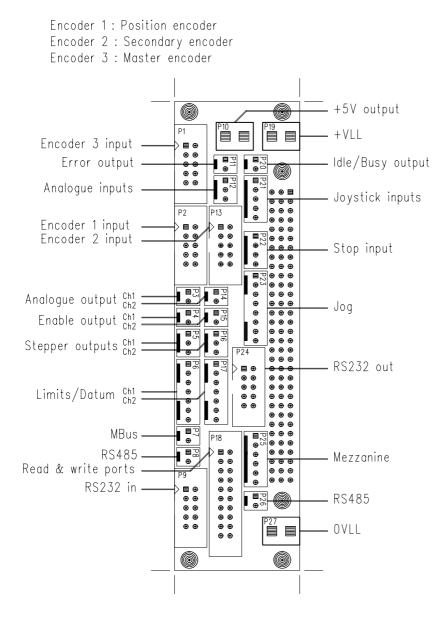
Encoder 3 (has no index input)

5 Error messages

! BACKUP FAILURE	Unable to store parameters/sequence/cam/profile in flash
! CAM FULL	Define Cam memory is already full
! CAM UNDEFINED	Attempting to run Cam that hasn't yet been defined
! COMMAND ABORT	Cannot move when aborted by Command Abort
! CORRUPT BACKUP	Unable to get valid data from flash memory
! HARD LIMIT	Cannot move in direction of activated hard limit
! ILLEGAL ABORT MODE	Abort Mode parameters not correctly set
! ILLEGAL CAM INSTRUCTION	Cam Definition commands can only be XY and EC
! ILLEGAL INSTRUCTION	Instruction not recognised - probably typing mistake
! ILLEGAL PROFILE INSTRUCTION	Profile Definition commands can only be MR and EP
! ILLEGAL SEQUENCE INSTRUCTION	Command cannot be store in a Sequence Definition
! INPUT ABORT	Cannot move when aborted by Stop Abort Input
! INVALID BINARY	Binary expressions must be up to 8 characters of 0, 1 or 2
! INVALID CAM DEFINITION	Possibly due to no length Cam Definition
! INVALID CAM NUMBER	Only Cam Definitions 0 to 7 available
! INVALID MODE STRING	Attempting to set an invalid mode
! INVALID PIN	Attempting to enter wrong PIN number
! INVALID PROFILE DEFINITION	Possibly due to no length Profile Definition
! INVALID PROFILE NUMBER	Only Profile Definitions 0 to 7 available
! INVALID SEQUENCE NUMBER	Only Sequence Definitions 0 to 7 available
! JOYSTICK FAILURE	Joystick input out of range or not zero on power-up
! LIMITS CONFLICT	Attempting to set Soft Limits incorrectly
! NO VALID DATUM	There is no captured datum position to query or move to.
! NOT ABORTED	Attempting to reset a controller that is not aborted
! NOT ALLOWED IN STEPPER MODE	Attempting a servo only command
! NOT ALLOWED IN THIS MODE	Command not allowed whilst doing current command
! NOT COMPLETE/TIMEOUT ABORT	Cannot move whilst aborted; last move was not completed
! NOT MONOTONIC	All X values must increase during Cam Definition
! ONLY ALLOWED IN GBOX MODE	Attempting command that only functions in Gearbox mode
! OUT OF RANGE	Argument to command is outside allowable limits
! PRIVILEGE VIOLATION	Attempting command of higher privilege level than you have
! PROFILE FULL	Profile Definition is already full
! PROFILE UNDEFINED	Attempting to run Profile that hasn't yet been defined
! RS232 ABORT	Cannot move when aborted by receiving illegal character
! SEQUENCE FULL	Sequence Definition is already full
! SEQUENCE UNDEFINED	Attempting to run Sequence that hasn't yet been defined
! SOFT LIMIT	Attempting to move beyond a soft limit
! STALL ABORT	Cannot move when aborted by stall detect
! TRACKING ABORT	Cannot move when aborted by tracking error
! TUNE FAILURE	Auto Tune has not worked
Self-test failure	Power On Self Test detected failure
SKIPPED	Command was skipped due to preceding IT or IF command

6 External connections

Electrical connections to the PM600 controller are made via the standard 96 way DIN41612 connector. The pin assignments are as follows:


	А	В	С	
01	+VLL supply	+VLL supply	+VLL supply	01
02	Idle Output Source	Error Output Source	Analogue Input 1	02
03	Idle Output	Error Output	Analogue Input 2	03
04	Joystick 1 (Al3)	Joystick 2 (AI4)	Joystick Centre (AI5)	04
05	+5V output	+5V output	+5V output	05
06	Encoder 1 A+	Encoder 2 A+	Encoder 3 A+	06
07	Encoder 1 A-	Encoder 2 A-	Encoder 3 A-	07
08	Encoder 1 B+	Encoder 2 B+	Encoder 3 B+	08
09	Encoder 1 B-	Encoder 2 B-	Encoder 3 B-	09
10	Encoder 1 I+	Encoder 2 I+	Abort Stop Input	10
11	Encoder 1 I-	Encoder 2 I-	Abort Stop Isolated 0V	11
12	Analogue Output 1	Analogue Output 2	Jog Select Input	12
13	Analogue 0V	Analogue 0V	Jog Positive Input	13
14	Channel 1 Enable Source	Channel 2 Enable Source	Jog Fast Input	14
15	Channel 1 Enable Output	Channel 2 Enable Output	Jog Negative Input	15
16	Channel 1 Step Output	Channel 2 Step Output	Jog Channel Output	16
17	Channel 1 Direction Output	Channel 2 Direction Output	Jog Isolated 0V	17
18	Channel 1 Upper Hard Limit	Channel 2 Upper Hard Limit	RS232 Transmit (Out)	18
19	Channel 1 Lower Hard Limit	Channel 2 Lower Hard Limit	RS232 Receive (In)	19
20	Channel 1 Datum Approach	Channel 2 Datum Approach	RS232 RTS (Out)	20
21	Channel 1 Datum Stop	Channel 2 Datum Stop	RS232 CTS (In)	21
22	Channel 1 Limit/Datum Iso 0V	Channel 2 Limit/Datum Iso 0V	RS485-A	22
23	Write Port 1	Read Port 1	RS485-B	23
24	Write Port 2	Read Port 2	M-bus Data	24
25	Write Port 3	Read Port 3	M-bus Clock	25
26	Write Port 4	Read Port 4	Mezzanine Option 1	26
27	Write Port 5	Read Port 5	Mezzanine Option 2	27
28	Write Port 6	Read Port 6	Mezzanine Option 3	28
29	Write Port 7	Read Port 7	Mezzanine Option 4	29
30	Write Port 8	Read Port 8	Mezzanine Option 5	30
31	Write Port Source	Read Port Isolated 0V	Mezzanine Option 6	31
32	0VLL ground	0VLL ground	0VLL ground	32

We recommend the use of the MSB603 motherboard to facilitate connections.

7 MSB603 Motherboard

The MSB603 motherboard facilitates easy connections to the PM600. The connectors have been arranged into functional groups.

Encoders – 10 way IDC connectors RS232 – 10 way IDC connectors Digital I/O – 20 way IDC connector Power – screw-terminal plugs Others – 0.1" Molex type connectors

