
Object-Oriented Programming

School of Computer Science
University of KwaZulu-Natal

February 5, 2007

Object Oriented Programming
using Java

Notes for the Computer Science Module
Object Oriented Programming

COMP200

Adapted from
Introduction to Programming Using Java

Version 5.0, December 2006
by David J. Eck

http://math.hws.edu/javanotes/

Adapted by Anban Pillay
School of Computer Science

University of KwaZulu-Natal
Durban

February 2007

3

4

Contents

1 Introduction to Objects 11
1.1 What is Object Oriented Programming? 11

1.1.1 Programming Paradigms . 12
1.1.2 Object Orientation as a New Paradigm: The Big Picture 14

1.2 Fundamentals of Objects and Classes . 16
1.2.1 Objects and Classes . 16
1.2.2 Class Members and Instance Members 22
1.2.3 Access Control . 27
1.2.4 Creating and Destroying Objects 29
1.2.5 Garbage Collection . 34
1.2.6 Everything is NOT an object . 35

2 The Practice of Programming 37
2.1 Abstraction . 37

2.1.1 Control Abstraction . 38
2.1.2 Data Abstraction . 39
2.1.3 Abstraction in Object-Oriented Programs 39

2.2 Methods as an Abstraction Mechanism 40
2.2.1 Black Boxes . 40
2.2.2 Preconditions and Postconditions 41
2.2.3 APIs and Packages . 42

2.3 Introduction to Error Handling . 46
2.4 Javadoc . 49
2.5 Creating Jar Files . 51
2.6 Creating Abstractions . 52

2.6.1 Designing the classes . 52
2.7 Example: A Simple Card Game . 58

3 Tools for Working with Abstractions 63
3.1 Introduction to Software Engineering . 63

3.1.1 Software Engineering Life-Cycles 63
3.1.2 Object-oriented Analysis and Design 64
3.1.3 Object Oriented design . 65

3.2 Class-Responsibility-Collaboration cards 66
3.3 The Unified Modelling Language . 67

3.3.1 Modelling . 67

5

3.3.2 Use Case Diagrams . 68
3.3.3 Class Diagrams . 69
3.3.4 Sequence Diagrams . 73
3.3.5 Collaboration Diagrams . 73
3.3.6 State Diagram . 74

4 Inheritance, Polymorphism, and Abstract Classes 77
4.1 Extending Existing Classes . 77
4.2 Inheritance and Class Hierarchy . 80
4.3 Example: Vehicles . 81
4.4 Polymorphism . 83
4.5 Abstract Classes . 86
4.6 this and super . 88

4.6.1 The Special Variable this . 88
4.6.2 The Special Variable super . 89
4.6.3 Constructors in Subclasses . 90

5 Interfaces, Nested Classes, and Other Details 93
5.1 Interfaces . 93
5.2 Nested Classes . 96

5.2.1 Anonymous Inner Classes . 98
5.3 Mixing Static and Non-static . 99

5.3.1 Static Import . 100
5.4 Enums as Classes . 101

6 Graphical User Interfaces in JAVA 105
6.1 Introduction: The Modern User Interface 106
6.2 The Basic GUI Application . 107

6.2.1 JFrame and JPanel . 109
6.2.2 Components and Layout . 111
6.2.3 Events and Listeners . 112

6.3 Applets and HTML . 113
6.3.1 JApplet . 113
6.3.2 Reusing Your JPanels . 115
6.3.3 Applets on Web Pages . 117

6.4 Graphics and Painting . 119
6.4.1 Coordinates . 121
6.4.2 Colors . 122
6.4.3 Fonts . 123
6.4.4 Shapes . 124
6.4.5 An Example . 126

6.5 Mouse Events . 129
6.5.1 Event Handling . 130
6.5.2 MouseEvent and MouseListener 131
6.5.3 Anonymous Event Handlers . 134

6.6 Basic Components . 137
6.6.1 JButton . 139
6.6.2 JLabel . 140
6.6.3 JCheckBox . 140
6.6.4 JTextField and JTextArea . 141

6

6.7 Basic Layout . 143
6.7.1 Basic Layout Managers . 144
6.7.2 A Simple Calculator . 146
6.7.3 A Little Card Game . 148

6.8 Images and Resources . 152
6.8.1 Images . 153
6.8.2 Image File I/O . 155

7 A Solitaire Game - Klondike 157
7.1 Klondike Solitaire . 157
7.2 Card Games . 158

7.2.1 The CardNames Interface . 160
7.2.2 The Deck class . 160

7.3 Implementation of Klondike . 160
7.3.1 The CardPile class (the base class) 161
7.3.2 The Solitaire class . 163
7.3.3 Completing the Implementation 164

8 Generic Programming 167
8.1 Generic Programming in Java . 168
8.2 ArrayLists . 168
8.3 Parameterized Types . 170
8.4 The Java Collection Framework . 172
8.5 Iterators and for-each Loops . 174
8.6 Equality and Comparison . 176
8.7 Generics and Wrapper Classes . 179
8.8 Lists . 179

9 Correctness and Robustness 185
9.1 Introduction . 186

9.1.1 Horror Stories . 186
9.1.2 Java to the Rescue . 187
9.1.3 Problems Remain in Java . 189

9.2 Writing Correct Programs . 190
9.2.1 Provably Correct Programs . 190
9.2.2 Robust Handling of Input . 193

9.3 Exceptions and try..catch . 194
9.3.1 Exceptions and Exception Classes 194
9.3.2 The try Statement . 196
9.3.3 Throwing Exceptions . 199
9.3.4 Mandatory Exception Handling . 200
9.3.5 Programming with Exceptions . 201

9.4 Assertions . 203

10 Input and Output 207
10.1 Streams, Readers, and Writers . 207

10.1.1 Character and Byte Streams . 207
10.1.2 PrintWriter . 209
10.1.3 Data Streams . 210
10.1.4 Reading Text . 211

7

10.1.5 The Scanner Class . 212
10.2 Files . 213

10.2.1 Reading and Writing Files . 214
10.2.2 Files and Directories . 217

10.3 Programming With Files . 219
10.3.1 Copying a File . 219

8

Preface

These notes are intended for a Second course in Object-Oriented Programming with
Java. It is assumed that students have taken a first year course in Programming and
are familiar with basic (procedural) programming and introductory object-based pro-
gramming in Java. The student should be familiar with the various control constucts,
Arrays (one and two dimensional), the concepts of class and object, input/output and
the concept of classes and objects.

Theses notes are, in the most part, taken from David J. Eck’s online book INTRO-
DUCTION TO PROGRAMMING USING JAVA, VERSION 5.0, DECEMBER 2006. The
online book is available at http://math.hws.edu/javanotes/.

We’ve refactored and used in whole or parts of Chapters 4, 5, 6, 8, 9, 10, and
11. Subsections of some these chapters were ommitted, minor editing changes were
made and a few subsections were added. A notable change has been the use of the
Scanner class and the printf method for input and output.

Some sections were also taken from the notes of Prof Wayne Goddard of Clemson
University.

The sections on UML (chapter 6) were adapted from the user manual of the UML
tool: Umbrello (http://docs.kde.org/stable/en GB/kdesdk/umbrello/).
The definitions of various software engineering terms and concepts were adapted
from wikipedia (http://wikipedia.org/).

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 Li-
cense. (This license allows you to redistribute this book in unmodified form. It allows
you to make and distribute modified versions, as long as you include an attribu-
tion to the original author, clearly describe the modifications that you have made,
and distribute the modified work under the same license as the original. See the
http://creativecommons.org/licenses/by-sa/2.5/ for full details.)

The LATEX source for these notes are available on request.

9

10

Chapter 1
Introduction to Objects

Contents
1.1 What is Object Oriented Programming? 11

1.1.1 Programming Paradigms . 12
1.1.2 Object Orientation as a New Paradigm: The Big Picture . . . 14

1.2 Fundamentals of Objects and Classes 16
1.2.1 Objects and Classes . 16
1.2.2 Class Members and Instance Members 22
1.2.3 Access Control . 27
1.2.4 Creating and Destroying Objects 29
1.2.5 Garbage Collection . 34
1.2.6 Everything is NOT an object . 35

OBJECT-ORIENTED PROGRAMMING (OOP) represents an attempt to make programs
more closely model the way people think about and deal with the world. In the older
styles of programming, a programmer who is faced with some problem must identify
a computing task that needs to be performed in order to solve the problem. Program-
ming then consists of finding a sequence of instructions that will accomplish that
task. But at the heart of object-oriented programming, instead of tasks we find ob-
jects – entities that have behaviors, that hold information, and that can interact with
one another. Programming consists of designing a set of objects that model the prob-
lem at hand. Software objects in the program can represent real or abstract entities
in the problem domain. This is supposed to make the design of the program more
natural and hence easier to get right and easier to understand.

An object-oriented programming language such as JAVA includes a number of
features that make it very different from a standard language. In order to make
effective use of those features, you have to “orient” your thinking correctly.

1.1 What is Object Oriented Programming?

OBJECT-ORIENTATION 1 is a set of tools and methods that enable software engineers
to build reliable, user friendly, maintainable, well documented, reusable software

1This discussion is based on Chapter 2 of An Introduction to Object-Oriented Programming by Tim-
othy Budd.

11

systems that fulfills the requirements of its users. It is claimed that object-orientation
provides software developers with new mind tools to use in solving a wide variety of
problems. Object-orientation provides a new view of computation. A software system
is seen as a community of objects that cooperate with with each other by passing
messages in solving a problem.

An object-oriented programming laguage provides support for the following object-
oriented concepts:

Objects and Classes

Inheritance

Polymophism and Dynamic binding

1.1.1 Programming Paradigms

Object-oriented programming is one of several programming paradigms. Other pro-
gramming paradigms include the imperative programming paradigm (as exemplified
by languages such as Pascal or C), the logic programming paradigm (Prolog), and the
functional programming paradigm (exemplified by languages such as ML, Haskell or
Lisp). Logic and functional languages are said to be declarative languages.

We use the word paradigm to mean “any example or model”.
This usage of the word was popularised by the science historian Thomas Kuhn.

He used the term to describe a set of theories, standards and methods that together
represent a way of organising knowledge—a way of viewing the world.

Thus a programming paradigm is a

. . . way of conceptualising what it means to perform computation and how
tasks to be carried out on a computer should be structured and organised.

We can distinguish between two types of programming languages: Imperative
languages and declarative languages. Imperative knowledge describes how-to knowl-
edge while declarative knowledge is what-is knowledge.

A program is ”declarative” if it describes what something is like, rather than how
to create it. This is a different approach from traditional imperative programming
languages such as Fortran, and C, which require the programmer to specify an al-
gorithm to be run. In short, imperative programs make the algorithm explicit and
leave the goal implicit, while declarative programs make the goal explicit and leave
the algorithm implicit.

Imperative languages require you to write down a step-by-step recipe specifing
how something is to be done. For example to calculate the factorial function in an
imperative language we would write something like:

public int factorial(int n) {
int ans=1;
for (int i = 2; i <= n; i++){

ans = ans ∗ i;
}
return ans;

}

Here, we give a procedure (a set of steps) that when followed will produce the
answer.

12

Functional programming

Functional programming is a programming paradigm that treats computation as the
evaluation of mathematical functions. Functional programming emphasizes the def-
inition of functions, in contrast to procedural programming, which emphasizes the
execution of sequential commands.

The following is the factorial function written in a functional language called Lisp:
(defun factorial (n)

(if (<= n 1) 1 (∗ n (factorial (− n 1))))
)

Notice that it defines the factorial function rather than give the steps to calculate it.
The factorial of n is defined as 1 if n <= 1 else it is n ∗ factorial(n− 1)

Logic Programming

Prolog (PROgramming in LOGic) 2 is the most widely available language in the logic
programming paradigm. It is based on the mathematical ideas of relations and log-
ical inference. Prolog is a declarative language meaning that rather than describing
how to compute a solution, a program consists of a data base of facts and logical
relationships (rules) which describe the relationships which hold for the given appli-
cation. Rather then running a program to obtain a solution, the user asks a question.
When asked a question, the run time system searches through the data base of facts
and rules to determine (by logical deduction) the answer.

Logic programming was an attempt to make a programming language that en-
abled the expression of logic instead of carefully specified instructions on the com-
puter.

In the logic programming language Prolog you supply a database of facts and
rules; you can then perform queries on the database.

This is also an example of a declarative style of programming where we state or
define what we know.

In the following example, we declare facts about some domain. We can then query
these facts—we can ask, for example, are sally and tom siblings?

sibling(X,Y) :− parent(Z,X), parent(Z,Y).
parent(X,Y) :− father(X,Y).
parent(X,Y) :− mother(X,Y).
mother(trude, sally).
father(tom, sally).
father(tom, erica).
father(mike, tom).

The factorial function is written in prolog as two rules. Again, notice the declara-
tive nature of the program.

fac(0,1).
fac(N,F) :− N > 0,

M is N − 1,
fac(M,Fm),
F is N ∗ Fm.

To summarize:

• In procedural languages, everything is a procedure.
2(see http://cs.wwc.edu/KU/PR/Prolog.html)

13

• In functional languages, everything is a function.

• In logic programming languages, everything is a logical expression (predicate).

• In object-oriented languages, everything is an object.

1.1.2 Object Orientation as a New Paradigm: The Big Picture

It is claimed that the problem-solving techniques used in object-oriented program-
ming more closely models the way humans solve day-to-day problems.3

So lets consider how we solve an everyday problem: Suppose you wanted to send
flowers to a friend named Robin who lives in another city.To solve this problem you
simply walk to your nearest florist run by, lets say, Fred. You tell Fred the kinds of
flowers to send and the address to which they should be delivered. You can be assured
that the flowers will be delivered.

Now, lets examine the mechanisms used to solve your problem.

• You first found an appropriate agent (Fred, in this case) and you passed to this
agent a message containing a request.

• It is the responsibility of Fred to satisfy the request.

• There is some method (an algorithm or set of operations) used by Fred to do
this.

• You do not need to know the particular methods used to satisfy the request—
such information is hidden from view.

Off course, you do not want to know the details, but on investigation you may find
that Fred delivered a slightly different message to another florist in the city where
your friend Robin lives. That florist then passes another message to a subordinate
who makes the floral arrangement.The flowers, along with yet another message, is
passed onto a delivery person and so on. The florists also has interactions with whole-
salers who, in turn, had interactions with flower growers and so on.

This leads to our first conceptual picture of object-oriented programming:

An object-oriented program is structured as community of interacting agents
called objects. Each object has a role to play. Each object provides a ser-
vice or performs an action that is used by other members of the community.

Messages and Responsibilities

Members of an object-oriented community make requests of each other. The next
important principle explains the use of messages to initiate action:

Action is initiated in object-oriented programming by the transmission of a
message to an agent (an object) responsible for the actions. The message
encodes the request for an action and is accompanied by any additional
information (arguments/parameters) needed to carry out the request. The
receiver is the object to whom the message is sent. If the receiver accepts

3This discussion is based on Chapter 2 of An Introduction to Object-Oriented Programming by Tim-
othy Budd.

14

the message, it accepts responsibility to carry out the indicated action. In
response to a message, the receiver will perform some method to satisfy the
request.

There are some important issues to point out here:

• The client sending the request need not know the means by which the request
is carried out. In this we see the principle of information hiding.

• Another principle implicit in message passing is the idea of finding someone else
to do the work i.e. reusing components that may have been written by someone
else.

• The interpretation of the message is determined by the receiver and can vary
with different receivers. For example, if you sent the message “deliver flowers”
to a friend, she will probably have understood what was required and flowers
would still have been delivered but the method she used would have been very
different from that used by the florist.

• In object-oriented programming, behaviour is described in terms of responsibil-
ities.

• Client’s requests for actions only indicates the desired outcome. The receivers
are free to pursue any technique that achieves the desired outcomes.

• Thinking in this way allows greater independence between objects.

• Thus, objects have responsibilities that they are willing to fulfill on request. The
collection of reponsibilities associated with an object is often called a protocol.

Classes and Instances

The next important principle of object-oriented programming is

All objects are instances of a class. The method invoked by an object in
response to a message is determined by the class of the receiver. All objects
of a given class use the same method in response to similar messages.

Fred is an instance of a category or class of people i.e. Fred is an instance of a
class of florists. The term florist represents a class or category of all florists. Fred is
an object or instance of a class.

We interact with instances of a class but the class determines the behaviour of in-
stances. We can tell a lot about how Fred will behave by understanding how Florists
behave. We know, for example, that Fred, like all florists can arrange and deliver
flowers.

In the real world there is this distinction between classes and objects. Real-world
objects share two characteristics: They all have state and behavior. For example, dogs
have state (name, color, breed, hungry) and behavior (barking, fetching, wagging tail).
Students have state (name, student number, courses they are registered for, gender)
and behavior (take tests, attend courses, write tests, party).

15

Figure 1.1: An Object

1.2 Fundamentals of Objects and Classes

We move now from the conceptual picture of objects and classes to a discussion of
software classes and objects.4

Objects are closely related to classes. A class can contain variables and methods.
If an object is also a collection of variables and methods, how do they differ from
classes?

1.2.1 Objects and Classes

Objects

In object-oriented programming we create software objects that model real world ob-
jects. Software objects are modeled after real-world objects in that they too have
state and behavior. A software object maintains its state in one or more variables. A
variable is an item of data named by an identifier. A software object implements its
behavior with methods. A method is a function associated with an object.

Definition: An object is a software bundle of variables and related methods.

An object is also known as an instance. An instance refers to a particular object.
For e.g. Karuna’s bicycle is an instance of a bicycle—It refers to a particular bicycle.
Sandile Zuma is an instance of a Student.

The variables of an object are formally known as instance variables because they
contain the state for a particular object or instance. In a running program, there
may be many instances of an object. For e.g. there may be many Student objects.
Each of these objects will have their own instance variables and each object may have
different values stored in their instance variables. For e.g. each Student object will
have a different number stored in its StudentNumber variable.

Encapsulation

Object diagrams show that an object’s variables make up the center, or nucleus, of
the object. Methods surround and hide the object’s nucleus from other objects in the
program. Packaging an object’s variables within the protective custody of its methods
is called encapsulation.

4This discussion is based on the “Object-oriented Programming Concepts” section of the Java Tuto-
rial by Sun MicroSystems.

16

Figure 1.2: A Message

Encapsulating related variables and methods into a neat software bundle is a
simple yet powerful idea that provides two benefits to software developers:

• Modularity: The source code for an object can be written and maintained in-
dependently of the source code for other objects. Also, an object can be easily
passed around in the system. You can give your bicycle to someone else, and it
will still work.

• Information-hiding: An object has a public interface that other objects can use
to communicate with it. The object can maintain private information and meth-
ods that can be changed at any time without affecting other objects that depend
on it.

Messages

Software objects interact and communicate with each other by sending messages to
each other. When object A wants object B to perform one of B’s methods, object A
sends a message to object B

There are three parts of a message: The three parts for the message
System.out.println{‘‘Hello World’’}; are:

• The object to which the message is addressed (System.out)

• The name of the method to perform (println)

• Any parameters needed by the method (“Hello World!”)

Classes

In object-oriented software, it’s possible to have many objects of the same kind that
share characteristics: rectangles, employee records, video clips, and so on. A class is
a software blueprint for objects. A class is used to manufacture or create objects.

The class declares the instance variables necessary to contain the state of every
object. The class would also declare and provide implementations for the instance
methods necessary to operate on the state of the object.

Definition: A class is a blueprint that defines the variables and the methods
common to all objects of a certain kind.

17

After you’ve created the class, you can create any number of objects from that
class.

A class is a kind of factory for constructing objects. The non-static parts of the
class specify, or describe, what variables and methods the objects will contain. This
is part of the explanation of how objects differ from classes: Objects are created and
destroyed as the program runs, and there can be many objects with the same struc-
ture, if they are created using the same class.

Types

JAVA, like most programming languages classifies values and expressions into types.
For e.g. String’s and int’s are types. A type basically specifies the allowed values
and allowed operations on values of that type.

Definition: A type is a set of values together with one or more operations
that can be applied uniformly to all these values.

A type system basically gives meaning to collections of bits. Because any value
simply consists of a set of bits in a computer, the hardware makes no distinction
between memory addresses, instruction code, characters, integers and floating-point
numbers. Types inform programs and programmers how they should treat those bits.

For example the integers are a type with values in the range −2, 147, 483, 648 to +
2, 147, 483, 647 and various allowed operations that include addition, subtraction, mod-
ulus etc.

The use of types by a programming language has several advantages:

• Safety. Use of types may allow a compiler to detect meaningless or invalid code.
For example, we can identify an expression ”Hello, World” / 3 as invalid because
one cannot divide a string literal by an integer. Strong typing offers more safety.

• Optimization. Static type-checking may provide useful information to a com-
piler. The compiler may then be able to generate more efficient code.

• Documentation. Types can serve as a form of documentation, since they can
illustrate the intent of the programmer. For instance, timestamps may be a
subtype of integers – but if a programmer declares a method as returning a
timestamp rather than merely an integer, this documents part of the meaning
of the method.

• Abstraction. Types allow programmers to think about programs at a higher
level, not bothering with low-level implementation. For example, programmers
can think of strings as values instead of as a mere array of bytes.

There are fundamentally two types in JAVA: primitive types and objects types i.e.
any variable you declare are either declared to be one of the primitive types or an
object type. int, double and char are the built-in, primitive types in JAVA.

The primitive types can be used in various combinations to create other, composite
types. Every time we define a class, we are actually defining a new type. For example,
the Student class defined above introduces a new type. We can now use this type like
any other type: we can declare variables to be of this type and we can use it as a type
for parameters of methods.

18

Before a variable can be used, it must be declared. A declaration gives a variable
a name, a type and an initial value for e.g. int x = 8 declares x to be of type int. All
objects that we declare also have to be of a specified type—the type of an object is the
class from which it is created. Thus, when we declare objects we state the type like
so: Student st = new Student();. This statement declares the variable st to be of
type Student. This statement creates a new object of the specified type and runs the
Student constructor. The constructor’s job is to properly initialize the object.

The String type is another example of an object type. Student and String are
composite types and give us the same advantages as the built-in types. The ability to
create our own types is a very powerful idea in modern languages.

When declaring variables, we can assign initial values. If you do not specify ini-
tial values, the compiler automatically assigns one: Instance variables of numerical
type (int, double, etc.) are automatically initialized to zero; boolean variables are
initialized to false; and char variables, to the Unicode character with code number
zero. The default initial value of object types is null.

Introduction to Enums

JAVA comes with eight built-in primitive types and a large set of types that are de-
fined by classes, such as String. But even this large collection of types is not suffi-
cient to cover all the possible situations that a programmer might have to deal with.
So, an essential part of JAVA, just like almost any other programming language, is the
ability to create new types. For the most part, this is done by defining new classes.
But we will look here at one particular case: the ability to define enums (short for
enumerated types). Enums are a recent addition to JAVA. They were only added in
Version 5.0. Many programming languages have something similar.

Technically, an enum is considered to be a special kind of class. In this section, we
will look at enums in a simplified form. In practice, most uses of enums will only need
the simplified form that is presented here.

An enum is a type that has a fixed list of possible values, which is specified
when the enum is created.

In some ways, an enum is similar to the boolean data type, which has true and false
as its only possible values. However, boolean is a primitive type, while an enum is
not.

The definition of an enum types has the (simplified) form:
enum enum−type−name { list−of−enum−values };

This definition cannot be inside a method. You can place it outside the main()
method of the program. The enum−type−name can be any simple identifier. This
identifier becomes the name of the enum type, in the same way that “boolean” is the
name of the boolean type and “String” is the name of the String type. Each value in
the list−of−enum−values must be a simple identifier, and the identifiers in the list
are separated by commas. For example, here is the definition of an enum type named
Season whose values are the names of the four seasons of the year:

enum Season { SPRING, SUMMER, AUTUMN, WINTER };

By convention, enum values are given names that are made up of upper case let-
ters, but that is a style guideline and not a syntax rule. Enum values are not vari-
ables. Each value is a constant that always has the same value. In fact, the possible
values of an enum type are usually referred to as enum constants.

19

Note that the enum constants of type Season are considered to be “contained in”
Season, which means–following the convention that compound identifiers are used
for things that are contained in other things–the names that you actually use in your
program to refer to them are Season.SPRING, Season.SUMMER, Season.AUTUMN, and
Season.WINTER.

Once an enum type has been created, it can be used to declare variables in exactly
the same ways that other types are used. For example, you can declare a variable
named vacation of type Season with the statement:

Season vacation;

After declaring the variable, you can assign a value to it using an assignment
statement. The value on the right-hand side of the assignment can be one of the enum
constants of type Season. Remember to use the full name of the constant, including
“Season”! For example: vacation = Season.SUMMER;.

You can print an enum value with the statement: System.out.print(vacation).
The output value will be the name of the enum constant (without the “Season.”). In
this case, the output would be “SUMMER”.

Because an enum is technically a class, the enum values are technically objects.
As objects, they can contain methods. One of the methods in every enum value is
ordinal(). When used with an enum value it returns the ordinal number of the
value in the list of values of the enum. The ordinal number simply tells the posi-
tion of the value in the list. That is, Season.SPRING.ordinal() is the int value
0, Season.SUMMER.ordinal() is 1, while 2 is Season.AUTUMN.ordinal(), and 3 is
Season.WINTER.ordinal() is. You can use the ordinal() method with a variable of
type Season, such as vacation.ordinal() in our example.

You should appreciate enums as the first example of an important concept: cre-
ating new types. Here is an example that shows enums being used in a complete
program:

public class EnumDemo {
/ / Def ine two enum types−−d e f i n i t i o n s go OUTSIDE The main () r o u t i n e !
enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY }
enum Month { JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC }

public static void main(String[] args) {
Day tgif; / / Declare a v a r i a b l e o f type Day .
Month libra; / / Declare a v a r i a b l e o f type Month .
tgif = Day.FRIDAY; / / Assign a value o f type Day to t g i f .
libra = Month.OCT; / / Assign a value o f type Month to l i b r a .

System.out.print("My s ign i s l ib ra , since I was born in ");
System.out.println(libra); / / Output value w i l l be : OCT
System.out.print(" That ’ s the ");
System.out.print(libra.ordinal());
System.out.println("−th month of the year . ");
System.out.println(" (Counting from 0 , of course !) ");
System.out.print(" I s n ’ t i t nice to get to ");
System.out.println(tgif); / / Output value w i l l be : FRIDAY
System.out.println(tgif + " i s the " + tgif.ordinal()

+ "−th day of the week. "); / / Can concatenate enum values onto S t r i ngs !
}

}

20

Enums and for-each Loops

Java 5.0 introduces a new “enhanced” form of the for loop that is designed to be
convenient for processing data structures. A data structure is a collection of data
items, considered as a unit. For example, a list is a data structure that consists
simply of a sequence of items. The enhanced for loop makes it easy to apply the
same processing to every element of a list or other data structure. However, one of
the applications of the enhanced for loop is to enum types, and so we consider it
briefly here.

The enhanced for loop can be used to perform the same processing on each of the
enum constants that are the possible values of an enumerated type. The syntax for
doing this is:

for (enum−type−name variable−name : enum−type−name.values())
statement

or

for (enum−type−name variable−name : enum−type−name.values()) {
statements

}

If MyEnum is the name of any enumerated type, then MyEnum.values() is a method
call that returns a list containing all of the values of the enum. (values() is a static
member method in MyEnum and of any other enum.) For this enumerated type, the
for loop would have the form:

for (MyEnum variable−name : MyEnum.values())
statement

The intent of this is to execute the statement once for each of the possible values of
the MyEnum type. The variable-name is the loop control variable. In the statement,
it represents the enumerated type value that is currently being processed. This vari-
able should not be declared before the for loop; it is essentially being declared in the
loop itself.

To give a concrete example, suppose that the following enumerated type has been
defined to represent the days of the week:

enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY }

Then we could write:

for (Day d : Day.values()) {
System.out.print(d);
System.out.print(" i s day number ");
System.out.println(d.ordinal());

}

Day.values() represents the list containing the seven constants that make up the
enumerated type. The first time through this loop, the value of d would be the first
enumerated type value Day.MONDAY, which has ordinal number 0, so the output
would be “MONDAY is day number0”. The second time through the loop, the value
of d would be Day.TUESDAY, and so on through Day.SUNDAY. The body of the loop
is executed once for each item in the list Day.values(), with d taking on each of those
values in turn. The full output from this loop would be:

MONDAY is day number 0
TUESDAY is day number 1

21

WEDNESDAY is day number 2
THURSDAY is day number 3
FRIDAY is day number 4
SATURDAY is day number 5
SUNDAY is day number 6

Since the intent of the enhanced for loop is to do something “for each” item in a
data structure, it is often called a for-each loop. The syntax for this type of loop is
unfortunate. It would be better if it were written something like “foreach Day d in
Day.values()”, which conveys the meaning much better and is similar to the syntax
used in other programming languages for similar types of loops. It’s helpful to think
of the colon (:) in the loop as meaning “in.”

1.2.2 Class Members and Instance Members

A class definition is made of members or components. A class can define variables (or
fields) and methods. Variables and methods can be static or non-static i.e. they are
defined with or without the keyword static.

e.g.

static double lastStudentNumber; / / a s t a t i c member / v a r i a b l e / f i e l d
double studentNumber; / / a non−s t a t i c v a r i a b l e

static void printLastNumber() {...} / / a s t a t i c member / method
void printNumber() {...} / / a non−s t a t i c method

The non-static members of a class (variables and methods) are also known as
instance variables and methods while the non-static members are also known as class
variables and class methods. Each instance of a class (each object) gets its own copy of
all the instance variables defined in the class. When you create an instance of a class,
the system allocates enough memory for the object and all its instance variables.

In addition to instance variables, classes can declare class variables. A class vari-
able contains information that is shared by all instances (objects) of the class. If one
object changes the variable, it changes for all other objects of that type. e.g. A Student
number generator in a NewStudent class.

You can invoke a class method directly from the class, whereas you must invoke
instance methods on a particular instance. e.g. The methods in the Math class are
static and can be invoked without creating an instance of the Math class for e.g. we
can say Math.sqrt(x).

Consider a simple class whose job is to group together a few static member vari-
ables for example a class could be used to store information about the person who is
using the program:

class UserData { static String name; static int age; }

In programs that use this class, there is one copy each of the variables UserData.name
and UserData.age. There can only be one “user,” since we only have memory space
to store data about one user. The class, UserData, and the variables it contains exist
as long as the program runs. Now, consider a similar class that includes non-static
variables:

class PlayerData { String name; int age; }

In this case, there is no such variable as PlayerData.name or PlayerData.age,
since name and age are not static members of PlayerData. There is nothing much

22

in the class except the potential to create objects. But, it’s a lot of potential, since
it can be used to create any number of objects! Each object will have its own vari-
ables called name and age. There can be many “players” because we can make new
objects to represent new players on demand. A program might use this class to store
information about multiple players in a game. Each player has a name and an age.
When a player joins the game, a new PlayerData object can be created to represent
that player. If a player leaves the game, the PlayerData object that represents that
player can be destroyed. A system of objects in the program is being used to dynami-
cally model what is happening in the game. You can’t do this with “static” variables!

An object that belongs to a class is said to be an instance of that class and the
variables that the object contains are called instance variables. The methods that
the object contains are called instance methods.

For example, if the PlayerData class, is used to create an object, then that object
is an instance of the PlayerData class, and name and age are instance variables in the
object. It is important to remember that the class of an object determines the types
of the instance variables; however, the actual data is contained inside the individual
objects, not the class. Thus, each object has its own set of data.

The source code for methods are defined in the class yet it’s better to think of the
instance methods as belonging to the object, not to the class. The non-static methods
in the class merely specify the instance methods that every object created from the
class will contain. For example a draw() method in two different objects do the same
thing in the sense that they both draw something. But there is a real difference
between the two methods—the things that they draw can be different. You might
say that the method definition in the class specifies what type of behavior the objects
will have, but the specific behavior can vary from object to object, depending on the
values of their instance variables.

The static and the non-static portions of a class are very different things and serve
very different purposes. Many classes contain only static members, or only non-static.
However, it is possible to mix static and non-static members in a single class. The
“static” definitions in the source code specify the things that are part of the class itself,
whereas the non-static definitions in the source code specify things that will become
part of every instance object that is created from the class. Static member variables
and static member methods in a class are sometimes called class variables and
class methods, since they belong to the class itself, rather than to instances of that
class.

So far, we’ve been talking mostly in generalities. Let’s now look at a specific
example to see how classes and objects work. Consider this extremely simplified
version of a Student class, which could be used to store information about students
taking a course:

public class Student {

public String name; / / Student ’ s name . p u b l i c double tes t1 ,
test2, test3; / / Grades on three t e s t s .

public double getAverage() { / / compute average t e s t grade r e t u r n
(test1 + test2 + test3) / 3; }

} / / end of c lass Student

None of the members of this class are declared to be static, so the class exists
only for creating objects. This class definition says that any object that is an instance

23

of the Student class will include instance variables named name, test1, test2, and
test3, and it will include an instance method named getAverage(). The names
and tests in different objects will generally have different values. When called for
a particular student, the method getAverage() will compute an average using that
student’s test grades. Different students can have different averages. (Again, this is
what it means to say that an instance method belongs to an individual object, not to
the class.)

In JAVA, a class is a type, similar to the built-in types such as int and boolean.
So, a class name can be used to specify the type of a variable in a declaration state-
ment, the type of a formal parameter, or the return type of a method. For example, a
program could define a variable named std of type Student with the statement

Student std;

However, declaring a variable does not create an object! This is an important
point, which is related to this Very Important Fact:

In JAVA, no variable can ever hold an object. A variable can only hold a
reference to an object.

You should think of objects as floating around independently in the computer’s
memory. In fact, there is a special portion of memory called the heap where objects
live. Instead of holding an object itself, a variable holds the information necessary
to find the object in memory. This information is called a reference or pointer to the
object. In effect, a reference to an object is the address of the memory location where
the object is stored. When you use a variable of class type, the computer uses the
reference in the variable to find the actual object.

In a program, objects are created using an operator called new, which creates an
object and returns a reference to that object. For example, assuming that std is a
variable of type Student, declared as above, the assignment statement

std = new Student();

would create a new object which is an instance of the class Student, and it would
store a reference to that object in the variable std. The value of the variable is a
reference to the object, not the object itself. It is not quite true to say that the object
is the “value of the variable std”. It is certainly not at all true to say that the object
is “stored in the variable std.” The proper terminology is that “the variable std refers
to the object,”.

So, suppose that the variable std refers to an object belonging to the class Student.
That object has instance variables name, test1, test2, and test3. These instance
variables can be referred to as std.name, std.test1, std.test2, and std.test3.
This follows the usual naming convention that when B is part of A, then the full name
of B is A.B. For example, a program might include the lines

System.out.println(" Hello , " + std.name + " . Your te s t grades are : ");
System.out.println(std.test1);
System.out.println(std.test2);
System.out.println(std.test3);

This would output the name and test grades from the object to which std refers.
Similarly, std can be used to call the getAverage() instance method in the object by
saying std.getAverage(). To print out the student’s average, you could say:

System.out.println(" Your average i s " + std.getAverage());

24

More generally, you could use std.name any place where a variable of type String
is legal. You can use it in expressions. You can assign a value to it. You can pass it
as a parameter to method. You can even use it to call methods from the String class.
For example, std.name.length() is the number of characters in the student’s name.

It is possible for a variable like std, whose type is given by a class, to refer to no
object at all. We say in this case that std holds a null reference. The null reference
is written in JAVA as “null”. You can store a null reference in the variable std by
saying “std = null;” and you could test whether the value of “std” is null by testing
“if (std == null) . . .”.

If the value of a variable is null, then it is, of course, illegal to refer to instance
variables or instance methods through that variable–since there is no object, and
hence no instance variables to refer to. For example, if the value of the variable st is
null, then it would be illegal to refer to std.test1. If your program attempts to use a
null reference illegally like this, the result is an error called a null pointer exception.

Let’s look at a sequence of statements that work with objects:

Student std, std1, / / Declare fou r v a r i a b l e s o f
std2, std3; / / type Student .

std = new Student(); / / Create a new ob jec t belonging
/ / to the c lass Student , and
/ / s to re a re ference to t h a t
/ / ob jec t i n the v a r i a b l e s td .

std1 = new Student(); / / Create a second Student ob jec t
/ / and s to re a re ference to
/ / i t i n the v a r i a b l e std1 .

std2 = std1; / / Copy the re ference value i n std1
/ / i n t o the v a r i a b l e std2 .

std3 = null; / / Store a n u l l re ference i n the
/ / v a r i a b l e std3 .

std.name = " John Smith "; / / Set values o f some ins tance v a r i a b l e s .
std1.name = "Mary Jones ";

/ / (Other ins tance v a r i a b l e s have d e f a u l t
/ / i n i t i a l values o f zero .)

After the computer executes these statements, the situation in the computer’s
memory looks like this:

25

This picture shows variables as little boxes, labeled with the names of the vari-
ables. Objects are shown as boxes with round corners. When a variable contains a
reference to an object, the value of that variable is shown as an arrow pointing to the
object. The variable std3, with a value of null, doesn’t point anywhere. The arrows
from std1 and std2 both point to the same object. This illustrates a Very Important
Point:

When one object variable is assigned to another, only a reference is copied.
The object referred to is not copied.

When the assignment “std2 = std1;” was executed, no new object was created.
Instead, std2 was set to refer to the very same object that std1 refers to. This has
some consequences that might be surprising. For example, std1.name and std2.name
are two different names for the same variable, namely the instance variable in the
object that both std1 and std2 refer to. After the string “Mary Jones” is assigned to
the variable std1.name, it is also be true that the value of std2.name is “Mary Jones”.
There is a potential for a lot of confusion here, but you can help protect yourself from
it if you keep telling yourself, “The object is not in the variable. The variable just
holds a pointer to the object.”

You can test objects for equality and inequality using the operators == and !=,
but here again, the semantics are different from what you are used to. The test
“if (std1 == std2)”, tests whether the values stored in std1 and std2 are the
same. But the values are references to objects, not objects. So, you are testing
whether std1 and std2 refer to the same object, that is, whether they point to the
same location in memory. This is fine, if its what you want to do. But sometimes,
what you want to check is whether the instance variables in the objects have the
same values. To do that, you would need to ask whether

std1.test1 == std2.test1 && std1.test2 == std2.test2 && std1.test3
== std2.test3 && std1.name.equals(std2.name)}

I’ve remarked previously that Strings are objects, and I’ve shown the strings
“Mary Jones” and “John Smith” as objects in the above illustration. A variable of

26

type String can only hold a reference to a string, not the string itself. It could also
hold the value null, meaning that it does not refer to any string at all. This explains
why using the == operator to test strings for equality is not a good idea.

The fact that variables hold references to objects, not objects themselves, has a
couple of other consequences that you should be aware of. They follow logically, if
you just keep in mind the basic fact that the object is not stored in the variable. The
object is somewhere else; the variable points to it.

Suppose that a variable that refers to an object is declared to be final. This
means that the value stored in the variable can never be changed, once the variable
has been initialized. The value stored in the variable is a reference to the object. So
the variable will continue to refer to the same object as long as the variable exists.
However, this does not prevent the data in the object from changing. The variable
is final, not the object. It’s perfectly legal to say

final Student stu = new Student();

stu.name = " John Doe"; / / Change data i n the ob jec t ;
/ / The value stored i n s tu i s not changed !
/ / I t s t i l l r e f e r s to the same ob jec t .

Next, suppose that obj is a variable that refers to an object. Let’s consider what
happens when obj is passed as an actual parameter to a method. The value of obj
is assigned to a formal parameter in the method, and the method is executed. The
method has no power to change the value stored in the variable, obj. It only has a
copy of that value. However, that value is a reference to an object. Since the method
has a reference to the object, it can change the data stored in the object. After the
method ends, obj still points to the same object, but the data stored in the object
might have changed. Suppose x is a variable of type int and stu is a variable of type
Student. Compare:

void dontChange(int z) { void change(Student s) {
z = 42; s.name = " Fred ";

} }

The lines: The lines:

x = 17; stu.name = " Jane ";
dontChange(x); change(stu);
System.out.println(x); System.out.println(stu.name);

outputs the value 17. outputs the value " Fred ".

The value of x is not The value of stu is not changed ,
changed by the method, but stu.name is.
which is equivalent to This is equivalent to

z = x; s = stu;
z = 42; s.name = " Fred ";

1.2.3 Access Control

When writing new classes, it’s a good idea to pay attention to the issue of access
control. Recall that making a member of a class public makes it accessible from

27

anywhere, including from other classes. On the other hand, a private member can
only be used in the class where it is defined.

In the opinion of many programmers, almost all member variables should be de-
clared private. This gives you complete control over what can be done with the
variable. Even if the variable itself is private, you can allow other classes to find out
what its value is by providing a public accessor method that returns the value of
the variable. For example, if your class contains a private member variable, title,
of type String, you can provide a method

public String getTitle() { return title; }

that returns the value of title. By convention, the name of an accessor method for
a variable is obtained by capitalizing the name of variable and adding “get” in front
of the name. So, for the variable title, we get an accessor method named “get” +
“Title”, or getTitle(). Because of this naming convention, accessor methods are
more often referred to as getter methods. A getter method provides “read access” to
a variable.

You might also want to allow “write access” to a private variable. That is, you
might want to make it possible for other classes to specify a new value for the vari-
able. This is done with a setter method. (If you don’t like simple, Anglo-Saxon
words, you can use the fancier term mutator method.) The name of a setter method
should consist of “set” followed by a capitalized copy of the variable’s name, and it
should have a parameter with the same type as the variable. A setter method for the
variable title could be written

public void setTitle(String newTitle) { title = newTitle; }

It is actually very common to provide both a getter and a setter method for a
private member variable. Since this allows other classes both to see and to change
the value of the variable, you might wonder why not just make the variable public?
The reason is that getters and setters are not restricted to simply reading and writing
the variable’s value. In fact, they can take any action at all. For example, a getter
method might keep track of the number of times that the variable has been accessed:

public String getTitle() {
titleAccessCount++; / / Increment member v a r i a b l e t i t l eAccessCoun t .
return title;

}

and a setter method might check that the value that is being assigned to the variable
is legal:
public void setTitle(String newTitle) {

if (newTitle == null) / / Don ’ t a l low n u l l s t r i n g s as t i t l e s !
title = " (Unt i t led) "; / / Use an appropr ia te d e f a u l t value ins tead .

else
title = newTitle; }

Even if you can’t think of any extra chores to do in a getter or setter method, you
might change your mind in the future when you redesign and improve your class. If
you’ve used a getter and setter from the beginning, you can make the modification
to your class without affecting any of the classes that use your class. The private
member variable is not part of the public interface of your class; only the public
getter and setter methods are. If you haven’t used get and set from the beginning,
you’ll have to contact everyone who uses your class and tell them, “Sorry guys, you’ll
have to track down every use that you’ve made of this variable and change your code.”

28

1.2.4 Creating and Destroying Objects

Object types in JAVA are very different from the primitive types. Simply declaring
a variable whose type is given as a class does not automatically create an object of
that class. Objects must be explicitly constructed. For the computer, the process of
constructing an object means, first, finding some unused memory in the heap that
can be used to hold the object and, second, filling in the object’s instance variables.
As a programmer, you don’t care where in memory the object is stored, but you will
usually want to exercise some control over what initial values are stored in a new
object’s instance variables. In many cases, you will also want to do more complicated
initialization or bookkeeping every time an object is created.

Initializing Instance Variables

An instance variable can be assigned an initial value in its declaration, just like any
other variable. For example, consider a class named PairOfDice. An object of this
class will represent a pair of dice. It will contain two instance variables to represent
the numbers showing on the dice and an instance method for rolling the dice:

public class PairOfDice {

public int die1 = 3; / / Number showing on the f i r s t d ie .
public int die2 = 4; / / Number showing on the second d ie .

public void roll() {
/ / Ro l l the d ice by s e t t i n g each of the d ice to be
/ / a random number between 1 and 6.

die1 = (int)(Math.random()∗6) + 1;
die2 = (int)(Math.random()∗6) + 1;

}

} / / end c lass PairOfDice

The instance variables die1 and die2 are initialized to the values 3 and 4 respec-
tively. These initializations are executed whenever a PairOfDice object is constructed.
It is important to understand when and how this happens. Many PairOfDice objects
may exist. Each time one is created, it gets its own instance variables, and the assign-
ments “die1 = 3” and “die2 = 4” are executed to fill in the values of those variables.
To make this clearer, consider a variation of the PairOfDice class:

public class PairOfDice {

public int die1 = (int)(Math.random()∗6) + 1;
public int die2 = (int)(Math.random()∗6) + 1;

public void roll() {
die1 = (int)(Math.random()∗6) + 1;
die2 = (int)(Math.random()∗6) + 1;

}

} / / end c lass PairOfDice

Here, the dice are initialized to random values, as if a new pair of dice were being
thrown onto the gaming table. Since the initialization is executed for each new object,
a set of random initial values will be computed for each new pair of dice. Different

29

pairs of dice can have different initial values. For initialization of static member
variables, of course, the situation is quite different. There is only one copy of a static
variable, and initialization of that variable is executed just once, when the class is
first loaded.

If you don’t provide any initial value for an instance variable, a default initial
value is provided automatically. Instance variables of numerical type (int, double,
etc.) are automatically initialized to zero if you provide no other values; boolean
variables are initialized to false; and char variables, to the Unicode character with
code number zero. An instance variable can also be a variable of object type. For such
variables, the default initial value is null. (In particular, since Strings are objects,
the default initial value for String variables is null.)

Constructors

Objects are created with the operator, new. For example, a program that wants to use
a PairOfDice object could say:

PairOfDice dice; / / Declare a v a r i a b l e o f type PairOfDice .

dice = new PairOfDice(); / / Const ruct a new ob jec t and s to re a
/ / re ference to i t i n the v a r i a b l e .

In this example, “new PairOfDice()” is an expression that allocates memory for
the object, initializes the object’s instance variables, and then returns a reference to
the object. This reference is the value of the expression, and that value is stored by
the assignment statement in the variable, dice, so that after the assignment state-
ment is executed, dice refers to the newly created object. Part of this expression,
“PairOfDice()”, looks like a method call, and that is no accident. It is, in fact, a call
to a special type of method called a constructor. This might puzzle you, since there
is no such method in the class definition. However, every class has at least one con-
structor. If the programmer doesn’t write a constructor definition in a class, then the
system will provide a default constructor for that class. This default constructor
does nothing beyond the basics: allocate memory and initialize instance variables. If
you want more than that to happen when an object is created, you can include one or
more constructors in the class definition.

The definition of a constructor looks much like the definition of any other method,
with three differences.

1. A constructor does not have any return type (not even void).

2. The name of the constructor must be the same as the name of the class in which
it is defined.

3. The only modifiers that can be used on a constructor definition are the access
modifiers public, private, and protected. (In particular, a constructor can’t
be declared static.)

However, a constructor does have a method body of the usual form, a block of
statements. There are no restrictions on what statements can be used. And it can
have a list of formal parameters. In fact, the ability to include parameters is one of
the main reasons for using constructors. The parameters can provide data to be used
in the construction of the object. For example, a constructor for the PairOfDice class

30

could provide the values that are initially showing on the dice. Here is what the class
would look like in that case:

The constructor is declared as “public PairOfDice(int val1, int val2)...”,
with no return type and with the same name as the name of the class. This is how
the JAVA compiler recognizes a constructor. The constructor has two parameters, and
values for these parameters must be provided when the constructor is called. For
example, the expression “new PairOfDice(3,4)” would create a PairOfDice object
in which the values of the instance variables die1 and die2 are initially 3 and4. Of
course, in a program, the value returned by the constructor should be used in some
way, as in

PairOfDice dice; / / Declare a v a r i a b l e o f type PairOfDice .

dice = new PairOfDice(1,1); / / Let d ice r e f e r to a new PairOfDice
/ / ob jec t t h a t i n i t i a l l y shows 1 , 1 .

Now that we’ve added a constructor to the PairOfDice class, we can no longer
create an object by saying “new PairOfDice()”! The system provides a default con-
structor for a class only if the class definition does not already include a constructor,
so there is only one constructor in the class, and it requires two actual parameters.
However, this is not a big problem, since we can add a second constructor to the class,
one that has no parameters. In fact, you can have as many different constructors
as you want, as long as their signatures are different, that is, as long as they have
different numbers or types of formal parameters. In the PairOfDice class, we might
have a constructor with no parameters which produces a pair of dice showing random
numbers:
public class PairOfDice {

public int die1; / / Number showing on the f i r s t d ie .
public int die2; / / Number showing on the second d ie .

public PairOfDice() {
/ / Const ruc tor . Ro l l s the dice , so t h a t they i n i t i a l l y
/ / show some random values .

roll(); / / Ca l l the r o l l () method to r o l l the d ice .
}

public PairOfDice(int val1, int val2) {
/ / Const ruc tor . Creates a p a i r o f d ice t h a t
/ / are i n i t i a l l y showing the values va l1 and val2 .

die1 = val1; / / Assign s p e c i f i e d values
die2 = val2; / / to the ins tance v a r i a b l e s .

}

public void roll() {
/ / Ro l l the d ice by s e t t i n g each of the d ice to be
/ / a random number between 1 and 6.

die1 = (int)(Math.random()∗6) + 1;
die2 = (int)(Math.random()∗6) + 1;

}

} / / end c lass PairOfDice

Now we have the option of constructing a PairOfDice object with “new PairOfDice()”
or with “new PairOfDice(x,y)”, where x and y are int-valued expressions.

31

This class, once it is written, can be used in any program that needs to work with
one or more pairs of dice. None of those programs will ever have to use the obscure
incantation “(int)(Math.random()∗6)+1”, because it’s done inside the PairOfDice
class. And the programmer, having once gotten the dice-rolling thing straight will
never have to worry about it again. Here, for example, is a main program that uses
the PairOfDice class to count how many times two pairs of dice are rolled before the
two pairs come up showing the same value. This illustrates once again that you can
create several instances of the same class:

public class RollTwoPairs {

public static void main(String[] args) {

PairOfDice firstDice; / / Refers to the f i r s t p a i r o f d ice .
firstDice = new PairOfDice();

PairOfDice secondDice; / / Refers to the second p a i r o f d ice .
secondDice = new PairOfDice();

int countRolls; / / Counts how many t imes the two pa i r s o f
/ / d ice have been r o l l e d .

int total1; / / To ta l showing on f i r s t p a i r o f d ice .
int total2; / / To ta l showing on second p a i r o f d ice .

countRolls = 0;

do { / / Ro l l the two pa i r s o f d ice u n t i l t o t a l s are the same .

firstDice.roll(); / / Ro l l the f i r s t p a i r o f d ice .
total1 = firstDice.die1 + firstDice.die2; / / Get t o t a l .
System.out.println(" F i r s t pai r comes up " + total1);

secondDice.roll(); / / Ro l l the second p a i r o f d ice .
total2 = secondDice.die1 + secondDice.die2; / / Get t o t a l .
System.out.println(" Second pair comes up " + total2);

countRolls++; / / Count t h i s r o l l .

System.out.println(); / / Blank l i n e .

} while (total1 != total2);

System.out.println(" I t took " + countRolls
+ " r o l l s u n t i l the t o t a l s were the same. ");

} / / end main ()

} / / end c lass Rol lTwoPairs

Constructors are methods, but they are methods of a special type. They are cer-
tainly not instance methods, since they don’t belong to objects. Since they are re-
sponsible for creating objects, they exist before any objects have been created. They
are more like static member methods, but they are not and cannot be declared to
be static. In fact, according to the JAVA language specification, they are technically

32

not members of the class at all! In particular, constructors are not referred to as
“methods”.

Unlike other methods, a constructor can only be called using the new operator, in
an expression that has the form

new class−name{parameter−list}

where the parameter−list is possibly empty. I call this an expression because it
computes and returns a value, namely a reference to the object that is constructed.
Most often, you will store the returned reference in a variable, but it is also legal to
use a constructor call in other ways, for example as a parameter in a method call or
as part of a more complex expression. Of course, if you don’t save the reference in a
variable, you won’t have any way of referring to the object that was just created.

A constructor call is more complicated than an ordinary method call. It is helpful
to understand the exact steps that the computer goes through to execute a constructor
call:

1. First, the computer gets a block of unused memory in the heap, large enough to
hold an object of the specified type.

2. It initializes the instance variables of the object. If the declaration of an in-
stance variable specifies an initial value, then that value is computed and stored
in the instance variable. Otherwise, the default initial value is used.

3. The actual parameters in the constructor, if any, are evaluated, and the values
are assigned to the formal parameters of the constructor.

4. The statements in the body of the constructor, if any, are executed.

5. A reference to the object is returned as the value of the constructor call.

The end result of this is that you have a reference to a newly constructed object. You
can use this reference to get at the instance variables in that object or to call its
instance methods.

For another example, let’s rewrite the Student class. I’ll add a constructor, and
I’ll also take the opportunity to make the instance variable, name, private.

public class Student {
private String name; / / Student ’ s name .
public double test1, test2, test3; / / Grades on three t e s t s .

/ / Const ruc tor f o r Student ob jec ts−prov ides a name f o r the Student .
Student(String theName) {

name = theName;
}

/ / Get ter method f o r the p r i v a t e ins tance var iab le , name .
public String getName() {

return name;
}

/ / Compute average t e s t grade .
public double getAverage() {

return (test1 + test2 + test3) / 3;
}

} / / end of c lass Student

33

An object of type Student contains information about some particular student.
The constructor in this class has a parameter of type String, which specifies the
name of that student. Objects of type Student can be created with statements such
as:

std = new Student(" John Smith ");
std1 = new Student("Mary Jones ");

In the original version of this class, the value of name had to be assigned by a
program after it created the object of type Student. There was no guarantee that the
programmer would always remember to set the name properly. In the new version of
the class, there is no way to create a Student object except by calling the constructor,
and that constructor automatically sets the name. The programmer’s life is made
easier, and whole hordes of frustrating bugs are squashed before they even have a
chance to be born.

Another type of guarantee is provided by the private modifier. Since the instance
variable, name, is private, there is no way for any part of the program outside the
Student class to get at the name directly. The program sets the value of name, indi-
rectly, when it calls the constructor. I’ve provided a method, getName(), that can be
used from outside the class to find out the name of the student. But I haven’t provided
any setter method or other way to change the name. Once a student object is created,
it keeps the same name as long as it exists.

1.2.5 Garbage Collection

So far, this section has been about creating objects. What about destroying them? In
JAVA, the destruction of objects takes place automatically.

An object exists in the heap, and it can be accessed only through variables that
hold references to the object. What should be done with an object if there are no vari-
ables that refer to it? Such things can happen. Consider the following two statements
(though in reality, you’d never do anything like this):

Student std = new Student(" John Smith "); std = null;

In the first line, a reference to a newly created Student object is stored in the
variable std. But in the next line, the value of std is changed, and the reference to
the Student object is gone. In fact, there are now no references whatsoever to that
object stored in any variable. So there is no way for the program ever to use the object
again. It might as well not exist. In fact, the memory occupied by the object should
be reclaimed to be used for another purpose.

JAVA uses a procedure called garbage collection to reclaim memory occupied by
objects that are no longer accessible to a program. It is the responsibility of the
system, not the programmer, to keep track of which objects are “garbage”. In the
above example, it was very easy to see that the Student object had become garbage.
Usually, it’s much harder. If an object has been used for a while, there might be
several references to the object stored in several variables. The object doesn’t become
garbage until all those references have been dropped.

In many other programming languages, it’s the programmer’s responsibility to
delete the garbage. Unfortunately, keeping track of memory usage is very error-
prone, and many serious program bugs are caused by such errors. A programmer
might accidently delete an object even though there are still references to that ob-
ject. This is called a dangling pointer error, and it leads to problems when the

34

program tries to access an object that is no longer there. Another type of error is a
memory leak, where a programmer neglects to delete objects that are no longer in
use. This can lead to filling memory with objects that are completely inaccessible,
and the program might run out of memory even though, in fact, large amounts of
memory are being wasted.

Because JAVA uses garbage collection, such errors are simply impossible. Garbage
collection is an old idea and has been used in some programming languages since the
1960s. You might wonder why all languages don’t use garbage collection. In the past,
it was considered too slow and wasteful. However, research into garbage collection
techniques combined with the incredible speed of modern computers have combined
to make garbage collection feasible. Programmers should rejoice.

1.2.6 Everything is NOT an object

Wrapper Classes and Autoboxing

Recall that there are two kinds of types in JAVA: primitive types and object types
(Classes). In some object-oriented languages, everything is an object. However in
JAVA and in C++, the primitive types like int and double are not objects. This
decision was made for memory and processing efficiency—it takes less memory to
store an int than it is to store an object.

Sometimes, however, it is necessary to manipulate the primitive types as if they
were objects. To make this possible, you can define wrapper classes whose sole aim is
to contain one of the primitive types. They are used for creating objects that represent
primitive type values.

For example the JAVA API contains the classes Double (that wraps a single double)
and Integer that wraps a single integer. These classes contain various static meth-
ods including Double.parseDouble and Integer.parseInteger that are used to con-
vert strings to numerical values. The Character class wraps a single char type.
There is a similar class for each of the other primitive types, Long, Short, Byte,
Float, and Boolean.

Remember that the primitive types are not classes, and values of primitive type
are not objects. However, sometimes it’s useful to treat a primitive value as if it were
an object. You can’t do that literally, but you can “wrap” the primitive type value in
an object belonging to one of the wrapper classes.

For example, an object of type Double contains a single instance variable, of type
double. The object is a wrapper for the double value. For example, you can create
an object that wraps the double value 6.0221415e23 with

Double d = new Double(6.0221415e23);

The value of d contains the same information as the value of type double, but it
is an object. If you want to retrieve the double value that is wrapped in the object,
you can call the method d.doubleValue(). Similarly, you can wrap an int in an
object of type Integer, a boolean value in an object of type Boolean, and so on. (As
an example of where this would be useful, the collection classes that will be studied
in Chapter 10 can only hold objects. If you want to add a primitive type value to a
collection, it has to be put into a wrapper object first.)

In JAVA 5.0, wrapper classes have become easier to use. JAVA 5.0 introduced
automatic conversion between a primitive type and the corresponding wrapper class.
For example, if you use a value of type int in a context that requires an object of type

35

Integer, the int will automatically be wrapped in an Integer object. For example,
you can say Integer answer = 42; and the computer will silently read this as if it
were Integer answer = new Integer(42);.

This is called autoboxing. It works in the other direction, too. For example, if
d refers to an object of type Double, you can use d in a numerical expression such
as 2∗d. The double value inside d is automatically unboxed and multiplied by 2.
Autoboxing and unboxing also apply to method calls. For example, you can pass
an actual parameter of type int to a method that has a formal parameter of type
Integer. In fact, autoboxing and unboxing make it possible in many circumstances
to ignore the difference between primitive types and objects.

The wrapper classes contain a few other things that deserve to be mentioned.
Integer contains constants Integer.MIN_VALUE and Integer.MAX_VALUE, which are
equal to the largest and smallest possible values of type int, that is, to −2147483648
and 2147483647 respectively. It’s certainly easier to remember the names than the nu-
merical values. There are similar named constants in Long, Short, and Byte. Double
and Float also have constants named MIN_VALUE and MAX_VALUE. MAX_VALUE still
gives the largest number that can be represented in the given type, but MIN_VALUE
represents the smallest possible positive value. For type double, Double.MIN_VALUE
is 4.9 × 10−324. Since double values have only a finite accuracy, they can’t get arbi-
trarily close to zero. This is the closest they can get without actually being equal to
zero.

The class Double deserves special mention, since doubles are so much more com-
plicated than integers. The encoding of real numbers into values of type double has
room for a few special values that are not real numbers at all in the mathemati-
cal sense. These values named constants in the class: Double.POSITIVE_INFINITY,
Double.NEGATIVE_INFINITY, and Double.NaN. The infinite values can occur as val-
ues of certain mathematical expressions. For example, dividing a positive number by
zero will give Double.POSITIVE_INFINITY. (It’s even more complicated than this, ac-
tually, because the double type includes a value called “negative zero”, written −0.0.
Dividing a positive number by negative zero gives Double.NEGATIVE_INFINITY.) You
also get Double.POSITIVE_INFINITY whenever the mathematical value of an expres-
sion is greater than Double.MAX_VALUE. For example, 1e200∗1e200 is considered
to be infinite. The value Double.NaN is even more interesting. “NaN” stands for
Not a Number, and it represents an undefined value such as the square root of a
negative number or the result of dividing zero by zero. Because of the existence of
Double.NaN, no mathematical operation on real numbers will ever throw an excep-
tion; it simply gives Double.NaN as the result.

You can test whether a value, x, of type double is infinite or undefined by calling
the boolean-valued static methods Double.isInfinite(x) and Double.isNaN(). (It’s
especially important to use Double.isNaN() to test for undefined values, because
Double.NaN has really weird behavior when used with relational operators such as
==. In fact, the values of x == Double.NaN and x != Double.NaN are both false, no
matter what the value of x, so you really can’t use these expressions to test whether
x is Double.NaN.)

36

Chapter 2
The Practice of
Programming

Contents
2.1 Abstraction . 37

2.1.1 Control Abstraction . 38
2.1.2 Data Abstraction . 39
2.1.3 Abstraction in Object-Oriented Programs 39

2.2 Methods as an Abstraction Mechanism 40
2.2.1 Black Boxes . 40
2.2.2 Preconditions and Postconditions 41
2.2.3 APIs and Packages . 42

2.3 Introduction to Error Handling . 46
2.4 Javadoc . 49
2.5 Creating Jar Files . 51
2.6 Creating Abstractions . 52

2.6.1 Designing the classes . 52
2.7 Example: A Simple Card Game . 58

2.1 Abstraction

ABSTRACTION IS A CENTRAL IDEA1 in computer science and an understanding of this
important term is crucial to successful programming.

Abstraction is the purposeful suppression, or hiding, of some details of a
process or artifact, in order to bring out more clearly other aspects, details,
or structures.

Timothy Budd

Heres another definition from wikipedia.
1This discussion is based on a wikipedia article on abstraction: www.wikipedia.org.

37

In computer science, abstraction is a mechanism and practice to reduce and
factor out details so that one can focus on a few concepts at a time.

In general philosophical terminology, abstraction is the thought process wherein
ideas are separated from objects. Our minds work mostly with abstractions. For
example, when thinking about a chair, we do not have in mind a particular chair but
an abstract idea of a chair—the concept of a chair. This why we are able to recognise
an object as a chair even if it is different from any other chair we’ve seen previously.
We form concepts of everyday objects and events by a process of abstraction where we
remove unimportant details and concentrate on the essential attributes of the thing.

Abstraction in mathematics is the process of extracting the underlying essence of
a mathematical concept, removing any dependence on real world objects with which it
might originally have been connected, and generalising it so that it has wider applica-
tions. Many areas of mathematics began with the study of real world problems, before
the underlying rules and concepts were identified and defined as abstract structures.
For example, geometry has its origins in the calculation of distances and areas in the
real world; statistics has its origins in the calculation of probabilities in gambling.

Roughly speaking, abstraction can be either that of control or data. Control ab-
straction is the abstraction of actions while data abstraction is that of data. For exam-
ple, control abstraction in structured programming is the use of methods and format-
ted control flows. Data abstraction allows handling of data in meaningful ways. For
example, it is the basic motivation behind datatype. Object-oriented programming
can be seen as an attempt to abstract both data and control.

2.1.1 Control Abstraction

Control abstraction is one of the main purposes of using programming languages.
Computer machines understand operations at the very low level such as moving some
bits from one location of the memory to another location and producing the sum of two
sequences of bits. Programming languages allow this to be done at a higher level. For
example, consider the high-level expression/program statement: a := (1 + 2) ∗ 5

To a human, this is a fairly simple and obvious calculation (“one plus two is three,
times five is fifteen”). However, the low-level steps necessary to carry out this eval-
uation, and return the value ”15”, and then assign that value to the variable ”a”,
are actually quite subtle and complex. The values need to be converted to binary
representation (often a much more complicated task than one would think) and the
calculations decomposed (by the compiler or interpreter) into assembly instructions
(again, which are much less intuitive to the programmer: operations such as shifting
a binary register left, or adding the binary complement of the contents of one register
to another, are simply not how humans think about the abstract arithmetical opera-
tions of addition or multiplication). Finally, assigning the resulting value of ”15” to
the variable labeled ”a”, so that ”a” can be used later, involves additional ’behind-the-
scenes’ steps of looking up a variable’s label and the resultant location in physical or
virtual memory, storing the binary representation of ”15” to that memory location,
etc. etc.

Without control abstraction, a programmer would need to specify all the register/
binary-level steps each time she simply wanted to add or multiply a couple of num-
bers and assign the result to a variable. This duplication of effort has two serious
negative consequences:

38

• (a) it forces the programmer to constantly repeat fairly common tasks every
time a similar operation is needed; and

• (b) it forces the programmer to program for the particular hardware and in-
struction set.

2.1.2 Data Abstraction

Data abstraction is the enforcement of a clear separation between the abstract prop-
erties of a data type and the concrete details of its implementation. The abstract
properties are those that are visible to client code that makes use of the data type–
the interface to the data type–while the concrete implementation is kept entirely
private, and indeed can change, for example to incorporate efficiency improvements
over time. The idea is that such changes are not supposed to have any impact on
client code, since they involve no difference in the abstract behaviour.

For example, one could define an abstract data type called lookup table, where
keys are uniquely associated with values, and values may be retrieved by specifying
their corresponding keys. Such a lookup table may be implemented in various ways:
as a hash table, a binary search tree, or even a simple linear list. As far as client code
is concerned, the abstract properties of the type are the same in each case.

2.1.3 Abstraction in Object-Oriented Programs

There are many important layers of abstraction in object-oriented programs. 2

At the highest level, we view the program as a community of objects that inter-
act with each other to achieve common goals. Each object provides a service that
is used by other objects in the community. At this level we emphasize the lines of
communication and cooperation and the interactions between the objects.

Another level of abstraction allows the grouping of related objects that work to-
gether. For example JAVA provides units called packages for grouping related objects.
These units expose certain names to the system outside the unit while hiding certain
features. For example the java.net package provides classes for networking appli-
cations. The JAVA Software Development Kit contains various packages that group
different functionality.

The next levels of abstraction deal with interactions between individual objects.
A useful way of thinking about objects, is to see them as providing a service to other
objects. Thus, we can look at an object-oriented application as consisting of service-
providers and service-consumers or clients. One level of abstraction looks at this re-
lationship from the server side and the other looks at it from the client side.

Clients of the server are interested only in what the server provides (its behaviour)
and not how it provides it (its implementation). The client only needs to know the
public interface of a class it wants to use—what methods it can call, their input
parameters, what they return and what they accomplish.

The next level of abstraction looks at the relationship from the server side. Here
we consider the concrete implementation of the abstract behaviour. Here we are
concerned with how the services are realized.

2This discussion is based on Chapter 2 of An Introduction to Object-Oriented Programming by Tim-
othy Budd.

39

The last level of abstraction considers a single task in isolation i.e. a single
method. Here we deal with the sequence of operations used to perform just this
one activity.

Each level of abstraction is important at some point in the development of soft-
ware. As programmers, we will constantly move from one level to another.

2.2 Methods as an Abstraction Mechanism

IN THIS SECTION we’ll discuss an abstraction mechanism you’re already familiar with:
the method (variously called subroutines, procedures, and even functions).

2.2.1 Black Boxes

A Method is an abstraction mechanism and consists of instructions for performing
some task, chunked together and given a name. ”Chunking” allows you to deal with
a potentially very complicated task as a single concept. Instead of worrying about
the many, many steps that the computer might have to go though to perform that
task, you just need to remember the name of the method. Whenever you want your
program to perform the task, you just call the method. Methods are a major tool for
dealing with complexity.

A method is sometimes said to be a ”black box” because you can’t see what’s ”in-
side” it (or, to be more precise, you usually don’t want to see inside it, because then
you would have to deal with all the complexity that the method is meant to hide). Of
course, a black box that has no way of interacting with the rest of the world would be
pretty useless. A black box needs some kind of interface with the rest of the world,
which allows some interaction between what’s inside the box and what’s outside. A
physical black box might have buttons on the outside that you can push, dials that
you can set, and slots that can be used for passing information back and forth. Since
we are trying to hide complexity, not create it, we have the first rule of black boxes:

The interface of a black box should be fairly straightforward, well-defined,
and easy to understand.

Your television, your car, your VCR, your refrigerator... are all examples of black
boxes in the real world. You can turn your television on and off, change channels, and
set the volume by using elements of the television’s interface – dials, remote control,
don’t forget to plug in the power – without understanding anything about how the
thing actually works. The same goes for a VCR, although if stories about how hard
people find it to set the time on a VCR are true, maybe the VCR violates the simple
interface rule.

Now, a black box does have an inside – the code in a method that actually performs
the task, all the electronics inside your television set. The inside of a black box is
called its implementation. The second rule of black boxes is that:

To use a black box, you shouldn’t need to know anything about its imple-
mentation; all you need to know is its interface.

In fact, it should be possible to change the implementation, as long as the behavior of
the box, as seen from the outside, remains unchanged. For example, when the insides
of TV sets went from using vacuum tubes to using transistors, the users of the sets
didn’t even need to know about it – or even know what it means. Similarly, it should

40

be possible to rewrite the inside of a method, to use more efficient code, for example,
without affecting the programs that use that method.

Of course, to have a black box, someone must have designed and built the im-
plementation in the first place. The black box idea works to the advantage of the
implementor as well as of the user of the black box. After all, the black box might be
used in an unlimited number of different situations. The implementor of the black
box doesn’t need to know about any of that. The implementor just needs to make sure
that the box performs its assigned task and interfaces correctly with the rest of the
world. This is the third rule of black boxes:

The implementor of a black box should not need to know anything about the
larger systems in which the box will be used. In a way, a black box divides
the world into two parts: the inside (implementation) and the outside. The
interface is at the boundary, connecting those two parts.

You should not think of an interface as just the physical connection between the box
and the rest of the world. The interface also includes a specification of what the box
does and how it can be controlled by using the elements of the physical interface.
It’s not enough to say that a TV set has a power switch; you need to specify that the
power switch is used to turn the TV on and off!

To put this in computer science terms, the interface of a method has a semantic
as well as a syntactic component. The syntactic part of the interface tells you just
what you have to type in order to call the method. The semantic component specifies
exactly what task the method will accomplish. To write a legal program, you need
to know the syntactic specification of the method. To understand the purpose of the
method and to use it effectively, you need to know the method’s semantic specification.
I will refer to both parts of the interface – syntactic and semantic – collectively as the
contract of the method.

The contract of a method says, essentially, ”Here is what you have to do to use
me, and here is what I will do for you, guaranteed.” When you write a method, the
comments that you write for the method should make the contract very clear. (I
should admit that in practice, methods’ contracts are often inadequately specified,
much to the regret and annoyance of the programmers who have to use them.)

You should keep in mind that methods are not the only example of black boxes in
programming. For example, a class is also a black box. We’ll see that a class can have
a ”public” part, representing its interface, and a ”private” part that is entirely inside
its hidden implementation. All the principles of black boxes apply to classes as well
as to methods.

2.2.2 Preconditions and Postconditions

When working with methods as building blocks, it is important to be clear about how
a method interacts with the rest of the program. A convenient way to express the
contract of a method is in terms of preconditions and postconditions.

The precondition of a method is something that must be true when the
method is called, if the method is to work correctly.

For example, for the built-in method Math.sqrt(x), a precondition is that the param-
eter, x, is greater than or equal to zero, since it is not possible to take the square root
of a negative number. In terms of a contract, a precondition represents an obligation

41

of the caller of the method. If you call a method without meeting its precondition,
then there is no reason to expect it to work properly. The program might crash or
give incorrect results, but you can only blame yourself, not the method.

A postcondition of a method represents the other side of the contract. It is some-
thing that will be true after the method has run (assuming that its preconditions
were met – and that there are no bugs in the method). The postcondition of the
method Math.sqrt() is that the square of the value that is returned by this method
is equal to the parameter that is provided when the method is called. Of course, this
will only be true if the preconditiion – that the parameter is greater than or equal to
zero – is met. A postcondition of the built-in method System.out.print() is that the
value of the parameter has been displayed on the screen.

Preconditions most often give restrictions on the acceptable values of parameters,
as in the example of Math.sqrt(x). However, they can also refer to global vari-
ables that are used in the method. The postcondition of a method specifies the task
that it performs. For a method, the postcondition should specify the value that the
method returns. Methods are often described by comments that explicitly specify
their preconditions and postconditions. When you are given a pre-written method, a
statement of its preconditions and postcondtions tells you how to use it and what it
does. When you are assigned to write a method, the preconditions and postconditions
give you an exact specification of what the method is expected to do. Its a good idea
to write preconditions and postconditions as part of comments are given in the form
of Javadoc comments, but I will explicitly label the preconditions and postconditions.
(Many computer scientists think that new doc tags @precondition and @postcondi-
tion should be added to the Javadoc system for explicit labeling of preconditions and
postconditions, but that has not yet been done.

2.2.3 APIs and Packages

One of the important advantages of object-oriented programming is that it promotes
reuse. When writing any piece of software, a programmer can use a large and growing
body of pre-written software. The JAVA SDK (software development kit) consists
of thousands of classes that can be used by programmers. So, learning the JAVA
language means also being able to use this vast library of classes.

Toolboxes

Someone who wants to program for Macintosh computers – and to produce programs
that look and behave the way users expect them to – must deal with the Macintosh
Toolbox, a collection of well over a thousand different methods. There are methods for
opening and closing windows, for drawing geometric figures and text to windows, for
adding buttons to windows, and for responding to mouse clicks on the window. There
are other methods for creating menus and for reacting to user selections from menus.
Aside from the user interface, there are methods for opening files and reading data
from them, for communicating over a network, for sending output to a printer, for
handling communication between programs, and in general for doing all the standard
things that a computer has to do. Microsoft Windows provides its own set of methods
for programmers to use, and they are quite a bit different from the methods used on
the Mac. Linux has several different GUI toolboxes for the programmer to choose
from.

42

The analogy of a “toolbox” is a good one to keep in mind. Every programming
project involves a mixture of innovation and reuse of existing tools. A programmer
is given a set of tools to work with, starting with the set of basic tools that are built
into the language: things like variables, assignment statements, if statements, and
loops. To these, the programmer can add existing toolboxes full of methods that
have already been written for performing certain tasks. These tools, if they are well-
designed, can be used as true black boxes: They can be called to perform their as-
signed tasks without worrying about the particular steps they go through to accom-
plish those tasks. The innovative part of programming is to take all these tools and
apply them to some particular project or problem (word-processing, keeping track of
bank accounts, processing image data from a space probe, Web browsing, computer
games,...). This is called applications programming.

A software toolbox is a kind of black box, and it presents a certain interface to
the programmer. This interface is a specification of what methods are in the toolbox,
what parameters they use, and what tasks they perform. This information consti-
tutes the API, or Applications Programming Interface, associated with the toolbox.
The Macintosh API is a specification of all the methods available in the Macintosh
Toolbox. A company that makes some hardware device – say a card for connecting
a computer to a network – might publish an API for that device consisting of a list
of methods that programmers can call in order to communicate with and control the
device. Scientists who write a set of methods for doing some kind of complex compu-
tation – such as solving “differential equations”, say – would provide an API to allow
others to use those methods without understanding the details of the computations
they perform.

The JAVA programming language is supplemented by a large, standard API. You’ve
seen part of this API already, in the form of mathematical methods such as
Math.sqrt(), the String data type and its associated methods, and the
System.out.print() methods. The standard JAVA API includes methods for work-
ing with graphical user interfaces, for network communication, for reading and writ-
ing files, and more. It’s tempting to think of these methods as being built into the
JAVA language, but they are technically methods that have been written and made
available for use in JAVA programs.

JAVA is platform-independent. That is, the same program can run on platforms
as diverse as Macintosh, Windows, Linux, and others. The same JAVA API must
work on all these platforms. But notice that it is the interface that is platform-
independent; the implementation varies from one platform to another. A JAVA
system on a particular computer includes implementations of all the standard API
methods. A JAVA program includes only calls to those methods. When the JAVA
interpreter executes a program and encounters a call to one of the standard methods,
it will pull up and execute the implementation of that method which is appropriate
for the particular platform on which it is running. This is a very powerful idea. It
means that you only need to learn one API to program for a wide variety of platforms.

JAVA’s Standard Packages

Like all methods in JAVA, the methods in the standard API are grouped into classes.
To provide larger-scale organization, classes in JAVA can be grouped into packages,
which were introduced briefly in Subection2.6.4. You can have even higher levels of
grouping, since packages can also contain other packages. In fact, the entire stan-
dard JAVA API is implemented in several packages. One of these, which is named

43

“java”, contains several non-GUI packages as well as the original AWT graphics user
interface classes. Another package, “javax”, was added in JAVA version 1.2 and con-
tains the classes used by the Swing graphical user interface and other additions to
the API.

A package can contain both classes and other packages. A package that is con-
tained in another package is sometimes called a “sub-package.” Both the java pack-
age and the javax package contain sub-packages. One of the sub-packages of java,
for example, is called “awt”. Since awt is contained within java, its full name is ac-
tually java.awt. This package contains classes that represent GUI components such
as buttons and menus in the AWT, the older of the two JAVA GUI toolboxes, which
is no longer widely used. However, java.awt also contains a number of classes that
form the foundation for all GUI programming, such as the Graphics class which pro-
vides methods for drawing on the screen, the Color class which represents colors, and
the Font class which represents the fonts that are used to display characters on the
screen. Since these classes are contained in the package java.awt, their full names
are actually java.awt.Graphics, java.awt.Color and java.awt.Font. (I hope that
by now you’ve gotten the hang of how this naming thing works in JAVA.) Simi-
larly, javax contains a sub-package named javax.swing, which includes such classes
as javax.swing.JButton, javax.swing.JMenu, and javax.swing.JFrame. The GUI
classes in javax.swing, together with the foundational classes in java.awt are all
part of the API that makes it possible to program graphical user interfaces in JAVA.

The java package includes several other sub-packages, such as java.io, which
provides facilities for input/output, java.net, which deals with network communi-
cation, and java.util, which provides a variety of “utility” classes. The most basic
package is called java.lang. This package contains fundamental classes such as
String, Math, Integer, and Double.

It might be helpful to look at a graphical representation of the levels of nesting
in the java package, its sub-packages, the classes in those sub-packages, and the
methods in those classes. This is not a complete picture, since it shows only a very
few of the many items in each element:

The official documentation for the standard JAVA 5.0 API lists 165 different pack-
ages, including sub-packages, and it lists 3278 classes in these packages. Many of
these are rather obscure or very specialized, but you might want to browse through
the documentation to see what is available.

44

Even an expert programmer won’t be familiar with the entire API, or even a ma-
jority of it. In this book, you’ll only encounter several dozen classes, and those will be
sufficient for writing a wide variety of programs.

Using Classes from Packages

Let’s say that you want to use the class java.awt.Color in a program that you are
writing. Like any class, java.awt.Color is a type, which means that you can use
it declare variables and parameters and to specify the return type of a method. One
way to do this is to use the full name of the class as the name of the type. For example,
suppose that you want to declare a variable named rectColor of type java.awt.Color.
You could say:

java.awt.Color rectColor;

This is just an ordinary variable declaration of the form “type-name variable-
name;”. Of course, using the full name of every class can get tiresome, so JAVA makes
it possible to avoid using the full names of a class by importing the class. If you put

import java.awt.Color;

at the beginning of a JAVA source code file, then, in the rest of the file, you can
abbreviate the full name java.awt.Color to just the simple name of the class, Color.
Note that the import line comes at the start of a file and is not inside any class.
Although it is sometimes referred to as as a statement, it is more properly called an
import directive since it is not a statement in the usual sense. Using this import
directive would allow you to say

Color rectColor;

to declare the variable. Note that the only effect of the import directive is to allow
you to use simple class names instead of full “package.class” names; you aren’t really
importing anything substantial. If you leave out the import directive, you can still
access the class – you just have to use its full name. There is a shortcut for importing
all the classes from a given package. You can import all the classes from java.awt by
saying

import java.awt.∗;

The “*” is a wildcard that matches every class in the package. (However, it does not
match sub-packages; you cannot import the entire contents of all the sub-packages
of the java packages by saying importjava.*.)

Some programmers think that using a wildcard in an import statement is bad
style, since it can make a large number of class names available that you are not
going to use and might not even know about. They think it is better to explicitly
import each individual class that you want to use. In my own programming, I often
use wildcards to import all the classes from the most relevant packages, and use
individual imports when I am using just one or two classes from a given package.

In fact, any JAVA program that uses a graphical user interface is likely to use
many classes from the java.awt and java.swing packages as well as from another
package named java.awt.event, and I usually begin such programs with

import java.awt.∗;
import java.awt.event.∗;
import javax.swing.∗;

45

A program that works with networking might include: “import java.net.∗;”,
while one that reads or writes files might use “import java.io.∗;”. (But when you
start importing lots of packages in this way, you have to be careful about one thing:
It’s possible for two classes that are in different packages to have the same name.
For example, both the java.awt package and the java.util package contain classes
named List. If you import both java.awt.∗ and java.util.∗, the simple name List
will be ambiguous. If you try to declare a variable of type List, you will get a compiler
error message about an ambiguous class name. The solution is simple: use the full
name of the class, either java.awt.List or java.util.List. Another solution, of
course, is to use import to import the individual classes you need, instead of importing
entire packages.)

Because the package java.lang is so fundamental, all the classes in java.lang
are automatically imported into every program. It’s as if every program began
with the statement “import java.lang.∗;”. This is why we have been able to use
the class name String instead of java.lang.String, and Math.sqrt() instead of
java.lang.Math.sqrt(). It would still, however, be perfectly legal to use the longer
forms of the names.

Programmers can create new packages. Suppose that you want some classes that
you are writing to be in a package named utilities. Then the source code file that
defines those classes must begin with the line
package utilities;

This would come even before any import directive in that file. Furthermore, the
source code file would be placed in a folder with the same name as the package.
A class that is in a package automatically has access to other classes in the same
package; that is, a class doesn’t have to import the package in which it is defined.

In projects that define large numbers of classes, it makes sense to organize those
classes into packages. It also makes sense for programmers to create new packages
as toolboxes that provide functionality and API’s for dealing with areas not covered
in the standard JAVA API. (And in fact such “toolmaking” programmers often have
more prestige than the applications programmers who use their tools.)

However, I will not be creating any packages in this textbook. For the purposes
of this book, you need to know about packages mainly so that you will be able to
import the standard packages. These packages are always available to the programs
that you write. You might wonder where the standard classes are actually located.
Again, that can depend to some extent on the version of JAVA that you are using,
but in the standard JAVA 5.0, they are stored in jar files in a subdirectory of the
main JAVA installation directory. A jar (or “JAVA archive”) file is a single file that can
contain many classes. Most of the standard classes can be found in a jar file named
classes.jar. In fact, JAVA programs are generally distributed in the form of jar files,
instead of as individual class files.

Although we won’t be creating packages explicitly, every class is actually part of
a package. If a class is not specifically placed in a package, then it is put in something
called the default package, which has no name. All the examples that you see in this
book are in the default package.

2.3 Introduction to Error Handling

IN ADDITION TO THE CONTROL STRUCTURES that determine the normal flow of control in
a program, Java has a way to deal with “exceptional” cases that throw the flow of

46

control off its normal track. When an error occurs during the execution of a program,
the default behavior is to terminate the program and to print an error message. How-
ever, Java makes it possible to “catch” such errors and program a response different
from simply letting the program crash. This is done with the try..catch statement. In
this section, we will take a preliminary, incomplete look at using try..catch to handle
errors.

Exceptions

The term exception is used to refer to the type of error that one might want to handle
with a try..catch. An exception is an exception to the normal flow of control in
the program. The term is used in preference to “error” because in some cases, an
exception might not be considered to be an error at all. You can sometimes think of
an exception as just another way to organize a program.

Exceptions in Java are represented as objects of type Exception. Actual excep-
tions are defined by subclasses of Exception. Different subclasses represent differ-
ent types of exceptions We will look at only two types of exception in this section:
NumberFormatException and IllegalArgumentException.

A NumberFormatException can occur when an attempt is made to convert a string
into a number. Such conversions are done, for example, by Integer.parseInt and
Integer.parseDouble . Consider the method call Integer.parseInt(str) where
str is a variable of type String. If the value of str is the string “42”, then the method
call will correctly convert the string into the int 42. However, if the value of str is,
say, “fred”, the method call will fail because “fred” is not a legal string representation
of an int value. In this case, an exception of type NumberFormatException occurs. If
nothing is done to handle the exception, the program will crash.

An IllegalArgumentException can occur when an illegal value is passed as a pa-
rameter to a method. For example, if a method requires that a parameter be greater
than or equal to zero, an IllegalArgumentException might occur when a negative
value is passed to the method. How to respond to the illegal value is up to the person
who wrote the method, so we can’t simply say that every illegal parameter value will
result in an IllegalArgumentException. However, it is a common response.

One case where an IllegalArgumentException can occur is in the valueOf method
of an enumerated type. Recall that this method tries to convert a string into one
of the values of the enumerated type. If the string that is passed as a param-
eter to valueOf is not the name of one of the enumerated type’s value, then an
IllegalArgumentException occurs. For example, given the enumerated type

enum Toss { HEADS, TAILS };

Toss.valueOf("HEADS") correctly returns Toss.HEADS, but Toss.valueOf(‘‘FEET’’)
results in an IllegalArgumentException.

try . . . catch

When an exception occurs, we say that the exception is “thrown”. For example, we say
that Integer.parseInt(str) throws an exception of type NumberFormatException
when the value of str is illegal. When an exception is thrown, it is possible to
“catch” the exception and prevent it from crashing the program. This is done with a
try..catch statement. In somewhat simplified form, the syntax for a try..catch is:

47

try {
statements−1

}
catch (exception−class−name variable−name) {

statements−2
}

The exception-class-name in the catch clause could be NumberFormatException,
IllegalArgumentException, or some other exception class. When the computer ex-
ecutes this statement, it executes the statements in the try part. If no error occurs
during the execution of statements−1, then the computer just skips over the catch
part and proceeds with the rest of the program. However, if an exception of type
exception-class-name occurs during the execution of statements−1, the computer
immediately jumps to the catch part and executes statements−2, skipping any re-
maining statements in statements−1. During the execution of statements−2, the
variable-name represents the exception object, so that you can, for example, print it
out. At the end of the catch part, the computer proceeds with the rest of the pro-
gram; the exception has been caught and handled and does not crash the program.
Note that only one type of exception is caught; if some other type of exception occurs
during the execution of statements−1, it will crash the program as usual.

(By the way, note that the braces, { and }, are part of the syntax of the try..catch
statement. They are required even if there is only one statement between the braces.
This is different from the other statements we have seen, where the braces around a
single statement are optional.)

As an example, suppose that str is a variable of type String whose value might
or might not represent a legal real number. Then we could say:

try {
double x;
x = Double.parseDouble(str);
System.out.println(" The number i s " + x);

}
catch (NumberFormatException e) {

System.out.println(" Not a legal number . ");
}

If an error is thrown by the call to Double.parseDouble(str), then the output
statement in the try part is skipped, and the statement in the catch part is executed.

It’s not always a good idea to catch exceptions and continue with the program.
Often that can just lead to an even bigger mess later on, and it might be better
just to let the exception crash the program at the point where it occurs. However,
sometimes it’s possible to recover from an error. For example, suppose that we have
the enumerated type

enum Day {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY}

and we want the user to input a value belonging to this type. TextIO does not know
about this type, so we can only read the user’s response as a string. The method
Day.valueOf can be used to convert the user’s response to a value of type Day. This
will throw an exception of type IllegalArgumentException if the user’s response is
not the name of one of the values of type Day, but we can respond to the error easily
enough by asking the user to enter another response. Here is a code segment that
does this. (Converting the user’s response to upper case will allow responses such as
“Monday” or “monday” in addition to “MONDAY”.)

48

Scanner keyboard = new Scanner(System.in);
Day weekday; / / User ’ s response as a value o f type Day .
while (true) {

String response; / / User ’ s response as a S t r i n g .
keyboard.put(" Please enter a day of the week: ");
response = keyboard.nextLinen();
response = response.toUpperCase();
try {

weekday = Day.valueOf(response);
break;

}
catch (IllegalArgumentException e) {

System.out.println(response +
" i s not the name of a day of the week. ");

}
}

The break statement will be reached only if the user’s response is acceptable, and
so the loop will end only when a legal value has been assigned to weekday.

2.4 Javadoc

Good programming means extensive comments and documentation. At the very least,
explain the method of each instance variable, and for each method explain its pur-
pose, parameters, returns, where applicable. You should also strive for a consistent
layout and for expressive variable names.

A program that is well-documented is much more valuable than the same program
without the documentation. Java comes with a tool called javadoc that can make it
easier to produce the documentation is a readable and organized format. JavaDoc
is a program that will automatically extract/generate an HTML help-page from code
that is properly commented. In particular, it is designed produce a help file that,
for a class, lists the methods, constructors and public fields, and for each method
explains what it does together with pre-conditions, post-conditions, the meaning of
the parameters, exceptions that may be thrown and other things.

Javadoc is especially useful for documenting classes and packages of classes that
are meant to be used by other programmers. A programmer who wants to use pre-
written classes shouldn’t need to search through the source code to find out how to
use them. If the documentation in the source code is in the correct format, javadoc
can separate out the documentation and make it into a set of web pages. The web
pages are automatically formatted and linked into an easily browseable Web site.
Sun Microsystem’s documentation for the standard Java API was produced using
javadoc.

Javadoc documentation is prepared from special comments that are placed in the
Java source code file. Recall that one type of Java comment begins with /* and ends
with */. A Javadoc comment takes the same form, but it begins with /** rather than
simply /*.

/∗ ∗
∗ This method p r i n t s a 3N+1 sequence to standard output , using
∗ s t a r t i n g V a l u e as the i n i t i a l value o f N. I t a lso p r i n t s the number
∗ of terms i n the sequence . The value o f the parameter , s ta r t i ngVa lue ,
∗ must be a p o s i t i v e i n t e g e r .
∗ /

49

static void print3NSequence(int startingValue) { ...

You can have Javadoc comments for methods, member variables, and for classes.
The Javadoc comment always immediately precedes the thing it is commenting on.
Like any comment, a Javadoc comment is ignored by the computer when the file is
compiled. But there is a tool called javadoc that reads Java source code files, extracts
any Javadoc comments that it finds, and creates a set of Web pages containing the
comments in a nicely formatted, interlinked form. By default, javadoc will only col-
lect information about public classes, methods, and member variables, but it allows
the option of creating documentation for non-public things as well. If javadoc doesn’t
find any Javadoc comment for something, it will construct one, but the comment will
contain only basic information such as the name and type of a member variable or
the name, return type, and parameter list of a method. This is syntactic information.
To add information about semantics and pragmatics, you have to write a Javadoc
comment.

In addition to normal text, the comment can contain certain special codes. For one
thing, the comment can contain HTML mark-up commands. (HTML is the language
that is used to create web pages, and Javadoc comments are meant to be shown on
web pages.) The javadoc tool will copy any HTML commands in the comments to the
web pages that it creates. As an example, you can add <p> to indicate the start of
a new paragraph. (Generally, in the absence of HTML commands, blank lines and
extra spaces in the comment are ignored.)

In addition to HTML commands, Javadoc comments can include doc tags, which
are processed as commands by the javadoc tool. A doc tag has a name that begins
with the character . I will only discuss three tags: @param, @return, and @throws.
These tags are used in Javadoc comments for methods to provide information about
its parameters, its return value, and the exceptions that it might throw. These tags
are always placed at the end of the comment, after any description of the method
itself. The syntax for using them is:

@param parameter−name description−of−parameter

@return description−of−return−value

@throws exception−class−name description−of−exception

The descriptions can extend over several lines. The description ends at the next
tag or at the end of the comment. You can include a @param tag for every parameter
of the method and a @throws for as many types of exception as you want to document.
You should have a @return tag only for a non-void method. These tags do not have to
be given in any particular order. Here is an example that doesn’t do anything exciting
but that does use all three types of doc tag:

If you want to create Web-page documentation, you need to run the javadoc tool.
You can use javadoc in a command line interface similarly to the way that the javac
and java commands are used. Javadoc can also be applied in the Eclipse integrated
development environment: Just right-click the class or package that you want to doc-
ument in the Package Explorer, select ”Export,” and select ”Javadoc” in the window
that pops up. Consult the documentation for more details.

50

/∗ ∗
∗ This method computes the area of a rec tang le , given i t s width
∗ and i t s he igh t . The leng th and the width should be p o s i t i v e numbers .
∗ @param width the leng th o f one s ide o f the rec tang le
∗ @param he igh t the leng th the second s ide o f the rec tang le
∗ @return the area of the rec tang le
∗ @throws I l lega lArgumentExcept ion i f e i t h e r the width or the he igh t
∗ i s a negat ive number .
∗ /

public static double areaOfRectangle(double length, double width) {
if (width < 0 || height < 0)

throw new IllegalArgumentException(" S ides must have pos i t i ve length . ");
double area;
area = width ∗ height;
return area;

}

2.5 Creating Jar Files

As the final topic for this chapter, we look again at jar files. Recall that a jar file is
a “java archive” that can contain a number of class files. When creating a program
that uses more than one class, it’s usually a good idea to place all the classes that are
required by the program into a jar file, since then a user will only need that one file
to run the program. Jar files can also be used for stand-alone applications. In fact, it
is possible to make a so-called executable jar file. A user can run an executable
jar file in much the same way as any other application, usually by double-clicking the
icon of the jar file. (The user’s computer must have a correct version of JAVA installed,
and the computer must be configured correctly for this to work. The configuration is
usually done automatically when JAVA is installed, at least on Windows and Mac
OS.)

The question, then, is how to create a jar file. The answer depends on what pro-
gramming environment you are using. There are two basic types of programming
environment – command line and IDE. Any IDE (Integrated Programming Environ-
ment) for JAVA should have a command for creating jar files. In the Eclipse IDE, for
example, it’s done as follows: In the Package Explorer pane, select the programming
project (or just all the individual source code files that you need). Right-click on the
selection, and choose “Export” from the menu that pops up. In the window that ap-
pears, select “JAR file” and click “Next”. In the window that appears next, enter a
name for the jar file in the box labeled “JAR file”. (Click the “Browse” button next to
this box to select the file name using a file dialog box.) The name of the file should
end with “.jar”. If you are creating a regular jar file, not an executable one, you can
hit “Finish” at this point, and the jar file will be created. You could do this, for exam-
ple, if the jar file contains an applet but no main program. To create an executable
file, hit the “Next” button twice to get to the “Jar Manifest Specification” screen. At
the bottom of this screen is an input box labeled “Main class”. You have to enter the
name of the class that contains the main() method that will be run when the jar file
is executed. If you hit the “Browse” button next to the “Main class” box, you can select
the class from a list of classes that contain main() methods. Once you’ve selected the
main class, you can click the “Finish” button to create the executable jar file.

It is also possible to create jar files on the command line. The JAVA Development

51

Kit includes a command-line program named jar that can be used to create jar files.
If all your classes are in the default package (like the examples in this book), then the
jar command is easy to use. To create a non-executable jar file on the command line,
change to the directory that contains the class files that you want to include in the jar.
Then give the command jar cf JarFileName.jar ∗.class where JarFileName can
be any name that you want to use for the jar file. The “∗“ in “∗.class” is a wildcard
that makes ∗.class match every class file in the current directory. This means that
all the class files in the directory will be included in the jar file. If you want to include
only certain class files, you can name them individually, separated by spaces. (Things
get more complicated if your classes are not in the default package. In that case, the
class files must be in subdirectories of the directory in which you issue the jar file.)

Making an executable jar file on the command line is a little more complicated.
There has to be some way of specifying which class contains the main() method. This
is done by creating a manifest file. The manifest file can be a plain text file con-
taining a single line of the form Main−Class: ClassName where ClassName should
be replaced by the name of the class that contains the main() method. For example,
if the main() method is in the class MosaicDrawFrame, then the manifest file should
read “Main−Class: MosaicDrawFrame”. You can give the manifest file any name you
like. Put it in the same directory where you will issue the jar command, and use
a command of the form jar cmf ManifestFileName JarFileName.jar ∗.class to
create the jar file. (The jar command is capable of performing a variety of different
operations. The first parameter to the command, such as “cf” or “cmf”, tells it which
operation to perform.)

By the way, if you have successfully created an executable jar file, you can run it
on the command line using the command “java −jar”. For example:
java −jar JarFileName.jar

2.6 Creating Abstractions

IN THIS SECTION, we look at some specific examples of object-oriented design in a do-
main that is simple enough that we have a chance of coming up with something
reasonably reusable. Consider card games that are played with a standard deck of
playing cards (a so-called “poker” deck, since it is used in the game of poker).

2.6.1 Designing the classes

When designing object-oriented software, a crucial first step is to identify the objects
that will make up the application. One approach to do this is to identify the nouns in
the problem description. These become candidates for objects. Next we can identify
verbs in the description: these suggest methods for the objects.

Consider the following description of a card game:

In a typical card game, each player gets a hand of cards. The deck is
shuffled and cards are dealt one at a time from the deck and added to the
players’ hands. In some games, cards can be removed from a hand, and
new cards can be added. The game is won or lost depending on the value
(ace, 2, ..., king) and suit (spades, diamonds, clubs, hearts) of the cards
that a player receives.

52

If we look for nouns in this description, there are several candidates for objects:
game, player, hand, card, deck, value, and suit. Of these, the value and the suit of
a card are simple values, and they will just be represented as instance variables in
a Card object. In a complete program, the other five nouns might be represented by
classes. But let’s work on the ones that are most obviously reusable: card, hand, and
deck.

If we look for verbs in the description of a card game, we see that we can shuffle
a deck and deal a card from a deck. This gives use us two candidates for instance
methods in a Deck class: shuffle() and dealCard(). Cards can be added to and
removed from hands. This gives two candidates for instance methods in a Hand class:
addCard() and removeCard(). Cards are relatively passive things, but we need to be
able to determine their suits and values. We will discover more instance methods as
we go along.

The Deck Class:

First, we’ll design the deck class in detail. When a deck of cards is first created, it
contains 52 cards in some standard order. The Deck class will need a constructor to
create a new deck. The constructor needs no parameters because any new deck is
the same as any other. There will be an instance method called shuffle() that will
rearrange the 52 cards into a random order. The dealCard() instance method will
get the next card from the deck. This will be a method with a return type of Card,
since the caller needs to know what card is being dealt. It has no parameters – when
you deal the next card from the deck, you don’t provide any information to the deck;
you just get the next card, whatever it is. What will happen if there are no more cards
in the deck when its dealCard() method is called? It should probably be considered
an error to try to deal a card from an empty deck, so the deck can throw an exception
in that case. But this raises another question: How will the rest of the program know
whether the deck is empty? Of course, the program could keep track of how many
cards it has used. But the deck itself should know how many cards it has left, so the
program should just be able to ask the deck object. We can make this possible by
specifying another instance method, cardsLeft(), that returns the number of cards
remaining in the deck. This leads to a full specification of all the methods in the Deck
class:

/∗ ∗ Const ruc tor . Create a s h u f f l e d deck o f cards .
∗ @precondit ion : None
∗ @postcondit ion : A deck o f 52 , s h u f f l e d cards i s created . ∗ /
public Deck()

/∗ ∗ Shu f f l e a l l cards i n the deck i n t o a random order .
∗ @precondit ion : None
∗ @postcondit ion : The e x i s t i n g deck o f cards w i th the cards
∗ i n random order . ∗ /
public void shuffle()

/∗ ∗ Returns the s ize o f the deck
∗ @return the number o f cards t h a t are s t i l l l e f t i n the deck .
∗ @precondit ion : None
∗ @postcondit ion : The deck i s unchanged . ∗ /
public int size()

53

/∗ ∗ Determine i f t h i s deck i s empty
∗ @return t rue i f t h i s deck has no cards l e f t i n the deck .
∗ @precondit ion : None
∗ @postcondit ion : The deck i s unchanged . ∗ /
public boolean isEmpty()

/∗ ∗ Deal one card from t h i s deck
∗ @return a Card from the deck .
∗ @precondit ion : The deck i s not empty
∗ @postcondit ion : The deck has one less card . ∗ /
public Card deal()

This is everything you need to know in order to use the Deck class. Of course,
it doesn’t tell us how to write the class. This has been an exercise in design, not in
programming. With this information, you can use the class in your programs without
understanding the implementation. The description above is a contract between the
users of the class and implementors of the class—it is the “public interface” of the
class.

The Hand Class:

We can do a similar analysis for the Hand class. When a hand object is first created,
it has no cards in it. An addCard() instance method will add a card to the hand.
This method needs a parameter of type Card to specify which card is being added.
For the removeCard() method, a parameter is needed to specify which card to re-
move. But should we specify the card itself (“Remove the ace of spades”), or should
we specify the card by its position in the hand (“Remove the third card in the hand”)?
Actually, we don’t have to decide, since we can allow for both options. We’ll have two
removeCard() instance methods, one with a parameter of type Card specifying the
card to be removed and one with a parameter of type int specifying the position of
the card in the hand. (Remember that you can have two methods in a class with
the same name, provided they have different types of parameters.) Since a hand can
contain a variable number of cards, it’s convenient to be able to ask a hand object
how many cards it contains. So, we need an instance method getCardCount() that
returns the number of cards in the hand. When I play cards, I like to arrange the
cards in my hand so that cards of the same value are next to each other. Since this is
a generally useful thing to be able to do, we can provide instance methods for sorting
the cards in the hand. Here is a full specification for a reusable Hand class:

/∗ ∗ Create a Hand ob jec t t h a t i s i n i t i a l l y empty .
∗ @precondit ion : None
∗ @postcondit ion : An empty hand ob jec t i s created . ∗ /
public Hand() {

/∗ ∗ Discard a l l cards from the hand , making the hand empty .
∗ @precondit ion : None
∗ @postcondit ion : The hand ob jec t i s empty . ∗ /
public void clear() {

/∗ ∗ I f the s p e c i f i e d card i s i n the hand , i t i s removed .
∗ @param c the Card to be removed .
∗ @precondit ion : c i s a Card ob jec t and i s non−n u l l .
∗ @postcondit ion : The s p e c i f i e d card i s removed i f i t e x i s t s . ∗ /
public void removeCard(Card c) {

54

/∗ ∗ Add the card c to the hand .
∗ @param The Card to be added .
∗ @precondit ion : c i s a Card ob jec t and i s non−n u l l .
∗ @postcondit ion : The hand ob jec t conta ins the Card c
∗ and now has one more card .
∗ @throws Nu l lPo in te rExcep t ion i s thrown i f c i s not a
∗ Card or i s n u l l . ∗ /
public void addCard(Card c) {

/∗ ∗ Remove the card i n the s p e c i f i e d p o s i t i o n from the hand .
∗ @param p o s i t i o n the p o s i t i o n o f the card t h a t i s to be removed ,
∗ where p o s i t i o n s s t a r t from zero .
∗ @precondit ion : p o s i t i o n i s v a l i d i . e . 0 < p o s i t i o n < number cards
∗ @postcondit ion : The card i n the s p e c i f i e d p o s i t i o n i s removed
∗ and there i s one less card i n the hand .
∗ @throws I l lega lArgumentExcept ion i f the p o s i t i o n does not e x i s t i n
∗ the hand . ∗ /
public void removeCard(int position) {

/∗ ∗ Return the number o f cards i n the hand .
∗ @return i n t the number o f cards i n the hand
∗ @precondit ion : none
∗ @postcondit ion : No change i n s ta te o f Hand . ∗ /
public int getCardCount() {

/∗ ∗ Gets the card i n a s p e c i f i e d p o s i t i o n i n the hand .
∗ (Note t h a t t h i s card i s not removed from the hand !)
∗ @param p o s i t i o n the p o s i t i o n o f the card t h a t i s to be re turned
∗ @return Card the Card a t the s p e c i f i e d p o s i t i o n .
∗ @throws I l lega lArgumentExcept ion i f p o s i t i o n does not e x i s t .
∗ @precondit ion : p o s i t i o n i s v a l i d i . e . 0 < p o s i t i o n < number cards .
∗ @postcondit ion : The s ta te o f the Hand i s unchanged . ∗ /
public Card getCard(int position) {

/∗ ∗ Sorts the cards i n the hand i n s u i t order and i n value order
∗ w i t h i n s u i t s . Note t h a t aces have the lowest value , 1 .
∗ @precondit ion : none
∗ @postcondit ion : Cards o f the same
∗ s u i t are grouped together , and w i t h i n a s u i t the cards
∗ are sor ted by value . ∗ /

public void sortBySuit() {

/∗ ∗ Sorts the cards i n the hand so t h a t cards are sor ted i n t o
∗ order o f i nc reas ing value . Cards wi th the same value
∗ are sor ted by s u i t . Note t h a t aces are considered
∗ to have the lowest value .
∗ @precondit ion : none
∗ @postcondit ion : Cards are sor ted i n order o f i nc reas ing value . ∗ /

public void sortByValue() {

The Card Class

The class will have a constructor that specifies the value and suit of the card that
is being created. There are four suits, which can be represented by the integers 0,

55

1, 2, and 3. It would be tough to remember which number represents which suit,
so I’ve defined named constants in the Card class to represent the four possibilities.
For example, Card.SPADES is a constant that represents the suit, spades. (These
constants are declared to be public final static ints. It might be better to use an
enumerated type, but for now we will stick to integer-valued constants. I’ll return to
the question of using enumerated types in this example at the end of the chapter.)
The possible values of a card are the numbers 1, 2, ..., 13, with 1 standing for an
ace, 11 for a jack, 12 for a queen, and 13 for a king. Again, I’ve defined some named
constants to represent the values of aces and face cards.

A Card object can be constructed knowing the value and the suit of the card. For
example, we can call the constructor with statements such as:

card1 = new Card(Card.ACE, Card.SPADES); / / Const ruct ace of spades .
card2 = new Card(10, Card.DIAMONDS); / / Const ruct 10 o f diamonds .
card3 = new Card(v, s); / / This i s OK, as long as v and s

/ / are i n t e g e r expressions .

A Card object needs instance variables to represent its value and suit. I’ve made
these private so that they cannot be changed from outside the class, and I’ve pro-
vided getter methods getSuit() and getValue() so that it will be possible to discover
the suit and value from outside the class. The instance variables are initialized in
the constructor, and are never changed after that. In fact, I’ve declared the instance
variables suit and value to be final, since they are never changed after they are
initialized. (An instance variable can be declared final provided it is either given an
initial value in its declaration or is initialized in every constructor in the class.)

Finally, I’ve added a few convenience methods to the class to make it easier to
print out cards in a human-readable form. For example, I want to be able to print
out the suit of a card as the word “Diamonds”, rather than as the meaningless code
number 2, which is used in the class to represent diamonds. Since this is some-
thing that I’ll probably have to do in many programs, it makes sense to include
support for it in the class. So, I’ve provided instance methods getSuitAsString()
and getValueAsString() to return string representations of the suit and value of a
card. Finally, I’ve defined the instance method toString() to return a string with
both the value and suit, such as “Queen of Hearts”. Recall that this method will be
used whenever a Card needs to be converted into a String, such as when the card is
concatenated onto a string with the + operator. Thus, the statement

System.out.println(" Your card i s the " + card);

is equivalent to

System.out.println(" Your card i s the " + card.toString());

If the card is the queen of hearts, either of these will print out
‘‘Your card is the Queen of Hearts’’.

Here is the complete Card class. It is general enough to be highly reusable, so the
work that went into designing, writing, and testing it pays off handsomely in the long
run.

/∗ ∗ An ob jec t o f type Card represents a p lay ing card from a
∗ standard Poker deck , i n c l u d i n g Jokers . The card has a s u i t , which
∗ can be spades , hearts , diamonds , clubs , or j oke r . A spade , heart ,
∗ diamond , or c lub has one of the 13 values : ace , 2 , 3 , 4 , 5 , 6 , 7 ,
∗ 8 , 9 , 10 , jack , queen , or k ing . Note t h a t " ace " i s considered to be
∗ the sma l les t value . A joke r can also have an assoc iated value ;

56

∗ t h i s value can be anyth ing and can be used to keep t rack o f severa l
∗ d i f f e r e n t j oke rs .
∗ /

public class Card {
public final static int SPADES = 0; / / Codes f o r the 4 s u i t s .
public final static int HEARTS = 1;
public final static int DIAMONDS = 2;
public final static int CLUBS = 3;

public final static int ACE = 1; / / Codes f o r the non−numeric cards .
public final static int JACK = 11; / / Cards 2 through 10 have t h e i r
public final static int QUEEN = 12; / / numer ica l values f o r t h e i r codes .
public final static int KING = 13;

/∗ ∗ This card ’ s s u i t , one of the constants SPADES, HEARTS, DIAMONDS,
∗ CLUBS. The s u i t cannot be changed a f t e r the card i s
∗ const ruc ted . ∗ /

private final int suit;

/∗ ∗ The card ’ s value . For a normal cards , t h i s i s one of the values
∗ 1 through 13 , w i th 1 represen t ing ACE. The value cannot be changed
∗ a f t e r the card i s const ruc ted . ∗ /

private final int value;

/∗ ∗ Creates a card w i th a s p e c i f i e d s u i t and value .
∗ @param theValue the value o f the new card . For a regu la r card (non−j o ke r) ,
∗ the value must be i n the range 1 through 13 , w i th 1 represen t ing an Ace .
∗ You can use the constants Card .ACE, Card . JACK, Card .QUEEN, and Card . KING .
∗ For a Joker , the value can be anyth ing .
∗ @param theSu i t the s u i t o f the new card . This must be one of the values
∗ Card .SPADES, Card .HEARTS, Card .DIAMONDS, Card .CLUBS, or Card .JOKER.
∗ @throws I l lega lArgumentExcept ion i f the parameter values are not i n the
∗ permiss ib le ranges ∗ /

public Card(int theValue, int theSuit) {
if (theSuit != SPADES && theSuit != HEARTS && theSuit != DIAMONDS &&

theSuit != CLUBS)
throw new IllegalArgumentException(" I l l e g a l playing card s u i t ");

if (theValue < 1 || theValue > 13)
throw new IllegalArgumentException(" I l l e g a l playing card value ");

value = theValue;
suit = theSuit;

}

/∗ ∗ Returns the s u i t o f t h i s card .
∗ @returns the s u i t , which i s one of the constants Card .SPADES,
∗ Card .HEARTS, Card .DIAMONDS, Card .CLUBS ∗ /

public int getSuit() {
return suit;

}

/∗ ∗ Returns the value o f t h i s card .
∗ @return the value , which i s one the numbers 1 through 13. ∗ /

public int getValue() {
return value;

}

57

/∗ ∗ Returns a S t r i n g rep resen ta t i on o f the card ’ s s u i t .
∗ @return one of the s t r i n g s " Spades " , " Hearts " , " Diamonds " , " Clubs " . ∗ /

public String getSuitAsString() {
switch (suit) {
case SPADES: return " Spades ";
case HEARTS: return " Hearts ";
case DIAMONDS: return "Diamonds ";
case CLUBS: return " Clubs ";
default: return " Nu l l ";
}

}

/∗ ∗ Returns a S t r i n g rep resen ta t i on o f the card ’ s value .
∗ @return f o r a regu la r card , one of the s t r i n g s " Ace " , " 2 " ,
∗ " 3 " , . . . , "10 " , " Jack " , "Queen " , or " King " . ∗ /

public String getValueAsString() {
switch (value) {

case 1: return "Ace";
case 2: return " 2 ";
case 3: return " 3 ";
case 4: return " 4 ";
case 5: return " 5 ";
case 6: return " 6 ";
case 7: return " 7 ";
case 8: return " 8 ";
case 9: return " 9 ";
case 10: return " 10 ";
case 11: return " Jack ";
case 12: return "Queen";
default: return " King ";
}

}

/∗ ∗ Returns a s t r i n g rep resen ta t i on o f t h i s card , i n c l u d i n g both
∗ i t s s u i t and i t s value . Sample r e t u r n values
∗ are : "Queen of Hearts " , "10 o f Diamonds " , " Ace of Spades " , ∗ /

public String toString() {
return getValueAsString() + " of " + getSuitAsString();

}

} / / end c lass Card

2.7 Example: A Simple Card Game

We will finish this section by presenting a complete program that uses the Card and
Deck classes. The program lets the user play a very simple card game called High-
Low. A deck of cards is shuffled, and one card is dealt from the deck and shown to the
user. The user predicts whether the next card from the deck will be higher or lower
than the current card. If the user predicts correctly, then the next card from the deck
becomes the current card, and the user makes another prediction. This continues
until the user makes an incorrect prediction. The number of correct predictions is
the user’s score.

58

My program has a method that plays one game of HighLow. This method has a
return value that represents the user’s score in the game. The main()method lets the
user play several games of HighLow. At the end, it reports the user’s average score.

Note that the method that plays one game of HighLow returns the user’s score in
the game as its return value. This gets the score back to the main program, where it
is needed. Here is the program:

import java.util.Scanner;
/∗ ∗
∗ This program l e t s the user p lay HighLow , a simple card game
∗ t h a t i s descr ibed i n the output statements a t the beginning o f
∗ the main () method . A f t e r the user p lays severa l games ,
∗ the user ’ s average score i s repor ted .
∗ /

public class HighLow {

Scanner keyboard = new Scanner(System.in);

public static void main(String[] args) {

System.out.println(" T h i s program l e t s you play the simple card game, ");
System.out.println(" HighLow . A card i s dealt from a deck of cards . ");
System.out.println("You have to predict whether the next card w i l l be");
System.out.println(" higher or lower . Your score in the game i s the ");
System.out.println("number of correct predict ions you make before ");
System.out.println(" you guess wrong . ");
System.out.println();

int gamesPlayed = 0; / / Number o f games user has played .
int sumOfScores = 0; / / The sum of a l l the scores from

/ / a l l the games played .
double averageScore; / / Average score , computed by d i v i d i n g

/ / sumOfScores by gamesPlayed .
boolean playAgain; / / Record user ’ s response when user i s

/ / asked whether he wants to p lay
/ / another game .

do {
int scoreThisGame; / / Score f o r one game .
scoreThisGame = play(); / / Play the game and get the score .
sumOfScores += scoreThisGame;
gamesPlayed++;
System.out.print(" Play again? ");
playAgain = keyboard.nextBoolean();

} while (playAgain);

averageScore = ((double)sumOfScores) / gamesPlayed;

System.out.println();
System.out.println("You played " + gamesPlayed + " games. ");
System.out.printf(" Your average score was %1.3 f .\n ", averageScore);

} / / end main ()

59

/∗ ∗
∗ Let ’ s the user p lay one game of HighLow , and re tu rns the
∗ user ’ s score on t h a t game . The score i s the number o f
∗ c o r r e c t guesses t h a t the user makes .
∗ /

private static int play() {

Deck deck = new Deck(); / / Get a new deck of cards , and
/ / s to re a re ference to i t i n
/ / the va r iab le , deck .

Card currentCard; / / The cu r ren t card , which the user sees .

Card nextCard; / / The next card i n the deck . The user t r i e s
/ / to p r e d i c t whether t h i s i s h igher or lower
/ / than the cu r ren t card .

int correctGuesses ; / / The number o f c o r r e c t p r e d i c t i o n s the
/ / user has made . At the end of the game,
/ / t h i s w i l l be the user ’ s score .

char guess; / / The user ’ s guess . ’H ’ i f the user p r e d i c t s t h a t
/ / the next card w i l l be higher , ’ L ’ i f the user
/ / p r e d i c t s t h a t i t w i l l be lower .

deck.shuffle(); / / Shu f f l e the deck i n t o a random order before
/ / s t a r t i n g the game .

correctGuesses = 0;
currentCard = deck.dealCard();
System.out.println(" The f i r s t card i s the " + currentCard);

while (true) { / / Loop ends when user ’ s p r e d i c t i o n i s wrong .

/∗ Get the user ’ s p red i c t i on , ’H ’ or ’ L ’ (or ’ h ’ or ’ l ’) . ∗ /

System.out.print(" W i l l the next card be higher (H) or lower (L)? ");
do {

guess = keyboard.next().charAt(0);
guess = Character.toUpperCase(guess);
if (guess != ’H’ && guess != ’ L ’)

System.out.print(" Please respond with H or L : ");
} while (guess != ’H’ && guess != ’ L ’);

/∗ Get the next card and show i t to the user . ∗ /

nextCard = deck.dealCard();
System.out.println(" The next card i s " + nextCard);

60

/∗ Check the user ’ s p r e d i c t i o n . ∗ /

if (nextCard.getValue() == currentCard.getValue()) {
System.out.println(" The value i s the same as the previous card . ");
System.out.println("You lose on t i e s . Sor ry ! ");
break; / / End the game .

}
else if (nextCard.getValue() > currentCard.getValue()) {

if (guess == ’H’) {
System.out.println(" Your prediction was correct . ");
correctGuesses++;

}
else {

System.out.println(" Your prediction was incorrect . ");
break; / / End the game .

}
}
else { / / nextCard i s lower

if (guess == ’ L ’) {
System.out.println(" Your prediction was correct . ");
correctGuesses++;

}
else {

System.out.println(" Your prediction was incorrect . ");
break; / / End the game .

}
}

/∗ To set up f o r the next i t e r a t i o n o f the loop , the nextCard
becomes the currentCard , s ince the currentCard has to be
the card t h a t the user sees , and the nextCard w i l l be
set to the next card i n the deck a f t e r the user makes
h is p r e d i c t i o n . ∗ /

currentCard = nextCard;
System.out.println();
System.out.println(" The card i s " + currentCard);

} / / end of wh i le loop

System.out.println();
System.out.println(" The game i s over . ");
System.out.println("You made " + correctGuesses

+ " correct predict ions . ");
System.out.println();

return correctGuesses;

} / / end play ()
} / / end c lass

61

62

Chapter 3
Tools for Working with

Abstractions

3.1 Introduction to Software Engineering

THE DIFFICULTIES INHERENT with the development of software has led many computer
scientists to suggest that software development should be treated as an engineering
activity. They argue for a disciplined approach where the software engineer uses
carefully thought out methods and processes.

The term software engineering has several meanings (from wikipedia):

* As the broad term for all aspects of the practice of computer programming, as
opposed to the theory of computer programming, which is called computer sci-
ence;

* As the term embodying the advocacy of a specific approach to computer pro-
gramming, one that urges that it be treated as an engineering profession rather
than an art or a craft, and advocates the codification of recommended practices
in the form of software engineering methodologies.

* Software engineering is

(1) ”the application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software, that is, the applica-
tion of engineering to software,” and

(2) ”the study of approaches as in (1).” IEEE Standard 610.12

3.1.1 Software Engineering Life-Cycles

A decades-long goal has been to find repeatable, predictable processes or method-
ologies that improve productivity and quality of software. Some try to systematize
or formalize the seemingly unruly task of writing software. Others apply project
management techniques to writing software. Without project management, software
projects can easily be delivered late or over budget. With large numbers of software
projects not meeting their expectations in terms of functionality, cost, or delivery
schedule, effective project management is proving difficult.

Software engineering requires performing many tasks, notably the following, some
of which may not seem to directly produce software.

63

• Requirements Analysis Extracting the requirements of a desired software
product is the first task in creating it. While customers probably believe they
know what the software is to do, it may require skill and experience in software
engineering to recognize incomplete, ambiguous or contradictory requirements.

• Specification Specification is the task of precisely describing the software to
be written, usually in a mathematically rigorous way. In reality, most successful
specifications are written to understand and fine-tune applications that were al-
ready well-developed. Specifications are most important for external interfaces,
that must remain stable.

• Design and Architecture Design and architecture refer to determining how
software is to function in a general way without being involved in details. Usu-
ally this phase is divided into two sub-phases.

• Coding Reducing a design to code may be the most obvious part of the software
engineering job, but it is not necessarily the largest portion.

• Testing Testing of parts of software, especially where code by two different
engineers must work together, falls to the software engineer.

• Documentation An important (and often overlooked) task is documenting the
internal design of software for the purpose of future maintenance and enhance-
ment. Documentation is most important for external interfaces.

• Maintenance Maintaining and enhancing software to cope with newly discov-
ered problems or new requirements can take far more time than the initial
development of the software. Not only may it be necessary to add code that does
not fit the original design but just determining how software works at some
point after it is completed may require significant effort by a software engineer.
About 2/3 of all software engineering work is maintenance, but this statistic can
be misleading. A small part of that is fixing bugs. Most maintenance is extend-
ing systems to do new things, which in many ways can be considered new work.
In comparison, about 2/3 of all civil engineering, architecture, and construction
work is maintenance in a similar way.

3.1.2 Object-oriented Analysis and Design

A large programming project goes through a number of stages, starting with specifi-
cation of the problem to be solved, followed by analysis of the problem and design of
a program to solve it. Then comes coding, in which the program’s design is expressed
in some actual programming language. This is followed by testing and debugging
of the program. After that comes a long period of maintenance, which means fix-
ing any new problems that are found in the program and modifying it to adapt it to
changing requirements. Together, these stages form what is called the software life
cycle. (In the real world, the ideal of consecutive stages is seldom if ever achieved.
During the analysis stage, it might turn out that the specifications are incomplete or
inconsistent. A problem found during testing requires at least a brief return to the
coding stage. If the problem is serious enough, it might even require a new design.
Maintenance usually involves redoing some of the work from previous stages....)

64

Large, complex programming projects are only likely to succeed if a careful, sys-
tematic approach is adopted during all stages of the software life cycle. The sys-
tematic approach to programming, using accepted principles of good design, is called
software engineering. The software engineer tries to efficiently construct programs
that verifyably meet their specifications and that are easy to modify if necessary.
There is a wide range of “methodologies” that can be applied to help in the system-
atic design of programs. (Most of these methodologies seem to involve drawing little
boxes to represent program components, with labeled arrows to represent relation-
ships among the boxes.)

We have been discussing object orientation in programming languages, which is
relevant to the coding stage of program development. But there are also object-
oriented methodologies for analysis and design. The question in this stage of the
software life cycle is, How can one discover or invent the overall structure of a pro-
gram? As an example of a rather simple object-oriented approach to analysis and
design, consider this advice: Write down a description of the problem. Underline all
the nouns in that description. The nouns should be considered as candidates for be-
coming classes or objects in the program design. Similarly, underline all the verbs.
These are candidates for methods. This is your starting point. Further analysis might
uncover the need for more classes and methods, and it might reveal that subclassing
can be used to take advantage of similarities among classes.

This is perhaps a bit simple-minded, but the idea is clear and the general ap-
proach can be effective: Analyze the problem to discover the concepts that are in-
volved, and create classes to represent those concepts. The design should arise from
the problem itself, and you should end up with a program whose structure reflects
the structure of the problem in a natural way.

3.1.3 Object Oriented design

OOP design rests on three principles:

• Abstraction: Ignore the details. In philosophical terminology, abstraction is
the thought process wherein ideas are distanced from objects. In computer sci-
ence, abstraction is a mechanism and practice to reduce and factor out details
so that one can focus on few concepts at a time.

Abstraction uses a strategy of simplification, wherein formerly concrete details
are left ambiguous, vague, or undefined. [wikipedia:Abstraction]

• Modularization: break into pieces. A module can be defined variously, but
generally must be a component of a larger system, and operate within that
system independently from the operations of the other components. Modularity
is the property of computer programs that measures the extent to which they
have been composed out of separate parts called modules.

Programs that have many direct interrelationships between any two random
parts of the program code are less modular than programs where those rela-
tionships occur mainly at well-defined interfaces between modules.

• Information hiding: separate the implementation and the function. The prin-
ciple of information hiding is the hiding of design decisions in a computer pro-
gram that are most likely to change, thus protecting other parts of the program

65

from change if the design decision is changed. Protecting a design decision in-
volves providing a stable interface which shields the remainder of the program
from the implementation (the details that are most likely to change).

We strive for responsibility-driven design: each class should be responsible
for its own data. We strive for loose coupling: each class is largely independent
and communicates with other classes via a small well-defined interface. We strive for
cohesion: each class performs one and only one task (for readability, reuse).

3.2 Class-Responsibility-Collaboration cards

CLASS-RESPONSIBILITY-COLLABORATION CARDS (CRC cards) are a brainstorming tool
used in the design of object-oriented software. They were proposed by Ward Cun-
ningham. They are typically used when first determining which classes are needed
and how they will interact.

CRC cards are usually created from index cards on which are written:

1. The class name.

2. The package name (if applicable).

3. The responsibilities of the class.

4. The names of other classes that the class will collaborate with to fulfill its re-
sponsibilities.

For example consider the CRC Card for a Playing Card class:

The responsibilities are listed on the left. The classes that the Playing Card class
will collaborate with are listed on the right.

The idea is that class design is undertaken by a team of developers. CRC cards are
used as a brainstorming technique. The team attempts to determine all the classes
and their responsibilities that will be needed for the application. The team runs
through various usage scenarios of the application. For e.g. one such scenario for
a game of cards may be “the player picks a card from the deck and hand adds it to
his hand”. The team uses the CRC cards to check if this scenario can be handled by
the responsibilites assigned to the classes. In this way, the design is refined until the
team agrees on a set of classes and has agreed on their responsibilities.

Using a small card keeps the complexity of the design at a minimum. It focuses
the designer on the essentials of the class and prevents him from getting into its
details and inner workings at a time when such detail is probably counter-productive.
It also forces the designer to refrain from giving the class too many responsibilities.

66

3.3 The Unified Modelling Language

THIS SECTION WILL GIVE YOU A QUICK OVERVIEW of the basics of UML. It is taken from
the user documentation of the UML tool Umbrello and wikipedia. Keep in mind that
this is not a comprehensive tutorial on UML but rather a brief introduction to UML
which can be read as a UML tutorial. If you would like to learn more about the
Unified Modelling Language, or in general about software analysis and design, refer
to one of the many books available on the topic. There are also a lot of tutorials on
the Internet which you can take as a starting point.

The Unified Modelling Language (UML) is a diagramming language or notation to
specify, visualize and document models of Object Oriented software systems. UML is
not a development method, that means it does not tell you what to do first and what
to do next or how to design your system, but it helps you to visualize your design
and communicate with others. UML is controlled by the Object Management Group
(OMG) and is the industry standard for graphically describing software. The OMG
have recently completed version 2 of the UML standard—known as UML2.

UML is designed for Object Oriented software design and has limited use for other
programming paradigms.

UML is not a method by itself, however it was designed to be compatible with the
leading object-oriented software development methods of its time (e.g., OMT, Booch,
Objectory). Since UML has evolved, some of these methods have been recast to take
advantage of the new notation (e.g., OMT) and new methods have been created based
on UML. Most well known is the Rational Unified Process (RUP) created by the Ra-
tional Software Corporation.

3.3.1 Modelling

There are three prominent parts of a system’s model:

• Functional Model

Showcases the functionality of the system from the user’s Point of View. In-
cludes Use Case Diagrams.

• Object Model

Showcases the structure and substructure of the system using objects, attributes,
operations, and associations. Includes Class Diagrams.

• Dynamic Model

Showcases the internal behavior of the system. Includes Sequence Diagrams,
Activity Diagrams and State Machine Diagrams.

UML is composed of many model elements that represent the different parts of a
software system. The UML elements are used to create diagrams, which represent
a certain part, or a point of view of the system. In UML 2.0 there are 13 types of
diagrams. Some of the more important diagrams are:

• Use Case Diagrams show actors (people or other users of the system), use cases
(the scenarios when they use the system), and their relationships

• Class Diagrams show classes and the relationships between them

67

• Sequence Diagrams show objects and a sequence of method calls they make to
other objects.

• Collaboration Diagrams show objects and their relationship, putting emphasis
on the objects that participate in the message exchange

• State Diagrams show states, state changes and events in an object or a part of
the system

• Activity Diagrams show activities and the changes from one activity to another
with the events occurring in some part of the system

• Component Diagrams show the high level programming components (such as
KParts or Java Beans).

• Deployment Diagrams show the instances of the components and their relation-
ships.

3.3.2 Use Case Diagrams

Use Case Diagrams describe the relationships and dependencies between a group of
Use Cases and the Actors participating in the process.

It is important to notice that Use Case Diagrams are not suited to represent the
design, and cannot describe the internals of a system. Use Case Diagrams are meant
to facilitate the communication with the future users of the system, and with the
customer, and are specially helpful to determine the required features the system is
to have. Use Case Diagrams tell, what the system should do but do not–and cannot–
specify how this is to be achieved.

A Use Case describes–from the point of view of the actors–a group of activities in
a system that produces a concrete, tangible result.

Use Cases are descriptions of the typical interactions between the users of a sys-
tem and the system itself. They represent the external interface of the system and
specify a form of requirements of what the system has to do (remember, only what,
not how).

When working with Use Cases, it is important to remember some simple rules:

• Each Use Case is related to at least one actor

• Each Use Case has an initiator (i.e. an actor)

• Each Use Case leads to a relevant result (a result with a business value)

An actor is an external entity (outside of the system) that interacts with the sys-
tem by participating (and often initiating) a Use Case. Actors can be in real life
people (for example users of the system), other computer systems or external events.

Actors do not represent the physical people or systems, but their role . This means
that when a person interacts with the system in different ways (assuming different
roles) he will be represented by several actors. For example a person that gives cus-
tomer support by the telephone and takes orders from the customer into the system
would be represented by an actor “Support Staff” and an actor “Sales Representative”

Use Case Descriptions are textual narratives of the Use Case. They usually take
the form of a note or a document that is somehow linked to the Use Case, and explains
the processes or activities that take place in the Use Case.

68

Figure 3.1: Umbrello UML Modeller showing a Use Case Diagram

3.3.3 Class Diagrams

Class Diagrams show the different classes that make up a system and how they relate
to each other. Class Diagrams are said to be ”static” diagrams because they show the
classes, along with their methods and attributes as well as the static relationships
between them: which classes ”know” about which classes or which classes ”are part”
of another class, but do not show the method calls between them.

A Class defines the attributes and the methods of a set of objects. All objects of
this class (instances of this class) share the same behavior, and have the same set of
attributes (each object has its own set). The term ”Type” is sometimes used instead
of Class, but it is important to mention that these two are not the same, and Type is
a more general term.

In UML, Classes are represented by rectangles, with the name of the class, and
can also show the attributes and operations of the class in two other ”compartments”
inside the rectangle.

In UML, Attributes are shown with at least their name, and can also show their
type, initial value and other properties. Attributes can also be displayed with their
visibility:

• + Stands for public attributes

• # Stands for protected attributes

• - Stands for private attributes

Operations (methods) are also displayed with at least their name, and can also
show their parameters and return types. Operations can, just as Attributes, display
their visibility:

69

Figure 3.2: Umbrello UML Modeller showing a Class Diagram

Figure 3.3: Visual representation of a Class in UML

70

Figure 3.4: Visual representation of a generalization in UML

• + Stands for public operations

• # Stands for protected operations

• - Stands for private operations

Class Associations

Classes can relate (be associated with) to each other in different ways:
Inheritance is one of the fundamental concepts of Object Orientated program-

ming, in which a class ”gains” all of the attributes and operations of the class it
inherits from, and can override/modify some of them, as well as add more attributes
and operations of its own.

• Generalization In UML, a Generalization association between two classes
puts them in a hierarchy representing the concept of inheritance of a derived
class from a base class. In UML, Generalizations are represented by a line
connecting the two classes, with an arrow on the side of the base class.

• Association An association represents a relationship between classes, and gives
the common semantics and structure for many types of ”connections” between
objects.

Associations are the mechanism that allows objects to communicate to each
other. It describes the connection between different classes (the connection be-
tween the actual objects is called object connection, or link .

Associations can have a role that specifies the purpose of the association and
can be uni- or bidirectional (indicates if the two objects participating in the
relationship can send messages to the other, of if only one of them knows about
the other). Each end of the association also has a multiplicity value, which
dictates how many objects on this side of the association can relate to one object
on the other side.

In UML, associations are represented as lines connecting the classes participat-
ing in the relationship, and can also show the role and the multiplicity of each of
the participants. Multiplicity is displayed as a range [min..max] of non-negative
values, with a star (*) on the maximum side representing infinite.

• Aggregations Aggregations are a special type of associations in which the two
participating classes don’t have an equal status, but make a ”whole-part” re-
lationship. An Aggregation describes how the class that takes the role of the

71

Figure 3.5: Visual representation of an Association in UML Aggregation

Figure 3.6: Visual representation of an Aggregation relationship in UML

whole, is composed (has) of other classes, which take the role of the parts. For
Aggregations, the class acting as the whole always has a multiplicity of one.

In UML, Aggregations are represented by an association that shows a rhomb
on the side of the whole.

• Composition Compositions are associations that represent very strong aggre-
gations. This means, Compositions form whole-part relationships as well, but
the relationship is so strong that the parts cannot exist on its own. They exist
only inside the whole, and if the whole is destroyed the parts die too.

In UML, Compositions are represented by a solid rhomb on the side of the
whole.

Other Class Diagram Items Class diagrams can contain several other items
besides classes.

• Interfaces are abstract classes which means instances can not be directly cre-
ated of them. They can contain operations but no attributes. Classes can in-
herit from interfaces (through a realisation association) and instances can then
be made of these diagrams.

• Datatypes are primitives which are typically built into a programming lan-
guage. Common examples include integers and booleans. They can not have
relationships to classes but classes can have relationships to them.

• Enums are a simple list of values. A typical example is an enum for days of the
week. The options of an enum are called Enum Literals. Like datatypes they
can not have relationships to classes but classes can have relationships to them.

• Packages represent a namespace in a programming language. In a diagram
they are used to represent parts of a system which contain more than one class,
maybe hundereds of classes.

Figure 3.7:

72

Figure 3.8: Umbrello UML Modeller showing a Sequence Diagram

3.3.4 Sequence Diagrams

Sequence Diagrams show the message exchange (i.e. method call) between several
Objects in a specific time-delimited situation. Objects are instances of classes. Se-
quence Diagrams put special emphasis in the order and the times in which the mes-
sages to the objects are sent.

In Sequence Diagrams objects are represented through vertical dashed lines, with
the name of the Object on the top. The time axis is also vertical, increasing down-
wards, so that messages are sent from one Object to another in the form of arrows
with the operation and parameters name.

Messages can be either synchronous, the normal type of message call where con-
trol is passed to the called object until that method has finished running, or asyn-
chronous where control is passed back directly to the calling object. Synchronous
messages have a vertical box on the side of the called object to show the flow of pro-
gram control.

3.3.5 Collaboration Diagrams

Collaboration Diagrams show the interactions occurring between the objects partic-
ipating in a specific situation. This is more or less the same information shown by
Sequence Diagrams but there the emphasis is put on how the interactions occur in
time while the Collaboration Diagrams put the relationships between the objects and
their topology in the foreground.

In Collaboration Diagrams messages sent from one object to another are repre-
sented by arrows, showing the message name, parameters, and the sequence of the
message. Collaboration Diagrams are specially well suited to showing a specific pro-
gram flow or situation and are one of the best diagram types to quickly demonstrate
or explain one process in the program logic.

73

Figure 3.9: Umbrello UML Modeller showing a Collaboration Diagram

3.3.6 State Diagram

State Diagrams show the different states of an Object during its life and the stimuli
that cause the Object to change its state.

State Diagrams view Objects as state machines or finite automata that can be in
one of a set of finite states and that can change its state via one of a finite set of
stimuli. For example an Object of type NetServer can be in one of following states
during its life:

• Ready

• Listening

• Working

• Stopped

and the events that can cause the Object to change states are

• Object is created

• Object receives message listen

• A Client requests a connection over the network

• A Client terminates a request

• The request is executed and terminated

• Object receives message stop ... etc

74

Figure 3.10: Umbrello UML Modeller showing a State Diagram

Activity Diagram

Activity Diagrams describe the sequence of activities in a system with the help of
Activities. Activity Diagrams are a special form of State Diagrams, that only (or
mostly) contains Activities.

Activity Diagrams are always associated to a Class , an Operation or a Use Case .
Activity Diagrams support sequential as well as parallel Activities. Parallel exe-

cution is represented via Fork/Wait icons, and for the Activities running in parallel,
it is not important the order in which they are carried out (they can be executed at
the same time or one after the other)

Component Diagrams

Component Diagrams show the software components (either component technologies
such as KParts, CORBA components or Java Beans or just sections of the system
which are clearly distinguishable) and the artifacts they are made out of such as
source code files, programming libraries or relational database tables.

Deployment Diagrams

Deployment diagrams show the runtime component instances and their associations.
They include Nodes which are physical resources, typically a single computer. They
also show interfaces and objects (class instances).

75

Figure 3.11: Umbrello UML Modeller showing an Activity Diagram

76

Chapter 4
Inheritance,

Polymorphism, and
Abstract Classes

Contents
4.1 Extending Existing Classes . 77
4.2 Inheritance and Class Hierarchy 80
4.3 Example: Vehicles . 81
4.4 Polymorphism . 83
4.5 Abstract Classes . 86
4.6 this and super . 88

4.6.1 The Special Variable this . 88
4.6.2 The Special Variable super . 89
4.6.3 Constructors in Subclasses . 90

A CLASS REPRESENTS A SET OF OBJECTS which share the same structure and behav-
iors. The class determines the structure of objects by specifying variables that are
contained in each instance of the class, and it determines behavior by providing the
instance methods that express the behavior of the objects. This is a powerful idea.
However, something like this can be done in most programming languages. The cen-
tral new idea in object-oriented programming–the idea that really distinguishes it
from traditional programming–is to allow classes to express the similarities among
objects that share some, but not all, of their structure and behavior. Such similarities
can be expressed using inheritance and polymorphism.

4.1 Extending Existing Classes

IN DAY-TO-DAY PROGRAMMING, especially for programmers who are just beginning to
work with objects, subclassing is used mainly in one situation: There is an existing
class that can be adapted with a few changes or additions. This is much more common
than designing groups of classes and subclasses from scratch. The existing class can
be extended to make a subclass. The syntax for this is

77

public class Subclass−name
extends Existing−class−name {

.

. / / Changes and a d d i t i o n s .

.
}

As an example, suppose you want to write a program that plays the card game,
Blackjack. You can use the Card, Hand, and Deck classes developed previously. How-
ever, a hand in the game of Blackjack is a little different from a hand of cards in
general, since it must be possible to compute the “value” of a Blackjack hand accord-
ing to the rules of the game. The rules are as follows: The value of a hand is obtained
by adding up the values of the cards in the hand.

• The value of a numeric card such as a three or a ten is its numerical value.

• The value of a Jack, Queen, or King is 10.

• The value of an Ace can be either 1 or 11. An Ace should be counted as 11 unless
doing so would put the total value of the hand over 21. Note that this means
that the second, third, or fourth Ace in the hand will always be counted as 1.

One way to handle this is to extend the existing Hand class by adding a method
that computes the Blackjack value of the hand. Here’s the definition of such a class:
public class BlackjackHand extends Hand {

/∗ ∗
∗ Computes and re tu rns the value o f t h i s hand i n the game
∗ of B lack jack .
∗ /

public int getBlackjackValue() {

int val; / / The value computed f o r the hand .
boolean ace; / / This w i l l be set to t r ue i f the

/ / hand conta ins an ace .
int cards; / / Number o f cards i n the hand .

val = 0;
ace = false;
cards = getCardCount();

for (int i = 0; i < cards; i++) {
/ / Add the value o f the i−th card i n the hand .

Card card; / / The i−th card ;
int cardVal; / / The b lack jack value o f the i−th card .
card = getCard(i);
cardVal = card.getValue(); / / The normal value , 1 to 13.
if (cardVal > 10) {

cardVal = 10; / / For a Jack , Queen , or King .
}
if (cardVal == 1) {

ace = true; / / There i s a t l e a s t one ace .
}
val = val + cardVal;

}

78

/ / Now, va l i s the value o f the hand , count ing any ace as 1.
/ / I f there i s an ace , and i f changing i t s value from 1 to
/ / 11 would leave the score less than or equal to 21 ,
/ / then do so by adding the ex t ra 10 po in t s to va l .

if (ace == true && val + 10 <= 21)
val = val + 10;

return val;

} / / end getBlack jackValue ()

} / / end c lass BlackjackHand

Since BlackjackHand is a subclass of Hand, an object of type BlackjackHand con-
tains all the instance variables and instance methods defined in Hand, plus the new
instance method named getBlackjackValue(). For example, if bjh is a variable
of type BlackjackHand, then all of the following are legal: bjh.getCardCount(),
bjh.removeCard(0), and bjh.getBlackjackValue(). The first two methods are de-
fined in Hand, but are inherited by BlackjackHand.

Inherited variables and methods from the Hand class can also be used in the def-
inition of BlackjackHand (except for any that are declared to be private, which pre-
vents access even by subclasses). The statement “cards = getCardCount();” in the
above definition of getBlackjackValue() calls the instance method getCardCount(),
which was defined in Hand.

Extending existing classes is an easy way to build on previous work. We’ll see
that many standard classes have been written specifically to be used as the basis for
making subclasses.

Access modifiers such as public and private are used to control access to mem-
bers of a class. There is one more access modifier, protected, that comes into the
picture when subclasses are taken into consideration. When protected is applied
as an access modifier to a method or member variable in a class, that member can
be used in subclasses – direct or indirect – of the class in which it is defined, but
it cannot be used in non-subclasses. (There is one exception: A protected member
can also be accessed by any class in the same package as the class that contains the
protected member. Recall that using no access modifier makes a member accessible
to classes in the same package, and nowhere else. Using the protected modifier is
strictly more liberal than using no modifier at all: It allows access from classes in the
same package and from subclasses that are not in the same package.)

When you declare a method or member variable to be protected, you are saying
that it is part of the implementation of the class, rather than part of the public inter-
face of the class. However, you are allowing subclasses to use and modify that part of
the implementation.

For example, consider a PairOfDice class that has instance variables die1 and
die2 to represent the numbers appearing on the two dice. We could make those vari-
ables private to make it impossible to change their values from outside the class,
while still allowing read access through getter methods. However, if we think it pos-
sible that PairOfDice will be used to create subclasses, we might want to make it pos-
sible for subclasses to change the numbers on the dice. For example, a GraphicalDice
subclass that draws the dice might want to change the numbers at other times be-
sides when the dice are rolled. In that case, we could make die1 and die2 protected,

79

which would allow the subclass to change their values without making them public
to the rest of the world. (An even better idea would be to define protected setter
methods for the variables. A setter method could, for example, ensure that the value
that is being assigned to the variable is in the legal range 1 through 6.)

4.2 Inheritance and Class Hierarchy

The term inheritance refers to the fact that one class can inherit part or all of
its structure and behavior from another class. The class that does the inheriting is
said to be a subclass of the class from which it inherits. If class B is a subclass of
class A, we also say that class A is a superclass of class B. (Sometimes the terms
derived class and base class are used instead of subclass and superclass; this is
the common terminology inC++.) A subclass can add to the structure and behavior
that it inherits. It can also replace or modify inherited behavior (though not inherited
structure). The relationship between subclass and superclass is sometimes shown by
a diagram in which the subclass is shown below, and connected to, its superclass.

In Java, to create a class named “B” as a subclass of a class named “A”, you would
write
class B extends A {

.

. / / a d d i t i o n s to , and m o d i f i c a t i o n s of ,

. / / s t u f f i n h e r i t e d from c lass A

.
}

Several classes can be declared as subclasses of the same superclass. The sub-
classes, which might be referred to as “sibling classes,” share some structures and
behaviors – namely, the ones they inherit from their common superclass. The super-
class expresses these shared structures and behaviors. In the diagram to the left,
classes B, C, and D are sibling classes. Inheritance can also extend over several “gen-
erations” of classes. This is shown in the diagram, where class E is a subclass of

80

class D which is itself a subclass of class A. In this case, class E is considered to be a
subclass of class A, even though it is not a direct subclass. This whole set of classes
forms a small class hierarchy.

4.3 Example: Vehicles

Let’s look at an example. Suppose that a program has to deal with motor vehicles,
including cars, trucks, and motorcycles. (This might be a program used by a Depart-
ment of Motor Vehicles to keep track of registrations.) The program could use a class
named Vehicle to represent all types of vehicles. Since cars, trucks, and motorcycles
are types of vehicles, they would be represented by subclasses of the Vehicle class,
as shown in this class hierarchy diagram:

The Vehicle class would include instance variables such as registrationNumber
and owner and instance methods such as transferOwnership(). These are variables
and methods common to all vehicles. The three subclasses of Vehicle – Car, Truck,
and Motorcycle – could then be used to hold variables and methods specific to partic-
ular types of vehicles. The Car class might add an instance variable numberOfDoors,
the Truck class might have numberOfAxels, and the Motorcycle class could have a
boolean variable hasSidecar. (Well, it could in theory at least, even if it might give a
chuckle to the people at the Department of Motor Vehicles.) The declarations of these
classes in Java program would look, in outline, like this (although in practice, they
would probably be public classes, defined in separate files):

class Vehicle {
int registrationNumber;
Person owner; / / (Assuming t h a t a Person c lass has been def ined !)
void transferOwnership(Person newOwner) {

. . .
}
. . .

}
class Car extends Vehicle {

int numberOfDoors;
. . .

}
class Truck extends Vehicle {

int numberOfAxels;
. . .

}
class Motorcycle extends Vehicle {

boolean hasSidecar;
. . .

}

81

Suppose that myCar is a variable of type Car that has been declared and initial-
ized with the statement Car myCar = new Car(); Given this declaration, a program
could refer to myCar.numberOfDoors, since numberOfDoors is an instance variable
in the class Car. But since class Car extends class Vehicle, a car also has all the
structure and behavior of a vehicle. This means that myCar.registrationNumber,
myCar.owner, and myCar.transferOwnership() also exist.

Now, in the real world, cars, trucks, and motorcycles are in fact vehicles. The
same is true in a program. That is, an object of type Caror Truck or Motorcycle is
automatically an object of type Vehicle too. This brings us to the following Important
Fact:

A variable that can hold a reference to an object of class A can also hold a
reference to an object belonging to any subclass of A.

The practical effect of this is that an object of type Car can be assigned to a vari-
able of type Vehicle; i.e. it would be legal to say Vehicle myVehicle = myCar; or
even Vehicle myVehicle = new Car();.

After either of these statements, the variable myVehicle holds a reference to a
Vehicle object that happens to be an instance of the subclass, Car. The object “re-
members” that it is in fact a Car, and not just a Vehicle. Information about the
actual class of an object is stored as part of that object. It is even possible to test
whether a given object belongs to a given class, using the instanceof operator. The
test: if (myVehicle instanceof Car) ... determines whether the object referred
to by myVehicle is in fact a car.

On the other hand, the assignment statement myCar = myVehicle; would be il-
legal because myVehicle could potentially refer to other types of vehicles that are
not cars. This is similar to a problem we saw previously: The computer will not al-
low you to assign an int value to a variable of type short, because not every int
is a short. Similarly, it will not allow you to assign a value of type Vehicle to
a variable of type Car because not every vehicle is a car. As in the case of int s
and shorts, the solution here is to use type-casting. If, for some reason, you hap-
pen to know that myVehicle does in fact refer to a Car, you can use the type cast
(Car)myVehicle to tell the computer to treat myVehicle as if it were actually of
type Car. So, you could say myCar = (Car)myVehicle; and you could even refer
to ((Car)myVehicle).numberOfDoors. As an example of how this could be used in a
program, suppose that you want to print out relevant data about a vehicle. You could
say:

System.out.println(" Vehicle Data : ");
System.out.println(" Regi s t rat ion number : "+ myVehicle.registrationNumber);
if (myVehicle instanceof Car) {

System.out.println(" Type of vehicle : Car ");
Car c;
c = (Car)myVehicle;
System.out.println("Number of doors : " + c.numberOfDoors);

}
else if (myVehicle instanceof Truck) {

System.out.println(" Type of vehicle : Truck ");
Truck t;
t = (Truck)myVehicle;
System.out.println("Number of axels : " + t.numberOfAxels);

}

82

else if (myVehicle instanceof Motorcycle) {
System.out.println(" Type of vehicle : Motorcycle ");
Motorcycle m;
m = (Motorcycle)myVehicle;
System.out.println(" Has a sidecar : " + m.hasSidecar);

}

Note that for object types, when the computer executes a program, it checks
whether type-casts are valid. So, for example, if myVehicle refers to an object of
type Truck, then the type cast (Car)myVehicle would be an error. When this happes,
an exception of type ClassCastException is thrown.

4.4 Polymorphism

As another example, consider a program that deals with shapes drawn on the screen.
Let’s say that the shapes include rectangles, ovals, and roundrects of various colors.
(A “roundrect” is just a rectangle with rounded corners.)

Three classes, Rectangle, Oval, and RoundRect, could be used to represent the
three types of shapes. These three classes would have a common superclass, Shape,
to represent features that all three shapes have in common. The Shape class could
include instance variables to represent the color, position, and size of a shape, and it
could include instance methods for changing the color, position, and size. Changing
the color, for example, might involve changing the value of an instance variable, and
then redrawing the shape in its new color:

class Shape {

Color color; / / Color o f the shape . (Reca l l t h a t c lass Color
/ / i s def ined i n package java . awt . Assume
/ / t h a t t h i s c lass has been imported .)

void setColor(Color newColor) {
/ / Method to change the co lo r o f the shape .

color = newColor; / / change value o f ins tance v a r i a b l e
redraw(); / / redraw shape , which w i l l appear i n new co lo r

}

void redraw() {
/ / method f o r drawing the shape

? ? ? / / what commands should go here?
}

. . . / / more ins tance v a r i a b l e s and methods

} / / end of c lass Shape

83

Now, you might see a problem here with the method redraw(). The problem is
that each different type of shape is drawn differently. The method setColor() can
be called for any type of shape. How does the computer know which shape to draw
when it executes the redraw() ? Informally, we can answer the question like this:
The computer executes redraw() by asking the shape to redraw itself. Every shape
object knows what it has to do to redraw itself.

In practice, this means that each of the specific shape classes has its own redraw()
method:

class Rectangle extends Shape {
void redraw() {

. . . / / commands f o r drawing a rec tang le
}
. . . / / poss ib ly , more methods and v a r i a b l e s

}
class Oval extends Shape {

void redraw() {
. . . / / commands f o r drawing an oval

}
. . . / / poss ib ly , more methods and v a r i a b l e s

}
class RoundRect extends Shape {

void redraw() {
. . . / / commands f o r drawing a rounded rec tang le

}
. . . / / poss ib ly , more methods and v a r i a b l e s

}

If oneShape is a variable of type Shape, it could refer to an object of any of the
types, Rectangle, Oval, or RoundRect. As a program executes, and the value of
oneShape changes, it could even refer to objects of different types at different times!
Whenever the statement oneShape.redraw(); is executed, the redraw method that is
actually called is the one appropriate for the type of object to which oneShape actually
refers. There may be no way of telling, from looking at the text of the program, what
shape this statement will draw, since it depends on the value that oneShape happens
to have when the program is executed. Even more is true. Suppose the statement
is in a loop and gets executed many times. If the value of oneShape changes as the
loop is executed, it is possible that the very same statement “oneShape.redraw();”
will call different methods and draw different shapes as it is executed over and over.
We say that the redraw() method is polymorphic. A method is polymorphic if the
action performed by the method depends on the actual type of the object to which
the method is applied. Polymorphism is one of the major distinguishing features of
object-oriented programming.

Perhaps this becomes more understandable if we change our terminology a bit:
In object-oriented programming, calling a method is often referred to as sending a
message to an object. The object responds to the message by executing the appro-
priate method. The statement “oneShape.redraw();” is a message to the object re-
ferred to by oneShape. Since that object knows what type of object it is, it knows how
it should respond to the message. From this point of view, the computer always exe-
cutes “oneShape.redraw();” in the same way: by sending a message. The response
to the message depends, naturally, on who receives it. From this point of view, objects
are active entities that send and receive messages, and polymorphism is a natural,
even necessary, part of this view. Polymorphism just means that different objects can

84

respond to the same message in different ways.
One of the most beautiful things about polymorphism is that it lets code that you

write do things that you didn’t even conceive of, at the time you wrote it. Suppose
that I decide to add beveled rectangles to the types of shapes my program can deal
with. A beveled rectangle has a triangle cut off each corner:

To implement beveled rectangles, I can write a new subclass, BeveledRect, of
class Shape and give it its own redraw() method. Automatically, code that I wrote
previously – such as the statement oneShape.redraw() – can now suddenly start
drawing beveled rectangles, even though the beveled rectangle class didn’t exist when
I wrote the statement!

In the statement “oneShape.redraw();”, the redraw message is sent to the object
oneShape. Look back at the method from the Shape class for changing the color of a
shape:

void setColor(Color newColor) {
color = newColor; / / change value o f ins tance v a r i a b l e
redraw(); / / redraw shape , which w i l l appear i n new co lo r

}

A redraw message is sent here, but which object is it sent to? Well, the setColor
method is itself a message that was sent to some object. The answer is that the
redraw message is sent to that same object, the one that received the setColor mes-
sage. If that object is a rectangle, then it is the redraw() method from the Rectangle
class that is executed. If the object is an oval, then it is the redraw() method from
the Oval class. This is what you should expect, but it means that the redraw();
statement in the setColor() method does not necessarily call the redraw() method
in the Shape class! The redraw() method that is executed could be in any subclass of
Shape.

Again, this is not a real surprise if you think about it in the right way. Remember
that an instance method is always contained in an object. The class only contains
the source code for the method. When a Rectangle object is created, it contains a
redraw() method. The source code for that method is in the Rectangle class. The ob-
ject also contains a setColor() method. Since the Rectangle class does not define a
setColor() method, the source code for the rectangle’s setColor() method comes
from the superclass, Shape, but the method itself is in the object of type Rectangle.
Even though the source codes for the two methods are in different classes, the meth-
ods themselves are part of the same object. When the rectangle’s setColor() method
is executed and calls redraw(), the redraw() method that is executed is the one in
the same object.

85

4.5 Abstract Classes

Whenever a Rectangle, Oval, or RoundRect object has to draw itself, it is the redraw()
method in the appropriate class that is executed. This leaves open the question, What
does the redraw() method in the Shape class do? How should it be defined?

The answer may be surprising: We should leave it blank! The fact is that the
class Shape represents the abstract idea of a shape, and there is no way to draw such
a thing. Only particular, concrete shapes like rectangles and ovals can be drawn. So,
why should there even be a redraw() method in the Shape class? Well, it has to be
there, or it would be illegal to call it in the setColor() method of the Shape class, and
it would be illegal to write “oneShape.redraw() ;”, where oneShape is a variable of
type Shape. The compiler would complain that oneShape is a variable of type Shape
and there’s no redraw() method in the Shape class.

Nevertheless the version of redraw() in the Shape class itself will never actually
be called. In fact, if you think about it, there can never be any reason to construct an
actual object of type Shape ! You can have variables of type Shape, but the objects
they refer to will always belong to one of the subclasses of Shape. We say that Shape
is an abstract class. An abstract class is one that is not used to construct objects,
but only as a basis for making subclasses. An abstract class exists only to express
the common properties of all its subclasses. A class that is not abstract is said to be
concrete. You can create objects belonging to a concrete class, but not to an abstract
class. A variable whose type is given by an abstract class can only refer to objects
that belong to concrete subclasses of the abstract class.

Similarly, we say that the redraw() method in class Shape is an abstract method,
since it is never meant to be called. In fact, there is nothing for it to do – any actual
redrawing is done by redraw() methods in the subclasses of Shape. The redraw()
method in Shape has to be there. But it is there only to tell the computer that all
Shapes understand the redraw message. As an abstract method, it exists merely to
specify the common interface of all the actual, concrete versions of redraw() in the
subclasses of Shape. There is no reason for the abstract redraw() in class Shape to
contain any code at all.

Shape and its redraw() method are semantically abstract. You can also tell the
computer, syntactically, that they are abstract by adding the modifier “abstract” to
their definitions. For an abstract method, the block of code that gives the implemen-
tation of an ordinary method is replaced by a semicolon. An implementation must
be provided for the abstract method in any concrete subclass of the abstract class.
Here’s what the Shape class would look like as an abstract class:

public abstract class Shape {

Color color; / / co l o r o f shape .

void setColor(Color newColor) { / / method to change the co lo r o f the shape
color = newColor; / / change value o f ins tance v a r i a b l e
redraw(); / / redraw shape , which w i l l appear i n new co lo r

}

abstract void redraw();
/ / abs t r ac t method−−must be def ined i n concrete subclasses

. . . / / more ins tance v a r i a b l e s and methods
} / / end of c lass Shape

86

Once you have declared the class to be abstract, it becomes illegal to try to create
actual objects of type Shape, and the computer will report a syntax error if you try to
do so.

Recall that a class that is not explicitly declared to be a subclass of some other
class is automatically made a subclass of the standard class Object. That is, a class
declaration with no “extends” part such as public class myClass { . . . is ex-
actly equivalent to public class myClass extends Object {

This means that class Object is at the top of a huge class hierarchy that includes
every other class. (Semantially, Object is an abstract class, in fact the most abstract
class of all. Curiously, however, it is not declared to be abstract syntactially, which
means that you can create objects of type Object. What you would do with them,
however, I have no idea.)

Since every class is a subclass of Object, a variable of type Object can refer to
any object whatsoever, of any type. Java has several standard data structures that
are designed to hold Object s, but since every object is an instance of class Object,
these data structures can actually hold any object whatsoever. One example is the
“ArrayList” data structure, which is defined by the class ArrayList in the package
java.util. An ArrayList is simply a list of Object s. This class is very convenient,
because an ArrayList can hold any number of objects, and it will grow, when neces-
sary, as objects are added to it. Since the items in the list are of type Object, the list
can actually hold objects of any type.

A program that wants to keep track of various Shape s that have been drawn on
the screen can store those shapes in an ArrayList. Suppose that the ArrayList is
named listOfShapes. A shape, oneShape for example, can be added to the end of the
list by calling the instance method “listOfShapes.add(oneShape);” and removed
from the list with the instance method “listOfShapes.remove(oneShape);”. The
number of shapes in the list is given by the method “listOfShapes.size()”. It is
possible to retrieve the ith object from the list with the call “listOfShapes.get(i)”.
(Items in the list are numbered from 0 to listOfShapes.size()−1.) However, note
that this method returns an Object, not a Shape. (Of course, the people who wrote
the ArrayList class didn’t even know about Shapes, so the method they wrote could
hardly have a return type of Shape!) Since you know that the items in the list
are, in fact, Shapes and not just Objects, you can type-cast the Object returned
by listOfShapes.get(i) to be a value of type Shape by saying:
oneShape = (Shape)listOfShapes.get(i);.

Let’s say, for example, that you want to redraw all the shapes in the list. You could
do this with a simple for loop, which is lovely example of object-oriented program-
ming and of polymorphism:

for (int i = 0; i < listOfShapes.size(); i++) {
Shape s; / / i−th element o f the l i s t , considered as a Shape
s = (Shape)listOfShapes.get(i);
s.redraw(); / / What ’ s drawn here depends on what type of shape s i s !

}

The sample source code file ShapeDraw.java uses an abstract Shape class and an
ArrayList to hold a list of shapes. The file defines an applet in which the user can
add various shapes to a drawing area. Once a shape is in the drawing area, the user
can use the mouse to drag it around.

You might want to look at this file, even though you won’t be able to understand
all of it at this time. Even the definitions of the shape classes are somewhat different

87

from those that I have described in this section. (For example, the draw() method
has a parameter of type Graphics. This parameter is required because of the way
Java handles all drawing.) I’ll return to this example in later chapters when you
know more about GUI programming. However, it would still be worthwhile to look at
the definition of the Shape class and its subclasses in the source code. You might also
check how an ArrayList is used to hold the list of shapes.

If you click one of the buttons along the bottom of this applet, a shape will be
added to the screen in the upper left corner of the applet. The color of the shape is
given by the “pop-up menu” in the lower right. Once a shape is on the screen, you can
drag it around with the mouse. A shape will maintain the same front-to-back order
with respect to other shapes on the screen, even while you are dragging it. However,
you can move a shape out in front of all the other shapes if you hold down the shift
key as you click on it.

In the applet the only time when the actual class of a shape is used is when that
shape is added to the screen. Once the shape has been created, it is manipulated
entirely as an abstract shape. The method that implements dragging, for example,
works only with variables of type Shape. As the Shape is being dragged, the dragging
method just calls the Shape’s draw method each time the shape has to be drawn, so
it doesn’t have to know how to draw the shape or even what type of shape it is. The
object is responsible for drawing itself. If I wanted to add a new type of shape to the
program, I would define a new subclass of Shape, add another button to the applet,
and program the button to add the correct type of shape to the screen. No other
changes in the programming would be necessary.

4.6 this and super

ALTHOUGH THE BASIC IDEAS of object-oriented programming are reasonably simple and
clear, they are subtle, and they take time to get used to. And unfortunately, beyond
the basic ideas there are a lot of details. This section and the next cover more of those
annoying details. You should not necessarily master everything in these two sections
the first time through, but you should read it to be aware of what is possible. For the
most part, when I need to use this material later in the text, I will explain it again
briefly, or I will refer you back to it. In this section, we’ll look at two variables, this
and super, that are automatically defined in any instance method.

4.6.1 The Special Variable this

A static member of a class has a simple name, which can only be used inside the class.
For use outside the class, it has a full name of the form class−name.simple−name.
For example, “System.out” is a static member variable with simple name “out” in the
class “System”. It’s always legal to use the full name of a static member, even within
the class where it’s defined. Sometimes it’s even necessary, as when the simple name
of a static member variable is hidden by a local variable of the same name.

Instance variables and instance methods also have simple names. The simple
name of such an instance member can be used in instance methods in the class where
the instance member is defined. Instance members also have full names, but remem-
ber that instance variables and methods are actually contained in objects, not classes.
The full name of an instance member has to contain a reference to the object that con-
tains the instance member. To get at an instance variable or method from outside the

88

class definition, you need a variable that refers to the object. Then the full name is
of the form variable−name.simple−name. But suppose you are writing the definition
of an instance method in some class. How can you get a reference to the object that
contains that instance method? You might need such a reference, for example, if you
want to use the full name of an instance variable, because the simple name of the
instance variable is hidden by a local variable or parameter.

Java provides a special, predefined variable named “this ” that you can use for
such purposes. The variable, this, is used in the source code of an instance method to
refer to the object that contains the method. This intent of the name, this, is to refer
to “this object,” the one right here that this very method is in. If x is an instance vari-
able in the same object, then this.x can be used as a full name for that variable. If
otherMethod() is an instance method in the same object, then this.otherMethod()
could be used to call that method. Whenever the computer executes an instance
method, it automatically sets the variable, this, to refer to the object that contains
the method.

One common use of thisis in constructors. For example:

public class Student {

private String name; / / Name of the student .

public Student(String name) {
/ / Const ruc tor . Create a student w i th s p e c i f i e d name .

this.name = name;
} .

. / / More v a r i a b l e s and methods .

.
}

In the constructor, the instance variable called name is hidden by a formal pa-
rameter. However, the instance variable can still be referred to by its full name,
this.name. In the assignment statement, the value of the formal parameter, name,
is assigned to the instance variable, this.name. This is considered to be acceptable
style: There is no need to dream up cute new names for formal parameters that are
just used to initialize instance variables. You can use the same name for the param-
eter as for the instance variable.

There are other uses for this. Sometimes, when you are writing an instance
method, you need to pass the object that contains the method to a method, as an
actual parameter. In that case, you can use this as the actual parameter. For ex-
ample, if you wanted to print out a string representation of the object, you could say
“System.out.println(this);”. Or you could assign the value of this to another
variable in an assignment statement. In fact, you can do anything with this that
you could do with any other variable, except change its value.

4.6.2 The Special Variable super

Java also defines another special variable, named “super”, for use in the definitions
of instance methods. The variable super is for use in a subclass. Like this, super
refers to the object that contains the method. But it’s forgetful. It forgets that the
object belongs to the class you are writing, and it remembers only that it belongs to
the superclass of that class. The point is that the class can contain additions and
modifications to the superclass. super doesn’t know about any of those additions and

89

modifications; it can only be used to refer to methods and variables in the superclass.
Let’s say that the class you are writing contains an instance method doSomething().

Consider the method call statement super.doSomething(). Now, super doesn’t know
anything about the doSomething() method in the subclass. It only knows about
things in the superclass, so it tries to execute a method named doSomething() from
the superclass. If there is none – if the doSomething() method was an addition rather
than a modification – you’ll get a syntax error.

The reason super exists is so you can get access to things in the superclass that
are hidden by things in the subclass. For example, super.x always refers to an in-
stance variable named x in the superclass. This can be useful for the following reason:
If a class contains an instance variable with the same name as an instance variable
in its superclass, then an object of that class will actually contain two variables with
the same name: one defined as part of the class itself and one defined as part of the
superclass. The variable in the subclass does not replace the variable of the same
name in the superclass; it merely hides it. The variable from the superclass can still
be accessed, using super.

When you write a method in a subclass that has the same signature as a method
in its superclass, the method from the superclass is hidden in the same way. We say
that the method in the subclass overrides the method from the superclass. Again,
however, super can be used to access the method from the superclass.

The major use of super is to override a method with a new method that extends
the behavior of the inherited method, instead of replacing that behavior entirely.
The new method can use super to call the method from the superclass, and then
it can add additional code to provide additional behavior. As an example, suppose
you have a PairOfDice class that includes a roll() method. Suppose that you
want a subclass, GraphicalDice, to represent a pair of dice drawn on the computer
screen. The roll() method in the GraphicalDice class should do everything that
the roll() method in the PairOfDice class does. We can express this with a call to
super.roll(), which calls the method in the superclass. But in addition to that, the
roll() method for a GraphicalDice object has to redraw the dice to show the new
values. The GraphicalDice class might look something like this:

public class GraphicalDice extends PairOfDice {

public void roll() {
/ / Ro l l the dice , and redraw them .

super.roll(); / / Ca l l the r o l l method from PairOfDice .
redraw(); / / Ca l l a method to draw the dice .

} .
. / / More s t u f f , i n c l u d i n g d e f i n i t i o n o f redraw () .
.

}

Note that this allows you to extend the behavior of the roll() method even if you
don’t know how the method is implemented in the superclass!

4.6.3 Constructors in Subclasses

Constructors are not inherited. That is, if you extend an existing class to make a
subclass, the constructors in the superclass do not become part of the subclass. If
you want constructors in the subclass, you have to define new ones from scratch. If

90

you don’t define any constructors in the subclass, then the computer will make up a
default constructor, with no parameters, for you.

This could be a problem, if there is a constructor in the superclass that does a lot
of necessary work. It looks like you might have to repeat all that work in the subclass!
This could be a real problem if you don’t have the source code to the superclass, and
don’t know how it works, or if the constructor in the superclass initializes private
member variables that you don’t even have access to in the subclass!

Obviously, there has to be some fix for this, and there is. It involves the special
variable, super. As the very first statement in a constructor, you can use super to call
a constructor from the superclass. The notation for this is a bit ugly and misleading,
and it can only be used in this one particular circumstance: It looks like you are
calling super as a method (even though super is not a method and you can’t call
constructors the same way you call other methods anyway). As an example, assume
that the PairOfDice class has a constructor that takes two integers as parameters.
Consider a subclass:

public class GraphicalDice extends PairOfDice {

public GraphicalDice() { / / Const ruc tor f o r t h i s c lass .

super(3,4); / / Ca l l the cons t ruc to r from the
/ / PairOfDice class , w i th parameters 3 , 4 .

initializeGraphics(); / / Do some i n i t i a l i z a t i o n s p e c i f i c
/ / to the GraphicalDice c lass .

} .
. / / More cons t ruc to rs , methods , v a r i a b l e s . . .
.

}

The statement “super(3,4);” calls the constructor from the superclass. This call
must be the first line of the constructor in the subclass. Note that if you don’t explic-
itly call a constructor from the superclass in this way, then the default constructor
from the superclass, the one with no parameters, will be called automatically.

This might seem rather technical, but unfortunately it is sometimes necessary.
By the way, you can use the special variable this in exactly the same way to call
another constructor in the same class. This can be useful since it can save you from
repeating the same code in several constructors.

91

92

Chapter 5
Interfaces, Nested Classes,

and Other Details

Contents
5.1 Interfaces . 93

5.2 Nested Classes . 96

5.2.1 Anonymous Inner Classes . 98

5.3 Mixing Static and Non-static . 99

5.3.1 Static Import . 100

5.4 Enums as Classes . 101

THIS SECTION simply pulls together a few more miscellaneous features of object
oriented programming in Java. Read it now, or just look through it and refer back
to it later when you need this material. (You will need to know about the first topic,
interfaces, almost as soon as we begin GUI programming.)

5.1 Interfaces

Some object-oriented programming languages, such as C++, allow a class to extend
two or more superclasses. This is called multiple inheritance . In the illustra-
tion below, for example, classE is shown as having both classA and classB as direct
superclasses, while classF has three direct superclasses.

93

Such multiple inheritance is not allowed in Java. The designers of Java wanted
to keep the language reasonably simple, and felt that the benefits of multiple inher-
itance were not worth the cost in increased complexity. However, Java does have a
feature that can be used to accomplish many of the same goals as multiple inheri-
tance: interfaces.

We’ve encountered the term “interface” before, in connection with black boxes in
general and methods in particular. The interface of a method consists of the name of
the method, its return type, and the number and types of its parameters. This is the
information you need to know if you want to call the method. A method also has an
implementation: the block of code which defines it and which is executed when the
method is called.

In Java, interface is a reserved word with an additional, technical meaning. An
“interface” in this sense consists of a set of instance method interfaces, without
any associated implementations. (Actually, a Java interface can contain other things
as well, but we won’t discuss them here.) A class can implement an interface by
providing an implementation for each of the methods specified by the interface. Here
is an example of a very simple Java interface:

public interface Drawable {
public void draw(Graphics g);

}

This looks much like a class definition, except that the implementation of the
draw() method is omitted. A class that implements the interface Drawable must
provide an implementation for this method. Of course, the class can also include
other methods and variables. For example,

public class Line implements Drawable {
public void draw(Graphics g) {

. . . / / do something −− presumably , draw a l i n e
} . . . / / o ther methods and v a r i a b l e s

}

Note that to implement an interface, a class must do more than simply pro-
vide an implementation for each method in the interface; it must also state that

94

it implements the interface, using the reserved word implements as in this exam-
ple: “public class Line implements Drawable”. Any class that implements the
Drawable interface defines a draw() instance method. Any object created from such
a class includes a draw() method. We say that an object implements an interface
if it belongs to a class that implements the interface. For example, any object of type
Line implements the Drawable interface.

While a class can extend only one other class, it can implement any number of
interfaces. In fact, a class can both extend one other class and implement one or more
interfaces. So, we can have things like

class FilledCircle extends Circle
implements Drawable, Fillable {

. . .
}

The point of all this is that, although interfaces are not classes, they are some-
thing very similar. An interface is very much like an abstract class, that is, a class
that can never be used for constructing objects, but can be used as a basis for making
subclasses. The methods in an interface are abstract methods, which must be imple-
mented in any concrete class that implements the interface. And as with abstract
classes, even though you can’t construct an object from an interface, you can declare
a variable whose type is given by the interface. For example, if Drawable is an inter-
face, and if Line and FilledCircle are classes that implement Drawable, then you
could say:

Drawable figure; / / Declare a v a r i a b l e o f type Drawable . I t can
/ / r e f e r to any ob jec t t h a t implements the
/ / Drawable i n t e r f a c e .

figure = new Line(); / / f i g u r e now r e f e r s to an ob jec t o f c lass Line
figure.draw(g); / / c a l l s draw () method from c lass Line

figure = new FilledCircle(); / / Now, f i g u r e r e f e r s to an ob jec t
/ / o f c lass F i l l e d C i r c l e .

figure.draw(g); / / c a l l s draw () method from c lass F i l l e d C i r c l e

A variable of type Drawable can refer to any object of any class that implements
the Drawable interface. A statement like figure.draw(g), above, is legal because
figure is of type Drawable, and any Drawable object has a draw() method. So,
whatever object figure refers to, that object must have a draw() method.

Note that a type is something that can be used to declare variables. A type can
also be used to specify the type of a parameter in a method, or the return type of a
method. In Java, a type can be either a class, an interface, or one of the eight built-in
primitive types. These are the only possibilities. Of these, however, only classes can
be used to construct new objects.

You are not likely to need to write your own interfaces until you get to the point
of writing fairly complex programs. However, there are a few interfaces that are
used in important ways in Java’s standard packages. You’ll learn about some of these
standard interfaces in the next few chapters.

95

5.2 Nested Classes

A class seems like it should be a pretty important thing. A class is a high-level build-
ing block of a program, representing a potentially complex idea and its associated
data and behaviors. I’ve always felt a bit silly writing tiny little classes that exist
only to group a few scraps of data together. However, such trivial classes are often
useful and even essential. Fortunately, in Java, I can ease the embarrassment, be-
cause one class can be nested inside another class. My trivial little class doesn’t have
to stand on its own. It becomes part of a larger more respectable class. This is par-
ticularly useful when you want to create a little class specifically to support the work
of a larger class. And, more seriously, there are other good reasons for nesting the
definition of one class inside another class.

In Java, a nested class is any class whose definition is inside the definition of
another class. Nested classes can be either named or anonymous. I will come back to
the topic of anonymous classes later in this section. A named nested class, like most
other things that occur in classes, can be either static or non-static.

The definition of a static nested looks just like the definition of any other class,
except that it is nested inside another class and it has the modifier static as part of
its declaration. A static nested class is part of the static structure of the containing
class. It can be used inside that class to create objects in the usual way. If it has not
been declared private, then it can also be used outside the containing class, but when
it is used outside the class, its name must indicate its membership in the containing
class. This is similar to other static components of a class: A static nested class is
part of the class itself in the same way that static member variables are parts of the
class itself.

For example, suppose a class named WireFrameModel represents a set of lines
in three-dimensional space. (Such models are used to represent three-dimensional
objects in graphics programs.) Suppose that the WireFrameModel class contains a
static nested class, Line, that represents a single line. Then, outside of the class
WireFrameModel, the Line class would be referred to as WireFrameModel.Line. Of
course, this just follows the normal naming convention for static members of a class.
The definition of the WireFrameModel class with its nested Line class would look, in
outline, like this:

public class WireFrameModel {

. . . / / o ther members o f the WireFrameModel c lass

static public class Line {
/ / Represents a l i n e from the p o in t (x1 , y1 , z1)
/ / to the po in t (x2 , y2 , z2) i n 3−dimensional space .

double x1, y1, z1;
double x2, y2, z2;

} / / end c lass Line

. . . / / o ther members o f the WireFrameModel c lass

} / / end WireFrameModel

Inside the WireFrameModel class, a Line object would be created with the con-
structor “new Line()”. Outside the class, “new WireFrameModel.Line()” would be
used.

96

A static nested class has full access to the static members of the containing class,
even to the private members. Similarly, the containing class has full access to the
members of the nested class. This can be another motivation for declaring a nested
class, since it lets you give one class access to the private members of another class
without making those members generally available to other classes.

When you compile the above class definition, two class files will be created. Even
though the definition of Line is nested inside WireFrameModel, the compiled Line
class is stored in a separate file. The full name of the class file for the Line class will
be WireFrameModel$Line.class.

Non-static nested classes are referred to as inner classes. Inner classes are not,
in practice, very different from static nested classes, but a non-static nested class is
actually associated with an object rather than to the class in which it is nested. This
can take some getting used to.

Any non-static member of a class is not really part of the class itself (although its
source code is contained in the class definition). This is true for inner classes, just
as it is for any other non-static part of a class. The non-static members of a class
specify what will be contained in objects that are created from that class. The same
is true – at least logically – for inner classes. It’s as if each object that belongs to
the containing class has its own copy of the nested class. This copy has access to
all the instance methods and instance variables of the object, even to those that are
declared private. The two copies of the inner class in two different objects differ
because the instance variables and methods they refer to are in different objects. In
fact, the rule for deciding whether a nested class should be static or non-static is
simple: If the nested class needs to use any instance variable or instance method,
make it non-static. Otherwise, it might as well be static.

From outside the containing class, a non-static nested class has to be referred to
using a name of the form variableName. NestedClassName, where variableName is a
variable that refers to the object that contains the class. This is actually rather rare,
however. A non-static nested class is generally used only inside the class in which it
is nested, and there it can be referred to by its simple name.

In order to create an object that belongs to an inner class, you must first have an
object that belongs to the containing class. (When working inside the class, the object
“this” is used implicitly.) The inner class object is permanently associated with the
containing class object, and it has complete access to the members of the containing
class object. Looking at an example will help, and will hopefully convince you that
inner classes are really very natural. Consider a class that represents poker games.
This class might include a nested class to represent the players of the game. This
structure of the PokerGame class could be:

public class PokerGame { / / Represents a game of poker .

private class Player { / / Represents one of the p layers i n t h i s game .
...

} / / end c lass Player

private Deck deck; / / A deck o f cards f o r p lay ing the game .
private int pot; / / The amount o f money t h a t has been bet .
...

} / / end c lass PokerGame

If game is a variable of type PokerGame, then, conceptually, game contains its own

97

copy of the Player class. In an an instance method of a PokerGame object, a new
Player object would be created by saying “new Player()”, just as for any other class.
(A Player object could be created outside the PokerGame class with an expression
such as “game.newÂăPlayer()”. Again, however, this is very rare.) The Player object
will have access to the deck and pot instance variables in the PokerGame object. Each
PokerGame object has its own deck and pot and Players. Players of that poker game
use the deck and pot for that game; players of another poker game use the other
game’s deck and pot. That’s the effect of making the Player class non-static. This is
the most natural way for players to behave. A Player object represents a player of
one particular poker game. If Player were a static nested class, on the other hand, it
would represent the general idea of a poker player, independent of a particular poker
game.

5.2.1 Anonymous Inner Classes

In some cases, you might find yourself writing an inner class and then using that class
in just a single line of your program. Is it worth creating such a class? Indeed, it can
be, but for cases like this you have the option of using an anonymous inner class.
An anonymous class is created with a variation of the newoperator that has the form
new superclass−or−interface(parameter−list) {

methods−and−variables
}

This constructor defines a new class, without giving it a name, and it simulta-
neously creates an object that belongs to that class. This form of the newoperator
can be used in any statement where a regular “new” could be used. The intention of
this expression is to create: “a new object belonging to a class that is the same as
superclass-or-interface but with these methods-and-variables added.” The effect is to
create a uniquely customized object, just at the point in the program where you need
it. Note that it is possible to base an anonymous class on an interface, rather than a
class. In this case, the anonymous class must implement the interface by defining all
the methods that are declared in the interface. If an interface is used as a base, the
parameter−list is empty. Otherwise, it contains parameters for a constructor in the
superclass.

Anonymous classes are often used for handling events in graphical user inter-
faces, and we will encounter them several times in the chapters on GUI program-
ming. For now, we will look at one not-very-plausible example. Consider the Drawable
interface, which is defined earlier in this section. Suppose that we want a Drawable
object that draws a filled, red, 100-pixel square. Rather than defining a new, separate
class and then using that class to create the object, we can use an anonymous class
to create the object in one statement:
Drawable redSquare = new Drawable() {

void draw(Graphics g) {
g.setColor(Color.red);
g.fillRect(10,10,100,100);

}
};

The semicolon at the end of this statement is not part of the class definition. It’s
the semicolon that is required at the end of every declaration statement.

When a Java class is compiled, each anonymous nested class will produce a sep-
arate class file. If the name of the main class is MainClass, for example, then the

98

names of the class files for the anonymous nested classes will be MainClass$1.class,
MainClass$2.class, MainClass$3.class, and so on.

5.3 Mixing Static and Non-static

Classes, as I’ve said, have two very distinct purposes. A class can be used to group
together a set of static member variables and static member methods. Or it can be
used as a factory for making objects. The non-static variables and methods in the
class definition specify the instance variables and methods of the objects. In most
cases, a class performs one or the other of these roles, not both.

Sometimes, however, static and non-static members are mixed in a single class.
In this case, the class plays a dual role. Sometimes, these roles are completely sepa-
rate. It is also possible for the static and non-static parts of a class to interact. This
happens when instance methods use static member variables or call static member
methods. An instance method belongs to an object, not to the class itself, and there
can be many objects with their own versions of the instance method. But there is only
one copy of a static member variable. So, effectively, we have many objects sharing
that one variable.

Suppose, for example, that we want to write a PairOfDice class that uses the
Random class for rolling the dice. To do this, a PairOfDice object needs access to an
object of type Random. But there is no need for each PairOfDice object to have a
separate Randomobject. (In fact, it would not even be a good idea: Because of the way
ran dom number generators work, a program should, in general, use only one source
of random numbers.) A nice solution is to have a single Random variable as a static
member of the PairOfDice class, so that it can be shared by all PairOfDice objects.
For example:

import java.util.Random;

public class PairOfDice {

\code{private static Random randGen = new Random();}

public int die1; / / Number showing on the f i r s t d ie .
public int die2; / / Number showing on the second d ie .

public PairOfDice() {
/ / Const ruc tor . Creates a p a i r o f d ice t h a t
/ / i n i t i a l l y shows random values .

roll();
}
public void roll() {

/ / Ro l l the d ice by s e t t i n g each of the d ice to be
/ / a random number between 1 and 6.

die1 = randGen.nextInt(6) + 1;
die2 = randGen.nextInt(6) + 1;

}
} / / end c lass PairOfDice

As another example, let’s rewrite the Student class. I’ve added an ID for each
student and a static member called nextUniqueID . Although there is an ID variable
in each student object, there is only one nextUniqueID variable.

99

public class Student {

private String name; / / Student ’ s name .
private int ID; / / Unique ID number f o r t h i s s tudent .
public double test1, test2, test3; / / Grades on three t e s t s .

private static int nextUniqueID = 0;
/ / keep t r ack o f next a v a i l a b l e unique ID number

Student(String theName) {
/ / Const ruc tor f o r Student ob jec ts ; prov ides a name f o r the Student ,
/ / and assigns the student a unique ID number .

name = theName;
nextUniqueID++;
ID = nextUniqueID;

}
public String getName() {

/ / Accessor method f o r reading value o f p r i v a t e
/ / ins tance var iab le , name .

return name;
}
public int getID() {

/ / Accessor method f o r reading value o f ID .
return ID;

}
public double getAverage() {

/ / Compute average t e s t grade .
return (test1 + test2 + test3) / 3;

}
} / / end of c lass Student

The initialization “nextUniqueID = 0” is done once, when the class is first loaded.
Whenever a Student object is constructed and the constructor says “nextUniqueID++;”,
it’s always the same static member variable that is being incremented. When the very
first Student object is created, nextUniqueID becomes 1. When the second object is
created, nextUniqueID becomes 2. After the third object, it becomes 3. And so on.
The constructor stores the new value of nextUniqueID in the ID variable of the object
that is being created. Of course, ID is an instance variable, so every object has its
own individual ID variable. The class is constructed so that each student will au-
tomatically get a different value for its IDvariable. Furthermore, the ID variable is
private, so there is no way for this variable to be tampered with after the object has
been created. You are guaranteed, just by the way the class is designed, that every
student object will have its own permanent, unique identification number. Which is
kind of cool if you think about it.

5.3.1 Static Import

The import directive makes it possible to refer to a class such as java.awt.Color
using its simple name, Color. All you have to do is say import java.awt.Color or
import java.awt.∗. Uou still have to use compound names to refer to static member
variables such as System.out and to static methods such as Math.sqrt.

Java 5.0 introduced a new form of the import directive that can be used to import
static members of a class in the same way that the ordinary import directive im-
ports classes from a package. The new form of the directive is called a static import,

100

and it has syntax

import static package−name class−name static−member−name;

to import one static member name from a class, or

import static package−name class−name.∗;

to import all the public static members from a class. For example, if you preface a
class definition with

import static java.lang.System.out;

then you can use the simple name out instead of the compound name System.out.
This means you can use out.println instead of System.out.println. If you are
going to work extensively with the Mathclass, you can preface your class definition
with

import static java.lang.Math.∗;

This would allow to say sqrtinstead of Math.sqrt, log instead of Math.log, PI
instead of Math.PI, and so on.

Note that the static import directive requires a package−name, even for classes
in the standard package java.lang. One consequence of this is that you can’t do a
static import from a class in the default package.

5.4 Enums as Classes

Enumerated types are actually classes, and each enumerated type constant is a
pubic, final, static member variable in that class (even though they are not de-
clared with these modifiers). The value of the variable is an object belonging to the
enumerated type class. There is one such object for each enumerated type constant,
and these are the only objects of the class that can ever be created. It is really these
objects that represent the possible values of the enumerated types. The enumerated
type constants are actually variables that refer to these objects.

When an enumerated type is defined inside another class, it is a nested class
inside the enclosing class. In fact, it is a static nested class, whether you declare it
to be static or not. But it can also be declared as a non-nested class, in a file of its
own. For example, we could define the following enumerated type in a file named
Suit.java:

public enum Suit {

SPADES, HEARTS, DIAMONDS, CLUBS

}

This enumerated type represents the four possible suits for a playing card, and it
could have been used in the example Card.java.

Furthermore, in addition to its list of values, an enumerated type can contain
some of the other things that a regular class can contain, including methods and
additional member variables. Just add a semicolon (;) at the end of the list of values,
and then add definitions of the methods and variables in the usual way. For example,
we might make an enumerated type to represent the possible values of a playing
card. It might be useful to have a method that returns the corresponding value in
the game of Blackjack. As another example, suppose that when we print out one of

101

the values, we’d like to see something different from the default string representation
(the identifier that names the constant). In that case, we can override the toString()
method in the class to print out a different string representation. This would gives
something like:

public enum CardValue {

ACE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT,
NINE, TEN, JACK, QUEEN, KING;

/∗ ∗
∗ Return the value o f t h i s CardValue i n the game of B lack jack .
∗ Note t h a t the value re turned f o r an ace i s 1 .
∗ /

public int blackJackValue() {
if (this == JACK || this == QUEEN || this == KING)

return 10;
else

return 1 + ordinal();
}
/∗ ∗
∗ Return a S t r i n g rep resen ta t i on o f t h i s CardValue , using numbers
∗ f o r the numer ical cards and names f o r the ace and face cards .
∗ /

public String toString() {
switch (this) { / / " t h i s " i s one of the enumerated type values
case ACE: / / o r d i n a l number o f ACE

return "Ace";
case JACK: / / o r d i n a l number o f JACK

return " Jack ";
case QUEEN: / / o r d i n a l number o f QUEEN

return "Queen";
case KING: / / o r d i n a l number o f KING

return " King ";
default: / / i t ’ s a numeric card value

int numericValue = 1 + ordinal();
return " " + numericValue;

}

} / / end CardValue

blackjackValue() and toString() are instance methods in CardValue. Since
CardValue.JACK is an object belonging to the class CardValue, you can, off-course,
call CardValue.JACK.blackjackValue(). Suppose that cardVal is declared to be a
variable of type CardValue, so that it can refer to any of the values in the enumer-
ated type. We can call cardVal.blackjackValue() to find the Blackjack value of the
CardValue object to which cardVal refers, and System.out.println(cardVal) will
implicitly call the method cardVal.toString() to obtain the print representation of
that CardValue. (One other thing to keep in mind is that since CardValue is a class,
the value of cardVal can be null, which means it does not refer to any object.)

Remember that ACE, TWO, ..., KING are the only possible objects of type CardValue,
so in an instance methods in that class, this will refer to one of those values. Recall
that the instance method ordinal() is defined in any enumerated type and gives the
position of the enumerated type value in the list of possible values, with counting
starting from zero.

102

(If you find it annoying to use the class name as part of the name of every enu-
merated type constant, you can use static import to make the simple names of the
constants directly available – but only if you put the enumerated type into a pack-
age. For example, if the enumerated type CardValue is defined in a package named
cardgames, then you could place

import static cardgames.CardValue.∗;

at the beginning of a source code file. This would allow you, for example, to use the
name JACK in that file instead of CardValue.JACK.)

103

104

