
ARM Software Development Toolkit
Version 2.50

User Guide
Copyright © 1997, 1998 ARM Limited. All rights reserved.
ARM DUI 0040D

ARM Software Development Toolkit
User Guide

Copyright © 1997, 1998 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

ARM, Thumb, StrongARM, and the ARM Powered logo are registered trademarks of ARM Limited.

Angel, ARMulator, EmbeddedICE, Multi-ICE, ARM7TDMI, ARM9TDMI, and TDMI are trademarks of
ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

Dec 1996 A Internal release

Jan 1997 B First release for SDT 2.10

June 1997 C Updated for SDT 2.11

Nov 1998 D Updated for SDT 2.50
ii Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Contents
ARM Software Development Toolkit User Guide

Preface
About this book .. viii
Further reading .. x
Typographical conventions ... xii
Feedback ... xiii

Chapter 1 Introduction
1.1 About the ARM Software Development Toolkit ... 1-2
1.2 Supported platforms .. 1-5
1.3 What is new? .. 1-6

Chapter 2 ARM Project Manager
2.1 About the ARM Project Manager .. 2-2
2.2 Getting started .. 2-4
2.3 The APM desktop ... 2-15
2.4 Additional APM functions .. 2-20
2.5 Setting preferences ... 2-31
2.6 Working with source files .. 2-34
2.7 Viewing object and executable files .. 2-37
2.8 Working with project templates ... 2-39
2.9 Build step patterns .. 2-47
2.10 Using APM with C++ ... 2-52
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. iii

Contents
Chapter 3 ARM Debuggers for Windows and UNIX
3.1 About the ARM Debuggers ... 3-2
3.2 Getting started .. 3-7
3.3 ARM Debugger desktop windows .. 3-14
3.4 Breakpoints, watchpoints, and stepping ... 3-26
3.5 Debugger further details ... 3-36
3.6 Channel viewers (Windows only) ... 3-49
3.7 Configurations .. 3-51
3.8 ARM Debugger with C++ .. 3-62

Chapter 4 Command-Line Development
4.1 The hello world example ... 4-2
4.2 armsd .. 4-6

Chapter 5 Basic Assembly Language Programming
5.1 Introduction ... 5-2
5.2 Overview of the ARM architecture .. 5-3
5.3 Structure of assembly language modules .. 5-10
5.4 Conditional execution ... 5-17
5.5 Loading constants into registers ... 5-22
5.6 Loading addresses into registers .. 5-27
5.7 Load and store multiple register instructions .. 5-34
5.8 Using macros .. 5-43
5.9 Describing data structures with MAP and # directives 5-46

Chapter 6 Using the Procedure Call Standards
6.1 About the procedure call standards .. 6-2
6.2 Using the ARM Procedure Call Standard ... 6-3
6.3 Using the Thumb Procedure Call Standard .. 6-11
6.4 Passing and returning structures .. 6-13

Chapter 7 Interworking ARM and Thumb
7.1 About interworking .. 7-2
7.2 Basic assembly language interworking .. 7-4
7.3 C and C++ interworking and veneers ... 7-12
7.4 Assembly language interworking using veneers 7-19
7.5 ARM-Thumb interworking with the ARM Project Manager 7-23

Chapter 8 Mixed Language Programming
8.1 Using the inline assemblers .. 8-2
8.2 Accessing C global variables from assembly code 8-14
8.3 Using C header files from C++ ... 8-15
8.4 Calling between C, C++, and ARM assembly language 8-17
iv Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Contents
Chapter 9 Handling Processor Exceptions
9.1 Overview ... 9-2
9.2 Entering and leaving an exception .. 9-5
9.3 Installing an exception handler ... 9-9
9.4 SWI handlers .. 9-14
9.5 Interrupt handlers .. 9-22
9.6 Reset handlers .. 9-32
9.7 Undefined instruction handlers ... 9-33
9.8 Prefetch abort handler .. 9-34
9.9 Data abort handler .. 9-35
9.10 Chaining exception handlers ... 9-37
9.11 Handling exceptions on Thumb-capable processors 9-39
9.12 System mode .. 9-44

Chapter 10 Writing Code for ROM
10.1 About writing code for ROM .. 10-2
10.2 Memory map considerations ... 10-3
10.3 Initializing the system .. 10-5
10.4 Example 1: Building a ROM to be loaded at address 0 10-9
10.5 Example 2: Building a ROM to be entered at its base address 10-17
10.6 Example 3: Using the embedded C library .. 10-19
10.7 Example 4: Simple scatter loading example ... 10-22
10.8 Example 5: Complex scatter load example ... 10-26
10.9 Scatter loading and long-distance branching .. 10-30
10.10 Converting ARM linker ELF output to binary ROM formats 10-32
10.11 Troubleshooting hints and tips .. 10-34

Chapter 11 Benchmarking, Performance Analysis, and Profiling
11.1 About benchmarking and profiling .. 11-2
11.2 Measuring code and data size .. 11-3
11.3 Performance benchmarking .. 11-6
11.4 Improving performance and code size .. 11-16
11.5 Profiling ... 11-19

Chapter 12 ARMulator
12.1 About the ARMulator ... 12-2
12.2 ARMulator models .. 12-3
12.3 Tracer .. 12-6
12.4 Profiler ... 12-12
12.5 Windows Hourglass .. 12-13
12.6 Watchpoints .. 12-14
12.7 Page table manager .. 12-15
12.8 armflat ... 12-19
12.9 armfast .. 12-20
12.10 armmap ... 12-21
12.11 Dummy MMU .. 12-24
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. v

Contents
12.12 Angel .. 12-25
12.13 Controlling the ARMulator using the debugger 12-27
12.14 A sample memory model .. 12-29
12.15 Rebuilding the ARMulator ... 12-32
12.16 Configuring ARMulator to use the example .. 12-34

Chapter 13 Angel
13.1 About Angel .. 13-2
13.2 Developing applications with Angel .. 13-11
13.3 Angel in operation ... 13-29
13.4 Porting Angel to new hardware .. 13-43
13.5 Configuring Angel ... 13-69
13.6 Angel communications architecture .. 13-73
13.7 Angel C library support SWIs ... 13-79
13.8 Angel debug agent interaction SWIs .. 13-95
13.9 The Fusion IP stack for Angel .. 13-99

Appendix A FlexLM License Manager
A.1 About license management .. A-2
A.2 Obtaining your license file .. A-4
A.3 What to do with your license file ... A-5
A.4 Starting the server software .. A-6
A.5 Running your licensed software ... A-7
A.6 Customizing your license file .. A-9
A.7 Finding a license ... A-11
A.8 Using FlexLM with more than one product ... A-12
A.9 FlexLM license management utilities .. A-14
A.10 Frequently asked questions about licensing ... A-18
vi Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Preface

This preface introduces the ARM Software Development Toolkit and its user
documentation. It contains the following sections:

• About this book on page viii

• Further reading on page x

• Typographical conventions on page xii

• Feedback on page xiii.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. vii

Preface
About this book

This book provides user information for the ARM Software Development Toolkit. It
describes the major graphical user interface components of the toolkit, and provides
tutorial information on important aspects of developing applications for ARM
processors.

Organization

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ARM Software Development
Toolkit version 2.5, and details of the changes that have been made since
version 2.11a.

Chapter 2 ARM Project Manager

Read this chapter for information on the graphical user interface to the
ARM tools. APM runs under Windows 95 and NT, and provides a
graphical user interface to configure the ARM development tools and
manage your software development projects.

Chapter 3 ARM Debuggers for Windows and UNIX

Read this chapter for a description of the ARM graphical user interface
debuggers for Windows and UNIX.

Chapter 4 Command-Line Development

Read this chapter for a brief overview of developing programs in a
command-line environment.

Chapter 5 Basic Assembly Language Programming

Read this chapter for tutorial information on writing ARM assembly
language, including information about effectively using the directives
and pseudo-instructions provided by the assembler.

Chapter 6 Using the Procedure Call Standards

Read this chapter for a description of how to use the ARM and Thumb
procedure call standards when writing mixed assembly language and C
or C++.

Chapter 7 Interworking ARM and Thumb

Read this chapter for information on how to interwork code developed to
run in Thumb state and code developed to run in ARM state.
viii Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Preface
Chapter 8 Mixed Language Programming

Read this chapter for information on developing mixed C, C++, and
ARM assembly language programs, and for information on writing inline
assembly language code within your C or C++ program.

Chapter 9 Handling Processor Exceptions

Read this chapter for instructions on how to write exception handlers for
the ARM processor exceptions.

Chapter 10 Writing Code for ROM

Read this chapter for tutorial information on writing code that is designed
to run from ROM. This chapter includes information on using the scatter
loading facilities of the ARM linker.

Chapter 11 Benchmarking, Performance Analysis, and Profiling

Read this chapter for a description of how to analyze the performance of
your ARM targeted programs.

Chapter 12 ARMulator

Read this chapter for an introduction to the ARM processor emulator.

Chapter 13 Angel

Read this chapter for a description of how to use the Angel debug
monitor. This chapter also provides information on porting Angel to your
own hardware.

Appendix A FlexLM License Manager

Read this appendix for instructions on using the FlexLM License
Manager. FlexLM is used to manage licenses for the ARM Debugger for
UNIX.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. ix

Preface
Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing for the ARM processor, and general information
on related topics such as C and C++ development.

ARM publications

This book contains reference information that is specific to the ARM Software
Development Toolkit. For additional information, refer to the following ARM
publications:

• ARM Software Development Toolkit Reference Guide (ARM DUI 0041)

• ARM Architectural Reference Manual (ARM DUI 0100)

• ARM Reference Peripheral Specification (ARM DDI 0062)

• ARM Target Development System User Guide (ARM DUI 0061)

• the ARM datasheet for your hardware device.

Other publications

This book is not intended to be an introduction to the C or C++ programming languages,
It does not try to teach programming in C or C++, and it is not a reference manual for
the C or C++ standards. The following texts provide general information:

ARM architecture

• Furber, S., ARM System Architecture (1996). Addison Wesley Longman, Harlow,
England. ISBN 0-201-40352-8.

ISO/IEC C++ reference

• ISO/IEC JTC1/SC22 Final CD (FCD) Ballot for CD 14882: Information
Technology - Programming languages, their environments and system software
interfaces - Programming Language C++.

This is the December 1996 version of the draft ISO/IEC standard for C++. It is
referred to hereafter as the Draft Standard.

C++ programming guides

The following books provide general C++ programming information:

• Ellis, M.A. and Stroustrup, B., The Annotated C++ Reference Manual (1990).
Addison-Wesley Publishing Company, Reading, Massachusetts. ISBN
0-201-51459-1.
x Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Preface
This is a reference guide to C++.

• Stroustrup, B., The Design and Evolution of C++ (1994). Addison-Wesley
Publishing Company, Reading, Massachusetts. ISBN 0-201-54330-3.

This book explains how C++ evolved from its first design to the language in use
today.

• Meyers, S., Effective C++ (1992). Addison-Wesley Publishing Company,
Reading, Massachusetts. ISBN 0-201-56364-9.

This provides short, specific, guidelines for effective C++ development.

• Meyers, S., More Effective C++ (1996). Addison-Wesley Publishing Company,
Reading, Massachusetts. ISBN 0-201-63371-X.

The sequel to Effective C++.

C programming guides

The following books provide general C programming information:

• Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition,
1988). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.

This is the original C bible, updated to cover the essentials of ANSI C.

• Harbison, S.P. and Steele, G.L., A C Reference Manual (second edition, 1987).
Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-109802-0.

This is a very thorough reference guide to C, including useful information on
ANSI C.

• Koenig, A, C Traps and Pitfalls, Addison-Wesley (1989), Reading, Mass. ISBN
0-201-17928-8.

This explains how to avoid the most common traps and pitfalls in C programming.
It provides informative reading at all levels of competence in C.

ANSI C reference

• ISO/IEC 9899:1990, C Standard

This is available from ANSI as X3J11/90-013. The standard is available from the
national standards body (for example, AFNOR in France, ANSI in the USA).
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. xi

Preface
Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that may be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or option
name.

typewriter italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM processor
signal names.

typewriter bold

Denotes language keywords when used outside example code.
xii Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Preface
Feedback

ARM Limited welcomes feedback on both the Software Development Toolkit, and the
documentation.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which you comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM Software Development Toolkit

If you have any problems with the ARM Software Development Kit, please contact your
supplier. To help us provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small stand-alone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. xiii

Preface
xiv Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 1
Introduction

This chapter introduces the ARM Software Development Toolkit version 2.50 and
describes the changes that have been made since SDT version 2.11a. It contains the
following sections:

• About the ARM Software Development Toolkit on page 1-2

• Supported platforms on page 1-5

• What is new? on page 1-6.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the ARM Software Development Toolkit

The ARM Software Development Toolkit (SDT) consists of a suite of applications,
together with supporting documentation and examples, that enable you to write and
debug applications for the ARM family of RISC processors.

You can use the SDT to develop, build, and debug C, C++, or ARM assembly language
programs.

1.1.1 Components of the SDT

The ARM Software Development Toolkit consists of the following major components:

• command-line development tools

• Windows development tools

• utilities

• supporting software.

These are described in more detail below.

Command-line development tools

The following command-line development tools are provided:

armcc The ARM C compiler. The compiler is tested against the Plum Hall C
Validation Suite for ANSI conformance. It compiles ANSI or PCC source
into 32-bit ARM code.

tcc The Thumb C compiler. The compiler is tested against the Plum Hall C
Validation Suite for ANSI conformance. It compiles ANSI or PCC source
into 16-bit Thumb code.

armasm The ARM and Thumb assembler. This assembles both ARM assembly
language and Thumb assembly language source.

armlink The ARM linker. This combines the contents of one or more object files
with selected parts of one or more object libraries to produce an
executable program. The ARM linker creates ELF executable images.

armsd The ARM and Thumb symbolic debugger. This enables source level
debugging of programs. You can single step through C or assembly
language source, set breakpoints and watchpoints, and examine program
variables or memory.
1-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction
Windows development tools

The following windows development tools are provided:

ADW The ARM Debugger for Windows. This provides a full Windows
environment for debugging your C, C++, and assembly language source.

APM The ARM Project Manager. This is a graphical user interface tool that
automates the routine operations of managing source files and building
your software development projects. APM helps you to construct the
environment, and specify the procedures needed to build your software.

Utilities

The following utility tools are provided to support the main development tools:

fromELF The ARM image conversion utility. This accepts ELF format input files
and converts them to a variety of output formats, including AIF, plain
binary, Extended Intellec Hex (IHF) format, Motorola 32-bit S record
format, and Intel Hex 32 format.

armprof The ARM profiler displays an execution profile of a program from a
profile data file generated by an ARM debugger.

armlib The ARM librarian enables sets of AOF files to be collected together and
maintained in libraries. You can pass such a library to the linker in place
of several AOF files.

decaof The ARM Object Format decoder decodes AOF files such as those
produced by armasm and armcc.

decaxf The ARM Executable Format decoder decodes executable files such as
those produced by armlink.

topcc The ANSI to PCC C Translator helps to translate C programs and headers
from ANSI C into PCC C, primarily by rewriting top-level function
prototypes.

topcc is available for UNIX platforms only, not for Windows.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-3

Introduction
Supporting software

The following support software is provided to enable you to debug your programs,
either under emulation, or on ARM-based hardware.

ARMulator The ARM core emulator. This provides instruction accurate emulation of
ARM processors, and enables ARM and Thumb executable programs to
be run on non-native hardware. The ARMulator is integrated with the
ARM debuggers.

Angel The ARM debug monitor. Angel runs on target development hardware
and enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either
ARM state or Thumb state.

1.1.2 Components of C++ version 1.10

ARM C++ is not part of the base Software Development Toolkit. It is available
separately. Contact your distributor or ARM Limited if you want to purchase ARM
C++.

ARM C++ version 1.10 consists of the following major components:

armcpp This is the ARM C++ compiler. It compiles draft-conforming C++ source
into 32-bit ARM code.

tcpp This is the Thumb C++ compiler. It compiles draft-conforming C++
source into 16-bit Thumb code.

support software

The ARM C++ release provides a number of additional components to
enable support for C++ in the ARM Debuggers, and the ARM Project
Manager.

Note
 The ARM C++ compilers, libraries, and enhancements to the ARM Project Manager
and ARM Debuggers are described in the appropriate sections of the ARM Software
Development Toolkit User Guide and Reference Guide.
1-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction
1.2 Supported platforms

This release of the ARM Software Development Toolkit supports the following
platforms:

• Sun workstations running Solaris 2.5 or 2.6

• Hewlett Packard workstations running HP-UX 10

• IBM compatible PCs running Windows 95, Windows 98, or Windows NT 4.

The Windows development tools (ADW and APM) are supported on IBM compatible
PCs running Windows 95, Windows 98, and Windows NT 4.

The SDT is no longer supported on the following platforms:

• Windows NT 3.51

• SunOS 4.1.3

• HP-UX 9

• DEC Alpha NT.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-5

Introduction
1.3 What is new?

This section describes the major changes that have been made to the Software
Development Toolkit since version 2.11a. The most important new features are:

• Improved support for debug of optimized code.

• Instruction scheduling compilers.

• Reduced debug data size.

• New supported processors. ARMulator now supports the latest ARM processors.

• ADW enhancements. SDT 2.50 provides a new ADW capable of remote
debugging with Multi-ICE, and able to accept DWARF 1 and DWARF 2 debug
images.

The preferred and default debug table format for the SDT is now DWARF 2. The ASD
debug table format is supported for this release, but its use is deprecated and support for
it will be withdrawn in future ARM software development tools.

The preferred and default executable image format is now ELF. Refer to the ELF
description in c:ARM250\PDF\specs for details of the ARM implementation of standard
ELF format.

Demon-based C libraries are no longer included in the toolkit release, and RDP is no
longer supported as a remote debug protocol.

The following sections describe the changes in more detail:

• Functionality enhancements and new functionality on page 1-7

• Changes in default behavior on page 1-12

• Obsolete and deprecated features on page 1-15.
1-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction
1.3.1 Functionality enhancements and new functionality

This release of the ARM Software Development Toolkit introduces numerous
enhancements and new features. The major changes are described in:

• Improved support for debug of optimized code

• Instruction scheduling compilers on page 1-8

• Reduced debug data size on page 1-8

• New supported processors on page 1-9

• ADW enhancements on page 1-9

• Interleaved source and assembly language output on page 1-10

• New assembler directives and behavior on page 1-10

• Long long operations now compile inline on page 1-10

• Angel enhancements on page 1-11

• ARMulator enhancements on page 1-11

• New fromELF tool on page 1-11

• New APM configuration dialogs on page 1-12.

Improved support for debug of optimized code

Compiling for debug (-g), and the optimization level (-O), have been made orthogonal
in the compilers.There are 3 levels of optimization:

-O0 Turns off all optimization, except some simple source transformations.

-O1 Turns off structure splitting, range splitting, cross-jumping, and
conditional execution optimizations. Also, no debug data for inline
functions is generated.

-O2 Full optimization.

The -O0 option gives the best debug view, but with the least optimized code.

The -O1 option gives a satisfactory debug view, with good code density. By default no
debug data is emitted for inline functions, so they cannot be debugged. With DWARF1
debug tables (-dwarf1 command-line option), variables local to a function are not
visible, and it is not possible to get a stack backtrace.

The -O2 option emits fully optimized code that is still acceptable to the debugger.
However, the correct values of variables are not always displayed, and the mapping of
object code to source code is not always clear, because of code re-ordering.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-7

Introduction
A new pragma has been introduced to specify that debug data is to be emitted for inline
functions. The pragma is #pragma [no]debug_inlines. You can use this pragma to
bracket any number of inline functions. It can be used regardless of the level of
optimization chosen.

Impact

Any existing makefiles or APM projects that use –g+ –gxo will now get the behavior
defined by –g+ -O1. The SDT 2.11a option -g+ -gxr is still supported by SDT 2.50, and
has the same functionality as in SDT 2.11a, but will not be supported by future releases.

Instruction scheduling compilers

The compilers have been enhanced to perform instruction scheduling. Instruction
scheduling involves the re-ordering of machine instruction to suit the particular
processor for which the code is intended. Instruction scheduling in this version of the C
and C++ compilers is performed after the register allocation and code generation phases
of the compiler.

Instruction scheduling is of benefit to code for the StrongARM1 and ARM9 processor
families:

• if the -processor option specifies any processor other than the StrongARM1,
instruction scheduling suitable for the ARM 9 is performed

• if -processor StrongARM1 is specified, instruction scheduling for the StrongARM1
is performed.

By default, instruction scheduling is turned on. It can be turned off with the
-zpno_optimize_scheduling command-line option.

Reduced debug data size

In SDT 2.50 and C++ 1.10, the compilers generate one set of debug areas for each input
file, including header files. The linker is able to detect multiple copies of the set of
debug areas corresponding to an input file that is included more than once, and emits
only one such set of debug areas in the final image. This can result in a considerable
reduction in image size. This improvement is not available when ASD debug data is
generated.

In SDT 2.11a and C++ 1.01 images compiled and linked for debug could be
considerably larger than expected, because debug data was generated separately for
each compilation unit. The linker emitted all the debug areas, because it was unable to
identify multiple copies of debug data belonging to header files that were included more
than once.
1-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction
Impact

Existing makefiles and APM projects generate smaller debug images, and therefore the
images load more quickly into the debugger. This feature cannot be disabled.

New supported processors

ARMulator models for the ARM9TDMI, ARM940T, ARM920T, ARM710T,
ARM740T, ARM7TDMI-S, ARM7TDI-S, and ARM7T-S processors have been added
to SDT 2.50. These are compatible with the memory model interfaces from the SDT
2.11a ARMulator.

These processor names (and those of all other released ARM processors) are now
permitted as arguments to the –processor command-line option of the compilers and
assembler.

ADW enhancements

ADW has been enhanced to provide the following additional features:

• Support for remote debug using Multi-ICE.

• Support for reading DWARF 2 debug tables.

• The command-line options supported by armsd that are suitable for a GUI
debugger are now understood on the ADW command line. This enables you, for
example, always to start ADW in remote debug mode. The available
command-line options are:

— -symbols

— -li, -bi

— -armul

— -adp –linespeed baudrate -port [s=serial_port[,p=parallel_port]] |

[e=ethernet_address]

• A delete all breakpoints facility.

• Save and restore all window formats. Windows retain the format they were given.

• Breakpoints can be set as 16-bit or 32-bit. The dialog box for setting a breakpoint
has been modified to enable breakpoints to be set either as ARM or Thumb
breakpoints, or for the choice to be left to the debugger.

• The display of low-level symbols can be sorted either alphabetically or by address
order (sorting was by address order only in SDT 2.11a). You can choose the order
that is used.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-9

Introduction
• Locals, Globals, and Debugger Internals windows format is now controlled by
$int_format, $uint_format, $float_format, $sbyte_format, $ubyte_format,
$string_format, $complex_format. These formats are available by selecting
Change Default Display Formats from the Options menu.

• The Memory window now has halfword and byte added to its display formats.

• Value fields in editable windows (for example, Variable windows and Memory
windows) are now edit in place, rather than using a separate dialog box for
entering new values.

A copy of ADW is also supplied in a file named MDW.exe to maintain backwards
compatibility with the Multi-ICE release.

Interleaved source and assembly language output

The compilers in SDT 2.50 and C++ 1.10 have been enhanced to provide an assembly
language listing, annotated with the original C or C++ source that produced the
assembly language. Use the command-line options -S –fs to get interleaved source and
assembly language.

This facility is not available if ASD debug tables are requested (-g+ -asd).This facility
is only easily accessible from the command line, and is not integrated with APM.

New assembler directives and behavior

The SDT 2.11a assemblers (armasm and tasm) have been merged into a single
assembler, called armasm, that supports both ARM code and Thumb code. In addition,
it provides functionality previously supported only by tasm, such as the CODE16 and
CODE32 directives, and the -16 and -32 command-line options. The assembler starts in
ARM state by default. A tasm binary is shipped with SDT 2.50 for compatibility
reasons, however this binary only invokes armasm –16.

The assembler now supports the following FPA pseudo-instructions:

• LDFS fp-register, =fp-constant

• LDFD fp-register, =fp-constant

• LDFE fp-register, =fp-constant

and the new directives DCWU and DCDU.

Long long operations now compile inline

In the C and C++ compilers, the implementation of the long long data type has been
optimized to inline most operators. This results in smaller and faster code. In particular:
1-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction
long long res = (long long) x * (long long) y;

translates to a single SMULL instruction, instead of a call to a long long multiply function,
if x and y are of type int.

Angel enhancements

Angel has been enhanced to enable full debug of interrupt-driven applications.

ARMulator enhancements

The following enhancements have been made to the ARMulator:

• Total cycle counts are always displayed.

• Wait states and true idle cycles are counted separately if a map file is used.

• F bus cycle counts are displayed if appropriate.

• Verbose statistics are enabled by the line Counters=True in the armul.cnf file. For
cached cores, this adds counters for TLB misses, write buffer stalls, and cache
misses.

• The instruction tracer now supports both Thumb and ARM instructions.

• A new fast memory model is supplied, that enables fast emulation without cycle
counting. This is enabled using Default=Fast in the armul.cnf file.

• Trace output can be sent to a file or appended to the RDI log window.

New fromELF tool

The fromELF translation utility is a new tool in SDT 2.50. It can translate an ELF
executable file into the following formats:

• AIF family

• Plain binary

• Extended Intellec Hex (IHF) format

• Motorola 32 bit S record format

• Intel Hex 32 format

• Textual Information.

This tool does not have a GUI integrated with APM. It can be called directly from the
command line, or by editing your APM project to call fromELF after it calls the linker.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-11

Introduction
New APM configuration dialogs

The Tool Configurer dialog boxes have been modified to reflect:

• the new features available in the compilers, assembler, and the linker

• the new default behavior of these tools.

Each selectable option on the dialog boxes now has a tool tip that displays the
command-line equivalent for the option.

1.3.2 Changes in default behavior

The changes that have been made to the default behavior of the SDT are described in:

• Stack disciplines

• Default Procedure Call Standard (APCS and TPCS)

• Default debug table format on page 1-13

• Default image file format on page 1-13

• Default processor in the compilers and assembler on page 1-14

• RDI 1.0 and RDI 1.5 support on page 1-14

• Register names permitted by the assembler on page 1-14.

Stack disciplines

The ARM and Thumb compilers now adjust the stack pointer only on function entry and
exit. In previous toolkits they adjusted the stack pointer on block entry and exit. The
new scheme gives improved code size.

Default Procedure Call Standard (APCS and TPCS)

The default Procedure Call Standard (PCS) for the ARM and Thumb compilers, and
the assembler in SDT 2.50 and C++ 1.10 is now:

-apcs 3/32/nofp/noswst/narrow/softfp

Note
 The new default PCS will not perform software stack checking and does not use a frame
pointer register. This generates more efficient and smaller code for use in embedded
systems.

The default procedure call standard for the ARM (not Thumb) compiler in SDT 2.11a
was -apcs 3/32/fp/swst/wide/softfp.

The default procedure call standard for the ARM (not Thumb) assembler in SDT 2.11a
was -apcs 3/32/fp/swst.
1-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction
Impact

Existing makefiles and APM project files where the PCS was not specified will generate
code that does not perform software stack checking and does not use a frame pointer
register. This will result in smaller and faster code, because the default for previous
compilers was to emit function entry code that checked for stack overflow and set up a
frame pointer register.

Default debug table format

In SDT 2.50 and C++ 1.10 the default debug table format is DWARF 2. DWARF 2 is
required to support debugging C++, and to support the improvements in debugging
optimized code.

The default debug table format emitted by the SDT 2.11a compilers and assemblers was
ASD.If DWARF debug table format was chosen, the SDT 2.11a compilers and
assemblers emitted DWARF 1.0.3.

Impact

Existing makefiles and APM project files where debugging information was requested
will now result in DWARF 2 debug data being included in the executable image file.
Previous behavior can be obtained from the command line by specifying -g+ -asd or -g+
-dwarf1, or by choosing these from the appropriate Tool Configuration dialog boxes in
APM.

Default image file format

The default image file format emitted by the linker has changed from AIF to ELF.

Impact

Existing makefiles in which no linker output format was chosen, and existing APM
project files in which the Absolute AIF format was chosen, will now generate an ELF
image. If you require an AIF format image, use -aif on your armlink command line, or
choose Absolute AIF on the Output tab of the APM Linker options dialog box. This
will then generate a warning from the linker. AIF images can also be created using the
new fromELF tool.

Note
 When the ARM debuggers load an executable AIF image they switch the processor
mode to User32. For ELF, and any format other than executable AIF, the debuggers
switch the processor mode to SVC32. This means that, by default, images now start
running in SVC32 mode rather than User32 mode. This better reflects how the ARM
core behaves at reset.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-13

Introduction
C code that performs inline SWIs must be compiled with the -fz option to ensure that
the SVC mode link register is preserved when the SWI is handled.

Default processor in the compilers and assembler

The default processor for the SDT 2.11a ARM (not Thumb) compilers was ARM6. In
SDT 2.50 and C++ 1.10 this has been changed to ARM7TDMI. The default processor
for the assembler has changed from -cpu generic –arch 3 to -cpu ARM7TDMI.

Impact

Existing makefiles and APM project files where the processor was not specified (with
the -processor option) will generate code that uses halfword loads and stores
(LDRH/STRH) where appropriate, whereas such instructions would not previously have
been generated. Specifying -arch 3 on the command line prevents the compilers from
generating halfword loads and stores.

RDI 1.0 and RDI 1.5 support

A new variant of the Remote Debug Interface (RDI 1.5) is introduced in SDT 2.50. The
version used in SDT 2.11a was 1.0.

The debugger has been modified so that it will function with either RDI 1.0 or RDI 1.5
client DLLs.

Impact

Third party DLLs written using RDI 1.0 will continue to work with the versions of
ADW and armsd shipped with SDT 2.50.

Register names permitted by the assembler

In SDT 2.50, the assembler pre-declares all PCS register names, but also allows them
to be declared explicitly through an RN directive.

In SDT 2.11a the procedure call standard (PCS) register names that the assembler would
pre-declare were restricted by the variant of the PCS chosen by the -apcs option. For
example, -apcs /noswst would disallow use of sl as a register name.

Impact

Any source files that declared PCS register names explicitly will continue to assemble
without fault, despite the change to the default PCS.
1-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction
1.3.3 Obsolete and deprecated features

The features listed below are either obsolete or deprecated. Obsolete features are
identified explicitly. Their use is faulted in SDT 2.50. Deprecated features will be made
obsolete in future ARM toolkit releases. Their use is warned about in SDT 2.50. These
features are described in:

• AIF, Binary AIF, IHF and Plain Binary Image formats

• Shared library support on page 1-16

• Overlay support on page 1-16

• Frame pointer calling standard on page 1-16

• Reentrant code on page 1-17

• ARM Symbolic Debug Table format (ASD) on page 1-17

• Demon debug monitor and libraries on page 1-17

• Angel as a linkable library, and ADP over JTAG on page 1-17

• ROOT, ROOT-DATA and OVERLAY keywords in scatter load description on
page 1-18

• Automatically inserted ARM/Thumb interworking veneers on page 1-18

• Deprecated PSR field specifications on page 1-18

• ORG no longer supported in the assembler on page 1-18.

AIF, Binary AIF, IHF and Plain Binary Image formats

Because the preferred (and default) image format for the SDT is now ELF, the linker
emits a warning when instructed to generate an AIF image, a binary AIF image, an IHF
image or a plain binary image.

Impact

Any makefiles with a link step of -aif, -aif -bin, -ihf, or -bin now produce a warning
from the linker. For existing APM projects where an Absolute AIF image has been
requested on the Linker configuration Output tab, there will be no warning. However,
an ELF image is created instead, because this is the new default for the linker.

The preferred way to generate an image in an deprecated format is to create an ELF
format image from the linker, and then to use the new fromELF tool to translate the ELF
image into the desired format.

Future release

In a future release of the linker, these formats will be obsolete, and their use will be
faulted.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-15

Introduction
Shared library support

This feature is obsolete. The Shared Library support provided by previous versions of
the SDT has been removed for SDT 2.50. The linker faults the use of the -shl
command-line option.

Impact

Any makefile or APM project file that uses the Shared Library mechanism will now
generate an error from the linker. The SDT 2.11a linker can be used if this facility is
required.

Future release

A new Shared Library mechanism will be introduced in a future release of the linker.

Overlay support

Use of the -overlay option to the linker and use of the OVERLAY keyword in a scatter load
description file are now warned against by the linker.

Impact

Any makefile, APM project file, or scatter load description file that uses the overlay
mechanism will now generate a warning from the linker.

Future release

A future release of the linker will subsume the overlay functionality into the scatter
loading mechanism.

Frame pointer calling standard

Use of a frame pointer call standard when compiling C or C++ code is warned against
in the SDT 2.50 and ARM C++ 1.10 versions of the compilers.

Impact

Any makefile or APM project file that uses a frame pointer call standard (-apcs /fp)
will now generate a warning from the compilers.

Future release

A new procedure call standard will be introduced with a future release of the compilers.
1-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction
Reentrant code

Use of the reentrant procedure call standard when compiling C or C++ code is warned
against in the SDT 2.50 and ARM C++ 1.10 versions of the compilers.

Impact

Any makefile or APM project file that uses the reentrant procedure call standard (-apcs
/reent) will now generate a warning from the compilers.

Future release

A new procedure call standard will be introduced with a future release of the compilers.

ARM Symbolic Debug Table format (ASD)

Because the preferred (and default) debug table format is now DWARF 2, the compilers
and assembler will warn when asked to generate ASD debug tables.

Impact

Any makefiles with a compiler or assembler command-line option of -g+ –asd will now
produce a warning. For existing APM projects in which debugging information has
been requested, there will be no warning and DWARF 2 debug tables will be emitted
instead, because this is the new default for the compilers and assembler.

Future release

In a future release of the compilers and assembler, ASD will be made obsolete, and its
use will be faulted.

Demon debug monitor and libraries

This feature is obsolete. The Demon Debug monitor is now obsolete and support for it
has been removed from the SDT. There is no longer a remote_d.dll selectable as a
remote debug connection in ADW, and Demon C libraries are not supplied with SDT
2.50.

Angel as a linkable library, and ADP over JTAG

This feature is obsolete. Full Angel is no longer available as a library to be linked with
a client application. The version of Angel that runs on an EmbeddedICE and acts as an
ADP debug monitor (adpjtag.rom) is also no longer available.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-17

Introduction
ROOT, ROOT-DATA and OVERLAY keywords in scatter load description

In the SDT 2.11 manuals, use of the ROOT, ROOT-DATA and OVERLAY keywords in a scatter
load description file was documented, and a later Application Note warned against its
use. The linker now warns against use of these keywords.

Impact

Any existing scatter load descriptions that use ROOT, ROOT-DATA or OVERLAY keywords will
now generate a warning, but the behavior will be as expected.

Future release

In a future release of the linker, use of ROOT, ROOT-DATA and OVERLAY will be faulted.

Automatically inserted ARM/Thumb interworking veneers

In SDT 2.11a, the linker warned of calls made from ARM code to Thumb code or from
Thumb code to ARM code (interworking calls) when the destination of the call was not
compiled for interworking with the -apcs /interwork option. In spite of the warning, an
interworking return veneer was inserted.In SDT 2.50, the linker faults inter-working
calls to code that cannot return directly to the instruction set state of the caller, and
creates no executable image.

Impact

Existing code that caused the interworking warning in SDT 2.11a is now faulted
because the return veneers inserted by the SDT 2.11a linker can cause incorrect program
behavior in obscure circumstances.

Deprecated PSR field specifications

The assembler now warns about the use of the deprecated field specifiers CPSR,
CPSR_flg, CPSR_ctl, CPSR_all, SPSR, SPSR_flg, SPSR_ctl, and SPSR_all.

ORG no longer supported in the assembler

The ORG directive is no longer supported in the assembler. Its use conflicts with the
scatter loading mechanism supported by the linker.

Impact

Existing assembly language sources that use the ORG directive will no longer assemble.
The effect of the ORG directive can be obtained by using the scatter loading facility of the
linker.
1-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 2
ARM Project Manager

This chapter describes the ARM Project Manager, and contains the following sections:

• About the ARM Project Manager on page 2-2

• Getting started on page 2-4

• The APM desktop on page 2-15

• Additional APM functions on page 2-20

• Setting preferences on page 2-31

• Working with source files on page 2-34

• Viewing object and executable files on page 2-37

• Working with project templates on page 2-39

• Build step patterns on page 2-47

• Using APM with C++ on page 2-52.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-1

ARM Project Manager
2.1 About the ARM Project Manager

The ARM Project Manager (APM) is a graphical user interface tool that automates the
routine operations of managing source files and building your software development
projects.

APM helps you to construct the environment and specify the procedures necessary to
build your software. APM builds derived files as directed by your choice of project
template but you have full control over the options passed to the build tools.

APM schedules the calling of development tools such as compilers, linkers, and your
own custom tools. This is particularly helpful when you need to perform a sequence of
operations frequently and consistently.

APM uses the concept of a project to maintain information about the system you are
building. You specify what to build and how to build it. When you have described your
system as a project, you can build all of it or just part of it. If the project output is an
image, you can execute it or debug it by calling the ARM Debugger for Windows
(ADW), or a third party debugger such as XRAY, directly from APM.

When you create a project with APM, all the tools you need for your work are accessible
through the APM graphical interface (the APM desktop).

2.1.1 Online help

When you have started APM, you can display online help giving details relevant to your
current situation, or navigate your way to any other page of APM online help.

F1 key Press the F1 key on your keyboard to display help, if available, on the
currently active window.

Help button Many APM windows contain a Help button. Click this button to display
help on the currently active window.

Help menu Select Contents from the Help menu to display a Help Topics screen
with Contents, Index, and Find tabs. The tab you used last is selected.
Click either of the other tabs to select it instead.

Select Search from the Help menu to display the Help Topics screen with
the Index tab selected.

Under Contents, click on a closed book to open it and see a list of the
topics it contains. Click on an open book to close it. Select a topic and
click the Display button to display online help.
2-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
Under Index, either scroll through the list of entries or start typing an
entry to bring into view the index entry you want. Select an index entry
and click the Display button to display online help.

Under Find, follow the instructions to search all the available online help
text for any keywords you specify. The first time you undertake a Find
operation a suitable database file is constructed, and is then available for
any later Find operations.

Select Using Help from the Help menu to display a guide to the use of
on-screen help.

Hypertext links

Most pages of online help include highlighted text that you can click on
to display other relevant online help. Clicking on highlighted text
underscored with a broken line displays a popup box. Clicking on
highlighted text underscored with a solid line jumps to another page of
help.

Browse buttons

Most pages of online help include a pair of browse buttons that enable
you to step through a sequence of related help pages.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-3

ARM Project Manager
2.2 Getting started

This section explains various APM concepts and offers you some hands-on experience
creating a simple project. In doing so you make use of some APM features that are
described more fully in later sections of this chapter. This section covers:

• starting and stopping APM

• projects and sub-projects

• building a project

• correcting problems

• project output.

2.2.1 Starting and stopping APM

Start APM in any of the following ways:

• if you are running Windows 95 or Windows 98, click on the ARM Project
Manager icon in the ARM SDT v2.50 Program folder or select ARM Program
Manager from the program menu

• if you are running Windows NT4, double click on the ARM Project Manager
icon in the ARM SDT V2.50 Program group or select Start → Programs →
ARM SDT v2.50 → ARM Project Manager.

When APM starts, the last file or project you accessed is loaded.

Select Exit from the File menu to stop APM. The source files and projects you currently
have open will be re-opened the next time you start APM.

2.2.2 Projects and sub-projects

An APM project is a description of how you build something, such as an image or object
library, and a list of the files you need, such as source files, include files, and any
sub-projects.

APM describes what you are building and how you build it by means of a project
template. A template consists of a series of build step patterns that define the build steps
used to construct the output of your project.

A sub-project is simply an APM project that has been added to another project. For
example if you have a project that builds a library, it could become a sub-project of
another project that makes an image using routines from that library.

Project files

A project manages source files, and derived files created from source files by the build
tools.
2-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
Source files form the basis of a project. Symbols in the Project window indicate various
types of source file, as shown in the following list. The source file types recognized by
the standard templates are:

 C or C++ source file

 ARM assembly language file

 include file

 sub-project (this is also a type of source file, contributing its own project
output to the current project)

 file of a type unknown to APM.

When you add a source file to a project, it is not copied or moved from its original
location in the file system. Its location is referenced from the project file. Whenever
possible APM refers to files relative to the project directory structure rather than
absolutely. You can set the variable $$DepthOfDotAPJBelowProjectRoot to increase the
scope of the directories that are considered a part of the project. Refer to Variables on
page 2-26 for more information.

Note
 If you move a project, you must keep the directory structure containing its files the
same. If you change the directory structure, the files required to build the project will
not be found.

Derived files are created as the result of a build step, such as a compile or a link.

 An object file

 A library

 An ARM executable image.

Creating a new project

Follow these steps to create a new project:

1. Select New from the File menu or click the New button. The New dialog is
displayed (Figure 2-1 on page 2-6).
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-5

ARM Project Manager
Figure 2-1 New dialog

2. Select Project from the scroll box.

3. Click OK. The New Project dialog is displayed (Figure 2-2).

Figure 2-2 New Project dialog

4. Select the template Type that you want to use for the project. The template
description is displayed. For this example select ARM Executable Image.

5. Enter a Project name, such as hello. This is used for the project file and the
project output.

6. Modify the Project Directory to c:ARM250\Examples\hello. When you build the
project, the directories containing derived files (variant directories) are created
within this directory.

7. Click OK.
2-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
If you have specified a directory that does not currently exist, you are prompted
to confirm that you want a new project directory created. The new project file is
created in the project directory and the Project window is displayed.

Creating a new source file

For the hello project you created in the previous section, follow these steps to create a
new source file from within APM:

1. Click the New button or select New from the File menu. The New dialog appears.

2. Select C/C++ source from the scroll box.

3. Click OK. An Edit window is displayed.

4. Enter the following code, deliberately omitting the semicolon at the end of the
printf() function call:

#include <stdio.h>
int main(void)
{

printf("Hello World\n")
return 0;

}

5. Save the code in a source file by selecting Save or Save As... from the File menu
or by clicking the Save button. Enter hello.c when you are prompted for a
filename.

6. Close the Edit window by selecting Close from the File menu. You are now
returned to the Project window with the hello project loaded.

The source files and files inferred by the build steps are organized in a project using
partitions (as described under Partitions on page 2-24). APM uses variants to create
different versions of your project output. By default the following variants are defined:

DebugRel This variant is designed for projects where you intend to release the same
code that you are debugging. It provides an adequate debug view,
together with good optimization. This variant sets the debug and
optimization command-line options to -g+ -O1.

Debug This variant is designed for projects where you intend to have separate
debug and release builds of your code. It contains the debug version of
your project and provides maximum debug information at the expense of
optimization. This variant sets the debug and optimization command-line
options to -g+ -O0.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-7

ARM Project Manager
Release This variant is designed for projects where you intend to have separate
debug and release builds of your code. It contains the release version of
your project. It provides maximum optimization at the expense of debug
information. This variant turns off debug table generation and sets the
optimization command-line option to -O2.

Adding files to a project

Follow these steps to add the newly created file to your project:

1. Select the hello project as the current project.

2. Select Add Files to Project from the Project menu. The Open File dialog box is
displayed.

3. Move to the correct directory, if necessary, and select hello.c.

4. Click Open. The file is added to the project.

Note
 If the project directory is still your current directory, that is where the source file is
stored by default. You can, however, store source files in any accessible directory, and
add source files from any directory to a project.

Viewing the project

When you have added files to your project, you may want to view the project in more
detail. To expand a level of the project hierarchy, click on the plus (+) symbol next to
that level. Figure 2-3 on page 2-9 shows how the Project View looks if you expand the
first three levels of hello.apj.
2-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
Figure 2-3 Expanded view

You can see that hello.c, the file you added to the project, is now in the Sources
partition. The files hello.o and hello.axf have been added to the Objects and Image
partitions. These are the derived files that are the anticipated output of the project build
steps. The work in progress symbol indicates that they have not yet been built.

Other options for viewing a project are discussed in Changing the way a project is
displayed on page 2-17.

Note
 APM displays nested source dependencies only if the compiler and assembler are
invoked with the -MD- command-line option. This option instructs the assembler and
compiler to output source dependencies to the Project Manager. The project templates
shipped with APM specify this option in the build step pattern.

2.2.3 Build

Either a build or a force build processes the source files of a selected variant through the
defined build steps to create the project output. A build executes a build step only if
some input to it is newer than its outputs. A force build executes all build steps.

The actions performed in the various build steps and the type of project output are
determined by the project template. The project template also partially determines the
build order to ensure, for example, that compilation takes place before linking.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-9

ARM Project Manager
When you have added the necessary files to a project, you can build that project. As your
project is being built, the progress indicator at the bottom of the project window is
updated and any diagnostic information generated is displayed in the build log.

The simplest way to turn source files into project output is to build the entire project.
You can also process a single source file, force build an entire project, or select multiple
variants to be built.

Building a project

After you have added the example source files to your project you can build it. Click the
Build button or select Build project-name from the Project menu. When you start the
build, the button in the status area changes to Stop Build, and a build status indicator
appears next to the button. Messages from the build tools are displayed in the build log.
The build log is opened by APM if it is not already open. Figure 2-4 shows the APM
desktop when the build is complete.

Figure 2-4 Built project with error in source

You can see from the messages in the build log that the build was not successful. The
red X next to hello.c in the Project view indicates that there is an error in the hello.c
source file. The section headed Correcting problems on page 2-12 explains how APM
can help you to resolve problems in building your project.
2-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
Building from a single source file

You can perform a build step from a single source file if the file is associated with a
project and has been opened as a part of a project. If the file can be processed (compiled
or assembled, for example), the appropriate menu item in the Project menu is enabled
and labeled with the name of the build step pattern that is used to perform the build step.
If the project template does not define a build step for the selected file type, the Build
menu item and the Build button are disabled.

APM performs the actions associated with the build step and displays the results in the
build log pane.

Force building a project

Select Force Build to build all of the output files in your project for the selected variant,
regardless of whether they have been changed since the last build. If you first select
APM... from the Tools menu and check-mark the Build also builds sub-projects
option, Force Build also builds any associated sub-projects (see APM preferences on
page 2-31).

Force build a project in either of the following ways:

• select Force Build projectname.apj variant from the Project menu

• click the Force Build button.

Note
 If you move your project to a new location, you must rebuild it using Force Build.

Building variants

When you build a project only the selected variant is built. To build all variants of your
project, select Build Variants from the Project menu.

Build steps

A build step is a step in the build process that contributes to the project output. Usually,
a build step generates one file or a group of related files.

The actions performed in a build step are defined by a build step pattern within the
project template. The build step pattern also defines what type of source file each build
step acts upon. Typical build steps include:

• compiling or assembling source files

• linking object files and libraries

• building sub-projects.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-11

ARM Project Manager
Build step patterns

A build step pattern:

• associates a tool or tools, such as armcc or armlink, with a build step within a
project template

• defines the inputs and outputs associated with a build step

• associates the file types conventionally used and generated by a tool with the
partitions used to organize the project

• defines the command-line options to be used by the tools when the build step is
executed during the building of the project.

Stopping a build

You can stop a build at the end of its current step by clicking the Stop build toolbar
button or by clicking the Stop Build variant button in the status area at the bottom of
the Project Window.

2.2.4 Correcting problems

When you build your project, you may find errors and problems. As the build
progresses, messages are written to the build log (see Project window on page 2-15) that
appears in the lower pane of the Project window. These may be informational messages
or diagnostic messages from the tools that are invoked by the project template.

When the build is complete, you can double click on any error message that relates to
an editable source file (such as a compile error with a file line tag) and APM takes you
to the location where the error was detected. In the case of a compile error, this is the
line of code listed in the log. If a line relates to a sub-project, the project is loaded into
the Project Window. You can also locate errors by selecting Next Error and Previous
Error from the View menu.

To find and correct the problem in the hello.c source file in your sample project, and
rebuild the project:

1. Double click on the serious error line, indicated by a solid red exclamation mark,
in the build log. The Edit window displays the appropriate source file, with the
line that was being processed when the error was detected highlighted.

2. In this case, the error is due to the missing semicolon at the end of the previous
line:

printf("Hello World\n")

should read

printf("Hello World\n");
2-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
Note
 Often an error in a line is detected only when the next line is being processed.

3. Correct the error and click the Build button. When you rebuild the project:

• APM prompts you to save the file if you have not already done so

• the Project window becomes the current window

• the build takes place and messages are written to the build log.

Figure 2-5 shows the APM Desktop when the build is complete.

Blue checkmarks appear by all three files and an informational message in the
build log shows that the project is up to date. This means that the project was built
successfully and that the output of every project build step involved was created
after the most recent change to any of its inputs. You can now execute or debug
your project.

Figure 2-5 Successful project build

2.2.5 Project output

The output of a project is typically a single file or a closely related group of files, such
as a program image or an object library.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-13

ARM Project Manager
The output is determined by one or more of the build step patterns in the project
template. A different version of the project output is created for each variant built. For
example, output can be built for a debug-and-release version, a debug version, and a
release version.

Using the project output

When your project has been successfully built, you can either execute or debug it to see
how it works. Use the ARM Debugger for Windows (see ARM Debuggers for Windows
and UNIX on page 3-1 for more information).

Executing an image

Click the Execute button or select Execute project.apj from the Project menu, to load
the image in to the ARM Debugger for Windows and commence execution. If you
execute the hello.apj project, ‘Hello World’ appears in the Console Window.

Select Exit from the File menu when you have finished executing the image.

Debugging an image

When you click the Debug button or select Debug project.apj from the Project menu,
again the image is loaded into the ARM Debugger for Windows, but the debugger is
halted at the start of the program. You can then debug the image as necessary, using the
features of the Debugger.

Note
 Whether you Execute or Debug your image, if the project output is older than its source,
it is rebuilt before it is sent to the Debugger.
2-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
2.3 The APM desktop

If you have followed the steps to build the example hello world project in Getting
started on page 2-4 you have already used some features of the APM desktop. This
section gives further details of APM, and includes descriptions of:

• the Project window

• how to change the way a project is displayed

• the Edit window

• the View window.

2.3.1 Project window

The Project window contains a pane showing the project view, a pane showing the build
log, and a status area. Figure 2-6 shows an example of the project window. The
following sections describe the parts of the project window.

Figure 2-6 Project window
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-15

ARM Project Manager
Project view

The project view occupies the upper pane and displays the project hierarchy. The
following symbols are used to denote variants and partitions. File symbols are defined

in Project files on page 2-4: variant partition.

You can use the project view to examine various aspects of your project and select
elements for action. For example, you can select a partition in which you want to add a
file, or select a source file for a build.

Build log

The build log occupies the lower pane and is displayed each time you perform a build.
The build log contains messages from the tools used to build your project. You can
double click on many of these messages to display the line where an error was detected.
The following symbols in the build log indicate the type of diagnostic

message: Informational (blue) Warning (blue) Error (red) Serious

Error (red) Fatal Error (black)

Status area

The status area at the bottom of the Project window displays:

• a button for starting or stopping a build

• a progress display

• a status bar that displays the current status information, or describes the currently
selected user interface component, such as a menu option.
2-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
2.3.2 Changing the way a project is displayed

You can change the level of detail displayed in the Project Window in several ways:

• Click the View Dependencies button to show or hide the lower level dependency
files. These are indicated by a plus sign (+) next to the source filename.

• Click the View Build Log button to toggle the display of the build log in the lower
pane of the Project window. The build log is always displayed by APM when you
build from a single source or build an entire project.

• Hold the Tab key and click the mouse on a point in the project view where you
want to set a tab to control the spacing of the project hierarchy. All levels of the
hierarchy are spaced evenly based on the position you have selected.

• Select Variants from the View menu to toggle the display of the project variants.
When you do so, partitions and their files are still displayed.

• Select Toolbar or Status Bar from the View menu to toggle the display of the
toolbar and status bar.

When you display the contents and structure of a project, various arrow keys and
numeric keypad keys act as shortcut keys. Shortcut keys enable you to expand or
collapse your view of the levels of the project. See Table 2-1 for a list of shortcut keys.

Table 2-1 Shortcut keys

Action required Shortcut key

Move up the tree Up arrow

Move down the tree Down arrow

Expand the current level by one level Numeric keypad + or Right
arrow

Expand fully the current and all lower levels Numeric keypad *

Collapse the current level Left arrow

Collapse the current and all lower levels Numeric keypad -
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-17

ARM Project Manager
2.3.3 Edit window

Use the Edit window to create or modify a source file, such as a code file or an include
file. This window is opened when you:

• double click on a code or include file in the Project View

• open an existing code or include file

• select New from the File menu and create a source or include file.

Figure 2-7 shows an example of the Edit window. The Edit window provides a fully
functional editor in which you can copy, paste, search, and replace using the appropriate
toolbar buttons or the menu selections in the Edit menu.

Figure 2-7 Edit window

If you are editing a source file as a component of a project, you can perform a build
using that source file from the Edit window by clicking the Perform Build Step button.
You are prompted to save the file if you have not already done so. The Project window
is displayed and the results of the build appear in the build log.
2-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
Note
 To build from a single source file, you must access the file as part of a project because
APM uses the project template to determine how to process the file.

2.3.4 View window

The View window is used to display the contents of a binary file, such as an object,
library or image file, using a utility such as decaof, decaxf, or armlib. Figure 2-8 shows
an example of the View window.

Figure 2-8 View window
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-19

ARM Project Manager
2.4 Additional APM functions

This section describes:

• configuring tools

• force building a project

• adding a new variant to a project

• building selected variants

• changing the name of a project

• converting old projects

• stopping a build.

2.4.1 Configuring tools

You can change how a tool, such as a compiler or assembler, is executed by changing
its configuration within the Project Manager. You can change either the system-wide
configuration (see Making system-wide configuration changes on page 2-22), or
project-specific configuration (see Making project-specific configuration changes on
page 2-22).

Tool configuration can be associated with:

• the whole project

• a project variant (a particular version of the project

• a partition (all files of the same kind)

• an individual file.

When a tool configuration is associated with a file, it is associated with that file as an
input to a build step, not with that file as an output from a build step. For example, if
you select an image you can change the debugger configuration but not the linker
configuration. Linker configuration is associated with object files.

The Tool Configuration dialog

The appearance of the Tool Configuration dialog varies with the tool you are
configuring. Tools that are APM compliant, such as armcc, tcc, armcpp, tcpp, armasm,
and armlink, respond by displaying their configuration interface. For most ARM tools
this consists of sets of property sheets. Figure 2-9 on page 2-21 shows the configuration
dialog for the ARM C compiler.
2-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
Figure 2-9 Compiler Configuration dialog

When you change the settings, the modifications are reflected in the Equivalent
Command Line box near the bottom of the dialog.

Note
 If a tool DLL is not in the directories searched by Windows, or if a found tool is not a
DLL with APM compliant entry points, an error will be reported because the tool cannot
be configured graphically. You can take any of the following actions:

• install the product containing the missing APM compliant tool DLL (for example
C++ projects will need armcpp.dll which is part of C++ 1.10 for SDT 2.50)

• specify command-line options in the command-line box in the Failed to Locate
the Tool dialog

• select Edit Project Template… Project menu and enter the command-line
options in the Command Lines field of the appropriate Build step pattern (see
Working with project templates on page 2-39)

• use the Edit Paths dialog to specify the correct location of the tool DLL (see
Editing a path on page 2-43).
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-21

ARM Project Manager
Making system-wide configuration changes

System-wide configuration changes to a tool affect all projects that invoke the tool.

Follow these steps to make system-wide configuration changes:

1. Select Configure from the Tools menu, and select the tool to configure. You are
given a warning message about the effects of such a configuration change.

2. Confirm that you want to proceed. The appropriate Tool Configuration dialog is
displayed, showing current settings.

3. Make any required changes.

4. Select one of the following:

• click OK to save the changes and close the dialog

• click Apply to save the changes and keep the dialog open

• click Cancel to ignore all changes not applied and close the dialog.

Making project-specific configuration changes

Project-specific configuration can affect an entire project, or specific entities or scope
within a project. For example, you can change how a particular source file is compiled,
or you can change how all the source for a specific partition is compiled. The Project
menu item Tool Configuration for reflects the scope that is affected by the change.

1. Click on one or more entities, such as the Debug variant in the Project window, to
specify the scope of a configuration change. Hold down the Shift or Ctrl keys
while clicking to select several entities or a range of entities.

2. Select Tool Configuration for from the Project menu to display a submenu of
the tools used.

3. Select the tool you want to configure. The Tool Configuration submenu is
displayed.

4. Click Set. The appropriate Tool Configuration dialog is displayed, showing
current settings and allowing you to make changes.

5. Make any required changes.

6. Select one of the following:

• click OK to save the changes and close the dialog

• click Apply to save the changes and keep the dialog open

• click Cancel to ignore all changes not applied and close the dialog.
2-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
Resetting tool configuration

You can return the configuration of a tool to the settings of its parent (see Project
hierarchy on page 2-25) as follows:

1. Click on one or more entities, for example the Debug variant, in the Project
window to select the scope for the configuration change.

2. Select Tool Configuration for from the Project menu, then select the tool to be
configured. The Tool Configuration submenu is displayed. If there is a
configuration setting for the selected scope, the Unset menu item is enabled.

3. Select Unset to reset the configuration to the settings of that tool at the next higher
level of hierarchy.

Reading compiler options from a file

There are two options that allow you to read additional command-line options from a
file. These options must be specified on the Extra command line arguments text box of
the Configuration Dialog:

-via filename

Opens a file and reads additional command-line options from it. For
example:

armcpp -via input.txt options source.c

The options specified in filename are read at the same time as any other
command-line options are parsed. If -via is specified in the Extra
command line arguments text box of the APM Compiler Configuration
dialog, the command-line options are immediately read into the tool
configuration settings.

You can nest -via calls within -via files.

-latevia filename

This option is similar to -via. In the case of -latevia the file is read
immediately before compilation begins, not when other command-line
options are parsed.

If -latevia is specified, the command-line options are not read in until the
compiler is executed. This means that files specified with the -latevia
option stay in the text box, and can be changed more easily than files
specified with the -via option.

Calls to -latevia files cannot be nested. If -latevia is specified within a
-latevia file, it is ignored. However, you can nest -via options within
-latevia files.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-23

ARM Project Manager
2.4.2 Partitions

Partitions enable you to organize the various files that make up your project in a similar
way to placing them in a directory structure. Partitions exist only within APM, as an
organizational convenience. Your files are not copied or moved when you add them to
a partition. They remain where you normally keep them.

Partitions help to control the effect of adding a file to a project. The partitions created
for a project are determined by the project template. The partitions used by standard
APM templates include:

Sources Contains source files used to build the project output. Other source
partitions may be added depending on the template, such as Thumb-C,
ARM-C, ASM-Sources.

IncludedFiles

Contains any files included by the sources used by the project.

Objects Contains the object files built from the sources.

SubProjects Contains other projects that are to be used in the construction of the
project output. If the project output from a sub-project is a library, the
library file is built in the Libraries partition.

Libraries Contains any libraries that are to be used by the project.

Image Contains the project output of your build as specified in the project
template.

Miscellanea Anything else you want to add to a project.

Note
 You can use other names for partitions, this list is only an example.

2.4.3 Project templates

A project template defines how to build a particular type of project output. In a project
template, build step patterns describe the necessary processes, their input files, and their
output files.

Project templates give you great flexibility when you build your project output. You can
select a template from those supplied with APM or you can construct your own. You
can modify a project template by adding tools and changing the way they are executed
while building the project. You can modify variables at any level in the project hierarchy
to change the way specific files are handled. You can also create additional variants.
2-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
APM includes standard templates that you can copy and modify to suit your own needs.
If you have installed the ARM C++ Compiler you will have some additional templates
that you can use (see Using APM with C++ on page 2-52).

A template can exist in two distinct forms:

• A blank template, as described in Blank templates supplied with APM on
page 2-41. The standard templates supplied with APM are blank templates. Each
one contains the necessary project configuration information needed to create a
particular type of project, such as a Thumb executable image, but has no source
or output filenames assigned.

• A project template. A blank template becomes a project template when you create
a new project based on the template, and add files to it.

Normally you have one blank template for each type of project that you might want to
create, and you accumulate an increasing number of project templates. Each project
template is based on one of the blank templates, but now uniquely defines the build steps
for one particular project.

In most of this chapter, editing a template or any of its elements (details, variables,
paths, build steps) implies editing a project template, not editing one of the blank
templates. Creating a new template on page 2-45 describes how to create and edit new
blank templates.

2.4.4 Project hierarchy

A typical project hierarchy defines the structure of a project as follows:

System
Project my_proj

Variant For example, DebugRel, Debug, or Release.

Partition For example, Target, Dependencies, or Source

Source For example, sub-proj.apj, my_file.c, my_file.o, sub-proj.o

When you build a project using different tool configurations or variable values, project
settings take precedence over system-wide settings, variant settings take precedence
over project settings, partition settings take precedence over variant settings, and file
settings take precedence over partition settings.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-25

ARM Project Manager
2.4.5 Variables

A variable holds a value used either by APM or by a build step pattern to specify a
changeable aspect of your project, such as a filename or directory path.

A variable prefixed with $ is read-only, a variable prefixed with $$ can affect the actions
of APM. A variable containing a $, such as path$Debug, has a standard purpose defined
by APM.

You can set variables for any level of the project hierarchy.

The standard variables are:

$$DepthOfDotAPJBelowProjectRoot

Affects how the location of a file is resolved in the directory structure of
the project.

$$ProjectName

When you create a project, this variable is set to "" and the name of the
project is contained in $projectname. When you change the value of this
variable, $projectname is set to the new value.

$projectname

You cannot change the value of this variable directly. It contains the name
of the project as assigned when you created the project or whenever it is
saved. This value is also changed if the variable $$ProjectName is set to a
non-empty value.

path$variant

The path specifying the directory of a variant, created as a sub-directory
below the directory that holds the project file. You can change the value
of this variable if necessary.

config$tool

This variable stores an encoding of the configuration of a tool, or the
command-line arguments for a tool that is not configurable.

Note
 User-defined variables cannot begin with $
2-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
2.4.6 Variants

You can use variants to create different versions of your project output from the same
source files. Typically you use variants to create a debug-release version, or separate
debug and release versions of your project output.

You can change variant level variables to control how the project output for the variant
is built. The derived files for each variant, such as object files and project output, are
created in a subdirectory of the project directory. You specify the project directory when
you create the project.

Note
 You cannot add a source file to only one variant of your project.

Adding a new variant to a project

Follow these steps to add a new variant to your project template:

1. Select Add Variant from the Project menu. The Add Variant dialog is displayed
(Figure 2-10).

Figure 2-10 Add Variant dialog

2. Select a variant from the Add Variant Like list. The files and variable values
from the original are assigned to the new template.

3. Enter a new variant name. The variant name cannot contain spaces.

4. Click OK.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-27

ARM Project Manager
Building selected variants

Follow these steps to build a variant or variants:

1. Select Build Variants from the Project menu. The Build Variants dialog is
displayed (Figure 2-11).

Figure 2-11 Build Variants dialog

2. Select one or more variants from the Select Variants to build box.

3. If you want to force build the selected variants, check Force build regardless of
timestamps.

4. Click OK to initiate the build.

2.4.7 Changing a project name

There are two options for changing the name of a project:

• changing the name of the project output only

• changing the names of both the project file and the project output.

In both cases the original files remain.

Changing the name of the project output only

Follow these steps to change the name of the project output only:

1. Select Edit Variables for projectname.apj from the Project menu. The Edit
Variables dialog is displayed (Figure 2-12 on page 2-29).
2-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
Figure 2-12 Edit Variables dialog

2. Select the variable $$ProjectName.

3. Enter the new name in the Value text box.

4. Click the OK button.

Changing the names of both the project file and the project output

Follow these steps to change the name of both the project file and the project output:

1. Select Save As from the File menu. The Save As dialog is displayed.

2. Save the file with the new name.

3. Rebuild the project.

Note
 The value of $$ProjectName must be "" otherwise the project output retains the name
stored in that variable.

The value of $projectname is updated by APM. See Variables on page 2-26 for more
information on variables.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-29

ARM Project Manager
2.4.8 Converting old projects

If you open a project that was created with an earlier version of the ARM Project
Manager, you are asked to confirm that you want to convert the project to the current
format. After you convert a project file to a later format, you can no longer read it with
the earlier version of APM.

Follow these steps to convert an old project to the current format:

1. Open the project. The Project Conversion Wizard starts (Figure 2-13).

2. Confirm that the conversion should proceed, and that the old file can be
overwritten.

3. Click the Next button to proceed.

Figure 2-13 Project Conversion wizard

4. Examine, and change if necessary, the project name and directory, then click the
Next button.

5. Verify the source files that are to be added to the project, and click the Next
button. By default all files belonging to the original project are carried over to the
new project file.

6. Confirm that you want to proceed with the conversion by clicking the Finish
button. If you elected to overwrite the existing file, the conversion cannot be
reversed.
2-30 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
2.5 Setting preferences

This section describes and explains how to set:

• APM preferences

• Editor preferences.

2.5.1 APM preferences

Follow these steps to set APM preferences:

1. Select APM... from the Tools menu. The APM Preferences dialog is displayed
(Figure 2-14).

Figure 2-14 APM Preferences dialog

2. Select the preferences you require. An item is check-marked when selected. The
options are:

Force overwriting of existing project files
If you create a new project with an existing filename, the original
project file is overwritten without a request for confirmation.

Save changed files quietly
Save changed files without prompting when the project is closed.

Continue building even if errors are found
If an error is detected do not stop, but continue building and ignore any
files that depend on erroneous components.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-31

ARM Project Manager
Retain partition selection after adding files
After adding a file to a partition, retain the focus for the next file
addition. This is useful when a file type can be stored in more than one
partition.

Build also builds sub-projects
Check all files in all sub-projects and perform all the builds necessary
to bring the project up to date. This setting is useful when the interfaces
of library files are unstable and the build time of a main project will be
impacted by changes to the implementation of the libraries built by
sub-projects. (Changes to shared interfaces force rebuilding anyway.)
A sub-project can be built separately before building the main project
if required.

Force Build also force builds sub-projects
Force Build builds files in all sub-projects.

Echo command lines verbosely
Command lines that invoke tools are echoed in full in the build log.
This is useful for understanding or auditing project build behavior.
Echoing command lines verbosely shows the result of merging tool
configurations at the tool, project, variant, partition, and file level.

Create New Projects from Templates found in:
Specifies the location of the project template definitions. The default is
the Template subdirectory below the main ARM installation directory.
2-32 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
2.5.2 Editor preferences

The Editor Preferences dialog allows you to choose which editor to use when you edit
source and include files, and to modify the behavior of that editor.

Follow these steps to select a source editor:

1. Select Editor... from the Tools menu to display the Editor Preferences dialog
(Figure 2-15).

Figure 2-15 Editor Preferences dialog

2. Select the options you require:

Internal Editor - Tab Stops
Changes the tab stops used in the Edit Window.

Font Displays a standard font dialog.

Use Premia CodeWright 4/CodeWright 5
Use Premia CodeWright 4/5, if it is available on your machine, instead
of the APM built-in editor.

Location The location of CodeWright, if different from the standard installation.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-33

ARM Project Manager
2.6 Working with source files

You can use APM to edit your C and assembly language source files, and C header files.
You can use Premia Codewright version 4 or version 5, or the APM built-in editor. You
select your editor using the Editor Preferences dialog (see Editor preferences on
page 2-33).

If you have selected the file from the Project View, you can build the output from your
source file from within the editor. Any messages from the build tool are written to the
build log. You can edit files that are not associated with a project, but until they are
added to a project, APM has no information on how the file should be processed.

2.6.1 Creating a new source file with APM

Follow these steps to create a new source file:

1. Select New from the File menu or click the New button. The New dialog is
displayed (Figure 2-16).

Figure 2-16 New dialog

2. Select the New file type, for example C/C++ source or C/C++ include file, from
the scroll box.

3. Click OK.

Note
 If you create a new source file and at the same time you have an open project, the source
file is not automatically added to the open project.
2-34 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
2.6.2 When a file type is associated with multiple partitions

If the file type is associated with tools in multiple partitions, the Files Matched Multiple
Partitions dialog is displayed (Figure 2-17).

Figure 2-17 Files Matched Multiple Partitions dialog

Follow these steps to add the file to the correct partition:

1. Select the correct partition in the Project window.

2. Select the file or files to add to the selected partition from the Files Matched
Multiple Partitions dialog.

3. Click Add.

4. Repeat for each file that is displayed in the dialog.

Note
 You can use the Retain partition selection settings on the APM Preferences dialog to
keep the default partition set to the one last used.

Project templates supplied with APM have a Miscellanea partition, where files of types
not associated with other partitions are placed. If the Miscellanea partition does not
exist when you add a file not associated with a partition, the Unable to Add Files
message box appears. To add the file to the project, you must associate the file type with
a partition.

If you have a file type that is associated with more that one partition, you can select the
partition to receive the file before you add the file to the project. Follow these steps to
select the partition:

1. Select the partition from the project view.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-35

ARM Project Manager
2. Select Add Files to partition from the Project menu.

3. Select the files to be added to the project using the Add Files to partition dialog.

4. Click OK.

2.6.3 Performing a single build step

You can process and generate output from a single file if it is associated with a project
and if the file has been opened as a part of that project. If a build step can be performed
on the file (if it can be compiled or assembled, for example) the appropriate menu item
in the Project menu is enabled and labeled with the name of the build step pattern for
the build step. If the project template does not define a build step for the selected file
type, the menu item and the button are disabled.

For example, if you have several source files in your hello project, and select hello.c
from the Release variant, the item on the Project menu would read:

Compile hello.c "Release"

Note
 Compile is a term specified withinthetemplate. Any build type tool can be used to build
an output file from a source file. See Adding a build step pattern on page 2-51 for more
information on assigning tools to a template.

Follow these steps to perform a build step on a single source file:

1. Select hello.c from the Project Window.

2. Click the Perform Build Step button (the tool tip reflects which build step is
executed) or select Compile hello.c "Release" from the Project menu.

3. The actions associated with the Compile build step are executed and the results
are displayed in the build log pane.
2-36 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
2.7 Viewing object and executable files

You can view the contents of a binary file (object, library, or image) using one of the
ARM decoders, decaof, decaxf, or armlib. For example, to display the contents of
hello.o:

1. Select hello.o from the Project View.

2. Select Contents hello.o from the View menu. The appropriate Viewing dialog for
the translator is displayed (Figure 2-18).

Figure 2-18 Viewing dialog

3. Use the default command-line option, -c to display disassembled code areas
(other options are listed in the online help).

4. Click OK. The information is displayed in the specified format in a View window
(Figure 2-19).

Figure 2-19 View window
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-37

ARM Project Manager
2.7.1 decaof

The ARM Object Format (AOF) file decoder, decaof, decodes AOF files such as those
produced by armasm and armcc.

For a full specification of AOF and a full description of decaof, refer to the ARM
Software Development Toolkit Reference Guide.

2.7.2 decaxf

The ARM Executable Format (AXF) file decoder, decaxf, decodes executable files such
as those produced by armlink.

For a full description of decaxf, refer to the ARM Software Development Toolkit
Reference Guide.
2-38 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
2.8 Working with project templates

This section gives further details of project templates and how they are used within
APM. It also discusses how you can modify various components of a template.

2.8.1 General information

This section explains:

• what a project template is

• how to use a template to create a project

• how to modify a project template.

What is a project template?

The following elements make up a project template:

• build step patterns

• tools

• partitions

• variants

• variables.

Build step patterns

A build step pattern controls how a specific tool works within the project
environment and it specifies how a particular file type is handled within
that environment. It controls how a tool transforms its input into output
as an intermediate step in building the output of your project.

A build step pattern has a global effect within a project. However, you can
use variables to change the effect at the source, partition, or variant level
of the project hierarchy. Build step patterns are discussed in Build step
patterns on page 2-12.

Tools Tools are the programs used by a build step pattern to transform a source
file into a derived file. Tool configuration is discussed in Configuring
tools on page 2-20.

Partitions Partitions are a construct of APM used to organize the source and derived
files in your project, in the same way that you might use a directory
structure. The partitions used by your project are determined by the build
step patterns.

Variants Variants define different versions of the project output created from the
same set of source files. Variants are discussed in Adding a new variant
to a project on page 2-27.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-39

ARM Project Manager
Variables Variables are used within the definition of build steps to change how a
tool is used in the various levels of a project hierarchy. For example, you
could use a variable to change the configuration settings for armcc, so
that a single source, or a particular set of sources in a separate partition,
is compiled in one way and the rest of the source is compiled in another.
See Editing a variable on page 2-42.

Using a template to create a project

To create a new project, select an existing blank template that defines the tools to be
used, the organization of project files into partitions, and the variants that can be built.
Add your source files to the blank template and save it as the new project template. A
project template helps you to build your project output repeatedly and consistently.

See Creating a new project on page 2-5 for more information.

Modifying a project template

You can modify a project template after the project has been created or you can create
your own blank templates.

After creating a project you can add new tools, remove unused tools, and edit the build
step patterns to suit your needs. These changes have a global effect across your project,
but do not affect the blank template you used when you created your project.

If you need finer control, for example to compile a subset of your sources in a particular
way, you can use tool configuration settings and/or variables to change the handling of
a single source or a group of sources. For example, you could create an additional
source partition. You could then configure the tool used on source files differently,
depending on the partition used. You could even use a different compiler.

Finally, to create a number of projects that require a framework that is not supported by
the supplied blank templates, you can create your own blanks. To create a blank
template, take an existing blank template, save it to a new file in the Templates directory,
then make the required changes. The new template appears in the list presented when
you create a new project.

Note
 You are advised to create new templates based on the current APM templates, rather
than modifying the blank templates supplied with APM.
2-40 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
2.8.2 Blank templates supplied with APM

You can use the following APM templates to create both executable images and ARM
libraries:

ARM Executable Image

Build and debug an ARM executable image made from C and ARM
assembly language source files and ARM object libraries. You can build
your object libraries using sub-projects.

Thumb Executable Image

Build and debug a Thumb executable image made from C and
Thumb/ARM assembly language source files and Thumb object libraries.
You can build your object libraries using sub-projects. You can compile
some C sources for ARM state by setting the cc Project variable to armcc
for just those source files (see Editing a variable on page 2-42).

ARM Object Library

Build a library of ARM object files from C and ARM assembly language
source files. You can use the library as a component in Projects to build
ARM executable images.

Thumb Object Library

Build a library of Thumb object files from C and Thumb/ARM assembly
language source files. You can use the library as a component in Projects
to build Thumb executable images. You can compile some C sources for
ARM state by setting the cc Project variable to armcc for just those source
files.

Thumb-ARM Interworking Image

Build and debug a Thumb-ARM interworking image made from:

• Thumb C source files

• ARM C source files

• Thumb/ARM assembly language source files

• Thumb object libraries

• ARM object libraries.

You can build your object libraries using sub-projects.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-41

ARM Project Manager
Blank template

A blank template from which to make your own templates. Change the
description using the Details dialog (Editing project template details on
page 2-46). This template defines DebugRel, Debug, and Release
variants and the Miscellanea partition.

2.8.3 Editing a variable

A variable holds a value used by either APM or by a build step pattern to specify a
changeable aspect of your project, such as a filename or directory path. You can set
variables for any level of the project hierarchy. For example, you could set the variable
specifying the C compiler (cc) to be one tool for the entire project (cc=armcc) and create
a special configuration for a particular source file (cc=tcc).

Follow these steps to edit the variables for a particular level of the project hierarchy:

1. Select an element from the Project view (for example the Debug variant).

2. Select Edit Variable from the Project menu. The Edit Variables dialog is
displayed (Figure 2-20). The title of the dialog box reflects the scope of the
changes that are being made.

Figure 2-20 Edit Variables dialog

3. Select a variable from the scroll box or type the variable name.

4. Type the new Value.

5. If you have additional variables to modify, click Apply to save the change and
modify another variable.

6. When you have completed your changes, exit the dialog:

• click OK to save the changes and exit the dialog
2-42 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
• click Cancel to abandon any changes not yet applied and exit the dialog.

The following restrictions apply:

• Variables prefixed by $ are read-only and cannot be modified or deleted.

• Variables prefixed by $$ are reserved for use by APM, but can be modified.

• Variables containing a $ (for example, path$Debug) have a standard purpose
defined by APM.

• Use caution when editing config$xxx variables, especially if these contain |
symbols. These are the internal representation of tool configurations created by
the tools.

2.8.4 Editing a path

Follow these steps to use a tool in your project that is not on the Windows search path:

1. Select Edit Paths from the Project menu. The Edit Paths dialog is displayed
(Figure 2-21).

Figure 2-21 Edit Paths dialog

2. Select a tool from the scroll box.

3. Change the path as required in the Edit Path field.

4. If you have additional tool paths to modify, click Apply to save the change and
go on to modify another path.

5. When you have completed your changes, exit the dialog:

• click OK to save the changes and exit

• click Cancel to abandon any changes not yet applied and exit.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-43

ARM Project Manager
Note
 Do not edit paths if your tools are on your Windows search path. Editing paths can make
your project difficult to use on another machine or with other versions of the software.
The Windows search path is the preferred method for locating tool DLLs. The primary
reason to edit a path is to experiment with a different version of a tool DLL.

2.8.5 Editing a project template

When you edit a project template, you change the options used by APM when it builds
the project.

Follow these steps to edit a project template:

1. Select Edit Project Template from the Project menu. The Project Template
Editor dialog is displayed (Figure 2-22).

Figure 2-22 Project Template Editor dialog

2. You can now do one or more of the following:

• select a build step pattern and click Edit to modify it (see Editing a build
step pattern on page 2-49) or Delete to remove it

• click New to add a new build step pattern (see Adding a build step pattern
on page 2-51)

• click Edit Details to change the title and/or description of the template (see
Editing project template details on page 2-46).

3. Click Close to close the dialog.
2-44 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
2.8.6 Creating a new template

If you have a number of similar project outputs to produce that do not fit the templates
provided with the ARM Project Manager, you can create your own blank template to
use as a basis for new project templates. You can use an existing blank template or
project template as a basis for your new blank template.

Follow these steps to create a new blank template:

1. Select a suitable model in one of the following ways:

• create a new project (see Creating a new project on page 2-5), selecting a
suitable blank template

• open a suitable existing project.

2. Select Edit Project Template from the Project menu.

3. Click the Edit Details button and modify the Title and the Description of the
template (see Editing project template details on page 2-46).

4. Select Save as Template from the File menu. The Save As... dialog is displayed.

5. Locate the file in the directory specified in the APM Preferences dialog (Setting
preferences on page 2-31) and give it a unique name.

6. Click Save. The new project has now been created and is the currently active
project.

7. Modify the build step patterns listed for the template, adding or deleting build step
patterns as necessary (see Editing a build step pattern on page 2-49).

8. Edit any variables as necessary (see Editing a variable on page 2-42).

9. Edit any tool paths as necessary (see Editing a path on page 2-43).

10. Save the project.

The new template is displayed (sorted by filename) in the Type list of the New Project
dialog the next time you create a new project.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-45

ARM Project Manager
2.8.7 Editing project template details

Project template details consist of a short project name (for example, ARM Executable
Image) and a description providing more details of the project.

Follow these steps to edit the details of a template:

1. Select Edit Project Template from the Project menu. The Project Template
Editor is displayed.

2. Click Edit Details. The Edit Template Details dialog is displayed (Figure 2-23).

Figure 2-23 Edit Template Details dialog

3. Change the Title and/or Description as needed.

4. Click OK.

5. Click Close to close the Project Template Editor dialog.
2-46 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
2.9 Build step patterns

This section explains how to:

• specify input and output patterns in a build step

• edit a build step pattern

• add a new build step pattern.

2.9.1 Specifying input and output patterns in a build step pattern

A build step pattern uses simple pattern expressions to describe:

• the inputs to which it can be applied

• the outputs it generates

• the command-line options that are used to generate those outputs.

When you add a file to a project, APM searches for an input pattern expression to match
the filename. If a match is found, the pattern variables used in the input pattern become
defined and are used to generate output filenames. When the project is built, the same
pattern variables are used to generate command-lines for the tools invoked by the build
step pattern.

Input pattern expressions

An input pattern can contain three kinds of pattern element:

Variable written as <name>, that matches any sequence of characters not containing
the next literal.

Literal written as is, that matches only itself.

Conditional literal

written as <name|literal> that either:

• matches and <name> takes on the value of the literal

• fails to match and <name> takes on the value "" (null).

Patterns match from right to left, and / in a pattern matches / or \ in the filename.

For example, the input pattern element:

<path><slash|/><file>.c

supplied with the string

myfile.c

sets the variables to the following values:
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-47

ARM Project Manager
path = ""
slash = ""
file = "myfile"

and the same input pattern element supplied with the string:

c:\projdir\myproj\myfile.c

sets the variables to the following values:

path = "c:\projdir\myproj"
slash = "\"
file = "myfile"

Note
 An input pattern element <path>\<file>.c does not recognize the string myfile.c
because the string does not contain the specified literal \.

Output and command-line pattern expressions

An output or command-line pattern can use a mixture of pattern variables, conditional
literals and literals. The variables are those matched in the input pattern expressions or
defined within the project.

For example, the output pattern element <path|-I><path> consists of the pattern variable
and conditional literal -I (defined only if the pattern variable <path> is non-empty)
followed by the pattern variable <path> value.

When given with the filename myfile.c this expression resolves to "" (a null string).
When given with the fully qualified filename -I c:\projdir\myproj\myfile.c the
expression resolves to -Ic:\projdir\myproj because in the first case the input pattern
variable <path> is set to "", so the output pattern element <path|-I><path> becomes:

<""|-I>""

which produces:

""""

resulting in a final value of:

"".

In the case of the fully qualified filename, the input pattern variable <path> is set to
"c:\projdir\myproj", so the output pattern element <path|-I><path> becomes:

<"c:\projdir\myproj"|-I>"c:\projdir\myproj"
2-48 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
resulting in a final value of:

"-Ic:\projdir\myproj".

Outputs and command-lines can refer to variables not used in an input pattern. A typical
example is:

<tool> -o <file>.o ... <TOOLFLAGS> ...

If the variable <TOOLFLAGS> is defined within the project, its value is used, otherwise it is
ignored.

A more typical output expression is:

<file>.o

A command-line expression might be {path|<path|-I><path>} denoting the set of
values accumulated from the expression discussed above.

Note
 The first variable on a command-line is treated differently. Its default value is its name.
APM insists that the name of a tool must be a variable. So, if you want to call armcc,
you must enter <armcc>.

2.9.2 Editing a build step pattern

Note
 A build step pattern can use one or more tools, process one or more input files, and can
produce one or more outputs.

Follow these steps to edit a build step pattern:

1. Select the Build Step Pattern from the Project Template Editor dialog.

2. Click Edit. The Build Step Pattern dialog is displayed (Figure 2-24 on
page 2-50).
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-49

ARM Project Manager
Figure 2-24 Edit Build Step Pattern dialog

3. Edit the build step pattern as required, possibly deleting, editing, or adding
input/output patterns, as follows:

Deleting an input/output pattern
a. Select the pattern line from the list in the Input or Output Partition box.

The selected pattern is loaded on the edit line.

b. Click Delete to remove the pattern.

Editing an input/output pattern
a. Select the pattern line from the list in the Input or Output Partition box.

The selected pattern is loaded on the edit line.

b. Edit the pattern as required (see Specifying input and output patterns in a
build step pattern on page 2-47).

c. Click Replace to change the pattern.

Adding a new input/output pattern
a. Enter an Input or Output Partition.

b. Enter the pattern for the partition.

c. Click Add.

4. Change the Command Line as required.
2-50 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
5. Click OK to save the changes and exit the dialog.

6. Click Close to close the Project Template Editor dialog.

Note
 If you do not click Add, Replace or Delete in step 3, you are prompted to save or cancel
your changes before exiting this dialog.

You can have more than one Edit Build Step Pattern dialog open at one time, so that you
can copy from one build step pattern to another easily using Ctrl+Insert (to copy text)
and Shift+Insert (to paste text).

2.9.3 Adding a build step pattern

Follow these steps to add a new build step pattern:

1. Select Edit Project Template from the Project menu.

2. Click New.

3. Enter the name of the new build step pattern.

4. Click OK. The Edit Build Step Pattern dialog is displayed (see Edit Build Step
Pattern dialog on page 2-50).

5. Specify Input and Output Partition information.

6. Enter a Partition name. If the partition does not exist, it is created.

7. Enter the Pattern.

8. Click Add.

9. Enter a command-line in the Command Lines edit box.

10. Click OK.

11. Click Close to close the Project Template Editor dialog.

If you are debugging with ADW or ADU, you can use the -args option in a
command-line to introduce any arguments you may want to supply to the program you
are about to debug. For example:launch <adw> -exec <any>.asf -args ex0.eqn

See Chapter 10 Writing Code for ROM for an example showing how to add a FromELF
build step pattern.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-51

ARM Project Manager
2.10 Using APM with C++

This section describes how to use APM with ARM C++. It also describes the APM
templates distributed with ARM C++.

2.10.1 APM templates for C++

ARM C++ provides additional project templates to enable you to build C++ projects in
APM. The C++ project templates are based on the corresponding C project templates
for the Software Development Toolkit. The templates provide options for producing
C++ executable images and object libraries from within APM.

By default, the templates are installed in the \template directory of your SDT
installation directory. If you installed SDT in the default location, this will be
c:ARM250\template.

The C++ APM templates are:

ARM C++ Executable Image

This template builds an ARM C++ executable image from C, C++, and
ARM assembly language source files, and ARM object libraries.

Thumb C++ Executable Image

This template builds a Thumb C++ executable image from C, C++, and
Thumb/ARM assembly language source files, and Thumb object
libraries.

ARM C++ Object Library

This template builds an ARM object library file from C, C++, and ARM
assembly language source files. You can use the library as a component
in other projects to build ARM executable images.

Thumb C++ Object Library

This template builds a Thumb object library file from C, C++, and
Thumb/ARM assembly language source files. You can use the library as
a component in other projects to build Thumb executable images.

Thumb/ARM C++ Interworking Image

This template builds an ARM/Thumb C++ interworking image from:

• Thumb C and C++ source files

• ARM C and C++ source files

• Thumb/ARM assembly language source files

• Thumb object libraries
2-52 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager
• ARM object libraries.

2.10.2 Using the ARM Project Manager C++ Templates

The APM C++ templates provide a number of options for creating C++ source files,
header files, and projects.

This section describes how to create new projects based on the C++ project templates.
The following general points apply to the templates:

• All templates that produce ARM executable images or ARM object libraries are
configured to use armcpp to compile C++ source files.

• All templates that produce Thumb executable images or Thumb object libraries
are configured to use tcpp to compile C++ source files.

• All templates that produce executable images use the ARM Debugger for
Windows (ADW) as their debugger.

• You can convert a non-interworking project to an interworking project by
following the instructions in ARM-Thumb interworking with the ARM Project
Manager on page 7-23. Substitute armcpp for armcc, and tcpp for tcc.

• Libraries must contain either ARM code only, or Thumb code only.

Creating new projects

Follow these steps to create a new C++ project:

1. Select New... from the File menu. The New dialog is displayed (Figure 2-25).

Figure 2-25 The APM New dialog

2. Select Project from the list of options and click OK. The New Project dialog is
displayed (Figure 2-26 on page 2-54).
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-53

ARM Project Manager
Figure 2-26 The APM New Project dialog

3. Select the type of project you want to create. In addition to the standard options
available in SDT 2.50, you can create a project based on the new C++ templates.
These are:

• ARM C++ Executable Image

• Thumb C++ Executable Image

• ARM C++ Object Library

• Thumb C++ Object Library

• Thumb/ARM C++ Interworking Image.

4. Enter a project name and project directory for the new project.

5. Click OK. A new project is created for the type of image or library you have
chosen.
2-54 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 3
ARM Debuggers for Windows and UNIX

This chapter describes the ARM Debugger for Windows (ADW) and ARM Debugger for
UNIX (ADU). These are two versions of the same debugger, adapted to run under
Windows and UNIX respectively. ADW is part of the ARM Software Development
Toolkit. ADU is an extra-cost addition that requires SDT 2.11a or greater.

ADW and ADU screens differ slightly in appearance. Your screens might look different
from the figures in this chapter.

If you have purchased the ARM C++ compiler, the C++ installation process adds extra
features to the ARM Debuggers to support debugging C++. Refer to ARM Debugger
with C++ on page 3-62 for details.

This chapter contains the following sections:

• About the ARM Debuggers on page 3-2

• Getting started on page 3-7

• ARM Debugger desktop windows on page 3-14

• Breakpoints, watchpoints, and stepping on page 3-26

• Debugger further details on page 3-36

• Channel viewers (Windows only) on page 3-49

• Configurations on page 3-51

• ARM Debugger with C++ on page 3-62.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-1

ARM Debuggers for Windows and UNIX
3.1 About the ARM Debuggers

The ARM Debuggers enable you to debug your ARM-targeted image using any of the
debugging systems described in Debugging systems on page 3-5.

You can also use the ARM Debugger to benchmark your application.

Refer to the documentation supplied with your target board for specific information on
setting up your system to work with the ARM Software Development Toolkit, and the
EmbeddedICE interface, Angel, and so on.

Most of this chapter applies to both the Windows and the UNIX version of the ARM
Debugger. The term ARM Debugger refers to whichever version you are using,
depending on your operating system. If a section applies to one version only, that is
indicated in the text or in the section heading.

3.1.1 Online help

When you have started ADW or ADU, you can display online help giving details
relevant to your current situation, or navigate your way to any other page of ADW/ADU
online help.

F1 key Press the F1 key on your keyboard to display help, if available, on the
currently active window.

Help button Many APM windows contain a Help button. Click this button to display
help on the currently active window.

Help menu Select Contents from the Help menu to display a Help Topics screen
with Contents, Index, and Find tabs. The tab you used last is selected.
Click either of the other tabs to select it instead.

Select Search from the Help menu to display the Help Topics screen with
the Index tab selected.

Under Contents, click on a closed book to open it and see a list of the
topics it contains. Click on an open book to close it. Select a topic and
click the Display button to display online help.

Under Index, either scroll through the list of entries or start typing an
entry to bring into view the index entry you want. Select an index entry
and click the Display button to display online help.

Under Find, follow the instructions to search all the available online help
text for any keywords you specify. The first time you undertake a Find
operation a database file is constructed, and is then available for any later
Find operations.
3-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
Select Using Help from the Help menu to display a guide to the use of
on-screen help.

Hypertext links

Most pages of online help include highlighted text that you can click on
to display other relevant online help. Clicking on highlighted text
underscored with a broken line displays a popup box. Clicking on
highlighted text underscored with a solid line jumps to another page of
help.

Browse buttons

Most pages of online help include a pair of browse buttons that enable
you to step through a sequence of related help pages.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-3

ARM Debuggers for Windows and UNIX
3.1.2 Debugging an ARM application

The ARM Debuggers work in conjunction with either a hardware or a software target
system. An ARM Development Board, communicating through an EmbeddedICE
interface, Multi-ICE, or Angel, is an example of a hardware target system. The
ARMulator is an example of a software target system.

You debug your application using a number of windows that give you various views on
the application you are debugging.

To debug your application you must choose:

• a debugging system, which can be:

— hardware-based on an ARM core

— software that emulates an ARM core.

• a debugger, such as ADW, ADU, and armsd.

Figure 3-1 shows a typical debugging arrangement of hardware and software:

Figure 3-1 A typical debugging set-up
3-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
3.1.3 Debugging systems

The following debugging systems are available for applications developed to run on an
ARM core:

• the ARMulator

• the EmbeddedICE interface or Multi-ICE

• the Angel Debug Monitor.

These systems are described in the following sections.

The ARMulator

The ARMulator is a collection of programs that emulate the instruction sets and
architecture of various ARM processors. The ARMulator:

• provides an environment for the development of ARM-targeted software on the
supported host systems

• enables benchmarking of ARM-targeted software.

The ARMulator is instruction-accurate, meaning that it models the instruction set
without regard to the precise timing characteristics of the processor. It can report the
number of cycles the hardware would have taken. As a result, the ARMulator is well
suited to software development and benchmarking.

EmbeddedICE and Multi-ICE

EmbeddedICE and Multi-ICE are JTAG-based debugging systems for ARM
processors. EmbeddedICE and Multi-ICE provide the interface between a debugger and
an ARM core embedded within an ASIC. These systems provide:

• real-time address and data-dependent breakpoints

• single stepping

• full access to, and control of the ARM core

• full access to the ASIC system

• full memory access (read and write)

• full I/O system access (read and write).

EmbeddedICE and Multi-ICE also enable the embedded microprocessor to access host
system peripherals, such as screen display, keyboard input, and disk drive storage.

See EmbeddedICE configuration on page 3-60 for information on configuration
options.

Refer to the Multi-ICE documentation for detailed information on Multi-ICE.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-5

ARM Debuggers for Windows and UNIX
Angel

Angel is a debug monitor that allows rapid development and debugging of applications
running on ARM-based hardware. Angel can debug applications running in either ARM
state or Thumb state on target hardware. Angel runs alongside the application being
debugged on the target platform.

You can use Angel to debug an application on an ARM Development Board or on your
own custom hardware. See Chapter 13 Angel for more information.

3.1.4 Debugger concepts

This section introduces some of the concepts of that you need to be aware when
debugging program images.

Debug agent

A debug agent is the entity that performs the actions requested by the debugger, such as
setting breakpoints, reading from memory, or writing to memory. It is not the program
being debugged, or the ARM Debugger itself. Examples of debug agents include the
EmbeddedICE interface, Multi-ICE, the ARMulator, and the Angel Debug Monitor.

Remote debug interface

The Remote Debug Interface (RDI) is a procedural interface between a debugger and
the image being debugged, through a debug monitor or controlling debug agent. RDI
gives the debugger core a uniform way to communicate with:

• a controlling debug agent or debug monitor linked with the debugger

• a debug agent executing in a separate operating system process

• a debug monitor running on ARM-based hardware accessed through a
communication link

• a debug agent controlling an ARM processor through hardware debug support.
3-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
3.2 Getting started

This section explains the main features of the debugger desktop and gives you enough
information to start working with the debugger. Additional features are described in
Debugger further details on page 3-36. This section describes:

• The ARM Debugger desktop

• Starting and closing the debugger on page 3-9

• Loading, reloading, and executing a program image on page 3-10

• Examining and setting variables, registers, and memory on page 3-12.

3.2.1 The ARM Debugger desktop

The main features of the ARM Debugger desktop are:

• A menu bar, toolbar, mini toolbar, and status bar. For details see Menu bar,
toolbar, mini toolbar and status bar on page 3-8.

• A number of windows that display a variety of information as you work through
the process of debugging your executable image. For details see ARM Debugger
desktop windows on page 3-14.

• A window-specific menu that is available for each window, as described in
Window-specific menus on page 3-25.

Figure 3-2 on page 3-8 shows the ARM Debugger with the Execution, Console, Globals
and Locals windows, in the process of debugging the sample image DHRY.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-7

ARM Debuggers for Windows and UNIX
Figure 3-2 A typical ARM Debugger desktop display

Menu bar, toolbar, mini toolbar and status bar

The menu bar is at the top of the ARM Debugger desktop. Click on a menu name to
display the pull down menu.

If you have installed the ARM C++ compiler, a C++ menu appears between the View
and Execute menus that provides options relevant only to C++ program debugging .
C++ also adds its own mini toolbar. See ARM Debugger with C++ on page 3-62 for
more information.

Underneath the menu bar is the toolbar. Position the cursor over an icon and a brief
description is displayed. A processor-specific mini toolbar is also displayed. The
menus, the toolbar, and the mini toolbar are described in greater detail in the online help.

At the bottom of the desktop is the status bar. This provides current status information
or describes the currently selected user interface component.
3-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
3.2.2 Starting and closing the debugger

Start and close the ADW or ADU as follows.

Starting the ARM Debugger

Start the ARM Debugger for Windows (ADW) in any of the following ways:

• if you are running Windows 95 or Windows 98, click on the ARM Debugger for
Windows icon in the ARM SDT v2.50 Program folder

• if you are running Windows NT4, double click on the ARM Debugger for
Windows icon in the ARM SDT v2.50 Program group or select Start →
Programs → ARM SDT v2.50 → ARM Debugger for Windows

• if you are working in the ARM Program Manager, click the ARM Debugger
button or select Debug project from the Project menu

• launch ADW from the DOS command-line, optionally with arguments.

Start the ARM Debugger for UNIX (ADU) in either of the following ways:

• from any directory type the full path and name of the debugger, for example,
/opt/arm/adu

• change to the directory containing the debugger and type its name, for example,
./adu

The possible arguments (which must be in lower case) for both ADW and ADU are:

-debug ImageName

Load ImageName for debugging.

-exec ImageName

Load and run ImageName.

-reset Reset the registry settings to defaults.

-nologo Do not display the splash screen on startup.

-nowarn Do not display the warning when starting remote debugging.

-nomainbreak

Do not set a breakpoint on main() on loading image.

-script ScriptName

Obey the ScriptName on startup. This is the equivalent of typing obey
ScriptName as soon as the debugger starts up.

-symbols Load only the symbols of the specified image. This is equivalent to
selecting Load Symbols only… from the File menu.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-9

ARM Debuggers for Windows and UNIX
-li, -bi Start the debugger in LIttle-endian or BIg-endian mode.

-armul Start the debugger using the ARMulator.

-adp -linespeed baudrate [-port [s=serial port[,p=parallel port]] |[e=ethernet

address]] Start the debugger using Remote_A, if available in the current RDI
connection list.

You can use -linespeed baudrate only in conjunction with -adp, to
specify the baud rate of the connection.

You can use -port only in conjunction with -adp, to specify the
connection to the device.

For example, to launch ADW from the command-line and load sorts.axf for
debugging, but without setting a breakpoint on main(), type:

adw -debug sorts.axf -nomainbreak

To launch ADW (with arguments) from APM, select Project → Edit Variables →
adw and enter the arguments after adw in the Value box. Refer to Specifying
command-line arguments for your program on page 3-46 for more information on
specifying command-line options.

When you start the ARM Debugger, the windows you were using last time are again
displayed. These usually include the Console, Command, and Execution windows, and
you can load your executable image.

Closing the ARM Debugger

Select Exit from the File menu to close down the ARM Debugger.

3.2.3 Loading, reloading, and executing a program image

You must load a program image before you can execute it or step through it.

Loading an image

Follow these steps to load a program image:

1. Select Load Image from the File menu or click the Open File button. The Open
File dialog is displayed.

2. Select the filename of the executable image you want to debug.

3. Enter any command-line arguments expected by your image.
3-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
4. Click OK. The program is displayed in the Execution window as disassembled
code.

A breakpoint is automatically set at the entry point of the image, usually the first
line of source after the main() function. The current execution marker, a green bar
indicating the current line, is located at the entry point of the program.

If you have recently loaded your required image, your file appears as a recently used file
on the File menu. If you load your image from the recently used file list, the ARM
Debugger loads the image using the command-line arguments you specified in the
previous run.

Reloading an image

After you have executed an image you must reload it before you can execute it again.

To reload an executable image, select Reload Current image from the File menu or
click the Reload button on the toolbar.

Executing an image

To run your program in the ARM Debugger, select Go from the Execute menu or click
the Go button to execute the entire program. Execution continues until:

• a breakpoint halts the program at a specified point

• a watchpoint halts the program when a specified variable or register changes

• you stop the program by clicking the Stop button.

Alternatively, select Step from the Execute menu or click the Step button to step
through the code a line at a time. Refer to Stepping through an image on page 3-34 for
more information on stepping through code.

While the program executes:

• the Console window is active, provided semihosting is in operation

• the program code is displayed in the Execution window.

To continue execution from the point where the program stopped use Go or Step.

Note
 If you want to execute your program again, you must reload it first.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-11

ARM Debuggers for Windows and UNIX
3.2.4 Examining and setting variables, registers, and memory

You can use the ARM Debugger to display and modify the contents of the variables and
registers used by your executable image. You can also examine the contents of memory.

Variables

You can display and modify both local and global variables. Follow these steps to
display and modify a variable:

1. Display either the Locals or Globals window:

a. Select View → Variables → Local or click the Locals button on the
toolbar to display a list of local variables.

b. Select View → Variables → Global to display a list of global variables.

2. Double click on the value you want to change in the right pane of the window. The
Memory window is displayed, showing the area around your selected location.

3. Double click on the value to change it.

4. Press Return when you have set the variable to the required value.

Registers

To display a list of registers for the current processor mode, click the Current
Registers button on the toolbar. Follow these steps to display and modify registers for
a selected processor mode:

1. Select the Registers submenu from the View menu.

2. Select the required processor mode from the Registers submenu. The registers
are displayed in the appropriate Registers window.

3. Double click on the register you want to modify. The Memory window is
displayed, showing the area around your selected location.

4. Double click on the value to change it.

5. Press Return when you have set the variable to the required value.

Memory

Follow these steps to display the contents of a particular area of memory:

1. Select Memory from the View menu or click on the Memory button. The
Memory Address dialog is displayed.
3-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
2. Enter the address as a hexadecimal value (prefixed by 0x) or as a decimal value.

3. Click OK. The Memory window opens and displays the contents of memory
around the address you specified.

When you have opened the Memory window you can:

• display other parts of the current 4KB area of memory by using the scrollbar

• display more remote areas of memory by entering another address

• right click anywhere in the window to display the Memory window menu,
allowing you to display the contents as words, half words, or bytes with ASCII
characters.

Follow these steps to enter another address:

1. Select Goto from the Search menu or select Goto Address from the Memory
Window menu. The Goto Address dialog is displayed.

2. Enter an address as a hexadecimal value (prefixed by 0x) or as a decimal value.

3. Click OK.

See Saving or changing an area of memory on page 3-44 for more information on
working with areas of memory.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-13

ARM Debuggers for Windows and UNIX
3.3 ARM Debugger desktop windows

The first time you run ADW or ADU, you see the:

• Execution window

• Console window

• Command window.

The following additional windows are available from the View menu:

• Backtrace window

• Breakpoints window

• Debugger Internals window

• Disassembly window

• Expression window

• Function Names window

• Locals/Globals window

• Low Level Symbols window

• Memory window

• Registers window

• RDI Log window

• Search Paths window

• Source Files List window

• Source File window

• Watchpoints window.

Some windows become available only after you have loaded an image.

You may change the format of displayed windows, and the format of each window is
automatically saved for future use. Whatever arrangement of windows you have when
you quit the Debugger is displayed again the next time you start the Debugger.

The following sections describe the purpose of each window.
3-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
3.3.1 Main windows

This section describes the Execution, Console, and Command windows.

Execution window

The Execution window (Figure 3-3) displays the source code of the program that is
currently executing.

Figure 3-3 Execution window

Use the Execution window to:

• execute the entire program or step through the program line by line

• change the display mode to show disassembled machine code interleaved with
high level C or C++ source code

• display another area of the code by address

• set, edit, or remove breakpoints.

Console window

The Console window (Figure 3-4 on page 3-16) allows you to interact with the
executing program. Anything printed by the program, for example a prompt for user
input, is displayed in this window and any input required by the program must be
entered here.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-15

ARM Debuggers for Windows and UNIX
Information remains in the window until you select Clear from the Console window
menu. You can also save the contents of the Console window to disk, by selecting Save
from the Console window menu.

Figure 3-4 Console window

Initially the Console window displays the startup messages of your target processor, for
example the ARMulator or ARM Development board.

Note
 When input is required from the debugger keyboard by your executable image, most
ARM Debugger functions are disabled until the required information has been entered.

Command window

Use the Command window (Figure 3-5 on page 3-17) to enter armsd instructions when
you are debugging an image.
3-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
Figure 3-5 Command window

See Using command-line debugger instructions on page 3-46 for further details about
the use of the Command window. Type help at the Debug prompt for information on the
available commands or refer to Chapter 7 ARM Symbolic Debugger in the ARM
Software Development Toolkit Reference Guide.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-17

ARM Debuggers for Windows and UNIX
3.3.2 Optional windows

The windows described in this section are all available by selecting appropriate options
in the View menu.

Backtrace window

The Backtrace window displays current backtrace information about your program. Use
the Backtrace window to:

• show disassembled code for the current procedure

• show a list of local variables for the current procedure

• set or remove breakpoints.

Breakpoints window

The Breakpoints window displays a list of all breakpoints set in your image. The actual
breakpoint is displayed in the right-hand pane. If the breakpoint is on a line of code, the
relevant source file is shown in the left-hand pane.

Use the Breakpoints window to:

• show source/disassembled code

• set, edit, or remove breakpoints.

Debugger Internals window

The Debugger Internals window displays some of the internal variables used by the
ARM Debugger. You can use this window to examine the values of the following
variables, and to change the values of those not marked read-only:

$clock Contains the number of microseconds elapsed since the application
program began execution. This value is based on the ARMulator clock
speed setting, and is unavailable if that speed is set to 0.00 (see also
ARMulator configuration on page 3-57). This variable is read-only.

$cmdline Contains the argument string for the image being debugged.

$echo Non-zero if commands from obeyed files should be echoed (initially set
to 0).

Obeyed files are text files that contain lists of armsd commands. Refer to
the description of the obey command in Chapter 7 ARM Symbolic
Debugger in the ARM Software Development Toolkit Reference Guide for
more information.
3-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
$examine_lines

Contains the default number of lines for the examine command (initially
set to 8).

$int_format

Contains the default format for displaying integer values.

$uint_format

Contains the default format for displaying unsigned integer values.

$float_format

Contains the default format for displaying floating-point values.

$sbyte_format

Contains the default format for displaying signed byte values.

$ubyte_format

Contains the default format for displaying unsigned byte values.

$string_format

Contains the default format for displaying string values.

$complex_format

Contains the default format for displaying complex values.

$fpresult Contains the floating-point value returned by last called function (junk if
none, or if a floating-point value was not returned). $fpresult returns a
result only if the image has been build for hardware floating-point. If the
image is built for software floating-point, it returns zero. This variable is
read-only.

$inputbase Contains the base for input of integer constants (initially set to 10).

$list_lines

Contains the default number of lines for the list command (initially set
to 16).

$pr_linelength

Contains the default number of characters displayed on a single line
(initially set to 72).
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-19

ARM Debuggers for Windows and UNIX
$rdi_log Sets RDI logging (see Table 3-1).

You can set these bits of the $rdi_log internal variable from the Debugger
Internals window. For more information see RDI Log window on
page 3-24 and Remote debug information on page 3-41.

$result Contains the integer result returned by last called function (junk if none,
or if an integer result was not returned). This variable is read-only.

$sourcedir Contains the directory name of the directory containing source code for
the program being debugged.

$statistics

Contains any statistics that the ARMulator has been keeping. You can
examine the contents of this variable by clicking on statistics in the
Debugger Internals window. This variable is read-only.

$statistics_inc

Not available in the debugger internals window. This variable can be used
in the command window.

$statistics_inc_w

Similar to $statistics, but outputs the difference between the current
statistics and the point at which you asked for the $statistics_inc_w
window. To create a $statistics_inc_w window, select this item, right
click to display the pop-up menu, and select Indirect through item. This
variable is read-only and is not available in the command window.

$top_of_memory

If you are using an EmbeddedICE interface, set this variable to the total
amount of memory normally on your development board. If you add
more memory to the board, change this variable to reflect the new amount
of memory.

Table 3-1 RDI logging

Bit 1 Bit 0 Meaning

0 0 Off

0 1 RDI on

1 0 Device Driver Logging on

1 1 RDI and Device Logging on
3-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
$type_lines

Contains the default number of lines for the type command (initially set
to 10).

$vector_catch

Applies to ARMulator and EmbeddedICE only. It sets the exceptions that
result in control passing back to the debugger. The default value is
%RUsPDAifE. An uppercase letter indicates an exception is intercepted:

R reset

U undefined instruction

S SWI

P prefetch abort

D data abort

A address

I normal interrupt request (IRQ)

F fast interrupt request (FIQ)

E unused

Disassembly window

The Disassembly window displays disassembled code interpreted from a specified area
of memory. Memory addresses are listed in the left-hand pane and disassembled code
is displayed in the right-hand pane. You can view ARM code, Thumb code, or both.

Use the Disassembly window to:

• go to another area of memory

• change the disassembly mode to ARM, Thumb, or Mixed

• set, edit, or remove breakpoints.

Note
 More than one Disassembly window can be active at a time.

For details of displaying disassembled code, see Displaying disassembled and
interleaved code on page 3-40.

Expression window

The Expression window displays the values of selected variables and/or registers.

Use the Expression window to:

• change the format of selected items, or all items
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-21

ARM Debuggers for Windows and UNIX
• edit or delete expressions

• display the section of memory pointed to by the contents of a variable.

For more information on displaying variable information, see Working with variables
on page 3-37.

Function Names window

The Function Names window lists the functions that are part of your program.

Use the Function Names window to:

• display a selected function as source code

• set, edit, or remove a breakpoint on a function.

Locals/Globals window

The Locals window (Figure 3-6) displays a list of variables currently in scope. The
Globals window displays a list of global variables. The variable name is displayed in
the left-hand pane, the value is displayed in the right-hand pane.

Figure 3-6 Locals window

Use the Locals/Globals window to:

• change the content of a variable (double click on it)

• display the section of memory pointed to by a variable

• change the format of the values displayed by line, or for the entire window (if the
format of a line is changed, it is no longer affected by changing the format of the
window)

• set, edit, or remove a watchpoint on a variable

• double click on an item to expand a structure (the details are displayed in another
variable window).

As you step through the program, the variable values are updated.
3-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
For more information on displaying variable information, see Working with variables
on page 3-37.

Low Level Symbols window

The Low Level Symbols window displays a list of all the low level symbols in your
program.

Use the Low Level Symbols window to:

• display the memory pointed to by the selected symbol

• display the source/disassembled code pointed to by the selected symbol

• set, edit, or remove a breakpoint on the line of code pointed to by the selected
symbol.

You can display the low level symbols in either name or address order. Right click in
the window to display the Low Level Symbols window menu and select Sort Symbols
by… to toggle between the two settings.

Memory window

The Memory window displays the contents of memory at a specified address. Addresses
are listed in the left-hand pane, and the memory content is displayed in the right-hand
pane.

Use the Memory window to:

• display other areas of memory by scrolling or specifying an address

• set, edit, or remove a watchpoint

• change the contents of memory (double click on an address).

You can have multiple Memory windows open at any time.

Registers window

The Registers window displays the registers corresponding to the mode named at the
top of the window, with the contents displayed in the right-hand pane. You can double
click on an item to modify the value in the register.

Use the Registers window to:

• display the contents of the register memory

• display the memory pointed to by the selected register

• edit the contents of a register

• set, edit, or remove a watchpoint on a register.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-23

ARM Debuggers for Windows and UNIX
Note
 Multiple register mode windows can be open at any one time, but you cannot open more
than one window for each processor mode. For example, you can open no more than
one FIQ register window at a time.

RDI Log window

The RDI Log window displays the low level communication messages between the
ARM Debugger and the target processor.

Note
 This facility is not normally enabled. It must be specifically enabled when the RDI is
compiled. In addition, the debugger internal variable $rdi_log must be non-zero.

For more information on RDI, see Remote debug information on page 3-41.

Search Paths window

The Search Paths window displays the search paths of the image currently being
debugged. You can remove a search path from this window using the Delete key.

Source Files List window

The Source Files List window displays a list of all source files that are part of the loaded
image.

Use the Source Files List window to select a source file that is displayed in its own
Source File window.

Source File window

The Source File window displays the contents of the source file named at the top of the
window. Line numbers are displayed in the left-hand pane, code in the right-hand pane.

Use the Source File window to:

• search for a line of code by line number

• set, edit, or remove breakpoints on a line of code

• toggle the interleaving of source and disassembly.

For more information on displaying source files, see Working with source files on
page 3-36.
3-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
Watchpoints window

The Watchpoints window displays a list of all watchpoints.

Use the Watchpoints window to:

• delete a watchpoint

• edit a watchpoint.

Window-specific menus

Each of the ARM Debugger desktop windows displays a window-specific menu when
you click the secondary mouse button over the window. The secondary button is
typically the right mouse button. Item-specific options require that you position the
cursor over an item in the window before they are activated.

Each of the window-specific menus is described in the online help for that window.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-25

ARM Debuggers for Windows and UNIX
3.4 Breakpoints, watchpoints, and stepping

You use breakpoints and watchpoints stop program execution when a selected line of
code is about to be executed, or when a specified condition occurs. You can also execute
your program step by step. This section contains the following subsections:

• Simple breakpoints

• Simple watchpoints on page 3-29

• Complex breakpoints on page 3-30

• Complex watchpoints on page 3-32

• Backtrace on page 3-33

• Stepping through an image on page 3-34.

3.4.1 Simple breakpoints

A breakpoint is a point in the code where your program is halted by the ARM Debugger.
When you set a breakpoint it is marked in red in the left pane of the breakpoints window.

There are two types of breakpoint:

• a simple breakpoint that stops at a particular point in your code

• a complex breakpoint that:

— stops when the program has passed the specified point a number of times

— stops at the specified point only when an expression is true.

You can set a breakpoint at a point in the source, or in the disassembled code if it is
currently being displayed. To display the disassembled code, either:

• select Toggle Interleaving from the Options menu to display interleaved source
and assembly language in the Execution window

• select Disassembly... from the View menu to display the Disassembly window.

You can also set breakpoints on individual statements on a line, if that line contains
more than one statement.

You can set, edit, or delete breakpoints in the following windows:

• Execution

• Disassembly

• Source File

• Backtrace

• Breakpoints

• Function Names

• Low Level Symbols

• Class View (if C++ is installed).
3-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
Setting a simple breakpoint

There are two methods you can use to set a simple breakpoint:

Method 1

1. Double click on the line where you want to set the breakpoint.

2. Click the OK button in the dialog box that appears.

Method 2

1. Position the cursor in the line where you want to set the breakpoint.

2. Set the breakpoint in any of the following ways:

• select Toggle Breakpoint from the Execute menu

• click the Toggle breakpoint button

• press the F9 key.

A new breakpoint is displayed as a red marker in the left pane of the Execution window,
the Disassembly window, or the Source File window.

In a line with several statements you can set a breakpoint on an individual statement, as
demonstrated in the following example:

int main()
{
 hello(); world();
 .
 .
 .
 return 0;
}

If you position the cursor on the word world and click the Toggle breakpoint button,
hello() is executed, and execution halts before world() is executed.

To see all the breakpoints set in your executable image select Breakpoints from the
View menu.

To set a simple breakpoint on a function:

1. Display a list of function names in the Function Names window by selecting
Function Names from the View menu.

2. Select Toggle Breakpoint from the Function Names window menu or click the
Toggle breakpoint button.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-27

ARM Debuggers for Windows and UNIX
The breakpoint is set at the first statement of the function. This method also works for
the Low Level Symbols window, but the breakpoint is set to the first machine instruction
of the function, that is, at the beginning of its entry sequence.

Removing a simple breakpoint

There are several methods of removing a simple breakpoint:

Method 1

1. Double click on a line containing a breakpoint (highlighted in red) in the
Execution window.

2. Click the Delete button in the dialog box that appears.

Method 2

1. Single click on a line containing a breakpoint (highlighted in red) in the Execution
window.

2. Right click on the line.

3. Select Toggle breakpoint from the pop-up menu that is displayed.

Method 3

1. Single click on a line containing a breakpoint (highlighted in red) in the Execution
window.

2. Click the Toggle breakpoint button in the toolbar, or press the F9 key.

Method 4

1. Select Breakpoints from the View menu to display a list of breakpoints in the
Breakpoint window.

2. Select the breakpoint you want to remove.

3. Click the Toggle breakpoint button or press the Delete key.

Method 5

1. Select Delete All Breakpoints from the Execute menu to delete all breakpoints
that are set in the currently selected image. Delete All Breakpoints is also
available in relevant window menus.
3-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
3.4.2 Simple watchpoints

In its simplest form, a watchpoint halts a program when a specified register or variable
is changed. The watchpoint halts the program at the next statement or machine
instruction after the one that triggered the watchpoint.

There are two types of watchpoints:

• a simple watchpoint that stops when a specified variable changes

• a complex watchpoint that:

— stops when the variable has changed a specified number of times

— stops when the variable is set to a specified value.

Note
 If you set a watchpoint on a local variable, you lose the watchpoint as soon as you leave
the function that uses the local variable.

Setting a simple watchpoint

Follow these steps to set a simple watchpoint:

1. Select the variable, area of memory, or register you want to watch.

2. Set the watchpoint in any of the following ways:

• select Toggle Watchpoint from the Execute menu

• select Toggle Watchpoint from the window-specific menu

• click the Watchpoint button.

Select Watchpoints from the View menu to see all the watchpoints set in your
executable image.

Removing a simple watchpoint

Remove a simple watchpoint by using either of the following methods:

Method 1

1. Select Watchpoints from the View menu to display a list of watchpoints in the
Watchpoint window.

2. Select the watchpoint you want to remove.

3. Remove the selected watchpoint in either of the following ways:

• click the Toggle watchpoint button on the toolbar

• press the Delete key.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-29

ARM Debuggers for Windows and UNIX
Method 2

1. Position the cursor on a variable or register containing a watchpoint and right
click.

2. Select Toggle Watchpoint from the pop-up menu.

Note
 If you set a watchpoint on a local variable, you lose the watchpoint as soon as you leave
the function that uses the local variable.

3.4.3 Complex breakpoints

When you set a complex breakpoint, you specify additional conditions in the form of
expressions entered in the Set or Edit Breakpoint dialog (Figure 3-7).

Figure 3-7 Set or Edit Breakpoint dialog

This dialog contains the following fields:

File The source file that contains the breakpoint. This field is read-only.

Location The position of the breakpoint within the source file. This position is a
hexadecimal address for assembler code. For C or C++ code, it is shown
as a function name, followed by a line number, and if the line contains
multiple statements, a column position. This field is read-only.

Expression An expression that must be true for the program to halt, in addition to any
other breakpoint conditions. Use C-like operators such as:

i < 10
i != j
i != j + k
3-30 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
Count The program halts when all the breakpoint conditions apply for the nth
time.

Breakpoint Size

You can set breakpoints to be 32-bit (ARM) or 16-bit (Thumb) size, or
allow the debugger to make the appropriate setting. A checkbox allows to
make your selection the default setting.

Setting or editing a complex breakpoint

You can set complex breakpoints on:

• a line of code

• a function

• a low level symbol.

Follow these steps to set or edit a complex breakpoint on a line of code:

1. Double click on the line where you want to set a breakpoint, or on an existing
breakpoint position. The Set or Edit Breakpoint dialog is displayed.

2. Enter or alter the details of the breakpoint.

3. Click OK. The breakpoint is displayed as a red marker in the left-hand pane of
the Execution, Source File, or Disassembly window. If the line in which the
breakpoint is set contains several functions, the breakpoint is set on the function
that you selected in step 1.

Follow these steps to set or edit a complex breakpoint on a function:

1. Display a list of function names in the Function Names window.

2. Select Set or Edit Breakpoint from the Function Names window menu.

3. The Set or Edit Breakpoint dialog is displayed. Complete or alter the details of the
breakpoint.

4. Click OK.

Follow these steps to set or edit a breakpoint on a low-level symbol:

1. Display the Low Level Symbols window.

2. Select Set or Edit Breakpoint from the window menu.

3. Complete or alter the details of the breakpoint.

4. Click OK.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-31

ARM Debuggers for Windows and UNIX
3.4.4 Complex watchpoints

When you set a complex watchpoint, you specify additional conditions in the form of
expressions entered in the Set or Edit Watchpoint dialog.

Figure 3-8 Set or Edit Watchpoint dialog

This dialog contains the following fields:

Item The variable or register to be watched.

Target Value The value of the variable or register that is to halt the program. If this
value is not specified, any change in the value of the item halts the
program, dependent on the other watchpoint conditions.

Expression Any expression that must be true for the program to halt, in addition to
any other watchpoint conditions. As with breakpoints, use C-like
operators such as:

i < 10
i != j
i != j + k

Count The program halts when all the watchpoint conditions apply for the nth
time.

Setting and editing a complex watchpoint

Follow these steps to set a complex watchpoint:

1. Select the variable or register to watch.

2. Select Set or Edit Watchpoint from the Execute menu. The Set or Edit
Watchpoint dialog is displayed.

3. Specify the details of the watchpoint.

4. Click OK.
3-32 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
Follow these steps to edit a complex watchpoint:

1. Select Watchpoints from the View menu to display current watchpoints.

2. Double click the watchpoint to edit it.

3. Modify the details as required.

4. Click OK.

3.4.5 Backtrace

When your program has halted, typically at a breakpoint or watchpoint, backtrace
information is displayed in the Backtrace window to give you information about the
procedures that are currently active.

The following example shows the backtrace information for a program compiled with
debug information and linked with the C library:

#DHRY_2:Proc_6 line 42
#DHRY_1:Proc_1 line 315
#DHRY_1:main line 170
PC = 0x0000eb38 (_main + 0x5e0)
PC = 0x0000ae60 (__entry + 0x34)

This backtrace provides you with the following information:

Lines 1-3 The first line indicates the function that is currently executing. The
second line indicates the source code line from which this function was
called, and the third line indicates the call to the second function.

Lines 4-5 Line 4 shows the position of the call to the C library in the main procedure
of your program, and the final line shows the entry point in your program
made by the call to the C library.

Note
 A simple assembly language program assembled without debug information and not
linked to a C library would show only the pc values.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-33

ARM Debuggers for Windows and UNIX
3.4.6 Stepping through an image

To follow the execution of a program more closely than breakpoints or watchpoints
allow, you can step through the code in the following ways:

Step to the next line of code

Step to the the next line of code in either of the following ways:

• select Step from the Execute menu

• click the Step button.

The program moves to the next line of code, which is highlighted in the Execution
window. Function calls are treated as one statement.

If only C code is displayed, Step moves to the next line of C. If disassembled code is
shown (possibly interleaved with C source), Step moves to the next line of disassembled
code.

Step in to a function call

Step in to a function call in either of the following ways:

• select Step In from the Execute menu

• click the Step In button.

The program moves to the next line of code. If the code is in a called function, the
function source appears in the Execution window, with the current line highlighted.

Step out of a function

Step out of a function in either of the following ways:

• select Step Out from the Execute menu

• click the Step Out button.

The program completes execution of the function and halts at the line immediately
following the function call.

Run execution to the cursor

Follow these steps to execute your program to a specific line in the source code:

1. Position the cursor in the line where execution should stop.

2. Select Run to Cursor from the Execute menu or click the Run to Cursor button.

This executes the code between the current execution and the position of the cursor.
3-34 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
Note
 Be sure that the execution path includes the statement selected with the cursor.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-35

ARM Debuggers for Windows and UNIX
3.5 Debugger further details

Various debugger windows are described in ARM Debugger desktop windows on
page 3-14. This section gives more details of some of those windows, and describes
other information that is also available to you during a debugging session.

The topics covered in this section are:

• Working with source files

• Working with variables on page 3-37

• Displaying disassembled and interleaved code on page 3-40

• Remote debug information on page 3-41

• Using regular expressions on page 3-42

• High level and low level symbols on page 3-43

• Profiling on page 3-43

• Saving or changing an area of memory on page 3-44

• Specifying command-line arguments for your program on page 3-46

• Using command-line debugger instructions on page 3-46

• Changing the data width for reads and writes on page 3-47

• Flash download on page 3-48.

3.5.1 Working with source files

The debuggers provide a number of options that enable you to:

• view the paths that lead to the source files for your program

• list the names of your source files

• examine the contents of specific source files.

The following sections describe these options in detail.

Search paths

To view the source for your program image during the debugging session, you must
specify the location of the files. A search path points to a directory or set of directories
that are used to locate files whose location is not referenced absolutely.

If you use the ARM command-line tools to build your project, you may need to edit the
search paths for your image manually, depending on the options you chose when you
built it.

If you move the source files after building an image, use the Search Paths window to
change the search paths set up in the ARM Debugger (see Search paths).
3-36 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
To display source file search paths select Search Paths from the View menu. The
current search paths are displayed in the Search Paths window.

Follow these steps to add a source file search path:

1. Select Add a Search Path from the Options menu. The Browse for Folder dialog
is displayed.

2. Browse for the directory you want to add and highlight it.

3. Click OK.

Follow these steps to delete a source file search path:

1. Select Search Paths from the View menu. The Search Paths window is displayed.

2. Select the path to delete.

3. Press the Delete key.

Listing source files

Follow these steps to examine the source files of the current program:

1. Display the list of source files by selecting Source Files from the View menu. The
Source Files List window is displayed.

2. Select a source file to examine by double clicking on its name. The file is opened
in its own Source File window.

Note
 You can have more than one source file open at a time.

3.5.2 Working with variables

To display a list of local or global variables, select the appropriate item from the View
menu. A Locals/Globals window is displayed. You can also display the value of a single
variable, or you can display additional variable information from the Locals/Globals
window.

Follow these steps to display the value of a single variable:

1. Select View → Variables → Expression.

2. Enter the name of the variable in the View Expression dialog.

3. Click OK. The variable and its value are displayed in the Expression window.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-37

ARM Debuggers for Windows and UNIX
Alternatively:

1. Highlight the name of the variable.

2. Select View → Variables → Immediate Evaluation, or click the Evaluate
Expression button. The value of the variable is displayed in a message box and
in the Command window.

Note
 If you select a local variable that is not in the current context, an error message is
displayed.

Changing display formats

If the currently active window is the Locals, Globals, Expressions, or Debugger
Internals window, you can change the format of a variable.

Follow these steps to change the format of a variable:

1. Right click on the variable and select the Change line format from the Locals or
Globals window menu. The Display Format dialog is displayed.

2. Enter the display format. Use the same syntax as a printf() format string in C.
Table 3-2 lists the valid format descriptors.

3. Click OK.

Table 3-2 Display formats

Type Format Description

int Only use this if the expression being printed yields an integer:

%d Signed decimal integer (default for integers)

%u Unsigned integer

%x Hexadecimal (lowercase letters)

char Only use this if the expression being printed yields a char:

%c Character

char* %s Pointer to character. Only use this for expressions that
yield a pointer to a null terminated string.

void* %p Pointer (same as %.8x), for example, 00018abc. This is safe
with any kind of pointer.
3-38 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
Note
 If you change a single line, that line is not affected by global changes.

Leave the Display Format dialog empty and click OK to restore the default display
format. Use this method to revert a line format change to the global format.

The initial display format of a variable declared as char[]= is special. The whole string
is displayed, whereas normally arrays are displayed as ellipses (…). If the format is
changed it reverts to the standard array representation.

Variable properties

If you have a list of variables displayed in a Locals/Globals window, you can display
additional information on a variable by selecting Properties from the window-specific
menu (see Figure 3-9). To display the window-specific menu, right click on an item.
The information is displayed in a dialog.

Figure 3-9 Variable Properties dialog

Indirection

Select Indirect through item from the Variables menu to display other areas of
memory.

float Only use this for floating-point results:

%e Exponent notation, for example, 9.999999e+00

%f Fixed-point notation, for example, 9.999999

%g General floating-point notation, for example, 1.1, 1.2e+06

Table 3-2 Display formats (continued)
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-39

ARM Debuggers for Windows and UNIX
If you select a variable of integer type, the value is converted to a pointer. Sign
extension is used if applicable, and the memory at that location is displayed. If you
select a pointer variable, the memory at the location pointed to is displayed. You cannot
select a void pointer for indirection.

3.5.3 Displaying disassembled and interleaved code

You can display disassembled code in the Execution window or in the Disassembly
window. Select Disassembly from the View menu to display the Disassembly window.

You can also choose the type of disassembled code to display by selecting the
Disassembly mode submenu from the Options menu. ARM code, Thumb code, or both
can be displayed, depending on your image.

To display interleaved C or C++ and assembly language code:

1. Select Toggle Interleaving from the Options menu to display interleaved source
and assembly language in the Execution window. Disassembled code is displayed
in grey. The C or C++ code is displayed in black.

Follow these steps to display an area of memory as disassembled code:

1. Select Disassembly from the View menu, or click the Display Disassembly
button. The Disassembly Address dialog is displayed.

2. Enter an address.

3. Click OK. The Disassembly window displays the assembler instructions derived
from the code held in the specified area of memory. Use the scroll bars to display
the content of another memory area, or:

a. Select Goto from the Search menu.

b. Enter an address.

c. Click OK.

Specifying a disassembly mode

The ARM debugger tries to display disassembled code as ARM code or Thumb code,
as appropriate. Sometimes, however, the type of code required cannot be determined.
This can happen, for example, if you have copied the contents of a disk file into
memory.

When you display disassembled code in the Execution window you can choose to
display ARM code, Thumb code, or both. To specify the type of code displayed, select
Disassembly mode from the Options menu.
3-40 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
3.5.4 Remote debug information

The RDI Log window displays the low level communication messages between the
debugger and the target processor.

This facility is not normally enabled. It must be specially turned on when the RDI is
compiled.

To display remote debug information (RDI) select RDI Protocol Log from the View
menu. The RDI Log window is displayed.

Use the RDI Log Level dialog, obtained by selecting Set RDI Log Level from the
Options menu, to select the information to be shown in the RDI Log window:

Bit 0 RDI level logging on/off

Bit 1 Device driver logging on/off

Warning
 The RDI log level is used internally within ARM to assist with debugging. This level
should be changed only if you have been requested to do so by ARM.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-41

ARM Debuggers for Windows and UNIX
3.5.5 Using regular expressions

Regular expressions are the means by which you specify and match strings. A regular
expression is either:

• a single extended ASCII character (other than the special characters described
below)

• a regular expression modified by one of the special characters.

You can include low level symbols or high level symbols in a regular expression (see
High level and low level symbols on page 3-43 for more information.)

Pattern matching is done following the UNIX regexp(5) format, but without the special
symbols, ^ and $.

The following special characters modify the meaning of the previous regular
expression, and work only if such regular expression is given:

* Zero or more of the preceding regular expressions. For example, A*B
would match B, AB, and AAB.

? Zero or one of the preceding regular expression. For example, AC?B
matches AB and ACB but not ACCB.

+ One or more of the preceding regular expression. For example, AC+B
matches ACB and ACCB, but not AB.

The following special characters are regular expressions in themselves:

\ Precedes any special character that you want to include literally in an
expression to form a single regular expression. For example, * matches
a single asterisk (*) and \\ matches a single backslash (\). The regular
expression \x is equivalent to \x as the character x is not a special
character.

() Allows grouping of characters. For example, (202)* matches 202202202
(as well as nothing at all), and (AC?B)+ looks for sequences of AB or ACB,
such as ABACBAB.

. Exactly one character. This is different from ? in that the period (.) is a
regular expression in itself, so .* matches all, while ?* is invalid. Note
that . does not match the end-of-line character.

[] A set of characters, any one of which can appear in the search match. For
example, the expression r[23] would match strings r2 and r3. The
expression [a-z] would match all characters between a and z.
3-42 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
3.5.6 High level and low level symbols

A high level symbol for a procedure refers to the address of the first instruction that has
been generated within the procedure, and is denoted by the function name shown in the
Function Names window.

A low level symbol for a procedure refers to the address that is the target for a branch
instruction when execution of the procedure is required.

The low level and high level symbols can refer to the same address. Any code between
the addresses referred to by the low level and high level symbols generally concerns the
stack backtrace structure in procedures that conform to the appropriate variants of the
ARM Procedure Call Standard (APCS), or argument lists in other procedures. You can
display a list of the low level symbols in your program in the Low Level Symbols
window.

In a regular expression, indicate high level and low level symbols as follows:

• precede the symbol with @ to indicate a low level symbol

• precede the symbol with ^ to indicate a high level symbol.

3.5.7 Profiling

Profiling involves sampling the pc at specific time intervals. This information is used to
build up a picture of the percentage of time spent in each procedure. Using the armprof
command-line program on the data generated by either armsd or the ARM Debugger,
you see where effort can be most effectively spent to make the program more efficient.

Note
 Profiling is supported by ARMulator, but not by the EmbeddedICE interface or by
Multi-ICE. Profiling is also supported by Angel, except when used with StrongARM.

To collect profiling information:

1. Load your image file.

2. Select Options → Profiling → Toggle Profiling.

3. Execute your program.

4. When the image terminates, select Options → Profiling → Write to File.

5. A Save dialog appears. Enter a file name and a directory as necessary.

6. Click Save.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-43

ARM Debuggers for Windows and UNIX
Note
 You cannot display profiling information from within the ARM Debugger. You must
capture the data using the Profiling functions on the Options menu, then use the
armprof command-line tool.

After you have started program execution you cannot turn profile collection on.
However, if you want to collect information on only a certain part of the execution, you
can initiate collection before executing the program, clear the information collected up
to a certain point, such as a breakpoint, by selecting Options → Profiling →
Clear Collected, then execute the remainder of your program.

See Chapter 11 Benchmarking, Performance Analysis, and Profiling for more
information on profiling.

3.5.8 Saving or changing an area of memory

You can either:

• copy an area of memory to a disk file

• copy the contents of a disk file to an area of memory.

Follow these steps to save an area of memory to a file on disk:

1. Select Put File from the File menu to display the Put file dialog (Figure 3-10).

Figure 3-10 Put File dialog

2. Enter the name of the file to write to.

3. Enter a memory area in the From address and To fields.

4. Click Save.
3-44 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
5. Click OK. The output is saved as a binary file.

Follow these steps to copy a file on disk to memory:

1. Select Get File from the File menu to display the Get file dialog (Figure 3-11).

Figure 3-11 Get File dialog

2. Select the file you want to load into memory.

3. Enter a memory address where the file should be loaded.

4. Click Open.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-45

ARM Debuggers for Windows and UNIX
3.5.9 Specifying command-line arguments for your program

Follow these steps to specify the command-line arguments for your program:

1. Select Set Command Line Args from the Options menu. The Command Line
Arguments dialog (Figure 3-12) is displayed.

Figure 3-12 Command Line Arguments dialog

2. Enter the command-line arguments for your program.

3. Click OK.

Refer to Starting and closing the debugger on page 3-9 for a list of valid command-line
options.

Note
 You can also specify command-line arguments when you load your program in the
Open File dialog or by changing the Debugger internal variable, $cmdline.

3.5.10 Using command-line debugger instructions

If you are familiar with the ARM symbolic debugger (armsd) you may prefer to use
almost the same set of commands from the Command window.

The armsd commands Pause and Quit are unavailable in the Command window. Follow
these steps to use all other armsd commands from within ADW or ADU:

1. Select Command from the View menu to open the Command window.

The Command window displays a Debug: command-line.

2. Enter ARM command-line debug commands at this prompt. The syntax used is
the same as that used for armsd. Type help for information on the available
commands.

Refer to Chapter 4 Command-Line Development, and Chapter 7 ARM Symbolic
Debugger in the ARM Software Development Toolkit Reference Guide, for more
information on armsd.
3-46 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
3.5.11 Changing the data width for reads and writes

You can use the Command window to enter a command that reads data from, or writes
data to memory. You must, however, be aware of the default width of data read or
written, and how to change it if necessary. By default, a read from or write to memory
in armsd, ADW, or ADU transfers a word value. For example:

let 0x8000 = 0x01

transfers 4 bytes to memory starting at address 0x8000. In this example the bytes at
0x8001, 0x8002 and 0x8003 are all zero-filled.

To write a single byte to memory, use an instruction of the form:

let *(char *) 0xaddress = value

and to read a single byte from memory, use an instruction of the form:

print /%x *(char *) 0xaddress

where /%x means display in hexadecimal.

You can also read and write halfword short values in a similar way, for example:

let *(short *) 0xaddress = value
print /%x *(short *) 0xaddress

You can also select View → Variables → Expression to open the View Expression
window, and use that to specify bytes or shorts for displaying memory. For example, for
bytes, enter *(char *) 0xaddress in the View Expression box, and for shorts, enter
*(short *) 0xaddress in the View Expression box. To display in hexadecimal, click the
right mouse button on the Expression window, select Change Window Format and
enter %x.

Note
 Changes to window formats are saved. Changes to line formats are not saved. If you
select Change Window Format and leave the format field blank, the setting defaults to
the original setting.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-47

ARM Debuggers for Windows and UNIX
3.5.12 Flash download

Use the Flash Download dialog (Figure 3-13) to write an image to the Flash memory
chip on an ARM Development Board or any suitably equipped hardware.

Figure 3-13 Flash Download dialog

Set Ethernet Address

Use the Set Ethernet Address option if necessary after writing an image
to Flash memory. You might do this, for example, if you are using Angel
with ethernet support.

When you click OK, you are prompted for the IP address and netmask,
for example, 193.145.156.78.

You do not need to use this option if you have built your own Angel port
with a fixed ethernet address.

Arguments / Image

Specifies the arguments or image to write to Flash. Use the Browse
button to select the image.

For more information about writing to Flash memory, including details of how to build
your own Flash image, refer to the Target Development System User Guide.
3-48 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
3.6 Channel viewers (Windows only)

The ARM Debugger for Windows supports the use of Channel Viewers to access debug
communication channels. An example channel viewer is supplied with ADW
(ThumbCV.dll) or you can provide your own viewer.

Note
 The ARM Debugger for UNIX does not support the use of Channel Viewers.

3.6.1 ThumbCV channel viewer

To select a Channel Viewer when running the ARM Debugger for Windows:

1. Select Configure Debugger from the Options menu.

2. On the Target tab, select Remote_A.

3. Click the Configure button. The Angel Remote Configuration dialog is
displayed.

4. Select the Channel Viewer Enabled option. The Add and Remove buttons are
activated.

5. Click the Add button and a list of .DLLs will be displayed.

6. Select the appropriate .DLL and click the Open button.

Click the OK button on either the Angel Remote Configuration dialog or the
Debugger Configuration dialog to restart ADW with an active channel viewer.
See Angel remote configuration on page 3-59 for more information on the
Remote_A Configuration dialog box. ThumbCV.DLL provides the viewer illustrated
in Figure 3-14.

Figure 3-14 Thumb Comms Channel Viewer
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-49

ARM Debuggers for Windows and UNIX
The window has a dockable dialog bar at the bottom that is used to send information
down the channel. Typing information in the edit box and clicking the Send button will
store the information in a buffer. The information is sent when requested by the target.
The Left to send counter displays the number of bytes that are left in the buffer.

Sending information

To send information to the target, type a string into the edit box on the dialog bar and
click the Send button. The information is sent when requested by the target, in ASCII
character codes.

Receiving information

The information that is received by the channel viewer is converted into ASCII
character codes and displayed in the window, if the channel viewers are active.
However, if 0xffffffff is received, the following word is treated and displayed as a
number.
3-50 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
3.7 Configurations

You can examine and change the configuration of the:

• Debugger, which includes configuration of the:

— target environment for the image being debugged

— debugger parameters

— startup parameters

• ARMulator

• Angel remote connection

• EmbeddedICE or Multi-ICE.

3.7.1 Debugger configuration

The Debugger Configuration dialog consists of three tabbed screens:

• Target

• Debugger

• Memory Maps.

These are described below. Select Configure Debugger from the Options menu to
open the Debugger Configuration dialog.

Target environment

Follow these steps to configure the target environment:

1. Click the Target tab of the Debugger Configuration dialog (Figure 3-15 on
page 3-52).
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-51

ARM Debuggers for Windows and UNIX
Figure 3-15 Configuration of target environment

2. Change the following configuration options, as required:

Target Environment
The target environment for the image being debugged.

Add Display an Open dialog to add a new environment to the debugger
configuration.

Remove Remove a target environment.

Configure Display a configuration dialog for the selected environment.

 Display a more detailed description of the selected environment.

3. Save or discard your changes:

• click OK to save any changes and exit

• click Apply to save any changes

• click Cancel to ignore all changes not applied and exit.

Note
 Apply is disabled for the Target page because a successful RDI connection must be
made first. When you click OK an attempt is made to make your selected RDI
connection. If this does not succeed, the ARMulate setting is restored.
3-52 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
Debugger

Follow these steps to change the configuration used by the debugger:

1. Click the Debugger tab of the Debugger Configuration dialog (Figure 3-16)

Figure 3-16 Configuration of debugger

2. Change the following configuration settings, as required:

Profile Interval
This is the time between pc sampling in microseconds. It is applicable
to ARMulator and Angel only. Lower values have a higher
performance overhead, and slow down execution. Higher values are
not as accurate as lower values.

Source Tab Length
This specifies the number of space characters used for tabs when
displaying source files.

Endian Determines byte sex of the target.

Little low addresses have the least significant bytes.

Big high addresses have the least significant bytes.

Disable Allows you to turn off the following display features:

Splash screen
When selected, stops display of the splash screen (the ARM
Debugger startup box) when the debugger is first loaded.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-53

ARM Debuggers for Windows and UNIX
Remote Startup warning
Turns on or off the warning that debugging is starting with
Remote_A enabled. If the warning is turned off and
debugging is started without the necessary hardware
attached, there is a possibility that the ARM Debugger may
hang. If the warning is enabled, you have the opportunity to
start in ARMulate.

3. Save or discard your changes:

• click OK to save any changes and exit

• click Apply to save any changes

• click Cancel to ignore all changes not applied and exit.

Note
 When you make changes to the Debugger configuration the current execution is ended
and your program is reloaded.

Memory Maps

Follow these steps to configure Memory Maps:

1. Click the Memory Maps tab of the Debugger Configuration dialog
(Figure 3-17).

Figure 3-17 Configuration of ARM Debugger memory maps
3-54 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
2. Change the following configuration settings, as required:

Memory Map
This allows you to specify a memory map file, containing information
about a simulated memory map that the ARMulator uses. It is
applicable to ARMulator only. The file includes details of the databus
widths and access times for each memory region in the simulated
system. See Chapter 12 ARMulator for more information.

You can select one of three Memory Map options:

• do not use a memory map

• use a global memory map, which means using the specified
memory map for every image that is loaded during the current
debug session

• use a local memory map, which means using a memory map that
is local to a project.

The three Memory Map options are explained in greater detail as follows:

No Map File
Select this Memory Map option to use the ARMulator default memory
map. This is a flat 4GB bank of ideal 32-bit memory, having no wait
states.

Global Map File
Select this option to use the specified memory map file for every image
loaded during the current debug session.

A box allows you to enter a filename or to select a filename from a pull
down list. Use this box to add new map files to the list, or select a map
file from the list. When you have selected a map file, the debugger
checks that the file exists and is of a valid format. Any file that fails
these checks is removed from the list. The dialog remains, however, so
you can correct an error or select another map file if necessary.

Use the Remove button to remove the currently selected file from the
list.

The browse button allows you to select a memory map file using a
dialog.

Local Map File
Select this option to use a memory map file that is local to a project.

If a local memory map file is required when the debugger is initialized,
the current working directory is searched. If a re-initialization occurs
after the debugger has started and loaded an image, the directory
containing the image is searched.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-55

ARM Debuggers for Windows and UNIX
A box allows you to enter a filename or to select a filename from a pull
down list. Use this box to add new map files to the list or select a map
file from the list. You must not specify an absolute path name, but you
can specify a memory map file relative to the current image path.

The browse button allows you to select a memory map file using a
dialog.

When you have selected a filename, or typed in a filename, the
debugger does not check for the existence of the file or the validity of
its format. If the format of the file is found to be invalid at
re-initialization, the debugger displays an error message. In that case,
or if the file does not exist, the debugger defaults to the No Map File
option and uses the ARMulator default settings.

Use the Remove button to remove the currently selected file from the
list.

Note
 Map files are used only at re-initialization, not when a program is loaded. When

you select the Local Map File option, the map file in the working directory of the
current image is used. If you load a new image, the same map file is used. To use
a map file that is associated with the new image, you must re-initialize the
debugger by selecting Configure Debugger… from the Options menu and
clicking OK.

3. Save or discard your changes:

• click OK to save any changes and exit

• click Apply to save any changes

• click Cancel to ignore all changes not applied and exit.
3-56 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
3.7.2 ARMulator configuration

Use the Armulator Configuration dialog to change configuration settings for the
ARMulator.

Follow these steps to change configuration settings for the ARMulator:

1. Select Configure Debugger from the Options menu.

2. Click on the Target tab.

3. Select ARMulate in the Target Environment field.

4. Click on the Configure button. The ARMulator Configuration dialog is displayed
(Figure 3-18).

Figure 3-18 Configuration of ARMulator

5. Change the following configuration settings, as required:

Variant Processor type required for emulation.

Clock Clock speed to be used for emulation.

If the Emulated radio button is selected then the clock speed used is
the value that you enter into the Speed field.

Values stored in debugger internal variable $clock depend on this
setting, and are unavailable if you select Real-time (see Debugger
Internals window on page 3-18).

If the Real-time radio button is selected then the real-time clock of the
host computer is used and the Speed field is unavailable.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-57

ARM Debuggers for Windows and UNIX
The ARM Debugger clock speed defaults to 0.00 for compatibility
with the defaults of armsd. Selecting Real-time in the ARM Debugger
is equivalent to omitting the -clock armsd option on the command-line.
In other words, the clock frequency is unspecified.

For the ARMulator, an unspecified clock frequency is of no
consequence because ARMulator does not need a clock frequency to
be able to ‘execute’ instructions and count cycles (for $statistics).
However, your application program may sometimes need to access a
clock, for example, if it contains calls to the standard C function
clock() or the Angel SYS_CLOCK SWI, so ARMulator must always be
able to give clock information. It does so in the following way:

• if a clock speed has been specified to the ARM Debugger or
armsd, then ARMulator uses that frequency value for its timing

• if Real-time is selected (for the ARM Debugger) or unspecified
(for armsd), the real-time clock of the host computer is used by
ARMulator instead of an emulated clock.

In either case, the clock information is used by ARMulator to calculate
the elapsed time since execution of the application program began.
This elapsed time can be read by the application program using the C
function clock() or the Angel SWI_clock, and is also visible to the user
from the debugger as $clock. It is also used internally by the ARM
Debugger and armsd in the calculation of $memstats. The clock speed
(whether specified or unspecified) has no effect on actual (real-time)
speed of execution under ARMulator. It affects the simulated elapsed
time only.

$memstats is handled slightly differently because it does need a defined
clock frequency, so that ARMulator can calculate how many wait
states are needed for the memory speed defined in an armsd.map file. If
a clock speed is specified and an armsd.map file is present, then
$memstats can give useful information about memory accesses and
times. Otherwise, for the purposes of calculating the wait states, an
arbitrary default of 1MHz is used to calculate a core:memory clock
ratio, so that $memstats can still give useful memory timings.

Floating-point emulation
Toggles floating-point emulation on and off.

If you are using the software floating-point C libraries, ensure that this
option is off (blank). The option should be on (checked) only if you are
using the floating-point emulator (FPE).
3-58 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
3.7.3 Angel remote configuration

If you are using Angel or EmbeddedICE, use the Angel Remote Configuration dialog
to configure the settings for the remote connection you are using to debug your
application.

Follow these steps to change configuration settings for Angel:

1. Select Configure Debugger from the Options menu.

2. Click on the Target tab.

3. Select Remote_A in the Target Environment field to select ADP (Angel Debug
Protocol).

4. Click on the Configure button. The Angel Remote Configuration dialog is
displayed (Figure 3-19).

Figure 3-19 Configuration of remote connection

5. Change the following configuration settings, as required:

Remote Connection
Chooses either Serial or Serial/Parallel depending on the connections.
For Ethernet, enter either an IP address or the hostname of the target
board.

Heartbeat
Ensures reliable transmission by sending heartbeat messages. If not
enabled, there is a danger that the host and the target can get into a
deadlock situation, with both waiting for a packet.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-59

ARM Debuggers for Windows and UNIX
Ports Allows the correct serial and parallel devices to be chosen for the
debug connection.

Serial Line Speed
Selects the Baud rate used to transmit data along the serial line.

Channel Viewers
Channel viewers are not supported by the ARM Debugger for UNIX
(ADU).

In the ARM Debugger for Windows (ADW) you can enable or disable
the selected channel viewer DLL. See ThumbCV channel viewer on
page 3-49 for more information.

Click the Add... button to add a channel viewer DLL to the displayed
list.

Click the Remove... button to remove the currently selected channel
viewer DLL from the displayed list.

3.7.4 EmbeddedICE configuration

Use the EmbeddedICE Configuration dialog to select the settings for an EmbeddedICE
target. This option is enabled only if you have EmbeddedICE connected to your
machine.

Follow these steps to change the EmbeddedICE configuration options:

1. Select Configure EmbeddedICE from the Options menu. The configuration
dialog is displayed (Figure 3-20).

Figure 3-20 Configuration of EmbeddedICE target
3-60 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
2. Change the following configuration settings, as required:

Name Name given to the EmbeddedICE configuration. Valid options are:

ARM7DI for use with an ARM7 core with debug extensions and
EmbeddedICE macrocell (includes ARM7DMI)

ARM7TDI
for use with an ARM7 core with Thumb and debug
extensions and EmbeddedICE macrocell (includes
ARM7TDMI).

Version Version given to the EmbeddedICE configuration. Specify the specific
version to use or enter any if you do not require a specific
implementation.

Load Agent
Specify a new EmbeddedICE ROM image file, download it to your
board, and run it. Use this for major updates to the ROM.

Load Config
Specify an EmbeddedICE configuration file to be loaded. Click OK to
run. Use this for minor updates.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-61

ARM Debuggers for Windows and UNIX
3.8 ARM Debugger with C++

This section describes the additions that ARM C++ makes to ADW and ADU. It does
not describe those parts of ADW and ADU that are included in the standard release.
This section covers the following topics:

• About ADW for C++

• Using the C++ debugging tools on page 3-63

• Using the Class View window on page 3-63

• Using the Watch window on page 3-66

• Evaluating expressions on page 3-70

• Debug Format Considerations on page 3-74.

3.8.1 About ADW for C++

ARM C++ provides additions to ADW and ADU to support C++ debugging. A dynamic
link library (adw_cpp.dll) is installed in the same directory as adw.exe. The adw_cpp.dll
adds:

• A C++ menu between the View and Execute menus in the main menu bar

• Five new buttons in the ADW/ADU toolbar:

 Evaluate Expression

 View Classes

 Show Watches

 Hide Watches

 Recalculate Watches

Figure 3-21 on page 3-63 shows an example of the ARM Debugger C++ debug
interface and the C++ menu.
3-62 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
Figure 3-21 The ARM Debugger C++ interface

3.8.2 Using the C++ debugging tools

The menu items in the C++ menu give access to three new debugger windows:

• The Class View window. This window displays the class hierarchy of a C++
program in outline format.

• The Watch View window. This window displays a list of watches. It enables you
to add and remove variables and expressions to be watched, and change the
contents of watched variables.

• The Evaluate Expression window. This window enables you to enter an
expression to be evaluated, and to add that expression to the Watch window.

These windows are described in detail in the sections below.

3.8.3 Using the Class View window

You can use the Class View window to view the class structure of your C++ program.
Classes are displayed in an outline format that allows you to navigate through the
hierarchy to display the member functions for each class. A special branch of the
hierarchy called Global displays global functions.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-63

ARM Debuggers for Windows and UNIX
You can also use the Class View window to view function code and set breakpoints for
a class.

Displaying the Class View window

Follow these steps to open the Class View window:

1. Select View Classes from the C++ menu, or click on the View Classes button in
the toolbar. A Class View window is displayed that shows the class hierarchy of
your C++ program. Figure 3-22 shows an example of the Class View window.

Figure 3-22 The Class View window

Viewing code from the Class View window

Follow these steps to view the source code for a class:

1. Display the Class View window.

2. Click the right mouse button on a member function. A Class View window menu
is displayed (Figure 3-23 on page 3-65).
3-64 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
Figure 3-23 The Class View window menu

3. Select View Source from the Class View window menu to display the source code
for the function.

Note
 You can also double click the left mouse button on a member function to display

the function source.

4. Select Set or Edit Breakpoint... from the Execute menu if you want to add a
breakpoint within the code you are viewing. Refer to the next section for
information on how to set a breakpoint at function entry.

Setting and clearing breakpoints from the Class View window

Follow these steps to toggle a breakpoint that will halt the program when the source for
a class or function is entered:

1. Display the Class View window.

2. Click the right mouse button on a member function. A Class View window menu
is displayed (Figure 3-23).
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-65

ARM Debuggers for Windows and UNIX
3. Select Toggle Breakpoint from the Class View window menu to set a breakpoint,
or unset an existing breakpoint. Breakpoints are indicated by a red dot to the left
of the function in the Class View window.

3.8.4 Using the Watch window

The Watch window allows you to set watches on variables and expressions. The Watch
window provides similar functionality to the debugger Local and Global windows. In
addition, it provides a C++ interpretation of the data being displayed.

Note
 The Watch window is not used to set watchpoints. Select Set or Edit Watchpoint...
from the Execute menu to set watchpoints. Refer to Simple watchpoints on page 3-29
and Complex watchpoints on page 3-32 for more information.

Evaluation of function pointers and member functions is not available in this version of
ADW or ADU.

You can specify the contents and format of the Watch window using the Watch window
menu. The following sections describe how to:

• view the Watch window

• display the Watch window menu

• delete and add watch items

• format watch items

• change the contents of watched items

• recalculate watches.

Viewing the Watch window

Follow these steps to view the Watch window:

1. Select Show Watch Window from the C++ menu or click on the Show Watches
button in the toolbar. The Watch window displays a list of watched variables and
expressions. Figure 3-24 on page 3-67 shows an example.
3-66 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
Figure 3-24 The Watch window

Expressions that return a scalar value are displayed as an expression-value pair.
Non-scalar values, such as structures and classes, are displayed as a tree of
member variables. If a class is derived, the base classes are represented by ::<base
class> member variables of the class.

Note
 You can also open the Watch window from the Evaluate Expression window. Refer to
Evaluating expressions and adding watches on page 3-71 for more information.

Displaying the Watch window menu

The Watch window menu enables you to add and delete watches, to change the display
format of watches, and to change the contents of watched variables. Follow these steps
to display the Watch window menu:

1. Display the Watch window.

2. Click the right mouse button in the Watch window. The Watch window menu is
displayed. This menu is context sensitive. The menu items that it contains will
depend on:

• whether or not you have clicked on an existing watch item

• the type of watch item you have clicked on.

For example, Figure 3-25 on page 3-68 shows the Watch window menu that is
displayed when the right mouse button is clicked on the character array buf.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-67

ARM Debuggers for Windows and UNIX
Figure 3-25 The Watch window menu

Deleting a watch item

Follow these steps to delete a watch item from the Watch window:

1. Display the Watch window.

2. Either:

• click the right mouse button on the item you want to delete and select
Delete Item from the Watch window menu

• click on the item you want to delete and press the Delete key.

The watch item is deleted from the Watch window.

Adding a watch item

Follow these steps to add a watch item to the Watch window:

1. Display the Watch window.

2. Either:

• click the right mouse button in the Watch window to display the Watch
window menu and select Add Item from the Watch window menu

• press the Insert key.

A Watch Control window is displayed (Figure 3-26 on page 3-69).
3-68 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
Figure 3-26 The Watch Control window

3. Enter an expression to add to the Watch window and click OK. Refer to
Evaluating expressions and adding watches on page 3-71 for more information
on the types of expression you can add to the Watch window.

Note
 You can also add an expression to the Watch window directly from the Evaluate
Expression window. Refer to Evaluating expressions and adding watches on page 3-71
for more information.

Formatting watch items

Follow these steps to change the formatting of values displayed in the Watch window:

1. Display the Watch window.

2. Click the right mouse button in the Watch window to display the Watch window
menu.

3. Select Format Window to format all items in the window. The Display Format
window is displayed (Figure 3-27).

Figure 3-27 The Display Format window
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-69

ARM Debuggers for Windows and UNIX
4. Enter a format string for the item, or items in the window. You can enter any single
print conversion specifier that is acceptable as an argument to ANSI C sprintf()
as a format string, except that * cannot be used as a precision. For example, enter
%x to format values in hexadecimal, or %f to format values as a character string.

5. Click OK to apply the format change.

Changing the contents of watched items

Follow these steps to change the contents of items in the Watch window:

1. Display the Watch window.

2. Click the right mouse button in the Watch window to display the Watch window
menu.

3. Select Edit value from the Watch window menu. The Modify Item window is
displayed (Figure 3-28).

Figure 3-28 The Modify Item window

4. Enter a new value for the variable.

5. Click OK to change the contents of the variable.

Recalculating watches

Select Recalculate Watches from the C++ menu or click on the Recalculate Watches
button in the toolbar to reinitialize the Watch window to its original state, with all
structures and classes expanded by one level. This menu item can be used if the value
of any variable may have been changed by external hardware while the debugger is not
stepping through code.

3.8.5 Evaluating expressions

The Evaluate Expression window allows you to enter a simple C++ expression to be
evaluated. The Evaluate Expression window provides similar functionality to the
debugger Expression window, with a C++ interpretation of the data being displayed.
3-70 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
Evaluating expressions and adding watches

Follow these steps to enter an expression to be evaluated:

1. Select Evaluate Expressions from the C++ menu or click on the Evaluate
Expression button in the toolbar. The Evaluate Expression window is displayed
(Figure 3-29).

Figure 3-29 The Evaluate Expression window

2. Enter the expression to be evaluated and press the Enter key, or click on the
Calculate button. The value of the expression is displayed:

• If the expression is a variable, the value of the variable is displayed.

• If the expression is a logical expression, the window displays ‘1’ if the
expression evaluates to true, or ‘0’ if the expression evaluates to false.

• If the expression is a function, the value of the function is displayed.
Member functions of C++ classes cannot be evaluated.

Refer to Expression evaluation guidelines for more information on expression
evaluation in C++.

3. Click on the Add Watch button to add the expression to the Watch window.

Expression evaluation guidelines

Note
 The following guidelines apply to all areas of ADW or ADU where an expression can
be used, including setting watchpoints and breakpoints, and evaluating expressions in
the Watch window.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-71

ARM Debuggers for Windows and UNIX
The following rules apply to expression evaluation for C++ :

• Member functions of C++ classes cannot be used in expressions.

• Overloaded functions cannot be used in expressions.

• Only C operators can be used in constructing expressions. Any operators defined
in a C++ class that also have a meaning in C (such as []) will not work correctly
because ADW and AU use the C operator instead. Specific C++ operators, such
as the scope operator ::, are not recognized.

• Member variables of a class cannot be accessed from the Evaluate Expression
window in a C++ manner, as if they were local variables. To use a member
variable in an expression you must use one of:

— this->member

— this[0].member

— *this.member

If the member variable is defined in a base class then this->member will return the
correct results.

In the Expression Evaluation window (and only there) you can access variables
of a class by name. This means that member gives the same result as this->member.
However, if you have more complex expressions such as:

this->member1 * this->member2

you cannot use:

member1 * member2

• Base classes cannot be accessed in standard C++ notation. For example:

class Base
{

char *name;
char *A;

};
class Derived : public class Base
{

char *name;
char *B;
void do_sth();

};

If you are in method do_sth() you can access the member variables A, name, and B
through the this pointer. For example, this->name returns the name defined in
class Derived.

To access name in class Base, the standard C++ notation is:
3-72 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
void Derived::do_sth()
{

Base::name="value"; // sets name in the base class
// to "value"

}

However, the expression evaluation window does not accept this->Base::name
because ADW and ADU do not understand the scope operator. You can access
this value with:

this->::Base.name

• Though it is possible to call member functions in the form Class::Member(...),
this will give undefined results.

• private, public, and protected attributes are not recognized by the ADW or ADU
Evaluate Expression window. This means that private and protected member
variables can be accessed in the Evaluate Expression window because ADW and
ADU treat them as public.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-73

ARM Debuggers for Windows and UNIX
3.8.6 Debug Format Considerations

This section provides information about the debug table formats that can be generated
by the ARM C++ compilers. It also describes how to change the format of the debug
tables generated.

The debug table format

The ARM C++ compiler provides a number of options for building debug images. You
can use the Compiler Configuration window in APM to set these options. Figure 3-30
shows an example of the Compiler Configuration window.

Figure 3-30 Compiler configuration window

By default, the C++ compiler produces DWARF2 format debug tables. The available
formats are:

dwarf 2 This is the default format produced by APM for C++ projects. You should
use this format unless you have specific reasons for using DWARF1.

dwarf 1 You should use this format only if you have specific reasons for doing so.
For example, you may want to use a debugger that does not support
DWARF2.
3-74 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX
asd Do not use this format for C++. The ASD format cannot represent some
C++ constructs, such as pointers to member functions. Using ASD will
produce unpredictable results.

DWARF1 limitations

The DWARF1 debug table format has limitations that introduce severe restrictions to
debugging C++ code. These include:

• DWARF1 provides no support for #include files. Stepping into member functions
defined in #include files, and setting breakpoints on such functions, results in
incorrect behavior.

• DWARF1 is less descriptive than DWARF2, and therefore has limited potential
for building optimized debug images and objects.

• DWARF1 produces a much larger debug table than DWARF2. As a result,
DWARF1 images can be significantly slower to load than DWARF2 images.

For these reasons, it is recommended that you use the DWARF2 debug table format.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-75

ARM Debuggers for Windows and UNIX
3-76 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 4
Command-Line Development

This chapter gives a brief overview of using the command-line tools. It contains the
following sections:

• The hello world example on page 4-2

• armsd on page 4-6.

Refer to the ARM Software Development Toolkit Reference Guide for more information
on the command-line tools.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-1

Command-Line Development
4.1 The hello world example

This example shows you how to write, compile, link, and execute a simple C program
that prints Hello World and a carriage return on the screen. The code is created using a
text editor, compiled and linked using armcc, and run using armsd. This section also
provides a brief introduction to armsd. More information is given in armsd on page 4-6.

Figure 4-1 Compiling and linking C

4.1.1 Create, compile, link, and run

Follow these steps to create, compile, link, and run a simple C program:

1. Enter the following code using any text editor:

#include <stdio.h>
int main(void)
{

printf("Hello World\n");
return 0;

}

2. Save the file as hello.c.

3. Enter armcc hello.c -o hello to compile and link the code.

The argument to the -o option gives the name of the file that will hold the final
output of the link step. The linker is called by the compiler after compilation. To
prevent the compiler from calling the linker, enter the -c compiler option on the
command-line. Compiler options are case-sensitive.

4. Enter armsd hello to execute the code under software emulation. armsd starts,
loads the file, and displays the armsd: prompt.

5. Enter go and press Return. The debugger responds with Hello World, followed by
a message indicating that the program terminated normally.

C source module(s)

armcc

executable

C library

compile

link

.o

.c
4-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Command-Line Development
6. To reload and run the program again enter: reload and then go at the armsd
prompt.

To quit the debugger, enter: quit.

4.1.2 Debugging hello.c

Follow these steps to debug hello.c at the source level:

1. Quit the debugger if it is still running.

2. Enter armcc -g+ hello.c -o hello2 to recompile the program with high-level
debugging information.

The -g+ option instructs the compiler to include debug information.

3. Enter armsd hello2 to load hello2 into the debugger.

4. Enter break main at the armsd prompt to set a breakpoint on the first statement in
main().

5. Enter go to execute the program up to the breakpoint.

The debugger reports that it has stopped at breakpoint #1, and displays the source
line.

6. You can enter debugging commands to examine register contents and source
code:

• To display the contents of the registers enter: reg.

• To list the C source, enter: type.

This displays the whole source file. The type command can also display
sections of code. For example, enter: type 1,6 to display lines 1 to 6 of the
source.

• To list the assembly code enter: list

The assembly code around the current position in the program is shown. You can
also list memory at a given address, for example: list 0x8080

Refer to armsd on page 4-6 or the ARM Software Development Toolkit Reference Guide
for more information on using the command-line debugger.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-3

Command-Line Development
4.1.3 Separating the compile and link stages

Follow these steps to separate the compile and link stages:

1. Quit the debugger if it is running.

2. Enter armcc -c hello.c to recompile hello.c into an object file. No executable file
is produced.

3. Enter armlink hello.o -o hello3 to link the object file with a library and generate
an executable program.

4. Enter armsd hello3 to load the program into the debugger.

5. hello3 contains no C source level debugging information because hello.o was
compiled without the -g+ option, so you cannot view the source statements with
the type command.

However, you can refer to program locations and set breakpoints on them by using
the @ character to reference the low-level symbols. For example, to set a
breakpoint on the first location in main(), type: break @main.

4.1.4 Generating interleaved C and assembly language

Follow these steps to generate interleaved C and assembly language:

1. Quit the debugger if it is running.

2. Enter armcc -S -fs hello.c at the system prompt.

The -S option instructs armcc to write out an assembly language listing of the
instructions that would usually be compiled into executable code. The -fs option
instructs the compiler to interleave C and the generated assembly language.

By default, the output file will have the same name as the C source file, but with
the extension .s.

3. Display the file hello.s on screen using the appropriate operating system
command, or load it into a text editor. Example 4-1 on page 4-5 shows the
assembly language generated for hello.c.

Note
 Your code may differ slightly from Example 4-1 on page 4-5, depending on the

version of compiler you are using.
4-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Command-Line Development
Example 4-1

|x$codeseg| DATA
;;;1 #include <stdio.h>
;;;2
;;;3 int main (void)
;;;4
;;;5 {
 main
000000 e52de004 STR lr,[sp,#-4]!
;;;6
;;;7 printf ("Hello world\n");
000004 e28f0f02 ADD a1,pc,#L000014-.-8
000008 ebfffffc BL _printf
;;;8
;;;9 return 0;
00000c e3a00000 MOV a1,#0
000010 e49df004 LDR pc,[sp],#4
 L000014
000014 6c6c6548 DCB 0x48,0x65,0x6c,0x6c ; 'Hell'
000018 6f77206f DCB 0x6f,0x20,0x77,0x6f ; 'o wo'
00001c 0a646c72 DCB 0x72,0x6c,0x64,0x0a ; 'rld\n'
000020 00000000 DCB 0x00,0x00,0x00,0x00 ; '\0\0\0\0'
;;;10 }
;;;11

 END

4.1.5 For more information

For a description of the ARM C compiler options and the ARM linker options, see the
ARM Software Development Toolkit Reference Guide.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-5

Command-Line Development
4.2 armsd

The ARM command-line debugger, armsd, enables you to debug your ARM targeted
image using any of the debugging systems described in Debugging systems on page 3-5.

This section describes how to carry out basic tasks such as loading a C language based
image into armsd and setting simple breakpoints. Refer to the ARM Software
Development Toolkit Reference Guide for more detailed instructions on how to use
armsd.

4.2.1 Starting armsd and loading an image

To start armsd and load the image you want to debug, enter the command:

armsd {options} imagename {arguments}

You can specify:

• any armsd options before the image name

• any arguments for the image after the image name.

Use the armsd command-line to debug your target.

If you regularly issue the same set of armsd commands, you can run these automatically
by adding them to a text file called armsd.ini. This file must be in the current directory,
or the directory specified by the environment variable HOME. The commands are run
whenever you start armsd.

4.2.2 Obtaining help on the armsd commands

Help is available from the armsd command-line:

• To display a list of all the armsd commands available enter: help.

• To display help on a particular command enter: help command_name .

help can be abbreviated to h.

4.2.3 Setting and removing simple breakpoints

A breakpoint halts the image at a specified location.

• To set a simple breakpoint on the first statement of a function, enter: break
function_name

You can also use the break command to set breakpoints on the statement specified
by its line number using:

break line_number
4-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Command-Line Development
• To list all the current breakpoints and their corresponding numbers, enter break
without any arguments.

• To remove a breakpoint enter:

unbreak if only one breakpoint is set

unbreak #n
to delete breakpoint number n

unbreak function_name
to delete a breakpoint on the first statement of function function_name.

You can use any of these methods to remove a breakpoint, regardless of the way
in which the breakpoint was set.

break can be abbreviated to b, and unbreak can be abbreviated to unb.

4.2.4 Setting and removing simple watchpoints

A watchpoint halts the image when a specified variable changes.

• To set a simple watchpoint on a variable, enter: watch variable

• To list all the current watchpoints and their corresponding numbers enter: watch
without any arguments.

• To remove a watchpoint enter:

unwatch if only one watchpoint is set

unwatch #n
to delete watchpoint numbered n

unwatch variable
to delete a watchpoint on a specified variable.

You can use any of these methods to remove a watchpoint, regardless of the way
in which it was set.

watch can be abbreviated to w, and unwatch can be abbreviated to unw.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-7

Command-Line Development
4.2.5 Executing the program

The following commands enable you to control program execution:

• To execute the program enter: go

Execution continues until:

— a breakpoint halts the program

— a watchpoint halts the program

— the program exits.

• To stop the execution of a program, press Ctrl-C.

• To restart a program that is already loaded, either:

— enter reload targetname to reload the target

and then execute the program again with go

— enter pc = start_address (typically 0x8000) and CPSR = %IFt_SVC32, and
then type go.

• To configure your target to run with command-line arguments enter: let $cmdline
= arguments

For example: let $cmdline = "-high -p -M"

These arguments replace any arguments set when armsd was started.

go can be abbreviated to g, and reload can be abbreviated to rel.

4.2.6 Stepping through the program

The following commands enable you to step through your target:

• To execute a single source code line enter: step.

• To step into a function call enter: step in.

• To step out of a function to the line that immediately follows the call to that
function enter: step out.

This command is useful if step in has been used too often.

• To display your current position in the target enter: where.

step can be abbreviated to s, and where can be abbreviated to wh.
4-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Command-Line Development
4.2.7 Exiting the debugger

To exit the debugger type quit. You are returned to the command-line.

quit can be abbreviated to q.

4.2.8 Viewing and setting program variables

The following commands enable you to view and set program variables:

• To list all the variables defined within the current context, enter: symbols

• To view the contents of a variable enter: print variable

• To view type and context information about a variable enter: variable variable

• To set the value of a variable use the command: let variable = expression

symbols can be abbreviated to sy, print can be abbreviated to p, and variable can be
abbreviated to v.

4.2.9 Displaying source code

If your program has been compiled with the -g+ compiler option you can display source
code as follows:

• To display C code around the current line enter: type

• To display assembly code rather than C source, enter: list

type can be abbreviated to t, and list can be abbreviated to l.

4.2.10 Viewing and setting debugger variables

Some features of armsd are specified by the value of the debugger variables. These can
be viewed and set in the same way as program variables.

For example, the read-write variable $list_lines is an integer value that specifies the
number of lines displayed when the list command is issued.

Note
 Some armsd variables are read-only.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-9

Command-Line Development
4-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 5
Basic Assembly Language Programming

This chapter provides an introduction to the general principles of writing ARM and
Thumb assembly language. It contains the following sections:

• Introduction on page 5-2

• Overview of the ARM architecture on page 5-3

• Structure of assembly language modules on page 5-10

• Conditional execution on page 5-17

• Loading constants into registers on page 5-22

• Loading addresses into registers on page 5-27

• Load and store multiple register instructions on page 5-34

• Using macros on page 5-43

• Describing data structures with MAP and # directives on page 5-46.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-1

Basic Assembly Language Programming
5.1 Introduction

This chapter gives a basic, practical understanding of how to write ARM and Thumb
assembly language modules. It also gives information on the facilities provided by the
ARM assembler (armasm). For additional details about armasm, see Chapter 5
Assembler in the ARM Software Development Toolkit Reference Guide.

This chapter does not provide a detailed description of either the ARM instruction set
or the Thumb instruction set. This information can be found in the ARM Architectural
Reference Manual, or in an appropriate ARM data sheet.

5.1.1 Code examples

There are a number of code examples in this chapter. Many of them are supplied in the
examples\asm directory of the Software Development Toolkit.

Follow these steps to build, link, and execute an assembly language file:

1. Type armasm -g filename.s at the command prompt to assemble the file and
generate debug tables.

2. Type armlink filename.o -o filename to link the object file.

3. Type armsd filename to load the image file into the debugger.

4. Type go at the armsd: prompt to execute it.

5. Type quit at the armsd: prompt to return to the command line.

To see how the assembler converts the source code, enter:

decaof -c filename.o

or run the module in ADW or ADU with interleaving on.

See:

• armsd on page 4-6 for details on armsd.

• Chapter 3 ARM Debuggers for Windows and UNIX for details on ADW and ADU.

• Chapter 6 Linker in the ARM Software Development Toolkit Reference Guide for
details on armlink.

• ARM object file decoder on page 8-10 of the ARM Software Development Toolkit
Reference Guide for additional details on decaof.
5-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.2 Overview of the ARM architecture

This section gives a brief overview of the ARM Architecture. Refer to the ARM
Architectural Reference Manual for a detailed description of the points described here.

The ARM is typical of RISC processors in that it implements a load/store architecture.
Only load and store instructions can access memory. Data processing instructions
operate on register contents only.

5.2.1 Architecture versions

The ARM architecture exists in four major versions. The information and examples in
this book assume that you are using a processor that implements Architecture 3 or later.
Refer to the ARM Architectural Reference Manual for a summary of the different
architecture versions.

5.2.2 ARM and Thumb state

Versions 4T and 4TxM of the ARM architecture define a 16-bit instruction set called
the Thumb instruction set. The functionality of the Thumb instruction set is a subset of
the functionality of the 32-bit ARM instruction set.

The Thumb instruction set:

• imposes some limitations on register access (see Thumb instruction capabilities
on page 5-9).

• does not allow conditional execution except for branch instructions (see
Conditional execution on page 5-17)

• does not allow access to the barrel shifter except as a separate instruction.

Refer to Thumb instruction set overview on page 5-8 for more information.

A processor that is executing Thumb instructions is said to be operating in Thumb state.
A Thumb-capable processor that is executing ARM instructions is said to be operating
in ARM state.

ARM processors always start in ARM state. You must explicitly change to Thumb state
using a BX (Branch and exchange instruction set) instruction.

5.2.3 Address space

All processors that implement version 3 or later of the ARM architecture have a 32-bit
addressing range.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-3

Basic Assembly Language Programming
5.2.4 Processor mode

The ARM supports up to seven processor modes, depending on the Architecture
version. These are:

• User

• FIQ - Fast Interrupt Request

• IRQ - Interrupt Request

• Supervisor

• Abort

• Undefined

• System (ARM version 4 architectures only).

Most application programs execute in User mode. The other modes are entered to
service exceptions, or to access privileged resources. Refer to Chapter 9 Handling
Processor Exceptions for more information.

5.2.5 Registers

The ARM processor has 37 registers. The registers are arranged in partially overlapping
banks. There is a different register bank for each processor mode. The banked registers
give rapid context switching for dealing with processor exceptions and privileged
operations. Refer to Chapter 9 Handling Processor Exceptions for a detailed
description of how registers are banked.

The following registers are available in version 3 and later of the ARM architecture:

• 30 general purpose, 32-bit registers.

Fifteen of these are visible at any one time, depending on the current processor
mode, as r0, r1, ... ,r13, r14.

By convention in ARM assembly language r13 is used as a stack pointer (sp). The
C compilers always do this.

In User mode, r14 is used as a link register (lr) to store the return address when a
subroutine call is made. It can also be used as a general purpose register if the
return address is stored on the stack.

In the exception handling modes, r14 holds the return address for the exception,
or a subroutine return address if subroutine calls are executed within an exception.
r14 can be used as a general purpose register if the return address is stored on the
stack.

• The program counter.
5-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
This is accessed as r15 (or pc). It is incremented by one word (four bytes) for each
instruction in ARM state, or by two bytes in Thumb state. Branch instructions
load the destination address into the program counter. You can also load the
program counter directly using data operation instructions. For example, you can
copy the link register into the program counter using:

MOV pc,lr

This is the usual way to return from a simple subroutine.

• The Current Program Status Register (CPSR).

The CPSR holds:

— copies of the Arithmetic Logic Unit(ALU) status flags

— the current processor mode

— interrupt disable flags.

On Thumb-capable processors, the CPSR also holds the current processor state
(ARM or Thumb).

The ALU status flags in the CPSR are used to determine whether or not
conditional instructions are executed. Refer to Conditional execution on
page 5-17 for more information.

• Five Saved Program Status Registers(SPSRs).

These are used to store the CPSR when an exception is taken. One SPSR is
accessible in each of the exception-handling modes. User mode and System mode
do not have an SPSR because they are not exception handling modes. Refer to
Chapter 9 Handling Processor Exceptions for more information.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-5

Basic Assembly Language Programming
5.2.6 ARM instruction set overview

All ARM instructions are 32 bits long and are stored word-aligned in memory.
Instructions are stored word-aligned, so the bottom two bits of addresses are always set
to zero in ARM state. These bits are ignored by all ARM instructions that have an
address operand, except the Branch Exchange (BX) instruction. The BX instruction uses
the bottom bit to determine whether the code being branched to is Thumb code or ARM
code. See Chapter 5 Assembler in the ARM Software Development Toolkit Reference
Guide for additional information.

ARM instructions can be classified into a number of functional groups:

Branch instructions

These instructions are used to branch backwards to form loops, to branch
forward in conditional structures, to branch to subroutines, or to change
the processor from ARM state to Thumb state.

Data processing instructions

These instructions operate on the general purpose registers. Generally
they perform operations such as addition, subtraction, or bitwise logic on
the contents of two registers and place the result in a third register. Long
multiply instructions (unavailable in some architectures) give a 64-bit
result in two registers.

Status register access instructions

These instructions move the contents of the CPSR or an SPSR to or from
a general purpose register.

Single register load and store instructions

These instructions load or store the value of a single register from or to
memory. In ARM architecture version 3 these instructions can load or
store a 32-bit word or an 8-bit unsigned byte. In ARM architecture
version 4 they can also load or store a 16-bit unsigned halfword, or load
and sign extend a 16-bit halfword or an 8-bit byte.

Multiple register load and store instructions

These instructions load or store any subset of the general purpose
registers from or to memory. Refer to Load and store multiple register
instructions on page 5-34 for a detailed description of these instructions.

Semaphore instructions

These instructions load and alter a memory semaphore.
5-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
Coprocessor instructions

These instructions support a general way to extend the ARM
Architecture.

Refer to the ARM Architectural Reference Manual for detailed information on the
syntax of the ARM instruction set.

ARM instruction capabilities

The following general points apply to ARM instructions:

Conditional execution

All ARM instructions can be executed conditionally on the value of the
ALU status flags in the CPSR. You do not need to use branches to skip
conditional instructions, although it may be better to do so when a series
of instructions depend on the same condition.

You can specify whether a data processing instruction sets the state of
these flags or not. You can use the flags set by one instruction to control
execution of other instructions even if there are many instructions in
between.

Refer to Conditional execution on page 5-17 for a detailed description.

Register access

In ARM state, all instructions can access r0-r14 and most also allow
access to r15 (pc). The MRS and MSR instructions can move the contents of
the CPSR and SPSRs to a general purpose register, where they can be
manipulated by normal data processing operations. Refer to the ARM
Architectural Reference Manual for more information.

Access to the inline barrel shifter

The ARM arithmetic logic unit has a 32-bit barrel shifter that is capable
of very general shift and rotate operations. The second operand to all
ARM data-processing and single register data-transfer instructions can be
shifted, before the data-processing or data-transfer is executed, as part of
the instruction. This supports, but is not limited to:

• scaled addressing

• multiplication by a constant

• constructing constants.

Refer to the Loading constants into registers on page 5-22 for more
information on using the barrel-shifter to generate constants.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-7

Basic Assembly Language Programming
5.2.7 Thumb instruction set overview

The functionality of the Thumb instruction set, with one exception, is a subset of the
functionality of the ARM instruction set. The instruction set is optimized for production
by a C compiler.

All Thumb instructions are 16 bits long and are stored halfword aligned in memory.
Because instructions are stored halfword-aligned, the bottom bit of the address of an
instruction is always set to zero in Thumb state. This bit is ignored by all Thumb
instructions that have an address operand except for the Branch Exchange (BX)
instruction.

All Thumb data processing instructions:

• operate on full 32-bit values

• use full 32-bit addresses for data access and for instruction fetches.

In general, the Thumb instruction set differs from the ARM instruction set in the
following ways. Refer to the ARM Architectural Reference Manual for detailed
information on the syntax of the Thumb instruction set, and how Thumb instructions
differ from their ARM counterparts:

Branch instructions

These instructions are used to branch backwards to form loops, to branch
forward in conditional structures, to branch to subroutines, and to change
the processor from Thumb state to ARM state. Program-relative
branches, particularly conditional branches, are more limited in range
than in ARM code, and branches to subroutines can only be
unconditional.

Data processing instructions

These operate on the general purpose registers. The result of the
operation is put in one of the operand registers, not in a third register.
There are fewer data processing operations available than in ARM state.
They have limited access to registers r8 to r15.

The ALU status flags in the CPSR are always set by these instructions
except when MOV or ADD instructions access registers r8 to r15. Thumb data
processing instructions that access registers r8 to r15 cannot set the flags.

Status register access instructions

There are no Thumb instructions to access the CPSR or SPSR.

Single register load and store instructions

These instructions load or store the value of a single low register from or
to memory. In Thumb state they cannot access registers r8 to r15.
5-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
Multiple register load and store instructions

These instructions load from memory or store to memory any subset of
the registers in the range r0 to r7.

In addition, the PUSH and POP instructions implement a full descending
stack using the stack pointer (r13) as the base. PUSH can stack the link
register and POP can load the program counter.

Semaphore instructions

There are no Thumb semaphore instructions.

Coprocessor instructions

There are no Thumb coprocessor instructions.

Thumb instruction capabilities

The following general points apply to Thumb instructions:

Conditional execution

The conditional branch instruction is the only Thumb instruction that can
be executed conditionally on the value of the ALU status flags in the
CPSR. All data processing instructions set these flags, except when one
or more high registers are specified as operands to the MOV or ADD
instructions. In these cases the flags cannot be set.

You cannot have any data processing instructions between an instruction
that sets a condition and a conditional branch that depends on it. You must
use conditional branches over any instructions that you wish to be
conditional.

Register access

In Thumb state, most instructions can access only r0-r7. These are
referred to as the low registers.

Registers r8 to r15 are limited access registers. In Thumb state these are
referred to as high registers. They can be used, for example, as fast
temporary storage.

Refer to the ARM Architectural Reference Manual for a complete list of
the Thumb data processing instructions that can access the high registers.

Access to the barrel shifter

In Thumb state you can use the barrel shifter only in a separate operation,
using an LSL, LSR, ASR, or ROR instruction.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-9

Basic Assembly Language Programming
5.3 Structure of assembly language modules

Assembly language is the language that the ARM assembler (armasm) parses and
assembles to produce object code. This can be:

• ARM assembly language

• Thumb assembly language

• a mixture of both.

The armasm assembler assembles both ARM and Thumb assembly languages. The
obsolete Thumb assembler, tasm, is provided in the Software Development Toolkit for
backwards compatibility only.

5.3.1 Layout of assembly language source files

The general form of source lines in assembly language is:

{label} {instruction|directive|pseudo-instruction} {;comment}

Note
 Instructions, pseudo-instructions, and directives must be preceded by white space, such
as a space or a tab, even if there is no label.

All three sections of the source line are optional. You can use blank lines to make your
code more readable.

Case rules

Instruction mnemonics can be written in uppercase or lowercase, but not mixed.
Directives must be written in uppercase. Symbolic register names can be written in
uppercase or lowercase, but not mixed.

Line length

To make source files easier to read, a long line of source can be split onto several lines
by placing a backslash character at the end of the line. The backslash must not be
followed by any other characters (including spaces and tabs). The backslash/end-of-line
sequence is treated by the assembler as white space.

Note
 Do not use the backslash/end-of-line sequence within quoted strings.
5-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
The exact limit on the length of lines, including any extensions using backslashes,
depends on the contents of the line, but is generally between 128 and 255 characters.

Labels

Labels are symbols that represent addresses. The address given by a label is calculated
during assembly.

The assembler calculates the address of a label relative to the origin of the area where
the label is defined. A reference to a label within the same area can use the program
counter plus or minus an offset. This is called program-relative addressing.

Labels can be defined in a map. See Describing data structures with MAP and #
directives on page 5-46. The origin of the map is usually placed in a specified register
at run time, and references to the label use the specified register plus an offset. This is
called register-relative addressing.

Addresses of labels in other areas are calculated at link time, when the linker has
allocated specific locations in memory for each area.

Local labels

Local labels are a subclass of label. A local label begins with a number in the range
0-99. Unlike other labels, a local label can be defined many times. Local labels are
useful when you are generating labels with a macro. When the assembler finds a
reference to a local label, it links it to a nearby instance of the local label.

The scope of local labels is limited by the AREA directive. You can use the ROUT directive
to limit the scope more tightly.

Refer to Chapter 5 Assembler in the ARM Software Development Toolkit Reference
Guide for details of:

• the syntax of local label declarations

• how the assembler associates references to local labels with their labels.

Comments

The first semicolon on a line marks the beginning of a comment, except where the
semicolon appears inside a string constant. The end of the line is the end of the
comment. A comment alone is a valid line. All comments are ignored by the assembler.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-11

Basic Assembly Language Programming
Constants

Numbers Numeric constants are accepted in three forms:

• Decimal. For example, 123.

• Hexadecimal. For example, 0x7b.

• n_xxx where:

— n is a base between 2 and 9

— xxx is a number in that base.

Strings Strings consist of opening and closing double quotes, enclosing
characters and spaces. If double quotes or dollar signs are used within a
string as literal text characters, they must be represented by a pair of the
appropriate character. For example, you must use $$ if you require a
single $ in the string. The standard C escape sequences can be used within
string constants.

Boolean The Boolean constants TRUE and FALSE must be written as {TRUE} and
{FALSE}.

Characters Character constants consist of opening and closing single quotes,
enclosing either a single character or an escaped character, using the
standard C escape characters.
5-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.3.2 An example ARM assembly language module

Example 5-1 illustrates some of the core constituents of an assembly language module.
The example is written in ARM assembly language. It is supplied as armex.s in the
examples\asm subdirectory of the toolkit. Refer to Code examples on page 5-2 for
instructions on how to assemble, link, and execute the example.

The constituent parts of this example are described in more detail in the following
sections.

Example 5-1

AREA ARMex, CODE, READONLY
; Name this block of code ARMex.

ENTRY ; Mark first instruction to execute
start MOV r0, #10 ; Set up parameters

MOV r1, #3
ADD r0, r0, r1 ; r0 = r0 + r1

stop MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0x123456 ; Angel semihosting ARM SWI
END ; Mark end of file

The AREA directive

ARM Object Format (AOF) areas are independent, named, indivisible sequences of
code or data. A single code area is the minimum required to produce an application.

The output of an assembly or compilation usually consists of two or more areas:

• A code area. This is usually a read-only area.

• A data area. This is usually a read-write area.

The linker places each area in a program image according to area placement rules. Areas
that are adjacent in source files are not necessarily adjacent in the application image.
Refer to Chapter 6 Linker in the ARM Software Development Toolkit Reference Guide
for more information on how the linker places areas. See also Chapter 10 Writing Code
for ROM.

In an ARM assembly language source file, the start of an area is marked by the AREA
directive. This directive names the area and sets its attributes. The attributes are placed
after the name, separated by commas. Refer to Chapter 5 Assembler in the ARM
Software Development Toolkit Reference Guide for a detailed description of the syntax
of the AREA directive.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-13

Basic Assembly Language Programming
You can choose any name for your areas. However, names starting with any
nonalphabetic character must be enclosed in bars, or a missing AREA name error is
generated. For example: |1_DataArea|.

Certain names are conventional. For example, |C$$code| is used for code areas produced
by the C compiler, or for code areas otherwise associated with the C library.

Example 5-1 on page 5-13 defines a single area called ARMex that contains code and is
marked as being READONLY.

The ENTRY directive

The ENTRY directive marks the first instruction to be executed within an application.
Because an application cannot have more than one entry point, the ENTRY directive can
appear in only one of the source modules. In applications containing C code, the entry
point is often contained within the C library initialization code.

Application execution

The application code in Example 5-1 on page 5-13 begins executing at the label start,
where it loads the decimal values 10 and 3 into registers r0 and r1. These registers are
added together and the result placed in r0.

Application termination

After executing the main code, the application terminates by returning control to the
debugger. This is done using the Angel semihosting SWI (by default this is 0x123456 in
ARM state), with the following parameters:

• r0 equal to angel_SWIreason_ReportException (by default 0x18)

• r1 equal to ADP_Stopped_ApplicationExit (by default 0x20026)

For additional information on this, see Chapter 13 Angel.

The END directive

This directive instructs the assembler to stop processing this source file. Every assembly
language source module must finish with an END directive on a line by itself.
5-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.3.3 Calling Subroutines

To call subroutines in assembly language, use a Branch Link instruction. The syntax is:

BL label

where label is usually the label on the first instruction of the subroutine. (It could
alternatively be a program-relative or register-relative expression, see Register-relative
and program-relative expressions on page 5-89 of the ARM Software Development
Toolkit Reference Guide.)

The BL instruction:

• places the return address in the link register (lr)

• sets pc to the address of the subroutine.

After the subroutine code is executed you can use a MOV pc,lr instruction to return. By
convention, registers r0-r3 are used to pass parameters to subroutines, and to pass results
back to the callers.

Note
 Calls between separately assembled or compiled modules must comply with the
restrictions and conventions defined by the ARM and Thumb Procedure Call Standards.
Refer to Chapter 6 Using the Procedure Call Standards for more information.

Example 5-2 shows a subroutine that adds the values of its two parameters and returns
a result in r0. It is supplied as subrout.s in the examples\asm subdirectory of the toolkit.
Refer to Code examples on page 5-2 for instructions on how to assemble, link, and
execute the example.

Example 5-2

AREA subrout, CODE, READONLY
; Name this block of code.

ENTRY ; Mark first instruction to execute
start MOV r0, #10 ; Set up parameters.

MOV r1, #3
BL doadd ; Call subroutine

stop MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0x123456 ; Angel semihosting ARM SWI.

doadd ADD r0, r0, r1 ; Subroutine code.
MOV pc, lr ; Return from subroutine.
END ; Mark end of file
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-15

Basic Assembly Language Programming
5.3.4 An example Thumb assembly language module

Example 5-3 illustrates some of the core constituents of a Thumb assembly language
module. It is based on subrout.s. It is supplied as thumbsub.s in the examples\asm
subdirectory of the toolkit. Refer to Code examples on page 5-2 for instructions on how
to assemble, link, and execute the example.

Example 5-3

AREA ThumbSub, CODE, READONLY ; Name this block of code
ENTRY ; Mark first instruction to execute
CODE32 ; Subsequent instructions are ARM

header ADR r0, start + 1 ; Processor starts in ARM state,
BX r0 ; so small ARM code header used

; to call Thumb main program.
CODE16 ; Subsequent instructions are Thumb.

start
MOV r0, #10 ; Set up parameters
MOV r1, #3
BL doadd ; Call subroutine

stop
MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0xAB ; Angel semihosting Thumb SWI

doadd
ADD r0, r0, r1 ; Subroutine code
MOV pc, lr ; Return from subroutine.
END ; Mark end of file

CODE32 and CODE16 directives

These directives instruct the assembler to assemble subsequent instructions as ARM
(CODE32) or Thumb (CODE16) instructions. They do not assemble to an instruction to
change the processor state at runtime. They only change the assembler state.

The ARM assembler, armasm, assembles ARM instructions until it reaches a CODE16
directive, unless the -16 option is used in the command line.

BX instruction

This instruction is a branch that can change processor state at runtime. The least
significant bit of the target address specifies whether it is an ARM instruction (clear) or
a Thumb instruction (set). In this example, the ADR pseudo-instruction sets this bit, so
start is a label to a Thumb instruction.
5-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.4 Conditional execution

In ARM state, each data processing instruction has an option to set ALU status flags in
the Current Program Status Register (CPSR) according to the result of the operation.

In Thumb state, there is no option. All data processing instructions set the ALU status
flags in the CPSR, except when one or more high registers are used in MOV and ADD
instructions. MOV and ADD cannot update the status flags in these cases.

Every ARM instruction can be executed conditionally on the state of the ALU status
flags in the CPSR. See Table 5-1 on page 5-18 for a list of the suffixes to add to
instructions to make them conditional.

In ARM state, you can:

• set the ALU status flags in the CPSR on the result of a data operation

• execute several other data operations without updating the flags

• execute following instructions or not, according to the state of the flags set in the
first operation.

In Thumb state you cannot execute data operations without updating the flags, and
conditional execution can only be achieved using conditional branches. The only
Thumb instruction that can be conditional is the conditional branch instruction (B). The
suffixes for this instruction are the same as in ARM state. The branch with link (BL) or
branch and exchange instruction set (BX) instructions cannot be conditional.

5.4.1 The ALU status flags

The CPSR contains the following ALU status flags:

N Set when the result of the operation was Negative.

Z Set when the result of the operation was Zero.

C Set when the operation resulted in a Carry.

V Set when the operation caused oVerflow.

A carry occurs if the result of an add, subtract, or compare is greater than or equal to
232, or as the result of an inline barrel shifter operation in a move or logical instruction.

Overflow occurs if the result of an add, subtract, or compare is greater than or equal to
231, or less than –231.

Add an S suffix to an ARM instruction to make it set the ALU status flags in the CPSR.

Do not use the S suffix with CMP, CMN, TST, or TEQ. These comparison instructions always
update the flags. This is their only effect.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-17

Basic Assembly Language Programming
5.4.2 Execution conditions

The relation of condition code suffixes to the N, Z, C and V flags is shown in Table 5-1.

Examples

ADD r0, r1, r2 ; r0 = r1 + r2, don't update flags.
ADDS r0, r1, r2 ; r0 = r1 + r2 and update flags.
ADDEQS r0, r1, r2 ; If Z flag set then r0 = r1 + r2,

; and update flags.
CMP r0, r1 ; update flags based on r0-r1.

Table 5-1 Condition code suffixes

Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS/HS C set higher or same (Unsigned >=)

CC/LO C clear lower (Unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear higher (unsigned >)

LS C clear and Z set lower or same (unsigned <=)

GE N and V the same signed >=

LT N and V differ signed <

GT Z clear, N and V the same signed >

LE Z set, N and V differ signed <=
5-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.4.3 Using conditional execution in ARM state

You can use conditional execution of ARM instructions to reduce the number of branch
instructions in your code.

Branch instructions are expensive in both code density and processor cycles. Typically
it takes three processor cycles to refill the processor pipeline each time a branch is taken.
(The cost is less on ARM processors that have branch prediction hardware.)

Example 5-4 : Euclid's Greatest Common Divisor

The following example uses two implementations of Euclid’s Greatest Common
Divisor algorithm to demonstrate how you can use conditional execution to improve
code density and execution speed. In pseudo-code the algorithm can be expressed as:

function gcd (integer a, integer b) : result is integer
while (a <> b) do

if (a > b) then
a = a - b

else
b = b - a

endif
endwhile
result = a

You can implement the gcd function with conditional execution of branches only, in the
following way:

gcd
CMP r0, r1
BEQ end
BLT less
SUB r0, r0, r1
B gcd

less
SUB r1, r1, r0
B gcd

end

Because of the number of branches, the code is seven instructions long. Every time a
branch is taken, the processor must refill the pipeline and continue from the new
location. The other instructions and non-executed branches use a single cycle each.

By using the conditional execution feature of the ARM instruction set, you can
implement the gcd function in only four instructions:
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-19

Basic Assembly Language Programming
gcd
CMP r0, r1
SUBGT r0, r0, r1
SUBLT r1, r1, r0
BNE gcd

In addition to improving code size, this code executes faster in most cases. Table 5-2
and Table 5-3 show the number of cycles used by each implementation for the case
where r0 equals 1 and r1 equals 2. In this case, replacing branches with conditional
execution of all instructions saves three cycles.

The conditional version of the code executes in the same number of cycles for any case
where r0 equals r1. In all other cases the conditional version of the code executes in
fewer cycles.

Table 5-2 Conditional branches only

r0: a r1: b Instruction Cycles

1 2 CMP r0, r1 1

1 2 BEQ end 1 (Not executed)

1 2 BLT less 3

1 2 SUB r1, r1, r0 1

1 2 B gcd 3

1 1 CMP r0, r1 1

1 1 BEQ end 3

Total = 13

Table 5-3 All instructions conditional

r0: a r1: b Instruction Cycles

1 2 CMP r0, r1 1

1 2 SUBGT r0,r0,r1 1 (Not executed)

1 1 SUBLT r1,r1,r0 1

1 1 BNE gcd 3

1 1 CMP r0,r1 1
5-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
Converting to Thumb

Because B is the only Thumb instruction that can be executed conditionally, the Greatest
Common Divisor algorithm in Example 5-4 on page 5-19 must be written with
conditional branches in Thumb code.

Like the ARM conditional branch implementation, the Thumb code requires seven
instructions. However, because Thumb instructions are only 16-bits long, the overall
code size is 14 bytes, compared to 16 bytes for the smaller ARM implementation.

In addition, on a system using 16-bit memory the Thumb version runs faster than the
second ARM implementation because only one memory access is required for each
Thumb instruction, whereas each ARM instruction requires two fetches.

1 1 SUBGT r0,r0,r1 1 (Not executed)

1 1 SUBLT r1,r1,r0 1 (Not executed)

1 1 BNE gcd 1 (Not executed)

Total = 10

Table 5-3 All instructions conditional (continued)

r0: a r1: b Instruction Cycles
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-21

Basic Assembly Language Programming
5.5 Loading constants into registers

There is no single ARM instruction that can load an arbitrary 32-bit immediate constant
into a register without performing a data load from memory. This is because all ARM
instructions are precisely 32 bits long and do not use the instruction stream as data.

Thumb instructions have the same limitation for similar reasons.

A data load can place any 32-bit value in a register, but there are more direct and
efficient ways to load many commonly-used constants.

The following sections describe:

• how to use the MOV and MVN instructions to load a range of immediate values

• how to use the LDR pseudo-instruction to load any 32-bit constant.

5.5.1 Direct loading with MOV and MVN

In ARM state, you can use the MOV and MVN instructions to load a range of 8-bit constant
values directly into a register:

• The MOV instruction loads any 8-bit constant value, giving a range of 0x0 to 0xff
(0-255).

• The MVN instruction loads the bitwise complement of these values, giving a range
of 0xffffff00 to 0xffffffff.

In addition, you can use either MOV or MVN in conjunction with the barrel shifter to
generate a wider range of constants. The barrel shifter can right rotate 8-bit values
through any even number of positions from 2 to 30.

You can use MOV to load values that follow the pattern shown in Table 5-4, in a single
instruction. Use MVN to load the bitwise complement of these values. Right rotates by 2,
4, or 6 bits produce bit patterns with a few bits at each end of a 32-bit word.

Table 5-4 ARM state immediate constants

Decimal values
Equivalent
Hexadecimal

Step
between
values

Rotate

0-255 0-0xff 1 No rotate

256, 260, 264, ... , 1020 0x100-0x3fc 4 Right by 30 bits

1024, 1040, 1056, ... , 4080 0x400-0xff0 16 Right by 28 bits

4096, 4160, 4224, ... , 16320 0x1000-0x3fc0 64 Right by 26 bits
5-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
Using MOV and MVN

You do not need to work out how to load a constant using MOV or MVN. The assembler
attempts to convert any constant value to an acceptable form.

This means that you can use MOV and MVN in two ways:

• Convert the value to an 8-bit constant, followed by the rotate right value. For
example:

MOV r0, #0xFF,30 ; r0 = 1020

• Allow the assembler to do the work of converting the value. If you specify the
constant to be loaded, the assembler converts it to an acceptable form if possible.
For example:

MOV r0, #0x3FC ; r0 = 1020

If the constant cannot be expressed as a right rotated 8-bit value or its bitwise
complement, the assembler reports an error.

Table 5-5 gives an example of how the assembler converts constants. The left-hand
column lists the ARM instructions input to the assembler. The right-hand column shows
the instruction generated by the assembler.

...

64 x 224, 65 x 224, ... , 255 x 224 0x40000000-0xff000000 224 Right by 8 bits

4 x 224, ... , 252 x 224 + 3 0x4000000-0xfc000003 226, 1 Right by 6 bits

16 x 224, ... , 240 x 224 + 15 0x10000000-0xf000000f 228, 1 Right by 4 bits

64 x 224, ... , 192 x 224 + 63 0x40000000-0xc000003f 230, 1 Right by 2 bits

Table 5-4 ARM state immediate constants (continued)

Decimal values
Equivalent
Hexadecimal

Step
between
values

Rotate

Table 5-5 Assembler generated constants

Input instruction Assembled equivalent

MOV r0, #0 MOV r0, #0

MOV r1, #0xFF000000 MOV r1, #0xFF, 8

MOV r2, #0xFFFFFFFF MVN r2, #0
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-23

Basic Assembly Language Programming
Direct loading with MOV in Thumb state

In Thumb state you can use the MOV instruction to load constants in the range 0-255. You
cannot generate constants outside this range because:

• The Thumb MOV instruction does not provide inline access to the barrel shifter.
Constants cannot be right-rotated as they can in ARM state.

• The Thumb MVN instruction can act only on registers and not on constant values.
Bitwise complements cannot be directly loaded as they can in ARM state.

If you attempt to use a MOV instruction with a value outside the range 0-255, the
assembler generates an error message.

MVN r3, #1 MVN r3, #1

MOV r4, #0xFC000003 MOV r4, #0xFF, 6

MOV r5, #0x03FFFFFC MVN r5, #0xFF, 6

MOV r6, #0x55555555 Error (cannot be constructed)

Table 5-5 Assembler generated constants (continued)

Input instruction Assembled equivalent
5-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.5.2 Loading with LDR Rd, =const

The LDR Rd,=const pseudo-instruction can construct any 32-bit numeric constant in a
single instruction. Use this pseudo-instruction to generate constants that are out of range
of the MOV and MVN instructions.

The LDR pseudo-instruction generates the most efficient code for a specific constant:

• If the constant can be constructed with a MOV or MVN instruction, the assembler
generates the appropriate instruction.

• If the constant cannot be constructed with a MOV or MVN instruction, the assembler:

— places the value in a literal pool (a portion of memory embedded in the code
to hold constant values)

— generates an LDR instruction with a program-relative address that reads the
constant from the literal pool.

For example:

LDR rn [pc, #offset to literal pool]
; load register n with one word
; from the address [pc + offset]

You must ensure that there is a literal pool within range of the LDR instruction
generated by the assembler. See Placing literal pools for more information.

Refer to Chapter 5 Assembler in the ARM Software Development Toolkit Reference
Guide for a description of the syntax of the LDR pseudo-instruction.

Placing literal pools

The assembler places a literal pool at the end of each area. These are defined by the AREA
directive at the start of the following area, or by the END directive at the end of the
assembly. The END directives at the ends of included files do not signal the end of areas.

In large areas the default literal pool may be out of range of one or more LDR instructions:

• in ARM state, the offset from the pc to the constant must be less than 4KB

• in Thumb state, the offset from the pc to the constant must be less than 1KB.

When an LDR Rd=const pseudo-instruction requires the constant to be placed in a literal
pool, the assembler:

• Checks if the constant is available and addressable in any previous literal pools.
If so, it addresses the existing constant.

• Attempts to place the constant in the next literal pool if it is not already available.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-25

Basic Assembly Language Programming
If the next literal pool is out of range, the assembler generates an error message. In this
case you must use the LTORG directive to place an additional literal pool in the code. Place
the LTORG directive after the failed LDR pseudo-instruction, and within 4KB (ARM) or
1KB (Thumb). Refer to Chapter 5 Assembler in the ARM Software Development Toolkit
Reference Guide for a detailed description of the LTORG directive.

You must place literal pools where the processor does not attempt to execute them as
instructions. Place them after unconditional branch instructions, or after the return
instruction at the end of a subroutine.

Example 5-5 shows how this works in practice. It is supplied as loadcon.s in the
examples\asm subdirectory of the toolkit. The instructions listed as comments are the
ARM instructions that are generated by the assembler. Refer to Code examples on
page 5-2 for instructions on how to assemble, link, and execute the example.

Example 5-5

AREA Loadcon, CODE, READONLY
ENTRY ; Mark first instruction to execute

start BL func1 ; Branch to first subroutine.
BL func2 ; Branch to second subroutine.

stop MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0x123456 ; Angel semihosting ARM SWI

func1
LDR r0, =42 ; => MOV R0, #42
LDR r1, =0x55555555 ; => LDR R1, [PC, #offset to

; Literal Pool 1]
LDR r2, =0xFFFFFFFF ; => MVN R2, #0
MOV pc, lr
LTORG ; Literal Pool 1 contains

; literal Ox55555555.
func2

LDR r3, =0x55555555 ; => LDR R3, [PC, #offset to
; Literal Pool 1]

; LDR r4, =0x66666666 ; If this is uncommented it
; fails, because Literal Pool 2
; is out of reach.

MOV pc, lr
LargeTable

% 4200 ; Starting at the current location,
; clears a 4200 byte area of memory
; to zero.

END ; Literal Pool 2 is empty.
5-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.6 Loading addresses into registers

It is often necessary to load an address into a register. You may need to load the address
of a string constant, or the start location of a jump table.

Addresses are normally expressed as offsets from the current pc or other register.

This section describes two methods for loading an address into a register:

• Load the register directly by using ADR or ADRL to construct an address from an
offset and the current pc or other register.

• Load the address from a literal pool using the LDR Rd,=label form of the LDR
pseudo-instruction.

5.6.1 Direct loading with ADR and ADRL

The ADR and ADRL pseudo-instructions enable you to load a range of addresses without
performing a memory access. ADR and ADRL accept either:

• A program-relative expression. A program-relative expression is a label with an
optional offset, where the address of the label is relative to the current pc.

• A register-relative expression. A register-relative expression is a label with an
optional offset, where the address of the label is relative to an address held in a
specified general purpose register. See Describing data structures with MAP and
directives on page 5-46 for information on specifying register-relative
expressions.

The assembler converts an ADR rn,label pseudo-instruction by generating:

• a single ADD or SUB instruction that loads the address, if it is in range

• an error message if the address cannot be reached in a single instruction.

The offset range is 255 bytes for an offset to a non word-aligned address, and 1020 bytes
(255 words) for an offset to a word-aligned address.

The assembler converts an ADRL rn,label pseudo-instruction by generating:

• two data-processing instructions that load the address, if it is in range

• an error message if the address cannot be constructed in two instructions.

The range of an ADRL pseudo-instruction is 64KB for a non-word aligned address and
256KB for a word-aligned address.

ADRL assembles to two instructions, if successful. The assembler generates two
instructions even if the address could be loaded in a single instruction.

Refer to Loading addresses with LDR Rd, = label on page 5-30 for information on
loading addresses that are outside the range of the ADRL pseudo-instruction.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-27

Basic Assembly Language Programming
Note
 • The label used with ADR or ADRL must be within the same code area. There is no

guarantee that the label will be within range after linking if it is defined in a
different area. The assembler can only fault references to labels that are out of
range in the same area.

• In Thumb state, ADR can generate word-aligned addresses only.

• ADRL is not available in Thumb code. Use it only in ARM code.

Example 5-6 shows the type of code generated by the assembler when assembling ADR
and ADRL pseudo-instructions. It is supplied as adrlabel.s in the examples\asm
subdirectory of the toolkit. Refer to Code examples on page 5-2 for instructions on how
to assemble, link, and execute the example.

The instructions listed in the comments are the ARM instructions generated by the
assembler.

Example 5-6

AREA adrlabel, CODE,READONLY
ENTRY ; Mark first instruction to execute

Start
BL func ; Branch to subroutine.

stop MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0x123456 ; Angel semihosting ARM SWI
LTORG ; Create a literal pool.

func ADR r0, Start ; => SUB r0, PC, #offset to Start
ADR r1, DataArea ; => ADD r1, PC, #offset to DataArea
; ADR r2, DataArea+4300 ; This would fail because the offset

; cannot be expressed by operand2
; of an ADD.

ADRL r3, DataArea+4300 ; => ADD r2, PC, #offset1
; ADD r2, r2, #offset2

MOV pc, lr ; Return
DataArea % 8000 ; Starting at the current location,

; clears a 8000 byte area of memory
; to zero.

END
5-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
Implementing a jump table with ADR

Example 5-7 shows ARM code that implements a jump table. It is supplied as jump.s in
the examples\asm subdirectory of the toolkit. Refer to Code examples on page 5-2 for
instructions on how to assemble, link, and execute the example.

The ADR pseudo-instruction loads the address of the jump table.

In the example, the function arithfunc takes three arguments and returns a result in r0.
The first argument determines which operation is carried out on the second and third
arguments:

argument1=0 Result = argument2 + argument3

argument1=1 Result = argument2 – argument3

argument1>1 the same as argument1=0.

The jump table is implemented with the following instructions and assembler
directives:

EQU is an assembler directive. It is used to give a value to a symbol. In this
example it assigns the value 2 to num. When num is used elsewhere in the
code, the value 2 is substituted. Using EQU in this way is similar to using
#define to define a constant in C.

DCD declares one or more words of store. In this example each DCD stores the
address of a routine that handles a particular clause of the jump table.

LDR The LDR pc,[r3,r0,LSL#2] instruction loads the address of the required
clause of the jump table into the pc. It:

• multiplies the clause number in r0 by 4 to give a word offset

• adds the result to the address of the jump table

• loads the contents of the combined address into the program
counter.

Example 5-7

AREA Jump, CODE, READONLY ; Name this block of code.
num EQU 2 ; Number of entries in jump table.

ENTRY ; Mark first instruction to execute
start ; First instruction to call.

MOV r0, #0 ; Set up the three parameters.
MOV r1, #3
MOV r2, #2
BL arithfunc ; Call the function.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-29

Basic Assembly Language Programming
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0x123456 ; Angel semihosting ARM SWI

arithfunc ; Label the function.
CMP r0, #num ; Treat function code as unsigned

; integer.
BHS DoAdd ; If code is >=2 then do operation 0.
ADR r3, JumpTable ; Load address of jump table.
LDR pc, [r3,r0,LSL#2] ; Jump to the appropriate routine.

JumpTable
DCD DoAdd
DCD DoSub

DoAdd ADD r0, r1, r2 ; Operation 0, >1
MOV pc, lr ; Return

DoSub SUB r0, r1, r2 ; Operation 1
MOV pc,lr ; Return
END ; Mark the end of this file.

Converting to Thumb

To convert Example 5-7 on page 5-29 to Thumb code you must modify the LDR
instruction that is used to implement the jump. This is because you cannot increment
the base register of LDR and STR instructions in Thumb state. In addition, LDR cannot load
a value into the pc, or do an inline shift of a value held in a register.

The equivalent code to cause the jump to the appropriate routine is:

LSL r0, r0,#2
LDR r3, [r3,r0]
MOV pc, r3

You must place an ALIGN directive before the Jumptable label to ensure that the table is
aligned on a 32-bit boundary.

5.6.2 Loading addresses with LDR Rd, = label

The LDR Rd,= pseudo-instruction can load any 32-bit constant into a register. See
Loading with LDR Rd, =const on page 5-25. It also accepts program-relative
expressions such as labels, and labels with offsets.

The assembler converts an LDR r0,=label pseudo-instruction by:

• placing the address of label in a literal pool (a portion of memory embedded in
the code to hold constant values).

• generating a program-relative LDR instruction that reads the address from the
literal pool.
5-30 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
For example:

LDR rn [pc, #offset to literal pool]
; load register n with one word
; from the address [pc + offset]

You must ensure that there is a literal pool within range. See Placing literal pools
on page 5-25 for more information.

Unlike the ADR and ADRL pseudo-instructions, you can use LDR with labels that are outside
the current area. If the label is outside the current area, the assembler places a relocation
directive in the object code when the source file is assembled. The relocation directive
instructs the linker to resolve the address at link time. The address remains valid
wherever the linker places the area containing the LDR and the literal pool.

Example 5-8 shows how this works. It is supplied as ldrlabel.s in the examples\asm
subdirectory of the toolkit. Refer to Code examples on page 5-2 for instructions on how
to assemble, link, and execute the example.

The instructions listed in the comments are the ARM instructions that are generated by
the assembler.

Example 5-8

AREA LDRlabel, CODE,READONLY
ENTRY ; Mark first instruction to execute.

start
BL func1 ; Branch to first subroutine.
BL func2 ; Branch to second subroutine.

stop MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0x123456 ; Angel semihosting ARM SWI

func1
LDR r0, =start ; => LDR R0,[PC, #offset to

; Litpool 1]
LDR r1, =Darea + 12 ; => LDR R1,[PC, #offset to

; Litpool 1]
LDR r2, =Darea + 6000 ; => LDR R2, [PC, #offset to

; Litpool 1]
MOV pc,lr ; Return
LTORG ; Literal Pool 1

func2
LDR r3, =Darea + 6000 ; => LDR r3, [PC, #offset to

; Litpool 1]
; (sharing with previous literal).

; LDR r4, =Darea + 6004 ; If uncommented produces an
; error as Litpool 2 is out of range.

MOV pc, lr ; Return
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-31

Basic Assembly Language Programming
Darea % 8000 ; Starting at the current location,
; clears a 8000 byte area of memory
; to zero.

END ; Literal Pool 2 is out of range of
; the LDR instructions above.

An LDR Rd, =label example: string copying

Example 5-9 shows an ARM code routine that overwrites one string with another string.
It uses the LDR pseudo-instruction to load the addresses of the two strings from a data
area. Note the following instructions and directives:

DCB The DCB (Define Constant Byte) directive defines one or more bytes of
store. In addition to integer values, DCB accepts quoted strings. Each
character of the string is placed in a consecutive byte. Refer to Chapter 5
Assembler in the ARM Software Development Toolkit Reference Guide
for more information.

LDR/STR The LDR and STR instructions use post-indexed addressing to update their
address registers. For example, the instruction:

LDRB r2,[r1],#1

loads r2 with the contents of the address pointed to by r1 and then
increments r1 by 1.

Example 5-9 String copy

AREA StrCopy, CODE, READONLY
ENTRY ; Mark first instruction to execute.

start LDR r1, =srcstr ; Pointer to first string
LDR r0, =dststr ; Pointer to second string
BL strcopy ; Call subroutine to do copy.

stop MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0x123456 ; Angel semihosting ARM SWI

strcopy
LDRB r2, [r1],#1 ; Load byte and update address.
STRB r2, [r0],#1 ; Store byte and update address.
CMP r2, #0 ; Check for zero terminator.
BNE strcopy ; Keep going if not.
MOV pc,lr ; Return
AREA Strings, DATA, READWRITE
5-32 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
srcstr DCB "First string - source",0
dststr DCB "Second string - destination",0

END

Converting to Thumb

There is no post-indexed addressing mode for Thumb LDR and STR instructions. Because
of this, you must use an ADD instruction to increment the address register after the LDR
and STR instructions. For example:

LDRB r2, [r1] ; load register 2
ADD r1, #1 ; increment the address in

; register 1.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-33

Basic Assembly Language Programming
5.7 Load and store multiple register instructions

The ARM and Thumb instruction sets include instructions that load and store multiple
registers to and from memory.

Multiple register transfer instructions provide an efficient way of moving the contents
of several registers to and from memory. They are most often used for block copy and
for stack operations for context changing at subroutine entry and exit. The advantages
of using a multiple register transfer instruction instead of a series of single data transfer
instructions include:

• Smaller code size.

• There is only a single instruction fetch overhead, rather than many instruction
fetches.

• Only one register writeback cycle is required for a multiple register load or store,
as opposed to one for each register.

• On uncached ARM processors, the first word of data transferred by a load or store
multiple is always a nonsequential memory cycle, but all subsequent words
transferred can be sequential memory cycles. Sequential memory cycles are faster
in most systems.

Note
 The lowest numbered register is transferred to or from the lowest memory address
accessed, and the highest numbered register to or from the highest address accessed.
The order the of registers in the register list in the instructions makes no difference.

Use the -checkreglist assembler option to check that registers in register lists are
specified in increasing order. See Command syntax on page 5-3 in the ARM Software
Development Toolkit Reference Guide.
5-34 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.7.1 ARM LDM and STM Instructions

The load (or store) multiple instruction loads (stores) any subset of the 16 general
purpose registers from (to) memory, using a single instruction.

Syntax

The syntax of the LDM instructions is:

LDM{cond}address-mode Rn{!},reg-list{^}

where:

cond is an optional condition code. Refer to Conditional execution on
page 5-17 for more information.

address-mode

specifies the addressing mode of the instruction. See LDM and STM
addressing modes on page 5-36 for details.

Rn is the base register for the load operation. The address stored in this
register is the starting address for the load operation. Do not specify r15
(pc) as the base register.

! specifies base register write back. If this is specified, the address in the
base register is updated after the transfer. It is decremented or
incremented by one word for each register in the register list.

register-list

is a comma-delimited list of symbolic register names and register ranges
enclosed in braces. There must be at least one register in the list. Register
ranges are specified with a dash. For example:

{r0,r1,r4-r6,pc}

Do not specify writeback if the base register Rn is in register-list.

^ Do not use this option in User or System mode. For details of its use in
privileged modes, see Chapter 9 Handling Processor Exceptions and the
ARM Architectural Reference Manual.

The syntax of the STM instruction corresponds exactly (except for some details in the
effect of the ^ option).

Usage

See Implementing stacks with LDM and STM on page 5-36 and Block copy with LDM
and STM on page 5-39.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-35

Basic Assembly Language Programming
5.7.2 LDM and STM addressing modes

There are four different addressing modes. The base register can be incremented or
decremented by one word for each register in the operation, and the increment or
decrement can occur before or after the operation. The suffixes for these options are:

IA meaning increment after.

IB meaning increment before.

DA meaning decrement after.

DB meaning decrement before.

There are alternative addressing mode suffixes that are easier to use for stack operations.
See Implementing stacks with LDM and STM, below.

5.7.3 Implementing stacks with LDM and STM

The load and store multiple instructions can update the base register. For stack
operations, the base register is usually the stack pointer, r13. This means that you can
use load and store multiple instructions to implement push and pop operations for any
number of registers in a single instruction.

The Load and Store Multiple Instructions can be used with several types of stack:

descending or ascending

The stack grows downwards, starting with a high address and progressing
to a lower one (a descending stack), or upwards, starting from a low
address and progressing to a higher address (an ascending stack).

full or empty

The stack pointer can either point to the last item in the stack (a full
stack), or the next free space on the stack (an empty stack).

In practice stacks are almost always full, descending. The C compilers produce full,
descending stacks.
5-36 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
To make it easier for the programmer, stack oriented suffixes can be used instead of the
Increment/Decrement and Before/After suffixes. See Table 5-6 for a list of stack
oriented suffixes.

For example:

STMFD r13!, {r0-r5} ; Push onto a Full Descending Stack.
LDMFD r13!, {r0-r5} ; Pop from a Full Descending Stack.
STMFA r13!, {r0-r5} ; Push onto a Full Ascending Stack.
LDMFA r13!, {r0-r5} ; Pop from a Full Ascending Stack.
STMED r13!, {r0-r5} ; Push onto Empty Descending Stack.
LDMED r13!, {r0-r5} ; Pop from Empty Descending Stack.
STMEA r13!, {r0-r5} ; Push onto Empty Ascending Stack.
LDMEA r13!, {r0-r5} ; Pop from Empty Ascending Stack.

Stacking registers for nested subroutines

Stack operations are very useful at subroutine entry and exit. At the start of a subroutine,
any working registers required can be stored on the stack, and at exit they can be popped
off again. In addition, if the link register is pushed onto the stack at entry, additional
subroutine calls can safely be made without causing the return address to be lost. You
can return from a subroutine by popping the pc off the stack at exit, rather than by
popping lr and then moving that value into the pc.

For example:

subroutine STMFD sp!, {r5-r7,lr} ; Push work registers and lr
; code
BL somewhere_else
; code
LDMFD sp!, {r5-r7,pc} ; Pop work registers and pc

Table 5-6 Suffixes for load and store multiple instructions

Stack type Push Pop

Full Descending STMFD (DB) LDMFD (IA)

Full Ascending STMFA (IB) LDMFA (DA)

Empty Descending STMED (DA) LDMED (IB)

Empty Ascending STMEA (IA) LDMEA (DB)
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-37

Basic Assembly Language Programming
Warning
 Use this with care in mixed ARM/Thumb systems. You cannot return to Thumb code
by popping directly into the program counter.
5-38 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.7.4 Block copy with LDM and STM

Example 5-10 is an ARM code routine that copies a set of words from a source location
to a destination by copying a single word at a time. It is supplied as word.s in the
examples\asm subdirectory of the toolkit. Refer to Code examples on page 5-2 for
instructions on how to assemble, link, and execute the example.

Example 5-10 : Block copy

AREA Word, CODE, READONLY ; name this block of code.
num EQU 20 ; set number of words to be copied.

ENTRY ; mark the first instruction to call
start

LDR r0, =src ; r0 = pointer to source block
LDR r1, =dst ; r1 = pointer to destination block
MOV r2, #num ; r2 = number of words to copy

wordcopy LDR r3, [r0], #4 ; load a word from the source and
STR r3, [r1], #4 ; store it to the destination.
SUBS r2, r2, #1 ; decrement the counter.
BNE wordcopy ; ... copy more.

stop MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0x123456 ; Angel semihosting ARM SWI
AREA BlockData, DATA, READWRITE

src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

END

This module can be made more efficient by using LDM and STM for as much of the copying
as possible. Eight is a sensible number of words to transfer at a time, given the number
of registers that the ARM has. The number of eight-word multiples in the block to be
copied can be found (if r2 = number of words to be copied) using:

MOVS r3, r2, LSR #3 ; number of eight word multiples

This value can be used to control the number of iterations through a loop that copies
eight words per iteration. When there are less than eight words left, the number of words
left can be found (assuming that r2 has not been corrupted) using:

ANDS r2, r2, #7

Example 5-11 on page 5-40 lists the block copy module rewritten to use LDM and STM for
copying.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-39

Basic Assembly Language Programming
Example 5-11

AREA Block, CODE, READONLY ; name this block of code.
num EQU 20 ; set number of words to be copied.

ENTRY ; mark the first instruction to call.
start

LDR r0, =src ; r0 = pointer to source block
LDR r1, =dst ; r1 = pointer to destination block.
MOV r2, #num ; r2 = number of words to copy.
MOV sp, #0x400 ; Set up stack pointer (r13).

blockcopy MOVS r3,r2, LSR #3 ; Number of eight word multiples.
BEQ copywords ; Less than eight words to move?
STMFD sp!, {r4-r11} ; Save some working registers.

octcopy LDMIA r0!, {r4-r11} ; Load 8 words from the source
STMIA r1!, {r4-r11} ; and put them at the destination.
SUBS r3, r3, #1 ; Decrement the counter.
BNE octcopy ; ... copy more.
LDMFD sp!, {r4-r11} ; Don't need these now - restore

; originals.
copywords ANDS r2, r2, #7 ; Number of odd words to copy.

BEQ stop ; No words left to copy?
wordcopy LDR r3, [r0], #4 ; load a word from the source and

STR r3, [r1], #4 ; store it to the destination.
SUBS r2, r2, #1 ; Decrement the counter.
BNE wordcopy ; ... copy more.

stop MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0x123456 ; Angel semihosting ARM SWI
AREA BlockData, DATA, READWRITE

src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

END
5-40 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.7.5 Thumb LDM and STM instructions

The Thumb instruction set contains two pairs of multiple register transfer instructions:

• LDM and STM for block memory transfers

• PUSH and POP for stack operations.

LDM and STM

These instructions can be used to load or store any subset of the low registers from or
to memory. The base register is always updated at the end of the multiple register
transfer instruction. You must specify the ! character. The only valid suffix for these
instructions is IA.

Examples of these instructions are:

LDMIA r1!, {r0,r2-r7}
STMIA r4!, {r0-r3}

PUSH and POP

These instructions can be used to push any subset of the low registers and (optionally)
the link register onto the stack, and to pop any subset of the low registers and
(optionally) the pc off the stack. The base address of the stack is held in r13. Examples
of these instructions are:

PUSH {r0-r3}
POP {r0-r3}
PUSH {r4-r7,lr}
POP {r4-r7,pc}

The optional addition of the lr/pc to the register list provides support for subroutine
entry and exit.

The stack is always Full Descending.

Thumb-state block copy example

The block copy example, Example 5-10 on page 5-39, can be converted into Thumb
instructions. An example conversion can be found as tblock.s in the examples\asm
subdirectory of the toolkit.

Because the Thumb LDM and STM instructions can access only the low registers, the
number of words copied per iteration is reduced from eight to four. In addition, the
LDM/STM instructions can be used to carry out the single word at a time copy, because they
update the base pointer after each access. If LDR/STR were used for this, separate ADD
instructions would be required to update each base pointer.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-41

Basic Assembly Language Programming
Example 5-12

AREA Tblock, CODE, READONLY ; Name this block of code.
num EQU 20 ; Set number of words to be copied.

ENTRY ; Mark first instruction to execute.
header ; The first instruction to call.

MOV sp, #0x400 ; Set up stack pointer (r13).
ADR r0, start + 1 ; Processor starts in ARM state,
BX r0 ; so small ARM code header used

; to call Thumb main program.
CODE16 ; Subsequent instructions are Thumb.

start
LDR r0, =src ; r0 =pointer to source block
LDR r1, =dst ; r1 =pointer to destination block
MOV r2, #num ; r2 =number of words to copy

blockcopy
LSR r3,r2, #2 ; Number of four word multiples.
BEQ copywords ; Less than four words to move?
PUSH {r4-r7} ; Save some working registers.

quadcopy
LDMIA r0!, {r4-r7} ; Load 4 words from the source
STMIA r1!, {r4-r7} ; and put them at the destination.
SUB r3, #1 ; Decrement the counter.
BNE quadcopy ; ... copy more.
POP {r4-r7} ; Don't need these now-restore originals.

copywords
MOV r3, #3 ; Bottom two bits represent number
AND r2, r3 ; ...of odd words left to copy.
BEQ stop ; No words left to copy?

wordcopy
LDMIA r0!, {r3} ; load a word from the source and
STMIA r1!, {r3} ; store it to the destination.
SUB r2, #1 ; Decrement the counter.
BNE wordcopy ; ... copy more.

stop MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0xAB ; Angel semihosting Thumb SWI
AREA BlockData, DATA, READWRITE

src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

END
5-42 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.8 Using macros

A macro definition is a block of code enclosed between MACRO and MEND directives. It
defines a name that can be used instead of repeating the whole block of code. This has
two main uses:

• to make it easier to follow the logic of the source code, by replacing a block of
code with a single, meaningful name

• to avoid repeating a block of code several times.

See MACRO directive on page 5-72 of the ARM Software Development Toolkit
Reference Guide for more details.

5.8.1 Test and branch macro example

A test-and-branch operation requires two ARM instructions to implement.

You can define a macro definition such as this:

MACRO
$label TestAndBranch $dest, $reg, $cc
$label CMP $reg, #0

B$cc $dest
MEND

The line after the MACRO directive is the macro prototype statement. The macro prototype
statement defines the name (TestAndBranch) you use to invoke the macro. It also
defines parameters ($label, $dest, $reg, and $cc). You must give values to the
parameters when you invoke the macro. The assembler substitutes the values you give
into the code.

This is an example of how this macro can be invoked:

test TestAndBranch NonZero, r0, NE
 ...
 ...

NonZero

After substitution this becomes:

test CMP r0, #0
BNE NonZero
 ...
 ...

NonZero
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-43

Basic Assembly Language Programming
5.8.2 Unsigned integer division macro example

Example 5-13 shows a macro that performs an unsigned integer division. It takes four
parameters:

• $Bot is the register that holds the divisor.

• $Top is the register that holds the dividend before the instructions are executed.
After the instructions are executed it holds the remainder.

• $Div is the register where the quotient of the division is placed. It may be NULL ("")
if only the remainder is required.

• $Temp is a temporary register used during the calculation.

Example 5-13

MACRO
$Lab DivMod $Div,$Top,$Bot,$Temp

ASSERT $Top <> $Bot ; Produce an error message if the
ASSERT $Top <> $Temp ; registers supplied are
ASSERT $Bot <> $Temp ; not all different.
IF "$Div" <> ""

ASSERT $Div <> $Top ; These three only matter if $Div
ASSERT $Div <> $Bot ; is not null ("")
ASSERT $Div <> $Temp ;

ENDIF
$Lab

MOV $Temp, $Bot ; Put divisor in $Temp
CMP $Temp, $Top, LSR #1 ; double it until

90 MOVLS $Temp, $Temp, LSL #1 ; 2 * $Temp > $Top.
CMP $Temp, $Top, LSR #1
BLS %b90 ; The b means search backwards
IF "$Div" <> "" ; Omit next instruction if $Div is null

MOV $Div, #0 ; Initialize quotient
ENDIF

91 CMP $Top, $Temp ; Can we subtract $Temp?
SUBCS $Top, $Top,$Temp ; If we can, do so.
IF "$Div" <> "" ; Omit next instruction if $Div is null

ADC $Div, $Div, $Div ; Double $Div
ENDIF
MOV $Temp, $Temp, LSR #1 ; Halve $Temp,
CMP $Temp, $Bot ; and loop until
BHS %b91 ; less than divisor
MEND

The macro checks that no two parameters use the same register. It also optimizes the
code produced if only the remainder is required.
5-44 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
To avoid multiple definitions of labels if DivMod is used more than once in the assembler
source, the macro uses local labels (90, 91). See Local labels on page 5-28 of the ARM
Software Development Toolkit Reference Guide.

Example 5-14 shows the code that this macro produces if it is invoked as follows:

ratio DivMod r0,r5,r4,r2

Example 5-14

ASSERT r5 <> r4 ; Produce an error if the
ASSERT r5 <> r2 ; registers supplied are
ASSERT r4 <> r2 ; not all different.
ASSERT r0 <> r5 ; These three only matter if $Div
ASSERT r0 <> r4 ; is not null ("")
ASSERT r0 <> r2 ;

ratio
MOV r2, r4 ; Put divisor in $Temp
CMP r2, r5, LSR #1 ; double it until

90 MOVLS r2, r2, LSL #1 ; 2 * r2 > r5.
CMP r2, r5, LSR #1
BLS %b90 ; The b means search backwards
MOV r0, #0 ; Initialize quotient

91 CMP r5, r2 ; Can we subtract r2?
SUBCS r5, r5, r2 ; If we can, do so.
ADC r0, r0, r0 ; Double r0
MOV r2, r2, LSR #1 ; Halve r2,
CMP r2, r4 ; and loop until
BHS %b91 ; less than divisor
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-45

Basic Assembly Language Programming
5.9 Describing data structures with MAP and # directives

You can use the MAP and # directives to describe data structures. These directives are
always used together.

Data structures defined using MAP and #:

• are easily maintainable

• can be used to describe multiple instances of the same structure

• make it easy to access data efficiently.

The MAP directive specifies the base address of the data structure. See ̂ or MAP directive
on page 5-35 of the ARM Software Development Toolkit Reference Guide.

The # directive specifies the amount of memory required for a data item, and can give
the data item a label. It is repeated for each data item in the structure. See # directive on
page 5-31 of the ARM Software Development Toolkit Reference Guide.

Note
 No space in memory is allocated when a map is defined. Use Define Constant (DC)
directives to allocate space in memory.

5.9.1 Absolute maps

Example 5-15 shows a data structure described using MAP and #. It is located at an
absolute (fixed) address, 4096 (0x1000) in this case.

Example 5-15

MAP 4096
consta # 4 ; consta uses four bytes, and is located at 4096
constb # 4 ; constb uses four bytes, and is located at 5000
x # 8 ; x uses eight bytes, and is located at 5004
y # 8 ; y uses eight bytes, and is located at 5012
string # 256 ; string can be up to 256 bytes long, starting at 5020

You can access data at these locations with LDR or STR instructions, such as:

LDR r4,constb

You can only do this if each instruction is within 4KB (in either direction) of the data
item it accesses. See the ARM Architectural Reference Manual for details of the LDR and
STR instructions.
5-46 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.9.2 Relative maps

If you need to access data from more than 4KB away, you can use a register-relative
instruction, such as:

LDR r4,[r9,offset]

offset is limited to 4096, so r9 must already contain a value within 4KB of the address
of the data.

You can access data in the structure described in Example 5-15 on page 5-46 from an
instruction at any address. This program fragment shows how:

MOV r9,#4096 ; or #0x1000
LDR r4,[r9,constb - 4096]

The assembler calculates (constb - 4096) for you. However, it is better to redesign the
map description as in Example 5-16.

Example 5-16

MAP 0
consta # 4 ; consta uses four bytes, located at offset 0
constb # 4 ; constb uses four bytes, located at offset 4
x # 8 ; x uses eight bytes, located at offset 8
y # 8 ; y uses eight bytes, located at offset 16
string # 256 ; string is up to 256 bytes long, starting at offset 24

Using the map in Example 5-16, you can access the data structure at the same location
as before:

MOV r9,#4096
LDR r4,[r9,constb]

This program fragment assembles to exactly the same machine instructions as before.
The value of each label is 4096 less than before, so the assembler does not need to
subtract 4096 from each label to find the offset. The labels are relative to the start of the
data structure, instead of being absolute. The register used to hold the start address of
the map (r9 in this case) is called the base register.

There are likely to be many LDR or STR instructions accessing data in this data structure.
You avoid typing - 4096 repeatedly by using this method. The code is also easier to
follow.

This map does not contain the location of the data structure. The location of the
structure is determined by the value loaded into the base register at runtime.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-47

Basic Assembly Language Programming
The same map can be used to describe many instances of the data structure. These may
be located anywhere in memory.

There are restrictions on what addresses can be loaded into a register using the MOV
instruction. See Loading addresses into registers on page 5-27 for details of how to load
arbitrary addresses.

5.9.3 Register based maps

In many cases, you can use the same register as the base register every time you access
a data structure. You can include the name of the register in the base address of the map.
Example 5-17 shows such a register-based map. The labels defined in the map include
the register.

Example 5-17

MAP 0,r9
consta # 4 ; consta uses four bytes, located at offset 0 (from r9)
constb # 4 ; constb uses four bytes, located at offset 4
x # 8 ; x uses eight bytes, located at offset 8
y # 8 ; y uses eight bytes, located at offset 16
string # 256 ; string is up to 256 bytes long, starting at offset 24

Using the map in Example 5-17, you can access the data structure wherever it is:

ADR r9,datastart
LDR r4,constb ; => LDR r4,[r9,#4]

constb contains the offset of the data item from the start of the data structure, and also
includes the base register. In this case the base register is r9, defined in the MAP directive.
5-48 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.9.4 Program-relative maps

You can use the program counter (r15) as the base register for a map. In this case, each
STM or LDM instruction must be within 4KB of the data item it addresses, because the
offset is limited to 4KB. The data structure must be in the same area as the instructions,
because otherwise there is no guarantee that the data items will be within range after
linking.

Example 5-18 shows a program fragment with such a map. It includes a directive which
allocates space in memory for the data structure, and an instruction which accesses it.

Example 5-18

datastruc % 280 ; reserves 280 bytes of memory for datastruc
MAP datastruc

consta # 4
constb # 4
x # 8
y # 8
string # 256
code LDR r2,constb ; => LDR r2,[pc,offset]

In this case, there is no need to load the base register before loading the data as the
program counter already holds the correct address. (This is not actually the same as the
address of the LDR instruction, because of pipelining in the processor. However, the
assembler takes care of this for you.)
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-49

Basic Assembly Language Programming
5.9.5 Finding the end of the allocated data

You can use the # directive with an operand of 0 to label a location within a structure.
The location is labeled, but the location counter is not incremented.

The size of the data structure defined in Example 5-19 depends on the values of
MaxStrLen and ArrayLen. If these values are too large, the structure overruns the end of
available memory.

Example 5-19 uses:

• an EQU directive to define the end of available memory

• a # directive with an operand of 0 to label the end of the data structure.

An ASSERT directive checks that the end of the data structure does not overrun the
available memory.

Example 5-19

StartOfData EQU 0x1000
EndOfData EQU 0x2000

MAP StartOfData
Integer # 4
Integer2 # 4
String # MaxStrLen
Array # ArrayLen*8
BitMask # 4
EndOfUsedData # 0

ASSERT EndOfUsedData <= EndOfData
5-50 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.9.6 Forcing correct alignment

You are likely to have problems if you include some character variables in the data
structure, as in Example 5-20. This is because a lot of words are misaligned.

Example 5-20

StartOfData EQU 0x1000
EndOfData EQU 0x2000

MAP StartOfData
Char # 1
Char2 # 1
Char3 # 1
Integer # 4 ; alignment = 3
Integer2 # 4
String # MaxStrLen
Array # ArrayLen*8
BitMask # 4
EndOfUsedData # 0

ASSERT EndOfUsedData <= EndOfData

You cannot use the ALIGN directive, because the ALIGN directive aligns the current
location within memory. MAP and # directives do not allocate any memory for the
structures they define.

You could insert a dummy # 1 after Char3 # 1. However, this makes maintenance
difficult if you change the number of character variables. You must recalculate the right
amount of padding each time.

Example 5-21 on page 5-52 shows a better way of adjusting the padding. The example
uses a # directive with a 0 operand to label the end of the character data. A second #
directive inserts the correct amount of padding based on the value of the label. An :AND:
operator is used to calculate the correct value.

The (-EndOfChars):AND:3 expression calculates the correct amount of padding:

0 if EndOfChars is 0 mod 4;
3 if EndOfChars is 1 mod 4;
2 if EndOfChars is 2 mod 4;
1 if EndOfChars is 3 mod 4.

This automatically adjusts the amount of padding used whenever character variables are
added or removed.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-51

Basic Assembly Language Programming
Example 5-21

StartOfData EQU 0x1000
EndOfData EQU 0x2000

MAP StartOfData
Char # 1
Char2 # 1
Char3 # 1
EndOfChars # 0
Padding # (-EndOfChars):AND:3
Integer # 4
Integer2 # 4
String # MaxStrLen
Array # ArrayLen*8
BitMask # 4
EndOfUsedData # 0

ASSERT EndOfUsedData <= EndOfData
5-52 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.9.7 Using register-based MAP and # directives

Register-based MAP and # directives define register-based symbols. There are two main
uses for register-based symbols:

• defining structures similar to C structures

• gaining faster access to memory areas described by non-register-based MAP and #
directives.

Defining register-based symbols

Register-based symbols can be very useful, but you must be careful when using them.
As a general rule, use them only in the following ways:

• As the location for a load or store instruction to load from or store to. If Location
is a register-based symbol based on the register Rb and with numeric offset, the
assembler automatically translates, for example, LDR Rn,Location into LDR
Rn,[Rb,#offset].

In an ADR or ADRL instruction, ADR Rn,Location is converted by the assembler into
ADD Rn,Rb,#offset.

• Adding an ordinary numeric expression to a register-based symbol to get another
register-based symbol.

• Subtracting an ordinary numeric expression from a register-based symbol to get
another register-based symbol.

• Subtracting a register-based symbol from another register-based symbol to get an
ordinary numeric expression. Do not do this unless the two register-based
symbols are based on the same register. Otherwise, you have a combination of
two registers and a numeric value. This results in an assembler error.

• As the operand of a :BASE: or :INDEX: operator. These operators are mainly of use
in macros.

Other uses usually result in assembler error messages. For example, if you write LDR
Rn,=Location, where Location is register-based, you are asking the assembler to load Rn
from a memory location that always has the current value of the register Rb plus offset
in it. It cannot do this, because there is no such memory location.

Similarly, if you write ADD Rd,Rn,#expression, and expression is register-based, you are
asking for a single ADD instruction that adds both the base register of the expression and
its offset to Rn. Again, the assembler cannot do this. You must use two ADD instructions
to perform these two additions.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-53

Basic Assembly Language Programming
Setting up a C-type structure

There are two stages to using structures in C:

• declaring the fields that the structure contains

• generating the structure in memory and using it.

For example, the following typedef statement defines a point structure that contains
three float fields named x, y and z, but it does not allocate any memory. The second
statement allocates three structures of type Point in memory, named origin, oldloc, and
newloc:

typedef struct Point
{

float x,y,z;
} Point;
Point origin,oldloc,newloc;

The following assembly language code is equivalent to the typedef statement above:

PointBase RN r11
MAP 0,PointBase

Point_x # 4
Point_y # 4
Point_z # 4

The following assembly language code allocates space in memory. This is equivalent to
the last line of C code:

origin % 12
oldloc % 12
newloc % 12

You must load the base address of the data structure into the base register before you
can use the labels defined in the map. For example:

LDR PointBase,=origin
MOV r0,#0
STR r0,Point_x
MOV r0,#2
STR r0,Point_y
MOV r0,#3
STR r0,Point_z

is equivalent to the C code:

origin.x = 0;
origin.y = 2;
origin.z = 3;
5-54 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
Making faster access possible

To gain faster access to an area of memory:

1. Describe the memory area as a structure.

2. Use a register to address the structure.

For example, consider the definitions in Example 5-22.

Example 5-22

StartOfData EQU 0x1000
EndOfData EQU 0x2000

MAP StartOfData
Integer # 4
String # MaxStrLen
Array # ArrayLen*8
BitMask # 4
EndOfUsedData # 0

ASSERT EndOfUsedData <= EndOfData

If you want the equivalent of the C code:

Integer = 1;
String = "";
BitMask = 0xA000000A;

With the definitions as above, the assembly language code could be as in Example 5-23.

Example 5-23

MOV r0,#1
LDR r1,=Integer
STR r0,[r1]
MOV r0,#0
LDR r1,=String
STRB r0,[r1]
MOV r0,#0xA000000A
LDR r1,=BitMask
STRB r0,[r1]

Example 5-23 uses LDR pseudo-instructions. See Loading with LDR Rd, =const on
page 5-25 for an explanation of these.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-55

Basic Assembly Language Programming
Example 5-23 on page 5-55 contains separate LDR pseudo-instructions to load the
address of each of the data items. Each LDR pseudo-instruction is converted to a separate
instruction by the assembler. However, it is possible to access the entire data area with
a single LDR pseudo-instruction. Example 5-24 shows how to do this. Both speed and
code size are improved.

Example 5-24

AREA data, DATA
StartOfData EQU 0x1000
EndOfData EQU 0x2000
DataAreaBase RN r11

MAP 0,DataAreaBase
StartOfUsedData # 0
Integer # 4
String # MaxStrLen
Array # ArrayLen*8
BitMask # 4
EndOfUsedData # 0
UsedDataLen EQU EndOfUsedData - StartOfUsedData

ASSERT UsedDataLen <= (EndOfData - StartOfData)
AREA code, CODE
LDR DataAreaBase,=StartOfData
MOV r0,#1
STR r0,Integer
MOV r0,#0
STRB r0,String
MOV r0,#0xA000000A
STRB r0,BitMask

Note
 The MAP directive is

MAP 0, DataAreaBase,

not

MAP StartOfData,DataAreaBase.

The MAP and # directives give the position of the data relative to the DataAreaBase
register, not the absolute position. The LDR DataAreaBase,=StartOfData statement
provides the absolute position of the entire data area.
5-56 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
If you use the same technique for an area of memory containing memory mapped I/O
(or whose absolute addresses must not change for other reasons), you must take care to
keep the code maintainable.

One method is to add comments to the code warning maintainers to take care when
modifying the definitions. A better method is to use definitions of the absolute addresses
to control the register-based definitions.

Using MAP offset,reg followed by label # 0 makes label into a register-based symbol
with register part reg and numeric part offset. Example 5-25 shows this.

Example 5-25

StartOfIOArea EQU 0x1000000
SendFlag_Abs EQU 0x1000000
SendData_Abs EQU 0x1000004
RcvFlag_Abs EQU 0x1000008
RcvData_Abs EQU 0x100000C
IOAreaBase RN r11

MAP (SendFlag_Abs-StartOfIOArea),IOAreaBase
SendFlag # 0

MAP (SendData_Abs-StartOfIOArea),IOAreaBase
SendData # 0

MAP (RcvFlag_Abs-StartOfIOArea),IOAreaBase
RcvFlag # 0

MAP (RcvData_Abs-StartOfIOArea),IOAreaBase
RcvData # 0

Load the base address with LDR IOAreaBase,=StartOfIOArea. This allows the individual
locations to be accessed with statements like LDR R0,RcvFlag and STR R4,SendData.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-57

Basic Assembly Language Programming
5.9.8 Using two register-based structures

Sometimes you need to operate on two structures of the same type at the same time. For
example, if you want the equivalent of the pseudo-code:

newloc.x = oldloc.x + (value in r0);
newloc.y = oldloc.y + (value in r1);
newloc.z = oldloc.z + (value in r2);

The base register needs to point alternately to the oldloc structure and to the newloc one.
Repeatedly changing the base register would be inefficient. Instead, use a non-register
based map, and set up two pointers in two different registers as in Example 5-26:

Example 5-26

MAP 0 ; Non-register based relative map used twice, for
Pointx # 4 ; old and new data at oldloc and newloc.
Pointy # 4 ; oldloc and newloc are labels for
Pointz # 4 ; memory allocated in other areas.

; code
ADR r8,oldloc
ADR r9,newloc
LDR r3,[r8,Pointx] ; load from oldloc (r8)
ADD r3,r3,r0
STR r3,[r9,Pointx] ; store to newloc (r9)
LDR r3,[r8,Pointy]
ADD r3,r3,r1
STR r3,[r9,Pointy]
LDR r3,[r8,Pointz]
ADD r3,r3,r2
STR r3,[r9,Pointz]
5-58 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming
5.9.9 Avoiding problems with MAP and # directives

Using MAP and # directives can help you to produce maintainable data structures.
However, this is only true if the order the elements are placed in memory is not
important to either the programmer or the program.

You can have problems if you load or store multiple elements of a structure in a single
instruction. These problems arise in operations such as:

• loading several single byte elements into one register

• using a Store Multiple or Load Multiple instruction (STM and LDM) to store or load
multiple words from or to multiple registers.

These operations require the data elements in the structure to be contiguous in memory,
and to be in a specific order. If the order of the elements is changed, or a new element
is added, the program is broken in a way that cannot be detected by the assembler.

There are a number methods for avoiding problems such as this.

Example 5-27 shows a sample structure.

Example 5-27

MiscBase RN r10
MAP 0,MiscBase

MiscStart # 0
Misc_a # 1
Misc_b # 1
Misc_c # 1
Misc_d # 1
MiscEndOfChars # 0
MiscPadding # (-:INDEX:MiscEndOfChars) :AND: 3
Misc_I # 4
Misc_J # 4
Misc_K # 4
Misc_data # 4*20
MiscEnd # 0
MiscLen EQU MiscEnd-MiscStart

There is no problem in using LDM/STM instructions for accessing single data elements that
are larger than a word (for example, arrays). An example of this is the 20-word element
Misc_data. It could be accessed as follows:

ArrayBase RN R9
ADR ArrayBase, MiscBase
LDMIA ArrayBase, {R0-R5}
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-59

Basic Assembly Language Programming
This example loads the first six items in the array Misc_data. The array is a single
element and therefore covers contiguous memory locations. It is unlikely that in the
future anyone will split it into separate arrays.

However, for the case of loading Misc_I, Misc_J, and Misc_K into registers r0, r1, and r2
the following would work, but could cause problems in the future:

ArrayBase RN R9
ADR ArrayBase, Misc_I
LDMIA ArrayBase, {R0-R2}

Problems arise if the order of Misc_I, Misc_J, and Misc_K is changed, or if a new element
Misc_New is added in the middle. Either of these small changes breaks the code.

If these elements need to be accessed separately elsewhere, so you do not want to
amalgamate them into a single array element, you must amend the code. The first
remedy is to comment the structure to prevent changes affecting this area:

Misc_I # 4 ; ==} Do not split/reorder
Misc_J # 4 ; } these 3 elements, STM
Misc_K # 4 ; ==} and LDM instructions used.

If the code is strongly commented, no deliberate changes are likely to be made that
would affect the workings of the program. Unfortunately, mistakes can still occur. A
second method of catching these problems would be to add ASSERT directives just before
the STM/LDM instructions to check that the labels are consecutive and in the correct order:

ArrayBase RN R9
; Check that the structure elements
; are correctly ordered for LDM

ASSERT (((Misc_J-Misc_I) = 4) :LAND: ((Misc_K-Misc_J) = 4))
ADR ArrayBase, Misc_I
LDMIA ArrayBase, {R0-R2}

This ASSERT directive stops assembly at this point if the structure is not in the correct
order to be loaded with an LDM. Remember that the element with the lowest address is
always loaded from, or stored to, the lowest numbered register.
5-60 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 6
Using the Procedure Call Standards

This chapter describes how to use the ARM and Thumb Procedure Call Standards to
ensure that separately compiled and assembled modules follow a standard set of rules
for interworking. It contains the following sections:

• About the procedure call standards on page 6-2

• Using the ARM Procedure Call Standard on page 6-3

• Using the Thumb Procedure Call Standard on page 6-11

• Passing and returning structures on page 6-13.

Refer to the ARM Software Development Toolkit Reference Guide for a complete
description of the procedure call standards.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-1

Using the Procedure Call Standards
6.1 About the procedure call standards

Sometimes you will find it necessary to combine C or C++, and assembly language in
the same program. For example, you may wish to hand code performance-critical
routines in assembly language so that they run at optimum speed.

The ARM Software Development Toolkit enables you to generate object files from C,
C++, and assembly language source, and then link them with one or more libraries to
produce an executable file, as shown in Figure 6-1.

Figure 6-1 Mixing C or C++ and assembly language

Irrespective of the language in which they are written, routines that make calls to other
modules must observe a common convention of argument and result passing. For the
ARM and Thumb instruction sets, these are:

• the ARM Procedure Call Standard (APCS)

• the Thumb Procedure Call Standard (TPCS).

This chapter introduces these standards, and discusses their role in ARM assembly
language for passing and returning values and pointers to structures for use by C and
C++ routines.

ASM source module(s)

executable

armasm

armlink

.o
.s

C library

armcc -c.c
.oC source module(s)
6-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards
6.2 Using the ARM Procedure Call Standard

APCS is a set of rules governing calls between functions in separately compiled or
assembled code fragments.

The APCS defines:

• constraints on the use of registers

• stack conventions

• argument passing and result return.

Code produced by compilers is expected to adhere to the APCS at all times. Such code
is said to be strictly conforming. Handwritten code is expected to adhere to the APCS
only when making calls to externally visible functions. Such code is said to be
conforming.

The APCS comprises a family of variants. Each variant is exclusive. Code that conforms
to one variant cannot be used with code that conforms to another.

Note
 The reentrant APCS variants are obsolete.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-3

Using the Procedure Call Standards
6.2.1 APCS register names and usage

Table 6-1 and Table 6-2 on page 6-5 summarize the names and roles of integer and
floating-point registers under the APCS.

Note
 Not all ARM systems support floating-point. Refer to Chapter 11 Floating-point
Support in the ARM Software Development Toolkit Reference Guide for more
information.

Table 6-1 APCS registers

Register APCS name APCS role

r0 a1 argument 1/scratch register/result

r1 a2 argument 2/scratch register/result

r2 a3 argument 3/scratch register/result

r3 a4 argument 4/scratch register/result

r4 v1 register variable

r5 v2 register variable

r6 v3 register variable

r7 v4 register variable

r8 v5 register variable

r9 sb/v6 static base/register variable

r10 sl/v7 stack limit/stack chunk handle/register variable

r11 fp/v8 frame pointer/register variable

r12 ip scratch register/new -sb in inter-link-unit calls

r13 sp lower end of the current stack frame

r14 lr link register/scratch register

r15 pc program counter
6-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards
To summarize:

a1-a4, [f0-f3] These are used to pass arguments to functions. a1 is also used to
return integer results, and f0 to return FP results. These registers
can be corrupted by a called function.

v1-v8, [f4-f7] These are used as register variables. They must be preserved by
called functions.

sb, sl, fp, ip, sp, lr, pc

These have a dedicated role in some APCS variants, though
certain registers may be used for other purposes even when strictly
conforming to the APCS. In some variants of the APCS some of
these registers are available as additional variable registers. Refer
to A more detailed look at APCS register usage on page 6-10 for
more information.

Hand coded assembly language routines that interface with C or C++ must conform to
the APCS. They are not required to conform strictly. This means that any register that
is not used in its APCS role by an assembly language routine (for example, fp) can be
used as a working register, provided that its value on entry is restored before returning.

Table 6-2 APCS floating-point registers

Name Number APCS Role

f0 0 FP argument 1/FP result/FP scratch register

f1 1 FP argument 2/FP scratch register

f2 2 FP argument 3/FP scratch register

f3 3 FP argument 4/FP scratch register

f4 4 floating-point register variable

f5 5 floating-point register variable

f6 6 floating-point register variable

f7 7 floating-point register variable
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-5

Using the Procedure Call Standards
6.2.2 An example of APCS register usage: 64-bit integer addition

This example illustrates how to use ARM assembly language to code a small function
so that it can be used by C modules.

The function performs a 64-bit integer addition. It uses a two-word data structure to
store each 64-bit operand. We will consider the following stages:

• writing the function in C

• examining the compiler output

• modifying the compiler output

• looking at the effects of the APCS

• revisiting the first implementation.

Writing the function in C

In ARM assembly language, you can code the addition of double-length integers by
using the Carry flag from the low word addition in the high word addition. However, in
C there is no way of specifying the Carry flag. Example 6-1 shows a workaround.

Example 6-1

void add_64(int64 *dest, int64 *src1, int64 *src2)
{ unsigned hibit1=src1->lo >> 31, hibit2=src2->lo >> 31, hibit3;

dest->lo=src1->lo + src2->lo;
hibit3=dest->lo >> 31;
dest->hi=src1->hi + src2->hi +

((hibit1 & hibit2) || (hibit1!= hibit3));
return;

}

The highest bits of the low words in the two operands are calculated (shifting them into
bit 0, while clearing the rest of the register). These bits are then used to determine the
value of the carry bit (in the same way as the ARM itself does).

Examining the compiler output

If the addition routine were to be used a great deal, an implementation such as this
would probably be inadequate. To consider the quality of the implementation, examine
the code produced by the compiler. Follow these steps to produce an assembly language
listing:

1. Copy file examples/candasm/add64_1.c to your current working directory. This file
contains the C code in Example 6-1.
6-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards
2. Compile it to ARM assembly language source as follows:

armcc -li -S add64_1.c

The -S flag tells the compiler to produce ARM assembly language source
(suitable for armasm) instead of object code.

Example 6-2 shows the assembly language output in file add64_1.s. It reveals that this
is an inefficient implementation (instructions may vary between compiler releases).

Example 6-2

add_64
STMDB sp!,{v1,lr}
LDR v1,[a2,#0]
MOV a4,v1,LSR #31
LDR ip,[a3,#0]
MOV lr,ip,LSR #31
ADD ip,v1,ip
STR ip,[a1,#0]
MOV ip,ip,LSR #31
LDR a2,[a2,#4]
LDR a3,[a3,#4]
ADD a2,a2,a3
TST a4,lr
CMPEQ a4,ip
MOVNE a3,#1
MOVEQ a3,#0
ADD a2,a2,a3
STR a2,[a1,#4]!
LDMIA sp!,{v1,pc}

Modifying the compiler output

Because you cannot specify the Carry flag in C, you must get the compiler to produce
almost the right code, and then modify it by hand. Start with (incorrect) code that does
not perform the carry addition, as in Example 6-3 on page 6-8.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-7

Using the Procedure Call Standards
Example 6-3

void add_64(int64 *dest, int64 *src1, int64 *src2)
{ dest->lo=src1->lo + src2->lo;
 dest->hi=src1->hi + src2->hi;
 return;
}

Copy file examples/candasm/add64_2.c (which contains the code in Example 6-3) to
your current working directory.

Compile it to ARM assembly language source as follows:

armcc -li -S add64_2.c

You can find the assembly language produced by the compiler in the file add64_2.s.

Example 6-4

add_64
LDR a4,[a2,#0]
LDR ip,[a3,#0]
ADD a4,a4,ip
STR a4,[a1,#0]
LDR a2,[a2,#4]
LDR a3,[a3,#4]
ADD a2,a2,a3
STR a2,[a1,#4]
MOV pc,lr

Comparing this to the C source, you can see that the first ADD instruction produces the
low order word, and the second produces the high order word. To correct this, get the
carry from the low to high word by changing:

• the first ADD to ADDS (add and set flags)

• the second ADD to an ADC (add with carry)

You can find this modified code in the directory examples/candasm as add64_3.s.

Looking at the effects of the APCS

The most obvious effect of the APCS on the example code is the change in register
names:

• a1 holds a pointer to the destination structure.
6-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards
• a2 and a3 hold pointers to the operand structures.

• a4 and ip are used as temporary registers that are not preserved. The conditions
under which ip can be corrupted are discussed in A more detailed look at APCS
register usage on page 6-10.

This is a simple leaf function that uses few temporary registers, so none are saved to the
stack and restored on exit. Therefore you can use a simple MOV pc,lr to return.

If you wish to return another result, such as the carry out from the addition, you must
load it into a1 prior to exit. You can do this as follows:

Change the second ADD to ADCS (add with carry and set flags).

Add the following instructions to load a1 with 1 or 0 depending on the carry out from
the high order addition.

MOV a1, #0
ADC a1, a1, #0

Change the return type of function declaration for add-64() from void to int.

Revisiting the first implementation

Although the first C implementation is inefficient, it shows more about the APCS than
the hand-modified version.

You have already seen a4 and ip being used as non-preserved temporary registers.
However, here v1 and lr are also used as temporary registers. v1 is preserved by being
stored (together with lr) on entry. Register lr is corrupted, but a copy is saved onto the
stack and reloaded into pc when v1 is restored. This means that there is still only a single
exit instruction, but now it is:

LDMIA sp!,{v1,pc}
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-9

Using the Procedure Call Standards
6.2.3 A more detailed look at APCS register usage

Although sb, sl, fp, ip, sp and lr are dedicated registers, the example in Example 6-2 on
page 6-7 shows ip and lr being used as temporary registers. Sometimes these registers
are not used for their APCS roles. The details given below will enable you to write
efficient and safe code that uses as many of the registers as possible, and avoids
unnecessary saving and restoring of registers:

ip Is used only during function calls, so it is not preserved across function
calls. It is conventionally used as a local code generation temporary
register. At other times it can be used as a corruptible temporary register.
ip is not preserved in either its dedicated or non-dedicated APCS role.

lr Holds the address to which control must return on function exit. It can be
(and often is) used as a temporary register after pushing its contents onto
the stack. This value can be loaded directly into the program counter
when returning. lr is not preserved in either its dedicated or non-dedicated
APCS role.

sp Is the stack pointer. It is always valid in strictly conforming code, but need
only be preserved in handwritten code. Note, however, that if any
handwritten code makes use of the stack, or if interrupts can use the user
mode stack, sp must be valid. In its non-dedicated APCS role, sp must be
preserved. sp must be preserved on function exit for APCS conforming
code.

sl Is the stack limit register. If stack limit checking is enabled sl must be
valid whenever sp is valid. In its non-dedicated APCS role, sl must be
preserved.

fp Is the frame pointer register. In the obsolete APCS variants that use fp,
this register contains either zero, or a pointer to the most recently created
stack backtrace data structure. As with the stack pointer, the frame
pointer must be preserved, but in handwritten code it does not need to be
available at every instant. However, it must be valid whenever any strictly
conforming function is called. fp must always be preserved.

sb Is the static base register. This register is used to access static data. If sb
is not used, it is available as an additional register variable, v6, that must
be preserved across function calls. sb must always be preserved.
6-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards
6.3 Using the Thumb Procedure Call Standard

The Thumb Procedure Call Standard (TPCS) is a set of rules that govern inter-calling
between functions written in Thumb code. The TPCS is essentially a cut-down APCS.

There are fewer options with TPCS than with the APCS. This reflects the different ways
in which ARM and Thumb code are used, and also reflects the reduced nature of the
Thumb instruction set.

Specifically, the TPCS does not support:

disjoint stack extension (stack chunks)

Under the TPCS, the stack must be contiguous. However, this does not
prohibit the use of multiple stacks to implement co-routines, for example.

reentrancy Reentrant code is code that calls the same entry point with different sets
of static data.

You can implement reentrancy by placing in a struct all variables that
must be multiply instantiated, and passing each function a pointer to the
struct.

hardware floating-point

Thumb code cannot access floating-point instructions without switching
to ARM state. Floating-point is supported indirectly by defining how FP
values are passed to and returned from Thumb functions in the Thumb
registers.

Refer to the ARM Software Development Toolkit Reference Guide for the full
specification of the TPCS.

6.3.1 TPCS register names and usage

The Thumb register subset has:

• eight visible general purpose registers (r0-r7), called the low registers

• a stack pointer (sp) (a full descending stack is assumed)

• a link register (lr)

• a program counter (pc).

In addition, the Thumb subset can access the other ARM registers (r8-r12, called the
high registers) singly using a set of special instructions. Refer to the ARM Architectural
Reference Manual for details.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-11

Using the Procedure Call Standards
In the context of the TPCS, each Thumb register has a special name and function as
shown in Table 6-3.

Table 6-3 TPCS registers

Register TPCS name TPCS role

r0 a1 argument 1/scratch register/result

r1 a2 argument 2/scratch register/result

r2 a3 argument 3/scratch register/result

r3 a4 argument 4/scratch register/result

r4 v1 register variable

r5 v2 register variable

r6 v3 register variable

r7 v4/wr register variable/work register in function entry/exit

r8 (v5) (ARM v5 register, no defined role in Thumb)

r9 (v6) (ARM v6 register, no defined role in Thumb)

r10 sl (v7) stack limit

r11 fp (v8) frame pointer (not usually used in Thumb state)

r12 (ip) (ARM ip register, no defined role in Thumb. May be used
as a temporary register on Thumb function entry/exit.)

r13 sp stack pointer (full descending stack)

r14 lr link register

r15 pc program counter
6-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards
6.4 Passing and returning structures

This section describes:

• the default method for passing structures to and from functions

• cases in which passing structures is automatically optimized

• telling the compiler to return a struct value in several registers.

6.4.1 The default method

Unless special conditions apply (as detailed in following sections), C structures are
passed in registers that, if necessary, overflow onto the stack and are returned through a
pointer to the memory location of the result.

For struct-valued functions, a pointer to the location where the struct result is to be
placed is passed in a1 (the first argument register). The first argument is then passed in
a2, the second in a3, and so on. It is as if:

struct s f(int x)

were compiled as:

void f(struct s *result, int x)

Example 6-5

typedef struct two_ch_struct
{

char ch1;
char ch2;

}
two_ch;
two_ch max(two_ch a, two_ch b)
{

return (a.ch1 > b.ch1) ? a : b;
}

Example 6-5 is available in the file examples/candasm/two_ch.c, and can be compiled to
produce assembly language source using:

armcc -S two_ch.c -li

Example 6-6 on page 6-14 shows the code armcc produces (the version of armcc
supplied with your release may produce output slightly different from that listed here).
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-13

Using the Procedure Call Standards
Example 6-6

max
STMDB sp!,{a1-a3}
LDRB a3,[sp,#4]
LDRB a2,[sp,#8]
CMP a3,a2
ADDLE a2,sp,#8
ADDGT a2,sp,#4
LDR a2,[a2,#0]
STR a2,[a1,#0]
ADD sp,sp,#0xc
MOV pc,lr

The STMDB instruction saves the arguments onto the stack. Registers a2 and a3 are used
as temporary registers to hold the required part of the structures passed, and a1 is a
pointer to an area in memory in which the resulting structure is placed.

6.4.2 Returning integer-like structures

The APCS specifies different rules for returning integer-like structures. An integer-like
structure:

• is no larger than one word in size

• has addressable subfields, all of which have an offset of 0.

The following structures are integer-like:

struct
{

unsigned a:8, b:8, c:8, d:8;
}
union polymorphic_ptr
{

struct A *a;
struct B *b;
int *i;

}

whereas the structure used in Example 6-5 on page 6-13 is not:

struct { char ch1, ch2; }

An integer-like structure has its contents returned in a1. This means that a1 is not needed
to pass a pointer to a result structure in memory, and is instead used to pass the first
argument. Example 6-7 on page 6-15 demonstrates this.
6-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards
Example 6-7

typedef struct half_words_struct
{ unsigned field1:16;

unsigned field2:16;
}half_words;
half_words max(half_words a, half_words b)
{ half_words x;

x = (a.field1 > b.field1) ? a : b;
return x;

}

Arguments a and b are passed in registers a1 and a2, and because half_word_struct is
integer-like, you would expect a1 to return the result structure directly, rather than a
pointer to it.

This code is available in the file examples/candasm/half_str.c, and can be compiled to
produce assembly language source using:

armcc -S half_str.c -li

Example 6-8 shows the code armcc produces. The version of armcc supplied with your
release may produce output slightly different from that listed here.

Example 6-8

max
MOV a3,a1,LSL #16
CMP a3,a2,LSL #16
MOVLS a1,a2
MOV pc,lr

From this you can see that the contents of the half_words structure is returned directly
in a1 as expected.

6.4.3 Returning non integer-like structures in registers

There are occasions when a function must return more than one value. The usual way
to achieve this is to define a structure that holds all the values to be returned, and to pass
a pointer to the structure back in a1. The pointer is then dereferenced, allowing the
values to be stored.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-15

Using the Procedure Call Standards
For applications in which such a function is time-critical, the overhead involved in
wrapping and then unwrapping the structure can be significant. In this case, you can tell
the compiler that a structure should be returned in the argument registers a1 - a4, by
using the keyword __value_in_regs.

This is only useful for returning structures that are no larger than four words.

Returning a 64-bit result

To illustrate how to use __value_in_regs, consider a function that multiplies two 32-bit
integers together and returns a 64-bit result.

To make such a function work, you must split the two 32-bit numbers (a, b) into high
and low 16-bit parts (a_hi, a_lo, b_hi, b_lo). You then perform the four multiplications
a_lo * b_lo, a_hi * b_lo, a_lo * b_hi, a_hi * b_lo and add the results together, taking care
to deal with carry correctly.

Since the problem involves manipulation of the Carry flag, writing this function in C
does not produce optimal code (see An example of APCS register usage: 64-bit integer
addition on page 6-6). Therefore you must code the function in ARM assembly
language. Example 6-9 shows code that implements the algorithm.

Example 6-9

; On entry a1 and a2 contain the 32-bit integers to be multiplied (a, b)
; On exit a1 and a2 contain the result (a1 bits 0-31, a2 bits 32-63)
mul64

MOV ip, a1, LSR #16 ; ip = a_hi
MOV a4, a2, LSR #16 ; a4 = b_hi
BIC a1, a1, ip, LSL #16 ; a1 = a_lo
BIC a2, a2, a4, LSL #16 ; a2 = b_lo
MUL a3, a1, a2 ; a3 = a_lo * b_lo(m_lo)
MUL a2, ip, a2 ; a2 = a_hi * b_lo(m_mid1)
MUL a1, a4, a1 ; a1 = a_lo * b_hi(m_mid2)
MUL a4, ip, a4 ; a4 = a_hi * b_hi(m_hi)
ADDS ip, a2, a1 ; ip = m_mid1 + m_mid2(m_mid)
ADDCS a4, a4, #&10000 ; a4 = m_hi + carry(m_hi')
ADDS a1, a3, ip, LSL #16 ; a1 = m_lo + (m_mid<<16)
ADC a2, a4, ip, LSR #16 ; a2 = m_hi' + (m_mid>>16) + carry
MOV pc, lr
6-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards
Note
 On processors with a fast multiply unit such as the ARM7TDMI and ARM7DMI this
example can be recoded using the UMULL instructions.

Example 6-9 on page 6-16 is fine for use with assembly language modules, but to use it
from C you must tell the compiler that this routine returns its 64-bit result in registers.
You can do this by making the following declarations in a header file.

typedef struct int64_struct
{

unsigned int lo;
unsigned int hi;

}
int64;
__value_in_regs extern int64 mul64(unsigned a, unsigned b);

The above assembly language code and declarations, together with a test program, are
in the directory examples/candasm as the files mul64.s, mul64.h, int64.h and multest.c.

To compile, assemble, and link these to produce an executable image suitable for armsd,
copy them to your current directory, and then execute the following commands:

armasm mul64.s -o mul64.o -li
armcc -c multest.c -li
armlink mul64.o multest.o -o multest

where -li can be omitted if armcc and armasm (and armsd, below) have been
configured with it as a default.

Follow these step to run multest under armsd:

1. Enter armsd -li multest to load the image into armsd. The armsd prompt is
displayed:

armsd:

2. Type go at the armsd prompt to run the program. The following line is displayed:

Enter two unsigned 32-bit numbers in hex eg.(100 FF43D)

3. Type 12345678 10000001

The following lines are displayed:

Least significant word of result is 92345678
Most significant word of result is 1234567
Program terminated normally at PC = 0x00008418
 0x00008418: 0xef000011 : > swi Angel
armsd:
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-17

Using the Procedure Call Standards
4. Type quit at the armsd prompt to exit armsd.

To confirm that __value_in_regs is being used, remove it from mul64.h, recompile
multest.c, relink multest, and rerun armsd. This time the answers returned will be
incorrect, because the result is no longer being returned in registers, but in a block of
memory.
6-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 7
Interworking ARM and Thumb

This chapter explains how to change between ARM state and Thumb state when writing
code for processors that implement the Thumb instruction set. It contains the following
sections:

• About interworking on page 7-2

• Basic assembly language interworking on page 7-4

• C and C++ interworking and veneers on page 7-12

• Assembly language interworking using veneers on page 7-19

• ARM-Thumb interworking with the ARM Project Manager on page 7-23.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-1

Interworking ARM and Thumb
7.1 About interworking

You can mix ARM and Thumb code as you wish, provided that the code conforms to
the requirements of the ARM and Thumb Procedure Call Standards. The ARM
compilers always create code that conforms to these standards. If you are writing ARM
assembly language modules you must ensure that your code conforms. See Chapter 6
Using the Procedure Call Standards for detailed information.

The ARM linker detects when ARM and Thumb code is being mixed, and can generate
small code segments called veneers. These veneers perform an ARM-Thumb state
change on function entry and exit whenever an ARM function is called from Thumb
state, or a Thumb function is called from ARM state.

7.1.1 When to use interworking

When you write code for a Thumb-capable ARM processor, you will probably write
most of your application to run in Thumb state, because this provides the best possible
code density and performance with 8-bit or 16-bit memory. However, you may want
parts of your application to run in ARM state for reasons such as:

Speed Some parts of an application may be highly speed critical. These sections
may be more efficient running in ARM state than in Thumb state, because
in some circumstances a single ARM instruction can do more than the
equivalent Thumb instruction.

Some systems include a small amount of fast 32-bit memory from which
ARM code can be run, without the overhead of fetching each instruction
from 8-bit or 16-bit memory.

Functionality

Thumb instructions are less flexible than their ARM equivalents. Some
operations, such as accessing the program status registers directly, are not
possible in Thumb state. This means that a state change is required in
order to carry out these operations.

Exception handling

The processor automatically enters ARM state when a processor
exception occurs. This means that the first part of an exception handler
must be coded with ARM instructions, even if it re-enters Thumb state to
carry out the main processing of the exception. At the end of such
processing, the processor must be returned to ARM state to return from
the handler to the main application.

Refer to Handling exceptions on Thumb-capable processors on
page 9-39 for more information.
7-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb
Standalone Thumb programs

A Thumb-capable ARM processor always starts in ARM state. To run
simple Thumb assembly language programs under the debugger, add an
ARM header that carries out a state change to Thumb state and then calls
the main Thumb routine. See Example ARM header on page 7-5 for an
example.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-3

Interworking ARM and Thumb
7.2 Basic assembly language interworking

The simplest method of interworking between ARM and Thumb state is to use
hand-coded assembly language. In this case, it is up to you to make sure that register
usage is compatible between any interworking routines.

To interwork between ARM and Thumb state you must:

• change the processor state with the Branch Exchange (BX) instruction

• instruct the assembler to generate the correct code for the processor state with the
CODE32 and CODE16 directives.

The following section describes these steps in more detail.

Refer to Assembly language interworking using veneers on page 7-19 for information
on using linker-generated interworking veneers from assembly language.

7.2.1 The Branch Exchange instruction

The BX instruction branches to the address contained in a specified register. The value
of bit 0 of the branch address determines whether execution continues in ARM state or
Thumb state.

Bit 0 of an address can be used in this way because:

• All ARM instructions are word-aligned. This means that bits 0 and 1 of the
address of any ARM instruction are ignored because these bits refer to the
halfword and byte part of the address.

• All Thumb instructions are halfword-aligned. This means that bit 0 of the address
of any Thumb instruction is ignored because it refers to the byte part of the
address.

The BX instruction is implemented on Thumb-capable ARM processors only.

Syntax

The syntax of BX is one of:

Thumb BX Rn

ARM BX{cond} Rn

where:

Rn is a register in the range r0 to r15 that contains the address to branch to.
The value of bit 0 in this register determines the processor state:

• if bit 0 is set, the instruction at the branch address is executed in
Thumb state
7-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb
• if bit 0 is clear, the instruction at the branch address is executed in
ARM state.

cond is an optional condition code. Only the ARM version of BX can be
executed conditionally.

Usage

• You can also use BX for branches that do not change state. You can use this to
execute branches that are out of range of the normal branch instructions. Because
BX takes a 32-bit register operand it can branch anywhere in 32-bit memory. The
B and BL instructions are limited to:

— 32 MB in ARM state, for both conditional and unconditional B and BL
instructions

— 4 MB in Thumb state, for unconditional B and BL instructions

— -128 to +127 instructions in Thumb state, for the conditional B instruction.

Note
 The BX instruction is only implemented on ARM processors that are Thumb-capable. If
you use BX to execute long branches your code will fail on processors that are not
Thumb-capable. The result of a BX instruction on a processor that is not Thumb-capable
is unpredictable.

Changing the assembler mode

The ARM assembler can assemble both Thumb code and ARM code. By default, it
assembles ARM code unless it is invoked with the -16 option.

Because all Thumb-capable ARM processors start in ARM state, you must use the BX
instruction to branch and exchange to Thumb state, and then use the CODE16 directive to
instruct the assembler to assemble Thumb instructions.

Refer to the ARM Software Development Toolkit Reference Guide for more information
on these directives.

Example ARM header

Example 7-1 on page 7-6 implements a short header section of ARM code that changes
the processor to Thumb state.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-5

Interworking ARM and Thumb
The header code uses:

• An ADR instruction to load the branch address and set the least significant bit. The
ADR instruction generates the address by loading r2 with the value pc+offset. See
Direct loading with ADR and ADRL on page 5-27 for more information on the ADR
instruction.

• A BX (Branch exchange) instruction to branch to the Thumb code and change
processor state.

The main body of the module is prefixed by a CODE16 directive that instructs the
assembler to treat the following code as Thumb code. The Thumb code adds the
contents of two registers together.

The code section labeled stop uses the Thumb Angel SWI to exit. The SWI reports an
exception reason, specified in r1, to the debugger. In this case it is used to report normal
application exit. Refer to Chapter 13 Angel for more information on Angel.

Note
 The Thumb Angel semihosting SWI is, by default, a different number from the ARM
semihosting SWI (0xAB rather than 0x123456).

Example 7-1

AREA AddReg,CODE,READONLY
; Name this block of code.

ENTRY ; Mark first instruction to call.
main

ADR r2, ThumbProg + 1 ; Generate branch target address
; and set bit 0, hence arrive
; at target in Thumb state.

BX r2 ; Branch exchange to ThumbProg.
CODE16 ; Subsequent instructions

; are Thumb.
ThumbProg

MOV r2, #2 ; Load r2 with value 2.
MOV r3, #3 ; Load r3 with value 3.
ADD r2, r2, r3 ; r2 = r2 + r3

stop MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0xAB ; Angel semihosting Thumb SWI
END ; Mark end of this file.
7-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb
Building the example

To build and execute the example:

1. Enter the code using any text editor and save the file as addreg.s.

2. Type asm -g addreg.s at the command prompt to assemble the source file.

3. Type armlink addreg.o -o addreg to link the file.

4. Type armsd addreg to load the module into the command-line debugger

5. Type break @start at the armsd command prompt to set a breakpoint on the label
start.

6. Type go to execute the program.

7. When the breakpoint is hit, type step to single step through the rest of the
program. Type reg to display the registers after each step and watch the processor
enter Thumb state. This is denoted by the T in the Current Program Status
Register (cpsr) changing from a lowercase "t" to an uppercase "T".

7.2.2 Implementing interworking assembly language subroutines

To implement a simple subroutine call in assembly language you must:

• store the return address in the link register

• branch to the address of the required subroutine.

In the case of non-interworking subroutine calls, you can carry out both operations in a
single BL instruction.

In the interworking case, where the subroutine is coded for the other state, you must
allow for state changes both when calling the subroutine, and when returning from the
subroutine.

To call the subroutine and change the processor state, use a BX instruction as described
in The Branch Exchange instruction on page 7-4.

Unlike the BL instruction, BX does not store the return address in the link register. You
must ensure that the link register is loaded with the return address before you use the BX
instruction. If the call is from Thumb code to ARM code you must also set bit 0 in the
link register to ensure that the processor executes in Thumb state when the subroutine
returns.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-7

Interworking ARM and Thumb
Calling an ARM subroutine from Thumb

The simplest way to carry out a Thumb-to-ARM interworking subroutine call is to BL
to an intermediate Thumb code segment that executes the BX instruction. The BL
instruction loads the link register immediately before the BX instruction is executed.

In addition, the Thumb instruction set version of BL sets bit 0 when it loads the link
register with the return address. When a Thumb-to-ARM interworking subroutine call
returns using a BX lr instruction, it causes the required state change to occur
automatically.

If you always use the same register to store the address of the ARM subroutine that is
being called from Thumb, this segment can be used to send an interworking call to any
ARM subroutine. The __call_via_r4 procedure in Example 7-2 on page 7-9
demonstrates this technique.

Note
 You must use a BX lr instruction at the end of the ARM subroutine to return to the caller.
You cannot use the MOV pc,lr instruction to return in this situation because it does not
cause the required change of state.

If you do not use a BL instruction to call the BX instruction then you must ensure that the
link register is updated and that bit 0 is set, either by the calling Thumb routine or by
the called ARM routine.

Calling a Thumb subroutine from ARM

When carrying out an ARM-to-Thumb interworking subroutine call you do not need to
set bit 0 of the link register because the routine is returning to ARM state. In this case,
you can store the return address by copying the program counter into the link register
with a MOV lr,pc instruction immediately before the BX instruction.

Remember that the address operand to the BX instruction that calls the Thumb subroutine
must have bit 0 set so that the processor executes in Thumb state on arrival.

As with Thumb-to-ARM interworking subroutine calls, you must use a BX instruction to
return.

Interworking subroutine call examples

Example 7-2 on page 7-9 has an ARM code header and a Thumb code main routine.
The program sets up two parameters (r0 and r1), and makes an interworking call to an
ARM subroutine that adds the two parameters together and returns.
7-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb
To build the example:

1. Type asm -g armadd.s at the system command prompt to assemble the module.

2. Type armlink armadd.o -o armadd to link the object file.

Example 7-2

AREA ArmAdd,CODE,READONLY
; name this block of code.

ENTRY ; Mark 1st instruction to call.
; Assembler starts in ARM mode.

main
ADR r2, ThumbProg + 1

; Generate branch target address and set bit 0,
; hence arrive at target in Thumb state.

BX r2 ; Branch exchange to ThumbProg.
CODE16 ; Subsequent instructions are Thumb.

ThumbProg
MOV r0, #2 ; Load r0 with value 2.
MOV r1, #3 ; Load r1 with value 3.
ADR r4, ARMSubroutine ; Generate branch target address, leaving bit 0

; clear in order to arrive in ARM state.
BL __call_via_r4 ; Branch and link to Thumb code segment that will

; carry out the BX to the ARM subroutine.
; The BL causes bit 0 of lr to be set.

Stop ; Terminate execution.
MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0xAB ; Angel semihosting Thumb SWI

__call_via_r4 ; This Thumb code segment will
; BX to the address contained in r4.

BX r4 ; Branch exchange.
CODE32 ; Subsequent instructions are ARM.

ARMSubroutine
ADD r0, r0, r1 ; Add the numbers together
BX LR ; and return to Thumb caller

; (bit 0 of LR set by Thumb BL).
END ; Mark end of this file.

Example 7-3 on page 7-10 is a modified form of Example 7-2. The main routine is now
in ARM code and the subroutine is in Thumb code. Notice that the call sequence is now
a MOV instruction followed by a BX instruction.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-9

Interworking ARM and Thumb
Example 7-3

AREA ThumbAdd,CODE,READONLY; Name this block of code.
ENTRY ; Mark 1st instruction to call.

; Assembler starts in ARM mode.
main

MOV r0, #2 ; Load r0 with value 2.
MOV r1, #3 ; Load r1 with value 3.
ADR r4, ThumbSub + 1 ; Generate branch target address and set bit 0,

; hence arrive at target in Thumb state.
MOV lr, pc ; Store the return address.
BX r4 ; Branch exchange to subroutine ThumbSub.

Stop ; Terminate execution.
MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0x123456 ; Angel semihosting ARM SWI
CODE16 ; Subsequent instructions are Thumb.

ThumbSub
ADD r0, r0, r1 ; Add the numbers together
BX LR ; and return to ARM caller.
END ; Mark end of this file.
7-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb
7.2.3 Data in Thumb code areas

You must use the DATA directive when you define data within a Thumb code area.

When the linker relocates a label in a Thumb code area, it assumes that the label
represents the address of a Thumb code routine. Consequently it sets bit 0 of the label
so that the processor is switched to Thumb state if the routine is called with a BX
instruction.

The linker cannot distinguish between code and data within a code area. If the label
represents a data item, rather than an address, the linker adds 1 to the value of the data
item.

The DATA directive marks a label as pointing to data within a code area and the linker
does not add 1 to its value. For example:

AREA code, CODE
Thumb_fn ; ...

MOV pc, lr
Thumb_Data DATA

DCB 1, 3, 4, ...

Note that the DATA directive must be on the same line as the symbol. Refer to the
description of the DATA directive in the ARM Software Development Toolkit Reference
Guide for more information.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-11

Interworking ARM and Thumb
7.3 C and C++ interworking and veneers

You can freely mix C and C++ code compiled for ARM and Thumb, but small code
segments called veneers are needed between the ARM and Thumb code to carry out
state changes. The ARM linker generates these interworking veneers when it detects
interworking calls.

7.3.1 Specifying APCS options

By default, the APCS options for the ARM assembler and compilers are the same for
ARM and Thumb. The default options are:

/nofp/noswstackcheck

If your code is compiled with other options, for example with software stack checking
enabled (/swstackcheck), then you must ensure that all ARM modules and Thumb
modules are compiled to the same standard if they are to be interworked.

If you do not do this, the linker informs you where the incompatibilities occurred by
generating warning messages of the form:

Attribute conflict between AREA object(area) and image code.
(attribute difference = {NO_SW_STACK_CHECK}).

Refer to Chapter 6 Using the Procedure Call Standards for more information on APCS.

Refer to the ARM Software Development Toolkit Reference Guide for more information
on command-line options to the assembler and compilers.

7.3.2 Compiling code for Interworking

The -apcs /interwork compiler option enables all ARM and Thumb C and C++
compilers to compile modules containing routines that can be called by routines
compiled for the other processor state:

tcc -apcs /interwork
armcc -apcs /interwork
tcpp -apcs /interwork
armcpp -apcs /interwork

Modules that are compiled for interworking generate slightly (typically 2%) larger code
for Thumb and marginally larger code for ARM.

For a leaf function, (that is, a function whose body contains no function calls), the only
change in the code generated by the compiler is to replace MOV pc,lr with BX lr. For
non-leaf functions, the Thumb compiler must replace, for example, the single
instruction:
7-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb
POP {r4,r5,pc}

with the sequence:

POP {r4,r5}
POP {r3}
BX r3

This has a correspondingly small effect on performance. It is not necessary to compile
all source modules for interworking, only those that contain subroutines called through
interworking calls.

In addition, the -apcs /interwork option sets the interwork attribute for the code area
into which the modules are compiled. The linker detects this attribute and inserts the
appropriate veneer. The sizes of the veneers are:

• Eight bytes for each called routine for calls from Thumb to ARM. This consists
of:

— a Thumb BX instruction

— a halfword of padding for alignment

— an ARM branch instruction.

• Twelve bytes for each called routine for calls from ARM to Thumb. This consists
of:

— an ARM LDR instruction to get the address of the function being called

— an ARM BX instruction to execute the call

— a word to hold the address of the function.

Note
 ARM code compiled for interworking cannot be used on ARM processors that are not
Thumb-capable because these processors do not implement the BX instruction.

Use the armlink -info total option to find the amount of space taken by the veneers.
The interworking veneers are included in the const data column of the object totals. See
Figure 7-1 on page 7-14 for an example.

 code inline inline 'const' RW 0-Init debug
 size data strings data data data data
Object totals 32 0 92 20 0 0 0
Library totals 6924 1516 532 4 264 1104 2224
Grand totals 6956 1516 624 24 264 1104 2224
Debug Area Optimization Statistics
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-13

Interworking ARM and Thumb
Input debug total(excluding low level debug areas) 2224 (2.17Kb)
Output debug total 2224 (2.17Kb)
% reduction 0.00%

Figure 7-1 Total code sizes

Use the armlink -info size option to see more detail. The space taken by the veneers is
displayed as an <anon> row entry at the top of the table. See Figure 7-2 for an example.

object file code inline inline 'const' RW 0-Init debug
 size data strings data data data data
arm.o 8 0 36 0 0 0 0
thumb.o 24 0 56 0 0 0 0
<anon> 0 0 0 20 0 0 0

Figure 7-2 Interworking veneer sizes

Simple C interworking example

The two modules in Example 7-4 can be built to produce an application where main()
is a Thumb routine that carries out an interworking call to an ARM subroutine. The
subroutine call itself makes an interworking call to the Thumb library routine, printf().

Example 7-4

/**********************
* thumb.c *
**********************/
#include <stdio.h>
extern void arm_function(void);
int main(void)
{

printf("Hello from Thumb World\n");
arm_function();
printf("And goodbye from Thumb World\n");
return (0);

}
/**********************
* arm.c *
**********************/
#include <stdio.h>
void arm_function(void)
{

printf("Hello and Goodbye from ARM world\n");
}

7-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb
To compile and link these modules:

1. Type tcc -c -apcs /interwork -o thumb.o thumb.c at the system prompt to
compile the Thumb code for interworking.

2. Type armcc -c -apcs /interwork -o arm.o arm.c to compile the ARM code for
interworking.

3. Type armlink -o hello thumb.o to link the object files.

Alternatively, type armlink -info size thumb.o arm.o to view the size of the
interworking veneers in the <anon> column (see Figure 7-2 on page 7-14).

7.3.3 Simple rules for interworking

The following rules apply to interworking within an application:

• You must use the -apcs /interwork command-line option to compile any C or
C++ modules that contain functions that are called by interworking calls.

• You may compile modules that are never called by an interworking call without
the -apcs /interwork option. These modules may make interworking calls, but
may not be called by interworking calls.

• Never make indirect calls, such as calls using function pointers, to
non-interworking code from code in the other state.

• By default, the linker selects the appropriate interworking ANSI C or C++ library
based on the area definitions in the code generated by the compilers.

If you specify a library explicitly on the linker command line you must ensure that
it is an appropriate interworking library. The library should match the state in
which the main() function executes. Refer to The C and C++ interworking
libraries on page 7-17 for further details.

These rules are summarized in Figure 7-3 on page 7-16.

Note
 You must take great care when using function pointers in applications that contain both
ARM and Thumb code. The linker cannot generate warnings about illegal indirect calls,
and the code will fail at runtime.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-15

Interworking ARM and Thumb
Figure 7-3 Interworking using direct calls

7.3.4 Detecting interworking calls

The linker generates an error if it detects a direct ARM-Thumb interworking call where
the called routine is not compiled for interworking. You must recompile the called
routine for interworking.

For example, Figure 7-4 shows the errors that are produced if the ARM routine in
Example 7-2 on page 7-9 is compiled without the -apcs /interwork option.

Error: Unsupported call from Thumb code to ARM symbol _printf in
thumb.o(C$$code).
Error: Unsupported call from Thumb code to ARM symbol arm_function in
thumb.o(C$$code).
Error: Unsupported call from Thumb code to ARM symbol _printf in
thumb.o(C$$code).

Figure 7-4 Interworking errors

These types of errors indicate that an ARM-to-Thumb or Thumb-to-ARM interworking
call has been detected from the object module object to the routine symbol, but the
called routine has not been compiled for interworking. You must recompile the module
that contains the symbol and specify -apcs /interwork.

����������		

��������

��������������		

��������

����������
��������

����������
����������

������������		

��������

�����������������
����������

������������		

�����		
���

��	� ��������������
��������

��������������
����������
7-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb
7.3.5 Using two copies of the same function

You may wish to include two functions with the same name, one compiled for ARM and
the other for Thumb.

Duplicate definitions can be useful, for example, if you have a speed-critical routine in
a system with 16-bit and 32-bit memory where the overhead of the interworking veneer
would degrade the performance too much.

The linker allows duplicate definitions provided that each definition is of a different
type. That is, one definition defines a Thumb routine and the other defines an ARM
routine. The linker generates a warning message if there is a duplicate definition of a
symbol:

Both ARM & Thumb versions of symbol present in image

This is a warning to advise you in case you accidentally include two copies of the same
routine. If that is what you intended, you can ignore the warning.

Note
 When both versions of an identically-named routine are present in an image, and a call
is made through a function pointer, it is not possible to determine which version of the
routine will be called. Therefore, if you are using function pointers to call such routines,
you must compile both routines, and the routine making the call, for interworking.

7.3.6 The C and C++ interworking libraries

Two variants of the Thumb C libraries are provided with the Toolkit:

• compiled for interworking (armlib_i.16l and armlib_i.16b)

• not compiled for interworking (armlib.16l and armlib.16b).

Use the non-interworking set only if your application consists solely of Thumb code.

Only a non-interworking variant of the ARM C library is provided (armlib.32l and
armlib.32b). Interworking versions of the ARM library are not supplied. They are
typically of little use, because only ARM routines are likely to call ARM library
routines.

For example, it is unlikely that you will want a Thumb routine running from 16-bit
memory to use an ARM library routine that takes up more memory and takes longer to
execute than the Thumb library equivalent. If you want to build interworking versions
of the ARM library, refer to ARM Software Development Toolkit Reference Guide for
details of how to rebuild the libraries.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-17

Interworking ARM and Thumb
Remember that if interworking takes place within an application, you must use an
interworking main library. See Simple rules for interworking on page 7-15.

If you need to select the ARM or Thumb version of a standard C library routine
explicitly, or if you want to include both ARM and Thumb versions of a routine, you
can force the inclusion of specific modules from a library.

To force inclusion of a library module, put the name of the module in parentheses after
the library name. Ensure that there are no spaces between the library name and the
opening parenthesis. You can specify more than one module by separating module
names with a comma. Ensure that there are no spaces in the list of module names.

Examples

To force the use of the ARM version of strlen() and take all other routines from the
interworking Thumb library enter:

armlink -o prog thumb.o arm.o armlib.32l(strlen.o) armlib_i.16l

To force the inclusion of both ARM and Thumb versions of all functions starting with
str and take all other routines from the interworking Thumb library enter:

armlink -o prog thumb.o arm.o armlib.16l(str*) armlib.32l(str*) armlib_i.16l

Note
 On UNIX platforms, depending on the command shell you are using, you may need to
put the characters (,) and * in quotes in order to enter them on the command line.
7-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb
7.4 Assembly language interworking using veneers

The assembly language ARM-Thumb interworking method described in Basic
assembly language interworking on page 7-4 carried out all the necessary intermediate
processing. There was no need for the linker to insert interworking veneers, and no need
to set the INTERWORK attribute that the linker uses to decide whether to add an
interworking veneer.

This section describes how you can make use of interworking veneers to:

• interwork between assembly language modules

• interwork between assembly language and C or C++ modules.

7.4.1 Assembly-only interworking using veneers

You can write assembly language ARM-Thumb interworking code to make use of
interworking veneers generated by the linker. To do this, you write:

• the caller routine just as any non-interworking routine, using a BL instruction to
make the call

• the callee routine using a BX instruction to return, and set the INTERWORK attribute
for the area in which it is located.

Example of assembly language interworking using veneers

Example 7-5 sets registers r0 to r2 to the values 1, 2, and 3 respectively. Registers r0 and
r2 are set by the ARM code. Register r1 is set by the Thumb code. Note that:

• the INTERWORK attribute is set in the area definition of thumb.s

• a BX lr instruction is used to return, instead of the usual MOV pc,lr.

Example 7-5

; *****
; arm.s
; *****
AREA Arm,CODE,READONLY ; Name this block of code.
IMPORT ThumbProg
ENTRY ; Mark 1st instruction to call.

ARMProg
MOV r0,#1 ; Set r0 to show in ARM code.
BL ThumbProg ; Call Thumb subroutine.
MOV r2,#3 ; Set r2 to show returned to ARM.

; Terminate execution.
MOV r0, #0x18 ; angel_SWIreason_ReportException
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-19

Interworking ARM and Thumb
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0xAB ; Angel semihosting Thumb SWI
END
; *******
; thumb.s
; *******
AREA Thumb,CODE,READONLY,INTERWORK

; Name this block of code.
CODE16 ; Subsequent instructions are Thumb.
EXPORT ThumbProg

ThumbProg
MOV r1, #2 ; Set r1 to show reached Thumb code.
BX lr ; Return to ARM subroutine.
END ; Mark end of this file.

Follow these steps to build and link the modules, and examine the interworking veneers:

1. Type armasm arm.s to assemble the ARM code.

2. Type armasm -16 thumb.s to assemble the Thumb code.

3. Type armlink arm.o thumb.o -o count to link the two object files.

4. Type armsd count to load the code into the debugger.

5. Type list 0x8000 at the armsd command prompt to list the code. Figure 7-5 on
page 7-21 shows an example.

armsd: list 0x8000
Arm
+0000 0x00008000: 0xe3a00001 : > mov r0,#1
+0004 0x00008004: 0xeb000005 : bl 0x8020 ; (ThumbProg +
0x4)
+0008 0x00008008: 0xe3a02003 . .. : mov r2,#3
+000c 0x0000800c: 0xe3a00018 : mov r0,#0x18
+0010 0x00008010: 0xe59f1000 : ldr r1,0x00008018 ; =
#0x00020026
+0014 0x00008014: 0xef0000ab : swi 0xab
+0018 0x00008018: 0x00020026 &... : dcd 0x00020026 &...
ThumbProg
+0000 0x0000801c: 0x2102 .! : mov r1,#2
+0002 0x0000801e: 0x4770 pG : bx r14
+0004 0x00008020: 0xe59fc000 : ldr r12,0x00008028

; =
#ThumbProg+0x1
+0008 0x00008024: 0xe12fff1c ../. : bx r12
7-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb
+000c 0x00008028: 0x0000801d : andeq r8,r0,r13,lsl r0
_edata
+0000 0x0000802c: 0xe800e800 : stmda r0,{r11,r13-pc}

Figure 7-5 Example veneer

You can see that the linker has added the required ARM-to-Thumb interworking
veneer. This is contained in locations 0x8020 to 0x8028. Location 0x8028
contains the address of the routine being branch-exchanged to, with bit 0 set.

Note
 The addresses may vary depending on the version of the toolkit you are using.

7.4.2 C, C++, and assembly language interworking using veneers

C and C++ code compiled to run in one state can call assembly language code designed
to run in the other state, and vice versa. To do this, write the caller routine as any
non-interworking routine and, if calling from assembly language, use a BL instruction to
make the call. Then:

• if the callee routine is in C, compile it using -apcs /interwork

• if the callee routine is in assembly language, set the INTERWORK attribute and return
using BX lr.

Note
 Any assembly language code used in this manner must conform to the APCS where
appropriate.

Example 7-6

/**********************
* thumb.c *
**********************/
#include <stdio.h>
extern int arm_function(int);
int main(void)
{

int i = 1;
printf("i = %d\n", i);
printf("And now i = %d\n", arm_function(i));
return (0);

}

ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-21

Interworking ARM and Thumb
; *****
; arm.s
; *****
AREA Arm,CODE,READONLY,INTERWORK

; Name this block of code.
EXPORT arm_function

arm_function
ADD r0,r0,#4 ; Add 4 to first parameter.
BX LR ; Return
END

Follow these steps to build and link the modules:

1. Type tcc -c thumb.c to compile the thumb code.

2. Type armasm arm.s to assemble the arm code.

3. Type armlink arm.o thumb.o -o add to link the two object files.
7-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb
7.5 ARM-Thumb interworking with the ARM Project Manager

The ARM Project Manager (see Chapter 2 ARM Project Manager) uses templates to
define the tools and command-line options that are used to build a project. All templates
supplied with APM that build executable images can support interworking.

The Thumb-ARM Interworking Image template specifically allows an interworking
application to be created. It assumes that armasm -16 is used for all assembly language
sources, and that the assembler directives CODE16 and CODE32 are used to switch between
Thumb and ARM instruction sets. C and C++ sources are compiled using the
appropriate ARM or Thumb compiler.

Additionally, projects created from either the ARM Executable Image template or
Thumb Executable Image template may be easily modified to support interworking
with Thumb or ARM code respectively. For example, an ARM-only application can
easily be made into an ARM-mostly project and a Thumb-only project can easily be
made into a Thumb-mostly project.

A Thumb application written only in C that must implement exception handlers will, by
architectural necessity, have these in ARM assembly code and should probably be
created using the Thumb Executable Image template.

7.5.1 Choosing a template

Follow these steps to choose a template:

1. Within APM select New from the File menu.

2. In the New dialog select Project and click OK. The New Project dialog is
displayed.

3. Select a template from the Type box. A descriptions of the template is displayed
in the field Template description when you make a selection.

For interworking it is best to choose the Thumb-ARM interworking image or the
Thumb-ARM C++ Interworking image and follow the instructions in Using the
Thumb-ARM interworking image project on page 7-24.

Refer to Modifying a project to support interworking on page 7-25 for
information on converting an existing Thumb or ARM project to an interworking
project.

4. Enter a Project Name and a Directory in which to create it and click OK. An
empty project based on the template is created in the directory you specified.

The project tree view is displayed:

• press * on the numeric keypad to expand all branches
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-23

Interworking ARM and Thumb
• press + to expand the selected branch

• press - to collapse the selected branch.

Alternatively, click the mouse on the plus/minus icons in the tree view. Double
clicking on an item toggles expansion.

7.5.2 Using the Thumb-ARM interworking image project

This section describes how to use the Thumb-ARM interworking image project to start
a new interworking project.

Adding files

Follow these steps to add files to the project:

1. Select the appropriate partition before adding the file:

• If the file is C or C++ source that should be compiled to Thumb code, select
the Thumb-Sources partition and then select Add files to Thumb-Sources
from the Project menu.

• If the file is C or C++ source that is to be compiled to ARM code, select the
ARM-Sources partition and then select Add files to ARM-Sources from
the Project menu.

• If the file is assembly language source, select the ASM-Sources partition
and then select Add files to ASM-Sources from the Project menu.

The Add Files to Project dialog is displayed.

2. In the Add Files to Project dialog, find the directory containing the files to be
added.

3. Select the required file or files and click Open. The files are added to the selected
partition.

After adding files you may have to expand branches of the tree to make them visible.
Branches containing subtrees have a + button. If you added assembly language files to
the ASM-Source partition that do not contain CODE32 directives perform the steps listed
in Configuring the assembler to read ARM assembly source below.

Configuring the assembler to read ARM assembly source

By default, the interworking templates call the assembler with the -16 option to instruct
the assembler to assemble Thumb code. The templates assume that assembly language
source uses CODE16 and CODE32 directives to switch between Thumb and ARM assembly
where required.
7-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb
If you have ARM assembly language files that do not use CODE32 directives you can
configure the assembler to avoid changing the assembly language source.

Follow these steps to change the assembler configuration for an individual source file:

1. In the Project View, expand the ASM-Sources partition and select the ARM
assembler source, for example, armer_kerl.s

2. Choose Tool configuration for armer_kerl.s → asm → Set from the Project
menu. The Compiler Configuration dialog is displayed.

3. Click the Target tab and select the ARM radio button in the Initial state group.

4. Select the Call Standard tab and ensure that the APCS3 radio button is selected
in the APCS3 Qualifiers group.

5. Click OK to save the configuration.

7.5.3 Modifying a project to support interworking

This section describes how to modify an existing project to support interworking.

Converting an ARM executable image to an ARM-Thumb interworking
project

Follow these steps for each file in the Sources partition that you want to be compiled
with tcc rather than armcc:

1. Select the C file to be compiled into Thumb code from the Sources partition, for
example, foo.c.

2. Select Edit variable for foo.c from the Project menu. The Edit Variables dialog
box is displayed.

3. Type cc in the Name field and tcc in the Value field and click OK.

4. Configure the Thumb compiler for interworking for this file:

a. Select the C file from step 1.

b. Select Tool Configuration for foo.c → cc → Set from the Project menu.
The Compiler Configuration dialog is displayed.

c. Click the Target tab and ensure that the check box for Arm/Thumb
Interworking in the APCS3 Qualifiers group is selected.

d. Modify the other APCS3 options if necessary.

e. Click OK to save the configuration.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-25

Interworking ARM and Thumb
Note
 To revert to armcc set the Value from step 3 to an empty string, and perform step 4
clicking Unset. This may remove any other per file options you had set.

Converting a Thumb executable image to a Thumb-ARM interworking
project

Follow these steps for each file in the Sources partition that you want to be compiled
with armcc rather than tcc:

1. Select a C file in the partition Sources that is to be compiled into ARM code, for
example, foo.c.

2. Select Edit Variable for foo.c from the Project menu. The Edit Variables dialog
is displayed.

3. Type cc in the Name field, and armcc in the Value field.

4. Configure the ARM compiler for interworking for this file:

a. Select the C file from step 1.

b. Select Tool Configuration for foo.c → cc → Set from the Project menu.
The Compiler Configuration dialog is displayed.

c. Click the Target tab and ensure that the check box for Arm/Thumb
Interworking in the APCS3 Qualifiers group is selected.

d. Modify the other APCS3 options if necessary.

e. Click OK to save the configuration.

Note
 To revert to tcc, set the Value from step 3 to an empty string, and perform step 4 clicking
Unset. This may remove any other per file options you had set.

7.5.4 C library usage and the ARM Project Manager

In certain circumstances, you may not require the default ANSI C library, for example,
if you are implementing an RTOS with its own stack and heap management.

Follow these steps to link with your own libraries:

1. Select the project root.

2. Select Tool Configuration for project.apj → armlink → Set from the Project
menu. The Linker Configuration dialog is displayed.
7-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb
3. Click the General tab and ensure that the Search standard libraries check box
is not selected.

4. Click the Listings tab and add any libraries you want to link with to the Extra
command-line arguments field.

5. Click OK to save the configuration.

As described in The C and C++ interworking libraries on page 7-17, you may
sometimes need to force the inclusion of a specific module from a particular library.
Follow these steps to do this when using ARM Project Manager:

1. Select the project root.

2. Select Tool configuration for project.apj → armlink → Set from the Project
menu. The Linker Configuration dialog is displayed.

3. Click the Listings tab and enter the library modules that you want to be forcibly
included in the Extra command line arguments field. For example, to force the
inclusion of strcpy() and strcmp()

c:ARM250\lib\armlib.32l(strcpy.o)
c:ARM250\lib\armlib.32l(strcmp.o)

This can also be written within quotes to override the normal meaning of space as
an argument separator.

Alternatively, you can use a pattern for the name of the modules:

c:ARM250\lib\armlib.32l(strc*)

4. Click OK to save the configuration.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-27

Interworking ARM and Thumb
7-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 8
Mixed Language Programming

This chapter describes how to write mixed C, C++, and ARM assembly language code.
It also describes how to use the ARM inline assemblers from C and C++. It contains the
following sections:

• Using the inline assemblers on page 8-2

• Accessing C global variables from assembly code on page 8-14

• Using C header files from C++ on page 8-15

• Calling between C, C++, and ARM assembly language on page 8-17.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-1

Mixed Language Programming
8.1 Using the inline assemblers

The inline assemblers enable you to use most ARM assembly language instructions
within a C or C++ program. You can use the inline assembler to:

• use features of the target processor that cannot be accessed from C

• achieve more efficient code.

The inline assembler supports very flexible interworking with C and C++. Any register
operand may be an arbitrary C or C++ expression. The inline assembler also expands
complex instructions and optimizes the assembly language code.

Note
 Inline assembly language is subject to optimization by the compiler if optimization is
enabled either by default, or with the -O1 or -O2 compiler options.

The armcc and armcpp inline assemblers implement the full ARM instruction set,
including generic coprocessor instructions, halfword instructions and long multiply.
The tcc and tcpp inline assemblers implement the full Thumb instruction set.

The inline assembler is a high-level assembler. Some low-level features that are
available to armasm, such as branching by writing to pc, are not supported.

8.1.1 Invoking the inline assembler

The ARM C compilers support inline assembly language with the __asm specifier.

The ARM C++ compilers support the asm syntax proposed in the Draft C++ Standard,
with the restriction that the string literal must be a single string. For example:

asm("instruction[;instruction]");

The asm syntax is supported by the C++ compilers when compiling both C and C++. The
asm statement must be inside a C or C++ function. Do not include comments in the string
literal. An asm statement can be used anywhere a C or C++ statement is expected.

In addition to the asm syntax, ARM C++ supports the C compiler __asm syntax when
used with both asm and __asm.

The inline assembler is invoked with the assembler specifier, and is followed by a list
of assembler instructions inside braces. For example:

__asm
{

instruction [; instruction]
8-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming
...
[instruction]

}

If two instructions are on the same line, you must separate them with a semicolon. If an
instruction is on multiple lines, line continuation must be specified with the backslash
character (\). C or C++ comments may be used anywhere within an inline assembly
language block.

String copying example

Example 8-1 shows how to use labels and branches in a string copy routine. The syntax
of labels inside assembler blocks is the same as in C. Function calls that use BL from
inline assembly language must specify the input registers, the output registers, and the
corrupted registers. In this example, the inputs to my_strcpy are r0 and r1, there are no
outputs, and the default APCS registers {r0-r3, r12, lr, PSR} are corrupted.

Example 8-1

#include <stdio.h>
void my_strcpy(char *src, char *dst)
{
 int ch;
 __asm
 {
 loop:
#ifndef __thumb
 // ARM version
 LDRB ch, [src], #1
 STRB ch, [dst], #1
#else
 // Thumb version
 LDRB ch, [src]
 ADD src, #1
 STRB ch, [dst]
 ADD dst, #1
#endif
 CMP ch, #0
 BNE loop
 }
}
int main(void)
{
 char a[] = "Hello world!";
 char b[20];
__asm
 {
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-3

Mixed Language Programming
 MOV R0, a
 MOV R1, b
 BL my_strcpy, {R0, R1}, {}, {}
 }
 printf("Original string: %s\n", a);
 printf("Copied string: %s\n", b);
 return 0;
}

8.1.2 ARM and Thumb instruction sets

The ARM and Thumb instruction sets are described in the ARM Architectural Reference
Manual. All instruction opcodes and register specifiers may be written in either
lowercase or uppercase.

Operand expressions

Any register or constant operand may be an arbitrary C or C++ expression, so that
variables can be read or written. The expression must be integer assignable, that is, of
type char, short, or int. No sign extension is performed on char and short types. You
must perform sign extension explicitly for these types. The compiler may add code to
evaluate these expressions and allocate them to registers.

When an operand is used as a destination, the expression must be assignable (an lvalue).
When writing code that uses both physical registers and expressions, you must take care
not to use complex expressions that require too many registers to evaluate. The compiler
issues an error message if it detects conflicts during register allocation.

Physical registers

The inline assemblers allow restricted access to the physical registers. It is illegal to
write to pc. Only Branches using B or BL are allowed. In addition, it is inadvisable to
intermix inline assembler instructions that use physical registers and complex C or C++
expressions.

The compiler uses r12 (ip) for intermediate results, and r0-r3, r12 (ip), r14 (lr) for
function calls while evaluating C expressions, so these cannot be used as physical
registers at the same time.

Physical registers, like variables, must be set before they can be read. When physical
registers are used the compiler saves and restores C/C++ variables that may be allocated
to the same physical register. However, the compiler cannot restore sp, sl, fp, or sb in
calling standards where these registers have a defined role.
8-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming
Constants

The constant expression specifier (#) is optional. If it is used, the expression following
it must be constant.

Instruction expansion

The constant in instructions with a constant operand is not limited to the values allowed
by the instruction. Instead, such an instruction is translated into a sequence of
instructions with the same effect. For example:

ADD r0, r0, #1023

may be translated into:

ADD r0, r0, #1024
SUB r0, r0, #1

With the exception of coprocessor instructions, all ARM and Thumb instructions with
a constant operand support instruction expansion.In addition, the MUL instruction can be
expanded into a sequence of adds and shifts when the third operand is a constant.

The effect of updating the CPSR by an expanded instruction is:

• Arithmetic instructions set the NZCV flags correctly.

• Logical instructions:

— set the NZ flags correctly

— do not change the V flag

— corrupt the C flag.

• MRS sets the NZCV flags correctly.

Labels

C and C++ labels can be used in inline assembler statements. C and C++ labels can be
branched to by branch instructions only in the form:

B{cond} label

You cannot branch to labels using BL.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-5

Mixed Language Programming
Storage declarations

All storage can be declared in C or C++ and passed to the inline assembler using
variables. Therefore, the storage declarations that are supported by armasm are not
implemented.

SWI and BL instructions

SWIs and branch link instructions must specify exactly which calling standard is used.
Three optional register lists follow the normal instruction fields. The register lists
specify:

• the registers that are the input parameters

• the registers that are output parameters after return

• the registers that are corrupted by the called function.

For example:

SWI{cond} swi_num, {input_regs}, {output_regs}, {corrupted_regs}
BL{cond} function, {input_regs}, {output_regs}, {corrupted_regs}

An omitted list is assumed to be empty, except for BL, which always corrupts r0-r3, ip,
and lr.

The register lists have the same syntax as LDM and STM register lists. If the NZCV flags
are modified you must specify PSR in the corrupted register list.

8.1.3 Differences between the inline assemblers and armasm

There are a number of differences between the assembly language accepted by the
inline assemblers and the assembly language accepted by the ARM assembler. For the
inline assemblers:

• You cannot get the address of the current instruction using dot notation (.) or
{PC}.

• The LDR Rn, =expression pseudo-instruction is not supported. Use MOV Rn,
expression instead (this may generate a load from a literal pool).

• Label expressions are not supported.

• The ADR and ADRL pseudo-instructions are not supported.

• The & operator cannot be used to denote hexadecimal constants. Use the 0x prefix
instead. For example:

__asm {AND x, y, 0xF00}
8-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming
• The notation to specify the actual rotate of an 8-bit constant is not available in
inline assembly language. This means that where an 8-bit shifted constant is used,
the C flag should be regarded as corrupted if the NZCV flags are updated.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-7

Mixed Language Programming
8.1.4 Restrictions

The following restrictions apply to the use of the inline assemblers:

• Physical registers, such as r0-r3, ip, lr, and the NZCV flags in the cpsr must be
used with caution. If you use C or C++ expressions, these may be used as
temporary registers and NZCV flags may be corrupted by the compiler when
evaluating the expression.

• LDM and STM instructions only allow physical registers to be specified in the register
list.

• The BX instruction is not implemented.

• You can change processor modes, alter the APCS registers fp, sl, and sb, or alter
the state of coprocessors, but the compiler is unaware of the change. If you change
processor mode, you must not use C or C++ expressions until you change back to
the original mode.

Similarly, if you change the state of an FP coprocessor by executing FP
instructions, you must not use floating-point expressions until the original state
has been restored.

8.1.5 Usage

The following points apply to using inline assembly language:

• Comma is used as a separator in assembly language, so C expressions with the
comma operator must be enclosed in parentheses to distinguish them:

__asm {ADD x, y, (f(), z)}

• If you are using physical registers, you must ensure that the compiler does not
corrupt them when evaluating expressions. For example:

__asm
{

MOV r0, x
ADD y, r0, x / y // (x / y) overwrites r0

// with the result.
}

Because the compiler uses a function call to evaluate x / y, it:

— corrupts r2, r3, ip, and lr

— updates the NZCV flags in the cpsr

— alters r0 and r1 with the divident and modulo.

The value in r0 is lost. You can work around this by using a C variable instead of
r0:
8-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming
mov var,x
add y, var, x / y

The compiler can detect the corruption in many cases, for example when it needs
a temporary register and the register is already in use:

__asm
{

MOV ip, #3
ADDS x, x, #0x12345678 // this instruction is expanded
ORR x, x, ip

}

The compiler uses ip as a temporary register when it expands the ADD instruction,
and corrupts the value 3 in ip. An error message is issued.

• Do not use physical registers to address variables, even when it seems obvious
that a specific variable is mapped onto a specific register. If the compiler detects
this it either generates an error message or puts the variable into another register
to avoid conflicts:

int bad_f(int x) // x in r0
{

__asm
{

ADD r0, r0, #1 // wrongly asserts that x is
// still in r0

}
return x; // x in r0

}

This code returns x unaltered. The compiler assumes that x and r0 are two
different variables, despite the fact that x is allocated to r0 on both function entry
and function exit. As the assembly language code does not do anything useful, it
is optimized away. The instruction should be written as:

ADD x, x, #1

• Do not save and restore physical registers that are used by an inline assembler.
The compiler will do this for you. If physical registers other than cpsr and spsr are
read without being written to, an error message is issued. For example:

int f(int x)
{

__asm
{

STMFD sp!, {r0} // save r0 - illegal: read
// before write

ADD r0, x, 1
EOR x, r0, x
LDMFD sp!, {r0} // restore r0 - not needed.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-9

Mixed Language Programming
}
return x;

}

8.1.6 Examples

The following examples demonstrate some of the ways in which you can use inline
assembly language effectively.

Enabling and disabling interrupts

Interrupts are enabled or disabled by reading the cpsr flags and updating bit 7.
Example 8-2 shows how this can be done by using small functions that can be inlined.
These functions work only in a privileged mode, because the control bits of the cpsr and
spsr cannot be changed while in User mode.

Example 8-2

__inline void enable_IRQ(void)
{

int tmp;
__asm
{

MRS tmp, CPSR
BIC tmp, tmp, #0x80
MSR CPSR_c, tmp

}
}
__inline void disable_IRQ(void)
{

int tmp;
__asm
{

MRS tmp, CPSR
ORR tmp, tmp, #0x80
MSR CPSR_c, tmp

}
}
int main(void)
{

disable_IRQ();
enable_IRQ();

}

8-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming
Dot product

Example 8-3 calculates the dot product of two integer arrays. It demonstrates how inline
assembly language can interwork with C or C++ expressions and data types that are not
directly supported by the inline assembler. The inline function mlal() is optimized to a
single SMLAL instruction. Use the -S -fs compiler option to view the assembly language
code generated by the compiler.

Example 8-3

#include <stdio.h>
#define lo64(a) (((unsigned*) &a)[0]) // low 32 bits of a long long
#define hi64(a) (((int*) &a)[1]) // high 32 bits of a long long
__inline __int64 mlal(__int64 sum, int a, int b)
{
#if !defined(__thumb) && defined(__TARGET_FEATURE_MULTIPLY)

__asm
{

SMLAL lo64(sum), hi64(sum), a, b
}

#else
sum += (__int64) a * (__int64) b;

#endif
return sum;

}
__int64 dotprod(int *a, int *b, unsigned n)
{

__int64 sum = 0;
do

sum = mlal(sum, *a++, *b++);
while (--n != 0);
return sum;

}
int a[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int b[10] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
int main(void)
{

printf("Dotproduct %lld (should be %d)\n", dotprod(a, b, 10), 220);
return 0;

}

Long multiplies

You can use the inline assembler to optimize long multiplies on processors that support
MULL instructions. Example 8-4 on page 8-12 shows a simple long multiply routine in C.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-11

Mixed Language Programming
Example 8-5 shows how you can use inline assembly language to generate optimal code
for the same routine. You can use the inline assembler to write the high word and the
low word of the long long separately. The compiler optimization routines detect this
case and optimize the code as if the address of res was not taken.

Note
 This works only at the highest compiler optimization level (-O2 compiler option).

The inline assembly language code depends on the word ordering of long long types,
because it assumes that the low 32 bits are at offset 0.

Example 8-4

Writing the multiply routine in C:

// long multiply routine in C
long long smull(int x, int y)
{

return (long long) x * (long long) y;
}

The compiler generates the following code:

MOV a3,a1
MOV a1,a2
MOV a2,a3
SMULL ip,a2,a1,a2
MOV a1,ip
MOV pc,lr

Example 8-5

Writing the same routine using inline assembly language:

long long smull(int x, int y)
{

long long res;
__asm { SMULL ((int*)&res)[0], ((int*)&res)[1], x, y }
return res;

}

The compiler generates the following code:
8-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming
MOV a3,a1
SMULL a1,a2,a3,a2
MOV pc,lr
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-13

Mixed Language Programming
8.2 Accessing C global variables from assembly code

Global variables can only be accessed indirectly, through their address. To access a
global variable, use the IMPORT directive to import the global and then load the address
into a register. You can access the variable with load and store instructions, depending
on its type.

For unsigned variables use:

• LDRB/STRB for char

• LDRH/STRH for short (LDRB/STRB for Architecture 3)

• LDR/STR for int.

For signed variables, use the equivalent signed instruction, such as LDRSB and LDRSH.

Small structures of less than eight words can be accessed as a whole using LDM/STM
instructions. Individual members of structures can be accessed by a load/store
instruction of the appropriate type. You must know the offset of a member from the start
of the structure in order to access it.

Example 8-6 loads the address of the integer global globvar into r1, loads the value
contained in that address into r0, adds 2 to it, then stores the new value back into
globvar.

Example 8-6

AREA globals,CODE,READONLY
EXPORT asmsubroutine
IMPORT globvar

asmsubroutine
LDR r1, =globvar ; read address of globvar into

; r1 from literal pool
LDR r0, [r1]
ADD r0, r0, #2
STR r0, [r1]
MOV pc, lr
END
8-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming
8.3 Using C header files from C++

This section describes how to use C header files from your C++ code. C header files
must be wrapped in extern "C" directives before they are called from C++.

8.3.1 Including system C header files

To include standard system C header files, such as stdio.h, you need do nothing special.
The standard C header files already contain the appropriate extern "C" directives. For
example:

// C++ code
#include <stdio.h>
int main()
{

//...
return 0;

}

The C++ standard specifies that the functionality of the C header files is available
through C++ specific header files. These files are installed in c:ARM250\include, together
with the standard C header files, and may be referenced in the usual way. For example:

// C++ code
#include <cstdio>
int main()
{

// ...
return 0;

}

In ARM C++, these headers simply #include the C headers.

Note
 Both the C and C++ standard header files are available as precompiled headers in the
compilers in-memory file system. Refer to Chapter 2 The ARM Compilers in the ARM
Software Development Toolkit Reference Guide for more information.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-15

Mixed Language Programming
8.3.2 Including your own C header files

To include your own C header files, you must wrap the #include directive in an extern
"C" statement. You can do this in two ways:

• When the file is #included. This is shown in Example 8-7.

• By adding the extern "C" statement to the header file. This is shown in
Example 8-8.

Example 8-7

// C++ code
extern "C"{
#include "my-header1.h"
#include "my-header2.h"
}
int main()
{

// ...
return 0;

}

Example 8-8

/* C header file */
#ifdef __cplusplus /* Insert start of extern C construct */
extern "C" {
#endif
/* Body of header file */
#ifdef __cplusplus /* Insert end of extern C construct */
} /* The C header file can now be */
#endif /* included in either C or C++ code. */
8-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming
8.4 Calling between C, C++, and ARM assembly language

This section provides examples that may help you to call C and assembly language code
from C++, and to call C++ code from C and assembly language. It also describes calling
conventions and data types.

You can mix calls between C and C++ and assembly language routines provided you
follow the appropriate procedure call standard. For more information on the APCS and
TPCS, see Chapter 6 Using the Procedure Call Standards.

Note
 The information in this section is implementation dependent and may change in future
toolkit releases.

8.4.1 General rules for calling between languages

The following general rules apply to calling between C, C++, and assembly language.

You should not rely on the following C++ implementation details. These
implementation details are subject to change in future releases of ARM C++:

• the way names are mangled

• the way the implicit this parameter is passed

• the way virtual functions are called

• the representation of references

• the layout of C++ class types that have base classes or virtual member functions

• the passing of class objects that are not plain old data (POD) structures.

The following general rules apply to mixed language programming:

• Use C calling conventions.

• In C++, non-member functions may be declared as extern "C" to specify that they
have C linkage. In this release of the ARM Software Development Toolkit, having
C linkage means that the symbol defining the function is not mangled. C linkage
can be used to implement a function in one language and call it from another. Note
that functions that are declared extern "C" cannot be overloaded.

• Assembly language modules must conform to the appropriate ARM or Thumb
Procedure Calls Standard.

The following rules apply to calling C++ functions from C and assembly language:

• To call a global (non-member) C++ function, declare it extern "C" to give it C
linkage.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-17

Mixed Language Programming
• Member functions (both static and non-static) always have mangled names. You
can determine the mangled symbol by using decaof -sm on the object file that
defines the function. Refer to Chapter 8 Toolkit Utilities in the ARM Software
Development Toolkit Reference Guide for information on decaof.

• C++ inline functions cannot be called from C unless you ensure that the C++
compiler generates an out-of-line copy of the function. For example, taking the
address of the function results in an out-of-line copy.

• Non-static member functions receive the implicit this parameter as a first
argument in r0, or as a second argument in r1 if the function returns a non int-like
structure. Static member functions do not receive an implicit this parameter.

8.4.2 C++ specific information

The following applies specifically to C++.

C++ calling conventions

ARM C++ uses the same calling conventions as ARM C with the following exceptions:

• When an object of type struct or class is passed to a function and the type has an
explicit copy constructor, the object is passed by reference and the called function
makes a copy.

• Non-static member functions are called with the implicit this parameter as the
first argument, or as the second argument if the called function returns a non
int-like struct.

C++ data types

ARM C++ uses the same data types as ARM C with the following exceptions and
additions:

• C++ objects of type struct or class have the same layout as would be expected
from the ARM C compiler if they have no base classes or virtual functions. If such
a struct has neither a user-defined copy assignment operator, or a user-defined
destructor, it is a plain old data (POD) structure.

• References are represented as pointers.

• Pointers to data members and pointers to member functions occupy four bytes.
They have the same null pointer representation as normal pointers.

• No distinction is made between pointers to C functions and pointers to C++
(non-member) functions.
8-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming
Symbol name mangling

ARM C++ mangles external names of functions and static data members in a manner
similar to that described in section 7.2c of Ellis, M.A. and Stroustrup, B., The Annotated
C++ Reference Manual (1990). The linker, decaof, and decaxf unmangle symbols.

C names must be declared as extern "C" in C++ programs. This is done already for the
ARM ANSI C headers. Refer to Using C header files from C++ on page 8-15 for more
information.

8.4.3 Examples

The following code examples demonstrate how to:

• call assembly language from C

• call C from assembly language

• call C and assembly language functions from C++

• call C++ functions from C and assembly language

• call a non-static, non-virtual C++ member function from C or assembly language

• pass references between C and C++ functions.

The examples assume a no software stack checking and no frame pointer APCS variant.

Example 8-9 shows a C program that uses a call to an assembly language subroutine to
copy one string over the top of another string.

Example 8-9 Calling assembly language from C

#include <stdio.h>
extern void strcopy(char *d, char *s);
int main()
{ char *srcstr = "First string - source ";

char *dststr = "Second string - destination ";
printf("Before copying:\n");
printf(" %s\n %s\n",srcstr,dststr);
strcopy(dststr,srcstr);
printf("After copying:\n");
printf(" %s\n %s\n",srcstr,dststr);
return (0);

}

The ARM assembly language module that implements the string copy subroutine:

AREA SCopy, CODE, READONLY
EXPORT strcopy

strcopy
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-19

Mixed Language Programming
; r0 points to destination string.
; r1 points to source string.

LDRB r2, [r1],#1 ; Load byte and update address.
STRB r2, [r0],#1 ; Store byte and update address.
CMP r2, #0 ; Check for zero terminator.
BNE strcopy ; Keep going if not.
MOV pc,lr ; Return.
END

Example 8-9 on page 8-19 is located in the examples\asm subdirectory of your
installation directory as strtest.c and scopy.s. Follow these steps to build the example:

1. Type armasm scopy.s at the command line to build the assembly language source.

2. Type armcc -c strtest.c to build the C source.

3. Type armlink strtest.o scopy.o -o strtest to link the object files

4. Type armsd strtest to load the files into the command-line debugger, and type go
at the debugger command line to execute the example.

Example 8-10 shows how to call C from assembly language.

Example 8-10 Calling C from assembly language

Define the function in C to be called from the assembly language routine:

int g(int a, int b, int c, int d, int e) { return a + b + c + d +e; }

In assembly language:

; int f(int i) { return -g(i, 2*i, 3*i, 4*i, 5*i); }
EXPORT f
AREA f, CODE, READONLY
IMPORT g
STR lr, [sp, #-4]! ; preserve lr
ADD r1, r0, r0 ; compute 2*i (2nd param)
ADD r2, r1, r0 ; compute 3*i (3rd param)
ADD r3, r1, r2 ; compute 5*i
STR r3, [sp, #-4]! ; 5th param on stack
ADD r3, r1, r1 ; compute 4*i (4th param)
BL g ; branch to C function
ADD sp, sp, #4 ; remove 5th param
RSB r0, r0, #0 ; negate result
LDR pc, [sp], #4 ; return
END
8-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming
Example 8-11 Calling a C function from C++

Declare and call the C function in C++:

struct S { // has no base classes
// or virtual functions

S(int s) : i(s) { }
int i;

};
extern "C" void cfunc(S *); // declare the C function to

// be called from C++
int f(){

S s(2); // initialize 's'
cfunc(&s); // call 'cfunc' so it can change 's'
return s.i * 3;

}

Define the function in C:

struct S {
int i;

};
void cfunc(struct S *p) { /* the definition of the C */

/* function to be called from C++ */
p->i += 5;

}

Example 8-12 Calling assembly language from C++

Declare and call the assembly language function in C++:

struct S { // has no base classes
// or virtual functions

S(int s) : i(s) { }
int i;

};
extern "C" void asmfunc(S *); // declare the Asm function

// to be called
int f() {

S s(2); // initialize 's'
asmfunc(&s); // call 'asmfunc' so it

// can change 's'
return s.i * 3;

}

Define the function in ARM assembly language:
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-21

Mixed Language Programming
AREA Asm, CODE
EXPORT asmfunc

asmfunc ; the definition of the Asm
LDR r1, [r0] ; function to be called from C++
ADD r1, r1, #5
STR r1, [r0]
MOV pc, lr
END

Example 8-13 Calling C++ from C

Define the function to be called in C++:

struct S { // has no base classes or
// virtual functions

S(int s) : i(s) { }
int i;

};
extern "C" void cppfunc(S *p) { // Definition of the C++

p->i += 5; // function to be called from
} // C. The function is

// written in C++, only the
// linkage is C

Declare and call the function in C:

struct S {
int i;

};
extern void cppfunc(struct S *p); /* Declaration of the C++ */

/* C++ function to be */
/* from C */

int f(void) {
struct S s;
s.i = 2; /* initialize 's' */
cppfunc(&s); /* call 'cppfunc' so it */

/* can change 's' */
return s.i * 3;

}

Example 8-14 Calling a C++ function from assembly language

Define the function to be called in C++:
8-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming
struct S { // has no base classes
S(int s) : i(s) { } // or virtual functions
int i;

};
extern "C" void cppfunc(S * p) { // Definition of the C++

p->i += 5; // function to be called from
} // Asm. The body is C++, only

// the linkage is C

In ARM assembly language, import the name of the C++ function and use a Branch
with link instruction to call it:

AREA Asm, CODE
IMPORT cppfunc ; import the name of the C++

; function to be called from Asm
EXPORT f

f
STMDB sp!,{lr}
MOV r0,#2
STR r0,[sp,#-4]! ; initialize struct
MOV r0,sp ; argument is pointer to struct
BL cppfunc ; call 'cppfunc' so it can change

; the struct
LDR r0, [sp], #4
ADD r0, r0, r0,LSL #1
LDMIA sp!,{pc}
END

Example 8-15 Calling a C++ member function from C or assembly language

The following code demonstrates how to call a non-static, non-virtual C++ member
function from C or assembly language.

In C++:

struct T {
T(int i) : t(i) { }
int t;
int f(int i);

};
int T::f(int i) { return i + t; } // Definition of the C++

// function to be called
// from C.

extern "C" int cfunc(T*); // declaration of the C
// function to be called
// from C++

int f() {
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-23

Mixed Language Programming
T t(5); // create an object of type T
return cfunc(&t);

}

In C:

struct T;
extern int f__1TFi(struct T*, int);

/* the mangled name of the C++ */
/* function to be called */

int cfunc(struct T* t) { /* Definition of the C */
 /* function to be called from */

/* C++. */
return 3 * f__1TFi(t, 2); /* like '3 * t->f(2)' */

}

Or, implementing cfunc() in ARM assembly language:

EXPORT cfunc
AREA cfunc, CODE
IMPORT f__1TFi
STMDB sp!,{lr} ; r0 already contains the

; object pointer
MOV r1, #2
BL f__1TFi
ADD r0, r0, r0, LSL #1 ; multiply by 3
LDMIA sp!,{pc}
END

Example 8-16 Passing a reference between C and C++ functions

In C++:

extern "C" int cfunc(const int&); // Declaration of the C
// function to be called
// from C++

extern "C" int cppfunc(const int& r) {
// Definition of the C++
// to be called from C.

return 7 * r;
}
int f() {

int i = 3;
return cfunc(i); // passes a pointer to 'i'

}

In C:
8-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming
extern int cppfunc(const int*); /* declaration of the C++ */
/* to be called from C */

int cfunc(const int* p) { /* definition of the C */
/* function to be called */
/* from C++ */

int k = *p + 4;
return cppfunc(&k);

}

ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-25

Mixed Language Programming
8-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 9
Handling Processor Exceptions

This chapter describes how to handle the various types of exception supported by ARM
processors. It contains the following sections:

• Overview on page 9-2

• Entering and leaving an exception on page 9-5

• Installing an exception handler on page 9-9

• SWI handlers on page 9-14

• Interrupt handlers on page 9-22

• Reset handlers on page 9-32

• Undefined instruction handlers on page 9-33

• Prefetch abort handler on page 9-34

• Data abort handler on page 9-35

• Chaining exception handlers on page 9-37

• Handling exceptions on Thumb-capable processors on page 9-39

• System mode on page 9-44.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-1

Handling Processor Exceptions
9.1 Overview

During the normal flow of execution through a program, the program counter increases
sequentially through the address space, with branches to nearby labels or branch and
links to subroutines.

Processor exceptions occur when this normal flow of execution is diverted, to allow the
processor to handle events generated by internal or external sources. Examples of such
events are:

• externally generated interrupts

• an attempt by the processor to execute an undefined instruction

• accessing privileged operating system functions.

It is necessary to preserve the previous processor status when handling such exceptions,
so that execution of the program that was running when the exception occurred can
resume when the appropriate exception routine has completed.

Table 9-1 shows the seven different types of exception recognized by ARM processors.

Table 9-1 Exception types

Exception Description

Reset Occurs when the processor reset pin is asserted. This exception is only
expected to occur for signalling power-up, or for resetting as if the
processor has just powered up. A soft reset can be done by branching to
the reset vector (0x0000).

Undefined Instruction Occurs if neither the processor, or any attached coprocessor, recognizes
the currently executing instruction.

Software Interrupt
(SWI)

This is a user-defined synchronous interrupt instruction that allows a
program running in user mode, for example, to request privileged
operations that run in supervisor mode, such as an RTOS function.

Prefetch Abort Occurs when the processor attempts to execute an instruction that has
prefetched from an illegal address, that is, an address that the memory
management subsystem has determined is inaccessible to the processor
in its current mode.

Data Abort Occurs when a data transfer instruction attempts to load or store data at
an illegal address.

IRQ Occurs when the processor external interrupt request pin is asserted
(LOW) and the I bit in the CPSR is clear.

FIQ Occurs when the processor external fast interrupt request pin is asserted
(LOW) and the F bit in the CPSR is clear.
9-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
9.1.1 The vector table

Processor exception handling is controlled by a vector table. The vector table is a
reserved area of 32 bytes, usually at the bottom of the memory map. It has one word of
space allocated to each exception type, and one word that is currently reserved.

This is not enough space to contain the full code for a handler, so the vector entry for
each exception type typically contains a branch instruction or load pc instruction to
continue execution with the appropriate handler.

9.1.2 Use of modes and registers by exceptions

Typically, an application runs in user mode, but servicing exceptions requires privileged
(that is, non-user mode) operation. An exception changes the processor mode, and this
in turn means that each exception handler has access to a certain subset of the banked
registers:

• its own r13 or Stack Pointer (sp_mode)

• its own r14 or Link Register (lr_mode)

• its own Saved Program Status Register (spsr_mode)

and, in the case of a FIQ, five more general purpose registers (r8_FIQ to r12_FIQ).

Each exception handler must ensure that other registers are restored to their original
contents upon exit. You can do this by saving the contents of any registers the handler
needs to use onto its stack and restoring them before returning. If you are using Angel
or ARMulator, the required stacks are set up for you. Otherwise, you must set them up
yourself. Refer to Chapter 10 Writing Code for ROM for more information.

Note
 As supplied, the assembler does not predeclare symbolic register names of the form
register_mode. To use this form, you must declare the appropriate symbolic names with
the RN assembler directive. For example, lr_FIQRN r14 declares the symbolic register
name lr_FIQ for r14. Refer to the ARM Software Development Toolkit Reference Guide
for more information on the RN directive.

9.1.3 Exception priorities

When several exceptions occur simultaneously, they are serviced in a fixed order of
priority. Each exception is handled in turn before execution of the user program
continues. It is not possible for all exceptions to occur concurrently. For example, the
undefined instruction and SWI exceptions are mutually exclusive because they are both
triggered by executing an instruction.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-3

Handling Processor Exceptions
Table 9-2 shows the exceptions, their corresponding processor modes and their
handling priorities.

Because the Data Abort exception has a higher priority that the FIQ exception, the Data
Abort is actually registered before the FIQ is handled. The Data Abort handler is
entered, but control is then passed immediately to the FIQ handler. When the FIQ has
been handled, control returns to the Data Abort Handler. This means that the data
transfer error does not escape detection as it would if the FIQ were handled first.

Table 9-2

Vector Address Exception Type Exception Mode Priority (1=High, 6=Low)

0x0 Reset supervisor (SVC) 1

0x4 Undefined Instruction undef 6

0x8 Software Interrupt (SWI) supervisor (SVC) 6

0xC Prefetch Abort abort 5

0x10 Data Abort abort 2

0x14 Reserved Not Applicable Not Applicable

0x18 Interrupt (IRQ) interrupt (irq) 4

0x1C Fast Interrupt (FIQ) fast interrupt (fiq) 3
9-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
9.2 Entering and leaving an exception

This section describes the processor response to an exception, and how to return to the
place where an exception occurred after the exception has been handled. The method
for returning is different depending on the exception type.

9.2.1 The processor response to an exception

When an exception is generated, the processor takes the following actions:

1. Copies the Current Program Status Register (CPSR) into the Saved Program
Status Register (SPSR) for the mode in which the exception is to be handled.

This saves the current mode, interrupt mask, and condition flags.

2. Changes the appropriate CPSR mode bits in order to:

• Change to the appropriate mode, and map in the appropriate banked
registers for that mode.

• Disable interrupts. IRQs are disabled when any exception occurs. FIQs are
disabled when a FIQ occurs, and on reset.

3. Sets lr_mode to the return address, as defined in The return address and return
instruction on page 9-6.

4. Sets the program counter to the vector address for the exception. This forces a
branch to the appropriate exception handler.

Note
 If the application is running on a Thumb-capable processor, the processor response is
slightly different. See Handling exceptions on Thumb-capable processors on page 9-39
for more details.

9.2.2 Returning from an exception handler

The method used to return from an exception depends on whether the exception handler
uses stack operations or not.

In both cases, to return execution to the place where the exception occurred an exception
handler must:

• restore the CPSR from spsr_mode

• restore the program counter using the return address stored in lr_mode.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-5

Handling Processor Exceptions
For a simple return that does not require the destination mode registers to be restored
from the stack, the exception handler carries out these two operations by performing a
data processing instruction with:

• the S flag set

• the program counter as the destination register.

The return instruction required depends on the type of exception. Refer to the following
section for instructions on how to return from each exception type.

Note
 You do not need to return from the reset handler because the reset handler should
execute your main code directly.

If the exception handler entry code uses the stack to store registers that must be
preserved while it handles the exception, it must return using a load multiple instruction
with the ^ qualifier. For example, if an exception handler stores:

• all the work registers in use when the handler is invoked

• the link register, modified to produce the same effect as the data processing
instructions described below.

onto a full descending stack, it can return in one instruction using:

LDMFD sp!,{r0-r12,pc}^

The ^ qualifier specifies that the CPSR is restored from the SPSR. It must be used only
from a privileged mode. Refer to Implementing stacks with LDM and STM on page 5-36
for more general information on stack operations.

9.2.3 The return address and return instruction

The actual location pointed to by the program counter when an exception is taken
depends on the exception type. Because of the way in which the ARM processor fetches
instructions, when an exception is taken the program counter may or may not be
updated to the next instruction to be fetched. This means that the return address may not
necessarily be the next instruction pointed to by the program counter.

ARM processors use a pipeline with at least a fetch, a decode, and an execute stage.
There is one instruction in each stage of the pipeline at any time. The program counter
points to the instruction currently being fetched. Because each instruction is one word
long, the instruction being decoded is at address (pc – 4) and the instruction being
executed is at (pc – 8).
9-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
Note
 See The return address on page 9-41 for details of the return address on Thumb-capable
processors when an exception occurs in Thumb state.

Returning from SWI and Undefined instruction

The SWI and Undefined instruction exceptions are generated by the instruction itself,
so the program counter is not updated when the exception is taken. Therefore, storing
(pc – 4) in lr_mode makes lr_mode point to the next instruction to be executed.
Restoring the program counter from the lr with:

MOVS pc, lr

returns control from the handler.

The handler entry and exit code to stack the return address and pop it on return is:

STMFD sp!,{reglist,lr}
;...
LDMFD sp!,{reglist,pc}^

Returning from FIQ and IRQ

After executing each instruction, the processor checks to see whether the interrupt pins
are LOW and whether the interrupt disable bits in the CPSR are clear. As a result, IRQ
or FIQ exceptions are generated only after the program counter has been updated.
Storing (pc – 4) in lr_mode causes lr_mode to point two instructions beyond where the
exception occurred. When the handler has finished, execution must continue from the
instruction prior to the one pointed to by lr_mode. The address to continue from is one
word (four bytes) less than that in lr_mode, so the return instruction is:

SUBS pc, lr, #4

The handler entry and exit code to stack the return address and pop it on return is:

SUB lr,lr,#4
STMFD sp!,{reglist,lr}
;...
LDMFD sp!,{reglist,pc}^

Returning from prefetch abort

If the processor attempts to fetch an instruction from an illegal address, the instruction
is flagged as invalid. Instructions already in the pipeline continue to execute until the
invalid instruction is reached, at which point a prefetch abort is generated.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-7

Handling Processor Exceptions
The exception handler invokes the MMU to load the appropriate virtual memory
locations into physical memory. It must then return to the address that caused the
exception and reload the instruction. The instruction should now load and execute
correctly.

Because the program counter is not updated at the time the prefetch abort is issued,
lr_ABT points to the instruction following the one that caused the exception. The
handler must return to lr_ABT – 4 with:

SUBS pc,lr, #4

The handler entry and exit code to stack the return address and pop it on return is:

SUB lr,lr,#4
STMFD sp!,{reglist,lr}
;...
LDMFD sp!,{reglist,pc}^

Returning from data abort

When a load or store instruction tries to access memory, the program counter has been
updated. A stored value of (pc – 4) in lr_ABT points to the second instruction beyond
the address where the exception was generated. When the MMU has loaded the
appropriate address into physical memory, the handler should return to the original,
aborted instruction so that a second attempt can be made to execute it. The return
address is therefore two words (eight bytes) less than that in lr_ABT, making the return
instruction:

SUBS pc, lr, #8

The handler entry and exit code to stack the return address and pop it on return is:

SUB lr,lr,#8
STMFD sp!,{reglist,lr}
;...
LDMFD sp!,{reglist,pc}^
9-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
9.3 Installing an exception handler

Any new exception handler must be installed in the vector table. When installation is
complete, the new handler executes whenever the corresponding exception occurs.

Exception handlers can be installed in two ways:

Branch instruction

This is the simplest method of reaching the exception handler. Each entry
in the vector table contains a branch to the required handler routine.
However, this method does have a limitation. Because the branch
instruction only has a range of 32MB relative to the pc, with some
memory organizations the branch may be unable to reach the handler.

Load pc instruction

With this method, the program counter is forced directly to the handler
address by:

1. storing the absolute address of the handler in a suitable memory
location (within 4KB of the vector address)

2. placing an instruction in the vector that loads the program counter
with the contents of the chosen memory location.

9.3.1 Installing the handlers at reset

If your application does not rely on the debugger or debug monitor to start program
execution, you can load the vector table directly from your assembly language reset (or
startup) code.

If your ROM is at location 0x0 in memory, you can simply have a branch statement for
each vector at the start of your code. This could also include the FIQ handler if it is
running directly from 0x1c. See Interrupt handlers on page 9-22.

Example 9-1 shows code that sets up the vectors if they are located in ROM at address
zero. Note that you can substitute branch statements for the loads.

Example 9-1

Vector_Init_Block
LDR PC, Reset_Addr
LDR PC, Undefined_Addr
LDR PC, SWI_Addr
LDR PC, Prefetch_Addr
LDR PC, Abort_Addr
NOP ;Reserved vector
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-9

Handling Processor Exceptions
LDR PC, IRQ_Addr
LDR PC, FIQ_Addr

Reset_Addr DCD Start_Boot
Undefined_Addr DCD Undefined_Handler
SWI_Addr DCD SWI_Handler
Prefetch_Addr DCD Prefetch_Handler
Abort_Addr DCD Abort_Handler

DCD 0 ;Reserved vector
IRQ_Addr DCD IRQ_Handler
FIQ_Addr DCD FIQ_Handler

If there is RAM at location zero, the vectors (plus the FIQ handler if required) must be
copied down from an area in ROM into the RAM. In this case, you must use load pc
instructions, and copy the storage locations, to make the code relocatable.

Example 9-2 copies down the vectors given in Example 9-1 on page 9-9 to the vector
table in RAM.

Example 9-2

MOV r8, #0
ADR r9, Vector_Init_Block
LDMIA r9!,{r0-r7} ;Copy the vectors (8 words)
STMIA r8!,{r0-r7}
LDMIA r9!,{r0-r7} ;Copy the DCD'ed addresses
STMIA r8!,{r0-r7} ;(8 words again)

Alternatively, you can use the scatter loading mechanism to install the vector table.
Refer to Chapter 10 Writing Code for ROM for more information.
9-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
9.3.2 Installing the handlers from C

Sometimes during development work it is necessary to install exception handlers into
the vectors directly from the main application. As a result, the required instruction
encoding must be written to the appropriate vector address. This can be done for both
the branch and the load pc method of reaching the handler.

Branch method

The required instruction can be constructed as follows:

1. Take the address of the exception handler.

2. Subtract the address of the corresponding vector.

3. Subtract 0x8 to allow for prefetching.

4. Shift the result to the right by two to give a word offset, rather than a byte offset.

5. Test that the top eight bits of this are clear, to ensure that the result is only 24 bits
long (because the offset for the branch is limited to this).

6. Logically OR this with 0xea000000 (the opcode for the Branch instruction) to
produce the value to be placed in the vector.

Example 9-3 shows a C function that implements this algorithm. It takes the following
arguments:

• the address of the handler

• the address of the vector in which the handler is to be to installed.

The function can install the handler and return the original contents of the vector. This
result can be used to create a chain of handlers for a particular exception. Refer to
Chaining exception handlers on page 9-37 for further details.

Example 9-3

unsigned Install_Handler (unsigned routine, unsigned *vector)
/* Updates contents of 'vector' to contain branch instruction */
/* to reach 'routine' from 'vector'. Function return value is */
/* original contents of 'vector'.*/
/* NB: 'Routine' must be within range of 32MB from 'vector'.*/
{ unsigned vec, oldvec;

vec = ((routine - (unsigned)vector - 0x8)>>2);
if (vec & 0xff000000)
{

printf ("Installation of Handler failed");
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-11

Handling Processor Exceptions
exit (1);
}
vec = 0xea000000 | vec;
oldvec = *vector;
*vector = vec;
return (oldvec);

}

The following code calls this to install an IRQ handler:

unsigned *irqvec = (unsigned *)0x18;
Install_Handler ((unsigned)IRQHandler, irqvec);

In this case, the returned, original contents of the IRQ vector are discarded.

Load pc method

The required instruction can be constructed as follows:

1. Take the address of the exception handler.

2. Subtract the address of the corresponding vector.

3. Subtract 0x8 to allow for the pipeline.

4. Logically OR this with 0xe59ff000 (the opcode for LDR pc, [pc,#offset]) to
produce the value to be placed in the vector.

5. Put the address of the handler into the storage location.

Example 9-4 shows a C routine that implements this method.

Example 9-4

unsigned Install_Handler (unsigned location, unsigned *vector)
/* Updates contents of 'vector' to contain LDR pc, [pc, #offset] */
/* instruction to cause long branch to address in `location'. */
/* Function return value is original contents of 'vector'. */
{ unsigned vec, oldvec;

vec = ((unsigned)location - (unsigned)vector - 0x8) | 0xe59ff000
oldvec = *vector;
*vector = vec;
return (oldvec);

}

The following code calls this to install an IRQ handler:
9-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
unsigned *irqvec = (unsigned *)0x18;
unsigned *irqaddr = (unsigned *)0x38; /* For example */
*irqaddr = (unsigned)IRQHandler;
Install_Handler (irqaddr,irqvec);

Again in this example the returned, original contents of the IRQ vector are discarded,
but they could be used to create a chain of handlers. Refer to Chaining exception
handlers on page 9-37 for more information.

Note
 If you are operating on a processor with separate instruction and data caches, such as
StrongARM, or ARM940T, you must ensure that cache coherence problems do not
prevent the new contents of the vectors from being used.

The data cache (or at least the entries containing the modified vectors) must be cleaned
to ensure the new vector contents is written to main memory. You must then flush the
instruction cache to ensure that the new vector contents is read from main memory.

For details of cache clean and flush operations, see the datasheet for your target
processor.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-13

Handling Processor Exceptions
9.4 SWI handlers

When the SWI handler is entered, it must establish which SWI is being called. This
information is usually stored in bits 0-23 of the instruction itself, as shown in
Figure 9-1.

Figure 9-1 ARM SWI instruction

The top-level SWI handler typically accesses the link register and loads the SWI
instruction from memory, and therefore has to be written in assembly language. The
individual routines that implement each SWI handler can be written in C if required.

The handler must first load the SWI instruction that caused the exception into a register.
At this point, lr_SVC holds the address of the instruction that follows the SWI
instruction, so the SWI is loaded into the register (in this case r0) using:

LDR r0, [lr,#-4]

The handler can then examine the comment field bits, to determine the required
operation. The SWI number is extracted by clearing the top eight bits of the opcode:

BIC r0, r0, #0xff000000

Example 9-5 shows how these instructions can be put together to form a top-level SWI
handler.

See Determining the processor state on page 9-42 for an example of a handler that deals
with both ARM-state and Thumb-state SWI instructions.

Example 9-5

AREA TopLevelSwi, CODE, READONLY; Name this block
; of code.

EXPORT SWI_Handler
SWI_Handler

STMFD sp!,{r0-r12,lr} ; Store registers.
LDR r0,[lr,#-4] ; Calculate address of

; SWI instruction and
; load it into r0.

31 28 27 26 25 24 23 0

cond 1 1 1 1 24_bit_immediate

comment field
9-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
BIC r0,r0,#0xff000000 ; Mask off top 8 bits of
; instruction to give SWI number.

;
; Use value in r0 to determine which SWI routine to execute.
;
LDMFD sp!, {r0-r12,pc}^ ; Restore registers and return.
END ; Mark end of this file.

9.4.1 SWI handlers in assembly language

The easiest way to call the handler for the requested SWI number is to use a jump table.
If r0 contains the SWI number, the code in Example 9-6 can be inserted into the
top-level handler given in Example 9-5 on page 9-14, following on from the BIC
instruction.

Example 9-6 : SWI Jump Table

ADR r2, SWIJumpTable
LDR pc, [r2,r0,LSL #2]

SWIJumpTable
DCD SWInum0
DCD SWInum1

; DCD for each of other SWI routines
;

SWInum0 ; SWI number 0 code
B EndofSWI

SWInum1 ; SWI number 1 code
B EndofSWI

;
; Rest of SWI handling code
;

EndofSWI
; Return execution to top level
; SWI handler so as to restore
; registers and return to program.

9.4.2 SWI handlers in C and assembly language

Although the top-level header must always be written in ARM assembly language, the
routines that handle each SWI can be written in either assembly language or in C. Refer
to Using SWIs in supervisor mode on page 9-17 for a description of restrictions.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-15

Handling Processor Exceptions
The top-level header uses a BL (Branch with Link) instruction to jump to the appropriate
C function. Because the SWI number is loaded into r0 by the assembly routine, this is
passed to the C function as the first parameter (in accordance with the ARM Procedure
Call Standard). The function can use this value in, for example, a switch() statement.

The following line can be added to the SWI_Handler routine in Example 9-5 on
page 9-14:

BL C_SWI_Handler ; Call C routine to handle the SWI

Example 9-7 shows how the C function can be implemented.

Example 9-7

void C_SWI_handler (unsigned number)
{ switch (number)

{case 0 : /* SWI number 0 code */
break;

 case 1 : /* SWI number 1 code */
break;

 :
 :
 default : /* Unknown SWI - report error */
}

}

The supervisor stack space may be limited, so avoid using functions that require a large
amount of stack space.

You can pass values in and out of such a handler written in C, provided that the top-level
handler passes the stack pointer value into the C function as the second parameter (in
r1):

MOV r1, sp ; Second parameter to C routine...
; ...is pointer to register values.

BL C_SWI_Handler ; Call C routine to handle the SWI

and the C function is updated to access it:

void C_SWI_handler(unsigned number, unsigned *reg)

The C function can now access the values contained in the registers at the time the SWI
instruction was encountered in the main application code (see Figure 9-2 on page 9-17).
It can read from them:
9-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
value_in_reg_0 = reg [0];
value_in_reg_1 = reg [1];
value_in_reg_2 = reg [2];
value_in_reg_3 = reg [3];

and also write back to them:

reg [0] = updated_value_0;
reg [1] = updated_value_1;
reg [2] = updated_value_2;
reg [3] = updated_value_3;

causing the updated value to be written into the appropriate stack position, and then
restored into the register by the top-level handler.

Figure 9-2 Accessing the supervisor stack

9.4.3 Using SWIs in supervisor mode

When a SWI instruction is executed, the processor enters supervisor mode, the CPSR is
stored into spsr_SVC, and the return address is stored in lr_SVC (see The processor
response to an exception on page 9-5). If the processor is already in supervisor mode,
lr_SVC and spsr_SVC are corrupted.

If you call a SWI while in supervisor mode you must store lr_SVC and spsr_SVC to
ensure that the original values of the link register and the SPSR are not lost. For
example, if the handler routine for a particular SWI number calls another SWI, you
must ensure that the handler routine stores both lr_SVC and spsr_SVC on the stack.
This ensures that each invocation of the handler saves the information needed to return
to the instruction following the SWI that invoked it. Example 9-8 on page 9-18 shows
how to do this.

	�� !

"

#

$

%

&�'���
�
��� !

��� !
������

������
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-17

Handling Processor Exceptions
Example 9-8 SWI Handler

STMFD sp!,{r0-r3,lr} ; Store registers.
LDR r0,[lr,#-4] ; Calculate address of SWI instruction...

; ...and load it into r0.
BIC r0,r0,#0xff000000 ; Mask off top 8 bits of

; instruction to give SWI number.
MOV r1, sp ; Second parameter to C routine...

; ...is pointer to register values.
MRS r2, spsr ; Move the spsr into a general purpose register.
STMFD sp!, {r2} ; Store spsr onto stack. This is

; only really needed in case of
; nested SWIs.

BL C_SWI_Handler ; Call C routine to handle the SWI.
LDMFD sp!, {r2} ; Restore spsr from stack into r2...
MSR spsr, r2 ; ... and restore it into spsr.
LDMFD sp!, {r0-r3,pc}^ ; Restore registers and return.
END ; Mark end of this file.

Nested SWIs in C

By default, the ARM compilers do not take into account the fact that an inline SWI will
overwrite the contents of the link register if it is called from Supervisor mode. If the
nested SWI handlers are written in C or C++, you must use the -fz compiler option to
instruct the compiler to generate code that stores lr_SVC. For example, if the C function
is in module c_swi_handle.c, the following command produces the object code file:

armcc -c -fz c_swi_handle.c
9-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
9.4.4 Calling SWIs from an application

The easiest way to call SWIs from your application code is to set up any required
register values and call the relevant SWI in assembly language. For example:

MOV r0, #65 ; load r0 with the value 65
SWI 0x0 ; Call SWI 0x0 with parameter

; value in r0

The SWI instruction can be conditionally executed, as can all ARM instructions.

Calling a SWI from C is more complicated because it is necessary to map a function call
onto each SWI with the __swi compiler directive. This allows a SWI to be compiled
inline, without additional calling overhead, provided that:

• any arguments are passed in r0-r3 only

• any results are returned in r0-r3 only.

Note
 You must use the -fz compiler option when compiling code that contains inline SWIs.

The parameters are passed to the SWI as if the SWI were a real function call. However,
if there are between two and four return values, you must tell the compiler that the return
values are being returned in a structure, and use the __value_in_regs directive. This is
because a struct-valued function is usually treated as if it were a void function whose
first argument is the address where the result structure should be placed.

Example 9-9 shows a SWI handler that provides SWI numbers 0x0 and 0x1. SWI 0x0
takes four integer parameters and returns a single result. SWI 0x1 takes a single
parameter and returns four results.

Example 9-9

struct four
{ int a, b, c, d;
};
__swi (0x0) int calc_one (int,int,int,int);
__swi (0x1) __value_in_regs struct four calc_four (int);
/* You can call the SWIs in the following manner */
void func (void)
{ struct four result;

int single, res1, res2, res3, res4;
single = calc_one (val1, val2, val3, val4);
result = calc_four (val5);
res1 = result.a;
res2 = result.b;
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-19

Handling Processor Exceptions
res3 = result.c;
res4 = result.d;

}

9.4.5 Calling SWIs dynamically from an application

In some circumstances it may be necessary to call a SWI whose number is not known
until runtime. This situation can occur, for example, when there are a number of related
operations that can be performed on an object, and each operation has its own SWI. In
such a case, the methods described above are not appropriate.

There are several ways of dealing with this. For example:

• Construct the SWI instruction from the SWI number, store it somewhere, then
execute it.

• Use a generic SWI that takes, as an extra argument, a code for the actual operation
to be performed on its arguments. The generic SWI decodes the operation and
performs it.

The second mechanism can be implemented in assembly language by passing the
required operation number in a register, typically r0 or r12. The SWI handler can then
be rewritten to act on the value in the appropriate register. Because some value has to
be passed to the SWI in the comment field, it would be possible for a combination of
these two methods to be used.

For example, an operating system might make use of only a single SWI instruction and
employ a register to pass the number of the required operation. This leaves the rest of
the SWI space available for application-specific SWIs. This method can also be used if
the overhead of extracting the SWI number from the instruction is too great in a
particular application.

A mechanism is included in the compiler to support the use of r12 to pass the value of
the required operation. Under the ARM Procedure Call Standard, r12 is the ip register
and has a dedicated role only during function call. At other times it may be used as a
scratch register. The arguments to the generic SWI are passed in registers r0-r3 and
values are optionally returned in r0-r3 as described earlier. The operation number
passed in r12 could be, but need not be, the number of the SWI to be called by the
generic SWI.

Example 9-10 on page 9-21 shows a C fragment that uses a generic, or indirect SWI.
9-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
Example 9-10

__swi_indirect(0x80)
unsigned SWI_ManipulateObject(unsigned operationNumber,

unsigned object,unsigned parameter);
unsigned DoSelectedManipulation(unsigned object,

unsigned parameter, unsigned operation)
{ return SWI_ManipulateObject(operation, object, parameter);
}

This produces the following code:

EXPORT DoSelectedManipulation
DoSelectedManipulation
0x000000: e1a0c002 : MOV r12,r2
0x000004: ef000080 : SWI 0x80
0x000008: e1a0f00e : MOV pc,r14

It is also possible to pass the SWI number in r0 from C using the __swi mechanism. For
example, if SWI 0x0 is used as the generic SWI and operation 0 is a character read and
operation 1 a character write, the following can be set up:

__swi (0) char __ReadCharacter (unsigned op);
__swi (0) void __WriteCharacter (unsigned op, char c);

These can be used in a more reader-friendly fashion by defining the following:

#define ReadCharacter () __ReadCharacter (0);
#define WriteCharacter (c) __WriteCharacter (1, c);

However, using r0 in this way means that only three registers are available for passing
parameters to the SWI. Usually, if more parameters need to be passed to a subroutine in
addition to r0-r3, this can be done using the stack. However, stacked parameters are not
easily accessible to a SWI handler, because they typically exist on the user mode stack
rather than the supervisor stack employed by the SWI handler.

Alternatively, one of the registers (typically r1) can be used to point to a block of
memory storing the other parameters.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-21

Handling Processor Exceptions
9.5 Interrupt handlers

The ARM processor has two levels of external interrupt, FIQ and IRQ, both of which
are level-sensitive active LOW signals into the core. For an interrupt to be taken, the
appropriate disable bit in the CPSR must be clear.

FIQs have higher priority than IRQs in two ways:

• FIQs are serviced first when multiple interrupts occur.

• Servicing a FIQ causes IRQs to be disabled, preventing them from being serviced
until after the FIQ handler has re-enabled them. This is usually done by restoring
the CPSR from the SPSR at the end of the handler.

The FIQ vector is the last entry in the vector table (at address 0x1c) so that the FIQ
handler can be placed directly at the vector location and run sequentially from that
address. This removes the need for a branch and its associated delays, and also means
that if the system has a cache, the vector table and FIQ handler may all be locked down
in one block within it. This is important because FIQs are designed to service interrupts
as quickly as possible. The five extra FIQ mode banked registers enable status to be held
between calls to the handler, again increasing execution speed.

Note
 An interrupt handler should contain code to clear the source of the interrupt.

9.5.1 Simple interrupt handlers in C

You can write simple C interrupt handlers by using the __irq function declaration
keyword. You can use the __irq keyword both for simple one-level interrupt handlers,
and interrupt handlers that call subroutines. However, you cannot use the __irq keyword
for reentrant interrupt handlers, because it does not store all the required state. In this
context, reentrant means that the handler re-enables interrupts, and may itself be
interrupted. Refer to Reentrant interrupt handlers on page 9-24 for more information.

The __irq keyword:

• preserves all APCS corruptible registers.

• preserves all other registers (excluding the floating-point registers) used by the
function.

• exits the function by setting the program counter to (lr – 4) and restoring the
CPSR to its original value.

If the function calls a subroutine, __irq preserves the link register for the interrupt mode
in addition to preserving the other corruptible registers. See Calling subroutines from
interrupt handlers on page 9-23 for more information.
9-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
Note
 C interrupt handlers cannot be produced in this way using tcc. The __irq keyword is
faulted by tcc because tcc can only produce Thumb code, and the processor is always
switched to ARM state when an interrupt, or any other exception, occurs.

However, the subroutine called by an __irq function can be compiled for Thumb, with
interworking enabled. Refer to Chapter 7 Interworking ARM and Thumb for more
information on interworking.

Example 9-11 shows a simple handler that does not call any subroutines. The handler
reads a byte from location 0x80000000 and clears the interrupt by writing it to location
0x80000004.

The __irq keyword ensures that r0-r3 and r12 are preserved, and that the function exits
with SUBS pc,lr,#4.

Example 9-11

__irq void IRQHandler(void)
{

volatile char *base = (char *) 0x80000000; // read a byte
*(base + 4) = *base; // clear the interrupt

}

Compiled with armcc Example 9-11 gives the following code:

 EXPORT IRQHandler
IRQHandler
0x000000: e92d100f ..-. : STMFD sp!,{r0-r3,r12}
0x000004: e3a00102 : MOV r0,#0x80000000
0x000008: e5d01000 : LDRB r1,[r0,#0]
0x00000c: e5c01004 : STRB r1,[r0,#4]
0x000010: e8bd100f : LDMFD sp!,{r0-r3,r12}
0x000014: e25ef004 ..^. : SUBS pc,lr,#4

Calling subroutines from interrupt handlers

If you call subroutines from your top level interrupt handler, the __irq keyword also
restores the value of lr_IRQ from the stack so that it can be used by a SUBS instruction
to return to the correct address after the interrupt has been handled.

Example 9-12 on page 9-24 shows how this works. The top level interrupt handler reads
the value of a memory mapped interrupt controller base address at 0x80000000. If the
value of the address is 1, the top level handler branches to a handler written in C.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-23

Handling Processor Exceptions
Example 9-12

__irq void IRQHandler (void)
{

volatile unsigned int *base = (unsigned int *) 0x80000000;
if (*base == 1) // which interrupt was it?
{

C_int_handler(); // process the interrupt
}
*(base+1) = *base; // clear the interrupt

}

Compiled with armcc, Example 9-12 produces the following code:

 EXPORT IRQHandler
IRQHandler
 0x000000: e92d501f .P-. :STMFD sp!,{r0-r4,r12,lr}
 0x000004: e3a04102 .A.. :MOV r4,#0x80000000
 0x000008: e5940000 :LDR r0,[r4,#0]
 0x00000c: e3500001 ..P. :CMP r0,#1
 0x000010: 0bfffffa :BLEQ C_int_handler
 0x000014: e5940000 :LDR r0,[r4,#0]
 0x000018: e5840004 :STR r0,[r4,#4]
 0x00001c: e8bd501f .P.. :LDMFD sp!,{r0-r4,r12,lr}
 0x000020: e25ef004 ..^. :SUBS pc,lr,#4

Compare this to the result of not using the __irq keyword:

 EXPORT IRQHandler
IRQHandler
 0x000000: e92d4010 .@-. :STMFD sp!,{r4,lr}
 0x000004: e3a04102 .A.. :MOV r4,#0x80000000
 0x000008: e5940000 :LDR r0,[r4,#0]
 0x00000c: e3500001 ..P. :CMP r0,#1
 0x000010: 0bfffffa :BLEQ C_int_handler
 0x000014: e5940000 :LDR r0,[r4,#0]
 0x000018: e5840004 :STR r0,[r4,#4]
 0x00001c: e8bd8010 :LDMFD sp!,{r4,pc}

9.5.2 Reentrant interrupt handlers

Note
 The following method works for both IRQ and FIQ interrupts. However, because FIQ
interrupts are meant to be serviced as quickly as possible there will normally be only
one interrupt source, so it may not be necessary to allow for reentrancy.
9-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
If an interrupt handler re-enables interrupts, then calls a subroutine, and another
interrupt occurs, the return address of the subroutine (stored in lr_IRQ) is corrupted
when the second IRQ is taken. Using the __irq keyword in C does not store all the state
information required for reentrant interrupt handlers, so you must write your top level
interrupt handler in assembly language.

A reentrant interrupt handler must save the necessary IRQ state, switch processor
modes, and save the state for the new processor mode before branching to a nested
subroutine or C function.

In ARM architecture 4 or later you can switch to System mode. System mode uses the
User mode registers, and allows privileged access that may be required by your
exception handler. Refer to System mode on page 9-44 for more information. In ARM
architectures prior to architecture 4 you must switch to Supervisor mode instead.

The steps needed to safely re-enable interrupts in an IRQ handler are:

1. Construct return address and save on the IRQ stack.

2. Save the work registers and spsr_IRQ.

3. Clear the source of the interrupt.

4. Switch to System mode and re-enable interrupts.

5. Save User mode link register and non-callee saved registers.

6. Call the C interrupt handler function.

7. When the C interrupt handler returns, restore User mode registers and disable
interrupts.

8. Switch to IRQ mode, disabling interrupts.

9. Restore work registers and spsr_IRQ.

10. Return from the IRQ.

Example 9-13 shows how this works for System mode. Registers r12 and r14 are used
as temporary work registers after lr_IRQ is pushed on the stack.

Example 9-13

AREA INTERRUPT, CODE, READONLY
IMPORT C_irq_handler

IRQ
SUB lr, lr, #4 ; construct the return address
STMFD sp!, {lr} ; and push the adjusted lr_IRQ
MRS r14, SPSR ; copy spsr_IRQ to r14
STMFD sp!, {r12, r14} ; save work regs and spsr_IRQ
; Add instructions to clear the interrupt here
; then re-enable interrupts.
MSR CPSR_c, #0x1F ; switch to SYS mode, FIQ and IRQ
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-25

Handling Processor Exceptions
; enabled. USR mode registers
; are now current.

STMFD sp!, {r0-r3, lr} ; save lr_USR and non-callee
; saved registers

BL C_irq_handler ; branch to C IRQ handler.
LDMFD sp!, {r0-r3, lr} ; restore registers
MSR CPSR_c, #0x92 ; switch to IRQ mode and disable

; IRQs. FIQ is still enabled.
LDMFD sp!, {r12, r14} ; restore work regs and spsr_IRQ
MSR SPSR_cf, r14
LDMFD sp!, {pc}^ ; return from IRQ.
END
9-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
9.5.3 Example interrupt handlers in assembly language

Interrupt handlers are often written in assembly language to ensure that they execute
quickly. The following sections give some examples.

Single-channel DMA transfer

Example 9-14 shows an interrupt handler that performs interrupt driven I/O to memory
transfers (soft DMA). The code is an FIQ handler. It uses the banked FIQ registers to
maintain state between interrupts. This code is best situated at location 0x1c.

In the example code:

r8 Points to the base address of the I/O device that data is read from.

IOData Is the offset from the base address to the 32-bit data register that is read.
Reading this register clears the interrupt.

r9 Points to the memory location to where that data is being transferred.

r10 Points to the last address to transfer to.

The entire sequence for handling a normal transfer is four instructions. Code situated
after the conditional return is used to signal that the transfer is complete.

Example 9-14

LDR r11, [r8, #IOData] ; Load port data from the IO device.
STR r11, [r9], #4 ; Store it to memory: update the pointer.
CMP r9, r10 ; Reached the end ?
SUBLES pc, lr, #4 ; No, so return.

; Insert transfer complete code here.

Byte transfers can be made by replacing the load instructions with load byte
instructions. Transfers from memory to an I/O device are made by swapping the
addressing modes between the load instruction and the store instruction.

Dual-channel DMA transfer

Example 9-15 on page 9-28 is similar to Example 9-14, except that there are two
channels being handled (which may be the input and output side of the same channel).
The code is an FIQ handler. It uses the banked FIQ registers to maintain state between
interrupts. It is best situated at location 0x1c.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-27

Handling Processor Exceptions
In the example code:

r8 Points to the base address of the I/O device from which data is read.

IOStat Is the offset from the base address to a register indicating which of two
ports caused the interrupt.

IOPort1Active

Is a bit mask indicating if the first port caused the interrupt (otherwise it
is assumed that the second port caused the interrupt).

IOPort1, IOPort2

Are offsets to the two data registers to be read. Reading a data register
clears the interrupt for the corresponding port.

r9 Points to the memory location to which data from the first port is being
transferred.

r10 Points to the memory location to which data from the second port is being
transferred.

r11 and r12 Point to the last address to transfer to (r11 for the first port, r12 for the
second).

The entire sequence to handle a normal transfer takes nine instructions. Code situated
after the conditional return is used to signal that the transfer is complete.

Example 9-15

LDR r13, [r8, #IOStat] ; Load status register to
; find which port caused
; the interrupt.

TST r13, #IOPort1Active
LDREQ r13, [r8, #IOPort1] ; Load port 1 data.
LDRNE r13, [r8, #IOPort2] ; Load port 2 data.
STREQ r13, [r9], #4 ; Store to buffer 1.
STRNE r13, [r10], #4 ; Store to buffer 2.
CMP r9, r11 ; Reached the end?
CMPLE r10, r12 ; On either channel?
SUBNES pc, lr, #4 ; Return
; Insert transfer complete code here.
9-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
Byte transfers can be made by replacing the load instructions with load byte
instructions. Transfers from memory to an I/O device are made by swapping the
addressing modes between the conditional load instructions and the conditional store
instructions.

Interrupt prioritization

Example 9-16 dispatches up to 32 interrupt sources to their appropriate handler
routines. Because it is designed for use with the normal interrupt vector (IRQ), it should
be branched to from location 0x18.

External hardware is used to prioritize the interrupt and present the high-priority active
interrupt in an I/O register.

In the example code:

IntBase Holds the base address of the interrupt controller.

IntLevel Holds the offset of the register containing the highest-priority active
interrupt.

r13 Is assumed to point to a small full descending stack.

Interrupts are enabled after ten instructions, including the branch to this code.

The specific handler for each interrupt is entered after a further two instructions (with
all registers preserved on the stack).

In addition, the last three instructions of each handler are executed with interrupts
turned off again, so that the SPSR can be safely recovered from the stack.

Note
 Application Note 30: Software Prioritization of Interrupts (ARM DAI 0030) describes
multiple source prioritization of interrupts using software, as opposed to using hardware
as described here.

Example 9-16

; first save the critical state
SUB lr, lr, #4 ; Adjust the return address

; before we save it.
STMFD sp!, {lr} ; Stack return address
MRS r14, SPSR ; get the SPSR ...
STMFD sp!, {r12, r14} ; ... and stack that plus a

; working register too.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-29

Handling Processor Exceptions
; Now get the priority level of the
; highest priority active interrupt.

MOV r12, #IntBase ; Get the interrupt controller's
; base address.

LDR r12, [r12, #IntLevel] ; Get the interrupt level (0 to 31).
; Now read-modify-write the CPSR to enable interrupts.
MRS r14, CPSR ; Read the status register.
BIC r14, r14, #0x80 ; Clear the I bit

; (use 0x40 for the F bit).
MSR CPSR_c, r14 ; Write it back to re-enable

; interrupts and
LDR PC, [PC, r12, LSL #2] ; jump to the correct handler.

; PC base address points to this
; instruction + 8

NOP ; pad so the PC indexes this table.
; Table of handler start addresses

DCD Priority0Handler
DCD Priority1Handler
DCD Priority2Handler

; ...
Priority0Handler
STMFD sp!, {r0 - r11} ; Save other working registers.

; Insert handler code here.
; ...

LDMFD sp!, {r0 - r11} ; Restore working registers (not r12).
; Now read-modify-write the CPSR to disable interrupts.
MRS r12, CPSR ; Read the status register.
ORR r12, r12, #0x80 ; Set the I bit

; (use 0x40 for the F bit).
MSR CPSR_c, r12 ; Write it back to disable interrupts.
; Now that interrupt disabled, can safely restore SPSR then return.
LDMFD sp!, {r12, r14} ; Restore r12 and get SPSR.
MSR SPSR_csxf, r14 ; Restore status register from r14.
LDMFD sp!, {pc}^ ; Return from handler.

Priority1Handler
; ...

Context switch

Example 9-17 on page 9-31 performs a context switch on the user mode process. The
code is based around a list of pointers to Process Control Blocks (PCBs) of processes
that are ready to run.

Figure 9-3 on page 9-31 shows the layout of the PCBs that the example expects.
9-30 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
Figure 9-3 PCB layout

The pointer to the PCB of the next process to run is pointed to by r12, and the end of the
list has a zero pointer. Register r13 is a pointer to the PCB, and is preserved between
time slices, so that on entry it points to the PCB of the currently running process.

Example 9-17

STMIA r13, {r0 - r14}^ ; Dump user registers above r13.
MSR r0, SPSR ; Pick up the user status
STMDB r13, {r0, lr} ; and dump with return address

; below.
LDR r13, [r12], #4 ; Load next process info

; pointer.
CMP r13, #0 ; If it is zero, it is invalid
LDMNEDB r13, {r0, lr} ; Pick up status and return

; address.
MRSNE SPSR_csxf, r0 ; Restore the status.
LDMNEIA r13, {r0 - r14}^ ; Get the rest of the registers
SUBNES pc, r14 ; and return and restore CPSR.

; Insert "no next process code" here.

��
��
��
��
��
��
�	
�

��
��

��

��
�
�
�

�
	
�
�
�
�

�����������

����������������
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-31

Handling Processor Exceptions
9.6 Reset handlers

The operations carried out by the Reset handler depend on the system for which the
software is being developed. For example, it may:

• Set up exception vectors. Refer to Installing an exception handler on page 9-9 for
details.

• Initialize stacks and registers.

• Initialize the memory system, if using an MMU.

• Initialize any critical I/O devices.

• Enable interrupts.

• Change processor mode and/or state.

• Initialize variables required by C.

• Call the main application.

Refer to Chapter 10 Writing Code for ROM for more information.
9-32 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
9.7 Undefined instruction handlers

Instructions that are not recognized by the processor are offered to any coprocessors
attached to the system. If the instruction remains unrecognized, an undefined instruction
exception is generated. It could be the case that the instruction is intended for a
coprocessor, but that the relevant coprocessor, for example a Floating Point Accelerator,
is not attached to the system. However, a software emulator for such a coprocessor
might be available.

Such an emulator should:

1. Attach itself to the undefined instruction vector and store the old contents.

2. Examine the undefined instruction to see if it should be emulated. This is similar
to the way in which a SWI handler extracts the number of a SWI, but rather than
extracting the bottom 24 bits, the emulator must extract bits 27-24.

These bits determine whether the instruction is a coprocessor operation in the
following way:

• If bits 27 to 24 = b1110 or b110x, the instruction is a coprocessor
instruction.

• If bits 8-11 show that this coprocessor emulator should handle the
instruction, the emulator should process the instruction and return to the
user program.

3. Otherwise the emulator should pass the exception onto the original handler (or the
next emulator in the chain) using the vector stored when the emulator was
installed.

When a chain of emulators is exhausted, no further processing of the instruction can
take place, so the undefined instruction handler should report an error and quit. Refer to
Chaining exception handlers on page 9-37 for more information.

Note
 The Thumb instruction set does not have coprocessor instructions, so there should be
no need for the undefined instruction handler to emulate such instructions.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-33

Handling Processor Exceptions
9.8 Prefetch abort handler

If the system contains no MMU, the Prefetch Abort handler can simply report the error
and quit. Otherwise the address that caused the abort must be restored into physical
memory. lr_ABT points to the instruction at the address following the one that caused
the abort, so the address to be restored is at lr_ABT – 4. The virtual memory fault for
that address can be dealt with and the instruction fetch retried. The handler should
therefore return to the same instruction rather than the following one.
9-34 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
9.9 Data abort handler

If there is no MMU, the data abort handler should simply report the error and quit. If
there is an MMU, the handler should deal with the virtual memory fault.

The instruction that caused the abort is at lr_ABT – 8 because lr_ABT points two
instructions beyond the instruction that caused the abort.

Three types of instruction can cause this abort:

Single Register Load or Store

The response depends on the processor type:

• If the abort takes place on an ARM6-based processor:

— If the processor is in early abort mode and writeback was
requested, the address register will not have been updated.

— If the processor is in late abort mode and writeback was
requested, the address register will have been updated. The
change must be undone.

• If the abort takes place on an ARM7-based processor, including the
ARM7TDMI, the address register will have been updated and the
change must be undone.

• If the abort takes place on an ARM9TDMI or StrongARM based
processor, the address is restored by the processor to the value it
had before the instruction started. No further action is required to
undo the change.

Swap There is no address register update involved with this instruction.

Load/Store Multiple

The response depends on the processor type:

• If the abort takes place on an ARM6-based processor or
ARM7-based processor, and writeback is enabled, the base register
will have been updated as if the whole transfer had taken place.

In the case of an LDM with the base register in the register list, the
processor replaces the overwritten value with the modified base
value so that recovery is possible. The original base address can
then be recalculated using the number of registers involved.

• If the abort takes place on an ARM9TDMI or StrongARM based
processor and writeback is enabled, the base register will be
restored to the value it had before the instruction started.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-35

Handling Processor Exceptions
In each of the three cases the MMU can load the required virtual memory into physical
memory. The MMU Fault Address Register (FAR) contains the address that caused the
abort. When this is done, the handler can return and try to execute the instruction again.
9-36 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
9.10 Chaining exception handlers

In some situations there can be several different sources of a particular exception. For
example:

• Angel uses an undefined instruction to implement breakpoints. However,
undefined instruction exceptions also occur when a coprocessor instruction is
executed, and no coprocessor is present.

• Angel uses a SWI for various purposes, including getting into supervisor mode
from user mode and supporting semihosting requests. However, an RTOS or an
application may also wish to implement some SWIs.

In such situations there are two approaches that can be taken to extend the exception
handling code. These are described below.

9.10.1 A single extended handler

In some circumstances it is possible to extend the code in the exception handler to work
out what the source of the exception was, and then directly call the appropriate code. In
this case, you are modifying the source code for the exception handler.

Angel has been written to make this approach simple. Angel decodes SWIs and
undefined instructions, and the Angel exception handlers can be extended to deal with
non-Angel SWIs and undefined instructions.

However, this approach is only useful if all the sources of an exception are known when
the single exception handler is written.

9.10.2 Several chained handlers

Some circumstances require more than a single handler. Consider the situation in which
a standard Angel debugger is executing, and a standalone user application (or RTOS)
which wants to support some additional SWIs is then downloaded. The newly loaded
application may well have its own entirely independent exception handler that it wants
to install, but which cannot simply replace the Angel handler.

In this case the address of the old handler must be noted so that the new handler is able
to call the old handler if it discovers that the source of the exception is not a source it
can deal with. For example, an RTOS SWI handler would call the Angel SWI handler
on discovering that the SWI was not an RTOS SWI, so that the Angel SWI handler gets
a chance to process it.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-37

Handling Processor Exceptions
This approach can be extended to any number of levels to build a chain of handlers. Note
that, although code that takes this approach allows each handler to be entirely
independent, it is less efficient than code that uses a single handler, or at least it becomes
less efficient the further down the chain of handlers it has to go.

Both routines given in Installing the handlers from C on page 9-11 return the old
contents of the vector. This value can be decoded to give:

The offset for a branch instruction

This can be used to calculate the location of the original handler and
allow a new branch instruction to be constructed and stored at a suitable
place in memory. If the replacement handler fails to handle the exception,
it can branch to the constructed branch instruction, which in turn will
branch to the original handler.

The location used to store the address of the original handler

If the application handler failed to handle the exception, it would then
need to load the program counter from that location.

In most cases, such calculations may not be necessary because information on the debug
monitor or RTOS handlers should be available to you. If so, the instructions required to
chain in the next handler can be hard coded into the application. The last section of the
handler must check that the cause of the exception has been handled. If it has, the
handler can return to the application. If not, it must call the next handler in the chain.

Note
 When chaining in a handler before a debug monitor handler, you must remove the chain
when the monitor is removed from the system, then directly install the application
handler.
9-38 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
9.11 Handling exceptions on Thumb-capable processors

Note
 This section applies only to Thumb-capable ARM processors.

This section describes the additional considerations you must take into account when
writing exception handlers suitable for use on Thumb-capable processors.

Thumb-capable processors use the same basic exception handling mechanism as
processors that are not Thumb-capable. An exception causes the next instruction to be
fetched from the appropriate vector table entry.

The same vector table is used for both Thumb-state and ARM-state exceptions. An
initial step that switches to ARM state is added to the exception handling procedure
described in The processor response to an exception on page 9-5.

9.11.1 Thumb processor response to an exception

When an exception is generated, the processor takes the following actions:

1. Copies cpsr into spsr_mode. Switches to ARM state.

2. Sets the CPSR mode bits.

3. Stores the return address in lr_mode. See The return address on page 9-41 for
further details.

4. Sets the program counter to the vector address for the exception. The switch from
Thumb state to ARM state in step 1 ensures that the ARM instruction installed at
this vector address (either a branch or a pc-relative load) is correctly fetched,
decoded, and executed. This forces a branch to a top level veneer that you must
write in ARM code.

Handling the exception

Your top-level veneer routine should save the processor status and any required registers
on the stack. You then have two options for writing the exception handler:

• Write the whole exception handler in ARM code.

• Perform a BX (branch and exchange) to a Thumb code routine that handles the
exception. The routine must return to an ARM code veneer in order to return from
the exception, because the Thumb instruction set does not have the instructions
required to restore cpsr from spsr.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-39

Handling Processor Exceptions
This second strategy is shown in Figure 9-4. See Chapter 7 Interworking ARM and
Thumb for details of how to combine ARM and Thumb code in this way.

Figure 9-4 Handling an exception in Thumb state

�������	
�

�������	�

�����	
�

�������

�������	
�

���
������	�������

���������
����
����

���������������

�������������

���������
����
����

���������
������
����

(���	�����
�)�������

��'��!&*����
���
���
����

��
����!&*����
���
���
����

+��,� ����

+)���'����
9-40 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
9.11.2 The return address

If an exception occurs in ARM state, the value stored in lr_mode is (pc – 4) as described
in The return address and return instruction on page 9-6. However, if the exception
occurs in Thumb state, the processor automatically stores a different value for each of
the exception types. This adjustment is required because Thumb instructions take up
only a halfword, rather than the full word that ARM instructions occupy.

If this correction were not made by the processor, the handler would have to determine
the original state of the processor, and use a different instruction to return to Thumb
code rather than ARM code. By making this adjustment, however, the processor allows
the handler to have a single return instruction that will return correctly, regardless of the
processor state (ARM or Thumb) at the time the exception occurred.

The following sections give a summary of the values to which the processor sets
lr_mode if an exception occurs when the processor is in Thumb state.

SWI and Undefined instruction handlers

The handler's return instruction (MOVS pc,lr) changes the program counter to the address
of the next instruction to execute. This is at (pc – 2), so the value stored by the processor
in lr_mode is (pc – 2).

FIQ and IRQ handlers

The handler's return instruction (SUBS pc,lr,#4) changes the program counter to the
address of the next instruction to execute. Because the program counter is updated
before the exception is taken, the next instruction is at (pc – 4). The value stored by the
processor in lr_mode is therefore pc.

Prefetch abort handlers

The handler's return instruction (SUBS pc,lr,#4) changes the program counter to the
address of the aborted instruction. Because the program counter is not updated before
the exception is taken, the aborted instruction is at (pc – 4). The value stored by the
processor in lr_mode is therefore pc.

Data abort handlers

The handler's return instruction (SUBS pc,lr,#8) changes the program counter to the
address of the aborted instruction. Because the program counter is updated before the
exception is taken, the aborted instruction is at (pc – 6). The value stored by the
processor in lr_mode is therefore (pc + 2).
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-41

Handling Processor Exceptions
9.11.3 Determining the processor state

An exception handler may need to determine whether the processor was in ARM or
Thumb state when the exception occurred. SWI handlers, especially, may need to read
the processor state. This is done by examining the SPSR T bit. This bit is set for Thumb
state and clear for ARM state.

Both ARM and Thumb instruction sets have the SWI instruction. We have already
examined how to handle SWIs called from ARM state (in SWI handlers on page 9-14).
Here we address the handling of SWIs that are called from Thumb state. When doing
so there are three considerations to bear in mind:

• the address of the instruction is at (lr – 2), rather than (lr – 4)

• the instruction itself is 16-bit, and so requires a halfword load

• the SWI number is held in 8 bits instead of the 24 bits in ARM state.

Figure 9-5 Thumb SWI instruction

Example 9-18 shows ARM code that handles a SWI from both sources. Note the
following points:

• Each of the do_swi_x routines could carry out a switch to Thumb state and back
again to improve code density if required.

• The jump table could be replaced by a call to a C function containing a switch()
statement to implement the SWIs.

• It would be possible for a SWI number to be handled differently depending upon
the state it was called from.

• The range of SWI numbers accessible from Thumb state can be increased by
calling SWIs dynamically as described in SWI handlers on page 9-14.

Example 9-18

T_bit EQU 0x20 ; Thumb bit of CPSR/SPSR, that is, bit 5.
:
:

SWIHandler

15 14 13 12 11 10 9 8 7 0

1 1 0 1 1 1 1 1 8_bit_immediate

comment field
9-42 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions
STMFD sp!, {r0-r3,lr} ; Store the registers.
MRS r0, spsr ; Move SPSR into general purpose

; register.
TST r0, #T_bit ; Test if bit 5 is set.
LDRNEH r0,[lr,#-2] ; T_bit set so load halfword (Thumb)
BICNE r0,r0,#0xff00 ; and clear top 8 bits of halfword

; (LDRH clears top 16 bits of word).
LDREQ r0,[lr,#-4] ; T_bit clear so load word (ARM)
BICEQ r0,r0,#0xff000000 ; and clear top 8 bits of word.
ADR r1, switable ; Load address of the jump table.
LDR pc, [r1,r0,LSL#2] ; Jump to the appropriate routine.

switable
DCD do_swi_1
DCD do_swi_2
:
:

do_swi_1
; Handle the SWI.
LDMFD sp!, {r0-r12,pc}^ ; Restore the registers and return.

do_swi_2
:

ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-43

Handling Processor Exceptions
9.12 System mode

Note
 This section only applies to processors that implement ARM Architectures 4, 4T and
later.

The ARM Architecture defines a User mode that has 15 general purpose registers, a pc
and a CPSR. In addition to this mode there are five privileged processor modes, each of
which have an SPSR and a number of registers that replace some of the 15 User mode
general purpose registers.

When a processor exception occurs, the current program counter is copied into the link
register for the exception mode, and the CPSR is copied into the SPSR for the exception
mode. The CPSR is then altered in an exception-dependent way, and the program
counter is set to an exception-defined address to start the exception handler.

The ARM subroutine call instruction (BL) copies the return address into r14 before
changing the program counter, so the subroutine return instruction moves r14 to pc (MOV
pc,lr).

Together these actions imply that ARM modes that handle exceptions must ensure that
they do not cause the same type of exceptions if they call subroutines, because the
subroutine return address will be overwritten with the exception return address.

In earlier versions of the ARM architecture, this problem has been solved by either
carefully avoiding subroutine calls in exception code, or changing from the privileged
mode to user mode. The first solution is often too restrictive, and the second means the
task may not have the privileged access it needs to run correctly.

ARM Architecture 4 and later provide a processor mode called system mode, to
overcome this problem. System mode is a privileged processor mode that shares the
User mode registers. Privileged mode tasks can run in this mode, and exceptions no
longer overwrite the link register.

Note
 System mode cannot be entered by an exception. The exception handler modify the
CPSR to enter System mode. Refer to Reentrant interrupt handlers on page 9-24 for an
example.
9-44 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 10
Writing Code for ROM

This chapter describes how to build ROM images, typically for embedded applications.
There are also hints on how to avoid the most common errors in writing code for ROM.

This chapter contains the following information:

• About writing code for ROM on page 10-2

• Memory map considerations on page 10-3

• Initializing the system on page 10-5

• Example 1: Building a ROM to be loaded at address 0 on page 10-9

• Example 2: Building a ROM to be entered at its base address on page 10-17

• Example 3: Using the embedded C library on page 10-19

• Example 4: Simple scatter loading example on page 10-22

• Example 5: Complex scatter load example on page 10-26

• Scatter loading and long-distance branching on page 10-30

• Converting ARM linker ELF output to binary ROM formats on page 10-32

• Troubleshooting hints and tips on page 10-34.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-1

Writing Code for ROM
10.1 About writing code for ROM

This chapter describes how to write code for ROM, and shows different methods for
simple and complex images. Sample initialization code is given, as well as information
on initializing data, stack pointers, interrupts, and so on.

This chapter contains examples of using scatter loading to build complex images. For
detailed reference information on scatter loading, refer to Chapter 6 Linker in the ARM
Software Development Toolkit Reference Guide.

Two examples are given to illustrate the use of scatter loading:

• a scatter loading application that runs under the ARMulator, and also uses
sprintf() from the Embedded C library. The example displays the
linker-generated scatter symbols on the screen.

• a more complex scatter loading application that runs from Flash memory on an
ARM Development Board (PID7T).
10-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
10.2 Memory map considerations

A major consideration in the design of an Embedded ARM application is the layout of
the memory map, in particular the memory that is situated at address 0x0. Following
reset, the core starts to fetch instructions from 0x0, so there must be some executable
code accessible from that address. In an embedded system, this requires ROM to be
present, at least initially.

10.2.1 ROM at 0x0

The simplest layout is to locate the application in ROM at address 0 in the memory map.
The application can then branch to the real entry point when it executes its first
instruction (at the reset vector at address 0x0).

Figure 10-1 Example of a system with ROM at 0x0

However, there are disadvantages with this layout. ROM is typically narrow and slow
(requires wait states to access it). This slows down the handling of processor exceptions
(especially interrupts) through the vector table. Also, if the vector table is in ROM, it
cannot be modified by the code.

For more information on exception handling, see Chapter 9 Handling Processor
Exceptions.

10.2.2 RAM at 0x0

RAM is normally faster and wider than ROM. For this reason, it is better for the vector
table and FIQ handlers if the memory at 0x0 is RAM.

However, if RAM is located at address 0x0, there is not a valid instruction in the reset
vector entry on power-up. Therefore, you need to allow ROM to be located at 0x0 at
power-up (so there is a valid reset vector), but to also allow RAM to be located at 0x0
during normal execution. The changeover from the reset to the normal memory map is
normally caused by writing to a memory mapped register.

-���

����

�.�
�	��������

�	�
������

�	��������

�	��������
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-3

Writing Code for ROM
For example, on reset, an aliased copy of ROM is present at 0x0, but RAM is remapped
to zero when code writes to the RPS REMAP register. For more information, refer to
the ARM Reference Peripheral Specification.

Figure 10-2 Example of a system with RAM at 0x0

Implementing RAM at 0x0

A sample sequence of events for implementing RAM at 0x0 is:

1. Power on to fetch the RESET vector at 0x00000000 (from the aliased copy of
ROM).

2. Execute the RESET vector:

LDR PC, =0x0F000004

which jumps to the real address of the next ROM instruction.

3. Write to the REMAP register. Set REMAP = 1.

4. Complete the rest of the initialization code, as described in Initializing the system
on page 10-5.

System decoder

ROM can be aliased to address 0x00000000 by the system decoder:

case ADDR(31:24) is
when "0x00"

if REMAP = "0" then
select ROM

else
select SRAM

when "0x0F"
select ROM

when

-���

�.�

�.�
�	��������

�	�
������

�	��������

�	��������

-���

�.�

����
�	��������

�	�
������

�	��������

�	��������

�.���	��
�����
����

�")""""""""
�,�
,
����������

�+�+�

!��������
�����&���+��&����
��

��������	
/��������0
10-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
10.3 Initializing the system

One of the main considerations with application code in ROM is the way in which the
application initializes itself and starts executing. If there is an operating system present,
this does not cause a problem because the application is entered automatically through
the main() function.

No automatic initialization takes place on RESET, so the application entry point must
perform some initialization before it can call any C code.

Typically, the initialization code should carry out some or all of the following tasks:

• defining the entry point

• setting up exception vectors

• initializing the memory system

• initializing the stack pointer registers

• initializing any critical I/O devices

• initializing any RAM variables required by the interrupt system

• enabling interrupts

• changing processor mode if necessary

• changing processor state if necessary

• initializing memory required by C

• entering C code.

These items are described in more detail below.

10.3.1 Defining the entry point

The initialization code must define the entry point. The assembler directive ENTRY marks
the entry point.

10.3.2 Setting up exception vectors

The initialization code sets up required exception vectors, as follows:

• If the ROM is located at address 0, the vectors consist of a sequence of hard-coded
instructions to branch to the handler for each exception.

• If the ROM is located elsewhere, the vectors must be dynamically initialized by
the initialization code. Some standard code for doing this is shown in Example 2:
Building a ROM to be entered at its base address on page 10-17.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-5

Writing Code for ROM
10.3.3 Initializing the memory system

If your system has a Memory Management or Protection Unit, you must make sure that
it is initialized:

• before interrupts are enabled

• before any code is called that might rely on RAM being accessible at a particular
address, either explicitly, or implicitly through the use of stack.

10.3.4 Initializing the stack pointers

The initialization code initializes the stack pointer registers. You may need to initialize
some or all of the following stack pointers, depending on which interrupts and
exceptions you use:

sp_SVC must always be initialized.

sp_IRQ must be initialized if IRQ interrupts are used. It must be initialized before
interrupts are enabled.

sp_FIQ must be initialized if FIQ interrupts are used. It must be initialized before
interrupts are enabled.

sp_ABT must be initialized for data and prefetch abort handling.

sp_UND must be initialized for undefined instruction handling.

Generally, sp_ABT and sp_UND are not used in a simple embedded system. However, you
may wish to initialize them for debugging purposes.

Note
 You can set up the stack pointer sp_USR when you change to User mode to start executing
the application.

10.3.5 Initializing any critical I/O devices

Critical I/O devices are any devices that you must initialize before you enable
interrupts. Typically, you must initialize these devices at this point. If you do not, they
may cause spurious interrupts when interrupts are enabled.

10.3.6 Initializing RAM variables required by the interrupt system

If your interrupt system has buffer pointers to read data into memory buffers, the
pointers must be initialized before interrupts are enabled.
10-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
10.3.7 Initializing memory required by C code

The initial values for any initialized variables (RW) must be copied from ROM to RAM.
All other ZI variables must be initialized to zero.

Note
 If the application uses scatter loading, see Initialization code on page 10-24 for details
of how to initialize these areas.

Example 10-1 shows an example of code to initialize variables in RAM if the
application does not use scatter loading.

Example 10-1 Initializing variables

IMPORT |Image$$RO$$Limit| ; End of ROM code (=start of ROM data)
IMPORT |Image$$RW$$Base| ; Base of RAM to initialize
IMPORT |Image$$ZI$$Base| ; Base and limit of area

 IMPORT |Image$$ZI$$Limit| ; to zero initialize
LDR r0, =|Image$$RO$$Limit| ; Get pointer to ROM data
LDR r1, =|Image$$RW$$Base| ; and RAM copy
LDR r3, =|Image$$ZI$$Base| ; Zero init base => top of initialized data
CMP r0, r1 ; Check that they are different
BEQ %F1

0 CMP r1, r3 ; Copy init data
LDRCC r2, [r0], #4
STRCC r2, [r1], #4
BCC %B0

1 LDR r1, =|Image$$ZI$$Limit| ; Top of zero init segment
MOV r2, #0

2 CMP r3, r1 ; Zero init
STRCC r2, [r3], #4
BCC %B2

10.3.8 Enabling interrupts

The initialization code should enable interrupts if necessary, by clearing the interrupt
disable bits in the CPSR.

10.3.9 Changing processor mode

At this stage the processor is in Supervisor mode. If your application runs in User mode,
change to User mode and initialize the User mode sp register, sp_USR.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-7

Writing Code for ROM
10.3.10 Changing processor state

On Thumb-capable processors, the processor starts up in ARM state. If the application
entry point is Thumb code, you must change to Thumb state, for example, using:

ORR lr, pc, #1
BX lr

For more details on changing between ARM and Thumb state, refer to Chapter 7
Interworking ARM and Thumb.

10.3.11 Entering C code

It is now safe to call C code, for example:

IMPORT C_Entry
BL C_Entry

Notes on using the main function

When building a ROM image using the Embedded C Library, call the C entry point
something other than main(), for example C_entry or ROM_entry.

When the compiler compiles a function called main(), it generates a reference to the
symbol __main to force the linker to include the basic C run-time system from the
semihosting ANSI C library. If you are not linking with the C library (when building the
ROM), this causes an error.

If you use the main() function only when building an application version for debugging,
comment it out with an #ifdef when building a ROM image.
10-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
10.4 Example 1: Building a ROM to be loaded at address 0

This example shows how to construct a piece of code suitable for running from ROM.
In a real example, much more would have to go into the initialization section, but
because the initialization process is very hardware-specific, it has been omitted here.

The code for init.s and ex.c is in the Examples\ROM\init subdirectory of your SDT
install directory (normally c:\ARM250\Examples\ROM\init), and is included in Sample
code on page 10-12 for reference.

1. Compile the C file ex.c with the following command.

armcc -c ex.c (ARM)

tcc -c ex.c (Thumb)

where:

-c tells the compiler to compile only (not to link).

2. Assemble the initialization code init.s.

armasm -PD "ROM_AT_ADDRESS_ZERO SETL {TRUE}" init.s

or, for Thumb:

armasm -PD "THUMB SETL {TRUE}" -PD "ROM_AT_ADDRESS_ZERO SETL {TRUE}"
init.s

This tells the assembler to predefine (-PD) the symbol ROM_AT_ADDRESS_ZERO and to
give it the logical (or Boolean) value TRUE.

Note
 On UNIX systems, use single quotes (‘) instead of double quotes (“), or put a

backslash before any double quotes. For example:

\"ROM_AT_ADDRESS_ZERO SETL {TRUE}\"

The assembler file init.s tests this symbol and generates different code
depending on whether or not the symbol is set. If the symbol is set, it generates a
sequence of branches to be loaded directly over the vector area at address 0.

3. Link the image using the following command:

armlink -o rom0.axf -ro-base 0x0 -rw-base 0x10000000
-first init.o(Init) -map -info Sizes init.o ex.o

or, for Thumb:

armlink -o trom0.axf -ro-base 0x0 -rw-base 0x10000000
-First init.o(Init) -map -info Sizes init.o ex.o

where:

-o specifies the output file.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-9

Writing Code for ROM
-ro-base 0x0

tells the linker that the read-only or code segment will be placed at
0x00000000 in the address map.

-rw-base 0x10000000

tells the linker that the read-write or data segment will be placed at
0x10000000 in the address map. This is the base of the RAM in this
example.

-first init.o(Init)

tells the linker to place this area first in the image. On UNIX systems
you might need to put a backslash \ before each parenthesis.

-map tells the linker to print an area map or listing showing where each code
or data section will be placed in the address space. The output is shown
in Area listing for the code.

-info Sizes

tell the linker to print information on the code and data sizes of each
object file along with the totals for each type of code or data. The
output generated is shown in Output from -info Sizes option on
page 10-11.

4. Run the fromELF utility to produce a plain binary version of the image:

fromelf -nozeropad rom0.axf -bin rom0.bin (ARM)

fromelf -nozeropad trom0.axf -bin trom0.bin (Thumb)

where:

-nozeropad

tells the linker not to pad the end of the image with zeros to make space
for variables. This option should always be used when building ROM
images.

-bin specifies a binary output image with no header.

5. Load and execute the ROM image under ARMulator by starting armsd, ADW, or
ADU, then type the following on the command line:

getfile rom0.bin 0 (ARM)

getfile trom0.bin 0 (Thumb)

pc=0
go

10.4.1 Area listing for the code

Example 10-2 on page 10-11 shows the map (area listing) for the sample code:
10-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
Example 10-2 Area listing

Base Size Type RO? Name
0x00000000 e4 CODE RO !!! from object file init.o
0x000000e4 238 CODE RO C$$code from object file ex.o
0x0000031c 10 CODE RO C$$constdata from object file ex.o
0x10000000 4 DATA RW C$$data from object file ex.o
0x10000004 140 ZERO RW C$$zidata from object file ex.o

This shows that the linker places three code areas at successive locations starting from
0x0000000 (where the ROM is based), and two data areas starting at address
0x10000000 (where the RAM is based).

Note
 The figures may differ, depending on which version of the ARM Software Development
Toolkit is being used.

10.4.2 Output from -info Sizes option

The output from the -info Sizes option is shown in Example 10-3.

Example 10-3 Sample output

object file code inline inline `const' RW 0-Init debug
size data strings data data data data

init.o 228 0 0 0 0 0 0
ex.o 184 28 356 16 4 320 0
Object totals 412 28 356 16 4 320 0

The required RAM size is the sum of the RW data (4) and the 0-Init data (320), in this
case 324 bytes.

The required ROM size is the sum of the code size (412), the inline data size (28), the
inline strings (356), the const data (16) and the RW data (4). In this example, the
required ROM size is 816 bytes.

The RW data is included in both the ROM and the RAM counts. This is because the
ROM contains the initialization values for the RAM data.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-11

Writing Code for ROM
10.4.3 Sample code

Example 10-4 : init.s

;
; The AREA must have the attribute READONLY, otherwise the linker will not
; place it in ROM.
;
; The AREA must have the attribute CODE, otherwise the assembler will not
; allow any code in this AREA
;
; Note the '|' character is used to surround any symbols which contain
; non standard characters like '!'.
 AREA Init, CODE, READONLY
; Now some standard definitions...
Mode_USR EQU 0x10
Mode_IRQ EQU 0x12
Mode_SVC EQU 0x13
I_Bit EQU 0x80
F_Bit EQU 0x40
; Locations of various things in our memory system
RAM_Base EQU 0x10000000 ; 64k RAM at this base
RAM_Limit EQU 0x10010000
IRQ_Stack EQU RAM_Limit ; 1K IRQ stack at top of memory
SVC_Stack EQU RAM_Limit-1024 ; followed by SVC stack
USR_Stack EQU SVC_Stack-1024 ; followed by USR stack
; --- Define entry point
 EXPORT __main ; defined to ensure that C runtime system
__main ; is not linked in
 ENTRY
; --- Setup interrupt / exception vectors
 IF :DEF: ROM_AT_ADDRESS_ZERO
; If the ROM is at address 0 this is just a sequence of branches
 B Reset_Handler
 B Undefined_Handler
 B SWI_Handler
 B Prefetch_Handler
 B Abort_Handler
 NOP ; Reserved vector
 B IRQ_Handler
 B FIQ_Handler
 ELSE
; Otherwise, copy a sequence of LDR PC instructions over the vectors
; (Note: Copy LDR PC instructions because branch instructions
; could not simply be copied, the offset in the branch instruction
; would have to be modified so that it branched into ROM. Also, a
; branch instructions might not reach if the ROM is at an address
; > 32M).
10-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
 MOV R8, #0
 ADR R9, Vector_Init_Block
 LDMIA R9!, {R0-R7}
 STMIA R8!, {R0-R7}
 LDMIA R9!, {R0-R7}
 STMIA R8!, {R0-R7}
; Now fall into the LDR PC, Reset_Addr instruction which will continue
; execution at 'Reset_Handler'
Vector_Init_Block
 LDR PC, Reset_Addr
 LDR PC, Undefined_Addr
 LDR PC, SWI_Addr
 LDR PC, Prefetch_Addr
 LDR PC, Abort_Addr
 NOP
 LDR PC, IRQ_Addr
 LDR PC, FIQ_Addr
Reset_Addr DCD Reset_Handler
Undefined_Addr DCD Undefined_Handler
SWI_Addr DCD SWI_Handler
Prefetch_Addr DCD Prefetch_Handler
Abort_Addr DCD Abort_Handler

DCD 0 ; Reserved vector
IRQ_Addr DCD IRQ_Handler
FIQ_Addr DCD FIQ_Handler
 ENDIF
; The following handlers do not do anything useful in this example.
;
Undefined_Handler
 B Undefined_Handler
SWI_Handler
 B SWI_Handler
Prefetch_Handler
 B Prefetch_Handler
Abort_Handler
 B Abort_Handler
IRQ_Handler
 B IRQ_Handler
FIQ_Handler
 B FIQ_Handler
; The RESET entry point
Reset_Handler
; --- Initialize stack pointer registers
; Enter IRQ mode and set up the IRQ stack pointer

MOV R0, #Mode_IRQ:OR:I_Bit:OR:F_Bit ; No interrupts
 MSR CPSR_c, R0
 LDR R13, =IRQ_Stack
; Set up other stack pointers if necessary
 ; ...
; Set up the SVC stack pointer last and return to SVC mode
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-13

Writing Code for ROM
MOV R0, #Mode_SVC:OR:I_Bit:OR:F_Bit ; No interrupts
 MSR CPSR_c, R0
 LDR R13, =SVC_Stack
; --- Initialize memory system
 ; ...
; --- Initialize critical IO devices
 ; ...
; --- Initialize interrupt system variables here
 ; ...
; --- Initialize memory required by C code

IMPORT |Image$$RO$$Limit| ; End of ROM code (=start of ROM data)
IMPORT |Image$$RW$$Base| ; Base of RAM to initialize
IMPORT |Image$$ZI$$Base| ; Base and limit of area

 IMPORT |Image$$ZI$$Limit| ; to zero initialize
LDR r0, =|Image$$RO$$Limit| ; Get pointer to ROM data
LDR r1, =|Image$$RW$$Base| ; and RAM copy
LDR r3, =|Image$$ZI$$Base| ; Zero init base => top of initialized data
CMP r0, r1 ; Check that they are different
BEQ %F1

0 CMP r1, r3 ; Copy init data
LDRCC r2, [r0], #4
STRCC r2, [r1], #4
BCC %B0

1 LDR r1, =|Image$$ZI$$Limit| ; Top of zero init segment
MOV r2, #0

2 CMP r3, r1 ; Zero init
STRCC r2, [r3], #4
BCC %B2

; --- Enable interrupts
; Now safe to enable interrupts, so do this and remain in SVC mode
 MOV R0, #Mode_SVC:OR:F_Bit ; Only IRQ enabled
 MSR CPSR_c, R0
; --- Now change to User mode and set up User mode stack.

MOV R0, #Mode_USR:OR:I_Bit:OR:F_Bit
MSR CPSR_c, R0
LDR sp, =USR_Stack

; --- Now enter the C code
IMPORT C_Entry

[:DEF:THUMB
ORR lr, pc, #1
BX lr
CODE16 ; Next instruction will be Thumb

]
BL C_Entry

; A real application wouldn't normally be expected to return, however
; in case it does, the debug monitor swi is used to halt the application.

MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
[:DEF: THUMB

SWI 0xAB ; Angel semihosting Thumb SWI
10-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
|
SWI 0x123456 ; Angel semihosting ARM SWI

]
END

Example 10-5 : ex.c

#ifdef __thumb
/* Define Angel Semihosting SWI to be Thumb one */
#define SemiSWI 0xAB
#else
/* Define Angel Semihosting SWI to be ARM one */
#define SemiSWI 0x123456
#endif
/* Use the following Debug Monitor SWIs to write things out
 * in this example
 */
/* Write a character */
__swi(SemiSWI) void _WriteC(unsigned op, const char *c);
#define WriteC(c) _WriteC (0x3,c)
/* Write a string */
__swi(SemiSWI)void _Write0(unsigned op, const char *string);
#define Write0(string) _Write0 (0x4,string)
/* Exit */
__swi(SemiSWI) void _Exit(unsigned op, unsigned except);
#define Exit() _Exit (0x18,0x20026)
/* The following symbols are defined by the linker and define
 * various memory regions which may need to be copied or initialized
 */
extern char Image$$RO$$Limit[];
extern char Image$$RW$$Base[];
/* Define some more meaningful names here */
#define rom_data_base Image$$RO$$Limit
#define ram_data_base Image$$RW$$Base
/* This is an example of a pre-initialized variable. */
static unsigned factory_id = 0xAA55AA55; /* Factory set ID */
/* This is an example of an uninitialized (or zero-initialized) variable */
static char display[8][40]; /* Screen buffer */
static const char hex[17] = "0123456789ABCDEF";
static void pr_hex(unsigned n)
{
 int i;
 for (i = 0; i < 8; i++) {
 WriteC(&hex[n >> 28]);
 n <<= 4;
 }
}

ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-15

Writing Code for ROM
void C_Entry(void)
{
 if (rom_data_base == ram_data_base) {
 Write0("Warning: Image has been linked as an application.\r\n");
 Write0(" To link as a ROM image, link with the options\r\n");

Write0(" -RO <rom-base> -RW <ram-base>\r\n");
 }
 Write0("'factory_id' is at address ");
 pr_hex((unsigned)&factory_id);
 Write0(", contents = ");
 pr_hex((unsigned)factory_id);
 Write0("\r\n");
 Write0("'display' is at address ");
 pr_hex((unsigned)display);
 Write0("\r\n");
 Exit();
}

10-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
10.5 Example 2: Building a ROM to be entered at its base address

This example shows how to construct a ROM image, where the ROM is normally
located at a non-zero address, but is mapped to address 0x0 on reset.

The code for init.s and ex.c is in the Examples\ROM\init subdirectory of your SDT
install directory (normally c:\ARM250\Examples\ROM\init), and are included in Sample
code on page 10-12 for reference.

10.5.1 Building the ROM image

Follow this procedure to build the ROM image:

1. Compile the C file ex.c with the following command.

armcc -c ex.c (ARM)

tcc -c ex.c (Thumb)

where:

-c tells the compiler not to link.

2. Assemble the initialization code init.s.

armasm init.s

or, for Thumb:

armasm -PD "THUMB SETL {TRUE}" init.s

3. Build the ROM image using armlink.

armlink -o ram0.axf -ro-base 0xf0000000 -rw-base 0x10000000
-first init.o(Init) -map -info Sizes init.o ex.o

or, for Thumb:

armlink -o tram0.axf -ro-base 0xf0000000 -ro-base 0x10000000
-First init.o(Init) -map -info Sizes init.o ex.o

The only difference between this and the command used in Example 1 is that here
you use -ro 0xf0000000 to specify the ROM base address.

4. Run the fromELF utility to produce a plain binary version of the image:

fromelf -nozeropad ram0.axf -bin ram0.bin (ARM)

fromelf -nozeropad tram0.axf -bin tram0.bin (Thumb)

5. Load and execute the ROM image under ARMulator by starting armsd, ADW, or
ADU, then type the following on the command line:

getfile ram0.bin 0xf0000000 (ARM)

getfile tram0.bin 0xf0000000 (Thumb)
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-17

Writing Code for ROM
This tells armsd to load the file ram0 at address 0xf0000000 in the ARMulator
memory map.

6. Check that the ROM has been loaded correctly by disassembling its first section:

list 0xf0000000

Sample output is shown in Sample disassembly below.

7. Set the program counter to the base of the ROM image, then run it:

pc=0xf0000000
go

This produces the following output:

'factory_id' is at address 10000000, contents = AA55AA55
'display' is at address 10000004

10.5.2 Sample disassembly

Example 10-6 shows a disassembly of the first part of init.s

Example 10-6 : Disassembly of init.s

0xf0000000: 0xe3a08000 :mov r8,#0
0xf0000004: 0xe28f900c :add r9,pc,#0xc
0xf0000008: 0xe8b900ff :ldmia r9!,{r0-r7}
0xf000000c: 0xe8a800ff :stmia r8!,{r0-r7}
0xf0000010: 0xe8b900ff :ldmia r9!,{r0-r7}
0xf0000014: 0xe8a800ff :stmia r8!,{r0-r7}
0xf0000018: 0xe59ff018 :ldr pc,0xf0000038 ; = #0xf0000070
0xf000001c: 0xe59ff018 :ldr pc,0xf000003c ; = #0xf0000058
0xf0000020: 0xe59ff018 :ldr pc,0xf0000040 ; = #0xf000005c
0xf0000024: 0xe59ff018 :ldr pc,0xf0000044 ; = #0xf0000060
0xf0000028: 0xe59ff018 :ldr pc,0xf0000048 ; = #0xf0000064
0xf000002c: 0xe1a00000 :nop
0xf0000030: 0xe59ff018 :ldr pc,0xf0000050 ; = #0xf0000068
0xf0000034: 0xe59ff018 :ldr pc,0xf0000054 ; = #0xf000006c
0xf0000038: 0xf0000070 ...p :andnv r0,r0,r0,ror r0
0xf000003c: 0xf0000058 ...X :andnv r0,r0,r8,asr r0

Note
 If the disassembly produces output that has each word byte-reversed (that is, the word
at 0xf0000000 is 0x0080a0e3 instead of 0xe3a08000), there is a problem with
endianness. Check that your compiler, assembler, and debugger are all configured for
the same endianness.
10-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
10.6 Example 3: Using the embedded C library

This example shows an application that makes use of a function from the Embedded C
library, in this case, sprintf().

The code for startup.s and print.c is in the Examples\rom\embed_lib subdirectory of
your SDT installation directory (normally c:\ARM250\Examples\rom\embed_lib), and is
included below for reference.

For more information on the Embedded C library, refer to Chapter 4 The C and C++
Libraries in the ARM Software Development Toolkit Reference Guide.

10.6.1 Initialization code

Before any C code can be called, some startup code to initialize the system is needed.
For the ARMulator, all that is required is to initialize the stack pointer. The initialization
code is called startup.s and is shown in Code listings for example 3 on page 10-20.

10.6.2 C code

The Embedded C Library does not contain printf(), so here, Angel SWIs are used
together with sprintf() to display text onto the console. This mechanism is portable
across ARMulator, Angel, EmbeddedICE, and Multi-ICE.

The C code to print ten strings using sprintf() is shown in full in Code listings for
example 3 on page 10-20.

10.6.3 Compiling, linking, and running the program

Follow these steps to compile and link the program:

1. Compile print.c by typing:

armcc print.c (ARM)

tcc print.c (Thumb)

2. Assemble startup.s by typing:

armasm startup.s (ARM)

armasm -16 startup.s (Thumb)

3. Type:

armlink -o print.axf -info totals startup.o print.o
c:\ARM250\lib\embedded\armlib_cn.32l

or, for Thumb:
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-19

Writing Code for ROM
armlink -o print.axf -info totals startup.o print.o
c:\ARM250\lib\embedded\armlib_i.16l

4. Start armsd, ADW, or ADU and type the following on the command line:

load print.axf
go

10.6.4 Code listings for example 3

Example 10-7 : startup.s

 AREA asm_code, CODE
; If assembled with ARMASM -16 the variable {CONFIG} will be set to 16
; If assembled with ARMASM the variable {CONFIG} will be set to 32
; Set the variable THUMB to TRUE or false depending on whether the
; file is being assembled for ARM or Thumb.
 GBLL THUMB
 [{CONFIG} = 16
THUMB SETL {TRUE}
; If assembling with ARMASM -16 go into 32 bit mode as the ARMulator will
; start up the program in ARM state.
 CODE32
 |
THUMB SETL {FALSE}
]
 IMPORT C_Entry
 ENTRY
; Set up the stack pointer to point to the 512K.
 MOV sp, #0x80000
; Get the address of the C entry point.
 LDR lr, =C_Entry
 [THUMB
; If building a Thumb version pass control to C_entry using the BX
; instruction so the processor will switch to THUMB state.
 BX lr
 |
; Otherwise just pass control to C_entry in ARM state.
 MOV pc, lr
]
 END
10-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
Example 10-8 : print.c

#include <stdio.h>
#ifdef __thumb
/* Define Angel Semihosting SWI to be Thumb one */
#define SemiSWI 0xAB
#else
/* Define Angel Semihosting SWI to be ARM one */
#define SemiSWI 0x123456
#endif
/* We use the following Debug Monitor SWIs in this example */
/* Write a string */
__swi(SemiSWI) void _Write0(unsigned op, char *string);
#define Write0(string) _Write0 (0x4,string)
/* Exit */
__swi(SemiSWI) void _Exit(unsigned op, unsigned except);
#define Exit() _Exit (0x18,0x20026)
void C_Entry(void)
{
 int i;
 char buf[20];
 for (i = 0; i < 10; i++) {
 sprintf(buf, "Hello, World %d\n", i);
 Write0(buf);
 }
 Exit();
}

ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-21

Writing Code for ROM
10.7 Example 4: Simple scatter loading example

Scatter loading provides a more flexible mechanism for mapping code and data onto
your memory map than the armlink -ro-base and -rw-base options. These options are
described in detail in Chapter 6 Linker of the ARM Software Development Toolkit
Reference Guide.

The following example shows a scatter loading application that runs under the
ARMulator, and also uses sprintf() from the Embedded C library. The example
displays the linker-generated scatter symbols on the screen. It is not normally necessary
to access these linker symbols in application code (they are only really needed in
initialization code). The linker symbols are accessed here for illustration only.

The code for this example is in Examples\rom\ARMul_Scatter in your SDT installation
directory (normally c:\ARM250\Examples\rom\ARMul_Scatter).

10.7.1 Memory map

This example shows:

• FLASH is 0 on RESET and is remapped to 0x04000000 after RESET

• 32bitRAM is at 0x00000000 to hold the exception vectors

• 16bitRAM is at 0x02080000 for the storage of program variables.

Figure 10-3 Memory map for example 4

+)�������� ����

�����

�	��������

������	�1����2�����

3������

4��������

���������������

�	�������

�	��������

�	�������

�	�
������

��������

� ������

4��������

���������������

+)��������'����

������	�1����2�����

� ������

��������

"5

4��������

���������������

+)��������'����

������	�1����2�����

������67��(
�8����+�+�

�	�
����! "#�����	�����!$���"�"�

�����

�����
10-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
10.7.2 Scatter load description file

The scatter load description file shown in Example 10-9 defines:

• one load region, FLASH

• three execution regions:

— FLASH (at 0x04000000)

— 32bitRAM (at 0x0)

— 16bitRAM (at 0x02080000).

On reset, an aliased copy of FLASH is re-mapped (by hardware) to address zero (as
described in Memory map considerations on page 10-3). Following reset, 32bitRAM is
mapped to address zero, by the first few instructions in boot.o.

The 32bitRAM region might be fast on-chip (internal) RAM, and is typically used for
code that must be executed quickly. Here, the exception vectors of vectors.o get
relocated (copied) from FLASH to 32bitRAM. It can also be advantageous to locate the
stack here, if enough memory is available.

The 16bitRAM region might be slower off-chip (external) DRAM, and is typically used
for less frequently accessed RW variables and ZI data. Here, the RW and ZI areas of
C_main and C_func are relocated/initialized to the region 16bitRAM.

All other read-only code (* (+RO)), for example region initialization and library code, is
executed from FLASH, by using a wildcard in the description file.

Example 10-9 scat.txt

FLASH 0x04000000 0x04000000
{

FLASH 0x04000000
 {

boot.o (Boot,+First)
* (+RO)

}
32bitRAM 0x00000000
{

vectors.o (Vect,+FIRST)
}
16bitRAM 0x02080000
{

C_main.o (+RW,+ZI)
C_func.o (+RW,+ZI)

}
}

ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-23

Writing Code for ROM
10.7.3 Initialization code

This example illustrates the use of boot code (boot.s), which is an extended version of
the init.s code used in Example 1: Building a ROM to be loaded at address 0 on
page 10-9). The boot code defines the ENTRY point and initializes the stack pointers
for each mode.

10.7.4 Initializing execution regions

This example uses region initialization code (regioninit.s) to perform all the
initialization required before branching to the main C application code. The region
initialization code copies RO code and RW data from ROM to RAM, and
zero-initializes the ZI data areas used by the C code.

The function InitRegions() in regioninit.s uses a macro called RegionInit to initialize
the specified execution regions. These execution region names match those given in the
scatter load description file scat.txt:

macro_RegionInit 32bitRAM
macro_RegionInit 16bitRAM

To re-use this code in your own scatter-loaded applications, call the macro RegionInit
for each of your execution regions.

Note
 The initialization code should move all the execution regions from their load addresses
to their execution addresses before creating any zero-initialized areas. This ensures that
the creation of a zero-initialized area does not overwrite any execution region contents
before they are moved from their load address to their execution address. Failure to do
so may produce unpredictable results when the image executes.

10.7.5 C code

The C entry point is called C_Entry(), not main(), to prevent the semihosted ANSI C
libraries being pulled in during the link step, because the Embedded C libraries are
being used here instead.

The Embedded C libraries do not contain printf(), so here Angel SWIs together with
sprintf() are used to display text onto the console.

This mechanism is portable across ARMulator, Angel, EmbeddedICE, and Multi-ICE.
10-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
10.7.6 Building the example

To build the example, do one of the following:

• load the supplied scatter.apj into APM

• use a batch file or makefile containing the following:

armasm -g boot.s -list
armasm -g regioninit.s -list
armasm -g vectors.s -list
armcc -g -c C_main.c
armcc -g -c C_func.c
armlink boot.o regioninit.o vectors.o C_main.o C_func.o
-info totals -info sizes -scatter scat.txt -list out.txt
 -map -symbols -xref c:\ARM250\lib\embedded\armlib_cn.321
-o scatter.axf

fromelf -nozeropad scatter.axf -bin scatter.bin

This creates:

• an ELF debug image (scatter.axf) for loading into a debugger (ADW, ADU, or
armsd)

• a binary ROM image (scatter.bin) suitable for downloading into the Flash
memory of a PID board.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-25

Writing Code for ROM
10.8 Example 5: Complex scatter load example

This example shows a more complex scatter loading application that runs from the Flash
memory on an ARM Development Board (PID7T). It reads the switches S3 connected
to the Parallel Port and flashes LEDs. It requires the link LK8 to be closed and the LK11
link field to be correctly configured. Refer to the documentation for the ARM
Development Board for more information.

The code for this example is in Examples\rom\PID_Scatter in your SDT installation
directory (normally c:\ARM250\Examples\rom\PID_Scatter).

Note
 This code is a modified version of the code provided in the sample code suite of the
ARM Development Board.

10.8.1 Memory map

This example shows:

• FLASH is 0 on RESET and is remapped to 0x04000000 after RESET

• Fast SSRAM is at 0x0000 to hold the exception vectors and the exception
handlers

• SRAM is at 0x02000 for the storage of program variables.

Figure 10-4 Memory map for example 5

+)�������� ����

�����

�	��������

������	�1����2�����

3������

4��������

�	�������

�	��������

�	��������

�	�
������

�����

����

4��������

+)�������� ����

����

�����

"5

4��������

+)�������� ����

���������������

+)��������(���	�

������67��(
�8����+�+�

�	�
����! "#�����	�����!$���"�"�

������	�1����2�����

+)��������(���	�

���������������

������	�1����2�����

+)��������(���	�

���������������
�����
10-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
10.8.2 Scatter load description file

The scatter load description file shown in Example 10-10 defines one load region
(FLASH) and three execution regions:

• FLASH (at 0x04000000)

• SSRAM (at 0x0000)

• SRAM (at 0x2000).

On reset, an aliased copy of FLASH is re-mapped (by hardware) to address zero.
Following reset, SRAM is mapped to address zero, by the first few instructions in
boot.o.

The SSRAM area might be fast on-chip (internal) 32-bit RAM, and is typically used for
the stack, and code that must be executed quickly. The exception vectors (in vectors.o)
and interrupt handler (in C_int_handler.o) are relocated (copied) from FLASH to (fast)
SSRAM at address 0x0000 for speed.

SRAM might be slower off-chip (external) 16-bit DRAM or SRAM, and is typically
used for less frequently accessed RW variables and ZI data. Here, the RW variables and
ZI data of the main program code (in C_main.c) get copied/initialized in SRAM at
address 0x2000.

All other read-only code, (* (+RO)), for example region initialization and library code,
is executed from FLASH, by using a wildcard in the description file.

Example 10-10 scat.txt

FLASH 0x04000000 0x04000000
{

FLASH 0x04000000
 {

boot.o (Boot,+First)
* (+RO)

}
SSRAM 0x0000
{

vectors.o (Vect,+FIRST)
C_int_handler.o (+RO)

}
SRAM 0x2000
{

C_main.o (+RW,+ZI)
}

}

ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-27

Writing Code for ROM
10.8.3 Initialization code

This example illustrates the use of boot code (boot.s), as described in Initialization code
on page 10-24.

Note
 The initialization code should move all the execution regions from their load addresses
to their execution addresses before creating any zero-initialized areas. This ensures that
the creation of a zero-initialized area does not overwrite any execution region contents
before they are moved from their load address to their execution address. Failure to do
so may produce unpredictable results when the image executes.

10.8.4 Initializing execution regions

This example uses region initialization code (regioninit.s) as in Initializing execution
regions on page 10-24, but changes the macro invocations in the scatter load description
file:

macro_RegionInit SSRAM
macro_RegionInit SRAM

10.8.5 Building the example

To build the example, do one of the following:

• load the supplied scatter.apj into APM

• use a batch file or makefile containing the following:
armasm -g boot.s -list
armasm -g regioninit.s -list
armasm -g vectors.s -list
armcc -g -c C_main.c
armcc -g -c C_int_handler.c
armlink boot.o regioninit.o vectors.o C_main.o C_func.o -info totals -info
sizes -scatter scat.txt -list out.txt -map -symbols -xref
c:\ARM250\lib\embedded\armlib_cb.321 -o scatter.axf
fromelf -nozeropad scatter.axf -bin scatter.bin

This creates:

• an ELF debug image (scatter.axf) for loading into a debugger (ADW, ADU, or
armsd)

• a binary ROM image (scatter.bin) suitable for downloading into the Flash
memory of a PID board.
10-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
10.8.6 Running the example

Follow these steps to execute/debug the image with ADW, EmbeddedICE and a PID
board:

1. Ensure REMAP link LK18 is OUT to Flash-download.

2. Switch on the power to the PID board and launch ADW.

3. In ADW, select Configure debugger from the Options menu and select
remote_a.

4. Select Flash download from the File menu and enter the name of the ROM image
(scatter.bin).

The Command Window displays:

ARM Flash Programming Utility
AT29C040A recognised
Input File Is : - (your_ROM_filename)
Please enter the number of the first sector to write
Default is to start at sector 0
Start at sector 0x0

5. Click Enter to start the Flash programming.

The Command Window displays the progress as the Flash is programmed, and a
message when the operation is complete:

Flash written and verified successfully

6. Exit ADW and switch off the power to the PID board.

7. Put REMAP link LK18 IN to execute from Flash.

8. Switch on the power to the PID board and launch ADW.

9. In ADW, select Load from the File menu and enter the name of the debug image
(scatter.axf).

10. Select Debugger Internals from the View menu and make vector_catch=0, to
free a watchpoint unit.

11. You can now debug your ROM code (for example, set breakpoints, single-step,
view backtrace).

12. To break on each interrupt, put a breakpoint on line 112 of C_main.c:

if (IntCT1)
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-29

Writing Code for ROM
10.9 Scatter loading and long-distance branching

Long-distance branching is defined for ARM and Thumb architectures as follows:

• The branch instructions in the ARM instruction set allow a branch forwards or
backwards by up to 32MB. A subroutine call is a variant of the standard branch.
As well as allowing a branch forwards or backwards up to 32MB, the BL (Branch
with Link) instruction preserves the return address in register 14 (link register, lr).

• The Thumb instruction set has much shorter branch ranges:

— Conditional instructions have a range of 256 bytes

— Unconditional branches have a range of 2048 bytes

— The BL (long branch with link) instruction has a range of 4MB.

10.9.1 Range restrictions

The linker ensures that no branch or subroutine call violates these range restrictions. If
you place your execution regions in such a way as to require inter-region branches
beyond the range, the linker generates an error message stating:

Relocated value too big for instruction sequence

There are two ways to work around this restriction:

• Using function pointers in code, removing the dependence on branch ranges.

• Calling the out-of-range routines through assembly language veneers.

Function pointers

For example, if the application currently has a function:

int func(int a, int b);

that is invoked as:

func(a, b);

you can change this using function pointers into:

typedef int FuncType(int, int);
FuncType *fn = func;

and invoke the function as:

fn(a, b);
10-30 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
Assembly language veneers

If you use assembly language veneers, you can write the function as:

asm_func(a,b);

where asm_func is an assembly language routine.

Because ARM and Thumb assembly languages differ, the code for the veneers is
slightly different.

The following is the assembly language veneer for ARM:

AREA arm_longbranch_veneers, CODE, READONLY
EXPORT asm_func
IMPORT func

asm_func
LDR pc, addr_func

addr_func
DCD func
END

The following is the assembly language veneer for Thumb:

AREA thumb_longbranch_veneers, CODE, READONLY
EXPORT asm_func
IMPORT func

asm_func
SUB sp,#4
PUSH {r0}
LDR r0, addr_func
STR r0, [sp,#4]
POP {r0,pc}
ALIGN

addr_func
DCD func
END

Note
 You must ensure that the file containing these veneers is within range of the module
calling asm_func(a,b).
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-31

Writing Code for ROM
10.10 Converting ARM linker ELF output to binary ROM formats

By default, the ARM SDT 2.50 linker produces industry-standard ELF images. For
embedded applications, the image usually needs to be converted into a binary format
suitable for an EPROM programmer.

For more information on the ARM ELF implementation, refer to the ELF
documentation in c:\ARM250\PDF\specs. For the command-line options for fromELF, see
Chapter 8 Toolkit Utilities in the ARM Software Development Toolkit Reference Guide.

Follow these steps to add a FromELF build step to a project template:

1. Select the root of the project tree view. Choose Edit variables for project.apj...
from the Project menu. The Edit variables dialog is displayed.

2. Find the variable named build_target and change its value from
<$projectname>.axf to <$projectname>.bin and click OK.

3. Choose Edit Project template from the Project menu. The Project Template
Editor dialog is displayed.

4. Select Edit Details... and add (ROM) to the title.

5. Create a CreateROM build step by clicking on the New... button in the Project
template Editor dialog.

The Create a new build step pattern dialog is displayed.

6. Type CreateROM in the Name field, and click OK. An empty Edit Build Step
Pattern dialog for CreateROM appears.

7. In the Command Lines field, type (on one line):

<fromelf> <FROMELFOPTIONS> <$projectname>.axf -bin <$projectname>.bin

The -bin option produces a Plain Binary image, suitable for blowing into
ROM.Other output formats are also available, for example:

• Motorola 32 bit Hex (-m32)

• Intel 32 bit Hex (-i32)

• Intellec Hex (-ihf).

8. In the Input Partition, type:

Image

9. In the Input Pattern, type:

<$projectname>.axf

This should match the Link build step output pattern.
10-32 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
10. Click Add.

11. In the Output Partition, type:

Eprom

12. In the Output Pattern, type:

<$projectname>.bin

This should match the Link build step output pattern.

13. Click Add, then OK.

14. Select Edit variables for project.apj... from the Project menu.

a. In the Name field of the Edit variables dialog, type
FROMELFOPTIONS

b. In the Value field, type your chosen options, for example:
-nozeropad

15. Click OK.

16. If you want to re-use this template for another project, save the template with the
Save As Template option from the File menu.

17. Rebuild the project. If you see an error message like:

"project.apj"; No build target named '<$projectname>.bin'

a. Remove all source files from your project by highlighting the files, then
pressing delete.

b. Replace all source files into your project using the Add Files to Project
from the Project menu.

10.10.1 Multiple output formats

This example uses -bin to produce a plain binary image, suitable for blowing into ROM.
Other output formats are also possible (Motorola 32 bit Hex, Intel 32 bit Hex, and
Intellec Hex. Multiple outputs are also possible. For example, step 7 might read (on one
line):

<fromelf> <FROMELFOPTIONS> <$projectname>.axf -m32 <$projectname>.m32 -bin
<$projectname>.bin

10.10.2 Configuration

The Project → Tool configuration menu will now contain an entry fromelf. You will
not need to use this configuration tool, because you can change the fromELF options
using the template variables.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-33

Writing Code for ROM
10.11 Troubleshooting hints and tips

This section provides solutions to some common errors or problems. The errors are
organized in the following categories:

• Problems with the Write0() SWI call

• Linker errors

• Load/run errors

• ARMulator errors

10.11.1 Replacing the Write0() SWI call

Users of EmbeddedICE 2.04 or earlier may find problems with the semihosting SWI
SYS_WRITE0, used by the examples in this chapter to print to the debugger console.
Upgrade to the latest ICEagent (currently 2.07) to remedy this problem.

It is possible to make a temporary workaround to this problem by using the following
code to replace the Write0() SWI call, though the recommended fix is to upgrade to
ICEAgent 2.07.

/* Write a character */ __swi(SemiSWI) void _WriteC(unsigned op, char
*c);#define WriteC(c) _WriteC (0x3,c)void Write0 (char *string){ int pos = 0;
while (string[pos] != 0)WriteC(&string[pos++]);}

10.11.2 Linker errors

These are common linker errors:

Undefined symbols: __rt_... or __16__rt_...

The linker reports a number of undefined symbols of the form:

__rt_... or __16__rt_...

Cause

These are runtime support functions called by compiler-generated code to perform tasks
that cannot be performed simply in ARM or Thumb code (for example, integer division
or floating-point operations).

For example, the following code generates a call to runtime support function __rt_sdiv
to perform a division.

int test(int a, int b)
{
 return a / b;
}

10-34 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM
Solution

Link with a C library so that these functions are defined.

Undefined symbols: __rt_stkovf_split_big or __rt_stkovf_split_small

The linker reports one of the symbols __rt_stkovf_split_big or
__rt_stkovf_split_small as being undefined.

Cause

You have compiled your C code with software stack checking enabled. The C compiler
generates code that calls one of the above functions when stack overflow is detected.

Solutions

• Recompile your C code with stack checking disabled. Stack checking is disabled
by default.

• Link with a C library that provides support for stack limit checking. This is
usually possible only in an application environment because C library stack
overflow handling code relies heavily on the application environment.

• Write a pair of functions __rt_stkovf_split_big and __rt_stkovf_split_small,
the code for which usually generates an error for debugging purposes. This
effectively means that the application has a fixed size stack.

The code might look similar to the following:

EXPORT __rt_stkovf_split_big
EXPORT __rt_stkovf_split_small

__rt_stkovf_split_big
__rt_stkovf_split_small
 ADR R0, stack_overflow_message
 SWI Debug_Message ; System-dependent SWI
 ; to write a debugging
forever ; message and loop forever.
 B forever
stack_overflow_message

DCB "Stack overflow", 0

Attribute conflict in the linker

The linker generates an error similar to the following:

ARM Linker: (Warning) Attribute conflict between AREA
test2.o(C$$code) and image code.
ARM Linker: (attribute difference = {NO_SW_STACK_CHECK}).
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-35

Writing Code for ROM
Cause

Parts of your code have been compiled or assembled with software stack checking
enabled and parts without. Alternatively, you have linked with a library that has
software stack checking enabled whereas your code has it disabled, or vice versa.

Solution

Recompile your C code with stack checking disabled. Stack checking is disabled by
default. Link with a library built with the same options.

undefined __main

The linker reports __main as being undefined.

Cause

When the compiler compiles the function main(), it generates a reference to the symbol
__main to force the linker to include the basic C runtime system from the ANSI
semihosted C library. If you are not linking with an ANSI semihosted C library and have
a function main() you may get this error.

Solution

This problem may be fixed in one of the following ways:

• If the main() function is used only when building an application version of your
ROM image for debugging purposes, comment it out with an #ifdef when
building a ROM image.

• When building a ROM image and linking with the Embedded C Library, call the
C entry point something other than main(), such as C_Entry or ROM_Entry.

• If you do need a function called main(), define a symbol __main in your ROM
initialization code. Usually this is defined to be the entry point of the ROM image,
so you should define it just before the ENTRY directive as follows:

EXPORT __main
ENTRY

__main
B main
10-36 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 11
Benchmarking, Performance Analysis, and
Profiling

This chapter describes various ways of measuring performance, enabling you to
improve any sections of code that are inefficient. It contains the following sections:

• About benchmarking and profiling on page 11-2

• Measuring code and data size on page 11-3

• Performance benchmarking on page 11-6

• Improving performance and code size on page 11-16

• Profiling on page 11-19.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-1

Benchmarking, Performance Analysis, and Profiling
11.1 About benchmarking and profiling

This chapter explains how to run benchmarks on the ARM processor, and shows you
how to use the profiling facilities to help improve the size and performance of your
code. It makes extensive use of the example programs in the ARM Software
Development Toolkit, and contains a number of practical exercises for you to follow.
You should therefore have access to the examples directory of the toolkit, and the ARM
software tools themselves, while working through it.

When developing application software or comparing the ARM with another processor,
it is often useful to measure:

• code and data sizes

• overall execution time

• time spent in specific parts of an application.

Such information enables you to:

• compare the ARM's performance against other processors in benchmark tests

• make decisions about the required clock speed and memory configuration of a
proposed system

• pinpoint where an application can be streamlined, leading to a reduction in system
memory requirements

• identify performance-critical sections of code that you can then optimize, either
by using a more efficient algorithm, or by rewriting in assembly language.
11-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling
11.2 Measuring code and data size

To measure code size, do not look at the linked image size or object module size, as
these include symbolic information that is not part of the binary data. Instead, use one
of the following armlink options:

-info sizes this option gives a breakdown of the code and data sizes of each
object file or library member making up an image

-info totals this option gives a summary of the total code and data sizes of all
object files and all library members making up an image

11.2.1 Interpreting size information

The information provided by the -info sizes and -info totals options can be broken
down into:

• code (or read-only) segment

• data (or read-write) segment

• debug data.

Code (or read-only) segment

code size Size of code, excluding any data that has been placed in the code segment
(see Table 11-1 on page 11-5).

inline data

Size of read-only data included in the code segment by the compiler.

Typically, this data contains the addresses of variables that are accessed
by the code, plus any floating-point immediate values or immediate
values that are too big to load directly into a register. It does not include
inline strings, which are listed separately (see Table 11-1 on page 11-5).

inline strings

Size of read-only strings placed in the code segment.

The compiler puts such strings here whenever possible to reduce runtime
RAM requirements.

const Size of any variables explicitly declared as const.

These variables are guaranteed to be read-only and so are placed in the
code segment by the compiler.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-3

Benchmarking, Performance Analysis, and Profiling
Data (or read-write) segment

RW data Size of read-write data. This is data that is read-write and also has an
initializing value. Read-write data occupies the displayed amount of
RAM at runtime, but also requires the same amount of ROM to hold the
initializing values that are copied into RAM on image startup.

0-init data

Size of read-write data that is zero-initialized at image startup.

Typically this contains arrays that are not initialized in the C source code.
Zero-initialized data requires the displayed amount of RAM at runtime
but does not require any space in ROM.

Debug data

debug data

Reports the size of any debugging data if the files are compiled with the
-g+ option.

Note
 There are totals for the debug data, even though the code has not been compiled for
source-level debugging, because the compiler automatically adds information to an AIF
file to allow stack backtrace debugging.

11.2.2 Calculating ROM and RAM requirements

Calculate the ROM and RAM requirements for your system as follows:

ROM Code size + inline data + inline strings + const data + RW data

RAM RW Data + 0-init data

In addition you must allow some RAM for stacks and heaps.

In more complex systems, you may require part (or all) of the code segment to be
downloaded from ROM into RAM at runtime. This increases the system RAM
requirements but could be necessary if, for example, RAM access times are faster than
ROM access times and the execution speed of the system is critical.

11.2.3 Code and data sizes example: Dhrystone

The Dhrystone application is located in the examples subdirectory of the ARM Software
Development Toolkit. Copy the files into your working directory.
11-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling
Using command-line tools:

Compile the Dhrystone files, without linking:

armcc -c -DMSC_CLOCK dhry_1.c dhry_2.c

The compiler produces a number of warnings that you can either ignore, or suppress
using the -w option. The warnings are generated because the Dhrystone application is
coded in Kernighan and Ritchie style C, rather than ANSI C.

Perform the link, with the -info totals option to give a report on the total code and data
sizes in the image, broken into separate totals for the object files and library files:

armlink -info totals dhry_1.o dhry_2.o -o dhry

Using the Windows tools

You can use this easier method if you use ADW and are running APM.

Load the Dhrystone project file dhry.apj into the ARM Project Manager (APM).

Change the project setting to produce a release build with a little-endian memory model,
using the ARM tools instead of the Thumb tools (see Configuring tools on page 2-20).

Click the Force Build button. This compiles and links the project, automatically
generating a summary of the total code and data sizes in the image.

Results

Your figures may differ, depending on the version of the compiler, linker, and library.

Table 11-1 Code and data sizes results

code
size

inline
data

inline
string

s

const
data

RW
data

0-init
data

debug
data

Object totals 2136 28 1536 0 48 10200 0

Library totals 33888 528 616 24 396 1132 0

Grand totals 36024 556 2152 24 444 11332 0
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-5

Benchmarking, Performance Analysis, and Profiling
11.3 Performance benchmarking

The basis for improving performance is to minimize the number of machine cycles
required to perform a task a specific number of times.

11.3.1 Measuring performance

There are two debugger internal variables that contain the cycle counts. These can be
displayed using the armsd print command, or by selecting Debugger Internals from
the ADW or ADU View menu:

$statistics

can be used to output any statistics that the ARMulator has been keeping.

$statistics_inc

shows the number of cycles of each type since the previous time
$statistics or $statistics_inc was displayed. This is only applicable for
armsd, or the command-line window in ADW or ADU.

$statistics_inc_w

outputs the difference between the current statistics and the point at
which you asked for the $statistics_inc_w window. This is only
applicable for ADW or ADU, not for armsd.

Make sure you have not compiled with source-level debugging enabled (armcc -g+),
because this causes sub-optimal code to be generated (larger and slower). The -01, -02
and -gt compiler options can reduce this. Refer to Chapter 2 The ARM Compilers in the
ARM Software Development Toolkit Reference Guide for more information on the effect
of debug and optimization options.

If your code makes use of floating-point mathematics, a considerable amount of time
may be spent in the floating-point code (libraries or FPE).

11.3.2 Cycle counting example: Dhrystone

In this example, the number of instructions executed by the main loop of the Dhrystone
application and the number of cycles consumed are determined. A suitable place to
break within the loop is the invocation of function Proc_5.

If you are using the command-line tools:

1. Load the executable, produced in Code and data sizes example: Dhrystone on
page 11-4, into the debugger:

armsd -nofpe dhry
11-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling
2. Set a breakpoint on the first instruction of Proc_5:

break @Proc_5

3. Type go at the armsd prompt to begin execution. When prompted, request at least
two runs through Dhrystone.

4. When the breakpoint at the start of Proc_5 is reached, display the system variable
$statistics (which gives the total number of instructions and cycles taken so far)
and restart execution:

print $statistics
go

5. When the breakpoint is reached again, you can obtain the number of instructions
and cycles consumed by one iteration:

print $statistics_inc

If you are using the Windows toolkit:

1. If you have not already done so, build the Dhrystone project as described in Code
and data sizes example: Dhrystone on page 11-4.

2. If you use ADW and are running APM then click on the Debug button to start
ADW and load the Dhrystone project. If you use ADU then start ADU and select
Load Image... from the File menu to load the Dhrystone project.

3. Disable floating point emulation. Select Options → Configure Debugger... →
Target → ARMulate and switch the FPE check box off.

4. Locate function Proc_5 by selecting Low Level Symbols from the View menu.

5. Double click on Proc_5 to open the Disassembly Window.

6. Toggle the breakpoint on Proc_5 in the Disassembly Window by selecting the
instruction, then clicking the Toggle breakpoint button on the toolbar.

7. Click the Go button to begin execution.

8. When prompted, request at least two runs through Dhrystone.

9. When the breakpoint set at main is reached, click Go again to begin execution of
the main application.

10. When the breakpoint at Proc_5 is reached, choose Debugger Internals from the
View menu.

11. Double click on the statistics_inc field to display the detail for this variable.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-7

Benchmarking, Performance Analysis, and Profiling
12. Click the Go button. When the breakpoint at Proc_5 is reached again, the contents
of the statistics_inc_w field is updated to reflect the number of instructions and
cycles consumed by one iteration of the loop.

Results

The results are shown in the following table:

S-cycles Sequential cycles. The CPU requests transfer to or from the same
address, or from an address that is a word or halfword after the preceding
address.

N-cycles Non-sequential cycles. The CPU requests transfer to or from an address
that is unrelated to the address used in the preceding cycle.

I-cycles Internal cycles. The CPU does not require a transfer because it is
performing an internal function (or running from cache).

C-cycles Coprocessor cycles.

F-cycles Fast clock cycles for cached processors (FCLK).

Note
 You may obtain slightly different figures, depending on the version of the compiler,
linker, or library in use, and the processor for which the ARMulator is configured.

11.3.3 Real-time simulation

The ARMulator also provides facilities for real-time simulation. To carry out such a
simulation, you must specify:

• the type and speed of the memory attached to the processor

• the speed of the processor.

Refer to Map files on page 11-9 for more information and examples.

While it is executing your program, the ARMulator counts the total number of clock
ticks taken. This allows you to determine how long your application would take to
execute on real hardware.

Table 11-2 Cycle counting results

Instructions S-cycles N-cycles I-cycles C-cycles F-cycles

358 427 188 64 0 0
11-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling
11.3.4 Reading the simulated time

When it performs a simulation, the ARMulator keeps track of the total time elapsed.
This value may be read either by the simulated program or by the debugger.

Reading the simulated time from assembler

To read the simulated clock from an assembly language program use the Angel
SYS_CLOCK SWI.

Reading the simulated time from C

From C, use the standard C library function clock(). This function returns the number
of elapsed centiseconds.

Reading the simulated time from the debugger

The internal variable $clock contains the number of microseconds since simulation
started. To display this value, use the command:

Print $clock

if you are using armsd, or select Debugger Internals from the View menu if you are
using ADW or ADU.

Note
 The $clock internal variable is unavailable if the processor clock frequency is set to
0.00. You must specify a processor clock frequency for ARMulator if you wish to read
the $clock variable. Select Options → Configure Debugger... → Target →
ARMulate → Configure... and use the ARMulator Configuration dialog.

11.3.5 Map files

The type and speed of memory in a simulated system is detailed in a map file. This
defines the number of regions of attached memory, and for each region:

• the address range to which that region is mapped

• the data bus width in bytes

• the access time for the memory region.

armsd expects the map file to be in the current working directory under the name
armsd.map.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-9

Benchmarking, Performance Analysis, and Profiling
ADW or ADU accept a map file of any name, provided that it has the extension .map.
See Real-time simulation example: Dhrystone on page 11-13 for details of how to
associate a map file into an ADW or ADU session.

To calculate the number of wait states for each possible type of memory access, the
ARMulator uses the values supplied in the map file and the clock frequency. See
ARMulator configuration on page 3-57 for details of how the wait states are calculated.

Format of a map file

The format of each line is:

start size name width access read-times write-times

where:

start is the start address of the memory region in hexadecimal,forexample,
80000.

size is the size of the memory region in hexadecimal, for example, 4000.

name is a single word that you can use to identify the memory region when
memory access statistics are displayed. You can use any name. To ease
readability of the memory access statistics, give a descriptive name such
as SRAM, DRAM, or EPROM.

width is the width of the data bus in bytes (that is, 1 for an 8-bit bus, 2 for a 16-bit
bus, or 4 for a 32-bit bus).

access describes the type of access that may be performed on this region of
memory:

r for read-only.

w for write-only.

rw for read-write.

- for no access.

An asterisk (*) may be appended to the access to describe a Thumb-based
system that uses a 32-bit data bus, but which has a 16-bit latch to latch the
upper 16 bits of data, so that a subsequent 16-bit sequential access can be
fetched directly out of the latch.
11-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling
read-times

describes the nonsequential and sequential read times in nanoseconds.
These should be entered as the nonsequential read access time followed
by / (slash), followed by the sequential read access time. Omitting the /
and using only one figure indicates that the nonsequential and sequential
access times are the same.

Note
 Do not simply enter the times quoted on top of a memory chip. You must

add a 20-30ns signal propagation time to them.

write-times

describes the nonsequential and sequential write times. The format is
identical to that of read times.

The following examples assume a clock speed of 20MHz.

Example 1

0 80000000 RAM 4 rw 135/85 135/85

This describes a system with a single contiguous section of RAM from 0 to 0x7fffffff
with a 32-bit data bus, read-write access, and N and S access times of 135ns and 85ns
respectively.

The N-cycle access time is one clock cycle longer than the S-cycle access time. For a
faster system, a smaller N-cycle access time should be used. For example, for a 33MHz
system, the access times would be defined as 115/85 115/85.

Example 2

0 80000000 RAM 1 rw 150/100 150/100

This describes a system with the same single contiguous section of memory, but with
an 8-bit external data bus and slightly different access times.

Example 3

The following description file details a typical embedded system with 32KB of on-chip
memory, 16-bit ROM and 32KB external DRAM:

00000000 8000 SRAM 4 rw 1/1 1/1
00008000 8000 ROM 2 r 100/100 100/100
00010000 8000 DRAM 2 rw 150/100 150/100
7fff8000 8000 Stack 2 rw 150/100 150/100
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-11

Benchmarking, Performance Analysis, and Profiling
There are four regions of memory:

• A fast region from 0 to 0x7fff with a 32-bit data bus.

• A slower region from 0x8000 to 0xffff with a 16-bit data bus. This is labelled
ROM and contains the image code, and is therefore marked as read-only.

• A region of RAM from 0x10000 to 0x17fff that is used for image data.

• A region of RAM from 0x7fff8000 to 0x7fffffff that is used for stack data (the
stack pointer is initialized to 0x80000000).

In the final hardware, the two distinct regions of the external DRAM would be
combined. This does not make any difference to the accuracy of the simulation.

The SRAM region is given access times of 1ns. In effect, this means that each access
takes 1 clock cycle, because ARMulator rounds this up to the nearest clock cycle.
However, specifying it as 1ns allows the same map file to be used for a number of
simulations with differing clock speeds.

Note
 To ensure accurate simulations, take care that all areas of memory likely to be accessed
by the image you are simulating are described in the memory map.

To ensure that you have described all areas of memory you think the image should
access, you can define a single memory region that covers the entire address range as
the last line of the map file.

For example, you could add the following line to the above description:

00000000 80000000 Dummy 4 - 1/1 1/1

You can then detect if any reads or writes are occurring outside the regions of memory
you expect using the print $memory_statistics command. This can be a very useful
debugging tool.

Reading the memory statistics

To read the memory statistics use the command:

Print $memory_statistics

The statistics are reported in the following form:
11-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling
Example 11-1

address name w acc R(N/S) W(N/S) reads(N/S) writes(N/S) time (ns)
00000000 Dummy 4 - 1/1 1/1 0/0 0/0 0
7FFF8000 Stack 2 rw 150/100 150/100 0/0 0/0 0
00010000 DRAM 2 rw 150/100 150/100 0/0 0/0 0
00008000 ROM 2 r 100/100 100/100 0/0 0/0 0
00000000 SRAM 4 rw 1/1 1/1 0/0 0/0 0

Print $memstats is a shorthand version of Print $memory_statistics.

Processor clock speed

You must specify the clock speed of the processor being simulated in the debugger. In
armsd, this is set by the command-line option -clock value. The value is presumed to
be in Hz unless MHz is specified.

In ADW or ADU, the clock speed is set in the Debugger Configuration dialog. To
display this dialog:

1. Select Options → Configure Debugger... → Target → ARMulate →
Configure....

2. Enter a value and click OK.

See ARMulator configuration on page 3-57 for more information.

11.3.6 Real-time simulation example: Dhrystone

To work through this example, you must create a map file. (If a map file is included in
the files you copied from the toolkit directory, edit it to match the one shown here.) Call
it armsd.map.

00000000 80000000 RAM 4 RW 135/85 135/85

This describes a system that has:

• a single contiguous section of memory

• starting at address 0x0

• 0x80000000 bytes in length

• labeled as RAM

• a 32-bit (4-byte) data bus

• read and write access

• read access times of 135ns nonsequential and 80ns sequential

• write access times of 135ns nonsequential and 80ns sequential.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-13

Benchmarking, Performance Analysis, and Profiling
If you are using the command-line tools:

1. Load the executable produced in Code and data sizes example: Dhrystone on
page 11-4 into the debugger, telling the debugger that its clock speed is 20MHz:

armsd -clock 20MHz -nofpe dhry

As the debugger loads, you can see the information about the memory system that
the debugger has obtained from the armsd.map file.

2. Type go at the armsd prompt to begin execution.

3. When requested for the number of Dhrystones, enter 30000.

4. When the application completes, record the number of Dhrystones per second
reported. This is your performance figure.

If you are using the Windows toolkit:

ADW and ADU by default use a file called armsd.map as their map file. To change to the
map file you have created:

1. Select Configure Debugger from the Options menu. This displays the Debugger
configuration dialog.

2. Select the Memory Maps tab to change the default memory map. Click the Local
Map File button and select the map file you created.

The association is now set up, and you can run the program.

1. If you use ADW and are running APM then click on the Debug button to start
ADW and load the project. If you use ADU then start ADU and select Load
Image... from the File menu to load the project. If a dialog box prompts you to
save the changes to the project file, click Yes.

2. To set up the debugger to run at the required clock speed:

a. Select Configure Debugger from the Options menu.

b. Select ARMulator from the Target Environment box on Target page of
the Debugger Configuration dialog.

c. Click the Configure button.

d. Ensure the Emulated radio button is selected, set the Clock Speed to
20MHz, and click OK.

e. Click OK on the Debugger Configuration dialog. The image is reloaded.

3. Click the Go button to begin execution, and again when the breakpoint on main is
reached.
11-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling
4. When requested for the number of Dhrystones, enter 30000.

5. When the application completes, record the number of Dhrystones per second
reported. This is your performance figure.

When the debugger is configured to emulate a processor of the required clock speed (in
this case 20MHz), you can repeat the simulation by clicking on Execute rather than
Debug in APM.

Note
 You may obtain slightly different figures, depending on the version of the compiler,
linker, and library in use, and the processor for which the ARMulator is configured.

11.3.7 Reducing the time required for simulation

You may be able to significantly reduce the actual time taken for a simulation by
dividing the specified clock speed by a factor of ten or a hundred, and multiplying the
memory access times by the same factor. Take the time reported by the clock() function
(or by SYS_CLOCK) and divide by the same factor.

This works because the simulated time is recorded internally in microseconds, but
SYS_CLOCK only returns centiseconds. Dividing the clock speed shifts digits from the
nanosecond count into the centisecond count, allowing the same level of accuracy but
taking much less time to simulate.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-15

Benchmarking, Performance Analysis, and Profiling
11.4 Improving performance and code size

There are two main goals when compiling a benchmark:

• minimizing code size

• maximizing performance.

This section explains how using compiler options, avoiding the standard C library, and
modifying your source code can all help to achieve these goals.

11.4.1 Compiler options

The ARM C compiler has a number of command-line options that control the way in
which code is generated.

By default, the ARM C compiler is highly optimizing. By default, the code produced
from your source is balanced for a compromise of code size versus execution speed.
However, there are a number of compiler options that can affect the size and
performance of generated code. These may be used individually or may be combined to
give the required effect.

For a full description of optimization and other command-line options see Chapter 2
The ARM Compilers in the ARM Software Development Toolkit Reference Guide. That
chapter includes a description of the -pcc option, but a little more information about that
option follows:

-pcc The code generated by the compiler can be slightly larger when
compiling with the -pcc switch. This is because of extra restrictions on
the C language in the ANSI standard that the compiler can take advantage
of when compiling in ANSI mode.

If your code compiles in ANSI mode, do not use the -pcc option. The
Dhrystone application provides a good example. It is written in old-style
Kernighan and Ritchie C, but compiles more efficiently in ANSI mode,
even though it causes the compiler to generate a number of warning
messages.

11.4.2 Improving image size with the linker

You can reduce image size by using the embedded C libraries, instead of the standard
ANSI C library which adds a minimum of around 15KB to an image. Refer to Chapter 4
The C and C++ Libraries in the ARM Software Development Toolkit Reference Guide
for more information. See also Chapter 10 Writing Code for ROM in this book for an
example of their use.
11-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling
11.4.3 Changing the source

You can make further improvements to code size and performance in addition to those
achieved by good use of compiler options by modifying the code to take advantage of
the ARM processor features.

Use of shorts

ARM cores that implement an ARM Architecture earlier than version 4 do not have the
ability to directly load or store halfword quantities (or short types). This affects code
size. Generally, code generated for Architecture 3 that makes use of short is larger than
equivalent code that only performs byte or word transfers. Storing a short is particularly
expensive, because the ARM processor must make two byte stores. Similarly, loading a
short requires a word load, followed by shifting out the unwanted halfword.

If your processor supports halfwords, use the appropriate -architecture or -processor
options. Refer to Chapter 2 The ARM Compilers in the ARM Software Development
Toolkit Reference Guide. This ensures that the resulting code contains the Architecture
4 halfword instructions. By default the compiler generates halfword instructions.

If you are writing or porting for processors that do not have halfword support, you
should minimize the use of short values. However, this is sometimes impossible. C
programs ported from x86 or 68k architectures, for example, frequently make heavy use
of short. If the code has been written with portability in mind, all you may have to do
is change a typedef or #define to use int instead of short. Where this is not the case,
you may have to make some functional changes to the code.

You may be able to establish the extent of code size increase resulting from using shorts
by compiling the code with:

armcc -Dshort=int

which preprocesses all instances of short to int. Be aware that, although it may compile
and link correctly, code created with this option may not function as expected.

Whatever your approach, you need to weigh the change in code size against the opposite
change in data size.

The program below illustrates the effect of using shorts, integers, and the -ARM7T option
on code and data size.

#include <stdio.h>
typedef short number;
number array [2000];
number loop;
int main()
{

ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-17

Benchmarking, Performance Analysis, and Profiling
for (loop=0; loop < 2000; loop++)
array[loop] = loop;

return 0;
}

The results of compiling the program with all three options are shown in the following
table:

Note
 See Specifying the target processor and architecture on page 2-19 of the ARM Software
Development Toolkit Reference Guide for details of hardware support for halfwords.

Other changes
• Modify performance-critical C source to compile efficiently on the ARM. See

Improving performance and code size on page 11-16.

• Port small, performance-critical routines into ARM assembly language.

Compile with the -S option to produce assembly output without generating object code,
and take this as a starting point for your own hand-optimized assembly language. When
you specify the -S option you can also specify-fs to write a file containing interleaved
C or C++ and assembly language (see Specifying output format on page 2-18 of the
ARM Software Development Toolkit Reference Guide).

You can make significant performance improvements by using Load and Store Multiple
instructions in memory-intensive algorithms. When optimizing the routines:

• use load/store multiple instructions for memory-intensive algorithms

• use 64-bit result multiply instructions (where available) for fixed-point arithmetic

• replace small, performance-critical functions by macros, or use the __inline
preprocessor directive

• avoid the use of setjmp() in performance-critical routines (particularly in pcc
mode).

Table 11-3 Object code and data sizes

code
size

inline
data

inline
strings

const
data

RW
data

0-init
data

debug
data

short 76 8 0 0 4 4000 64

short with hardware
support (see note)

60 8 0 0 4 4000 64

int 44 8 0 0 4 8000 0
11-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling
11.5 Profiling

Profiling allows the time spent in specific parts of an application to be examined. It does
not require any special compile time or link time options. The only requirement is that
low level symbols must be included in the image. These are inserted by the linker unless
it is instructed otherwise by the -Nodebug option.

Profiling data is collected by the ARM Debugger while the code is being executed. The
data is saved to a file. It is then loaded into the ARM profiler which displays the results.
The profiler in turn generates a profile report.

11.5.1 Availability of profiling

Profiling is currently available only when you use the ARMulator, or the Angel debug
monitor on a target board such as the PID7T. Profiling is an optional feature for Angel,
selectable at build time. Refer to Chapter 13 Angel for more information. The standard
Angel image supplied with SDT 2.50 for the PID7T has profiling turned on.

It is not possible to use EmbeddedICE or Multi-ICE for profiling.

When you select Options → Profiling → Toggle Profiling, the debugger determines
whether the target hardware can perform profiling. If so, profiling is enabled. If not, the
message Target Processor can't do this is displayed.

11.5.2 About armprof

The ARM profiler, armprof, displays an execution profile of a program from a profile
data file generated by a debugger. The profiler displays one of two types of execution
profile, depending on the amount of information present in the profile data:

• If only pc sampling information is present, the profiler can display only a flat
profile giving the percentage time spent in each function, excluding the time spent
in any of its children.

• If function call count information is present, the profiler can display a call graph
profile that shows not only the percentage time spent in each function, but also the
percentage time accounted for by calls to all children of each function, and the
percentage time allocated to calls from different parents.

The compiler automatically prepares the code for profiling, so no special options are
required at compile time. At link time, you must ensure that your program image
contains symbols. This is the default setting for the linker.

You can only profile programs that are loaded into store from the debugger. Function
call counting for code in ROM is not available. You must inform the debugger that you
wish to gather profile data when the program image is loaded. The debugger then alters
the image, diverting calls to counting veneers.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-19

Benchmarking, Performance Analysis, and Profiling
The debuggers allow the collection of pc samples to be turned on and off at arbitrary
times, allowing data to be generated only for the part of a program on which attention
is focussed (omitting initialization code, for example). However, care should be taken
that the time between turning sampling on and off is long compared with the sample
interval, or the data generated may be meaningless. Turning sampling on and off does
not affect the gathering of call counts.

11.5.3 Collecting profile data

The debugger collects profiling data while an application is executing. You can turn data
collection on and off during execution, so that only the relevant sections of code are
profiled:

• If you are using armsd, use the profon and profoff commands.

• If you are using ADW or ADU, select Options → Profiling → Toggle Profiling
(see Profiling on page 3-43).

The format of the execution profile obtained depends on the type of information stored
in the data file:

pc sampling provides a flat profile of the percentage time spent in each function
(excluding the time spent in its children).

Function call count

provides a call graph profile showing the percentage time spent in each
function, plus the percentage time accounted for by calls to the children
of each function, and the percentage time allocated to calls from different
parents.

Note
 No count is taken if the function calls children through an ARM-Thumb interworking
veneer.

The debugger needs to know which profiling method you require when it loads the
image. The default is pc sampling. To obtain a call graph profile:

• If you are using armsd, load the image with:

load/callgraph image-file

• If you are using ADW or ADU, select Options → Profiling → Call Graph
Profiling.

Then execute the code to collect the profile data.
11-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling
11.5.4 Saving profile data

When collection is complete, save the data to a file:

• If you are using armsd, enter the profwrite command:

profwrite data-file

• If you are using ADW or ADU, select Options → Profiling → Write to File.

11.5.5 Generating the profile report

The ARM profiler utility, armprof, generates the profile report using the data in the file.
The report is divided into sections, each of which gives information about a single
function in the program.

A section function (called the current function) is indicated by having its name start at
the left-hand edge of the Name column. If call graph profiling is used, information is also
given about child and parent functions. Functions listed below the current function are
its children. Those listed above the current function are the function parents it.

The columns in the report have the following meanings:

Name Displays the function names. The current function in a section starts at
the left-hand edge of the column. Parent and child functions are shown
indented.

cum% Shows the total percentage time spent in the current function plus the
time spent in any functions that it called. It is only valid for the current
function.

self% Shows the percentage time spent in a function.

• For the current function, it shows the percentage time spent in this
function.

• For parent functions, it shows the percentage time spent in the
current function on behalf of the parent.

• For child functions, it shows the percentage time spent in this child
on behalf of the current function.

desc% Shows the percentage time spent in a function:

• for the current function, it shows the percentage time spent in
children of the current function on the current function's behalf

• for parent functions, it shows the percentage time spent in children
of the current function on behalf of this parent

• for child functions, it shows the percentage time spent in this child's
children on behalf of the current function.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-21

Benchmarking, Performance Analysis, and Profiling
calls Shows the number of times a function is called:

• for the current function, it shows the number of times this function
was called

• for parent functions, it shows the number of times this parent called
the current function

• for child functions, it shows the number of times this child was
called by the current function.

Below is a section of the output from armprof for a call graph profile:

Name cum% self% desc% calls
main 96.04% 0.16% 95.88% 0
 qsort 0.44% 0.75% 1
 _printf 0.00% 0.00% 3
 clock 0.00% 0.00% 6
 _sprintf 0.34% 3.56% 1000
 check_order 0.29% 5.28% 3
 randomise 0.12% 0.69% 1
 shell_sort 1.59% 3.43% 1
 insert_sort 19.91% 59.44% 1

 main 19.91% 59.44% 1
insert_sort 79.35% 19.91% 59.44% 1
 strcmp 59.44% 0.00% 243432

From the cum% column, you can see (in the main section) that the program spent 96.04
percent of its time in main and its children. Of this, only 0.16 percent of the time is spent
in main (self% column), whereas 95.88 percent of the time is spent in functions called
by main (desc% column). The call count for main is 0 because it is the top-level function,
and is not called by any other functions, whereas the section for insert_sort shows that
it made 243432 calls to strcmp, and that this accounted for 59.44 percent of the time
spent in strcmp (the desc% column shows 0 in this case because strcmp does not call any
functions).

11.5.6 Profiling example: sorts

The sorts application can be found in the Examples subdirectory of the ARM Software
Development Toolkit. Copy the files into your working directory.

PC sampling information

If you are using the command-line tools:

1. Compile the sorts.c example program:

armcc -Otime -o sorts sorts.c
11-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling
2. Start armsd and load the executable:

armsd sorts

3. Turn profiling on:

profon

4. Run the program as normal:

go

5. When execution completes, write the profile data to a file using the ProfWrite
command:

ProfWrite sort1.prf

6. Exit armsd:

Quit

7. Generate the profile for the collected data by entering at the system prompt:

armprof sort1.prf > prof1

The profiler generates the report and sends the output to text file prof1 that you
can examine.

If you are using the Windows toolkit:

1. If you use ADW and are running APM then:

a. Select Open from the Project menu to load the project file sorts.apj into
APM.

b. Build the project by clicking the Force Build button. The project is built
and any messages are displayed in the build log.

c. Load the debugger by clicking the Debug button. ADW is started and the
application is loaded.

If you use ADU then:

a. Compile and link the sorts.c example program with the command:armcc
-Otime -o sorts sorts.c

b. Start ADU.

c. Select Load Image... from the File menu to load the sorts.exe program file
into ADU.

2. Select Options → Profiling → Toggle Profiling to turn profiling on in ADW or
ADU.

3. Click Go to start the program.

The program runs and stops at the breakpoint on main.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-23

Benchmarking, Performance Analysis, and Profiling
4. Click Go again.

The program resumes execution.

5. When execution completes, select Options → Profiling → Write to File to
write the profile data to the file sort1.prf.

6. Exit ADW or ADU and start a DOS session. Make the profile directory the current
directory.

7. Generate the profile for the collected profile data by entering the following at the
system prompt:

armprof sort1.prf > prof1

armprof generates the profile report and sends its output to text file prof1 that you
can examine.

Call graph information

If you are using the command-line tools:

1. Restart the debugger:

armsd

2. Load the sorts program into armsd with the /callgraph option:

load/callgraph sorts

/callgraph tells armsd to prepare an image for function call count profiling by
adding code that counts the number of function calls.

3. Turn profiling on:

ProfOn

4. Run the program as normal:

go

5. When execution completes, write the profile data to a file:

ProfWrite sort2.prf

6. Exit armsd:

Quit

7. Generate the profile by entering the following at the system prompt:

armprof -Parent sort2.prf > prof2

The -Parent option instructs armprof to include information about the callers of
each function. armprof generates the profile report and sends its output to text file
prof2, that you can examine.
11-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling
If you are using the Windows tools:

1. If you are using APM and ADW, reload the debugger by clicking the Debug
button on the APM toolbar. If you are using ADU, start ADU.

2. Select Options → Profiling → Call Graph Profiling to turn on call graph
profiling.

3. Click Reload to reload the image. This forces call graph profiling to take effect.

4. Select Options → Profiling → Toggle Profiling to turn on profiling in ADW
or ADU.

5. Click Go to start the program.

The program runs and stops at the breakpoint on main.

6. Click Go again.

The program resumes execution.

7. When execution completes, select Options → Profiling → Write to file to write
the profile data to the file sort2.prf.

8. Exit ADW or ADU and invoke a DOS session.

9. Generate the profile by entering the following at the DOS prompt:

armprof -Parent sort2.prf > prof2

The -Parent option instructs armprof to include information about the callers of
each function. armprof generates the profile report and sends its output to the text
file prof2, that you can examine.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-25

Benchmarking, Performance Analysis, and Profiling
11.5.7 Profiling and instruction tracing with ARMulator

In addition to profiling the time spent in specific parts of an application, the ARMulator
provides facilities for profiling other performance statistics, and for generating full
instruction traces.

The ARMulator provides:

• Enhanced profiling with the Profiler module. The ARMulator has an Events
mechanism that enables events such as cache misses and branch mispredictions
to be profiled.

For example, profiling cache misses enables you to find areas of code that are
causing high levels of cache activity. You can then optimize and tune the code
accordingly.

The profiling is controlled through a configuration file, rather than from the
debugger. However, the data is collected by the debugger and processed by
armprof in exactly the same way, using the same commands and menus.

• Instruction tracing with the Tracer module. At the cost of a significant runtime
overhead, the Tracer module can generate a continuous trace stream of executing
instructions and memory accesses.

Both modules are supplied in source form, and you can modify them as you want. This
enables profiling and tracing to be customized to your specific needs.

For help with understanding the contents of a trace file, see Interpreting trace file output
on page 12-8. For more information on the ARMulator refer to Chapter 12 ARMulator.
11-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 12
ARMulator

This chapter describes the ARMulator, a collection of programs that provide software
emulation of ARM processors. It contains the following sections:

• About the ARMulator on page 12-2

• ARMulator models on page 12-3

• Tracer on page 12-6

• Profiler on page 12-12

• Windows Hourglass on page 12-13

• Watchpoints on page 12-14

• Page table manager on page 12-15

• armflat on page 12-19

• armfast on page 12-20

• armmap on page 12-21

• Dummy MMU on page 12-24

• Angel on page 12-25

• Controlling the ARMulator using the debugger on page 12-27

• A sample memory model on page 12-29

• Rebuilding the ARMulator on page 12-32

• Configuring ARMulator to use the example on page 12-34.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-1

ARMulator
12.1 About the ARMulator

The ARMulator is a program that emulates the instruction sets and architecture of
various ARM processors. It provides an environment for the development of
ARM-targeted software on your workstation or PC.

ARMulator is transparently connected to armsd or the ARM GUI debuggers, to provide
a hardware-independent ARM software development environment. Communication
takes place through the Remote Debug Interface (RDI).

The ARMulator is instruction-accurate. It models the instruction set but not the precise
timing characteristics of the processor. The ARMulator supports a full ANSI C library
to allow complete C programs to run on the emulated system.

You can supply models written in C that interface to the ARMulator's external interface.
12-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
12.2 ARMulator models

You can add extra models to ARMulator without altering the existing models. Each
model is entirely self-contained, and communicates with the ARMulator through a set
of defined interfaces. The full definition of these interfaces is in Chapter 12 ARMulator
in the ARM Software Development Toolkit Reference Guide.

The source of a number of sample models can be found in the rebuild kit on UNIX in:

armsd/source

or on PC in:

C:\ARM250\Source\Win32\ARMulate

12.2.1 Sample models

The ARMulator is supplied with the following models:

• Basic models

• Memory models

• Coprocessor models

• Operating system models.

Basic models

The following source files are provided for the basic models:

tracer.c The tracer module can trace instruction execution and events from
within the ARMulator.

profiler.c The profiler module provides the profiling functionality. This
includes basic instruction sampling and more advanced use, such
as profiling cache misses.

winglass.c This module is used only with the ARM Debugger for Windows.

pagetab.c This module sets up the MMU/cache and associated pagetables
inside the ARMulator on reset.

Memory models

The following source files are provided for memory models:

armflat.c This memory model implements a flat model of 4GB RAM.

armfast.c This memory model implements a flat model of 2MB RAM.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-3

ARMulator
armmap.c This is another memory model that allows you to have an
armsd.map file specifying memory layout. (This slows down
emulation speed, so when no armsd.map file is present, ARMulator
uses the faster armflat.c model in preference.)

bytelane.c This is an example of a memory model veneer. A veneer is a
model that sits between the processor and the real memory model.
This model converts the accesses from the core into byte-lane
(also known as byte-strobe) accesses.

trickbox.c This is a memory model of a system that shows how accessing
various addresses causes events, such as aborts and interrupts, to
occur.

tracer.c As well as being a basic model, the tracer module provides a
veneer memory model that can log memory accesses.

armpie.c This is a model of the ARM PIE card. (UNIX only.)

example.c This memory model is the example described in A sample memory
model on page 12-29.

Coprocessor models

dummymmu.c This is a cut-down model of coprocessor 15 (the system
coprocessor).

validate.c This is a small coprocessor that is used to validate the behavior of
the ARM emulator. It can cause interrupts and busy-waits, for
example. It is supplied as an example.

Operating system models

angel.c This is an implementation of the Software Interrupts (SWIs) and
environment required for running programs linked with the Angel
semihosted C library on ARMulator.

noos.c This is a dummy operating system model, where no SWIs are
intercepted.
12-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
12.2.2 Model stub exports

Each of these models exports a stub (see the ARM Software Development Toolkit
Reference Guide). You declare stubs in models.h, using sets of macros. For example:

MEMORY(ARMul_Flat)
COPROCESSOR(ARMul_DummyMMU)
OSMODEL(ARMul_Angel)
MODEL(ARMul_Profiler)

There are no trailing semicolons on these lines.

You can also add new user-supplied models to models.h.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-5

ARMulator
12.3 Tracer

A sample implementation of a tracer is provided. This can trace instructions, memory
accesses, and events to an RDI log window or a file (in text or binary format). See the
source file, tracer.c, and Configuring the Tracer below, for details of the formats used
in these files. The configuration file armul.cnf controls what is traced.

Alternatively, you can link your own tracing code onto the Tracer module, allowing
real-time tracing. No examples are supplied, but the required functions are documented
here. The formats of Trace_State and Trace_Packet are documented in tracer.h.

unsigned Tracer_Open(Trace_State *ts)

This is called when the tracer is initialized. The implementation in
tracer.c opens the output file from this function, and writes a header.

void Tracer_Dispatch(Trace_State *ts, Trace_Packet *packet)

This is called on each traced event for every instruction, event, or memory
access. In tracer.c, this function writes the packet to the trace file.

void Tracer_Close(Trace_State *ts)

This is called at the end of tracing. The file tracer.c uses this to close the
trace file.

extern void Tracer_Flush(Trace_State *ts)

This is called when tracing is disabled. The file tracer.c uses this to flush
output to the trace file.

The default implementations of these functions can be changed by compiling tracer.c
with EXTERNAL_DISPATCH defined.

12.3.1 Configuring the Tracer

The Tracer has its own section in the ARMulator configuration file (armul.cnf). Find
the EarlyModels section in the configuration file, and the Tracer section below it:

{ Tracer
;; Output options - can be plaintext to file, binary to file or
:: to RDI log window.(Checked in the order RDILog, File, BinFile.)
RDILog=False
File=armul.trc
BinFile=armul.trc
;; Tracer options - what to trace
TraceInstructions=True
TraceMemory=False
TraceIdle=False
TraceNonAccounted=False
12-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
TraceEvents=False
;; Where to trace memory - if not set, it will trace at the core.
TraceBus=True
;; Flags - disassemble instructions; start with tracing enabled;
Disassemble=True
StartOn=False
}

where:

RDILog instructs the Tracer to output to the RDI Log window (the console
under armsd).

File defines the file where the trace information is written, using the
default Tracer_Open functions. Alternatively, you can use BinFile
to store data in a binary format.

The other options control what is being traced:

TraceMemory traces real memory accesses.

TraceIdle traces idle cycles.

TraceNonAccounted

traces unaccounted RDI accesses to memory.

TraceEvents traces events. For more information, refer to Events on page 12-87
of the ARM Software Development Toolkit Reference Guide.

TraceBus controls the trace data source. This is one of:

TRUE Bus (between processor and memory)

FALSE Core (between core and cache, if present).

Disassemble disassembles instructions. Enabling disassembly will greatly
affect emulation speed.

Other tracing controls

You can also control tracing using:

Range=low address,high address

Tracing is carried out only within the specified address range.

Sample=n Only every nth trace entry is sent to the trace file.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-7

ARMulator
Tracing events

When tracing events, you can select the events to be traced using:

EventMask=mask,value

Only those events whose number when masked (bitwise-AND)
with mask equals value are traced.

Event=number Only number is traced. (This is equivalent to
EventMask=0xffffffff,number.)

For example, the following traces only MMU/cache events:

EventMask = 0xffff0000,0x00010000

See Events on page 12-87 of the ARM Software Development Toolkit Reference Guide
for more information on events.

12.3.2 Debugger support for tracing

There is no direct debugger support for tracing. Instead, the tracer uses bit 4 of the RDI
Logging Level ($rdi_log) variable to enable or disable tracing.

Using the ARM Debugger for Windows (ADW)

Select Set RDI Log Level from the Options menu.

• To enable tracing, set the RDI Log Level to 16.

• To disable tracing, set the RDI Log Level to 0.

Using armsd

• To enable tracing under armsd, type armsd: $rdi_log=16.

• To disable tracing, type armsd: $rdi_log=0.

12.3.3 Interpreting trace file output

This section describes how you interpret the output from the tracer.

Example of a trace file

The following example shows part of a trace file:
12-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
Date: Fri Jul 10 13:29:16 1998
Source: Armul
Options: Trace Instructions (Disassemble) Trace Memory Cycles
MNR4O__ 00008008 EB00000C
MSR4O__ 0000800C EB00001B
MSR4O__ 00008010 EF000011
IT 00008008 eb00000c BL 0x8040
MNR4O__ 00008040 E1A00000
MSR4O__ 00008044 E04EC00F
MSR4O__ 00008048 E08FC00C
IT 00008040 e1a00000 NOP
MSR4O__ 0000804C E99C000F
IT 00008044 e04ec00f SUB r12,r14,pc
MSR4O__ 00008050 E24CC010
IT 00008048 e08fc00c ADD r12,pc,r12
E 00000020 00000000 10005
MNR4O__ 00000020 E1A00000
IT 00000018 eb00000a BL 0x48
E 00000048 00000000 10005
MNR4O__ 00000048 E10F0000
E 0000004C 00000000 10005
MSR4O__ 0000004C E1A00000

In a trace file, there are three types of line:

• trace memory lines (M lines)

• trace instruction lines (I lines)

• trace event lines (E lines).

These are described in the following sections.

Trace memory (M lines)

The format of the trace memory (M) lines is as follows:

access addr data

For example:

MNR4O__ 00008008 EB00000C

where:

access contains the following information:

memory_access indicates a memory access (M in trace file).

memory_cycle indicates the type of memory cycle:

S sequential.

N non-sequential.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-9

ARMulator
I idle.

C coprocessor.

read_write indicates either a read or a write operation:

R read.

W write.

mem_acc_size indicates the size of the memory access:

4 word (32 bits).

2 halfword (16 bits).

1 byte (8 bits).

opcode_fetch indicates an opcode fetch:

O opcode fetch.

_ no opcode fetch.

locked_access indicates a locked access:

L locked access (LOCK signal
HIGH).

_ no locked access.

spec_fetch indicates a speculative instruction fetch:

S speculative fetch (ARM810
only).

_ no speculative fetch.

addr gives the address. For example: 00008008.

data can show one of the following:

value gives the read/written value. For example: EB00000C

(wait) indicates nWAIT was LOW to insert a wait state.

(abort) indicates ABORT was HIGH to abort the access.

Trace instructions (I lines)

The format of the trace instruction (I) lines is as follows:

[IT | IS] instr_addr opcode disassembly

For example:

IT 00008044 e04ec00f SUB r12,r14,pc

where:

IT instruction taken.
12-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
IS instruction skipped (all ARM instructions are conditional).

instr_addr shows the address of the instruction. For example: 00008044.

opcode gives the opcode, for example: e04ec00f.

disassembly gives the disassembly (uppercase if the instruction is taken), for
example, SUB r12,r14,pc. This is optional and is controlled by
armul.cnf. Set Disassemble=True to enable this.

Events (E lines)

The format of the event (E) lines is as follows:

E addr1 addr2 event_number

For example:

E 00000048 00000000 10005

where:

addr1 gives the first of a pair of words, such as, the pc value.

addr2 gives the second of a pair of words, such as, the aborting address.

event_number gives an event number, for example: 0x10005. This is MMU
Event_ITLBWalk. Events are fully described in Events on
page 12-87 in the ARM Software Development Toolkit Reference
Guide.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-11

ARMulator
12.4 Profiler

The profiler is controlled by the debugger. For more details on the profiler, see ARM
profiler on page 8-6 in the ARM Software Development Toolkit Reference Guide.

The file profiler.c contains code to implement the profiling options in the debugger. It
does so by providing an UnkRDIInfoHandler that handles the profiling requests from the
debugger. In addition to profiling program execution time, it allows you to use the
profiling mechanism to profile events, such as cache misses.

12.4.1 Configuring the profiler

The Profiler section in the configuration file is as follows:

{ Profiler
;; For example - to profile the PC value when cache misses happen, ;; set:
;Type=Event
;Event=0x00010001
;EventWord=pc
}

By default, this is empty. If uncommented, the example shown allows profiling of cache
misses.

The Type entry controls how the profiling interval is interpreted. (The profiling interval
n is set using the armsd command profon n, or from ADW, using the Debugger tab of
the Debugger Configuration dialog, as shown in Debugger on page 3-53.):

Type=Microsecond

the default is that samples are taken every microsecond.

Type=Instruction

samples are taken every n instructions, where n is set using the
armsd command profon n. For example, profon 2. Setting this
value in the GUI is described in Debugger on page 3-53.

Type=Cycle samples are taken every n cycles.

Type=Event the profiling interval is ignored. Instead, all relevant events are
profiled. See Events on page 12-87 of the ARM Software
Development Toolkit Reference Guide for more information on
events.

EventMask=event_number is also allowed (see the section Tracer on page 12-6).
12-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
12.5 Windows Hourglass

This module deals with calling the debugger regularly during execution. This is required
when you are using the GUI debuggers.

The WindowsHourglass section in the configuration file controls how regularly this
occurs. Increasing this rate decreases the regularity at which control is yielded to ADW
or ADU. This increases emulation speed but decreases responsiveness.

{ WindowsHourglass
;; We can control how regularly we callback the frontend
;; More often (lower value) means a slower emulator, but
;; faster response. The default is 8192.
Rate=8192
}

ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-13

ARMulator
12.6 Watchpoints

The Watchpoints module is a memory veneer that provides memory watchpoints. It sits
between the processor core and memory (or cache, as appropriate).

12.6.1 Enabling watchpoints

To enable watchpoints, uncomment the Watchpoints line in armul.cnf:

;; To enable watchpoints, set "WatchPoints"
;Watchpoints
12-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
12.7 Page table manager

The PageTable module is a model that sets up pagetables and initializes the MMU on
reset. The page tables model inclusion is controlled by setting the UsePageTables tag to
be either True or False:

UsePageTables=True

The Pagetables section in the configuration file controls the contents of the pagetables,
and the configuration of the MMU:

{ Pagetables

For full details of the flags, control register and pagetables described in this section, see
the ARM Architectural Reference Manual.

12.7.1 Controlling the MMU and cache

The first set of flags controls the MMU and cache:

MMU=Yes
AlignFaults=No
Cache=Yes
WriteBuffer=Yes
Prog32=Yes
Data32=Yes
LateAbort=Yes
BigEnd=No
BranchPredict=Yes
ICache=Yes

Some flags only apply to certain processors. For example, BranchPredict only applies
to the ARM810, and ICache to the SA-110 and ARM940T processors.

12.7.2 Controlling registers 2 and 3

The second set of options controls (on an MMU-based processor):

• the Translation Table Base Register (System Control Register 2)

• the Domain Access Control Register (Register 3).

The Translation Table Base Register should be aligned to a 16KB boundary.

PageTableBase=0xa0000000
DAC=0x00000003
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-15

ARMulator
12.7.3 Pagetable contents

Finally, the configuration file can contain an outline of the pagetable contents. The
module writes out a top-level pagetable (to the address specified for the Translation
Table Base Register) whenever ARMulator resets on MMU-based processors.

By default, armul.cnf contains a description of a single region covering the whole of the
address space. You can add more regions. A region entry consists of:

{ Region[0]
VirtualBase=0
PhysicalBase=0
Size=4GB
Cacheable=Yes
Bufferable=Yes
Updateable=Yes
Domain=0
AccessPermissions=3
Translate=Yes
}

Region[n] names the regions, starting with Region[0]. n is an integer.

VirtualBase is the virtual address of the base of this region. This address should
be aligned to a 1MB boundary on an MMU processor.

PhysicalBase is the address that the base of the region maps to. PhysicalBase
defaults to the same as VirtualBase if it is unset. This address
should be aligned to a 1MB boundary on an MMU processor.

Size specifies the size of this region for an MMU. This value is rounded
down to the nearest megabyte on an MMU processor.

Cacheable controls the C bit in the translation table entry.

Bufferable controls the B bit in the translation table entry.

Updateable controls the U bit in the translation table entry. (Note that the U bit
is only used for the ARM610 processor.)

Domain specifies the domain field of the table entry.

AccessPermissions

controls the AP field.

Translate controls whether accesses to this region causes translation faults.
Setting Translate=No for a region causes an abort to occur
whenever ARMulator reads from or writes to that region.
12-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
Pagetable model and protection units

Core models such as the ARM740T and the ARM940T do not have an MMU and
pagetables. Instead, they have a Protection Unit and protection regions.

If you use the PageTable model on a core that has a Protection Unit (PU), instead of
initializing the MMU and setting up pagetables, the PU is initialized. With the above
example, the default set-up initializes the first region (that has the lowest priority) such
that the entire memory space (0 to 4GB) is marked as read/write, cacheable and
bufferable.

For the 740T, the Protection Unit would be initialized as follows:

• The M, C and W bits are set in the control register (CP15 register 1), to enable the
Protection Unit, the Cache and the Write Buffer.

• The cacheable register is initialized to 1, marking region 0 as cacheable (CP15
register 2).

• The bufferable register is initialized to 1, marking region 0 as bufferable (CP15
register 3).

• The protection register is initialized to 3, marking region 0 as read/write access
(CP15 register 5).

• Finally, the Memory area definition register for region 0 is initialized to 0x3F,
marking the size of region 0 as 4GB and as enabled.

For the 940T, the Protection Unit would be initialized as follows:

• The P, D and I bits are set in the control register (CP15 register 1), to enable the
Protection Unit, the data cache and the instruction cache.

• The cacheable registers are initialized to 1, marking region 0 as cacheable for the
I and D caches (CP15 register 2). This is displayed as 0x010, where:

— the low byte (bits 0..7) represent the dcache cacheable register

— the high byte (bits 8..15) represent the icache cacheable register.

• The bufferable register is initialized to 1, marking region 0 as bufferable (CP15
register 3).

• The Protection registers are initialized to 3, marking region 0 as read/write access
for I and D caches (CP15 register 5). This is displayed as 0x00030003, where:

— the low halfword (bits 0..15) represent the dcache protection register

— the high halfword (bits 16..31) represent the icache protection register.

The first register value shown is for region 0, the second for region 1 and so on.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-17

ARMulator
• The protection region base/size register for region 0 is initialized to 0x3F,
marking the size of region 0 as 4GB and as enabled (CP15 Register 6).

• CP15 Register 7 is a control register. Reading from it is unpredictable. At startup
it shows a value of zero.

• The programming lockdown registers are both initialized to zero. (CP15 Register
9). The first register value shown is for data lockdown control, the second for
instruction lockdown control.

• CP15 Register 15, the Test/Debug register, is initialized to zero. Only bits 2 and
3 have any effect in ARMulator. These control whether the cache replacement
algorithm is random or round robin.
12-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
12.8 armflat

ARMflat (armflat.c) provides a memory model of a zero-wait state memory system.
The emulated memory size is not fixed, so host memory is allocated in chunks of 64KB
each time a new region of memory is accessed. The memory size is limited by the host
computer, but in theory all 4GB of the address space is available. ARMflat does not
generate aborts.

12.8.1 Selecting the ARMflat memory model

You select the ARMflat model by setting Default=Flat in the Memories section of the
armul.cnf file:

{ Memories
;; Default memory model is the "Flat" model, or the "MapFile"
;; model if there is an armsd.map file to load.
; Validation suite uses the trickbox
#if Validate
Default=TrickBox
#endif
;; If there's a memory mapfile, use that.
#if MemConfigToLoad && MEMORY_MapFile
Default=MapFile
#endif
;; Default default is the flat memory map
Default=Flat
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-19

ARMulator
12.9 armfast

ARMfast (armfast.c) provides a flat memory model of 2MB of RAM. Emulation using
ARMfast is typically 17% faster than for ARMflat. This performance increase is partly
achieved by not counting cycles, so cycle counts in $statistics will be zero. This model
is intended for use by software developers who want maximum emulation speed, and
are not interested in cycle counts or execution time.

The memory size is limited to 2MB. You can change this by editing armfast.c and
rebuilding ARMulator, as described in Rebuilding the ARMulator on page 12-32.

ARMfast does not generate aborts.

12.9.1 Selecting the ARMfast memory model

You select ARMfast by setting Default=Fast, in the Memories section of the armul.cnf
file:

{ Memories
;; Default memory model is the "Flat" model, or the "MapFile"
;; model if there is an armsd.map file to load.
;; Validation suite uses the trickbox
#if Validate
Default=TrickBox
#endif
;; If there's a memory mapfile, use that.
#if MemConfigToLoad && MEMORY_MapFile
Default=MapFile
#endif
;; Default default is the flat memory map
;Default=Flat
Default=Fast
12-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
12.10 armmap

ARMmap (armmap.c) provides a memory model of a user-configurable memory system.
You can specify the size, access width, access type and access speeds of individual
memory blocks in the memory system in a memory map file.

The debugger internal variables $memstats and $statistics give details of accesses of
each cycle type, regions of memory accessed and time spent accessing each region.

ARMmap may generate aborts if you specify a memory region with access type as -.

12.10.1 Clock frequency

You must specify an emulated clock frequency when using this memory model, or the
number of wait states for each memory region cannot be calculated. To configure the
clock frequency:

• Under armsd, use the command-line option -clock clockspeed. This is described
in Command-line options on page 7-3.

• Under the ARM GUI debuggers, select the Configure debugger option from the
Options menu. In the debugger configuration dialog, click on Configure to
display the ARMulator configuration dialog. This contains a Clock Speed box
that you can edit to the required frequency.

12.10.2 Selecting the ARMmap memory model

Under armsd, ARMmap is automatically selected as the memory model to use
whenever an armsd.map file exists in the directory where armsd is started.

Under the ARM GUI debuggers, ARMmap is automatically selected whenever a
memory map file is specified. You specify map files using the Memory Maps tab of the
debugger configuration dialog.

;; If there's a memory mapfile, use that.
#if MemConfigToLoad && MEMORY_MapFile
Default=MapFile
#endif

12.10.3 How ARMmap calculates wait-states

The memory map file specifies access times in nanoseconds for
non-sequential/sequential reads/writes to various regions of memory. By inserting
wait-states, the ARMmap memory model ensures that every access from the ARM
processor takes at least that long.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-21

ARMulator
The number of wait-states inserted is the least number required to take the total access
time over the number of nanoseconds specified in the memory map file. For example,
with a clock speed of 33MHz (a period of 30ns), an access specified to take 70ns in a
memory map file results in two wait-states being inserted, to lengthen the access to
90ns.

This can lead to inefficiencies in your design. For example, if the access time were
60ns—only 14% faster—ARMmap would insert only one wait-state—33% quicker.

A mismatch between processor clock-speed and memory map file can sometimes lead
to faster processor speeds having worse performance. For example, a 100MHz
processor (10ns period) will take 5 wait-states to access 60ns memory—total access
time, 60ns. At 110MHz, ARMmap must insert 6 wait-states—total access time, 63ns.
So the 100MHz-processor system is faster than the 110MHz processor, if connected to
60ns memory. (This does not apply to cached processors, where the 110MHz processor
would be faster.)

12.10.4 Configuring the ARMmap memory model

You can configure ARMmap to model several memory managers, by editing its entry in
the armul.cnf file:

{ MapFile
;; Options for the mapfile memory model
CountWaitStates=True
AMBABusCounts=False
SpotISCycles=True
ISTiming=Early
}

Counting wait-states

By default, ARMmap is configured to count wait-states in $statistics. This can be
disabled by setting CountWaitStates=False in armul.cnf.

Counting AMBA decode cycles

You can configure ARMmap to insert an extra decode cycle for every non-sequential
access from the processor. This models the decode cycle seen on AMBA bus
systems.You enable this by setting AMBABusCounts=True in armul.cnf.
12-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
Merged I-S cycles

All ARM processors, particularly cached processors, can perform a non-sequential
access as a pair of idle and sequential cycles, known as merged I-S cycles. By default,
ARMmap treats these cycles as a non-sequential access, inserting wait-states on the
S-cycle to lengthen it for the non-sequential access.

You can disable this by setting SpotISCycles=False in armul.cnf. However, this is likely
to result in exaggerated performance figures, particularly when modeling cached ARM
processors.

ARMmap can optimize merged I-S cycles using one of three strategies:

Speculative This models a system where the memory manager hardware
speculatively decodes all addresses on idle cycles. This gives both the I-
and S-cycles time to perform the access, resulting in one less wait state.

Early This starts the decode when the ARM declares that the next cycle is going
to be an S-cycle; that is, half-way through the I-cycle. This can result in
one fewer wait-state. (Whether or not there are fewer wait-states depends
on the cycle time and the non-sequential access time for that region of
memory.)

This is the default setting. You can change this by setting ISTiming=Spec
or ISTiming=Late in armul.cnf.

Late This does not start the decode until the S-cycle.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-23

ARMulator
12.11 Dummy MMU

DummyMMU (dummymmu.c) provides a dummy implementation of an ARM
Architecture v.3/v.4 system coprocessor. This does not provide any of the cache and
MMU functions, but does prevent accesses to this coprocessor being Undefined
Instruction exceptions.

Reads from r0 return a dummy ARM ID register value, that can be configured.

Writes to r1 of the dummy coprocessor (the system configuration register) set the
bigend, lateabt and other signals.

12.11.1 Configuring the Dummy MMU

You can set the code of the DummyMMU in the configuration file. Use the following
entry in the Coprocessors section of armul.cnf:

{ Coprocessors
; Here is the list of co-processors, in the form
:; Coprocessor[<n>]=Name
#if COPROCESSOR_DummyMMU
;; By default, install a dummy MMU on co-processor 15.
CoProcessor[15]=DummyMMU
; Here is the configuration for the co-processors.
;; The Dummy MMU can be configured to return a given Chip ID
;DummyMMU:ChipID=
#endif
}

The line:

;DummyMMU:ChipID=

can be uncommented and set to any value. For example, to configure DummyMMU to
return the ARM710 ID code (0x44007100), change this line to:

; Here is the configuration for the co-processors.
;; The Dummy MMU can be configured to return a given Chip ID
DummyMMU:ChipID=0x44007100
#endif
12-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
12.12 Angel

The Angel model (angel.c) is an operating system model that allows code that has been
built to run with the Angel Debug Monitor, to run under ARMulator.

The model intercepts Angel SWIs and emulates the functionality of Angel directly on
the host, transparently to the program running under ARMulator.

12.12.1 Configuring Angel

The configuration for the Angel model exists in a section called OS in the armul.cnf file.
This appears as:

{ OS
;; Angel configuration
[...]
}

The configuration options are:

AngelSWIARM=0x123456
AngelSWIThumb=0xab

AngelSWIARM and AngelSWIThumb declare the SWI numbers that Angel uses. For
descriptions, see Chapter 13 Angel in the ARM Software Development Toolkit User
Guide.

Heapbase=0x40000000
HeapLimit=0x70000000
Stackbase=0x80000000
StackLimit=0x70000000

where:

HeapBase/HeapLimit

defines the application heap.

StackBase/StackLimit

defines the application stack.

The Angel model automatically detects at runtime whether a model uses Angel or
Demon SWIs.

The following options define the initial locations of the exception mode stack pointers.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-25

ARMulator
AddrSuperStack=0xa00
AddrAbortStack=0x800
AddrUndefStack=0x700
AddrIRQStack=0x500
AddrFIQStack=0x400

The next option is the default location of the user mode stack, and the default value
returned by SWI_SYSHEAPINFO, that returns the top of the memory application. A different
value may be returned if a memory model calls ARMul_SetMemSize, for example:

AddrUserStack=0x80000

These options define the location in memory where the ARMulator places the code to
handle the hardware exception vectors:

AddrSoftVectors=0xa40
AddrsOfHandlers=0xad0
SoftVectorCode=0xb80

The final option points to a buffer where the Angel model places a copy of the command
line. This can be retrieved be by catching the RDI_Info call, RDISet_Cmdline:

AddrCmdLine=0xf00

12.12.2 ARMulator SWIs

In addition to the standard Angel SWIs, the ARMulator uses a set of SWIs for default
exception vector handlers. These are known as the soft vector SWIs. The soft vector
code is installed by the Angel model.

There are two sets of SWIs:

SWIs 0x90 – 0x98 are used to implement $vector_catch; that is, they return control
to the debugger if the user has set $vector_catch for the relevant
exception vector. SWI 0x90 is used for the reset vector; 0x91 for
the undefined instruction vector, and so on.

SWIs 0x80 – 0x88 are used to stop the ARMulator if the exception cannot be
handled. The 0x80 SWIs are used as a final stop if the exception
is not caught by such an exception handler.

Note
 These SWIs are for internal use by the ARMulator only.
12-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
12.13 Controlling the ARMulator using the debugger

This section gives configuration information for the ARMulator and describes how to
configure the debugger using RDI.

12.13.1 About RDI

The debugger communicates with ARMulator using RDI, whether it is the
command-line armsd, ADW or ADU.

The RDI allows the debugger to configure:

• the processor type.

• the clock speed. Only one clock speed is allowed, usually taken to be the
processor clock speed. For systems with multiple clocks (for example, a cached
processor), the clock speeds are set in the configuration file (see Using the
armul.cnf configuration file on page 12-28 and also Application Note 52, The
ARMulator Configuration File, ARM DAI 0052A.

• the memory map. The debugger reads the armsd.map file and tells ARMulator its
contents. Individual memory models have to support this information if they are
to use the armsd.map file. One such model, armmap.c, is supplied with the
ARMulator as an example.

Other information is sent over the RDI. Models can intercept the UnkRDIInfoUpcall to
receive this data. Some of the sample models do this, for example:

armmap.c intercepts the memory map information coming from the
debugger. See The armsd.map File on page 12-28.

angel.c intercepts RDIErrorP, RDISet_Cmdline and RDIVector_Catch,
RDI_Semihosting_SETARMSWI, and RDI_Semihosting_SETThumbSWI.

dummymmu.c responds to the debugger's request about the emulated MMU.

profiler.c intercepts the profiling calls from the debugger to set up
information such as profiling maps, enable profiling, and
write-back profiling data.

watchpnt.c responds to the RDIInfo_Points call from the debugger, responding
that watchpoints are available.

Note
 It is not possible to add further control of the ARMulator from the debugger by, for
example, the addition of extra commands or pseudo-variables.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-27

ARMulator
12.13.2 Using the armul.cnf configuration file

The armul.cnf file contains the configuration for the ARMulator. It sets the options for
the various ARMulator components, for example, defining configurations for different
processors and caches. See Application Note 52, The ARMulator Configuration File,
ARM DAI 0052A for more information.

12.13.3 The armsd.map File

It is the responsibility of the memory model to translate map files. New models do not
understand the map file unless support is written in. Only one supplied model, armmap.c,
supports this.

Adding armsd.map file support to memory models

To support the map data, a memory model has to intercept upcall UnkRDIInfoUpcall,
watching for:

RDIMemory_Map

The debugger makes this call to pass the data parsed from the armsd.map
file.

• arg1 points to an array of RDI_MemDescr structures.

• arg2 gives the number of elements in the array.

RDIMemory_Map can be called many times during initialization.

RDIInfo_Memory_Stats

The model should return RDIError_NoError to indicate that memory maps
are supported.

RDIMemory_Access

The debugger makes this call to obtain access statistics (see
$memory_statistics or the equivalent in the ARM GUI Debuggers).

• arg1 points to an RDI_MemAccessStats structure for the memory
model to fill in. (One call is made for each mapped area passed to
RDIMemory_Map.)

• arg2 identifies the area by the handle passed in the RDIMemDescr
passed to RDIMemory_Map.

These structures are defined in rdi_stat.h.
12-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
12.14 A sample memory model

The sample memory model includes:

• an address decoder

• a memory mapped I/O area

• some RAM that is paged by writing to another area of memory.

12.14.1 The memory map

This example deals with example.c, a device in which memory is split into two 128KB
pages:

• the bottom page is read-only.

• the top page has one of eight 128KB memory pages mapped into it, page 0 being
the low page.

Addresses wrap around above 256KB for the first 1GB of memory, as if bits 29:18 of
the address bus were ignored. Bits 31:30 are statically decoded:

This produces the memory map shown in Figure 12-1 on page 12-30.

Table 12-1 Address bus

bit 31 bit 30 Description

0 0 Memory access.

0 1 Bits 18:16 of the address select the physical page mapped in to the top
page.

1 0 I/O port. (see I/O area split on page 12-30)

1 1 Generates an abort.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-29

ARMulator
Figure 12-1 Memory map

The I/O area, that is accessible only in privileged modes, is split as follows:

Figure 12-2 I/O area split

These function as follows:

Schedule_IRQ An IRQ is raised after n cycles, where n is the bottom 8 bits of the
address.

Schedule_FIQ An FIQ is raised after n cycles, where n is the bottom 8 bits of the
address.

Out channel The character represented by the bottom 8 bits of the data is sent
to the screen for a write, and is ignored on read.

In channel A byte is read from the terminal for a read, or ignored for a write.

��������

��������

���
����

�������

��������

��������

�������
&����
�	���

��.����

����

�������	,����

&��������

�������	,����

&��������

�������	,����

&��������

��������

��������

��������

�������

.���������	

������	��6�9

������	����9

��������

���������	
12-30 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
12.14.2 Implementation

There are eight banks of 128KB of RAM, one of which is currently mapped in to the
top page. The memory model has two pieces of state:

• an array representing the model of memory

• the number of the page currently mapped into the top page.

In this model, the ARM does not need to run in different endian modes. You can assume
that the ARM is configured to be the same endianness as the host architecture.

Note
 If you want to allow the ARM to run in different endian modes, you must have a
ConfigChange callback, as in armflat.c.

However, you do occasionally need to ensure that a write is allowed only if the
nTRANS signal is HIGH, indicating that the processor is in a privileged mode. To
enable you to know this, you must install a callback for changes to nTRANS, because
it is not supplied to the memory access function. The core calls the callback whenever
nTRANS changes (on mode changes), and when executing an LDRT/STRT instruction.

For an example of implementation code, look at the rebuild kit file on UNIX in:

armsd/source/example.c

or on PC in:

C:\ARM250\Source\Win32\ARMulate\example.c
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-31

ARMulator
12.15 Rebuilding the ARMulator

The file example.c defines an extra memory model (see A sample memory model on
page 12-29). For ARMulator to know about this model, you must declare the model in
models.h by adding the line:

MEMORY(ExampleMemory)

The reference ExampleMemory comes from ARMul_MemStub ExampleMemory in the file
example.c.

You must also add the object file to the supplied Makefile, along with a rule for building
the model.

12.15.1 Rebuilding on UNIX

Follow these steps to rebuild the ARMulator under UNIX:

1. Place the source code in the directory sources.

2. Load the Makefile in build/ into an editor.

3. Add the object to the list of objects to be built.

4. Change the lines:

OBJALL=main.o angel.o armfast.o armflat.o armmap.o \
armpie.o bytelane.o dummymmu.o ebsa110.o errors.o \
models.o pagetab.o profiler.o tracer.o trickbox.o \ validate.o watchpnt.o
winglass.o

to read:

OBJALL=main.o angel.o armfast.o armflat.o armmap.o \
armpie.o bytelane.o dummymmu.o ebsa110.o errors.o \
models.o pagetab.o profiler.o tracer.o trickbox.o \ validate.o watchpnt.o
winglass.o example.o

5. Add a rule for building the example:

example.o: $(SRCDIR1)/example.c
example.o: $(SRCDIR1)/armdefs.h
example.o: $(SRCDIR1)/rdi_hif.h

$(CC) $(CFLAGS) $(CFLexample) -o example.o
$(SRCDIR1)/example.c

6. In directory build, type:

make.

For the Solaris/gcc target, this produces the following output:
12-32 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator
Example 12-1 Sample output

gcc -c -ansi -pedantic -W -Wformat -Wimplicit -Wmissing-prototypes -Wchar-subscripts -Wunused
-Wuninitialized -Wreturn-type -Wpointer-arith
-Wcast-qual -Wstrict-prototypes -Wcomment -Dunix -g -O2
-DARM_RELEASE="\"unreleased\"" -Iderived -I../../armsd/source
-I../../armsd/source -I../../armsd/obj -I../../armsd/obj -I../../armsd/obj
-I../../armsd/obj -I../../armsd/obj -I../../armsd/obj -I../../armsd/obj
-I../../armsd/obj -I../../armsd/obj -I../../armsd/obj -I../../armsd/obj
-I../../armsd/obj -I../../armsd/obj -I../../armsd/obj -o example.o
../../armsd/source/example.c
../../armsd/source/example.c:44: warning: pointer targets in initialization
differ in signedness
gcc -o armsd -lm -lsocket -lnsl main.o angel.o armfast.o armflat.o
armmap.o armpie.o bytelane.o dummymmu.o ebsa110.o errors.o models.o
pagetab.o profiler.o tracer.o trickbox.o validate.o watchpnt.o winglass.o
example.o ../../armsd/obj/gccsolrs/angsd.o
../../armsd/obj/gccsolrs/sarmul.a ../../armsd/obj/gccsolrs/iarm.a
../../armsd/obj/gccsolrs/armul920.a ../../armsd/obj/gccsolrs/armul940.a
../../armsd/obj/gccsolrs/armulib.a ../../armsd/obj/gccsolrs/asdlib.a
../../armsd/obj/gccsolrs/dbglib.a ../../armsd/obj/gccsolrs/armdbg.a
../../armsd/obj/gccsolrs/armsd.a ../../armsd/obj/gccsolrs/c150t100.a
../../armsd/obj/gccsolrs/clx.a
echo "Made armsd"
Made armsd

12.15.2 Rebuilding on Windows

To rebuild the ARMulator, load armulate.mak into Microsoft Visual C++ Developer
Studio (version 4.0 or greater).

Alternatively, type nmake armulate.mak.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-33

ARMulator
12.16 Configuring ARMulator to use the example

The ARMulator determines which memory model to use by reading the configuration
file, armul.cnf. Before the example memory model can be used by ARMulator, a
reference to it must be added to the configuration file. By default, the ARMulator uses
the built-in Flat or MapFile memory models.

Follow these steps to edit the configuration file so that the ARMulator selects the sample
memory model:

1. Load the armul.cnf file into a text editor, and find the following lines
approximately halfway through the file:

;; List of memory models
{ Memories
;; the 'default' default is the flat memory map
Default=Flat

2. Change the last two lines to:

;; Use the new memory model instead
Default=Example

where Example is the name of the model in the MemStub given in Implementation
on page 12-31. The changed lines specify that the default memory model is now
Example, rather than Flat.

Note
 If a map file exists (or for ADW, if a map file is specified), the armmap memory

model is used.

3. Start ADW or armsd. The debugger responds:

ARMulator 2.0
ARM7, User manual example, 1MB memory, Dummy MMU,
Soft Angel 1.4 [Angel SWIs], FPE initialization failed, Profiler, Tracer,
Pagetables, Big endian.

You may see the following errors:

• The Floating Point Emulator (FPE) initialization failed because this model
does not have a standard memory map, and the FPE could not be loaded.

• Alternatively, you might see the error:
Initialization failed: Memory model 'Example' incompatible with bus
interface

This is the memory model reporting that it cannot talk to the selected
processor (for example, ARM7TDMI, or ARM9TDMI).
12-34 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 13
Angel

This chapter describes the Angel debug monitor. It contains the following sections:

• About Angel on page 13-2

• Developing applications with Angel on page 13-11

• Angel in operation on page 13-29

• Porting Angel to new hardware on page 13-43

• Configuring Angel on page 13-69

• Angel communications architecture on page 13-73

• Angel C library support SWIs on page 13-79

• Angel debug agent interaction SWIs on page 13-95

• The Fusion IP stack for Angel on page 13-99.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-1

Angel
13.1 About Angel

Angel is a program that enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either ARM state or
Thumb state.

You can use Angel to:

• evaluate existing application software on real hardware, as opposed to hardware
emulation

• develop new software applications on development hardware

• bring into operation new hardware that includes an ARM processor

• port operating systems to ARM-based hardware.

These activities require you to have some understanding of how Angel components
work together. The more technically challenging ones, such as porting operating
systems, require you to modify Angel itself.

A typical Angel system has two main components that communicate through a physical
link, such as a serial cable:

Debugger The debugger runs on the host computer. It gives instructions to Angel
and displays the results obtained from it. All ARM debuggers support
Angel, and you can use any other debugging tool that supports the
communications protocol used by Angel.

Angel Debug Monitor

The Angel debug monitor runs alongside the application being debugged
on the target platform. There are two configurations of Angel:

• a full version for use on development hardware

• a minimal version that you can use on production hardware.

See Figure 13-1 on page 13-6 for an overview of a typical Angel system. The debugger
on the host machine sends requests to Angel on the target system. Angel interprets those
requests and performs an operation such as inserting an undefined instruction where a
breakpoint is required, or reading a portion of memory and sending back a response to
the host.

Angel uses a debugging protocol called the Angel Debug Protocol (ADP) to
communicate between the host system and the target system. ADP supports multiple
channels and provides an error-correcting communications protocol. Refer to the Angel
Debug Protocol specification in Arm250\PDF\specs for more information on ADP.

Angel is supplied as:

• a stand-alone form that is built into the Flash and/or ROM of ARM evaluation and
development boards and other, third party boards
13-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
• prebuilt images that you can program into ROM or download to Flash

• a minimal library that you can link with your application.

In addition, full Angel source is provided so that you can port Angel to your own
ARM-based hardware.

ANSI C and C++ libraries that support Angel are supplied with the ARM Software
Development Toolkit. Refer to Chapter 4 The C and C++ Libraries in the ARM
Software Development Toolkit Reference Guide for more information.

13.1.1 Angel system features

Angel provides the following functionality:

• basic debug support

• C library support

• communications support

• task management

• exception handling.

These features are described below. See Figure 13-1 on page 13-6 for an overview of
the Angel components that provide this functionality.

Debug support

Angel provides the following basic debug support:

• reporting memory and processor status

• downloading applications to the target system

• setting breakpoints.

Refer to Angel debugger functions on page 13-31 for more information on how Angel
performs these functions.

C library semihosting support

Angel uses a software interrupt (SWI) mechanism to enable applications linked with the
ARM C and C++ libraries to make semihosting requests. Semihosting requests are
requests such as open a file on the host, or get the debugger command-line, that must be
communicated to the host to be carried out. These requests are referred to as
semihosting because they rely on the C library of the host machine to carry out the
request.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-3

Angel
The ARM Software Development Toolkit provides prebuilt ANSI C libraries that you
can link with your application. The toolkit provides 26 prebuilt library variants that are
targeted to Angel. The libraries use the Angel SWI mechanism to request that specific
C library functions, such as input/output, are handled by the host system.

These libraries are used by default when you link code that calls ANSI C library
functions. Refer to Chapter 4 The C and C++ Libraries in the ARM Software
Development Toolkit Reference Guide for more information.

Angel uses a single SWI to request semihosting operations. By default, the SWI is
0x123456 in ARM state and 0xab in Thumb state. You can change this number if
required. Refer to Configuring Angel on page 13-69 for more information.

If semihosting support is not required you can disable it by setting the
$semihosting_enabled variable in the ARM debuggers.

• In armsd set:

$semihosting_enabled = 0

• In ADW or ADU, select Debugger Internals from the View menu to view and
edit the variable. Refer to Chapter 3 ARM Debuggers for Windows and UNIX for
more information.

Refer to Angel C library support SWIs on page 13-79 for details of the Angel
semihosting SWIs.

Communications support

Angel communicates using ADP, and uses channels to allow multiple independent sets
of messages to share a single communications link. Angel provides an error-correcting
communications protocol over:

• Serial and serial/parallel connection from host to the target board, with Angel
resident on the board.

• Ethernet connection from the host to PID board, with Angel resident on the board.
This requires the Ethernet Upgrade Kit (No. KPI 0015A), available separately
from ARM Limited.

The host and target system channel managers ensure that logical channels are
multiplexed reliably. The device drivers detect and reject corrupted data packets. The
channel managers monitor the overall flow of data and store transmitted data in buffers,
in case retransmission is required. Refer to Angel communications architecture on
page 13-73 for more information.
13-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
The full Angel Device Driver Architecture uses Angel task management functionality
to control packet processing and to ensure that interrupts are not disabled for long
periods of time.

You can write device drivers to use alternative devices for debug communication, such
as a ROMulator. You can extend Angel to support different peripherals, or your
application can address devices directly.

Task management

All Angel operations, including communications and debug operations, are controlled
by Angel task management. Angel task management:

• ensures that only a single operation is carried out at any time

• assigns task priorities and schedules task accordingly

• controls the Angel environment processor mode.

Refer to Angel task management on page 13-33 for more information.

Exception handling

Angel exception handling provides the basis for each of the system features described
above. Angel installs exception handlers for each ARM exception type except Reset:

SWI Angel installs a SWI exception handler to support C library semihosting
requests, and to allow applications and Angel to enter Supervisor mode.

Undefined Angel uses three undefined instructions to set breakpoints in code. Refer
to Setting breakpoints on page 13-22 for more information.

Data, Prefetch Abort

Angel installs basic Data and Prefetch abort handlers. These handlers
report the exception to the debugger, suspend the application, and pass
control back to the debugger.

FIQ, IRQ Angel installs IRQ and FIQ handlers that enable Angel communications
to run off either, or both types of interrupt. If you have a choice you
should use IRQ for Angel communications, and FIQ for your own
interrupt requirements.

You can chain your own exception handlers for your own purposes. Refer to Chaining
exception handlers on page 13-20 for more information.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-5

Angel
13.1.2 Angel component overview

The main components of an Angel system are shown in Figure 13-1. The following
sections give a summary of the system components.

Figure 13-1 A typical Angel system

-������

-����������	��)

�-&

�����

4���

�����

!�7���,

�����

!�����	�������

!�����	�������

-�'������'�

4������
���
������	�1�����

:������������
�����

���������������
�������
�����

+)�������
�
�����

����	�!�	���,
�2��
�����

!�7���,

���	�������
13-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Host system components summary

The host system components are:

Debugger This is the ARM Debugger for Windows (ADW), the ARM Debugger for
UNIX (ADU), the ARM command-line debugger (armsd), or a third
party debugger that supports the Angel Debug Protocol.

Debugger toolbox

This provides an interface between the debugger and the Remote Debug
Interface (RDI).

ADP support

This translates between RDI calls from the debug controller and Angel
ADP messages.

Boot support

This establishes communication between the target and host systems. For
example, it sets baud rates and re-initializes Angel in the target.

C library support

This handles semihosting requests from the target C library.

Host channel manager

This handles the communication channels, providing the functionality of
the devices at a higher level.

Device drivers

These implement specific communications devices on the host. Each
driver provides the entry points required by the channel manager.

Target system components summary

The target system components are:

Device drivers

These implement specific communications devices on the development
boards. Each driver provides the entry points required by the channel
manager.

Channel manager

This handles the communication channels. It provides a streamed packet
interface that hides details of the device driver in use.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-7

Angel
Generic debug support

This handles the Angel Debug Protocol by communicating with the host
over a configured channel, and sending and receiving commands from
the host.

Target-dependent debug support

This provides system-dependent features, such as setting up breakpoints
and reading/writing memory.

Exceptions support

This handles all ARM exceptions.

C library support

C library support consists of the ARM ANSI C libraries supplied with the
SDT, and the semihosting support that is built into Angel to send requests
to the host when necessary.

Booting and initialization

The Angel booting and initialization support code:

• performs startup checks

• sets up memory, stacks, and devices

• send a boot message to the debugger.

User application

This is an application on the target system.

13.1.3 Angel system resource requirements

Where possible, Angel resource usage can be statically configured at compile and link
time. For example, the memory map, exception handlers, and interrupt priorities are all
fixed at compile and link time. Refer to Configuring Angel on page 13-69 for more
information.

The following sections describe the system and memory resources required by Angel.

System resources

Angel requires the following configurable and non-configurable resources:

Configurable resources

Angel requires the following for semihosting purposes:

• one ARM SWI
13-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
• one Thumb SWI.

Non-configurable resources

For breakpoints, Angel requires:

• two ARM Undefined instructions

• one Thumb Undefined instruction.

ROM and RAM requirements

Angel requires ROM or Flash memory to store the debug monitor code, and RAM to
store data. The amount of ROM, Flash, and RAM required varies depending on your
configuration.

Additional RAM is required to download a new version of Angel:

• if you download a new version of Angel to Flash memory you will require enough
RAM to store the flash download program

• if you download a new version of Angel using the loadagent debugger command,
you will require RAM to store the downloaded copy of Angel.

Note
 The loadagent command cannot write to Flash. If you use loadagent, Angel must be
compiled to run from RAM.

Exception vectors

Angel requires some control over the ARM exception vectors. Exception vectors are
initialized by Angel, and are not written to after initialization. This supports systems
with ROM at address 0, where the vectors cannot be overwritten.

Angel installs itself by initializing the vector table so that it takes control of the target
when an exception occurs. For example, debug communications from the host cause an
interrupt that halts the application and calls the appropriate code within Angel.

Interrupts

Angel requires use of at least one interrupt to support communication between the host
and target systems. You can set up Angel to use:

• IRQ

• FIQ

• both IRQ and FIQ.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-9

Angel
It is recommended that you use FIQ for your own interrupt requirements because Angel
has no fast interrupt requirements. Refer to devconf.h on page 13-60 for more
information.

Stacks

Angel requires control over its own Supervisor stack. If you want to make Angel calls
from your application you must set up your own stacks. Refer to Developing an
application under full Angel on page 13-17 for more information.

Angel also requires that the current stack pointer points to a few words of usable full
descending stack whenever an exception is possible, because the Angel exception return
code uses the application stack to return.
13-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.2 Developing applications with Angel

This section describes how you can develop applications under Angel. It gives an
overview of the development process and describes how you can use Angel in two
distinct ways:

• full Angel debug agent

• minimal Angel library.

It also describes the programming restrictions that you must be aware of when
developing an application under Angel, and provides some workarounds for Angel
intrusions.

13.2.1 Full Angel debug agent

Full Angel is a stand-alone system that resides on the target board and is always active.
Full Angel is used during the development of the application code. It supports all
debugger functions and you can use it to:

• download your application image from a host

• debug your application code

• develop the application before converting to stand-alone code.

Full Angel is supplied in the following forms:

In target board ROM

The ARM development and evaluation boards are supplied with full
Angel built into ROM, or Flash, or both. To use Angel in this form you
simply connect your target board to a host machine running a debugger,
such as ADW, ADU, or armsd.

Prebuilt images

Full Angel is supplied as prebuilt images for the ARM PID board with
SDT 2.50. These are located in:

• Angel\Images\pid\little for a little-endian configuration of the
ARM PID board

• Angel\Images\pid\big for a big-endian configuration of the ARM
PID board.

The supplied binaries are:

angel.rom This is a ROM image of full Angel. You can use this
image in place of the Angel in your target board
ROM if your board contains an older version. In
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-11

Angel
addition, if you are porting Angel to your own
hardware this image provides you with a working
default to test against.

angel.hex This is an Intellec Hex format version of full Angel.

angel.m32 This is a Motorola M32 version of full Angel.

Refer to Downloading a new version of Angel on page 13-67 for
information on how to download a new version of Angel to the target.

Full source code

You can port the Angel source code to your own development board if
you are developing an application on your own hardware. Refer to
Porting Angel to new hardware on page 13-43 for more information.
13-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.2.2 Minimal Angel

Minimal Angel is a cut down version of Angel that provides:

• board setup

• application launch

• device drivers.

Minimal Angel keeps the raw device drivers intact because your application might have
been developed to use these. Raw device drivers are device drivers that send and receive
byte streams, rather than ADP packets.

You can use minimal Angel in the final stages of development, and on your production
hardware.

Minimal Angel does not support features that are provided by full Angel, such as:

• debugging over ADP

• semihosting

• multiple channels on one device

• task management.

Minimal Angel is supplied in the following forms:

Prebuilt libraries

There are separate big-endian and little-endian minimal Angel libraries:

• Angel\Images\pid\big\angmin.lib

• Angel\Images\pid\little\angmin.lib.

Full source code

There is a separate build directory for minimal Angel PID port. This is
Angel\Source\pid.min. It contains UNIX makefiles and an ARM Project
Manager project to build minimal Angel.

Refer to Porting Angel to new hardware on page 13-43 for more
information.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-13

Angel
13.2.3 Overview of the development procedure

This section gives an overview of the development process of an application using
Angel, from the evaluation stage to the final product.

The stages in the Angel development procedure are:

1. Evaluate the application.

2. Build with high dependence on Angel.

3. Build with low dependence on Angel.

4. Move to final production hardware.

Figure 13-2 shows an example of this development procedure. The stages of the
development procedure are described in more detail below.

Figure 13-2 The Angel development process

���	������������
����	�����������
�'�	�����������

���	���������
����6�		
����	���

-�'�	�������4���
/'�,����������0

���	���������
����6�		
����	����-�'�	������

4���
/������	����������,0

���	������������
������	�����	���
8���	�������

���	�����������8���	
������;��������	;
13-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Stage 1: Evaluating applications

If you want to evaluate the ARM to ensure that it is appropriate for your application you
must have a program, or suite of programs to run on the ARM.

You can rebuild your programs using the ARM Software Development Toolkit, and link
them with an ARM C or C++ library.

You can run your ported applications in two ways:

ARMulator You can run your programs under the ARMulator, and evaluate cycle
counts to see if the performance is sufficient.

This method does not involve Angel, however you can use an
Angel-targeted ARM C or C++ library because the ARMulator supports
the Angel semihosting SWIs, so C library calls are handled by the host C
library support.

Evaluation board

Instead of testing programs under the ARMulator, you can use an ARM
evaluation board to evaluate performance. In this case you use Angel
running as a debug monitor on the ARM evaluation board. You do not
need to rebuild Angel, or to be familiar with the way Angel works.

You can build images that are linked with an Angel-targeted ARM C or
C++ library, and then download the images with an ARM debugger.

Stage 2: Building applications on a development board, highly dependent
on Angel

After evaluating your application you move to the development stage. At this stage, the
target board is either your own development board or an ARM development board:

Using an ARM development board

You can use the ARM PID board to closely emulate the configuration of
your production hardware. You can develop your application on the PID
board and port it to your final hardware with minimal effort.

Using your own development board

If you are developing on your own hardware it is likely to have different
peripheral hardware, different memory maps, and so on from the ARM
evaluation boards or development boards. This means that you must port
Angel to your development board. The porting procedure includes
writing device drivers for your hardware devices. Refer to Porting Angel
to new hardware on page 13-43 for more information.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-15

Angel
When you have chosen your development platform, you build a stand-alone application
that runs next to Angel on your target hardware. You must use one of the methods
described in Downloading new application versions on page 13-27 to download the
application to your development board.

At this stage you are highly reliant on Angel to debug your application. In addition you
must make design decisions about the final form of your application. In particular you
should decide whether the final application is stand alone, or uses minimal Angel to
provide initialization code, interrupt handlers, and device drivers. If you are porting
Angel to your own hardware you must also consider how you will debug your Angel
port. Refer to Debugging your Angel port on page 13-68 for more information.

If you are developing simple embedded applications, you might want to move straight
to building your application on a development board.

Stage 3: Building applications on a development board, with little
dependence on Angel

As you proceed with your development project and your code becomes more stable, you
will rely less on Angel for debugging and support. For example, you might want to use
your own initialization code, and you might not require C library semihosting support:

• You can switch off semihosting, without building a special cut-down version of
Angel, by setting the $semihosting_enabled variable in the ARM debuggers. In
armsd:

$semihosting_enabled = 0

In ADW or ADU select Debugger Internals from the View menu to view and
edit the variable. Refer to on page 3-1 for more information.

• You can build an application that links with the minimal Angel library. This can
be blown into a ROM, soft-loaded into Flash by the ARM debuggers, or installed
using a ROM emulator, Multi-ICE, or EmbeddedICE.

Minimal Angel provides the same initialization code, raw device drivers, and
interrupt support as full Angel. Moving from full Angel to minimal Angel on your
development hardware is straightforward. See Developing an application under
minimal Angel on page 13-24 for a description of minimal Angel.

This is conceptually a step closer to the final product compared with using the
debugger to download an image. You can choose either to keep minimal Angel in
your production system, or remove it for final production.

If you need to debug a minimal Angel application and your hardware supports
JTAG you can use EmbeddedICE or Multi-ICE. These do not require any
resource on the target.
13-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Stage 4: Moving an application to final production hardware

When you are ready to move the application onto final production hardware, you have
a different set of requirements. For example:

• Production hardware might not have as many communications links as your
development board. You might not be able to communicate with the debugger.

• RAM and ROM might be limited.

• Interrupt handlers for timers might be required in the final product, but debug
support code is not.

At this stage it is not desirable to include any parts of Angel that are not required in the
final product. You can choose to remove Angel functionality completely, or you can
continue to link your application with a minimal Angel library to provide initialization,
raw device, and exception support.

13.2.4 Developing an application under full Angel

This section gives useful information on how to develop applications under Angel,
including:

• Planning your development project

• Programming restrictions on page 13-18

• Using Angel with an RTOS on page 13-19

• Using Supervisor mode on page 13-20

• Chaining exception handlers on page 13-20

• Linking Angel C library functions on page 13-21

• Using assertions when debugging on page 13-21

• Setting breakpoints on page 13-22

• Changing from little-endian to big-endian Angel on page 13-23.

Planning your development project

Before you begin your development project you must make basic decisions about such
things as:

• the APCS variant to be used for your project

• whether or not ARM/Thumb interworking is required

• the endianness of your target system.

Refer to the appropriate chapters of the ARM Software Development Toolkit Reference
Guide and this book for more information on interworking ARM and Thumb code, and
specifying APCS options.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-17

Angel
In addition, you should consider:

• Whether you are to move to a production system that includes minimal Angel, or
a stand-alone system. If you are not using minimal Angel you must write your
own initialization and exception handling code.

• Whether or not you require C library support in your final application. You must
decide how you will implement C library support if it is required, because the
Angel semihosting SWI mechanism will not be available. Refer to Linking Angel
C library functions on page 13-21 for more information.

• Whether or not debug information is included. You should be aware of the size
overhead when using debuggable images as production code.

• Communications requirements. You must write your own device drivers for your
production hardware.

• Memory requirements. You must ensure that your hardware has sufficient
memory to hold both Angel and your program images.

Programming restrictions

Angel resource requirements introduce a number of restrictions on application
development under Angel:

• Angel requires control of its own Supervisor stack. If you are using an RTOS you
must ensure that it does not change processor state while Angel is running. Refer
to Using Angel with an RTOS on page 13-19 for more information.

• You should avoid using SWI 0x123456 or SWI 0xab. These SWIs are used by
Angel to support C library semihosting requests. Refer to Configuring SWI
numbers on page 13-72 for information on changing the default Angel SWI
numbers.

• If you are using SWIs in your application, and using EmbeddedICE or Multi-ICE
for debugging, you should usually set a break point on the SWI handler routine,
where you know it is an Angel SWI, rather than at the SWI vector itself.

• If you are using SWIs in your application you must restore registers to the state
that they were when you entered the SWI.

• If you want to use the Undefined instruction exception for any reason you must
remember that Angel uses this to set breakpoints.
13-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Using Angel with an RTOS

From the application perspective Angel is single threaded, modified by the ability to use
interrupts provided the interrupt is not context switching. External functions must not
change processor modes through interrupts. This means that running Angel and an
RTOS together is difficult, and is not recommended unless you are prepared for a
significant amount of development effort.

If you are using an RTOS you will have difficulties with contention between the RTOS
and Angel when handling interrupts. Angel requires control over its own stacks, task
scheduling, and the processor mode when processing an IRQ or FIQ.

An RTOS task scheduler must not perform context switches while Angel is running.
Context switches should be disabled until Angel has finished processing.

For example, if an RTOS installs an ISR to perform interrupt-driven context switches
and:

• the ISR is enabled when Angel is active (for example, handling a debug request)

• an interrupt occurs when Angel is running code

then the ISR switches the Angel context, not the RTOS context. That is, the ISR puts
values in processor registers that relate to the application, not to Angel, and it is very
likely that Angel will crash.

There are two ways to avoid this situation:

• Detect ISR calls that occur when Angel is active, and do not task switch. The ISR
can run, provided the registers for the other mode are not touched. For example,
timers can be updated.

• Disable either IRQ or FIQ interrupts, whichever Angel is not using, while Angel
is active. This is not easy to do.

In summary, the normal process for handling an IRQ under an RTOS is:

1. IRQ exception generated.

2. Do any urgent processing.

3. Enter the IRQ handler.

4. Process the IRQ and issue an event to the RTOS if required.

5. Exit by way of the RTOS to switch tasks if a higher priority task is ready to run.

Under Angel this procedure must be modified to:

1. IRQ exception generated.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-19

Angel
2. Do any urgent processing.

3. Check whether Angel is active:

a. If Angel is active then the CPU context must be restored on return, so
scheduling cannot be performed, although for example a counter could be
updated. Exit by restoring the pc to the interrupted address.

b. If Angel is not active, process as normal, exiting by way of the scheduler if
required.

Using Supervisor mode

If you want your application to execute in Supervisor mode at any time, you must set
up your own Supervisor stack. If you call an Angel SWI while in Supervisor mode,
Angel uses four words of your Supervisor stack when entering the SWI. After entering
the SWI Angel uses its own Supervisor stack, not yours.

This means that, if you set up your own Supervisor mode stack and call an Angel SWI,
the Supervisor stack pointer register (sp_SVC) must point to four words of a full
descending stack in order to provide sufficient stack space for Angel to enter the SWI.

Chaining exception handlers

Angel provides exception handlers for the Undefined, SWI, IRQ/FIQ, Data Abort, and
Prefetch Abort exceptions. If you are working with exceptions you must ensure that any
exception handler that you add is chained correctly with the Angel exception handlers.
Refer to Chapter 9 Handling Processor Exceptions for more information.

If you are chaining an interrupt handler and you know that the next handler in the chain
is the Angel interrupt handler, you can use the Angel interrupt table rather than the
processor vector table. You do not have to modify the processor vector table. The Angel
interrupt table is easier to manipulate because it contains the 32-bit address of the
handler. The processor vector table is limited to 24-bit addresses.

Note
 If your application chains exception handlers, Angel must be reset with a hardware reset
if the application is killed. This ensures that the vectors are set up correctly when the
application is restarted.

The consequences of not passing an exception on to Angel from your exception handler
depend on the type of exception, as follows:

Undefined You will not be able to single step or set breakpoints from the debugger.
13-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
SWI If you do not implement the EnterSVC SWI, Angel will not work. If you
do not implement any of the other SWIs you will not be able to use
semihosting.

Prefetch abort

The exception will not be trapped in the debugger.

Data abort The exception will not be trapped in the debugger. If a Data abort occurs
during a debugger-originated memory read or write, the operation might
not proceed correctly, depending on the action of the handler.

IRQ This depends on how Angel is configured. Angel will not work if it is
configured to use IRQ as its interrupt source.

FIQ This depends on how Angel is configured. Angel will not work if it is
configured to use FIQ as its interrupt source.

Linking Angel C library functions

The C libraries provided with the ARM Software Development Toolkit use Angel SWIs
to implement semihosting requests. You have a number of options for using ARM C
library functionality:

• Use the ARM C library for early prototyping only and replace it with your own C
library targeted at your hardware and operating system environment.

• Support Angel SWIs in your own application or operating system and use the
ARM C libraries as provided.

• Port the ARM C library to your own environment. The ARM C libraries are
supplied as full source code so that you can retarget them to your own system.

Refer to Retargeting the ANSI C library on page 4-6 of the ARM Software
Development Toolkit Reference Guide for more information.

• Use the embedded C library with your own startup code. The embedded C library
does not rely on underlying Angel or operating system functionality. Refer to The
embedded C library on page 4-18 of the ARM Software Development Toolkit
Reference Guide for more information.

Using assertions when debugging

To speed up debugging, Angel includes runtime assertion code that checks that the state
of Angel is as expected. The Angel code defines the ASSERT_ENABLED option to enable
and disable assertions.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-21

Angel
If you use assertions in your code you should wrap them in the protection of
ASSERT_ENABLED macros so that you can disable them in the final version if required.

#if ASSERT_ENABLED
...
#endif

Angel uses such assertions wherever possible. For example, assertions are made when
it is assumed that a stack is empty, or that there are no items in a queue. You should use
assertions whenever possible when writing device drivers. The ASSERT macro is
available if the code is a simple condition check (variable = value).

Setting breakpoints

Angel can set breakpoints in RAM only. You cannot set breakpoints in ROM or Flash.

In addition, you must be careful when using single step or breakpoints on the UNDEF,
IRQ, FIQ, or SWI vectors. Do not single step or set breakpoints on interrupt service
routines on the code path used to enter or exit Angel.
13-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Changing from little-endian to big-endian Angel

You can use the Flash download program to change from a little-endian version of
Angel on the ARM PID board to a big-endian version. However, because of an
incompatibility between the way big-endian and little-endian code is stored in 16-bit
wide devices, this works only if the target device is an 8-bit Flash device:

1. Make sure you are using the 8-bit Flash device (U12).

2. Start little-endian Angel by switching on the board and connecting to the
debugger.

3. Run the Flash download program and program the Flash with the big-endian
Angel image. This works because Angel operates out of SRAM.

4. Quit the debugger and switch off the board.

5. Change the EPROM controller (U10) to be the big-endian controller. Refer to
your board documentation for details.

6. Insert the BIGEND link (LK4).

7. Power up the board and connect the debugger. Make sure that the debugger is
configured for big-endian operation.

When you have a big-endian Angel in Flash, you can use a big-endian version of the
Flash downloader to program a new copy of Angel into the 16-bit device. To do this:

1. Switch on the board.

2. Start the debugger.

3. Insert the SEL8BIT link (LK6-4) so that the target device is now the 16-bit Flash
chip.

You must provide a 16-bit wide Flash device, because one is not supplied with the
board.

Refer to The Flash downloader on page 8-15 of the ARM Software Development Toolkit
Reference Guide for more information on using the Flash download utility.

Note
 There is no performance gain from using a 16-bit wide device in this case, because
Angel copies itself to SRAM and executes from there.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-23

Angel
13.2.5 Developing an application under minimal Angel

The minimal Angel library is intended to support the later stages of debugging. It does
not include full Angel features such as:

• debugging and packet organization through ADP

• reliable communications through ADP

• channels support

• semihosted C library support

• an Undefined exception handler

• the task serializer.

Minimal Angel is not suitable for use when you are in the development stage of your
project.

Components of minimal Angel

The minimal Angel library contains almost the same initialization code, interrupt
handling, and exception handling as full Angel. The device driver architecture is the
same, and any Angel device driver that can be compiled as a raw device is fully
supported.

The minimal library contains sufficient components to allow it to replace a full Angel
system. The main difference is that an image containing an application and the minimal
library initializes, and then immediately enters the application at the __entry symbol.

The minimal library is approximately one third to one fifth the size of full Angel. The
actual size depends on the device drivers that are included, and on compile-time
debugging and assertion options.

Building and linking a minimal Angel library

Separate build directories, makefiles, and APM project files are provided for minimal
Angel.

The build directories for the PID Angel port are in:

angel/source/pid.min

There are separate subdirectories for Solaris, HPUX, and APM builds.

Within the Angel source code, minimal Angel build specifics are controlled by the
MINIMAL_ANGEL macro. This is set to 0 for full Angel and to 1 for minimal Angel.
13-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.2.6 Application communications

Full Angel requires use of at least one device driver for its own communications
requirements. If you are using Angel on a board with more than one serial port, such as
the PID board, you can either:

• use Angel on one serial port and your own device on the other

• use minimal Angel, which requires no serial port, and use either or both of the
serial ports for your application.

The PID Angel port provides examples of raw serial drivers. Refer to the Angel source
code for details of how these are implemented. If you want to use Angel with your own
hardware you must write your own device drivers. Refer to Writing the device drivers
on page 13-63 for more information.

Angel serial drivers

Figure 13-3 on page 13-26 gives an overview of the Angel serial device architecture.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-25

Angel
Figure 13-3 Angel raw serial device

Using the Thumb Debug Communication Channel

You can use cin and cout in armsd and the channel viewer interface to access the TDCC
from the host. You can use the TDCC channel to send ARM DCC instructions to the
processor. No other extra channels are supported.

-�'
�)

-�'
�)

-�'
!�	

-�'
���

���
����

&�����
����

&�����
����

&�����
����

��6
	�,�

������	�����	
���	�������

(
�
�
-
2
�
�
+

���
2���
��������	

&�����
2���
�������	

�2
&�		

�������88�

�������88�

��	���	�
&�����

������	

�
�
��)��)
����

!�����	

	�,�

4,��
����	
-�'���

�����
;;;�

����	�&�		�-�'����!�		

���	���	

���	���	

���	���	�<
�������<

���	�)

����

�	���	�<
�����<
��	���	�

����

�-
�'
��
��
��
��
8
��
�

�
��
�	

&
��
��
�

-
�'
��
��
��
��
8
��
�

-�'���
�������

-�'���
�������

����	
����(���	�

����	
13-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.2.7 Downloading new application versions

There are a number of techniques you can use to move successive versions of your
application onto a development board. Each technique has advantages and
disadvantages:

Using Angel with a serial port

This gives slow downloading, but has the advantage that it requires only
a simple UART on the development board. If your board supports Flash
download you can use this method to fix your image in Flash.

Using Angel with serial and parallel ports

This provides medium speed downloading, but requires a serial and a
parallel port on the development board. If your board supports Flash
download you can use this method to fix your image in Flash.

Using Angel with an Ethernet connection

This provides fast downloading, but requires Ethernet hardware on the
development board and a considerable amount of Ethernet support
software to run on the development board. If your board supports Flash
download you can use this method to fix your image in Flash.

Flash download

This provides slow to fast downloading, depending on the type of
connection you are using.

This method is only available on boards that have Flash memory and are
supported by the Flash download program. It has the advantage that, after
the Flash is set, the image is fixed in memory, even if the board is
switched off.

You can also download application-only images using this method, but
you cannot then use Angel.

Refer to your development board documentation for more information on
downloading to Flash.

Using a ROM emulator to download a new ROM image

This provides medium to fast downloading, depending on the ROM
Emulator. You must have access to a ROM Emulator that is compatible
with the hardware.

You cannot replace application-only images using this method. You must
replace the complete ROM image.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-27

Angel
Blowing a new ROM or EPROM each time

This provides slow replacement in that it takes a relatively fixed amount
of time to physically remove your ROM or EPROM, blow a new ROM
image, and replace it. If you need to erase your EPROM this will add to
the time required.

However, this method might be preferable for extremely large ROM
images where only a slow download mechanism is available.

Replacing the ROM or EPROM also has the advantage that the
application is permanently available, and does not have to be reloaded
when the board is switched off.

You cannot replace only a part of the program using this method. You
must replace the complete ROM image.

If you use one of the ROM replacement methods then you must change from building
application images to building ROM images as soon as the development phase starts.

If you use a simple download method then the transition to the development phase is
easier because you can move to building ROM images when everything else is working
and you are preparing to move to production hardware.

Refer to The Flash downloader on page 8-15 of the ARM Software Development Toolkit
Reference Guide for information on using the Flash download utility.

Refer to The fromELF utility on page 8-3 of the ARM Software Development Toolkit
Reference Guide if you are using an EPROM programmer to program big-endian code
into 16-bit devices.
13-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.3 Angel in operation

This section gives a brief explanation of Angel operation that you should understand
before you begin to port Angel to your own hardware. It contains the following:

• Initialization, below

• Waiting for debug communications on page 13-30

• Angel debugger functions on page 13-31

• Angel task management on page 13-33

• Context switching on page 13-38

• Example of Angel processing: a simple IRQ on page 13-40.

13.3.1 Initialization

The initialization of the code environment and system is almost identical, whether the
code is to initialize the debugger only (full Angel) or to launch an application (minimal
Angel). The initialization sequence is as follows:

1. The processor is switched from the current privileged mode to Supervisor mode
with interrupts disabled. Angel checks for the presence of an MMU. If an MMU
is present it can be initialized after switching to Supervisor mode.

2. Angel sets the code execution and vector location, depending on the compilation
addresses generated by the values of ROADDR and RWADDR. Refer to Configuring
where Angel runs on page 13-70 for more information.

3. Code and data segments for Angel are copied to their execution addresses.

4. If the application is to be executed then the runtime system setup code and the
application itself are copied to their execution addresses. If the system has ROM
at address 0 and the code is to be run from ROM, only the Data and Zero
Initialization areas are copied.

5. The stack pointers are set up for each processor mode in which Angel operates.
Angel maintains control of its own stacks separately from any application stacks.
You can configure the location of Angel stacks. Refer to Configuring the memory
map on page 13-69 for more information.

6. Target-specific functions such as MMU or Profiling Timer are initialized if they
are included in the system.

7. The Angel serializer is set up. Refer to the Angel task management on page 13-33
for more information on the Angel serializer.

8. The processor is switched to User mode and program execution is passed to the
high level initialization code for the C library and Angel C functions.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-29

Angel
When initialization is complete, program execution is directed to the __main entry
point.

9. At this point, the initialization procedure is different for full Angel and minimal
Angel.

For minimal Angel:

a. The device drivers are set up for transmission of raw data only. The ADP
packet protocol and communications channels are not used.

b. The application entry point is called by a branch with link (BL) instruction
to an __entry label. You must use this label as your application entry point
to ensure that the application is launched.

For full Angel:

a. The communications channels are initialized for ADP.

b. Any raw data channels installed for the application are set up if you are
using extra channels. The application can set this up itself. Refer to the
Angel source code for details.

c. Full Angel transmits its boot message through the boot task and waits for
communication from the debugger.

13.3.2 Waiting for debug communications

After initialization, full Angel enters the idle loop and continually calls the device
polling function. This ensures that any polled communications device is serviced
regularly. When input is detected, it is placed into a buffer and decoded into packet form
to determine which operation has been requested. If an acknowledgment or reply is
required, it is constructed in an output buffer ready for transmission.

All Angel operations are controlled by Angel task management. Refer to Angel task
management on page 13-33 and Example of Angel processing: a simple IRQ on
page 13-40 for more information on Angel task management.
13-30 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.3.3 Angel debugger functions

This section gives a summary of how Angel performs the basic debugger functions:

• reporting memory and processor status

• downloading a program image

• setting breakpoints.

Reporting processor and memory status

Angel reports the contents of memory and the processor registers as follows:

Memory The memory address being examined is passed to a function that copies
the memory as a byte stream to the transmit buffer. The data is transmitted
to the host as an ADP packet.

Registers Processor registers are saved into a data block when Angel takes control
of the target (usually at an exception entry point). When processor status
is requested, a subset of the data block is placed in an ADP packet and
transmitted to the host.

When Angel receives a request to change the contents of a register, it
changes the value in the data block. The data block is stored back to the
processor registers when Angel releases control of the target and
execution returns to the target application.

Download

When downloading a program image to your board, the debugger sends a sequence of
ADP memory write messages to Angel. Angel writes the image to the specified memory
location.

Memory write messages are special because they can be longer than other ADP
messages. If you are porting Angel to your own hardware your device driver must be
able to handle messages that are longer than 256 bytes. The actual length of memory
write messages is determined by your Angel port. Message length is defined in
devconf.h with:

#define BUFFERLONGSIZE

Setting breakpoints

Angel uses three undefined instructions to set breakpoints. The instruction used
depends on:

• the endianness of the target system
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-31

Angel
• the processor state (ARM or Thumb).

ARM state In ARM state, Angel recognizes the following words as
breakpoints:

0xE7FDDEFE for little-endian systems.

0xE7FFDEFE for big-endian systems.

Thumb state In Thumb state, Angel recognizes 0xDEFE as a breakpoint.

Note
 These are not the same as the breakpoint instructions used by Multi-ICE or
EmbeddedICE.

These instructions are used for normal, user interrupt, and vector hit breakpoints. In all
cases, no arguments are passed in registers. The breakpoint address itself is where the
breakpoint occurs.

When you set a breakpoint, Angel:

• stores the original instruction to ensure that it is returned if the area containing it
is examined

• replaces the instruction with the appropriate undefined instruction.

The original instruction is restored when the breakpoint is removed, or when a request
to read the memory that contains the instruction is made in the debugger. When you step
through a breakpoint, Angel replaces the saved instruction and executes it.

Note
 Angel can set breakpoints only on RAM locations.

When Angel detects an undefined instruction it:

1. Examines the instruction by executing an:

• LDR instruction from lr – 4, if in ARM state

• LDR instruction from lr – 2, if in Thumb state.

2. If the instruction is the predefined breakpoint word for the current processor state
and endianness, Angel:

a. halts execution of the application

b. transmits a message to the host to indicate the breakpoint status

c. executes a tight poll loop and waits for a reply from the host.
13-32 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
If the instruction is not the predefined breakpoint word, Angel:

a. reports it to the debugger as an undefined instruction

b. executes a tight poll loop and waits for a reply from the host.

ARM breakpoints are detected in Thumb state. When an ARM breakpoint is executed
in Thumb state, the undefined instruction vector is taken whether executing the
instruction in the top or bottom half of the word. In both cases these correspond to a
Thumb undefined instruction and result in a branch to the Thumb undefined instruction
handler.

Note
 Thumb breakpoints are not detected in ARM state.

13.3.4 Angel task management

All Angel operations are controlled by Angel task management. Angel task
management:

• assigns task priorities and schedules tasks accordingly

• controls the Angel environment processor mode.

Angel task management requires control of the processor mode. This can impose
restrictions on using Angel with an RTOS. Refer to Using Angel with an RTOS on
page 13-19 for more information.

Task priorities

Angel assigns task priorities to tasks under its control. Angel ensures that its tasks have
priority over any application task. Angel takes control of the execution environment by
installing exception handlers at system initialization. The exception handlers enable
Angel to check for commands from the debugger and process application semihosting
requests.

Angel will not function correctly if your application or RTOS interferes with the
execution of the interrupt, SWI or Data Abort exception handlers. Refer to Chaining
exception handlers on page 13-20 for more information.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-33

Angel
When an exception occurs, Angel either processes it completely as part of the exception
handler processing, or calls Angel_SerialiseTask() to schedule a task. For example:

• When an Angel SWI occurs, Angel determines whether the SWI is a simple SWI
that can be processed immediately, such as the EnterSVC SWI, or a complex SWI
that requires access to the host communication system, and therefore to the
serializer. Refer to Angel C library support SWIs on page 13-79 for more
information.

• When an IRQ occurs, the Angel PID port determines whether or not the IRQ
signals the receipt of a complete ADP packet. If it does, Angel task management
is called to control the packet decode operation. Refer to Example of Angel
processing: a simple IRQ on page 13-40 for more information. Other Angel ports
can make other choices for IRQ processing, provided the relevant task is
eventually run.

The task management code maintains two values that relate to priority:

Task type The task type indicates type of task being performed. For
example, the application task is of type TP_Application, and
Angel tasks are usually TP_AngelCallback. The task type labels a
task for the lifetime of the task.

Task priority The task priority is initially derived from the task type, but
thereafter it is independent. Actual priority is indicated in two
ways:

• in the value of a variable in the task structure

• in the relative position of the task structure in the task queue.

The task priority of the application task changes when an
application SWI is processed, to ensure correct interleaving of
processing.

Table 13-1 shows the relative task priorities used by Angel.

Table 13-1 Task priorities

Priority Task Description

Highest AngelWantLock High priority callback.

AngelCallBack Callbacks for Angel.

ApplCallBack Callbacks for the user application.
13-34 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Angel task management is implemented through the following top-level functions:

• Angel_SerialiseTask()

• Angel_NewTask()

• Angel_QueueCallback()

• Angel_BlockApplication()

• Angel_NextTask()

• Angel_Yield()

• Angel_Wait()

• Angel_Signal()

• Angel_TaskID().

Some of these functions call other Angel functions not documented here. The functions
are described in brief below. For full implementation details, refer to the source code in
serlock.h, serlock.c, and serlasm.s.

Angel_SerialiseTask

In most cases this function is the entrance function to Angel task management. The only
tasks that are not a result of a call to Angel_SerialiseTask() are the boot task, the idle
task, and the application. These are all created at startup. When an exception occurs,
Angel_SerialiseTask() cleans up the exception handler context and calls
Angel_NewTask() to create a new high priority task. It must be entered in a privileged
mode.

Angel_NewTask

Angel_NewTask() is the core task creation function. It is called by Angel_SerialiseTask()
to create task contexts.

Application The user application.

AngelInit Boot task. Emits boot message on reset and
then exits.

Lowest IdleLoop

Table 13-1 Task priorities (continued)

Priority Task Description
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-35

Angel
Angel_QueueCallback

This function:

• queues a callback

• specifies the priority of the callback

• specifies up to four arguments to the callback.

The callback executes when all tasks of a higher priority have completed. Table 13-1 on
page 13-34 shows relative task priorities.

Angel_BlockApplication

This function is called to allow or disallow execution of the application task. The
application task remains queued, but is not executed. If Angel is processing an
application SWI when Angel_BlockApplication() is called, the block might be delayed
until just before the SWI returns.

Angel_NextTask

This is not a function, in that it is not called directly. Angel_NextTask() is executed when
a task returns from its main function. This is done by setting the link register to point to
Angel_NextTask() on function entry.

The Angel_NextTask() routine:

• enters Supervisor mode

• disables interrupts

• calls Angel_SelectNextTask() to select the first task in the task queue that has not
been blocked and run it.

Angel_Yield

This is a yield function for polled devices. It can be called either:

• by the application

• by Angel while waiting for communications on a polled device

• within processor-bound loops such as the idle loop.

Angel_Yield() uses the same serialization mechanism as IRQ interrupts. Like an IRQ, it
can be called from either User or Supervisor mode and returns cleanly to either mode.
If it is called from User mode it calls the Angel_EnterSVC SWI to enter Supervisor
mode, and then disables interrupts.
13-36 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Angel_Wait

Angel_Wait() works in conjunction with Angel_Signal() to enable a task to wait for a
predetermined event or events to occur before continuing execution. When AngelWait()
is called, the task is blocked unless the predetermined event has already been signalled
with AngelSignal().

AngelWait() is called with an event mask. The event mask denotes events that will result
in the task continuing execution. If more than one bit is set, any one of the events
corresponding to those bits will unblock the task. The task remains blocked until some
other task calls Angel_Signal() with one or more of the event mask bits set. The meaning
of the event mask must be agreed beforehand by the routines.

If AngelWait() is called with a zero event mask, execution continues normally.

Angel_Signal

Angel_Signal() works in conjunction with Angel_Wait(). This function sends an event
to a task that is now waiting for it, or will in the future wait for it:

• If the task is blocked, Angel_Signal() assumes that the task is waiting and
subtracts the new signals from the signals the task was waiting for. The task is
unblocked if the event corresponds to any of the event bits defined when the task
called Angel_Wait().

• If the task is running, Angel_Signal() assumes that the task will call Angel_Wait()
at some time in the future. The signals are marked in the task signalWaiting
member.

Angel_Signal() takes a task ID that identifies a current task, and signals the task that the
event has occurred. See the description of Angel_Wait() for more information on event
bits. The task ID for the calling task is returned by the Angel_TaskID() macro. The task
must write its task ID to a shared memory location if an external task is to signal it.

Angel_TaskID

This macro returns the task ID (a small integer) of the task that calls it. There is no way
to obtain the ID of another task unless the other task writes its task ID to a shared
memory location.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-37

Angel
13.3.5 Context switching

Angel maintains context blocks for each task under its control through the life of the
task, and saves the value of all current processor registers when a task switch occurs. It
uses two groups of register context save areas:

• The Angel global register blocks. These are used to store the CPU registers for a
task when events such as interrupt and task deschedule events occur.

• An array of available Task Queue Items (TQI). Each allocated TQI contains the
information Angel requires to correctly schedule a task, and to store the CPU
registers for a task when required.

The global register blocks: angel_GlobalRegBlock

The Angel global register blocks are used by all the exception handlers and the special
functions Angel_Yield() and Angel_Wait(). Register blocks are defined as an array of
seven elements. Table 13-2 shows the global register blocks.

In the case of RB_SWI and RB_Interrupted, the register blocks contain the previous
task register context so that the interrupt can be handled. If the handler function calls
Angel_SerialiseTask(), the global register context is saved into the current task TQI.

In the case of RB_Yield, the register block is used to store temporarily the context of
the calling task, prior to entering the serializer. The serializer saves the contents of
RB_Yield to the TQI entry for the current task, if required.

Table 13-2 Global register blocks

Register block Description

RB_Interrupted This is used by the FIQ and IRQ exception handlers.

RB_Desired This is used by Angel_SerialiseTask().

RB_SWI This is saved on entry to a complex SWI and restored on return to the
application.

RB_Undef This is saved on entry to the undefined instruction handler.

RB_Abort This is saved on entry to the abort handler.

RB_Yield This is used by the Angel_Yield() and Angel_Wait() functions.

RB_Fatal This is used only in a debug build of Angel. It saves the context in which
a fatal error occurred.
13-38 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
The Angel task queue: angel_TQ_Pool

The serializer maintains a task queue by linking together the elements of the
angel_TQ_Pool array. The task queue must contain an idle task entry. Each element of the
array is a Task Queue Item (TQI). A TQI contains task information such as:

• the register context for the task

• the current priority of the task

• the type of the task (for example, TP_Application)

• the task state (for example, TS_Blocked)

• the initial stack value for the task

• a pointer to the next lower-priority task.

The elements in the angel_TQ_Pool array are managed by routines within the serializer
and must not be modified externally.

Angel calls Angel_NewTask() to create new tasks. This function initializes a free TQI
with the values required to run the task. When the task is selected for execution,
Angel_SelectNextTask() loads the register context into the CPU. The context is restored
to the same TQI when:

• Angel_SerialiseTask() is called as the result of exception processing or a call to
Angel_Yield()

• Angel_Wait() determines that the task must be blocked.

When the debugger requests information about the state of the application registers, the
Angel debug agent retrieves the register values from the TQI for the application. The
application TQI is updated from the appropriate global register block when exceptions
cause Angel code to be run.

Overview of Angel stacks for each mode

The serialization mechanism described in Angel task management on page 13-33
ensures that only one task ever executes in Supervisor mode. Therefore, all Angel
Supervisor mode tasks share a single stack, on the basis that:

• it is always empty when a task starts

• when the task returns, all information that was on the stack is lost.

The application uses its own stack, and executes in either User or Supervisor mode.
Callbacks due to application requests to read or write from devices under control of the
Device Driver Architecture execute in User mode, and use the application stack.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-39

Angel
The following Angel stacks are simple stacks exclusively used by one thread of control.
This is ensured by disabling interrupts in the corresponding processor modes:

• IRQ stack

• FIQ stack

• UND stack

• ABT stack.

The User mode stack is also split into two cases, because the Application stack and
Angel stack are kept entirely separate. The Angel User mode stack is split into array
elements that are allocated to new tasks, as required. The application stack must be
defined by the application.

13.3.6 Example of Angel processing: a simple IRQ

This section gives an example of processing a simple IRQ from start to finish, and
describes in more detail how Angel task management affects the receipt of data through
interrupts. Refer also to Angel communications architecture on page 13-73 for an
overview of Angel communications.

Figure 13-4 on page 13-41 shows the application running, when an interrupt request
(IRQ) is made that completes the reception of a packet.
13-40 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Figure 13-4 Processing a simple IRQ

The IRQ is handled as follows:

1. The Interrupt exception is noticed by the processor. The processor:

• fetches the IRQ vector

• enters Interrupt mode

• starts executing the Angel Interrupt Service Routine.

On entry to the IRQ handler, FIQ interrupts are disabled if
HANDLE_INTERRUPTS_ON_FIQ=1 (the default is 0, FIQ interrupts enabled). Interrupts
are not re-enabled until either:

• Angel_SerialiseTask() is called

• the interrupt completes.

#

$

=

����	����

��9���	

����	
�������>

���	

%

-�'����

!���	���
��?��
�>

+-&>

���������
�

-����
����8��
��		���� ��)����
�

��	���
��)����
�

���������
�

@

A

B

C

��	������)�

!��������
��
�

��'��!������

����	�1����
� ������
�
�����
�
�����,>

�)�&��

9����
��		����

+����)�&��

!�		����
��)�>

����	������

,�

,�

,�

,�

,�

��

��

��
��

��
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-41

Angel
2. The Angel ISR saves the processor state in a register block, uses the GETSOURCE
macro to determine the interrupt source, and jumps to the handler. The processor
state is saved because this data is required by Angel_SerialiseTask().

3. The interrupt handler determines the cause of the IRQ. If the interrupt is not an
Angel interrupt it returns immediately.

If the interrupt is an Angel interrupt and the driver uses polled input, the handler
calls Angel_SerialiseTask() to schedule processing. If the driver does not use
polled input, the handler calls Angel_SerialiseTask() to schedule processing if:

• the end of packet character is reached

• the end of request is reached for a raw device (determined by length)

• the ring buffer is empty (tx), or full (rx).

4. If Angel_SerialiseTask() is not required, the ISR reads out any characters from
the interrupting device and returns immediately.

5. Angel_SerialiseTask() saves the stored context from step 2 and creates a new
task. It then executes the current highest priority task. The new task is executed
after all tasks of higher priority have been executed.

6. The new task executes in Supervisor mode. It reads the packet from the device
driver to create a proper ADP packet from the byte stream.

7. When the packet is complete, the task schedules a callback task to process the
newly arrived packet.

8. The callback routine processes the packet and terminates. Angel_NextTask() finds
that the application is the highest priority task, and Angel_SelectNextTask()
restarts the application by loading the context stored at step 2 into the processor
registers.
13-42 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.4 Porting Angel to new hardware

This section describes the steps you must take to port Angel to your own hardware. It
assumes that you have a general understanding of how Angel works. Refer to Angel in
operation on page 13-29 for an introduction to Angel operation.

Angel is designed to make porting to new hardware as easy as possible. However, there
are many configurable features of Angel and you must modify Angel code to support
your hardware.

The easiest way to port Angel is to select an existing Angel implementation as a
template and modify it to suit your own hardware. The ARM Software Development
Toolkit provides a number of Angel ports in the Angel\Source directory.

In addition, there are Angel ports from other board manufacturers for their own
development boards. These are not distributed with the ARM Software Development
Toolkit.

You should select an existing version of Angel that has been ported to hardware that is
as similar as possible to your own. If you are not basing your Angel port on a port from
another board manufacturer it is recommended that you use the Angel PID port
provided with the ARM Software Development Toolkit. The most important hardware
features to consider when making this decision include:

Device drivers Writing device drivers is a large part of the porting process. If
possible, choose a version of Angel that supports the same, or very
similar communications hardware. This makes it simpler to
modify the device driver code.

Cache/MMU The PID and ARM evaluation boards do not have a cache or
MMU. If you are porting to hardware that is based on a third party
development board that includes a cache and MMU you should
consider using the Angel port from that manufacturer.

The following examples and recommendations refer to the Angel PID port, however, the
same general principles apply no matter which Angel port you select as a template.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-43

Angel
13.4.1 Angel source code directory structure

The Angel sources are distributed in a directory structure that separates the
target-dependent code, such as device drivers and board-specific setup code, from the
main generic code directory. There is a separate build directory for the specific build
information for each target. This directory contains the makefile or APM project file,
and is usually used as the output directory for object files and the final ROM image.

Figure 13-5 shows the directory structure for the Angel PID port.

Figure 13-5 Angel source directory structure

13.4.2 Overview of porting steps and recommendations

These are the steps required in the porting process:

1. Choose a target template.

2. Set up the makefile or APM project file.

3. Perform a trial build using the template files.

4. Modify target specific files.

5. Define the target macros.

6. Write the device drivers.

7. Build for the new target.

8. Download your Angel port to the target.

9. Debug your Angel port.

These steps are explained in more detail below, together with some recommendations
that might be useful when porting Angel to any new hardware.

����	

�����

������;� �����������	

�����8�	�

������
����8��

�����8�	�

�������������

8��
�������
�	��8��

13-44 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Choosing a target template

The first step in the porting process is to select a target template. If you are basing your
port on an ARM-supplied Angel port, it is recommended that you use the PID port as a
starting point.

The PID board is a complex system with a varied memory map comprising:

• SSRAM, SRAM, and DRAM

• ROM, and Flash memory

• two serial and one parallel communications channels

• two PC card slots.

There are also memory-mapped peripherals such as dual timers. The peripherals
conform to the ARM Reference Peripheral Specification. The system has a memory
remap facility.

Setting up makefiles and APM project templates

After you have copied your template directory pair, you must set up the makefile or
APM project template to reflect your new directory structure. In addition you must set
a number of build options to suit your requirements.

You can build Angel on the following platforms:

• Solaris 2.5 or 2.6

• HPUX 10

• Windows 95 or 98

• Windows NT 4.0.

Refer to Modifying the UNIX makefile on page 13-47 for information on modifying a
UNIX makefile or Modifying an APM project on page 13-50 for information on setting
up the ARM Project Manager project for your build.

Performing a trial build

When you have set up the makefile or APM project for your development directory
structure you should perform a trial build to ensure that the modifications are complete,
and that all necessary project build files have been copied correctly.

Modifying target specific files

The PID Angel port includes a number of target specific source files that you must
modify to support your hardware and environment. You should examine each of the
target specific files described in Modifying target-specific files on page 13-57.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-45

Angel
You must pay particular attention to the following:

Defining the device configuration in devconf.h

You should take a great deal of care to modify this file correctly. Time
spent checking at this stage will save a lot of debug time later. You must
ensure that you define support only for features that are supported by your
hardware.

For example, if you select DCC Support for a non-DI core, such as the
ARM710a, Angel calls a subroutine to poll a coprocessor. This halts
Angel on an undefined instruction trap.

In addition, you must:

• define a complete memory map for your implementation

• allocate stack space for each processor mode used by Angel

• ensure that interrupts are used in the same way as for production
hardware.

It is recommended that Angel interrupts are handled by the IRQ.

Refer to devconf.h on page 13-60 for more information on modifying this
file.

Defining the target macros in target.s

The GETSOURCE macro returns the current interrupt source. These are target
dependent and must correspond to the target peripherals. The interrupt
sources are defined in devconf.h. You must ensure that all interrupt
sources used by Angel are supported by the GETSOURCE macro.

Refer to target.s on page 13-58 for more information.

Writing the device drivers

Writing device drivers for your hardware is the major part of the porting procedure and
is completely target-dependent. Refer to Writing the device drivers on page 13-63 for
information on writing device drivers.

Downloading Angel

After you have completed your Angel port you must download it to your hardware.
There are a number of methods you can use to do this. Refer to Downloading a new
version of Angel on page 13-67 for more information.
13-46 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Debugging your Angel port

At various stages throughout the porting process you will need to debug your Angel
port. Only the initial stages of development can be debugged under the ARMulator
because the ARMulator environment does not support communications with peripheral
devices. Refer to Debugging your Angel port on page 13-68 for more information on
debugging Angel.

13.4.3 Modifying the UNIX makefile

If you are using a command-line UNIX system, you must edit the appropriate makefile
when you copy an Angel template directory. If you are using APM, refer to Editing the
APM project directory structure on page 13-52.

The build directory is separate from the target source code directory. In the supplied
examples it has the same name as the target code directory with a .b extension. For
example, the build directory for the PID Angel port is angel/source/pid.b

You must modify the makefile so that it uses your directories, compiles and assembles
your source, and links your object files. This is described in Setting up the makefile,
below.

In addition to setting up the makefile for your new directory structure, you must set a
number of build options, either on the command-line or in the makefile, to provide
support for your hardware. The options include:

• Thumb support

• Angel data area and execution addresses

• endianness.

This is described in Setting command-line build options on page 13-48 and Editing
makefile build options on page 13-48.

Setting up the makefile

The following instructions assume that you have:

• copied the complete angel directory to your working directory

• copied the pid and pid.b template directory pair to a directory pair that is named
appropriately for your board.

At this stage, the directory structure for your board-specific files is similar to:

~/working_directory/angel/source/your_board
and~/working_directory/angel/source/your_board.b
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-47

Angel
Follow these steps to edit the makefile:

1. Open the appropriate makefile for your platform in a texteditor. For example, if
you are working under Solaris, open your_board.b/gccsunos/Makefile.

2. Change all occurrences of the original directory name to the new directory name.
For example, if your port is based on the pid/pid.b directory pair, change all
occurrences of the pid directory to your_board.

Be careful with search and replace utilities because there are files named pid in
the target directories.

3. Set up the make parameters required. See Editing makefile build options below.

Setting command-line build options

The PID makefile supports three command-line build options:

ENDIAN=BIG

This option builds a big-endian version of Angel. The objects and images
are stored in a sub-directory named big_rel. By default, the makefile
builds a little-endian Angel.

ETHERNET_SUPPORTED=1

This option enables ethernet support for the PID board. It includes the
ethernet drivers and the Fusion IP stack in the Angel build to enable
communications through the PC Card Ethernet Adapter. The default is 0
(no Ethernet support).

FUSION_BUILD=1

This option rebuilds the Fusion stack sources, if they are available.

The Fusion stack binaries are supplied by ARM, under a license from
Pacific Softworks, with the Ethernet Upgrade Kit (No. KPI 0015A) for
the PID board. The fusion sources are available from ARM after you have
agreed a full source license with Pacific Softworks.

By default, the makefile does not rebuild Fusion stack sources.

DEBUG=1 This option builds a debug version of Angel.

Editing makefile build options

The following PID build options are not available as command-line options. You must
edit the value of these options in the makefile. The most important options are ROADDR
and RWADDR. You must edit these to reflect the operational memory of your system.
13-48 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
The most important makefile options are:

THUMB_SUPPORT When set to 1 this builds Angel with support for debugging
Thumb code. If this is not set, the debugger does not support
Thumb state debugging. If Thumb code is encountered it
generally causes an undefined instruction trap.

ASSERT_ENABLED This option controls debug assertions. When set to 1 extra
consistency checks are made throughout Angel. If any checks fail,
the fatal error trap is taken. This normally resets Angel.

Setting this to 0 is not recommended unless the Angel code is
known to be fully functional and the small reduction in image size
is important. The default is 1.

MINIMAL_ANGEL This option is used by the minimal Angel makefiles to build a
minimal Angel library.

This option should always be set to 0. Use the separate makefile
and build areas to build minimal Angel libraries. For example, the
minimal Angel makefiles for the PID board are located in
/angel/source/pid.min.

Refer to Minimal Angel on page 13-13 for more information on
building minimal Angel.

FIRST This option defines the object file that is linked at the beginning of
the ROM image. Valid values are:

FIRST = 'startrom.o(ROMStartup)'

The system can remap its memory map. ROM is
unmapped from 0 after reset. The first line of the
startup code is placed at the start of the ROM image.
The startup code copies the ARM exception vector
table to RAM at 0 after remap. This is the default.

FIRST = 'except.o(__Vectors)'

ROM is permanently mapped at 0. The ARM exception
vector table is placed at the beginning of the ROM
image.

ROADDR This defines the address of the Angel code at run time:

• If ROADDR is set to a ROM address, Angel executes from
ROM.

• If ROADDR is set to a RAM address, Angel copies itself to
RAM and executes from there.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-49

Angel
You can use this option to move Angel to RAM when ROM is
much slower than RAM. For example, the makefile for the PID
Angel port specifies an ROADDR in SRAM.

ROADDR is the address on which the compiler bases its calculations
for all the pc-relative instructions, such as branch instructions.

Refer to Configuring where Angel runs on page 13-70 for more
information on ROADDR.

RWADDR This defines where Angel should store its read/write data. This is
the address of the data used by Angel at run time. You should
avoid setting this to 8000 if possible, because this is the default
application area.

Refer to Configuring where Angel runs on page 13-70 for more
information on RWADDR.

DEBUG If set to 1, this option enables debugging code within Angel.

13.4.4 Modifying an APM project

If you are using the ARM project manager on a Windows system, you must change the
project file when you copy an Angel template directory. If you are using UNIX, refer to
Editing makefile build options on page 13-48.

The build directory is separate from the target source code directory. In the supplied
examples it has the same name as the target code directory with a .b extension. The
APM projects are located in a subdirectory of the build directory. For example, the PID
project is located in c:ARM250\Angel\Source\pid.b\Apm

The simplest way to use the PID Angel port as a template is to copy the entire Angel
directory structure to a working directory. If you want to change the names of the
directories to reflect the name of your board, you must modify the APM project file so
that it uses your directories, compiles and assembles your source, and links your object
files. This is described in Editing the APM project directory structure on page 13-52.

In addition to setting up the project file for your new directory structure, you must set a
number of build options. The options include:

• Thumb support

• Angel data area and execution addresses.

If you are using APM and have purchased the Angel Ethernet Kit, separate project files
are supplied to enable you to build Angel ROM Images with or without the Ethernet
drivers. Endianness is defined by the selected endianness of the APM environment.
13-50 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Copying the APM project

When you have selected the Angel port that you want to base your own port on, you
must copy the required directories and files. The following instructions assume that you
are basing your port on the Angel PID port. Follow these steps to copy the Angel
template:

1. Copy the entire Angel directory and all subdirectories to your working directory.
It is recommended that you do not work in the installation Angel directory, by
default c:ARM250\Angel, because this may cause problems if you reinstall the
Software Development Toolkit.

2. In your working copy of the Angel directory, select Edit variables for
AngelPid.apj from the Project menu. The Edit Variable dialog is displayed
(Figure 13-6).

Figure 13-6 Edit variables

3. Change the $$ProjectName variable to the name of your port. The value given here
is used by APM to name the build output binaries.

4. Angel requires two files from the SDT installation C library directory:

• c:ARM250\Cl\h_la_obj.s

• c:ARM250\Cl\objmacs.s

Copy these files to your working Angel source directory.

5. This step is optional. You can rename the appropriate source and build directories
for your own port. For example, you can rename
working_directory\Angel\Sources\pid and
working_directory\Angel\Sources\pid.b as appropriate for your board. You may
need to do this if you have more than one project based on the PID port.

If you rename the pid and pid.b directories, you must make additional changes to
the project so that it will find the appropriate source files. Refer to Editing the
APM project directory structure on page 13-52 for detailed instructions.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-51

Angel
If you have not renamed the directories, you can perform a trial build.

Editing the APM project directory structure

If you renamed the pid and pid.b directories when you copied the Angel directory you
must ensure that the new directory paths are used to compile, assemble, and link your
sources. Follow these steps to configure the project template:

1. Open the APM project file for your project.

2. Select Edit Project Template… from the Project menu. The Project Template
Editor dialog is displayed (Figure 13-7).

Figure 13-7 Project template editor

3. Select Assemble from the list of build step patterns and click on the Edit…
button. The Edit Build Step Pattern dialog is displayed (Figure 13-8 on
page 13-53).
13-52 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Figure 13-8 Edit Build Step Pattern

4. The Command Lines section of the dialog contains the command-line for the
assembler. The last part of the command line is:

{path|<path|-I><path>} <path><slash><file>.s

Change this to:

{path2|<path|-I><path>} <path><slash><file>.s

by adding the number 2 to the first path.

5. Click the Apply button and then click OK.

6. Repeat steps 3 and 4 for the build step patterns Assemble for ROM and Compile.

7. Select MakeLo from the list of build step patterns and click on the Edit… button.
The Edit Build Step Pattern dialog is displayed (Figure 13-9 on page 13-54).
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-53

Angel
Figure 13-9 Edit makelo.c build step

8. Change the Included Files and Command Lines sections of the dialog to reflect
the new directory structure. For example, if you have copied the complete Angel
directory structure and renamed the pid and pid.b directories, change pid to your
new directory name.

9. When you have finished editing the build steps, click Close to exit the Build Step
dialog box.

10. Select Project → Tool Configuration → <cc> = armcc → Set. The Compiler
Configuration dialog is displayed (Figure 13-10 on page 13-55).
13-54 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Figure 13-10 Compiler Configuration

11. Click on the Include Files tab and edit the list of include file directories to reflect
the new directory structure. Click OK to apply the changes.

12. Repeat steps 10 and 11 using the <asm> = tasm submenu to configure the
assembler.

13. Remove and re-add all target-specific source files to the project. These are the
files that are located in the renamed pid directory, such as devices.c and makelo.c
(see Figure 13-11 on page 13-56). In general you will have to replace these files
with your own code when porting Angel.

Select a file and press the delete key to remove it. Select Add files from the
Project menu to re-add the file to the Sources partition.

In addition, you must replace makelo.c in the Host Sources partition.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-55

Angel
Figure 13-11 Replacing target-specific source files

14. The directory header in the APM window can be edited using the Edit Details
button. This is not required to build Angel.

Selecting build options

The build variables for the APM project are the same as those defined in the UNIX
makefile. They are defined in either the project variables, or as preprocessor definitions
in the compiler configuration dialog. Refer to Editing makefile build options on
page 13-48 for a description of the build options.
13-56 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.4.5 Modifying target-specific files

Target-specific files are dependent on the target system you are porting Angel to. You
must modify these files for your system.

Overview of the target specific sources

Most of the work in porting is carried out on the code in the target specific source
directory to set up the target and provide device drivers.

The target specific files are:

target.s This file provides important startup macros specific to the hardware. You
must check each macro in this file and change them for your board, if
necessary.

This file also contains the GETSOURCE macro. GETSOURCE is used to identify
which interrupt source has caused an interrupt. You must modify this
macro to suit the interrupt-driven devices and interrupt scheme used by
your hardware. Refer to target.s on page 13-58 for details.

makelo.c This is part of the Angel build environment. When built, makelo includes
a number of Angel header files and produces an assembly language .s file
that defines globals shared between C and assembly language routines.

This enables assembly language and C modules to access global
constants without requiring separate copies for assembler use and for C
compiler use.

If you introduce new constants that need to be shared by C and assembly
language routines you must add them to makelo.c. Refer to makelo.c on
page 13-59 for details.

banner.h This declares what board Angel is running on, and with what options.
Refer to banner.h on page 13-60 for details.

devices.c This file #includes the headers for device drivers for the system. You
must modify this file if you add, remove, or rename any device drivers.
Refer to devices.c on page 13-60 for details.

devconf.h This is the main configuration file. It includes device declarations,
memory layout details, stack sizes, and interrupt source information (IRQ
or FIQ). You must check every item in this file to ensure that it is set up
correctly for your board. Refer to devconf.h on page 13-60 for details.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-57

Angel
Device Drivers

All other files in the target specific source directory are device driver
sources. You might need to modify these even if your board uses the same
communications chips as those supported by the port you are using as a
template. If you are using different communications hardware, you must
rewrite these files for your own hardware. Refer to Writing the device
drivers on page 13-63 for more information on writing device drivers.

target.s

This file defines the code in the macros called from the initialization and interrupt
routines in the main code in startrom.s and suppasm.s.

The following macros are defined:

UNMAPROM This macro is called by the startrom.s ROM initialization code. The
macro is called in systems that use ROM remapping to ensure that the
ROM image is at 0 at reset. When the system initialization is complete, a
remap is called to map the ROM to its physical address, and map RAM
to 0.

This method is used in the PID board system where the memory
management system aliases the ROM from its physical address to 0, in
order to allow ROM-resident code to be available at reset.

STARTUPCODE

This macro is called from startrom.s for target specific startup. In the
PID example, the startup macros reset both the ramsize counter and the
interrupt controller.

INITMMU This macro initializes the MMU for processors that include an MMU.
The location of the pagetable is important to the operation of this code
and you must be specify it correctly.

If the system is operating in big-endian mode and the MMU is
responsible for the endianness of the core, it must be set up early to enable
to code to operate correctly.

INITTIMER This macro is not used by Angel. It is provided as a place holder to allow
you to initialize any timers required by your application. It is called after
interrupts are disabled and the processor is set to Supervisor mode. There
is no code included in the example because it does not make use of system
timers. Profiling support code contains its own timer initialization code.
13-58 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
GETSOURCE This macro is called by the Angel support routines in interrupt.s. It
determines whether the current interrupt is for an Angel device, and if so,
which one.

The routine returns a small integer representing the current interrupt
source, as defined in devconf.h (see devconf.h on page 13-60). These
values are used by the interrupt handler for a jump table holding the
individual Angel Interrupt source handler function pointers.

The PID board has the following possible interrupt sources:

TIMER For polled device support, and profiling.

PARALLEL For parallel code download, if this option is
selected at compile time.

PCMCIA CARD A Used by the Olicom Ethernet driver, if selected at
compile time.

PCMCIA CARD B Used by the Olicom Ethernet driver, if selected at
compile time.

SERIAL A This is the default for debug communications.

SERIAL B This is optional for debug communications.

CACHE_IBR This macro is called by Angel support routines in suppasm.s to set an
Instruction Barrier Range. This is an option on the SA1100 processor.
There is no code included in this macro for the PID example.

makelo.c

This file enables you to share variables and definitions between C and assembly
language sources. The makelo.c source file is compiled with armcc and executed under
armsd as part of the Angel build process. When executed, it reads the contents of the C
header files #included at the start of makelo.c and produces an assembler header file
named lolevel.s.

The assembler header file mirrors the C definitions in the #included C header files. For
example, the processor mode defined in arm.h, such as:

#define USRmode 0

produce equivalent assembler EQU directives such as:

USRmode EQU 0

Use a GET directive to include lolevel.s in any assembly language file that requires
access to C variables or definitions.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-59

Angel
To include your own C variables in the list contained in makelo.c, add lines in the
format:

fprintf(outfile, "Variable_Name\t\tEQU\t%d\n", Variable_Name);

for each variable or definition.

banner.h

This header file contains macros that define the text that is displayed when the host and
target connect after initialization. You can modify this file to suit your target, and the
build options you use. Different ports can share components of this message by
including the file configmacros.h. You should take care not to advertise a feature in the
banner message that will not work correctly. The banner message is limited to 204
characters.

devices.c

This file defines the base address in memory for each available device. It enables C
pointers to access the operational registers in each device.

It is helpful to use a structure, or #define offsets, describing the peripheral register
layout symbolically. Symbolic definitions of bit fields can also be useful.

You must also define the interrupt handlers as the handler routine plus an optional
parameter. The parameter is used for handlers that service more than one source. In the
case of the PID, the same handler is responsible for the two serial ports and the parallel
port.

Serial drivers must conform to the generic function calls defined in devdriv.h. This
ensures that generic calls from the debug code and channels manager can access any
valid device driver, without requiring information about the peripheral being used.

devconf.h

This is the main configuration file for the target image. It sets up the Angel resources
for the specific target and defines the hardware configuration to Angel, including:

• a memory map of available memory

• interrupt operation

• the peripherals and devices available to Angel.
13-60 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
All systems require a similar devconf.h to that used for the PID. The following
explanation uses the PID devconf.h file as an example. It defines the following:

Number of Serial Ports

The PID has two serial ports. In the PID example, one port is defined to
Angel. The other port is available for application use.

Board hardware setup

This option is defined if not minimal Angel:

• Parallel is for the use of a parallel port for faster download

• PCMCIA is to set up and use the PC card slots on the board

• PROFILE makes use of one timer to allow code profiling if
requested by the host debugger. This option is rarely used in final
builds.

DCC and Cache Support

DCC and CACHE support are processor-dependent. You must take care
when defining these. These options enable routines that will not work,
and will halt the Angel Debugger, if your processor does not support
them.

Debug Method

The DEBUG_METHOD option is only applicable if DEBUG=1 is specified in the
makefile or APM project file.

The value of DEBUG_METHOD defines the channel that is used to pass debug
messages. Some options require specific equipment or software, for
example, pidulate, rombox, and e5 (see also Debugging your Angel port
on page 13-47).

The logadp option should not be used.

In general, the safest option is panicblk. The most useful option is
logterm, but this requires a spare serial port.

Use the #defines NO_LOG_INFO and NO_LOG_WARNING to increase execution
speed and reduce the size of images created with debug enabled, when
some or all debug messages are not required.

Interrupt source for ADP

You can select the interrupt source that is used to drive ADP channel
communications and timer interrupts. You can select either or both of:

HANDLE_INTERRUPTS_ON_IRQ
Angel interrupt handlers will handle interrupts on IRQ
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-61

Angel
HANDLE_INTERRUPTS_ON_FIQ
Angel interrupt handlers will handle interrupts on FIQ.

The recommended option is to use IRQ because:

• Angel interrupt operation is not time-critical.

• you can use FIQ for your application

• the Angel FIQ handler is slower than the IRQ handler.

Device Data Control

Device data control is dependent on the build options (minimal or not)
and the number of ports controlled by Angel. The default options for full
debug operation Angel on the PID board are:

• serial port A for debug communications

• serial port B for application use with raw (not packet) data

• options for parallel download, and application use.

You can change any of these options to suit the communications
requirements of your application by redefining the relevant label.

The memory map

You must define the memory map to allow the debugger to control illegal
read/writes using the PERMITTED checks. These check that writes are not
made to Angel data or code space and provide primitive memory
protection.

These should reflect the permitted access of the system memory
architecture. Refer to Configuring the memory map on page 13-69 for
detailed information on setting up an Angel memory map.

Setting up the stacks

You must define a stack for each processor mode used by Angel. These
always include User, Supervisor, Undefined, and the selected Interrupt
modes. The location of the stacks can be fixed, or can be set to the top of
memory when this has been defined. Refer to Configuring the memory
map on page 13-69 for detailed information on setting up an Angel
memory map.

All other Angel-defined memory spaces (fusion stack and heaps, profile
work area, application stacks) can be defined to sit relative to the stacks,
or can be given fixed locations. The default for the Application Heap
space is above the run time Angel code, and the available space is to the
lowest limit of the stacks.
13-62 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Note
 Angel stack space is different from the application stack space. However,

Angel uses four words of application stack when it returns to the
application from an exception.

The download agent area

The download agent area is a spare area of RAM to which new Angel
images are downloaded.

The loadagent command writes the image to the download area. When
complete, the agent is started with an ADP command. It relocates itself
to another area if it has been compiled to do so. This enables the new
Angel to overwrite the old Angel and release the download agent area.
The download agent can be in the same RAM as an application, because
the application and the download agent never run at the same time.

The DeviceIdent structure

The available devices must be defined in the DeviceIdent structure. You
must ensure that the order of the devices in this structure is the same as
that defined in devices.c, because this enables access to the register base
of the specified ports.

The IntHandlerID structure

You must ensure that the order and number of entries in this structure is
the same as defined in devices.s, because this is the basis for the jump
table in suppasm.s.

You must also place the labels in makelo.c to ensure that they are available
for suppasm.s.

13.4.6 Writing the device drivers

Writing device drivers for your hardware is the main area of the porting operation, and
is completely application dependent. The device drivers provided with the PID Angel
port can provide a starting point, but in many cases you must completely recode the
source files. The simplest approach is to use the main functions defined in the PID code
and rewrite the underlying functionality.

For example, the Angel PID port controls the device through function pointers defined
between devclnt.h and devdriv.h. The main controlling functions are:

• the angel_DeviceControlFn()

• Transmit Control (ControlTx)

• Receive Control (ControlRx)
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-63

Angel
• Transmit Kick Start (KickStartFn)

• The interrupt handler.

These are discussed in more detail in the following sections.

To implement a device driver you must:

• Write the initialization code for your device.

• Write either an interrupt service routine or a poll function that does input/output.

• Provide ring buffers that allow you to communicate with the rest of the code. You
must provide one transmit and one receive ring buffer.

• Write a control routine similar to the angel_DeviceControlFn(). Angel device
drivers provide control calls for:

— disabling and enabling the reception of raw data

— disabling and enabling packet interpretation of the data stream

— initializing the device

— resetting the device to its default state

— setting the device configuration to a set of specified parameters.

Your device driver must be able to handle messages that are longer than 256 bytes in
order to handle memory write messages. The actual length of memory write messages
is determined by your Angel port. Refer to Download on page 13-31 for more
information.

Note
 Raw device drivers that are purely interrupt driven must fit in with the interrupt scheme
described Example of Angel processing: a simple IRQ on page 13-40.

angel_DeviceControlFn

This function is defined in devclnt.h. It is implemented in a manner similar to the UNIX
ioctl() call. It controls the device by passing in a set of standard control values that are
defined in devices.h. Examples of the controls available to this function are:

DC_INIT Device initialization. This provides device-specific initialization at the
start of a session.

DC_RESET Device Reset. This provides device re-initialization to set the device into
a known operational state ready to accept input from the host at the
default setup.
13-64 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
DC_RECEIVE_MODE

Receive mode select. This sets the device into and out of receive mode.

DC_SET_PARAMS

Set Device operational parameters. This sets the device parameters at
initialization. It is also used if the host needs to re-negotiate the
parameters, for example if the baud rate changes.

DC_RX_PACKET_FLOW

This control disables packet delivery when required, while still allowing
the device to read data:

1 Packet buffers not requested. Writing to the ring buffer is
allowed.

0 Normal operation.

-n deliver n good packets, then behave as RX_PACKET_FLOW(0).

Transmit Control (ControlTx)

When in operation, Angel defaults to the receive active state in order to enable quick
response to host messages. This function controls the transmit channel of the serial
driver, switching it on or off depending on the flag status set up in the calling routine.

Receive Control (ControlRx)

This function is similar to ControlTx. It controls the receive channel.

Transmit Kick Start (KickStartFn)

Transmission must be initiated by this function because Angel generally operates in
receive active mode. The Angel packet construction code sets up the bytes to be
transmitted for a message to the host in a transmit buffer and calls the KickStartFn()
function to initiate the transfer. The KickStartFn() takes the first character from the
transmit buffer and passes it to the serial Tx register. This causes a Tx interrupt from
which the interrupt handler passes the remainder of the buffer as each character is
transmitted.

Interrupt handlers

The interrupt handlers are generic for each peripheral. In the case of the PID board the
interrupt handler controls interrupts from each serial driver Tx and Rx in addition to the
parallel reads.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-65

Angel
The interrupt handler determines the source of the interrupt:

• for the Tx case, it passes bytes from the internal Tx buffer to the Serial Tx FIFO
as long as there is space in the FIFO.

• for the Rx case, it passes the byte received at the Rx FIFO into the internal Rx
buffer, ready for Angel to unpack the message when the transfer is complete.

• for the parallel case, the parallel port is polled to pass the received data into the
memory location requested.

Refer to Example of Angel processing: a simple IRQ on page 13-40 for more
information on how Angel handles interrupts. Refer to Angel task management on
page 13-33 for information on how Angel serializes communications tasks.

Note
 Other system drivers (Ethernet/DCC) might not need the full operation functions
described above. They might need only a pure Rx/Tx control.

Polled devices

The registered read and write poll functions are called by the Angel_DeviceYield()
function. Angel ensures this function is called whenever communication with the host
is required. On each call, the device poll handler ensures that the device is serviced.

For a full Angel system, a hardware timer must be available for polled devices to work
because the timer interrupt is used to gain control of the processor and call
Angel_DeviceYield(). This call must be inserted at the end of the timer interrupt handler
for the port, because the timer itself is part of the port. For example:

 /* See if it is time to call Angel_Yield yet */
if (++call_yield_count >= call_yield_every_n_irqs)
{

call_yield_count=0;
Angel_SerialiseTask(0,(angel_SerialisedFn)Angel_YieldCore,
NULL, empty_stack, &Angel_GlobalRegBlock[RB_Interrupted]);

}

The value call_yield_every_n_irqs must be calculated such that Angel_Yield() is called
approximately every 0.2 seconds.
13-66 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.4.7 Downloading a new version of Angel

Angel can download a new version of itself. There are a number of methods you can use
to do this, depending on whether you are using armsd or ADW/ADU.

Downloading a new debug agent is often preferable to replacing ROM because it is
usually quicker, and does not require you to remove the ROM from its socket and
reprogram it with an EPROM programmer. However, downloading a new Angel to
RAM is not permanent. If the board is powered down or reset, the downloaded Angel is
lost.

The best method is to download Angel to Flash, if your board supports it. This allows
you to replace your Angel as often as required, without losing the image at reset or
power down. The ARM PID board supports Flash. Refer to your board documentation
for more information on downloading to Flash.

If your board does not have Flash, and does have sufficient RAM, you can load Angel
to RAM and either run it in place, or relocate and run. If you are using Angel to replace
Angel with this method you cannot overwrite the currently executing Angel code.

Note
 • Angel is not always capable of downloading a new copy of itself and then

restarting. Your board must contain sufficient spare RAM to copy the new Angel
into RAM before relocating it and running it. If you do not have sufficient RAM
you can use EmbeddedICE or Multi-ICE to download Angel, providing it has
been compiled to run from the download location.

• Angel is built to relocate a downloaded new Angel to the address that the new
Angel is built to execute from, and then to execute it. If you download a copy of
Angel that is built to run from ROM, it will fail.

See Configuring where Angel runs on page 13-70 for more information on
specifying the Angel execution address.

Using the debuggers to download Angel

From armsd, use the loadagent command to download a new version of Angel. The
loadagent command cannot write to Flash. If you use loadagent, Angel must be
compiled to run from RAM.

In the ARM debuggers (ADW and ADU), select Flash Download from the File menu
to download a new version of Angel to Flash.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-67

Angel
13.4.8 Debugging your Angel port

You can use a number of methods to debug your Angel port. The method you choose
will depend on the stage of development you have reached, and the hardware available
to you.

Note
 You should take debug requirements into consideration when designing your
development board. Your board should allow access to the full Data bus and Address
bus. In addition, general purpose outputs, such as programmable LEDs, can be useful
for debug purposes.

You can use the following debug methods:

ARMulator You can debug the early stages of your Angel port under ARMulator.
Only the initial stages of the code can be debugged in ARMulator
because the ARMulator environment has no means of receiving
responses from peripherals. You can use programmable LEDs to assist
you in debugging under ARMulator.

Multi-ICE EmbeddedICE and Multi-ICE are valuable tools for debugging Angel
because they can operate before the basic Angel functionality is working.
For example, they can operate before your Angel device drivers are
functional.

These are the preferred option if your board uses an appropriate ARM
processor, such as the ARM7TDMI. Your processor must support the DI
debug extensions to work with an ICE solution.

ROM emulators and Logic Analyzers

If your ARM processor does not support debugging under Multi-ICE or
EmbeddedICE, you can use ROM emulators or logic analyzers to help
you debug your Angel port. The Angel sources include source files to
help you use:

• the E5 ROM Emulator from Crash Barrier Ltd.

• the neXus ROMulator from neXus Ltd.

The support files for these are located in the Angel\Source\logging
directory.

Note
 Specify DEBUG=1 to build a debugging version of Angel.
13-68 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.5 Configuring Angel

This section describes some of the major configuration changes that you can make to
Angel. All the configuration changes described in this section are static. You must
re-compile Angel to implement these changes. The changes you can make are described
in the following sections:

• Configuring the memory map

• Configuring timers and profiling on page 13-70

• Configuring exception handlers on page 13-70

• Configuring where Angel runs on page 13-70

• Configuring SWI numbers on page 13-72.

13.5.1 Configuring the memory map

You can configure the Angel stack positions by editing the value of:

#define Angel_StacksAreRelativeToTopOfMemory

in devconf.h.

By default, the Angel stacks are configured relative to the top of memory. This is the
recommended option. If Angel stacks are configured to start relative to the top of
memory then the Angel code searches for the top of contiguous memory and the stack
pointers are set at this location. This means that you can add memory to your system
without updating the memory map and rebuilding Angel. Refer to devconf.h on
page 13-60 for more information.

You must define the memory map to allow the debugger to control illegal read/writes
using the checks in the PERMITTED macro. These should reflect the permitted access of
the system memory architecture. You must take care with systems that have access to
the full 4GB of memory, because the highest section of memory should equate to
0xffffffff when the base and size are defined as a sum, and it may wrap around to 0.

For example, if there is memory-mapped I/O at 0xffd00000 the definition should be:

#define IOBase (0xFFD00000)
#define IOSize (0x002fffff)
#define IOTop (IOBase + IOSize)

not:

#define IOBase (0xFFD00000)
#define IOSize (0x00300000)
#define IOTop (IOBase + IOSize)
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-69

Angel
13.5.2 Configuring timers and profiling

The PID board has two timers available, and by default profiling and Ethernet are
configured to use the same timer. The PID board uses pc sampling for profiling. This
requires a fast interrupt. The interrupt service routine records where the program was
when it was interrupted. If you do not use profiling or Ethernet you can use the timer
for your application.

You can turn off profiling by setting a runtime debugger variable, but this does not free
the timer. In the Angel PID port, profiling is specified in the PROFILE entry of
devconf.h. You must recompile Angel to remove profiling support. Refer to devconf.h
on page 13-60 for more information.

System timers can be initialized by implementing the INITTIMER macro in target.s. This
macro is not implemented by the PID port. It is provided as a place holder to enable you
to initialize your own system timers. Refer to target.s on page 13-58 for more
information.

13.5.3 Configuring exception handlers

You can chain your own exception handlers to the Angel exception handlers. Refer to
Chaining exception handlers on page 13-20 for more information.

13.5.4 Configuring where Angel runs

This section describes how to configure Angel to run from:

• ROM

• ROM mapped to address zero

• RAM (the default).

Link addresses

The makefile for angel.rom contains two makefile macros that control the addresses
where Angel is linked:

RWADDR This defines the base address for read/write areas, such as dataseg and bss
(zero-initialized) areas, along with some assembler areas. Angel requires
approximately 24KB of free RAM for its read/write areas.

ROADDR This defines the base address for read-only areas. In general, read-only
areas are code areas. Angel requires between 50 and 100KB of RAM for
its read-only areas.
13-70 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
The target-specific configuration file devconf.h contains a number of macros that define
the memory layout of the target board. It also contains checks to ensure that the values
of RWADDR and ROADDR are sensible.

Most of these macros are only used within devconf.h (for the sanity checks, in the
READ/WRITE_PERMITTED macros, and for defining application stack and heap areas), In
addition, the macro ROMBase is used during startup to calculate the offset between the
code currently executing in ROM and its eventual ROADDR destination.

ROM locations

Angel supports two types of ROM system:

• ROM mapped to address 0 on reset, and mapped out to RAM during Angel
bootstrap

• ROM permanently mapped to address 0.

For the first type:

1. Define ROMBase in devconf.h as the normal (mapped-out) address of the ROM.

2. Set the ROM-only build variable in target.s to FALSE.

3. Provide an assembler macro called UNMAPROM in target.s that maps the ROM away
from 0.

4. Declare the makefile macro FIRST as 'startrom.o(ROMStartup)', including the
quote (') characters.

For the second type:

1. Define ROMBase in devconf.h as 0.

2. Set the ROMonly build variable in target.s to TRUE.

3. Declare the makefile macro FIRST as 'except.o(__Vectors)', including the single
quote (') characters.

Processor exception vectors

Regardless of where you declare RWADDR and ROADDR to be, the ARM processor requires
the exception vector table to be located at zero. There are a number of situations where
this happens by default, for example when RWADDR is set to 0, or in ROM-at-zero systems.

When this does not happen by default, Angel explicitly copies everything in
AREA __Vectors from RWADDR to zero. All code within the __Vectors area must be
position-independent, because it is linked to run at ROADDR, not zero.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-71

Angel
In most configurations, Angel is able to detect a branch through zero by application
code, and report it as an error. However, this is not possible in ROM-at-zero systems. In
this case, a branch through zero causes:

• a system reboot if the processor is executing in a privileged mode

• a system crash if the processor is not executing in a privileged mode.

13.5.5 Configuring SWI numbers

Angel requires one SWI in order to operate. The SWI is used to:

• change processor mode to gain system privileges

• make semihosting requests

• report an exception to the debugger.

The SWI passes a reason code in r0 to determine the type of request. Depending on the
SWI, additional arguments are passed in r1. Refer to Angel C library support SWIs on
page 13-79 more information.

The SWI number is different for ARM state and Thumb state. By default, the SWI
numbers used are:

ARM state 0x123456

Thumb state 0xab

If you want to use either of these SWI numbers for your system you can reconfigure the
SWI to use any of the available SWI numbers. If you change these values you must:

• Recompile the C library, specifying the new SWI value in the Angel definition
files. Refer to Retargeting the ANSI C library on page 4-6 of the ARM Software
Development Toolkit Reference Guide for more information.

• Recompile the debug agent using the new value.

Refer to Chapter 9 Handling Processor Exceptions for more general information on
handling SWIs.

In C, the Angel SWI numbers are defined in Angel\Source\arm.h as:

#define angel_SWI_ARM (0x123456)
#define angel_SWI_THUMB (0xAB)
13-72 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.6 Angel communications architecture

This section gives an overview of the Angel communications architecture. It describes
how the various parts of the architecture fit together, and how debugging messages are
transmitted and processed by Angel. For full details of the Angel Debug Protocol, refer
to the ADP specification document in c:ARM250\PDF\specs.

13.6.1 Overview of the Angel communications layers

Figure 13-12 shows a conceptual model of the communication layers for Angel. In
practice, some layers might be combined.

Figure 13-12 Communications layers for Angel

The channels layer includes:

ADP The Angel Debug Protocol channel. This consists of the Host ADP
channel (HADP) and Target ADP channel (TADP).

BOOT The boot channel.

TDCC The Thumb debug communications channel.

CLIB C library support.

At the top level on the target, the Angel agent communicates with the debugger host,
and the user application can make use of semihosting support (CLIB).

All communications for debugging (ADP, BOOT, TDCC, CLIB) require a Reliable
channel between the target and the host. The Reliable communications and buffer
management layer is responsible for providing reliability, retransmissions, and
multiplexing/de-multiplexing for these channels. This layer must also handle buffer
management, because reliability requires retransmission after errors have occurred.

*
�����	�������

�-&

-�'������'��/�����������������0 ������'������'�

-�'���

����	

4..� �-!! !7�4

��	���	������
�������88������������
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-73

Angel
The device driver layer detects and rejects bad packets but does not offer reliability
itself.

13.6.2 Boot support

If there are two or more debug devices (for example, serial and serial/parallel), the boot
agent must be able to receive messages on any device and then ensure that further
messages that come through the channels layer are sent to the correct (new) device.

When the debug agent detects a Reboot or Reset message, it listens to the other channels
using the device that received the message. All debug channels switch to use the newly
selected debug device.

During debugging, each channel is connected through the same device to one host.
Initially, Angel listens on all Angel-aware devices for an incoming boot packet, and
when one is received, the corresponding device is selected for further Angel use. Angel
listens for a reset message throughout a debugging session, so that it can respond to
host-end problems or restarts.

To support this, the channels layer provides a function to register a read callback across
all Angel-aware devices, and a function to set the default device for all other channel
operations.

13.6.3 Channels layer and buffer management

The channels layer is responsible for multiplexing the various Angel channels onto a
single device, and for providing reliable communications over those channels. The
channels layer is also responsible for managing the pool of buffers used for all
transmission and reception over channels. Raw device I/O does not use the buffers.

Although there are several channels that could be in use independently (for example,
CLIB and HADP), the channel layer accepts only one transmission attempt at a time.

Channel restrictions

To simplify the design of the channels layer and to help ensure that the protocols
operating over each channel are free of deadlocks, the following restriction is placed on
the use of each channel.

For a particular channel, all messages must originate from either the Host or the Target,
and responses can be sent only in the opposite direction on that channel. Therefore two
channels are required to support ADP:

• one for host originated requests (Read Memory, Execute, Interrupt Request)

• one for target originated requests (Thread has stopped).
13-74 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Each message transmitted on a channel must be acknowledged by a reply on the same
channel.

Buffer management

Managing retransmission means that the channels layer must keep messages that have
been sent until they are acknowledged. The channel layer supplies buffers to channel
users who want to transmit, and then keeps transmitted buffers until acknowledged.

The number of available buffers might be limited by memory to less than the theoretical
maximum requirement of one for each channel and one for each Angel-aware device.

The buffers contain a header area sufficient to contain channel number and sequence
IDs, for use by the channels layer itself. Any spare bits in the channel number byte are
reserved as flags for future use.

Long buffers

Most messages and responses are short (typically less than 40 bytes), although some can
be up to 256 bytes long. However, there are some situations where larger buffers would
be useful. For example, if the host is downloading programs or configuration data to the
target, a larger buffer size reduces the overhead created by channel and device headers,
by acknowledgment packets and by the line turnaround time required to send each
acknowledgment (for serial links). For this reason, a long (target defined, suggested size
4KB) buffer is available for target memory writes, which are used for program
downloads.

Limited RAM

When RAM is unlimited, the easiest solution is to make all buffers large. There is a
mechanism that allows a single large buffer to be shared, because RAM in an Angel
system is not normally an unlimited resource.

When the device driver has read enough of a packet to determine the size of the packet
being received, it performs a callback asking for a suitably sized buffer. If a small buffer
is adequate, a small buffer is provided. If a large buffer is required, but is not available,
the packet is treated as a bad packet, and a resend request results.

Buffer life cycle

When sending data, the user of a channel must explicitly allocate a buffer before
requesting a write. Buffers must be released either by:

• Passing the buffer to one of the channel transmit functions in the case of reliable
data transmission. In this case, the channels code releases the buffer.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-75

Angel
• Explicitly releasing it with the release function in the case of unreliable data
transmission.

Receive buffers must be explicitly released with the release function (see Figure 13-13).

Figure 13-13 Send buffer lifecycle

Channel packet format

Channel packets contain information, including:

• channel ID, such as the HADP ID

• packet number

• acknowledged packet number

• flags used for distinguishing data from control information.

Refer to the Angel debug protocol specification in c:ARM250\PDF\specs for a complete
description of the channel packet format.

The length of the complete data packet is returned by the device driver layer. An overall
length field for the user data portion of the packet it not required, because the channel
header is fixed length.

*��	���	���������88��	�8��,�	� ��	���	���������88��	�8��,�	�

�	��
�

�		��

���

���� ��		����/0

�		��

���

���� ��		����/0

����	��
�
13-76 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
Heartbeat mechanism

Heartbeats must be enabled for reliable packet transmission to work. Heartbeats work
only with the Software Development Toolkit version 2.11a (Angel 1.04, EmbeddedICE
2.07) and later.

The remote_a heartbeat software writes packets using at least the heartbeat rate, and
uses heartbeat packets to ensure this. It expects to see packets back using at least the
packet timeout rate, and signals a timeout error if this is violated.

13.6.4 Device driver layer

Angel supports polled and asynchronous interrupt-driven devices, and devices that start
in an asynchronous mode and finish by polling the rest of a packet. At the boundary of
the device driver layer, the interface offers asynchronous (by callback) read and write
interfaces to Angel, and a synchronous interface to the application.

Refer to Writing the device drivers on page 13-63 for more information on device
drivers.

Support for callback across all devices

This is primarily a channels layer issue, but because the BOOT channel must listen on
all Angel-compatible devices, the channels layer must determine how many devices to
listen to for boot messages, and which devices those are.

To provide this statically, the devices layer exports the appropriate device table or tables,
together with the size of the tables.

Transmit queueing

Because the core operating mode is asynchronous and more than one thread can use a
device, Angel rejects all but the first request, returns a busy error message, and leaves
the user (channels or the user application) to retry later.

Angel interrupt handlers

Angel Interrupt handlers are installed statically, at link time. The Angel Interrupt
handler runs off either IRQ or FIQ. It is recommended that it is run off IRQ. The Angel
interrupt is defined in devconf.h. Refer to devconf.h on page 13-60 for more
information.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-77

Angel
Control calls

Angel device drivers provide a control entry point that supports the enable/disable
transmit/receive commands, so that Angel can control application devices at critical
times. Refer to Writing the device drivers on page 13-63 for more information.
13-78 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.7 Angel C library support SWIs

Angel uses a SWI mechanism to enable user applications linked with an ARM C library
to make semihosting requests. Semihosting requests are requests such as open a file on
the host, that must be communicated to the host to be carried out.

Refer to The ANSI C library on page 4-5 of the ARM Software Development Toolkit
Reference Guide for more information on ARM C library support.

Angel uses a single SWI to request semihosting operations. By default, the Angel
semihosting SWI is:

• 0x123456 in ARM state

• 0xab in Thumb state.

You can configure the Angel SWI to any SWI number if you are developing an
operating system or application that uses these SWI numbers. Refer to the Configuring
Angel on page 13-69 for more information.

The semihosting operation type is passed in r0, rather than being encoded in the SWI
number. All other parameters are passed in a block that is pointed to by r1. The result is
returned in r0, either as an explicit return value or as a pointer to a data block. If no result
is returned, r0 is corrupted. Registers r1-r3 are preserved by Angel when an Angel
system call is made. See the description of each operation below.

In the following descriptions, the number in parentheses after the operation name (for
example 0x01) is the value r0 must be set to for this operation. If you are calling Angel
SWIs from assembly language code it is best to use the operation names that are defined
in arm.h. You can define the operation names with an EQU directive. For example:

SYS_OPEN EQU 0x01
SYS_CLOSE EQU 0x02

13.7.1 Angel task management and SWIs

Angel SWIs are divided into two main categories:

• Simple SWIs. These are SWIs such as EnterSVC and undefined SWIs. These
SWIs do not use the Angel serializer and do not store anything in the global
registers blocks. They can be treated like an APCS function call. Registers r0 to
r3 and r12 are corrupted.

• Complex SWIs. These are SWIs such as the C library support SWIs. These SWIs
use the serializer and the global register block, and they can take a significant
length of time to process. They can be treated as an APCS function call, but they
restore the registers they are called with before returning, except for r0 which
contains the return status.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-79

Angel
Table 13-3 gives a summary of the Angel semihosting SWIs. Refer to the descriptions
below for more detailed information.

Table 13-3 Angel semihosting SWIs

SWI Page Description

*** 'SYS_OPEN (0x01)' on
page 81 ***

page 13-81 Open a file on the host.

*** 'SYS_CLOSE (0x02)' on
page 83 ***

page 13-83 Close a file on the host.

*** 'SYS_WRITEC (0x03)' on
page 83 ***

page 13-83 Write a character to the debug channel.

*** 'SYS_WRITE0 (0x04)' on
page 83 ***

page 13-83 Write a string to the debug channel.

*** 'SYS_WRITE (0x05)' on
page 84 ***

page 13-84 Write to a file on the host.

*** 'SYS_READ (0x06)' on
page 85 ***

page 13-85 Read the contents of a file into a buffer.

*** 'SYS_READC (0x07)' on
page 86 ***

page 13-86 Read a byte from the debug channel.

*** 'SYS_ISERROR (0x08)'
on page 86 ***

page 13-86 Determine if a return code is an error.

*** 'SYS_ISTTY (0x09)' on
page 87 ***

page 13-87 Check whether a file is connected to an interactive device.

*** 'SYS_SEEK (0x0a)' on
page 87 ***

page 13-87 Seek to a position in a file.

*** 'SYS_FLEN (0x0c)' on
page 88 ***

page 13-88 Return the length of a file.

*** 'SYS_TMPNAM (0x0d)'
on page 88 ***

page 13-88 Return a temporary name for a file.

*** 'SYS_REMOVE (0x0e)'
on page 89 ***

page 13-89 Remove a file from the host.

*** 'SYS_RENAME (0xf)' on
page 89 ***

page 13-89 Rename a file on the host.

*** 'SYS_CLOCK (0x10)' on
page 90 ***

page 13-90 Number of centiseconds since support code started.
13-80 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.7.2 SYS_OPEN (0x01)

Open a file on the host system. The file path is specified either as relative to the current
directory of the host process, or absolutely, using the path conventions of the host
operating system.

The ARM debuggers interpret the special path name :tt as meaning the console input
stream (for an open-read) or the console output stream (for an open-write). Opening
these streams is performed as part of the standard startup code for those applications
that reference the C stdio streams.

Entry

On entry, r1 contains a pointer to a three word argument block:

word 1 is a pointer to a null-terminated string containing a file or device name.

word 2 is an integer that specifies the file opening mode. Table 13-4 on
page 13-82 gives the valid values for the integer, and their corresponding
ANSI C fopen() mode.

*** 'SYS_TIME (0x11)' on
page 90 ***

page 13-90 Number of seconds since Jan 1, 1970.

*** 'SYS_SYSTEM (0x12)'
on page 91 ***

page 13-91 Pass a command to the host command-line interpreter.

*** 'SYS_ERRNO (0x13)' on
page 91 ***

page 13-91 Get the value of the C library errno variable.

*** 'SYS_GET_CMDLINE
(0x15)' on page 92 ***

page 13-92 Get the command-line used to call the executable.

*** 'SYS_HEAPINFO (0x16)'
on page 93 ***

page 13-93 Get the system heap parameters.

*** 'SYS_ELAPSED (0x30)'
on page 94 ***

page 13-94 Get the number of target ticks since support code started.

*** 'SYS_TICKFREQ (0x31)'
on page 94 ***

page 13-94 Define a tick frequency.

Table 13-3 Angel semihosting SWIs (continued)

SWI Page Description
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-81

Angel
word 3 is an integer that gives the length of the string pointed to by word 1. The
length does not include the terminating null character that must be
present.

Return

On exit, r0 contains:

• a non-zero handle if the call is successful

• –1 if the call is not successful.

Table 13-4

mode 0 1 2 3 4 5 6 7 8 9 10 11

ANSI C fopen mode r rb r+ r+b w wb w+ w+b a ab a+ a+b
13-82 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.7.3 SYS_CLOSE (0x02)

Closes a file on the host system. The handle must reference a file that was opened with
SYS_OPEN.

Entry

On entry, r1 contains a pointer to a one word argument block:

word 1 is a file handle referring to an open file.

Return

On exit, r0 contains:

• 0 if the call is successful

• –1 if the call is not successful.

13.7.4 SYS_WRITEC (0x03)

Writes a character byte, pointed to by r1, to the debug channel. When executed under
an ARM debugger, the character appears on the display device connected to the
debugger.

Entry

On entry, r1 contains a pointer to the character.

Return

None. Register r0 is corrupted.

13.7.5 SYS_WRITE0 (0x04)

Writes a null-terminated string to the debug channel. When executed under an ARM
debugger, the characters appear on the display device connected to the debugger.

Entry

On entry, r1 contains a pointer to the first byte of the string.

Return

None. Register r0 is corrupted.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-83

Angel
13.7.6 SYS_WRITE (0x05)

Writes the contents of a buffer to a specified file at the current file position. The file
position is specified either:

• explicitly, by a SYS_SEEK

• implicitly as one byte beyond the previous SYS_READ or SYS_WRITE request.

The file position is at the start of the file when the file is opened, and is lost when the
file is closed.

The file operation should be performed as a single action whenever possible. That is, a
write of 16KB should not be split into four 4KB chunks unless there is no alternative.

Entry

On entry, r1 contains a pointer to a three word data block:

word 1 contains a handle for a file previously opened with SYS_OPEN.

word 2 points to the memory containing the data to be written.

word 3 contains the number of bytes to be written from the buffer to the file.

Return

On exit, r0 contains:

• 0 if the call is successful

• the number of byte that are not written, if there is an error.
13-84 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.7.7 SYS_READ (0x06)

Read the contents of a file into a buffer. The file position is specified either:

• explicitly, by a SYS_SEEK

• implicitly, as one byte beyond the previous SYS_READ or SYS_WRITE request.

The file position is at the start of the file when the file is opened, and is lost when the
file is closed.The file operation should be performed as a single action whenever
possible. That is, a write of 16KB should not be split into four 4KB chunks unless there
is no alternative.

Entry

On entry, r1 contains a pointer to a four word data block:

word 1 contains a handle for a file previously opened with SYS_OPEN.

word 2 points to a buffer.

word 3 contains the number of bytes to read to the buffer from the file.

word 4 is an integer that specifies the file mode. Table 13-4 on page 13-82 gives
the valid values for the integer, and their corresponding ANSI C fopen()
modes.

Return

On exit, r0 contains:

• 0 if the call is successful

• the number of bytes not read, if there is an error.

If the handle is for an interactive device (that is, SYS_ISTTY returns –1 for this handle),
a non-zero return from SYS_READ indicates that the line read did not fill the buffer.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-85

Angel
13.7.8 SYS_READC (0x07)

Reads a byte from the debug channel. The read is notionally from the keyboard attached
to the debugger.

Entry

There are no parameters. Register r1 must contain zero.

Return

On exit, r0 contains the byte read from the debug channel.

13.7.9 SYS_ISERROR (0x08)

Determines whether the return code from another semihosting call is an error status or
not. This call is passed a parameter block containing the error code to examine.

Entry

On entry, r1 contains a pointer to a one word data block:

word 1 is the required status word to check.

Return

On exit, r0 contains:

• 0 if the status word is not an error indication

• a non-zero value if the status word is an error indication.
13-86 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.7.10 SYS_ISTTY (0x09)

Checks whether a file is connected to an interactive device.

Entry

On entry, r1 contains a pointer to a one word argument block:

word 1 is a handle for a previously opened file object.

Return

On exit, r0 contains:

• –1 if the handle identifies an interactive device

• 0 if the handle identifies a file

• a value other than –1 or 0 if an error occurs.

13.7.11 SYS_SEEK (0x0a)

Seeks to a specified position in a file using an offset specified from the start of the file.
The file is assumed to be a byte array and the offset is given in bytes.

Entry

On entry, r1 contains a pointer to a two word data block:

word 1 is a handle for a seekable file object.

word 2 is the absolute byte position to be sought to.

Return

On exit, r0 contains:

• 0 if the request is successful

• A negative value if the request is not successful. SYS_ERRNO can be used to
read the value of the host errno variable describing the error.

Note
 The effect of seeking outside of the current extent of the file object is undefined.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-87

Angel
13.7.12 SYS_FLEN (0x0c)

Returns the length of a specified file.

Entry

On entry, r1 contains a pointer to a one word argument block:

word 1 is a handle for a previously opened, seekable file object.

Return

On exit, r0 contains:

• the current length of the file object, if the call is successful

• –1 if an error occurs.

13.7.13 SYS_TMPNAM (0x0d)

Returns a temporary name for a file identified by a system file identifier.

Entry

On entry, r1 contains a pointer to a three word argument block:

word 1 is a pointer to a buffer.

word 2 is a target identifier for this filename.

word 3 contains the length of the buffer. The length should be at least the value
of L_tmpnam on the host system.

Return

On exit, r0 contains:

• 0 if the call is successful

• –1 if an error occurs.

The buffer pointed to by r1 contains the filename.
13-88 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.7.14 SYS_REMOVE (0x0e)

Deletes a specified file.

Entry

On entry, r1 contains a pointer to a two word argument block:

word 1 points to a null-terminated string that gives the pathname of the file to be
deleted.

word 2 is the length of the string.

Return

On exit, r0 contains:

• 0 if the delete is successful

• a non-zero, host-specific error code if the delete fails.

13.7.15 SYS_RENAME (0xf)

Renames a specified file.

Entry

On entry, r1 contains a pointer to a four word data block:

word 1 is a pointer to the name of the old file.

word 2 is the length of the old file name.

word 3 is a pointer to the new file name.

word 4 is the length of the new file name.

Both strings are null-terminated.

Return

On exit, r0 contains:

• 0 if the rename is successful

• a non-zero, host-specific error code if the rename fails.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-89

Angel
13.7.16 SYS_CLOCK (0x10)

Returns the number of centiseconds since the support code started executing.

Values returned by this SWI can be of limited use for some benchmarking purposes
because of communication overhead or other agent-specific factors. For example, with
the Multi-ICE debug agent the request is passed back to the host for execution. This can
lead to unpredictable delays in transmission and process scheduling.

This function should be used only to calculate time intervals (the length of time some
action took) by calculating the difference in the result on two occasions.

Entry

There are no parameters. Register r1 must contain zero.

Return

On exit, r0 contains:

• the number of centiseconds since some arbitrary start point, if the call is
successful

• –1 if the call is unsuccessful (for example, because of a communications error).

13.7.17 SYS_TIME (0x11)

Returns the number of seconds since 00:00 January 1, 1970.

Entry

There are no parameters. Register r1 must contain zero.

Return

On exit, r0 contains the number of seconds.
13-90 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.7.18 SYS_SYSTEM (0x12)

Passes a command to the host command-line interpreter. This SWI enables you to
execute a system command such as ls, or pwd. The terminal I/O is on the host, and is not
visible to the target.

Entry

On entry, r1 contains a pointer to a two word argument block:

word 1 points to a string that is to be passed to the host command-line interpreter.

word 2 is the length of the string.

Return

On exit, r0 contains the return status.

13.7.19 SYS_ERRNO (0x13)

Returns the value of the C library errno variable associated with the host support for the
debug monitor. The errno variable can be set by a number of C library support SWIs,
including:

• SYS_REMOVE

• SYS_OPEN

• SYS_CLOSE

• SYS_READ

• SYS_WRITE

• SYS_SEEK.

Whether or not, and to what value errno is set is completely host-specific, except where
the ANSI C standard defines the behavior.

Entry

There are no parameters. Register r1 must be null.

Return

On exit, r0 contains the value of the C library errno variable.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-91

Angel
13.7.20 SYS_GET_CMDLINE (0x15)

Returns the command-line used to call the executable.

Entry

On entry, r1 points to a two word data block in which the command string and its length
are to be returned:

word 1 is a pointer to a buffer of at least the number of bytes specified in word
two.

word 2 is the length of the buffer.

Return

On exit:

• Register r1 points to a two word data block:

word 1 is a pointer to null-terminated string of the command line.

word 2 is the length of the string.

The debug agent might impose limits on the maximum length of the string that
can be transferred. However, the agent must be able to transfer a command-line
of at least 80 bytes.

In the case of the Angel debug monitor using ADP, the minimum is slightly more
than 200 characters.

• Register r0 contains an error code:

— 0 if the call is successful

— –1 if the call is unsuccessful (for example, because of a communications
error).
13-92 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.7.21 SYS_HEAPINFO (0x16)

Returns the system heap parameters. The values returned are typically those used by the
Angel C library during initialization. These values are defined in the devconf.h header
file. Refer to Modifying target-specific files on page 13-57 for a description of
devconf.h.

The C library can override these values, but will do so only if __heap_base is defined at
link time. In this case the values of the following symbols are used:

• __heap_base

• __heap_limit

• __stack_base

• __stack_limit

This call returns sensible answers if EmbeddedICE is being used, but the values are
determined by the host debugger using the $top_of_memory debugger variable.

Entry

On entry, r1 points to a single word data block:

word 1 is the address at which the heap descriptor is located.

Return

On exit, r1 points to a single word data block:

word 1 is the address at which the heap descriptor is located.

The heap descriptor is a block of four words of data that contains the stack and heap
base and limit:

word 1 Heap Base.

word 2 Heap Limit.

word 3 Stack Base.

word 4 Stack Limit.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-93

Angel
13.7.22 SYS_ELAPSED (0x30)

Returns the number of elapsed target ticks since the support code started execution.
Ticks are defined by SYS_TICKFREQ. If the target cannot define the length of a tick,
it can supply SYS_ELAPSED.

Entry

Register r1 contains a pointer to a double word in which to put the number of elapsed
ticks. The first word is the least significant word. The last word is the most significant
word. This follows the convention used by the ARM compilers for the long long data
type.

Return

If the double word pointed to by r1 (low order word first) does not contain the number
of elapsed ticks, r1 is set to –1.

13.7.23 SYS_TICKFREQ (0x31)

Defines a tick frequency.

Entry

On entry, r0 contains the reason code 0x31

Exit

On exit, r0 contains either:

• the ticks per second

• –1 if the target does not know the value of one tick.
13-94 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.8 Angel debug agent interaction SWIs

In addition to the C library support SWIs described in Angel C library support SWIs on
page 13-79, Angel provides the following SWIs to support interaction with the debug
agent:

• The ReportException SWI. This SWI is used by the semihosting support code as
a way to report an exception to the debugger. It can be considered as a breakpoint
that starts in Supervisor mode rather than Undefined mode.

• The EnterSVC SWI. This SWI sets the processor to Supervisor mode.

These are described below.

13.8.1 angel_SWIreason_EnterSVC (0x17)

Sets the processor to Supervisor (SVC) mode and disables all interrupts by setting both
interrupt mask bits in the new CPSR. Under Angel, the user stack pointer (r13_USR) is
copied to the Supervisor stack pointer (r13_SVC) and the I and F bits in the current
CPSR are set, disabling normal and fast interrupts.

Note
 If you are debugging with an EmbeddedICE interface:

• the User mode stack pointer is not copied to the Supervisor stack pointer.

• the I and F bits of the CPSR are not set.

Entry

On entry, r0 contains 0x17. Register r1 is not used. The CPSR can specify User or
Supervisor mode.

Return

On exit, r0 contains the address of a function to be called to return to User mode. The
function has the following prototype:

void ReturnToUSR(void)

Note
 • If debugging with ARMulatororMulti-ICE, r0 is set to zero to indicate that no

function is available for returning to User mode.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-95

Angel
• If debugging with an EmbeddedICE interface, r0 is set to an undefined value and
no function is available for returning to User mode.

If EnterSVC is called in User mode, this routine returns the caller to User mode and
restores the interrupt flags. If EnterSVC is not called in User mode, the action of this
routine is undefined.

If entered in User mode, the Supervisor stack is lost as a result of copying the user stack
pointer. The return to User routine restores r13_SVC to the Angel Supervisor mode
stack value, but this stack should not be used by applications.

After executing the SWI, the current link register will be r14_SVC, not r14_USR. If the
value of r14_USR is needed after the call, it should be pushed onto the stack before the
call and popped afterwards, as for a BL function call.
13-96 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.8.2 angel_SWIreason_ReportException (0x18)

This SWI can be called by an application to report an exception to the debugger directly.
The most common use is to report that execution has completed, using
ADP_Stopped_ApplicationExit.

Entry

On entry r0 is set to Angel_SWIreason_ReportException, and r1 is set to one of the values
listed in Table 13-5 and Table 13-6 on page 13-98. These values are defined in adp.h.
The values marked with a * are not supported by the ARM debuggers. The debugger
reports an Unhandled ADP_Stopped exception for these values.

ADP_UserInterruption is generated by Angel if the debugger sends an
ADP_InterruptRequest to stop the application. ADP_Breakpoint is generated when Angel
detects attempted execution of a breakpoint instruction. Angel does not implement
watchpoints, although other debug agents do.

The hardware exceptions are generated if the debugger variable $vector_catch is set to
catch that exception type, and the debug agent is capable of reporting that exception
type. Angel cannot report exceptions for interrupts on the vector it uses itself.

Table 13-5 Hardware vector reason codes

Name (#defined in adp.h) Hexadecimal value

ADP_Stopped_BranchThroughZero 0x20000

ADP_Stopped_UndefinedInstr 0x20001

ADP_Stopped_SoftwareInterrupt 0x20002

ADP_Stopped_PrefetchAbort 0x20003

ADP_Stopped_DataAbort 0x20004

ADP_Stopped_AddressException 0x20005

ADP_Stopped_IRQ 0x20006

ADP_Stopped_FIQ 0x20007
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-97

Angel
Return

No return is expected from these calls. However, it is possible for the debugger to
request that the application continue by performing an RDI_Execute request or
equivalent. In this case, execution continues with the registers as they were on entry to
the SWI, or as subsequently modified by the debugger.

13.8.3 angel_SWIreason_LateStartup (0x20)

This SWI is obsolete.

Table 13-6 Software reason codes

Name (#defined in adp.h) Hexadecimal value

ADP_Stopped_BreakPoint 0x20020

ADP_Stopped_WatchPoint 0x20021

ADP_Stopped_StepComplete 0x20022

ADP_Stopped_RunTimeErrorUnknown *0x20023

ADP_Stopped_InternalError *0x20024

ADP_Stopped_UserInterruption 0x20025

ADP_Stopped_ApplicationExit 0x20026

ADP_Stopped_StackOverflow *0x20027

ADP_Stopped_DivisionByZero *0x20028

ADP_Stopped_OSSpecific *0x20029
13-98 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
13.9 The Fusion IP stack for Angel

This section describes the Fusion IP stack supplied with the Ethernet Upgrade Kit (No.
KPI 0015A)

13.9.1 How Angel, Fusion, and the PID hardware fit together

The Ethernet interface for the PID card is provided by an Olicom EtherCom PCMCIA
Ethernet card installed in either PCMCIA slot. The Olicom card uses an Intel i82595
Ethernet controller.

The UDP/IP stack is the Pacific Softworks Fusion product, ported to ARM and the
Angel environment. The drivers for PCMCIA and the Ethernet card have been
implemented, as has the Angel device driver to make the whole stack appear as an Angel
device. Figure 13-14 shows how the components fit together.

Figure 13-14 Angel, Fusion ,and PID hardware

Angel

Angel driver framework

Angel
Ethernet driver

Fusion
sockets library

Fusion
UDP

Fusion
IP

i82595
controller

Olicom
card

pcmcia
manager

Ethernet
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-99

Angel
Initialization

The stack is initialized in the following sequence:

1. devclnt.c:angel_InitialiseDevices() calls ethernet.c:ethernet_init()to open a
socket.

2. fusion:socket() notices that the fusion stack has not been initialized. Fusion stack
initialization calls:

a. olicom.c:olicom_init() calls:

b. pcmcia.c:pcmcia_setup() detects Olicom card and calls:

c. olicom.c:olicom_card_handler() with a card insertion event and then:

d. olicom.c:read_card_params() to register olicom_isr() with pcmcia.c.

3. Fusion stack initialization calls:

olicom.c:olicom_updown() and, through olicom_state():

82595.c:i595_bringup() to complete the initialization sequence.

Angel Ethernet device driver

After initialization, the Angel side of the driver is implemented as a polling device. At
every call to Angel_Yield(), angel_EthernetPoll() is invoked, and non-blocking recv()
calls are made to the Fusion stack to see if data is waiting on any of the sockets.

Outgoing packets are passed to the Fusion stack in a single step by calling sendto().

Interrupt handling

The bottom of the Fusion stack is driven by interrupts from the Olicom card. Interrupts
are handled in the following sequence:

1. suppasm.s:angel_DeviceInterruptHandler() calls the GETSOURCE macro in
pid/target.s to identify the PCMCIA controller as the source.

2. pcmcia.c:angel_PCMCIAIntHandler() establishes that it is an I/O interrupt and calls
the routine registered during initialization.

3. olicom.c:olicom_isr() checks the interrupt, switches off interrupts from the
Olicom card, and serializes olicom_process() to do the processing with all other
interrupts enabled.

4. olicom.c:olicom_process() identifies the reason for the interrupt and passes it as
an event to olicom_state().
13-100 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel
5. olicom.c:olicom_state() calls an appropriate routine in 82595.c to handle packet
reception and transmission.

6. 82595.c routines control the i82595 chip and transfer packets in both directions
between Fusion buffers and the chip. Calls are made to Fusion functions as
appropriate.

7. olicom.c:olicom_process() checks to see whether all interrupt events have been
serviced. If so, Olicom interrupts are re-enabled. If not, olicom_process()
re-queues itself and then exits in case another device is waiting for the serializer
lock.

Additionally, the Fusion stack can make calls to olicom_start() (to queue a new packet
for transmission), olicom_ioctl(), and olicom_updown() in response to socket calls from
the Angel Ethernet driver or as a result of packet processing.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-101

Angel
13-102 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Appendix A
FlexLM License Manager

This appendix describes the use made by ARM Limited of FlexLM license management
software. You need to read this appendix and use FlexLM software only if you intend
to run any ARM licensed software, which at present is confined to UNIX-based
products.

This appendix contains the following sections:

• About license management on page A-2

• Obtaining your license file on page A-4

• What to do with your license file on page A-5

• Starting the server software on page A-6

• Running your licensed software on page A-7

• Customizing your license file on page A-9

• Finding a license on page A-11

• Using FlexLM with more than one product on page A-12

• FlexLM license management utilities on page A-14

• Frequently asked questions about licensing on page A-18.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. A-1

FlexLM License Manager
A.1 About license management

FlexLM is a software licensing package that controls the usage of licensed software
applications. Licensing is controlled by means of a license file that describes the
software you may use and how many copies of it you may run concurrently.

You must obtain a valid license file from ARM Limited before you can run licensed
ARM software. Obtaining your license file on page A-4 describes how to apply for your
license file.

You must specify one or more computers to act as a license server, on which license
management software runs. Any computer running FlexLM licensed software must
either be a license server or have access to a license server.

ARM Debugger for UNIX (ADU) is one example of software that requires a license
server before you can run it.

The license server can be any one of:

• your local machine

• a remote machine

• several remote machines.

If you choose to use more than one, you must use three license server machines. These
communicate with one another, and co-ordinate the licensing. The advantage of this is
that if one of the license server machines fails to operate correctly the other two will
continue to allow licensed software to be used. This arrangement is known as a ‘3-server
redundant set’.

Remote license servers do not need to be running on the same hardware platform as the
software they are controlling.

A.1.1 Installing FlexLM software

License management software for various platforms is supplied on the CD-ROM of any
ARM licensed software (at present confined to UNIX-based products).

The following list shows the platforms supported, and the subdirectory containing the
appropriate software for each:

Solaris 2.5 flexlm/solaris

SunOS 4.1.x flexlm/sunos

HP-UX 9.x flexlm/hpux

Each directory contains the software in TAR file format, in a file called flexlm.tar.
A-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager
Before applying for a license file you must install the FlexLM license management
software, as follows:

1. Copy the TAR file from the appropriate directory onto each license server
machine.

2. On each license server machine, unTAR the file using the command:

tar xvf flexlm.tar

3. When you have unTARed the software you need to run the makelinks.sh script.
Change into the directory containing the unTARed software and type:

./makelinks.sh

4. This creates numerous hard links, one of which is lmhostid.

You need lmhostid when you complete your license request form.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. A-3

FlexLM License Manager
A.2 Obtaining your license file

The installation directory contains a file called license_request_form.txt

To obtain your license file:

1. Open this text file with the editor of your choice.

2. Complete the form, following any instructions that are in the file. You must decide
whether your license server is to be your local machine, a remote machine, or
three machines:

• To use your local machine machine as the license server, fill in the license
request form with the hostname and hostID of your machine.

• To use a remote machine as the license server, fill in the license request
form with the hostname and hostID of the remote machine. Sometimes an
organization will designate one machine as the machine to run all license
servers, so find out if this is what happens in your company.

• To specify three separate machines as license servers, fill in the hostname
and hostIDs of all three machines on the license request form.

3. Return the form to ARM Limited, as follows:

• if you have email available, paste the completed form into your email
composition tool and send it using the email address contained within the
template

• if you do not have email available, print out the completed form and send a
facsimile using the Fax number contained within the template.

4. A license file will be returned to you shortly.
A-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager
A.3 What to do with your license file

Make a copy of the license file on each of your license servers, as follows:

1. If you receive the license file by email you can either copy the license file section
out of the message, or save the entire message to disk. The license server ignores
all lines except those start with SERVER, VENDOR, or FEATURE.

2. If you received the license file by fax you will need to create a text file and key in
the information, using the editor of your choice. When data entry is complete, you
can use the lmchecksum utility to check that you typed everything in correctly.
Instructions for using lmchecksum are given under FlexLM license management
utilities on page A-14, later in this appendix.

3. You may save the license file in any directory on each license server. It should,
however, be on a locally mounted file system.

4. You usually need to edit the VENDOR line of the license file on each license
server. The default license file sent you you contains:

VENDOR armlmd /opt/arm/flexlm/solaris

Change the text /opt/arm/flexlm/solaris so that it specifies the directory that
holds your license server software. Specifically, the directory that holds file
armlmd.

5. Remember to do this on each license server.

Full instructions for editing the license file can be found under Customizing your license
file on page A-9, later in this appendix.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. A-5

FlexLM License Manager
A.4 Starting the server software

To start the license server software on each machine, go to the directory containing the
license server software and type:

nohup lmgrd -c license_file_name -l logile_name &

where:

license_file_name

specifies the fully qualified pathname of the license file

logfile_name

specifies the fully qualifed pathname to a log file.

When you have started the license server, you can type:

cat logile_name

to see the output from the license server.
A-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager
A.5 Running your licensed software

Before you run your licensed software for the first time, you must set the environment
variable ARMLMD_LICENSE_FILE to an appropriate value.

A.5.1 Setting the environment variable ARMLMD_LICENSE_FILE

The required value depends on your circumstances, as follows:

You have only one license server (option 1)

Assuming your license server is called enterprise, goto the machine where the ARM
Debugger is installed and type:

setenv ARMLMD_LICENSE_FILE @enterprise

You have only one license server (option 2)

Assuming your license file is called arm-debugger.lic and is in the directory
/home/licenses, type:

setenv ARMLMD_LICENSE_FILE /home/licenses

You have only one license server and specified a TCP port (option 1)

Assuming your license server is called enterprise and you have specified TCP port 7117
in your license file, goto the machine where your licensed software is installed and type:

setenv ARMLMD_LICENSE_FILE 7117@enterprise

You have only one license server and specified a TCP port (option 2)

Assuming your license file is called mylicense.txt and is in the directory
/local/home/license, type:

setenv ARMLMD_LICENSE_FILE /local/home/license/mylicense.txt

You have 3 license servers

Assuming your license file is called license.lic and is stored in the local directory
/opt/arm/licenses, type either one of the following two commands:

setenv ARMLMD_LICENSE_FILE /opt/arm/licenses

setenv ARMLMD_LICENSE_FILE /opt/arm/licenses/license.lic
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. A-7

FlexLM License Manager
A.5.2 Running your application

When you have set the environment variable ARMLMD_LICENSE_FILE to a suitable
value, as described above, you can run your licensed software.
A-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager
A.6 Customizing your license file

Your license file contains information similar to that shown in one of the following
examples:

Example A-1 : Typical 1-server license file

SERVER jupiter 80826d02
VENDOR armlmd /opt/arm/flexlm/solaris
FEATURE adu armlmd 1.000 01-jan-1999 4 5B7E20C1A2338616F456 ck=42

Example A-2 : Typical 3-server license file

SERVER jupiter 80826d02 7117
SERVER saturn 80af8111 7117
SERVER uranus 81873622 7117
VENDOR armlmd /opt/arm/flexlm/solaris
FEATURE adu armlmd 1.000 01-jan-1999 4 5B7E20C1A2338616F456 ck=42

Although you must not change Feature lines, you may need to change the SERVER and
VENDOR lines in your license file.

A.6.1 Server and Vendor lines

You may need to change SERVER and VENDOR lines for the following reasons:

Hostname on Server line

On occasion you may need to change the hostname of a license server. In
such a case you must change the hostname in all copies of the license file
that refer to that server.

If you supplied three hostnames on the license request form then there are
three server lines in the license file.

TCP port on Server line

It is possible to specify on a SERVER line the TCP port that the license
manager uses to communicate with the licensed software. If not specified
the license manager will use the next available port in the range
27000-27009. When connecting to a server, an application tries all the
ports in the range 27000-27009.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. A-9

FlexLM License Manager
A port number must be specified on each SERVER line if a 3-server
license is in use.

Daemon path on Vendor line

On a VENDOR line you may need to change the second parameter, the
pathname of the vendor daemon executable. This pathname must point to
the directory containing file armlmd.

If the license server was running on a SunOS machine then the Vendor
line could be similar to:

VENDOR armlmd /opt/arm/flexlm/sunos

A.6.2 Feature lines

Feature lines describe the licenses that are available, and must not be altered. If they are
altered the license is invalidated, and the feature no longer operates.

Each Feature line specifies the feature name, the vendor daemon name, the feature
version, the expiration date of the license (a year of 0 means the license never expires),
the number of concurrent licenses available, and the license key.
A-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager
A.7 Finding a license

Figure A-1 shows the rules followed by licensed software when it searches for a license
authorizing it to run:

Figure A-1 Finding a license
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. A-11

FlexLM License Manager
A.8 Using FlexLM with more than one product

FlexLM is a widely used product for license management, so it is possible that you have
more than one product using FlexLM.

The latest version of the FlexLM software will always work with vendor daemons built
using previous versions. Consequently you must always use the latest version of lmgrd
and the FlexLM utilities.

Note
 The FlexLM software currently shipped by ARM is FlexLM version 6.0.

If you have multiple products using FlexLM you may encounter two situations:

• all the products use the same license server

• all the products use different license servers.

A.8.1 All products use the same server

If the license files for every product contain exactly the same Server lines, ignoring
different TCP port numbers, then there are two possible solutions:

1. Start a separate lmgrd daemon for each license file. There are no real
disadvantages with this approach, as the separate daemons consume very little
system resources or CPU time.

2. Combine the the license files together. Take the the SERVER line from one of the
license files then add all of the other lines, that is the DAEMON/VENDOR and
FEATURE lines, to create a new license file.

You will need to store the new combined license file in

/use/local/flexlm/licenses/license.lic

or give its location via the LM_LICENSE_FILE environment variable.

Now start lmgrd using the new license file. Remember that you must use the latest
version of lmgrd that is used by any of the products. You can use the command
lmgrd -v or lmver lmgrd to find out the version of each lmgrd.

If the version of lmgrd is earlier than any of the vendor daemons, you see error
reports such as: Vendor daemon cannot talk to lmgrd (invalid data returned
from license server)

Leave a symbolic link to the new license file in all the locations which held the
original license files.
A-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager
A.8.2 All products use different license servers

If all the products use different hosts to run the license managers, then you must keep
separate license files for each product.

Set the LM_LICENSE_FILE environment variable to point to the locations of all the license
files, for example:

setenv LM_LICENSE_FILE license_file1:license_file2: ...:license_filen

Note
 FlexLM version 6.0 allows each software vendor to have an individual environment
variable for finding the license file for their products. The environment variable name
is xxx_LICENSE_FILE where xxx is the name of the vendor license daemon. In the case of
software from ARM Limited the vendor daemon is called ARMLMD, therefore the
environment variable for ARM software is ARMLMD_LICENSE_FILE. FlexLM version 6.0
vendor daemons always look for the vendor specific environment variable, ahead of the
LM_LICENSE_FILE environment variable.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. A-13

FlexLM License Manager
A.9 FlexLM license management utilities

The flexlm directory on your product CD-ROM contains subdirectories holding the
license manager utilities and the ARM vendor daemon (armlmd) for various platforms.

Installing FlexLM software on page A-2 describes how to install the software on your
(one or three) license server machines.

The installation process creates a series of hard links to make your usage of the license
management tools easier. Specifically it allows you to execute the utilities by using their
short names, for example you can type lmver instead of lmutil lmver.

All the license tools are actually contained within the single executable lmutil, the
behavior of which is determined by the value of its argv[0].

A.9.1 License administration tools

The lmdown, lmremove, and lmreread commands are privileged. If you started lmgrd with
the -p 2 switch then you must be a license administrator to run any of these three
utilities.

A license administrator is a member of the UNIX lmadmin group or, if that group does
not exist, a member of group 0.

In addition, lmgrd -x can disable lmdown and/or lmremove.

All utilities take the following arguments:

-v print version and exit.

-c license_file

operate on a specific license file.

lmchecksum

lmchecksum [-k] [-c license_file_name]

The lmchecksum utility performs a checksum of a license file. Use it to check for data
entry errors in your license file. lmcksum prints a line-by-line checksum for the file as
well as an overall file checksum. If the license file contains cksum=nn attributes, the bad
lines are indicated automatically.

This utility is particularly useful if you received your license by Fax and typed the file,
because of the possibility of data entry errors.

Use the -k switch to force the checksum to be case-sensitive.
A-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager
By default lmchecksum checks the contents of license.dat in the current directory. Use
the -c switch to check a different file.

lmdiag

lmdiag [-c license_file_list] [-n] [feature]

This utility allows you to check for problems, when you cannot check out a license.

-c license_file_list

Path to file(s) to check. If more than one file, use a colon separator.

-n Run in non-interactive mode.

feature Diagnose this feature only. If you do not specify a feature, all lines of the
license file are checked.

The lmdiag program first tries to check the feature. If this fails, the reason for failure is
printed.

If the check failed because lmdiag could not connect to the license server then you can
run extended connection diagnostics. These diagnostics try to check the validity of the
port number in the license file. lmdiag displays the port numbers of all ports that are
listening, and indicates which ones are lmgrd processes. If lmdiag finds the armlmd
daemon for the for feature being tested, it displays the correct port number to use in the
license file.

lmdown

lmdown [-c license_file_list] [-vendor name] [-q]

The program allows you to shut down gracefully all license daemons on all nodes (both
lmgrd and all vendor daemons).

-c license_file_list

Path to file(s) to be shut down. If more than one file, use a colon separator.

-vendor name

If you specify a vendor name, only that vendor daemon is shut down, and
lmgrd is not shut down.

-q Do not issue the Are you sure? prompt.

You should restrict the execution of lmdown to license administrators, by starting lmgrd
with the -p -2 switch, as shutting down the server causes loss of licenses.

To disable lmdown, the license administrator can use lmgrd -x lmdown.

To stop and restart a single vendor daemon, use lmdown -vendor name, then lmreread
-vendor name.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. A-15

FlexLM License Manager
lmhostid

lmhostid

This program returns the correct host ID on any computer supported by FlexLM.

lmremove

lmremove [-c license_file_list] feature user host display

This utility allows you to remove a single user license for a specific feature. For
example, when a user is running the software and the host crashes, the user license is
sometimes left checked out and unavailable to other users. lmremove frees the license and
makes it available to other users.

-c license_file_name

The full pathname of the license file to be used. If this is omitted the
LM_LICENSE_FILE environment variable is used instead.

feature The name of the feature the user has checked out.

user The name of the user.

host The name of the host the user was logged into.

display The name of the display where the user was working.

You can obtain the user, host, and display information from the output of lmstat -a.

If the application is active when its license is removed by lmremove, it checks out the
license again at the next application heartbeat.

lmreread

lmreread [-vendor name] [-c license_file_list]

This utility causes the license daemon to reread the license file, and start any new vendor
daemons that have been added. All the existing daemons are signalled to reread the
license file to check for any changes in their licensing information.

-vendor name

If you specify a vendor name, only that vendor daemon rereads the
license file. If the vendor daemon is not running, lmgrd starts it.

To disable lmreread, the license administrator can use lmgrd -x lmreread.

lmreread does not cause server host names or port numbers to be reread from the license
file. To make any changes to those items effective, you must restart lmgrd.

To stop and restart a single vendor daemon, use lmdown -vendor name, then lmreread
-vendor name.
A-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager
lmstat

lmstat [-a] [-A] [-c license_file_list] [-f [feature]] [-i [feature]] [-s

[server]] [-S [daemon]] [-t value]

This utility helps you to monitor the status of all network licensing activities, including:

• which daemons are running

• users of individual features

• users of features served by specific daemons.

The optional arguments are:

-a Displays all information.

-A Lists all active licenses.

-c license_file_list

Uses all the license files listed.

-f [feature]

List users of a specific feature.

-i [feature]

Print information about the named feature, or all features if feature is
ommitted.

-s [server]

Display status of server node(s).

-S [daemon]

List all users and features of a specific daemon.

-t value Set the lmstat timeout to value.

lmver

lmver [filename]

This utility reports the FlexLM version of a specific library or binary file.
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. A-17

FlexLM License Manager
A.10 Frequently asked questions about licensing

Q Why can I not find the LMHOSTID program?

A You have to run the makelinks.sh script that is in the directory containing
the FlexLM software. This script creates a series of links to the lmutil
program, one of which is for lmhostid.

Q How does an application find its license file?

A An application and the license server software itself looks in the
following places for license files:

$ARMLMD_LICENSE_FILE
$LM_LICENSE_FILE
/opt/arm/licenses
/usr/local/flexlm/license.dat

The $ARMLMD_LICENSE_FILE and $LM_LICENSE_FILE environment variables
can each contain multiple license file names, separated by colons. In
addition to full pathnames to files, they can hold directory names. If the
license software finds a directory name it will search that directory
looking for files that end with .lic and treat all such files as license files.

/opt/arm/licenses is the default location that ARM applications search
for their license file.

Q Do I need to have the license file on my client machine?

A Sometimes. You need to have the license file on your client machines
only when you are using the three-license server option.

In this situation you need to point the ARMLMD_LICENSE_FILE
environment variable at the local copy of the license file. Ensure that the
hostnames and TCP port numbers in the local license file are the same as
in the license server copies.

On a single-license server you can normally set
ARMLMD_LICENSE_FILE to contain the hostname of the server.
A-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Index
A
Absolute maps 5-46
Access protection, in ADW/ADU 3-73
Accessing

host peripherals 3-5
online help 2-2, 3-2

ADD instruction 5-53
Adding 64-bit integers 6-6
Addresses

loading into registers 5-27
real-time 3-5

Addressing range 5-3
ADP 13-73

interrupt source for 13-61
adp.h 13-97
ADP_Stopped_ApplicationExit 13-97
ADR pseudo-instruction 5-27, 5-53
ADR Thumb pseudo-instruction 5-27
ADRL pseudo-instruction 5-27, 5-53
ADW/ADU

adding watches 3-70
adw.exe 3-62

adw_cpp.dll library 3-62
and Angel downloading 13-67
buttons 3-62
changing variables 3-70
class view 3-63
closing down 3-10
debug table formats 3-74
expression evaluation guidelines

3-71
expressions 3-70
formatting watch items 3-69
menus 3-62
starting 3-9
viewing code 3-64
watch window 3-66
watches, recalculating 3-70

Agent, debug 3-6
ALIGN directive 5-51
Alignment 5-51
ALU status flags 5-17
Analysis of processor time 3-43
:AND: operator 5-51
Angel 3-5, 3-6

and ARMulator 13-15, 13-68
and Ethernet 13-27
and exception handling 13-20
and RTOSes 13-19
APM project, modifying 13-50
Board setup 13-61
Boot channel 13-73
boot support 13-74
breakpoint restrictions 13-32
breakpoint setting 13-22
buffer lifecycle 13-75
buffer management 13-74
build directories 13-44
building 13-24, 13-45
C library support 13-21
C library support SWIs 13-79
channel restrictions 13-74
channel viewers 3-49
channels layer 13-74
channels packet format 13-76
communications layers 13-73
communications support 13-4,

13-25
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-1

Index
component summary 13-7
configuring 3-59, 13-69
configuring run address 13-70
configuring serial ports 13-61
configuring SWI numbers 13-72
context switching 13-38
ControlRx 13-65
ControlTx 13-65
DEBUG 13-50
debug agent interaction SWIs 13-95
debug method 13-61
Debug Monitor (ADM) 3-6
Debug Protocol (ADP) 3-6
debug support 13-3
debugger functions 13-31
debugging 13-47, 13-68
device configuration 13-46
device driver layer 13-77
downloading 13-27, 13-46, 13-63
downloading new versions of 13-67
enabling assertions 13-21
Enter SVC mode 13-95
Ethernet support 13-50, 13-99
exception handlers 13-70
exception handling 13-5
exception vectors 13-9
full Angel 13-11
hardware timers 13-66
heartbeat mechanism 13-77
initialization 13-29
initialization code 13-64
interrupt handlers 13-64, 13-65,

13-100
interrupt table 13-20
logging 13-68
makefile 13-45, 13-47
memory requirements 13-9
minimal Angel 13-13, 13-24
minimal Angel initialization 13-30
planning development 13-17
polled devices 13-66
porting 13-43
prebuilt images 13-11
processor exception vectors 13-71
profiling 13-70
programming restrictions 13-18
raw serial drivers 13-25
Report Exception SWI 13-97

reporting memory and processor
status 13-31

ring buffers 13-64
ROADDR 13-49
RWADDR 13-50
semihosting support 13-3, 13-16,

13-18
semihosting SWIs 13-79
setting breakpoints 13-31
setting debug method 13-61
stacks 13-10, 13-39
stacks, setting up 13-62
supervisor mode 13-20
supervisor stack 13-18
target-specific files 13-57
task management 13-5, 13-30,

13-33, 13-39, 13-79
task management functions 13-35
task priorities 13-33
task queue 13-39
Task Queue Items 13-38
TDCC 13-26
templates for porting 13-45
Thumb debug communications

channel 13-26
timers 13-70
undefined instruction 13-18
writing device drivers 13-63, 13-64

angel.c ARMulator model 12-4
angel.hex 13-12
angel.m32 13-12
angel.rom 13-11, 13-70
Angel_BlockApplication() 13-35,

13-36
Angel_DeviceControlFn() 13-63
Angel_DeviceYield() 13-66
Angel_NewTask() 13-35, 13-39
Angel_NextTask() 13-35, 13-36,

13-42
Angel_QueueCallback() 13-35
Angel_SelectNextTask() 13-36, 13-39,

13-42
Angel_SerialiseTask() 13-34–13-35,

13-38, 13-39, 13-41, 13-42
Angel_Signal() 13-35, 13-37
angel_SWIreason_EnterSVC 13-95
Angel_SWIreason_ReportException

13-97

angel_SWIreason_ReportException
13-97

Angel_TaskID() 13-35, 13-37
angel_TQ_Pool 13-39
Angel_Wait() 13-35, 13-37, 13-38
Angel_Yield() 13-35, 13-36, 13-38,

13-66, 13-100
ANSI C 8-19

header files 8-19
APCS

defined 6-3
interworking ARM and Thumb 7-2,

7-12
register usage 6-10

APM
Angel project 13-45, 13-50
building C++ projects 2-52
closing down 2-4
creating C++ projects 2-53
desktop 2-15
generating source dependencies 2-9
interworking ARM and Thumb

7-23
overview 2-2
partitions 2-24
preferences 2-31
source files 2-34
starting and stopping 2-4
template location 2-52
templates 2-41
using 2-4
using templates 2-53
viewing files 2-37

Application heap, and Angel 13-62
AREA directive 5-11, 5-13
AREA directive (literal pools) 5-25
Arguments, command line 3-46
ARM code

interworking template 2-52
ARM core 3-5
ARM Debuggers for Windows and

UNIX, see ADW/ADU
ARM licensed software A-1
ARM processors 3-5
ARM Project Manager, see APM
ARM Software Development Toolkit

(SDT) 3-1
armasm 5-10
armcpp 2-53
Index-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Index
armfast.c ARMulator model 12-3,
12-20

armflat.c ARMulator model 12-3,
12-19

ARMLMD_LICENSE_FILE
environment variable A-7

armmap.c ARMulator model 12-4,
12-21

armpie.c ARMulator model 12-4
armprof, see profiler
armsd

and Angel downloading 13-67
map files 11-9

armsd.map file 11-9, 12-28
ARMulator 3-5, 3-6

overview 12-2
and Angel 13-68
angel model 12-25
armsd.map file 12-28
armul.cnf file 12-28, 12-34
ARM810 page table flags 12-15
ARM940T page table flags 12-15
clock frequency 12-21
configuration file, armul.cnf 12-6
configuring 3-57

tracer 12-6
under RDI 12-27

controlling using the debugger
12-27

dummy system coprocessor model
12-24

emulation speed 12-13, 12-20
example 12-29, 12-34
flushing output to the tracer 12-6
functions, see ARMulator functions
initializing

MMU 12-15
tracer 12-6

instruction tracing 11-26
internal SWIs 12-26
linking tracing code 12-6
memory watchpoints 12-14
model stub exports 12-5
models, see ARMulator models
page tables 12-15
profiler 12-12
profiling 11-26
quitting from the tracer 12-6
real time simulation 11-8

rebuilding with a new model 12-32
regular calls to the debugger 12-13
responsiveness 12-13
sample models

see also ARMulator models
basic 12-3
coprocessor 12-4
memory 12-3
operating system 12-4

SA-110 page table flags 12-15
SWIs 12-26
tracer 12-6
user-configurable memory system

12-21
windows hourglass 12-13
with ADW 12-13
yieding control to ADW 12-13

ARMulator functions
Tracer_Close 12-6
Tracer_Dispatch 12-6
Tracer_Flush 12-6
Tracer_Open 12-6

ARMulator models
angel.c 12-4
armfast.c 12-3
armflat.c 12-3
armmap.c 12-4
armpie.c 12-4
bytelane.c 12-4
dummymmu.c 12-4
endianism 12-31
example.c 12-4, 12-29, 12-32,

12-34
noos.c 12-4
pagetab.c 12-3
profiler.c 12-3
stubs 12-5
tracer.c 12-3, 12-4, 12-6
trickbox.c 12-4
validate.c 12-4
winglass.c 12-3

armul.cnf file 12-6, 12-28, 12-34
ARM740T protection unit

page table model 12-17
ARM940T protection unit

page table model 12-17
arm.h 13-59, 13-72, 13-79
asd in ADW/ADU 3-75
ASIC 3-5

Assembler
inline, armasm differences 8-6
inline, see Inline assemblers
mode changing 7-5

Assembly language
Absolute maps 5-46
alignment 5-51
and C++ 8-22
areas 5-13
base register 5-47
block copy 5-39
boolean constants 5-12
calling from C 8-19
case rules 5-10
code size 5-56
comments 5-11
condition code suffixes 5-18
conditional execution 5-17
constants 5-12
data structures 5-46
directives, see Directives, assembly
entry point 5-14
examples 5-2, 5-13, 5-15, 5-19,

5-26, 5-28, 5-29, 5-31, 5-32,
5-39, 5-44, 5-56, 5-58

examples (Thumb) 5-16, 5-21,
5-30, 5-33, 5-41

execution speed 5-56
immediate constants (ARM) 5-22
inline, armasm differences 8-6
instructions, see Instructions,

assembly
interrupt handlers 9-27
interworking ARM and Thumb 7-4,

7-19
jump tables 5-29
labels 5-11
line format 5-10
line length 5-10
listing from debugger 4-3, 4-9
literal pools 5-25
loading addresses 5-27
loading constants 5-22
local labels 5-11
macros 5-43
maintenance 5-51
maps 5-46
multiple register transfers 5-34

see also STM, LDM
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-3

Index
nesting subroutines 5-37
numeric constants 5-12
padding 5-51
pc 5-4, 5-9, 5-11, 5-35, 5-37, 5-38,

5-41
program counter 5-4, 5-9, 5-11,

5-35, 5-37, 5-38, 5-41
program-relative 5-11
program-relative maps 5-49
pseudo-instructions, see

Pseudo-instructions, assembly
register-based

maps 5-48
register-relative address 5-11
relative maps 5-47
speed 5-56
stacks 5-36
string constants 5-12
subroutine return 5-5
subroutines 5-15
symbols 5-53
Thumb block copy 5-41

assembly language
using the APCS 6-2

ASSERT directive 5-50, 5-60
Assertions, and Angel debugging

13-21
ASSERT_ENABLED macro 13-21

B
B instruction (Thumb) 5-17
Backtrace window 3-18, 3-33
Banked registers 9-3
banner.h 13-57
Barrel shifter 5-7, 5-17
Barrel shifter (Thumb) 5-9
Base classes

in ADW/ADU 3-67
in ADW/ADU expressions 3-72
in mixed languages 8-18, 8-22

:BASE: operator 5-53
Base register 5-47
Benchmarks 11-2, 11-6
Bit 0, use in BX instruction 7-4
BL instruction 5-15, 8-6
BL instruction (Thumb) 5-17
Blank templates 2-41

Block copy, assembly language 5-39
Block copy, (Thumb) 5-41
Boolean constants, assembly language

5-12
boot.s initialization file 10-24
Branch instructions 5-6

scatter loading 10-30
Branch instructions (Thumb) 5-8
Breakpoints 4-6

and Angel 13-31
Angel restrictions 13-32
data-dependent 3-5
MultiICE and EmbeddedICE 13-32
setting in ADW/ADU 3-27
setting, editing and deleting 3-26
simple 3-27
simple and complex 3-26
using 4-3
window 3-18, 3-26

Build log 2-12
Build step 2-11

patterns 2-39, 2-47
Building

an interworking image 2-52
C++ projects in APM 2-52
project output 2-9
variants of projects 2-11

BX instruction 5-3, 5-6, 5-8, 5-16, 7-4,
8-8

bit 0 usage 7-4
long range branching 7-5
non-Thumb processors 7-5
without state change 7-5

bytelane.c ARMulator model 12-4

C
C

calling assembler 8-19
combining with assembler 6-2
compiling 4-2
linkage 8-17
listing source 4-3, 4-9
using header files from C++ 8-15

C global variables from assembly
language 8-14

C library
and Angel 13-21

Angel SWIs 13-79
Call graph (profiling) 11-19, 11-20
Calling

assembler from C++ 8-17
C from assembly language 8-17
C from C++ 8-17, 8-19
C++ from assembler 8-22
C++ from assembly language 8-17
language conventions 8-17

Calling SWIs 9-19
Case rules, assembly 5-10
Chaining exception handlers 9-37

and Angel 13-20
Changing debugger variables 3-12
Channel viewers, activating 3-49
Channels

Angel channel restrictions 13-74
Characters, special 3-42
Class view window 3-63
Clock speeds 11-13
Closing

ADW/ADU 3-10
APM 2-4

Code
ARM/Thumb 3-40
density and interworking 7-2
size 5-19, 5-56
speed and setjmp() 11-18

Code size
Dhrystone example 11-4
measuring 11-3
reducing 11-16
reducing with short integers 11-17

CODE16 directive 5-16, 7-4
CODE32 directive 5-16, 7-4
Collapsing project view 2-17
Command line

arguments 3-46
debugger instructions 3-46

Command window 3-16
Command-line

examples 4-2
tools 4-1

Comments
assembly language 5-11
inline assemblers 8-3

Communications
Angel communications architecture

13-73
Index-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Index
Compiler options
latevia 2-23
-MD- 2-9
reading from a file 2-23
via 2-23

Compiler, using 4-2
Complex

breakpoint 3-26
watchpoint 3-29

Concepts and terminology 3-7
Condition code suffixes 5-18
Conditional execution (Thumb) 5-8,

5-9
Conditional execution, assembly 5-17,

5-19
Configuring

Angel 13-69
Angel run address 13-70
ARMulator 3-57
EmbeddedICE 3-60
Remote_A 3-59
tools in APM 2-20

Console window 3-15
Constants, assembly 5-12
Constants, inline assemblers 8-5
Context switch 9-30

and Angel 13-38
Controlling use of licensed software

A-2
ControlRx 13-63, 13-65
ControlTx 13-63, 13-65
Converting project format 2-30
Coprocessors

ARMulator models 12-3, 12-4,
12-24

undefined instruction handlers 9-33
CPSR 5-5, 5-17, 9-5

interworking ARM and Thumb 7-2
Crash Barrier 13-68
Current program status register 5-5,

5-17
Customizing license file A-9
Cycle counts

Dhrystone example 11-6
displaying 11-6

C++
asm 8-2
calling conventions 8-18
creating APM projects 2-53

menu 3-62
string literal 8-2

C++ data types
in mixed languages 8-18

D
Data abort

exception 9-2
handler 9-35, 9-41
LDM 9-35
LDR 9-35
returning from 9-8
STM 9-35
STR 9-35
SWP 9-35

DATA directive 7-11
Data maps, assembly 5-46
Data processing instructions 5-6
Data processing instructions (Thumb)

5-8
Data size, measuring 11-3
Data structure, assembly 5-46
Data types 8-18
DC_INIT 13-64
DC_RECEIVE_MODE 13-65
DC_RESET 13-64
DC_RX_PACKET_FLOW 13-65
DC_SET_PARAMS 13-65
Debug agent 3-6
Debug interaction SWIs 13-95
Debugger

breakpoints 4-6
closing down 3-10
command line instructions 3-46
debugger variables 4-9
executing a program 4-8
extra tools with C++ 3-63
.ini file 4-6
internals window 3-18
introduction to 3-2
program variables 4-9
see also ADW/ADU
single stepping 4-8
starting 3-9
table formats in ADW/ADU 3-74
using 4-2, 4-6
watchpoints 4-7

Debugger variables
viewing and changing 3-12

Debuggers
downloading Angel 13-67

Debugging
Angel 13-68
Angel assertions 13-21

decaof 2-38
decaxf 2-38
Deleting breakpoints 3-26
Demon 1-6
Destktop, APM 2-15
devclnt.c 13-100
devclnt.h 13-63, 13-64
devconf.h 13-31, 13-46, 13-59–13-61,

13-69–13-71, 13-93
devdriv.h 13-60, 13-63
Device Data Control 13-62
Device driver layer (Angel) 13-77
Device drivers

Angel 13-63
DeviceIdent structure 13-63
devices.c 13-57, 13-63
devices.h 13-64
Dhrystone

code size 11-4
example 11-4
map files 11-13

Directives, assembler
ENTRY 10-5

Directives, assembly language
ALIGN 5-51
AREA 5-11, 5-13
AREA (literal pools) 5-25
ASSERT 5-50, 5-60
CODE16 5-16, 7-4
CODE32 5-16, 7-4
DATA 7-11
END 5-14
END (literal pools) 5-25
ENTRY 5-14
IMPORT 8-14
MACRO 5-43
MAP 5-46
ROUT 5-11
5-46

Disassembly
mode 3-40
window 3-21
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-5

Index
Display formats 3-38
Download agent area 13-63
dummymmu.c ARMulator model

12-4, 12-24
DWARF 3-74

DWARF1 limitations 3-75

E
Editing

breakpoints 3-26
project source files 2-18

ELF
converting to binary ROM formats

10-32
file format 1-6

Embedded C library, ROM applications
10-19

EmbeddedICE 3-5, 3-6
configuring 3-60

END directive 5-14
END directive (literal pools) 5-25
ENTRY directive 5-14
Entry point, assembly 5-14
Environment variable

ARMLMD_LICENSE_FILE A-7
errno, C library variable 13-91
Ethernet

Angel support 13-27, 13-50
Fusion IP stack for Angel 13-99

Evaluating expressions 3-70
Examining

memory 3-12, 3-39
search paths 3-36
source files 3-37
variables 3-37

example.c ARMulator model 12-4
Exception handlers

and Angel 13-20
chaining 9-37
data abort 9-35, 9-41
extending 9-37
FIQ 9-41
installing 9-9
installing from C 9-11
installing on reset 9-9
interrupt 9-22
IRQ 9-41

nested 9-22
prefetch abort 9-34, 9-41
reentrant 9-22
reset 9-32
returning from 9-5
subroutines in 9-44
SWI 9-14, 9-15, 9-17, 9-41
Thumb 9-39
undefined instruction 9-33, 9-41

Exceptions 9-2
and Angel 13-20, 13-97
data abort 9-2, 9-8
entering 9-5
FIQ 9-2, 9-7
initialization code for ROM images

10-5
installing handlers 9-9
IRQ 9-2, 9-7
leaving 9-5
prefetch abort 9-2, 9-7
priorities 9-3
reporting in Angel 13-97
reset 9-2
response by processors 9-5
returning from 9-7, 9-41
SWI 9-2, 9-7
SWI handlers 9-14, 9-15, 9-17
undefined instruction 9-2, 9-7
use of modes 9-3
use of registers 9-3
vector table 9-3, 9-9

Executable image
APM template 2-52

Execution
profile 11-19
speed 5-19, 5-56, 7-2, 7-17, 9-22
stopping 3-26, 3-34
window 3-15

Exiting debugger 3-10
Expanding project view 2-17
Expressions

evaluating, in ADW/ADU 3-70
formatting watches 3-69
regular 3-42
setting watches in ADW/ADU 3-66
window 3-21

Extending exception handlers 9-37
extern "C" 8-15, 8-17, 8-19
E5 13-68

F
Fault address register 9-36
FEATURE line in license file A-9
File formats

Intel 32-bit hex 10-33
Intellec hex 10-33
Motorola 32-bit hex 10-33

Files
adding to project 2-8
armsd.map 11-9, 12-28
armul.cnf 12-6, 12-28, 12-34
boot.s 10-24
init.s 10-12
memory map 3-55
models.h 12-5
profiler.c 12-12
project 2-4

Finding a license file A-11
FIQ 9-2, 9-22

and Angel 13-9, 13-19
handler 9-7, 9-22, 9-41
registers 9-22

Flash download 3-48, 13-67
and Angel 13-27

Flat profile 11-19
FlexLM license management A-2

installing A-2
multiple licenses A-12
versions A-12

Force building a project 2-11
Formatting displayed variables 3-38
FPA

undefined instruction handlers 9-33
Functions

call graph count 11-20
names window 3-22, 3-43
stepping in to 3-34
stepping out of 3-34

Fusion IP stack 13-99

G
GETSOURCE macro 13-42, 13-46,

13-57, 13-59, 13-100
Global hierarchy, in ADW/ADU 3-63
Global memory map file 3-55
Globals window 3-22
Index-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Index
H
Halfwords

in load and store instructions 5-6
reading and writing in ADW/ADU

3-47
to reduce code size 11-17

HANDLE_INTERRUPTS_ON_FIQ
13-41, 13-62

HANDLE_INTERRUPTS_ON_IRQ
13-61

Heartbeats (Angel) 13-77
Help, online 2-2, 3-2
Hierarchy, project 2-25
High-level symbols 3-43
Host peripherals, accessing 3-5

I
Illegal address 9-2
Image

reducing size of 11-16
reloading 3-11
stepping through 3-34

Immediate constants (ARM) 5-22
implicit this 8-17
IMPORT directive 8-14
:INDEX: operator 5-53
Indicators, @ and ^ 3-43
Indirection 3-39
Initialization

Angel 13-64
INITMMU macro 13-58
INITTIMER macro 13-58, 13-70
init.s initialization file 10-12
Inline assemblers 8-2

accessing structures 8-14
ADR pseudo-instruction 8-6
ADRL pseudo-instruction 8-6
ALU flags 8-5, 8-8
BL instruction 8-6
branches 8-3
BX instruction 8-8
C global variables 8-14
C variables 8-4, 8-8
commas 8-8
comments 8-3
complex expressions 8-4

constants 8-5
corrupted registers 8-3
CPSR 8-5
C, C++ expressions 8-4, 8-8
DC directives 8-6
examples 8-10
floating point instructions 8-8
instruction expansion 8-5
interrupts 8-10
invoking 8-2
labels 8-3
LDM instruction 8-8
long multiply 8-11
MUL instruction 8-5
multiple lines 8-3
operand expressions 8-4
physical registers 8-4, 8-8
register corruption 8-6, 8-8
restrictions 8-8
saving registers 8-9
sign extension 8-4
stacking registers 8-9
STM instruction 8-8
storage declaration 8-6
subroutine parameters 8-6
SWI instruction 8-6
writing to pc 8-2, 8-4
8-5

Inline strings 11-3
Installing

FlexLM A-2
Instruction expansion 8-5
Instruction set

ARM 5-6
Thumb 5-8

Instruction tracing 11-26
Instructions, assembly language

ADD 5-53
BL 5-15, 8-6
BX 5-3, 5-16, 7-4
BX (Thumb) 5-8
LDM 5-34, 5-49
LDM (Thumb) 5-41
LDR 5-46
MOV 5-22, 5-48
MRS 5-7
MSR 5-7
MVN 5-22
POP (Thumb) 5-41

PUSH (Thumb) 5-41
STM 5-34, 5-49
STM (Thumb) 5-41
STR 5-46
SWI 8-6, 9-14
SWIs

Thumb 9-42
integer-like structures 6-14
Interrupt handlers 9-22

Angel 13-65
Interrupts

and Angel 13-41
Angel Fusion stack 13-100
prioritization 9-29
ROM applications 10-7
source for Angel 13-61

interrupt.s 13-59
Interval

profiling 3-53
Interworking ARM and Thumb 2-52,

7-1
APCS 7-2, 7-12, 7-21
APM template 2-52, 7-23
assembly language 7-4, 7-19
BX instruction 7-4
C 7-14
C and C++ 7-12
C and C++ libraries 7-15, 7-17
C libraries 7-26
CODE16 directive 7-4, 7-23
CODE32 directive 7-4, 7-23
compatibility of options 7-12
compiler command-line options

7-15
compiling code 7-12
CPSR 7-2, 7-7
data in Thumb code 7-11
detecting calls 7-16
duplicate functions 7-17
examples 7-7, 7-8, 7-14, 7-18, 7-19
exceptions 7-2
function pointers 7-15
image template 7-23
indirect calls 7-15
leaf functions 7-12
mixed languages 7-19, 7-21
modifying existing project 7-25
MOV pc,lr 7-8
non-Thumb processors 7-13
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-7

Index
procedure call standards 7-2
rules 7-15
SPSR 7-2
subroutines 7-7
TPCS 7-2
UNIX 7-18
veneers 7-2, 7-12, 7-13, 7-14, 7-19
-16 assembler option 7-23

IntHandlerID structure 13-63
Introduction to debugging 3-2
IRQ 9-22

and Angel 13-9, 13-19
Angel processing of 13-40
handler 9-7, 9-41

IRQ exception 9-2
I/O devices, ROM applications 10-6

J
JTAG 3-5
Jump table 9-15, 9-42
Jump tables, assembly 5-29
Jumps, and code speed 11-18

K
KickStartFn() 13-65

L
Labels, assembly 5-11
Labels, inline assemblers 8-5
LDM instruction 5-34, 5-49

Thumb 5-41
LDR

instruction 5-46
pseudo-instruction 5-22, 5-25, 5-30

Leaf functions 7-12
Library

adw_cpp.dll 3-62
License file

customizing A-9
finding A-11
obtaining A-4
typical A-9

License management questions A-18

License management utilities A-14
lmchecksum A-14
lmdiag A-15
lmdown A-15
lmhostid A-16
lmremove A-16
lmreread A-16
lmstat A-17
lmver A-17

License server software A-6
Licensed software A-1

running A-7
Licenses, multiple A-12
Line length, assembly language 5-10
Link register 5-4, 5-15, 9-3
Linker attribute conflict 10-35
Linking

and APM build steps patterns 2-12
and assembly language labels 5-11
and interworking 7-12, 7-16
and the AREA directive 5-13
Angel C libraries 13-21
attribute conflicts 10-35
configuring in APM 2-20
improving image size 11-16
introduction 4-4
minimal Angel 13-24
the embedded C library 10-8, 10-36

Literal pools, assembly language 5-25
lmchecksum utility A-14
lmdiag utility A-15
lmdown utility A-15
lmhostid utility A-16
lmremove utility A-16
lmreread utility A-16
lmstat utility A-17
lmver utility A-17
loadagent command 13-63
Loading constants, assembly language

5-22
Local labels, assembly language 5-11
Local memory map file 3-55
Locals window 3-22
Location of APM templates 2-52
Log of project building 2-12
Logic analyzers

debugging Angel 13-68
lolevel.s 13-59
Low-level symbols 3-43

list order 3-23
Window 3-23

M
MACRO directive 5-43
Macros

RegionInit 10-24, 10-28
makelo.c 13-57, 13-59, 13-60, 13-63
Managing projects, see APM
Mangling symbol names 8-17, 8-19
MAP directive 5-46
Map files 11-9

armsd.map 11-9
Dhrystone example 11-13
format 11-10

Maps, assembly language
absolute 5-46
program-relative 5-49
register-based 5-48
relative 5-47

Matching strings 3-42
Member functions in ADW/ADU

expressions 3-72
Memory

displaying contents 4-3
examining 3-12, 3-39
flash 3-48
map files 3-55
simulating in map file 11-9
window 3-23

Memory management unit 10-6
Memory map

Angel 13-62
configuring for Angel 13-69
layout 10-3
organization of 10-3
RAM at address 0 10-3
ROM at address 0 10-3

Menu bar 3-8
Menus

C++ 3-62
window-specific 3-25

MINIMAL_ANGEL macro 13-24,
13-49

Mixed language programming
interworking ARM and Thumb

7-19, 7-21
Index-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Index
models.h file 12-5
Mode, disassembly 3-40
Modifying debugger variables 3-12
MOV instruction 5-22, 5-48
MRS instruction 5-7
MSR instruction 5-7
Multi-ICE, debugging Angel 13-68
Multiple register transfers 5-34
Multiple register transfers, see also

STM, LDM
multiplication, returning a 64-bit result

6-16
MVN instruction 5-22

N
Naming projects 2-28
Nested interrupts 9-23
Nested SWIs 9-18
Nesting subroutines, assembly language

5-37
Next line, stepping to 3-34
neXus 13-68
non integer-like structures 6-15
noos.c ARMulator model 12-4
Numeric constants, assembly language

5-12

O
Object library, APM template 2-52
Olicom 13-99
Online help, accessing 2-2, 3-2
Operand expressions, inline assemblers

8-4
Operators in ADW/ADU expressions

3-72
Operators, assembly language

:BASE: 5-53
:INDEX: 5-53
:AND: 5-51

Optimization
and DWARF 3-74
and DWARF2 debug tables 3-75

Overloaded functions in ADW/ADU
expressions 3-72

P
Padding 5-51
Page table model

access permissions 12-16
ARM740T protection unit 12-17
ARM810 flags 12-15
ARM940T flags 12-15
ARM940T protection unit 12-17
bufferable (B) bit 12-16
cacheable (C) bit 12-16
contents 12-16
domain access control 12-15
domain field 12-16
initializing the MMU 12-15
physical base address 12-16
region size 12-16
regions in 12-16
SA-110 flags 12-15
translation faults 12-16
translation table base register 12-15
updateable (U) bit 12-16
virtual base address 12-16

pagetab.c ARMulator model 12-3
Parameters (assembly macros) 5-43
Partitions, in APM 2-24
passing structures 6-13
Paths, search 3-36
Patterns, build step 2-39, 2-47
PC sampling 11-20
PCMCIA Ethernet card 13-99
pc, assembly 5-38
pc, assembly language 5-4, 5-9, 5-11,

5-35, 5-37, 5-41
Performance

improving 11-16
measuring 11-6

Peripherals, accessing 3-5
PERMITTED macro 13-62, 13-69
PID board

and Angel 13-15
Angel device drivers 13-63
Angel porting 13-43

PMCIA, and Angel 13-61
Pointers

data members 8-18
member functions 8-18

Polled devices, and Angel 13-66
POP instruction (Thumb) 5-41

porting
Angel 13-43
choosing an Angel template 13-45

Power-up 9-2
Preferences, in APM 2-31
Prefetch abort 9-2

and Angel 13-5, 13-20, 13-21
handler 9-34, 9-41
returning from 9-7

Process control blocks 9-30
Processor exception vectors

and Angel 13-71
Processor mode 5-4

and Angel stacks 13-39, 13-62
Processor time analysis 3-43
Processors

clock speeds 11-13
responding to exceptions 9-5

Profiler 11-19, 12-12
cache misses 12-12
configuring under ARMulator

12-12
instruction counts 12-12
profiling interval 12-12

profiler.c
ARMulator model 12-3
file 12-12

Profiling 3-43, 11-2, 11-19
and Angel timers 13-61
call graph 11-19
collecting data 11-20
creating report 11-21
execution profile 11-19
flat 11-19
instruction tracing 11-26
interval, setting 3-53
sorts example 11-22

Program counter 5-9, 5-11, 5-35, 5-37,
5-41

Program counter, assembly 5-4, 5-38
Program image

reloading 3-11
stepping through 3-34

Program-relative
address 5-11
maps 5-49

Project
adding files to 2-8
building 2-9
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-9

Index
editing source files 2-18
expanding/collapsing view of 2-17
files 2-4
force building 2-11
format conversion 2-30
hierarchy 2-25
manager (APM), see APM
naming 2-28
sub-projects 2-4
templates 2-24, 2-39
variables 2-26
variants 2-27
viewing 2-8
window 2-15

Properties of variables 3-39
Prototype statement 5-43
Pseudo-instructions, assembly language

ADR 5-27, 5-53
ADR (Thumb) 5-27
ADRL 5-27, 5-53
LDR 5-22, 5-25, 5-30
LDR (literal pools) 5-25

PUSH instruction (Thumb) 5-41

Q
Quitting

ADW/ADU 3-10
APM 2-4

R
RAM

at address 0 10-3
measuring requirements 11-4

RB_ Angel register blocks 13-38
RDI (Remote Debug Interface) 3-6

log window 3-24, 3-41
Real-time addresses 3-5
Real-time simulation 11-8
References 8-18
RegionInit macro (scatter loading)

10-24, 10-28
Register access (Thumb) 5-9
Register banks 5-4
Register-based

symbols 5-53

Register-based maps 5-48
Register-relative address 5-11
Registers 5-4

displaying contents 4-3
halting if changed 3-29
REMAP 10-4
usage 6-10
window 3-23

Regular expressions 3-42
Relative maps 5-47
Reloading an image 3-11
REMAP register 10-4
Remote debug information 3-41
Remote_A 3-6

configuring 3-59
Reset exception 9-2

handler 9-32
RESET vector 10-4
Return address 9-6
Return instruction 9-6
returning structures 6-13
ROADDR (Angel) 13-29, 13-48,

13-70, 13-71
ROM

at address 0 10-3
measuring requirements 11-4
writing code for 10-1

ROMBase macro 13-71
ROMulator 13-68
ROUT directive 5-11
RTOS

and Angel 13-19
and context switching 13-38

Run to cursor 3-34
Running licensed software A-7
RWADDR (Angel) 13-29, 13-48,

13-70, 13-71

S
Saved program status register 5-5
Scatter load description file

examples 10-23, 10-27
Scatter loading

assembly veneers 10-31
function pointers 10-30
long-distance branching 10-30
range restrictions 10-30

writing code for ROM 10-22, 10-26
Scope 5-11
Search paths

viewing 3-36
window 3-24

Searching for license file A-11
Semihosting 13-3, 13-16, 13-18

enabling and disabling 13-4, 13-16
Semihosting SWIs 13-79

SYS_CLOCK 13-90
SYS_CLOSE 13-83
SYS_ELAPSED 13-94
SYS_ERRNO 13-91
SYS_FLEN 13-88
SYS_GET_CMDLINE 13-92
SYS_HEAPINFO 13-93
SYS_ISERROR 13-86
SYS_ISTTY 13-87
SYS_OPEN 13-81
SYS_READ 13-85
SYS_READC 13-86
SYS_REMOVE 13-89
SYS_RENAME 13-89
SYS_SEEK 13-87
SYS_SYSTEM 13-91
SYS_TIME 13-90
SYS_TMPNAM 13-88
SYS_WRITE 13-84
SYS_WRITEC 13-83
SYS_WRITEO 13-83

serlasm.s 13-35
serlock 13-35
Server for license management A-2
SERVER line in license file A-9
setjmp()

code speed 11-18
Setting

breakpoints 3-26
environment variable A-7
profiling interval 3-53
simple breakpoint 3-27
simple watchpoint 3-29

Short integers
to reduce code size 11-17

Simple
breakpoint 3-26, 3-27
watchpoint 3-29

Simulation
real-time 11-8
Index-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Index
reducing time taken 11-15
Single stepping 3-5
Soft reset 9-2
Software

development toolkit (SDT) 3-1
licensed A-1

software FPA emulator
undefined instruction handlers 9-33

Software interrupt, see SWIs
Sorts profiling example 11-22
Source files

editing 2-18
examining 3-37
in APM 2-34
list window 3-24
window 3-24

Special characters 3-42
Specifying strings 3-42
Sprintf()

as format string in ADW/ADU 3-70
SPSR 5-5, 9-3, 9-5

interworking ARM and Thumb 7-2
T bit 9-42

Stacks 5-4, 5-36, 9-3
Angel 13-39
initialization code for ROM images

10-6
stack pointer 9-3
supervisor 9-17

Starting
ADW/ADU 3-9
APM 2-4
license server software A-6

startrom.s 13-58
STARTUPCODE macro 13-58
Statistics

ARMulator 11-6
memory 11-12

Status bar 3-8
Status flags 5-17
Stepping through an image 3-34
Steps, build 2-11
STM instruction 5-34, 5-49

Thumb 5-41
Stopping

ADW/ADU 3-10
APM 2-4
execution 3-34

Storage declaration, inline assemblers
8-6

STR instruction 5-46
String constants, assembly language

5-12
String copying

assembler 8-19
Strings

specifying and matching 3-42
structure passing and returning 6-13
Sub-projects 2-4
Subroutines, assembly language 5-15
Supervisor mode 9-17

and Angel 13-20
entering from Angel 13-95

Supervisor stack 9-17
suppasm.s 13-58, 13-59, 13-63, 13-100
SWI exception 9-2
SWI instruction 8-6, 9-14

Thumb 9-42
SWIs

Angel C library support SWIs 13-79
ARMulator 12-26
calling 9-19
configuring for Angel 13-72
debug interaction SWIs 13-95
handlers 9-14, 9-15, 9-17, 9-41
indirect 9-20
returning from 9-7
SYS_Write0 10-34
Thumb state 9-42
0x80 - 0x88 12-26
0x90 - 0x98 12-26

Symbol names, mangling 8-17, 8-19
Symbols, high- and low-level 3-43
Symbols, register-based 5-53
System decoder 10-4
System mode 9-44
SYS_CLOCK 13-90
SYS_CLOSE 13-83
SYS_ERRNO 13-91
SYS_FLEN 13-88
SYS_GET_CMDLINE 13-92
SYS_GET_ELAPSED 13-94
SYS_GET_HEAPINFO 13-93
SYS_ISERROR 13-86
SYS_ISTTY 13-87
SYS_OPEN 13-81
SYS_READ 13-85

SYS_READC 13-86
SYS_REMOVE 13-89
SYS_RENAME 13-89
SYS_SEEK 13-87
SYS_SYSTEM 13-91
SYS_TIME 13-90
SYS_TMPNAM 13-88
SYS_WRITE 13-84
SYS_WRITEC 13-83
SYS_WRITEO 13-83

T
target.s 13-46, 13-57, 13-70, 13-71,

13-100
Task management

Angel 13-33, 13-79
Task Queue Items 13-38
tasm 5-10
TDCC 13-61, 13-73
Templates

APM, location of 2-52
blank 2-41
project 2-24, 2-39
using APM 2-53

Terminology and concepts 3-7
this, implicit 8-17
Thumb

and scatter loading 10-31
and __irq 9-23
Angel breakpoint instruction 13-32
Angel SWI number 13-72
APM template 2-41
breakpoint setting 3-31
BX instruction 5-16, 7-4
C libraries 7-17
changing to Thumb state, example

7-5
channel viewer 3-49
code for ROM applications 10-8
code, interworking template 2-52
conditional execution 5-17
C++ APM template 2-52
data in code areas 7-11
debug communications channel

3-49, 13-73
direct loading 5-24
disassembly mode 3-21, 3-40
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-11

Index
example assembly language 5-16
exception handler 9-39
handling exceptions 9-39
inline assemblers 8-2
instruction set 5-8
instruction set overview 5-8
interworking libraries 7-17
interworking veneers and profiling

restrictions 11-20
interworking with ARM 7-2, 7-7
LDM and STM instructions 5-41
popping pc 5-38
procedure call standard 6-11
return address 9-41
using duplicate function names

7-17
Time

analysis 3-43
Tool configuration in APM 2-20
Toolbar 3-8
Toolkit for software development 3-1
Tools for license management A-14
TPCS 6-11

interworking ARM and Thumb 7-2
register names and usage 6-11

TQI 13-38, 13-39
Trace files

address 12-10
disassembly 12-11
event lines 12-9
events 12-11
instruction addresses 12-11
instruction lines 12-9, 12-10
locked access 12-10
memory access 12-9
memory cycles 12-9
memory lines 12-9
opcode 12-11
opcode fetch 12-10
output 12-8
read/write operations 12-10
return address 12-10
speculative instruction fetch 12-10

Tracer
configuring under ARMulator 12-6
debug support 12-8
disabling 12-8
disassembling instructions 12-7
enabling 12-8

events 12-7, 12-8
flushing output to the trace file 12-6
idle cycles 12-7
initializing 12-6
output to the RDI log window 12-7
quitting from 12-6
source of trace data 12-7
trace file 12-7
tracing options 12-7
unaccounted RDI access 12-7

tracer.c ARMulator model 12-3, 12-4
Tracer_Close ARMulator function

12-6
Tracer_Dispatch ARMulator function

12-6
Tracer_Flush ARMulator function

12-6
Tracer_Open ARMulator function

12-6
Tracing 11-26
trickbox.c ARMulator model 12-4

U
UDP/IP 13-99
Undefined instruction exception 9-2
Undefined instruction handler 9-7,

9-33, 9-41
Undefined symbols

ROM code 10-34
Unhandled ADP_Stopped exception

13-97
UNMAPROM macro 13-58, 13-71
User mode 9-3
Using

ADW/ADU with C++ 3-62
APM 2-4
APM templates 2-53
APM with C++ 2-52
the class view window 3-63

Utilities for license management A-14

V
validate.c ARMulator model 12-4
Variables

changing contents of, in ADW/ADU
3-70

formatting watches 3-69
halt if changed 3-29
project 2-26
properties of 3-39
setting watches, in ADW/ADU

3-66
viewing 3-37
$memstate 12-21
$statistics 12-21

Variants of projects 2-27
building 2-11

Vector table 9-3, 9-9, 9-22, 9-39
Vector table and caches 9-13
Vectors

exception 10-5
RESET 10-4

VENDOR line in license file A-9
Veneers, see Interworking
View

menu 3-14
of project, expanding/collapsing

2-17
window 2-19

Viewing
code in ADW/ADU 3-64
debugger variables 3-12
files, in APM 2-37
memory 3-12, 3-39
project 2-8
search paths 3-36
source files 3-37
variables 3-37
watchpoints 3-29

W
Watch window, in ADW/ADU 3-66
Watchpoints 4-7

simple 3-29
simple and complex 3-26, 3-29
viewing 3-29
window 3-25

Window
backtrace 3-18, 3-33
breakpoints 3-18, 3-26
command 3-16
Index-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Index
console 3-15
debugger internals 3-18
disassembly 3-21
execution 3-15
expression 3-21
function names 3-22, 3-43
globals 3-22
locals 3-22
low level symbols 3-23
memory 3-23
project 2-15
RDI log 3-24, 3-41
registers 3-23
search paths 3-24
source file 3-24
source files list 3-24
view 2-19
watch window 3-66
watchpoints 3-25

winglass.c ARMulator model 12-3
Writing code for ROM 10-1

attribute conflict in linker 10-35
C library 10-8
common problems 10-34
converting ELF output 10-32
critical I/O devices 10-6
embedded C library 10-19
enabling interrupts 10-7
entry point 10-5
exception vectors 10-5
initialization 10-5
main function 10-8
memory for C code 10-7
MMU 10-6
processor mode 10-7
processor state 10-8
RAM at address 0 10-3
RAM variables 10-6
ROM at address 0 10-3, 10-9, 10-17
ROM at its base address 10-9
scatter loading 10-22, 10-26

execution regions 10-24, 10-28
variables 10-7

stack pointers 10-6
suitable output formats 10-33
SWI SYS_Write0 10-34
undefined symbols 10-34
undefined __main 10-36

Z
Zero wait state memory system 12-19

Numerics
0-init data 11-4
64-bit

integer addition 6-6
multiplication result 6-16

Symbols
directive 5-46
$semihosting_enabled variable 13-4,

13-16
$top_of_memory debugger variable

13-93
$vector_catch debugger variable 13-97
@ and ^ indicators 3-43
ARM DUI 0040D Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-13

Index
Index-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0040D

	ARM Software Development Toolkit User Guide
	Contents
	Preface
	About this book
	Organization

	Further reading
	ARM publications
	Other publications

	Typographical conventions
	Feedback
	Feedback on this book
	Feedback on the ARM Software Development Toolkit

	Introduction
	1.1 About the ARM Software Development Toolkit
	1.1.1 Components of the SDT
	1.1.2 Components of C++ version 1.10

	1.2 Supported platforms
	1.3 What is new?
	1.3.1 Functionality enhancements and new functionality
	1.3.2 Changes in default behavior
	1.3.3 Obsolete and deprecated features

	ARM Project Manager
	2.1 About the ARM Project Manager
	2.1.1 Online help

	2.2 Getting started
	2.2.1 Starting and stopping APM
	2.2.2 Projects and sub-projects
	2.2.3 Build
	2.2.4 Correcting problems
	2.2.5 Project output

	2.3 The APM desktop
	2.3.1 Project window
	2.3.2 Changing the way a project is displayed
	2.3.3 Edit window
	2.3.4 View window

	2.4 Additional APM functions
	2.4.1 Configuring tools
	2.4.2 Partitions
	2.4.3 Project templates
	2.4.4 Project hierarchy
	2.4.5 Variables
	2.4.6 Variants
	2.4.7 Changing a project name
	2.4.8 Converting old projects

	2.5 Setting preferences
	2.5.1 APM preferences
	2.5.2 Editor preferences

	2.6 Working with source files
	2.6.1 Creating a new source file with APM
	2.6.2 When a file type is associated with multiple partitions
	2.6.3 Performing a single build step

	2.7 Viewing object and executable files
	2.7.1 decaof
	2.7.2 decaxf

	2.8 Working with project templates
	2.8.1 General information
	2.8.2 Blank templates supplied with APM
	2.8.3 Editing a variable
	2.8.4 Editing a path
	2.8.5 Editing a project template
	2.8.6 Creating a new template
	2.8.7 Editing project template details

	2.9 Build step patterns
	2.9.1 Specifying input and output patterns in a build step pattern
	2.9.2 Editing a build step pattern
	2.9.3 Adding a build step pattern

	2.10 Using APM with C++
	2.10.1 APM templates for C++
	2.10.2 Using the ARM Project Manager C++ Templates

	ARM Debuggers for Windows and UNIX
	3.1 About the ARM Debuggers
	3.1.1 Online help
	3.1.2 Debugging an ARM application
	3.1.3 Debugging systems
	3.1.4 Debugger concepts

	3.2 Getting started
	3.2.1 The ARM Debugger desktop
	3.2.2 Starting and closing the debugger
	3.2.3 Loading, reloading, and executing a program image
	3.2.4 Examining and setting variables, registers, and memory

	3.3 ARM Debugger desktop windows
	3.3.1 Main windows
	3.3.2 Optional windows

	3.4 Breakpoints, watchpoints, and stepping
	3.4.1 Simple breakpoints
	3.4.2 Simple watchpoints
	3.4.3 Complex breakpoints
	3.4.4 Complex watchpoints
	3.4.5 Backtrace
	3.4.6 Stepping through an image

	3.5 Debugger further details
	3.5.1 Working with source files
	3.5.2 Working with variables
	3.5.3 Displaying disassembled and interleaved code
	3.5.4 Remote debug information
	3.5.5 Using regular expressions
	3.5.6 High level and low level symbols
	3.5.7 Profiling
	3.5.8 Saving or changing an area of memory
	3.5.9 Specifying command-line arguments for your program
	3.5.10 Using command-line debugger instructions
	3.5.11 Changing the data width for reads and writes
	3.5.12 Flash download

	3.6 Channel viewers (Windows only)
	3.6.1 ThumbCV channel viewer

	3.7 Configurations
	3.7.1 Debugger configuration
	3.7.2 ARMulator configuration
	3.7.3 Angel remote configuration
	3.7.4 EmbeddedICE configuration

	3.8 ARM Debugger with C++
	3.8.1 About ADW for C++
	3.8.2 Using the C++ debugging tools
	3.8.3 Using the Class View window
	3.8.4 Using the Watch window
	3.8.5 Evaluating expressions
	3.8.6 Debug Format Considerations

	Command-Line Development
	4.1 The hello world example
	4.1.1 Create, compile, link, and run
	4.1.2 Debugging hello.c
	4.1.3 Separating the compile and link stages
	4.1.4 Generating interleaved C and assembly language
	4.1.5 For more information

	4.2 armsd
	4.2.1 Starting armsd and loading an image
	4.2.2 Obtaining help on the armsd commands
	4.2.3 Setting and removing simple breakpoints
	4.2.4 Setting and removing simple watchpoints
	4.2.5 Executing the program
	4.2.6 Stepping through the program
	4.2.7 Exiting the debugger
	4.2.8 Viewing and setting program variables
	4.2.9 Displaying source code
	4.2.10 Viewing and setting debugger variables

	Basic Assembly Language Programming
	5.1 Introduction
	5.1.1 Code examples

	5.2 Overview of the ARM architecture
	5.2.1 Architecture versions
	5.2.2 ARM and Thumb state
	5.2.3 Address space
	5.2.4 Processor mode
	5.2.5 Registers
	5.2.6 ARM instruction set overview
	5.2.7 Thumb instruction set overview

	5.3 Structure of assembly language modules
	5.3.1 Layout of assembly language source files
	5.3.2 An example ARM assembly language module
	5.3.3 Calling Subroutines
	5.3.4 An example Thumb assembly language module

	5.4 Conditional execution
	5.4.1 The ALU status flags
	5.4.2 Execution conditions
	5.4.3 Using conditional execution in ARM state

	5.5 Loading constants into registers
	5.5.1 Direct loading with MOV and MVN
	5.5.2 Loading with LDR Rd, =const

	5.6 Loading addresses into registers
	5.6.1 Direct loading with ADR and ADRL
	5.6.2 Loading addresses with LDR Rd, = label

	5.7 Load and store multiple register instructions
	5.7.1 ARM LDM and STM Instructions
	5.7.2 LDM and STM addressing modes
	5.7.3 Implementing stacks with LDM and STM
	5.7.4 Block copy with LDM and STM
	5.7.5 Thumb LDM and STM instructions

	5.8 Using macros
	5.8.1 Test and branch macro example
	5.8.2 Unsigned integer division macro example

	5.9 Describing data structures with MAP and # directives
	5.9.1 Absolute maps
	5.9.2 Relative maps
	5.9.3 Register based maps
	5.9.4 Program-relative maps
	5.9.5 Finding the end of the allocated data
	5.9.6 Forcing correct alignment
	5.9.7 Using register-based MAP and # directives
	5.9.8 Using two register-based structures
	5.9.9 Avoiding problems with MAP and # directives

	Using the Procedure Call Standards
	6.1 About the procedure call standards
	6.2 Using the ARM Procedure Call Standard
	6.2.1 APCS register names and usage
	6.2.2 An example of APCS register usage: 64-bit integer addition
	6.2.3 A more detailed look at APCS register usage

	6.3 Using the Thumb Procedure Call Standard
	6.3.1 TPCS register names and usage

	6.4 Passing and returning structures
	6.4.1 The default method
	6.4.2 Returning integer-like structures
	6.4.3 Returning non integer-like structures in registers

	Interworking ARM and Thumb
	7.1 About interworking
	7.1.1 When to use interworking

	7.2 Basic assembly language interworking
	7.2.1 The Branch Exchange instruction
	7.2.2 Implementing interworking assembly language subroutines
	7.2.3 Data in Thumb code areas

	7.3 C and C++ interworking and veneers
	7.3.1 Specifying APCS options
	7.3.2 Compiling code for Interworking
	7.3.3 Simple rules for interworking
	7.3.4 Detecting interworking calls
	7.3.5 Using two copies of the same function
	7.3.6 The C and C++ interworking libraries

	7.4 Assembly language interworking using veneers
	7.4.1 Assembly-only interworking using veneers
	7.4.2 C, C++, and assembly language interworking using veneers

	7.5 ARM-Thumb interworking with the ARM Project Manager
	7.5.1 Choosing a template
	7.5.2 Using the Thumb-ARM interworking image project
	7.5.3 Modifying a project to support interworking
	7.5.4 C library usage and the ARM Project Manager

	Mixed Language Programming
	8.1 Using the inline assemblers
	8.1.1 Invoking the inline assembler
	8.1.2 ARM and Thumb instruction sets
	8.1.3 Differences between the inline assemblers and armasm
	8.1.4 Restrictions
	8.1.5 Usage
	8.1.6 Examples

	8.2 Accessing C global variables from assembly code
	8.3 Using C header files from C++
	8.3.1 Including system C header files
	8.3.2 Including your own C header files

	8.4 Calling between C, C++, and ARM assembly language
	8.4.1 General rules for calling between languages
	8.4.2 C++ specific information
	8.4.3 Examples

	Handling Processor Exceptions
	9.1 Overview
	9.1.1 The vector table
	9.1.2 Use of modes and registers by exceptions
	9.1.3 Exception priorities

	9.2 Entering and leaving an exception
	9.2.1 The processor response to an exception
	9.2.2 Returning from an exception handler
	9.2.3 The return address and return instruction

	9.3 Installing an exception handler
	9.3.1 Installing the handlers at reset
	9.3.2 Installing the handlers from C

	9.4 SWI handlers
	9.4.1 SWI handlers in assembly language
	9.4.2 SWI handlers in C and assembly language
	9.4.3 Using SWIs in supervisor mode
	9.4.4 Calling SWIs from an application
	9.4.5 Calling SWIs dynamically from an application

	9.5 Interrupt handlers
	9.5.1 Simple interrupt handlers in C
	9.5.2 Reentrant interrupt handlers
	9.5.3 Example interrupt handlers in assembly language

	9.6 Reset handlers
	9.7 Undefined instruction handlers
	9.8 Prefetch abort handler
	9.9 Data abort handler
	9.10 Chaining exception handlers
	9.10.1 A single extended handler
	9.10.2 Several chained handlers

	9.11 Handling exceptions on Thumb-capable processors
	9.11.1 Thumb processor response to an exception
	9.11.2 The return address
	9.11.3 Determining the processor state

	9.12 System mode

	Writing Code for ROM
	10.1 About writing code for ROM
	10.2 Memory map considerations
	10.2.1 ROM at 0x0
	10.2.2 RAM at 0x0

	10.3 Initializing the system
	10.3.1 Defining the entry point
	10.3.2 Setting up exception vectors
	10.3.3 Initializing the memory system
	10.3.4 Initializing the stack pointers
	10.3.5 Initializing any critical I/O devices
	10.3.6 Initializing RAM variables required by the interrupt system
	10.3.7 Initializing memory required by C code
	10.3.8 Enabling interrupts
	10.3.9 Changing processor mode
	10.3.10 Changing processor state
	10.3.11 Entering C code

	10.4 Example 1: Building a ROM to be loaded at address 0
	10.4.1 Area listing for the code
	10.4.2 Output from -info Sizes option
	10.4.3 Sample code

	10.5 Example 2: Building a ROM to be entered at its base address
	10.5.1 Building the ROM image
	10.5.2 Sample disassembly

	10.6 Example 3: Using the embedded C library
	10.6.1 Initialization code
	10.6.2 C code
	10.6.3 Compiling, linking, and running the program
	10.6.4 Code listings for example 3

	10.7 Example 4: Simple scatter loading example
	10.7.1 Memory map
	10.7.2 Scatter load description file
	10.7.3 Initialization code
	10.7.4 Initializing execution regions
	10.7.5 C code
	10.7.6 Building the example

	10.8 Example 5: Complex scatter load example
	10.8.1 Memory map
	10.8.2 Scatter load description file
	10.8.3 Initialization code
	10.8.4 Initializing execution regions
	10.8.5 Building the example
	10.8.6 Running the example

	10.9 Scatter loading and long-distance branching
	10.9.1 Range restrictions

	10.10 Converting ARM linker ELF output to binary ROM formats
	10.10.1 Multiple output formats
	10.10.2 Configuration

	10.11 Troubleshooting hints and tips
	10.11.1 Replacing the Write0() SWI call
	10.11.2 Linker errors

	Benchmarking, Performance Analysis, and Profiling
	11.1 About benchmarking and profiling
	11.2 Measuring code and data size
	11.2.1 Interpreting size information
	11.2.2 Calculating ROM and RAM requirements
	11.2.3 Code and data sizes example: Dhrystone

	11.3 Performance benchmarking
	11.3.1 Measuring performance
	11.3.2 Cycle counting example: Dhrystone
	11.3.3 Real-time simulation
	11.3.4 Reading the simulated time
	11.3.5 Map files
	11.3.6 Real-time simulation example: Dhrystone
	11.3.7 Reducing the time required for simulation

	11.4 Improving performance and code size
	11.4.1 Compiler options
	11.4.2 Improving image size with the linker
	11.4.3 Changing the source

	11.5 Profiling
	11.5.1 Availability of profiling
	11.5.2 About armprof
	11.5.3 Collecting profile data
	11.5.4 Saving profile data
	11.5.5 Generating the profile report
	11.5.6 Profiling example: sorts
	11.5.7 Profiling and instruction tracing with ARMulator

	ARMulator
	12.1 About the ARMulator
	12.2 ARMulator models
	12.2.1 Sample models
	12.2.2 Model stub exports

	12.3 Tracer
	12.3.1 Configuring the Tracer
	12.3.2 Debugger support for tracing
	12.3.3 Interpreting trace file output

	12.4 Profiler
	12.4.1 Configuring the profiler

	12.5 Windows Hourglass
	12.6 Watchpoints
	12.6.1 Enabling watchpoints

	12.7 Page table manager
	12.7.1 Controlling the MMU and cache
	12.7.2 Controlling registers 2 and 3
	12.7.3 Pagetable contents

	12.8 armflat
	12.8.1 Selecting the ARMflat memory model

	12.9 armfast
	12.9.1 Selecting the ARMfast memory model

	12.10 armmap
	12.10.1 Clock frequency
	12.10.2 Selecting the ARMmap memory model
	12.10.3 How ARMmap calculates wait-states
	12.10.4 Configuring the ARMmap memory model

	12.11 Dummy MMU
	12.11.1 Configuring the Dummy MMU

	12.12 Angel
	12.12.1 Configuring Angel
	12.12.2 ARMulator SWIs

	12.13 Controlling the ARMulator using the debugger
	12.13.1 About RDI
	12.13.2 Using the armul.cnf configuration file
	12.13.3 The armsd.map File

	12.14 A sample memory model
	12.14.1 The memory map
	12.14.2 Implementation

	12.15 Rebuilding the ARMulator
	12.15.1 Rebuilding on UNIX
	12.15.2 Rebuilding on Windows

	12.16 Configuring ARMulator to use the example

	Angel
	13.1 About Angel
	13.1.1 Angel system features
	13.1.2 Angel component overview
	13.1.3 Angel system resource requirements

	13.2 Developing applications with Angel
	13.2.1 Full Angel debug agent
	13.2.2 Minimal Angel
	13.2.3 Overview of the development procedure
	13.2.4 Developing an application under full Angel
	13.2.5 Developing an application under minimal Angel
	13.2.6 Application communications
	13.2.7 Downloading new application versions

	13.3 Angel in operation
	13.3.1 Initialization
	13.3.2 Waiting for debug communications
	13.3.3 Angel debugger functions
	13.3.4 Angel task management
	13.3.5 Context switching
	13.3.6 Example of Angel processing: a simple IRQ

	13.4 Porting Angel to new hardware
	13.4.1 Angel source code directory structure
	13.4.2 Overview of porting steps and recommendations
	13.4.3 Modifying the UNIX makefile
	13.4.4 Modifying an APM project
	13.4.5 Modifying target-specific files
	13.4.6 Writing the device drivers
	13.4.7 Downloading a new version of Angel
	13.4.8 Debugging your Angel port

	13.5 Configuring Angel
	13.5.1 Configuring the memory map
	13.5.2 Configuring timers and profiling
	13.5.3 Configuring exception handlers
	13.5.4 Configuring where Angel runs
	13.5.5 Configuring SWI numbers

	13.6 Angel communications architecture
	13.6.1 Overview of the Angel communications layers
	13.6.2 Boot support
	13.6.3 Channels layer and buffer management
	13.6.4 Device driver layer

	13.7 Angel C library support SWIs
	13.7.1 Angel task management and SWIs
	13.7.2 SYS_OPEN (0x01)
	13.7.3 SYS_CLOSE (0x02)
	13.7.4 SYS_WRITEC (0x03)
	13.7.5 SYS_WRITE0 (0x04)
	13.7.6 SYS_WRITE (0x05)
	13.7.7 SYS_READ (0x06)
	13.7.8 SYS_READC (0x07)
	13.7.9 SYS_ISERROR (0x08)
	13.7.10 SYS_ISTTY (0x09)
	13.7.11 SYS_SEEK (0x0a)
	13.7.12 SYS_FLEN (0x0c)
	13.7.13 SYS_TMPNAM (0x0d)
	13.7.14 SYS_REMOVE (0x0e)
	13.7.15 SYS_RENAME (0xf)
	13.7.16 SYS_CLOCK (0x10)
	13.7.17 SYS_TIME (0x11)
	13.7.18 SYS_SYSTEM (0x12)
	13.7.19 SYS_ERRNO (0x13)
	13.7.20 SYS_GET_CMDLINE (0x15)
	13.7.21 SYS_HEAPINFO (0x16)
	13.7.22 SYS_ELAPSED (0x30)
	13.7.23 SYS_TICKFREQ (0x31)

	13.8 Angel debug agent interaction SWIs
	13.8.1 angel_SWIreason_EnterSVC (0x17)
	13.8.2 angel_SWIreason_ReportException (0x18)
	13.8.3 angel_SWIreason_LateStartup (0x20)

	13.9 The Fusion IP stack for Angel
	13.9.1 How Angel, Fusion, and the PID hardware fit together

	FlexLM License Manager
	A.1 About license management
	A.1.1 Installing FlexLM software

	A.2 Obtaining your license file
	A.3 What to do with your license file
	A.4 Starting the server software
	A.5 Running your licensed software
	A.5.1 Setting the environment variable ARMLMD_LICENSE_FILE
	A.5.2 Running your application

	A.6 Customizing your license file
	A.6.1 Server and Vendor lines
	A.6.2 Feature lines

	A.7 Finding a license
	A.8 Using FlexLM with more than one product
	A.8.1 All products use the same server
	A.8.2 All products use different license servers

	A.9 FlexLM license management utilities
	A.9.1 License administration tools

	A.10 Frequently asked questions about licensing

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z
	Numerics
	Symbols

