
Wei Wu, M.S., May, 1998 COMPUTER SCIENCE

EXPERIMENTS WITH INTERNET ACCESSIBLE MATHEMATICAL

COMPUTATION (55 pp.)

Director of Thesis: Dr. Paul S. Wang

The goal of Internet Accessible Mathematical Computation (IAMC) research is

to design a system to let the user access remote mathematical computation systems

based on the Internet through any computer platform machine, and to let the user do

numeric, symbolic, and other scienti�c computations. Internet users can input their

mathematical request, send it to the remote mathematical computation server, and

get the answer back.

The work here constitutes a simple proof-of-concept system where a simple IAMC

client-server pair is written in Java, MP is used for mathematical data encoding

and transfer, and the pair provides Internet-based access to the MAXIMA symbolic

computation system. By this experiment, we hope to shed more light on the IAMC

approach and to provide experience for a full-blown IAMC prototype.

EXPERIMENTS WITH INTERNET ACCESSIBLE MATHEMATICAL
COMPUTATION

A thesis submitted
to Kent State University in

partial ful�llment of the requirements
for the degree of Master of Science

by

Wei Wu

May, 1998

Thesis written by

Wei Wu

M.S., Kent State University, 1998

Approved by

, Advisor

, Chair, Department of Mathematics

and Computer Science

, Dean, College of Arts and Sciences

ii

TABLE OF CONTENTS

LIST OF FIGURES : v

LIST OF TABLES : vi

Acknowledgements : vii

1 Introduction : 1

1.1 Motivation : 1

1.2 Previous Work : 2

1.3 IAMC : 7

2 Design of IAMC : 10

2.1 Overview of IAMC System : 10

2.2 IAMC Client : 14

2.3 IAMC Server : 16

2.4 Object-Oriented Design : 17

3 IAMC Client : 21

3.1 Parsing : 21

3.1.1 In�x Input : 21

3.1.2 Recursive Descent Parsing : 23

3.1.3 IAMC Math-Expression Grammar : : : : : : : : : : : : : : : : 26

3.1.4 Tokens : 28

iii

3.1.5 Internal Representation : 28

3.1.6 Pre�x Notation Generation : : : : : : : : : : : : : : : : : : : 29

3.2 ASCII{MP Conversions : 32

3.2.1 Pre�x to MP Conversion : 32

3.2.2 MP to ASCII Conversions : 33

3.3 Interface to IAMC Server : 33

4 IAMC Server : 35

4.1 Interface to IAMC Client : 35

4.2 The Compute Engine : 36

4.3 Interface to Compute Engine : 37

4.4 Server-Client Communication : 40

5 IAMC Usage Examples : 44

5.1 Example 1 : 44

5.2 Example 2 : 45

5.3 Example 3 : 46

5.4 Example 4 : 47

6 Conclusion : 51

BIBLIOGRAPHY : 53

iv

LIST OF FIGURES

1 Structure of IAMC : 11

2 Programming Contributions : 12

3 Flow of Computation Request : 19

4 IAMC Classes : 20

5 Example of Pre�x Generating : 31

6 Java Exec Method : 32

7 Interface to Compute Engine : 43

v

LIST OF TABLES

1 IAMC Supported Operators : 22

vi

Acknowledgements

I would especially like to thank my advisor, Dr. Paul Wang, for his direction,

advice, and guidance on this research. I would also like to thank Dr. Robert Walker

and Dr. Hassan Peyravi for their suggestion and comments on this project. Also I

would like to thank Benjamin Norman for his help on editing my thesis.

vii

CHAPTER 1

Introduction

1.1 Motivation

The Internet [9] is the network that is changing the way people communicate,

interact, and de�ne community. The Internet has a spirit of invention within the

human community it encompasses as expressed in the tools, software, and hardware

that are used. The Internet represents a changing paradigm for human interaction.

It is a collaborative medium in which you can access information and data; it is a

place for learning, commerce, entertainment, and intensive interaction with people.

A major purpose of the Internet is the sharing of information between universi-

ties, companies, governments, nonpro�t organizations, and individuals. At present,

millions of pieces of information are available on the Internet in a variety of formats,

but sharing of mathematical computation and data is lagging behind.

Some universities and organizations have mathematical computation systems, ex-

perimental and commercial, which are powerful tools for scientists, engineers, and

educators. They aim to automate mathematical computations of all sorts. These

tools may be general purpose such as Maple [21], MAXIMA [12], and Mathematica

[32] for computer algebra or specialized such as Camal [39] for general relativity and

Singular [40] for commutative algebra and algebraic geometry. On the other hand,

almost all the powerful computation systems are only accessible directly on their host

computers. Usually, outside users can not use these systems remotely without obtain-

ing accounts on these machines and logging in �rst. It is desirable to make powerful

1

2

mathematical and scienti�c computing systems accessible on the Internet as simply

and easily as a Web page.

Some simple tools, such as interactive calculators [38], exist on the Internet for

limited mathematical calculation, but a systematic approach for access, control, ex-

pression encoding, and interoperability must be devised if complex mathematical-

oriented computation services are to become usable on the Internet via the client-

server paradigm. Some existing systems such as SUI [13] can let the user connect to

multiple powerful compute engines, but they have the problem of platform limitation:

they only can be used on Unix machine.

The goal of Internet Accessible Mathematical Computation (IAMC) research is

to design a system to let the user access remote mathematical computation systems

based on the Internet through any computer platform machine, and to let the user

do numeric, symbolic, and other scienti�c computations. Internet users can input

their mathematical request, send it to the remote mathematical computation server,

and get the answer back. For example: a user in China wants to know the factors of

polynomial x^10-1. He/she can use his/her home PC to access the Internet by any

browser and run the IAMC Client service in Kent. On the IAMC Client interface, the

user can input the compute request and select the IAMC Server in New York which

has a Maple compute engine. After the user inputs his/her request, the request will

be sent to New York. The answer will come back from New York and will be displayed

on the China user's home PC screen.

1.2 Previous Work

Sharing mathematical computation and data is not a new problem for scienti�c

computing. There are di�erent sub-areas for this problem.

3

Firstly, sharing mathematical computation and data requires a mathematical user

interface which handles the user input, parses the input, and acts as a client to

the computation server. A well-designed user interface not only makes a computing

system more appealing and convenient to use but also increases the computation

power provided to the user.

Di�erent aspects of the user-interface problem have been successfully addressed by

di�erent realizations. Two-dimensional editing of mathematical formulas is achieved

in experimental systems such as MathScribe [17], GI/S [5], or SUI [1] and in recent

mathematical assistants such as Milo [19] and Theorist [34]; some kinds of hypertex-

tual access to the documentation is provided by the graphical user interfaces of both

Mathematica and Axiom [22]. Also, quality curve and surface plotting is performed

by Axiom, Maple V, Mathematica, and SUI.

An important objective of improving these components is to have all these fa-

cilities gathered in a single software environment and to make such an environment

independent of a given product or system. Also, few user interfaces support con-

current use of di�erent computer algebra systems, faced with conversion problems,

con�guration management, and communication protocols. Pioneering work on these

improvements was done by James Purtilo with Polyith [20] and Denis Arnon with

CaminoReal [18]. More recent results include MathStation [25], SUI, and CAS/PI

[2].

Secondly, mathematical computation needs an e�cient and standard encoding for-

mat for data exchange and communication. Traditionally, computer algebra systems

are monolithic, stand-alone programs designed to communicate with a user through

a speci�c command language. They do not address interoperability issues such as

4

the exchange of mathematical expressions with other independent programs. More

recently, scienti�c computation systems have adopted the component approach and

devised various schemes for inter-component communication.

Since version V, Maple has been composed of a kernel and a set of devices including

a user interface, Iris [24], and a plotting engine. The kernel and devices can run on

di�erent computers communicating with a proprietary protocol. Data can be passed

in one of two ways: either as string suitable to be used as Maple input, or as Directed

Acyclic Graphs (DAGs) using Maple's internal data representations. DAGs have two

clear advantages: �rst, they reduce the average amount of data transmitted by sharing

common subexpressions; second, using Maple's internal data representation eases data

encoding and decoding on the kernel side. Recently, Maple introduced MathEdge

[27], a development toolkit which enables developers to link their applications with

the Maple kernel.

Beginning with version 2, Mathematica communicates using MathLink [33]. Math-

Link implements a communication protocol and provides a set of procedural interfaces

that allow C programs to send and receive data or call (or be called by) Mathematica,

or allow di�erent instances of Mathematica to communicate with each other. Math-

Link is fully documented and library routines are provided for advanced users to write

their own applications.

The POSSO [31] project is one of the European research projects centered on

symbolic computation. It includes the de�nition of two protocols for exchanging

mathematical expressions, XDR-POSSO [31] and ASAP [30]. XDR-POSSO is de-

signed to exchange POSSO data structures using a binary encoding based on the

XDR technology. It is strongly tied to the POSSO project and does not include

5

annotations or a general extension mechanism to support other kinds of mathemat-

ical objects. ASAP (A Simple ASCII Protocol) is more oriented towards portable

exchange of mathematical expressions encoded as linearized attributed trees. It pro-

vides a basic technology, relying on the user to de�ne the semantics of the expressions

exchanged and to provide more optimized encodings when appropriate.

Euromath [28], another EEC-funded project, de�nes a Document Type De�nition

(the Euromath DTD) for SGML [36], which formally speci�es the structure of the

mathematical objects to be exchanged and provides the GRIF [28] editor for editing

them.

Mathematical Markup Language (MathML) [15] is the o�cial HTML[37] exten-

sion sponsored by the W3 (World Wide Web) consortium. MathML is an XML [35]

application for describing mathematical notation and capturing both its structure and

content. The goal of MathML is to enable mathematics to be served, received, and

processed on the Web, just as HTML has enabled this functionality for text. MathML

also pays particular attention to compatibility with other mathematical software, and

in particular, with computer algebra systems. Many of the presentation elements of

MathML are derived in part from the mechanism of typesetting boxes. The MathML

content elements are heavily indebted to the OpenMath [26] project. The OpenMath

project has close ties to both the SGML [36] and computer algebra communities, and

has laid a foundation for an SGML-based means of communication between math-

ematical software packages, among other things. The feasibility of both generating

and interpreting MathML in computer algebra systems has been demonstrated by

prototype software.

6

Several other works related to the exchange of mathematical data between sci-

enti�c applications are reported in [4]. Notable implementations of distributed ar-

chitectures that provide some exchange of mathematical expressions include Polylith

[20], CaminoReal [18], SUI, DSC [29], and CAS/PI. Realizing the importance of a

mathematical data exchange protocol, the Maple group initialized a series of work-

shops which led to the formation of the OpenMath group in order to develop and

standardize such a protocol.

Multi Protocol (MP) [3] is a result of collaboration among Gray, Kajler, and

Wang. MP is a format for e�cient communication of mathematical data among

scienti�c computing systems. MP is designed to support e�cient communication

of mathematical data between scienti�cally-oriented software tools. MP exchanges

data in the form of linearized annotated syntax trees. Syntax trees provide a simple,

exible and tool-independent way to represent and exchange data, and annotations

provide a powerful and generic expressive facility for transmitting additional infor-

mation. In a layer above the data exchange portion of the protocol, MP supports

collections of de�nitions for annotations and mathematical symbols (operators and

symbolic constants) in dictionaries. Dictionaries address the problem of application

heterogeneity by supplying a standardized representation and semantics for mathe-

matical objects. They are identi�ed within packets through a dictionary tag �eld.

Applications that communicate according to de�nitions provided in dictionaries do

not need to have direct knowledge of each other, promoting a \plug-and-play" style

of interoperation of mathematical expressions at the application level.

7

1.3 IAMC

Wang's research group at the Institute for Computation Mathematics at Kent

State University and collaborators, including Prof. Dieter Schmidt (Electrical and

Computer Engineering, Cincinnati), Prof. Simon Gray (Mathematics and Computer

Science, Ashland), and Prof. Norbert Kajler (Ecole des Mines de Paris, France), are

involved with the conceptualization, architecture, design, and prototyping of Internet

Accessible Mathematical Computation (IAMC). The goal, simply put, is that on the

Internet a user should be able to access mathematical computation services directly.

It should be as simple and easy as accessing a Web page or sending email.

The IAMC research has these goals:

� To make math-oriented data and services easily accessible on the Internet {

directly, via the Web, and by email.

� To allow remote compute servers usable almost like local programs.

� To enable e�ective and e�cient communication of mathematical data over the

Internet.

� To make it possible for heterogeneous compute servers to exchange computa-

tional results and perform further computation on them.

The evolving IAMC architecture calls for an IAMC client to provide a GUI front end,

an IAMC server to provide or connect to a computation service, and a Mathematical

Computation Protocol (MCP) to connect the client and server.

IAMC applications may include:

� Use of remote computation services.

8

� Access to remote scienti�c databases.

� Making parallel/super computing accessible.

� Distance learning.

� Computing via NetPC for high school or occasional users.

� Establishing Problem Solving Environments (PSE).

IAMC should be convenient, simple to use, and easy to learn. It must also leverage

appropriate existing technologies to reduce R&D and to increase the chance of wide

acceptance:

� Internet and the Web.

� MathML { the mathematical markup language, an extension to HTML.

� MP { a binary math data encoding/transfer protocol developed at ICM/Kent.

� OpenMath { evolving mathematical representation and semantics speci�cations

developed by the European Maple group and collaborators.

� Java [10] { platform independent programming system with built-in network

and GUI support.

IAMC services should be available via TCP/IP [8], the Web, or email.

The work reported here constitutes a simple proof-of-concept system where a

simple IAMC client-server pair is written in Java, MP is used for mathematical data

encoding and transfer, and the pair provides Internet-based access to the MAXIMA

symbolic computation system. By this experiment, we hope to shed more light on the

9

IAMC approach and to provide experience for a full-blown IAMC prototype. From

this point on, the name IAMC refers to the proof-of-concept system.

CHAPTER 2

Design of IAMC

The current IAMC system is a bare-bones version of an IAMC system and builds

an experimental client-server package. This simple proof-of-concept system uses MP

for mathematical data encoding and transfer, implements IAMC client-server pair

in Java, and provides Internet-based access to the MAXIMA symbolic computation

system.

2.1 Overview of IAMC System

The IAMC system has two parts: one is IAMC Client, the other is IAMC Server.

Figure 1 shows the relations of the two parts connected by stream sockets [7].

The programming of the work reported here includes the Java-coded client and

server parts, i.e., all the classes and functions in the IAMC Client and Server, as

well as the ANSI C coded MP conversion programs prefix2mp and maxima2mp.

The prefix2mp program is used for converting pre�x notation to MP format; the

maxima2mp program is used for converting MAXIMA output to MP format. The

displaymp program is written by Paul Wang and it is used to convert MP data to

di�erent formats such as in�x, pre�x, and LATEX. MP library is written by Simon Gray

as part of his MP project. Figure 2 shows the overall programming contributions.

IAMC Client will be accessed by the user, accept the user input and display

the output to the user. IAMC Server will connect to the local compute engine and

control the compute engine to do the mathematical computation. IAMC uses the

10

11

Compute
Engine

'
&

$
%

IAMC Client

'
&

$
%

IAMC Server

User

User InputDisplay

Answer Compute
Request

6

?
Socket Connection

6

?

�

-

Figure 1: Structure of IAMC

Client/Server model for IAMC Client and IAMC Server communication.

Usually a network application will involve a server and a client. A server process

provides a speci�c service on a host machine that o�ers such a service. Example

services are remote host access (telnet), �le transfer (ftp), and the World Wide Web

(http). Each network-wide service has its own unique port number that is identi-

cal across all hosts. The port number together with the Internet address of a host

identi�es a particular server anywhere on the Network. For example, ftp has port

number 21, and http 80. Currently, the �rst 512 port numbers (0-511) are reserved for

network-wide applications registered by the InterNIC. The next 512 ports (512-1023)

12

Wu Wu Wu Wu

pre�x2mp

(ANSI C)

MP
(C Library)

displaymp

(ANSI C)

Gray Wang Wang Gray

displaymp

(ANSI C)

IAMC Client
(Java)

IAMC Server
(Java)

maxima2mp

(ANSI C)

MP
(C Library)

�
�

�
�MAXIMA

�
-� -

?

@
@@R

? ? ?

� -

Figure 2: Programming Contributions

are semi-o�cial and are used for such standard services as remote UNIX login at 513

and remote printing at 515. Still higher port numbers are used for local applications

such as X Windows and NFS [8]. IAMC uses port number 4450 for experiments.

A client process on a host connects with a server on another host to obtain its

service. Thus, a client program is the agent through which a particular network

service can be obtained. Di�erent agents are usually required for di�erent services.

The IAMC Client sits at the user's site while IAMC Server locates on the compute

engine machine. The IAMC Server should have the right to access the compute engine,

because it needs to invoke the mathematical compute engine and do the user requested

job. From the user's point of view, the IAMC server is located on a remote machine

which supplies such computation service. The user doesn't need to know where it

is; he/she just needs to know the IAMC Server's name (like ox.mcs.kent.edu) and

the port number which is used for IAMC computation. Hopefully all the IAMC

13

Servers have unique port number to do such computation, just like 80 for http and

70 for gopher. In that case the user just inputs the server's name and the unique

port number will be automatically assigned to the system. IAMC uses MP as the

data communication format between the IAMC Client and IAMC Server. IAMC

Client will translate all requests into MP format and send to the IAMC server. For

IAMC Server's part, it should understand MP, and convert the MP data to the

appropriate data which is the input of the actual compute engine, after the compute

engine �nishes the requested job, the IAMC Server should collect the answer from

the compute engine and translate to MP data, then send the result back to the client.

IAMC Client and Server are implemented in Java [10] [7]. The Java programming

system is one of the most exciting recent developments in computing. Developed by

Sun Micro Systems, Java gained world-wide acceptance with unprecedented speed.

It is primarily due to Java's simple yet powerful mechanisms for object-oriented pro-

gramming (OOP) and network-based computing, two dominating trends shaping the

future of the computer and information industries. IAMC system chose Java as the

implementing language because IAMC is based on the Internet and Java is the best

networking language so far. The team that designed Java was well aware that if Java

was to support applications on networks, it would have to support a variety of systems

with a variety of CPU and operating system architectures. A Java application can

execute anywhere on the network, or on the Internet, because the compiler generates

an architecture-neutral object �le. Once a Java program is written, it stays written.

It doesn't need to be recompiled for each di�erent platform because Java programs are

compiled into Java bytecodes that run on any computer with a Java interpreter. The

bytecodes are architecture and operating system independent. Thus, Java programs

14

can be written and compiled once and then transmitted to run anywhere. Another

important reason for IAMC to choose Java is that since Java is an OOP language,

it can be extended very easily. We can add more operators and functions for the

mathematical computation.

2.2 IAMC Client

The IAMC client acts as an interface to the user. The IAMC client will read

the user's input and display the output to the user. After the IAMC Client gets the

user's Fortran-like in�x mathematical expression input, it will perform a grammar

check, that is, parse the input and tell the user whether the parse is successful or not.

When the user wants to send the request to the remote IAMC Server, IAMC will

translate the parsed data to MP format, open a TCP/IP socket to send the MP data

to the IAMC Server according to its name and port number, and wait for the answer

from the IAMC Server. In general, the result can be mathematical expressions in

MP format, help information in HTML, 2D or 3D plots in .gif, or other well-de�ned

information formats. The experiment here focuses on results in MP format. The

answer returned by the server is then displayed for the user. The IAMC client uses a

simple MP to in�x converter which displays the result in in�x form. This converter

can be extended to convert MP to pre�x notation, MathML, or even LATEX. Future

work can add a nice GUI front end for the IAMC client. Figure 3 shows the
ow of

one computation request.

The connection between the IAMC Server and Client is session-based. Once the

user opens a new session to an IAMC Server, the IAMC Client is connected to that

particular IAMC Server. The user can send as many requests as he/she wants to the

IAMC Server. After the user closes the session, the connection between the IAMC

15

Client and Server is gone; there is no context saved for the server. So after the user

opens another session, the IAMC will not remember the previous session's context,

such as variable assignments. It is possible for the IAMC client to save a sequence of

user input commands in a �le which can be batched to a server. This feature allows

a user to create IAMC command �les or to save a session to be continued later. This

feature is not currently implemented.

The IAMC Client also has the responsibility to translate between the in�x and

MP, save the MP formatted data to an .mp �le for future use, and send an exiting

MP �le to the server. Another duty for the IAMC Client is remembering the user's

input history and redisplaying it in order for the user to easily re-issue the earlier

input. Finally, the IAMC Client provides help facilities to help the user understand

the supported operators, input format, remote server's information, etc. We can

summarize the functions that the experimental IAMC Client supports:

� Get User Input: read user's input.

� Grammar Check: parse the input.

� Open MP File: convert and display MP data.

� Save MP File: convert to MP formatted data.

� New Session: open the connection to IAMC Server.

� Send Computation Request: send one MP �le to Server.

� Close Session: close the current connection with IAMC Server.

� History: display user's input history.

16

� Help: display help information.

� Exit: exit IAMC System.

2.3 IAMC Server

The IAMC Server connects to the IAMC client on one end and controls an external

compute engine on the other end. The IAMC server has two parts:

� The part that deals with the IAMC client is generic.

� The part that controls the external compute engine is speci�c to the engine.

The interface to IAMC Client is generic. All the IAMC Servers should have

common responsibilities. IAMC Server must have a speci�c IP address and port

number, and should always be listening for a connection from the IAMC Client.

IAMC Server should be able to access the actual mathematical compute engine, not

do computation itself; otherwise it is just another on-line calculator. Because the

data communication between IAMC Client and IAMC Server uses MP, all the IAMC

servers should support MP architecture.

The part which controls the external compute engine is speci�c to the actual

engine. IAMC Server acts as an \adapter" for the particular compute engine, so the

IAMC Server must be able to convert the MP data to the appropriate format as

input for that particular compute engine. For example: for MAXIMA the request for

getting the factors of polynomial x^2-y^2 is the command:

factor(x^2-y^2);

So an IAMC Server must understand its compute engine's language and know how to

start the engine, how to feed the input and in what format, how to get the answers,

17

and how to terminate the engine. Lastly, after the IAMC Server obtains the answers

from the compute engine, it will convert it to MP data and send it back to the

Client. Currently, the IAMC Server uses the server ox.mcs.kent.edu, which is a

UNIX machine in the Department of Computer Science at Kent State University.

It connects to the local mathematical compute engine MAXIMA, so now the IAMC

Server is speci�c for MAXIMA.

2.4 Object-Oriented Design

One important advantage of Java is its object orientation. The OO design of the

IAMC Client consists of the following classes:

� IAMCClient: manages the IAMC Client. This is the main control class. It

can read the user input, invoke other objects, and communicate with the IAMC

Server.

� Grammar: performs the grammar check and generates pre�x notation expres-

sions.

� Operator: represents a mathematical operator used in parsing and pre�x gen-

eration.

� Operand: represents a mathmatical expression used in parsing and pre�x gen-

eration.

� Mp: performs the conversions between MP and any other format.

� Pre�x: converts any pre�x string (internal representation) to MP format.

� Menu: displays the main menu of IAMC Client.

18

� Help: provides all help information.

� History: displays the history of user inputs.

� SendMP: send the MP data (including ending marker) to server.

� WriteToFile: stores the MP data coming from the server to an MP �le (ex-

cluding the ending marker).

� ArbCell, ArbList, ArbStack: are generic container classes fromWang's Java

book [7]. They are excellent examples of generic reusable codes. IAMC Client

uses the ArbStack class for generating pre�x notation.

The IAMC Server is relative simple. It has only two classes:

� IAMCServer: serves as the main control class to perform communications

with IAMC Client and the actual compute engine.

� WriteToFile (reuse): writes the MP data coming from the client to an MP

�le.

Figure 4 shows the relation of these classes.

With the above-described OO design, it is very easy and clear to extend the

existing functions. For example, if one wants to extend the grammar rule, he/she

only needs to extend the Grammar class. If a new operator has more information, one

can simply extend the Operator class.

19

'
&

$
%IAMC Server

MP MP

Internal
Representation

Internal
Representation

Grammar Check

Error

OutputInput

'
&

$
%

User

?

?

?

?

?

6

6

6

6

6

6

Figure 3: Flow of Computation Request

20

MenuHelp HistoryOperator Operand

Grammar

@
@

@

�
�
�

�
�

�
�

ArbStack

ArbList

ArbCell

Pre�xMp WriteToFile SendMP

IAMCClient

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

@
@
@
@
@
@
@
@

Q
Q

Q
Q

Q
Q

Q
Q

Q

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

IAMCServer

WriteToFile

�
-

Figure 4: IAMC Classes

CHAPTER 3

IAMC Client

This chapter will show the details of how the IAMC Client part is implemented.

It will emphasize the input parsing part; the conversion between ASCII and MP and

the interface to IAMC Server also will be described.

3.1 Parsing

The IAMC Client receives mathematical expressions and commands from the

user. The input is parsed and converted to MP form by a simple recursive descent

parser with a grammar that supports integer and
oating numbers, identi�ers, special

mathematical constants, mathematical functions, and operators.

3.1.1 In�x Input

User input is entered in in�x notation similar to Fortran. For example:

x*y-(z/x-(y+2))

sin(x*2-y*2)+cos(z)

Special constants include such quantities as \pi", \i", and \e". IAMC Client supports

the standard operators in Table 1 since they are common operators: their syntax,

number and order of arguments are quite standard. The IAMC Client grammar

will expect the supported operators to have the exact correct number and order

of arguments. All the other operators not listed in Table 1, such as limit, sum,

and prod, are considered unsupported operators. That means their syntax are not

21

22

Operator Name Representation

ADDITION +
SUBTRACTION -
MULTIPLICATION *

DIVISION /
POWER ^

SINE sin
COSINE cos
TANGENT tan

COTANGENT cot
ARCSINE asin

ARCCOSINE acos
ARCTANGENT atan
ARCCOTANGENT acot

SQUARE ROOT sqrt
EXPONENTIATION exp

NATURAL LOGARITHM log
FACTOR factor

DIFFERENTIATE di�
INTEGRATE integrate
EXPAND expand

Table 1: IAMC Supported Operators

standard; their number and order of arguments are di�erent according to di�erent

systems. They also can get parsed successfully as long as they are input as

operator (arg1, arg2, ... argN)

where (arg1, arg2, ... argN are math expressions). For example, if one inputs:

sum (x^2+x, x, 1, 9)

although the sum is not a supported operator, it satis�ed the rule and it will be

correctly parsed (while its syntax is unknown). Even if one inputs:

xyz (x)

23

it will be also parsed successfully and it will be considered that the operator name is

xyz and it has one argument x.

Variable (Identi�er) is any string which begins with letter and followed by letter or

digit. Number is any digit combination including one \." for real numbers. Some of

the supported operators, such as sin and factor, have only one argument (operand).

sin(x+y)

factor(x^6-1)

while some operators, such as integrate, have varied arguments (operands). Use

the command

integrate(exp, var)

to �nd the inde�nite integral of the expression exp with respect to the variable var.

On the other hand,

integrate(exp, var, high, low)

will be used to �nd the de�nite integral of the expression exp with respect to the

variable var from low to high.

3.1.2 Recursive Descent Parsing

For a given grammar, there are di�erent parsing technologies to choose from. Here,

the IAMC Client uses Recursive Descent Parsing [14] because it is simple, e�ective,

and easy to extend. One approach to writing a recursive descent parser is:

All legal strings in the language must be derived from the start nonterminal S.

Hence if we can write a procedure S() which matches all strings derivable from S,

24

then we are done. In order to do this, for each nonterminal N, we will construct a

parsing procedure N() which matches all strings derivable from N.

If a nonterminal N has only a single grammar rule, then its parsing procedure is

easy to write. To match the rule we know that we need to match each grammar

symbol on its right-hand side (RHS). There are two possibilities:

1. If the RHS symbol is a terminal symbol, check that the current lookahead

matches that terminal symbol. If it does, then advance the input, setting the current

lookahead to the next input symbol. If it does not, signal an error.

2. For each occurrence of a nonterminal symbol on the RHS, call, in sequential

order, the corresponding parsing procedure. A match will consume a pre�x of the

input with a rule for the nonterminal.

If a nonterminal N has multiple grammar rules, then the parsing procedure will

need to decide which rule to use. It can do so by looking at the current lookahead

token to see which of the candidate rules can start with the lookahead. If only a single

rule can start with the lookahead, then that rule is chosen. If it is always possible

to predict a unique rule for any nonterminal by looking ahead by at most one token,

then the grammar is said to be LL(1).

Hence a parsing function N() for nonterminal N will simply contain logic to pick a

rule based on the current lookahead, followed by code to match each individual rule.

Its structure will look something like the following:

N()
{

if (lookahead can start first rule for N)
{

match rule 1 for N
}
else if (lookahead can start second rule for N)
{

25

match rule 2 for N
}
... ...
else if (lookahead can start n'th rule for N)
{

match rule n for N
}
else
{

error();
}

}

Unfortunately, there are some problems with this simple scheme. A grammar rule

is said to be directly left recursive if the �rst symbol on the RHS is identical to the

LHS nonterminal. Hence, after a directly left recursive rule has been selected, the

�rst action of the corresponding parsing procedure will be to call itself immediately,

without consuming any of the input. It should be clear that such a recursive call will

never terminate. Hence a recursive descent parser cannot be written for a grammar

which contains such directly (or indirectly) left recursive rules; in fact, the grammar

cannot be LL(1) in the presence of such rules.

Fortunately, it is possible to transform the grammar to remove left recursive rules.

Consider the left recursive nonterminal A de�ned by the following rules:

A: A alpha
A: beta

where alpha is nonempty and alpha and beta stand for any sequence of terminal and

nonterminal grammar symbols. Looking at the above rules, it is clear that any string

derived from A must ultimately start with beta. After the beta, the rest of the string

must either be empty or consist of a sequence of one or more alpha's. Using a new

nonterminal A' to represent the rest of the string we can represent the transformed

grammar as follows:

26

A: beta A'
A':/* empty */
A': alpha A'

The above rules are not left recursive.

3.1.3 IAMC Math-Expression Grammar

The most important issue for using recursive descent parsing technology is to

remove left recursive rules. In the mathematical expression rules, there are many left

recursive rules such as

expression: expression '+' expression

After removing the left recursive rules according the above technology, we de�ne

the following rules which are currently supported by IAMC Client Grammar:

********* Simple IAMC Math-Expression Grammar *********

IAMC-Math-Grammar
: VAR ':' math-expression
: math-expression

math-expression
: SIGN math-expression
: VAR exprRest
: NUM exprRest
: '(' math-expression ')' exprRest
: OPS '(' math-expression ')' exprRest
: 'factor' '(' poly ')' exprRest
: 'expand' '(' poly ')' exprRest
: 'diff' '(' math-expression ',' VAR diffRest exprRest
: 'integrate' '(' math-expression ',' VAR intRest exprRest
: Unknown-OP '(' math-expression argRest ')' exprRest

OSP
: 'sin' | 'cos' | 'tan' | 'cot' | 'asin' | 'acos'

| 'atan' | 'acot' | 'exp' | 'log'
Unknown-OP

: VAR

argRest
: EMPTY

27

: ',' math-expression argRest

exprRest
: '+' math-expression
: '-' math-expression
: '*' math-expression
: '/' math-expression
: '^' math-expression
: EMPTY

poly
: SIGN poly
: VAR polyRest
: INT polyRest
: '(' poly ')' polyRest

polyRest
: '+' poly
: '-' poly
: '*' poly
: '^' INT polyRest
: EMPTY

diffRest
: ')'
: ',' NUM ')'

intRest
: ')'
: ',' NUM ',' NUM ')'

SIGN
: '+'
: '-'

NUM
: INT
: REAL
: 'pi'
: 'e'
: 'i'

VAR
: letter varRest

varRest
: letter varRest
: digit varRest
: EMPTY

********** End of Grammar **********

28

3.1.4 Tokens

Tokens are separated by token separators. Space, \\t", and \\n" are always token

separators, but \+", \-", *", \/", \^", \(", \)", \," , and \:" are considered both

tokens and token separators. So, in the expression x-y+z there are 5 tokens even

there is no space in between at all. The SIGN token, POSITIVE or NEGATIVE, should

be distinguished from PLUS and MINUS since they are the same representation. If it

is a SIGN (POSITIVE or NEGATIVE), it must satisfy the following conditions:

1). There is no space between the SIGN and the following expression

2). The only allowed token before the SIGN is \(", \,", or \:".

3). Otherwise it is NOT the SIGN token.

So in the following expression:

-x*y+2

- is NEGATIVE, + is PLUS. In

-x-(-y-x)

the �rst and the third - are NEGATIVE signs, the second and the forth are MINUS

tokens.

3.1.5 Internal Representation

For the valid in�x user input which was parsed successfully, IAMC has an internal

representation in pre�x format. All mathematical expressions will be kept in pre�x

notation and have the following format

(operator operand1 operand2 ... operandN)

29

The operands operand1 operand2 ... operandN can be subexpressions. One example

is the expression

factor(x^2-y^2)

The internal representation for the above expression will be

((factor) ((-) ((^) x 2) ((^) y 2)))

The reason for putting operator into ()s is that it is easy to extract the operator; also

we can add more information into the ()s besides the operator name. There are two

reasons that we chose pre�x as internal representation. Firstly, it is very close to MP

data format. MP parses all data in the form of annotated parse trees. All data are

exchanged as linearized annotated parse trees. A linearized version of the annotated

tree is formed from a pre�x parse of the tree. Node packets are distinguished from

annotation packets by their position in the stream of packets. The second reason

we chose pre�x as our internal representation is that it is very easy to implement

the 2-D display; the pre�x representation makes it easy to separate the operator and

operands.

3.1.6 Pre�x Notation Generation

All operators have a pre-assigned operator precedence [16]. The operator ^ has

higher precedence than operator * and operator /; operator * and / have higher

precedence than operator + and operator -; all the other operators have the highest

precedence and are treated as unary operators.

To generate pre�x notation, two stacks A and B are used. Stack A holds operators;

stack B holds operands. The following action rules are used in parsing and generating

pre�x notation:

30

1. An incoming operand is pushed onto Stack B.

2. If the incoming operator has higher precedence than the top operator's prece-

dence on Stack A (or Stack A is empty), push the incoming operator onto stack

A. Otherwise, pop the operator(s) in Stack A, pop the associated operand(s)

in Stack B, generate the pre�x notation, and push the pre�x result back onto

Stack B.

3. When the incoming token is \(", push it into Stack A, (the special \(" has

lowest precedence), and also push it onto Stack B to mark the beginning of an

expression.

4. When the incoming token is \)", all the operators before the \)" in Stack A

should be popped and the associated operands in Stack B also should be popped

to generate pre�x notation. Push the pre�x result into Stack B, pop up \("

from Stack A; then look at the top operator in Stack A; if it is a unary operator

(except NEGATIVE or POSITIVE sign), it will also be popped and the pre�x

notation is constructed.

5. If the incoming token is \,", all the operators before the \(" in Stack A should

be popped and the associated operands in Stack B also should be popped to

generate pre�x notation. Push the pre�x result into Stack B.

Suppose the user inputs

x*2-sin(x+y)/y*z

the �nal pre�x notation will be

((-) ((*) x 2) ((*) ((/) ((sin) ((+) x y)) y) z))

31

Figure 5 shows the steps of stack information during the pre�x notation generation.

*
2
x - ((*) x 2)

+
(
sin
-

y
x
(

((*) x 2)

A B A B A B

-
((sin) ((+) x y))

((*) x 2)
/
-

y

((sin) ((+) x y))

((*) x 2)

A B A B

*
-

z
((/) ((sin) ((+) x y)) y)

((*) x 2) -

((*) ((/) ((sin) ((+) x y)) y) z)

((*) x 2)

A B A B

((-) ((*) x 2) ((*) ((/) ((sin) ((+) x y)) y) z))

A B

Figure 5: Example of Pre�x Generating

32

3.2 ASCII{MP Conversions

MP is used for e�cient exchange of data between scienti�cally oriented software

tools. Mathematical data represented in ASCII are translated to MP before trans-

mission. MP data received also need to be converted into other formats.

3.2.1 Pre�x to MP Conversion

The IAMC Client stores input in pre�x form. Before being sent to the remote

IAMC Server, pre�x data needs to be converted to MP. MP is supported by a set

of C library functions. Thus, the ASCII to MP conversion is also written in C. The

IAMC Client calls the Java runtime method to invoke the prefix2mp process.

'
&

$
%

IAMC Client
Java Program

'
&

$
%

pre�x2mp
ANSI C Program

(Uses MP Library)

Pre�x(ASCII)

MP(Binary)

�

-

Figure 6: Java Exec Method

When the Java Virtual Machine runs, an instance of the class Runtime records

the status of the running system and provides operations it can perform. The static

method call

Runtime rt = Runtime.getRuntime();

returns the current Runtime object rt. It can initiate other programs on the platform

from Java. Create a process, an instance of Process, with an exec method call:

Process p = rt.exec (command);

33

The child process [7] created runs independently on the host platform. The Process

object allows the program to control and communicate with the child process. Figure

6 shows the relation between the Java program and the C program prefix2mp. IAMC

Client passes the pre�x string to the prefix2mp program. The prefix2mp function's

duty is to construct an MP parsing tree according to the input.

The prefix2mp program uses MP de�ned operations such as IMP PutSint32 to

perform its duty.

3.2.2 MP to ASCII Conversions

The result coming back from the IAMC server, or from an MP �le that a user

opens, is displayed by converting it to an ASCII format: pre�x, in�x, or LATEX. This

is simply done by using an existing prototype program displaymp, written in ANSI C,

which takes an MP input and converts it to pre�x, in�x, or LATEX as requested. Again

the Java exec mechanism is used. By default, results are displayed with displaymp

-infix. Commands are provided in the IAMC client to display any given result in

the other two formats.

3.3 Interface to IAMC Server

In the IAMC Client part, the interface between IAMC Server and Client are

implemented by three methods in the IAMCClient class:

1. beginSession: simply asking for a connection to a particular IAMC Server.

2. remoteCompute: send compute request in MP format to the server and get

the answer back in MP format.

3. endSession: close the connection with the server.

34

Meanwhile, the class WriteToFile performs the duty of writing the answer coming

from the server to a temporary MP �le without the ending marker \ENDMP".

CHAPTER 4

IAMC Server

The experimental IAMC Server is a Java program invoked by the inet daemon.

As such, it communicates with the IAMC Client through standard input and standard

output. The evolving IAMC design calls for MCP, the Mathematical Computation

Protocol, as the sever-client protocol. The MCP speci�cation is on-going and promises

to support multiple mathematical encoding schemes, among other features. However,

the experiment here simply assumes each message between the server and the client

to be MP-encoded.

The design of the IMAC Server consists of two major parts:

1. client interface.

2. external compute engine control.

These two parts will be described separately. Modi�cations to the compute engine

for connecting to the IAMC Server are also described.

4.1 Interface to IAMC Client

The IAMCServer class controls the interface to the IAMC Client. When IAMC

Server is invoked it starts the background compute engine, then waits for compute

requests from the client (via standard input). The WriteToFile class will be re-used

here. When the server reads data from client, WriteToFile will write such data into

a temporary MP �le and delete the ending marker \ENDMP". The method getans

35

36

of IAMCServer will collect the compute answer from compute engine, convert it to

MP data, then send it back to client. When IAMC Client closes its socket, the Server

will get the end of �le indication.

4.2 The Compute Engine

The IAMC Server controls a MAXIMA [12] system running under UNIX. MAX-

IMA is a version of MACSYMA [23], a computer algebra system originally developed

by the MATH Lab Group at MIT. The MAXIMA used is in Common Lisp (CL) with

enhancements from the University of Texas at Austin and Kent State University.

MAXIMA o�ers a wide range of capabilities, including di�erentiating and integrating

expressions, factoring polynomials, plotting expressions, solving equations, manipu-

lation of matrices, and computing Taylor series. MAXIMA is also a programming

environment in which the user can de�ne mathematical procedures tailored to his or

her own needs. It can work with symbols, polynomial expressions, equations, and

numbers. It allows the widespread use of many mathematical operations with vari-

ous data types such as integer, rational, various sizes of
oating points, and complex

numbers. It also supports the use of irrational numbers such as \pi". Many higher

level data types and operations are also available including polynomials and matrices.

MAXIMA is written in AKCL LISP. This allows users to develop their own high-level

MAXIMA functions that call other high-level MAXIMA functions, MAXIMA data

types, or LISP level functions. Any MAXIMA level function can be accessed at LISP

level, and functions written at LISP level can be accessed at the MAXIMA level.

37

4.3 Interface to Compute Engine

Since MAXIMA is a local program, the IAMC Server just calls the Java Runtime

method to execute the MAXIMA program in the background. The IAMC Server

maintains two sets of input/output for di�erent purposes: one is from/to the IAMC

Client, the other is from/to MAXIMA program. The IAMC Server gets data (in MP

format) from IAMC Client, converts it into MAXIMA input, sends it to MAXIMA,

collects the results from MAXIMA, translates them into MP format, and sends them

back to IAMC Client.

MP is the data format for IAMC Client and IAMC Server communication. One

of the IAMC Server's responsibilities is to act as an adapter between compute engine

and MP. Each di�erent compute engine requires di�erent treatment. Thus the server-

to-engine interface is custom for di�erent engines. When IAMC Server gets the MP

data from IAMC Client, it should translate such MP requests to the compute engine

input format, then send them to the compute engine. For MAXIMA, the input

should be in in�x ASCII format which is Fortran-like syntax followed by ; as the

command terminator. For easy experimentation, the IAMC Server invokes a child

process displaymp -infix to convert the MP request from the Client to an in�x

format string, attaches a semicolon to it, then sends the resulting ASCII string to

MAXIMA as input.

Handling MAXIMA output is a little more complicated. Normally, the MAXIMA

top level is a read-eval-print loop much like that of lisp [12]:

1. The next command typed by the user is read.

2. The command is parsed and converted to internal form.

3. This internal form is evaluated by the function meval, the MAXIMA evaluator.

38

The meval execution produces a result which is in valid MAXIMA internal represen-

tation.

4. The result is simpli�ed by the function simplifya which transforms the answer

and returns a valid internal representation.

5. The �nal answer is displayed in 2-D form by displa.

6. The prompt for the next C-line is displayed and the cycles restarts from step

1.

So, when we issue the command factor(x^3-1); to MAXIMA, after the displa func-

tion the output will look like:

(C1) factor(x^3-1);
2

(D1) (X - 1) (X + X + 1)

The above output is useless for the IAMC Server, because the structure of the

output is lost. The Server needs the un-rendered result from MAXIMA for converting

to MP data. This means a slight modi�cation to MAXIMA for the purpose of being

controlled by the IAMC Server. We expect a certain amount of minor modi�cation

to any existing compute engine before it can be made into a part of IAMC.

The following simple Lisp program newdispla.lsp does the job:

;;;;;;;;;;;;;;;;; File: newdispla.lsp ;;;;;;;;;;;;;;;;;;;;;;;;;
;; Purpose: Makes maxima display prefix internal form
;;
;; Usage: load this file into maxima
;; loadfile("newdisplay.lsp");
;;
;; Author: Paul S. Wang
;; Date: 2/3/98
;;;

(in-package 'maxima)
(defun displa(exp)

(print 'BEGIN-EXP)

39

(print exp)
(print 'END-EXP)
(terpri)

)

The �le newdispla.lsp should be loaded into MAXIMA �rst to rede�ne the

displa function. The modi�cation causes MAXIMA to return the internal pre�x

representation as �nal output for any computation. The above example now becomes

(C2) factor(x^3-1);

BEGIN-EXP
((MLABLE) $D2
((MTIMES SIMP FACTORED) ((MPLUS SIMP IRREDUCIBLE) -1 $X)
((MPLUS SIMP IRREDUCIBLE) 1 $X ((MEXPT SIMP RATSIMP) $X 2))))

END-EXP

Now the IAMC Server-to-MAXIMA interface can convert this data format into

MP. A C program maxima2mp is written for this purpose. The maxima2mp program is

similar to prefix2mp. The only di�erence is maxima2mp needs to convert the internal

MAXIMA representation for operators and identi�ers to the regular ASCII form.

Basically it strips the \$" sign and converts operators and identi�ers appropriately.

For example, MTIMES becomes *, and $X is X. $D2 is an identi�er that labels the whole

expression. Subsequent user commands can use D2 to recall the expression. Thus, the

above MAXIMA output should be converted to the following pre�x ASCII expression

representation:

((assign) D2
((*) ((+) -1 x) ((+) 1 x ((^) x 2)))
)

Such modi�ed pre�x data can then be translated to MP data using the same tech-

niques as prefix2mp. Figure 7 shows the structure of the interface to the external

engine.

40

Another duty of the interface is to convert the commands fromMP form to the cor-

responding form for the compute engine. For example, in MAXIMA, the INTEGRATE

operator has the name integrate, while in Maple, the name is int. An IAMC Server

for Maple should convert integrate to int before sending it to Maple.

4.4 Server-Client Communication

IAMC Client and IAMC Server use stream socket for communications. A socket

is a software mechanism representing a communication's entry point on the Internet.

Since IAMC Client and IAMC Server are running on di�erent host computers, inde-

pendent processes must be able to initiate and/or accept communication requests in

an asynchronous manner. A Client process uses its own socket to communicate with

another socket belonging to a server process. Each host computer on the Internet

creates its own sockets to communicate with other sockets on the Internet. A socket

address consists of the numerical IP address of the host computer and an integer port

number. Di�erent types of sockets support di�erent protocols. Communication takes

place between sockets of the same type. Two important types are Stream socket and

Datagram socket [8]. IAMC uses the stream socket. With a stream socket, a process

can dial another stream socket's address and make a connection. A pair of con-

nected stream sockets supports bidirectional, reliable, sequenced, and unduplicated

ow of data without record boundaries. Stream sockets use the Transmission Control

Protocol (TCP/IP).

The Java Socket and ServerSocket classes provide the client- and server-side

stream socket mechanisms. In Java, a socket is the basic object in Internet communi-

cation, which uses the TCP protocol. TCP is a reliable stream network connection.

The Socket class provides methods for stream I/O, which make reading from and

41

writing to a socket easy. ServerSocket is an object used for Internet server pro-

grams that listen to client requests. ServerSocket does not actually perform the

service; instead, it creates a socket object on behalf of the client. The communication

is performed through that object. Sockets are based on a client/server model. One

program (the server) provides the service at a particular IP address and port. The

server listens for service requests. Any program (client) that wants to be serviced

needs to know the IP address and port to communicate with the server [7].

An advantage of the socket model over other forms of data communication is that

the server doesn't care where the client requests come from. As long as the client

is sending requests according to the TCP/IP protocol, the requests will reach the

server, provided the server is up and the Internet isn't too busy. This also means

that the client can be any type of computer. No longer are we restricted to UNIX,

Macintosh, DOS, or Windows platforms. Any computer that supports TCP/IP can

talk to any other computer that supports it through this socket model. This is a

potentially revolutionary development in computing. Instead of maintaining armies

of programmers to port a system from one platform to another, we write it once, in

Java. Any computer with a Java virtual machine can run it.

The current IAMC server is on host ox.mcs.kent.edu and uses port 4450 for

experiments. The IAMC Server �rst creates a server-side stream socket with

Serversocket listen = new ServerSocket(port);

on ox at the port number 4450. The socket is used to listen and wait for incoming

connections:

Socket s soc = listen.accept();

42

A new Socket object is returned when an incoming connection is made, that is, when

an IAMC Client requests connection. After the connection is made, the Client and

Server will communicate with each other. The Client will send the MP data to the

Server and attach a string marker \ENDMP" to each MP request to indicate that

one MP request is completed. When the Server receives the \ENDMP" marker, it

knows that is the end of this MP data. Then the Server can send such MP data

(excluding \ENDMP") to the displaymp program for conversion. When the server

gets the answer from the MAXIMA and converts it to MP, it will send the data

back to the Client. Also it will attach the same marker to the end to let the Client

know where the MP data ends. Finally, when the IAMC Client decides to end such

a computation session, it will close the I/O and the socket. The IAMC Server side

will then automatically end this connection.

A better way to manage the server is to register it with inetd (inet daemon) (in

the con�guration �le inetd.conf). This way the server does not have to set up its

own socket but just uses standard I/O instead. This is because inetd will arrange

a stream socket connection with the incoming client, redirect standard I/O to the

stream socket, then fork the IAMC Server.

43

'
&

$
%

Compute Engine

'
&

$
%

Engine
Interface

MP-to-Engine
Converter

Engine-to-MP
Converter

MP
Expression

'
&

$
%IAMC Client

?

6

?

6

?

6

��
��

��
��

��

HH
HH

HH
HH

HH

Figure 7: Interface to Compute Engine

CHAPTER 5

IAMC Usage Examples

The IAMC system is an ASCII menu-driven application. The following exam-

ples show the actual scripts of using IAMC for several computations. Each example

demonstrates a di�erent aspect of the IAMC system.

5.1 Example 1

The purpose of this example is to demonstrate the menu of IAMC Client and

how to connect with IAMC Server. Also it shows how the operator precedence issue

can be correctly recognized and the correct answer of numeric computation can be

obtained from the IAMC Server.

**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):2
Server:ox.mcs.kent.edu MAXIMA connected.
**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**

44

45

Select (1-11):1
Please input your expression:
-19*98^2+1998/2-(-1998-1998)
Valid input.
**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):4
d2: -177481
**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):5
Server:ox.mcs.kent.edu MAXIMA closed.

5.2 Example 2

This example shows that IAMC can also handle real numbers, and the special

constants. Also it tests the supported operators sin, log, and sqrt.

**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):1
Please input your expression:
sin(pi)+log(e^2)+sqrt(19.98)
Valid input.

46

**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):4
d2: 6.469899178

5.3 Example 3

This example has two purposes: one is to show that IAMC can handle unsupported

operators such as sum and get the correct answer back; the other is to show how IAMC

deals with user input error. That is, IAMC will show where it is stopped (the next

token is wrong in the input).

**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):1
Please input your expression:
sum(x^2+x, x, 1, 10)
Valid input.
**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):4

47

d2: 440
**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):1
Please input your expression:
sin(x+cos(x+y1/z1*(kk^2)))-integrate(x^9,x,1,,4)
Invalid input, parse stopped at:
sin(x+cos(x+y1/z1*(kk^2)))-integrate(x^9,x,1,

5.4 Example 4

This example is meant to show in one session how the user can do computation,

make variable assignment, and use label representation. Also it demonstrates that

IAMC can do symbolic computation, keep the context of one session, and recognize

the naming of an expression and label representation. The symbolic computation

operators factor, integrate, expand, and diff will also be tested.

**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):1
Please input your expression:
y:9*x^2-1
Valid input.
**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *

48

* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):4
d2: -1 + 9*x^2
**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):1
Please input your expression:
factor(y)
Valid input.
**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):4
d3: (-1 + 3*x)*(1 + 3*x)
**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):1
Please input your expression:
integrate(d3,x,1,4)
Valid input.
**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *

49

* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):4
d4: 186
**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):1
Please input your expression:
expand(d3)
Valid input.
**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):4
d5: -1 + 9*x^2
**
* IAMC-Client MENU *
--
* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):1
Please input your expression:
diff(d5,x)
Valid input.
**
* IAMC-Client MENU *
--

50

* 1). Type your infix input 2). New Session *
* 3). Send MP file to Server 4). Send current exp to Server *
* 5). End Session 6). History *
* 7). Save current exp to MP 8). Save current result to MP *
* 9). Open MP file 10). Help *
* 11). Exit *
**
Select (1-11):4
d6: 18*x

CHAPTER 6

Conclusion

Work reported here is part of the overall IAMC e�ort being conducted by Wang's

research group at ICM/Kent. This work builds an experimental client-server package

for a bare-bones version of an IAMC system, and the system does serve to prove the

concept and to expose many details for further investigation.

Programming work reported here includes the Java-coded client and server parts,

i.e., all the classes and functions in the IAMC Client and Server, as well as the ANSI C

coded MP conversion programs prefix2mp and maxima2mp. Alos Gray's MP library

and Wang's displaymp are used on the client and server parts. It is hoped that the

programming here can provide a starting point for modi�cation, improvements, and

further development of IAMC.

Also, the current system does not take full advantage of MP. Not all MP supported

data formats can be converted yet. This is just a matter of extending the program

to handle all cases.

Future work on IAMC includes a GUI on the Client side, full speci�cation of

MCP, Java coded MCP classes to be used on the Client and the Server sides, mak-

ing IAMC compatible and accessible via the Web and via email, supporting multiple

mathematical encoding formats, handling graphing/plotting, providing help and doc-

umentation information for the user, aborting computations, and applying MCP in

problem solving environments.

51

52

It is the hope of the author that this work has provided some ground work for

future research in the area of Internet Accessible Mathematical Computation.

BIBLIOGRAPHY

[1] Doleh, Y. K. and Wang, P. S. \SUI: A System Independent User Interface for
and Integrated Scienti�c Computing Environment," Proceedings of ISSAC'90,
Addison-Wesley 1990.

[2] Kajler, N. \CAS/PI: a Portable and Extensible Interface for Computer Algebra
Systems," Proceedings of ISSAC'92, ACM Press 1992.

[3] Gray, S. and Kajler, N. and Wang, P. S. \MP: A Protocol for E�cient Exchange
of Mathematical Expressions," Proceedings of ISSAC'94, ACM Press 1994.

[4] Kajler, N. and Soi�er, N. \A Survey of User Interfaces for Computer Algebra
Systems," Journal of Symbolic Computation 11, 1995.

[5] Young, D. A., Wang, P. S. \GI/S: A Graphical User Interface for Symbolic
Computation Systems," Journal of Symbolic Computation 4, 1987.

[6] Gray, S., Kajler, N,, and Wang, P. S. \Design and Implementation of MP, a Pro-
tocol for E�cient Exchange of Mathematical Expressions," Journal of Symbolic
Computation 11, 1996.

[7] Wang, P. S. Java with OOP and Web Applications, Brooks/Cole Publishing Co.,
Paci�c Grove, CA, ISBN 0-534-95206-2, 1998

[8] Wang, P. S. An Introduction to UNIX with X and the Internet, PWS Publishing
Co., Boston, MA, ISBN 053494768-9, July 1996.

[9] Sams.net Publishing Internet Unleashed, 2nd edition, ISBN 0-672-30714-6, 1995.

[10] Newman, A. Using Java, Que Publishing, ISBN 0-7897-0604-0, 1996.

[11] Symbolics, Inc. Macsyma User's Guide, January 1988.

[12] Wang, P. S. \Helpful Hints to MAXIMA Programmers," (class handout).

[13] Doleh, Y. K. \The Design and Implementation of a System Independent User
Interface for an Integrated Scienti�c Computing Environment," Ph.D. Disserta-
tion, Kent State University, May 1995.

[14] Recursive Descent Parsing \http://opal.cs.binghamton.edu/~zdu/"

[15] Ion, P. and Miner R. \Mathematical Markup Language," W3C Working Draft,
January 6, 1998.

53

54

[16] Aho, A. V., Sethi, R., and Ullman, J. D. Compilers Principles, Techniques, and
Tools, Addison-Wesley Publishing, ISBN 0-201-10088-6, 1985.

[17] Smith, C. J. and Soi�er, N. M. \MathScribe: A User Interface for Computer Al-
gebra Systems," Proceedings 1986 Symposium on Symbolic and Algebraic Com-
putation, pp.7-12, ACM Press 1986.

[18] Arnon, D., Waldspurger, C., McIsaac, K. \CaminoReal User Manual," Version
1.0, Technical Report CSL-87-5, Xerox PARC, 1987.

[19] Paracomp, Inc. Milo User's Guide, 123 Townsend St., Suite 310, San Francisco,
CA 94107, 1988.

[20] Purtilo, J. M. \Polylith: An Environment to Support Management of Tool
Interfaces," ACM Sigplan Notice, 20(7): 12-18, July 1985.

[21] Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B.,
Watt, S. M. Maple V Language Reference Manual, Springer-Verlag. ISBN 0-387-
97622-1, 1991.

[22] Jenks, R. D. and Sutor, R. AXIOM, the Scienti�c Computation System,
Springer-Verlag, 1992.

[23] Genesereth, M. R. \An Automated Consultant for MACSYMA," Proceedings
1977 MACSYMA Users' Conference, pp. 309-314, 1977.

[24] Leong, B. \Iris: Design of an User Interface Program for Symbolic Algebra,"
Proceedings 1986 Symposium on Symbolic and Algebraic Computation, pp.1-6,
ACM Press, July 1986.

[25] MathSoft, Inc. \MathStation," Version 1.0 (a computer program). 201 Broad-
way, Cambridge, MA, 02139, 1989.

[26] Abbott, J., Diaz, A., and Sutor, R. S. \A Report on OpenMath," ACM SIGSAM
Bulletin, pp. 21-24, March 1996.

[27] Pintur, D. A. \MathEdge: The Application Development Toolkit for Maple,"
MapleTech 1(2), pp. 31-38, 1994.

[28] von Sydow, B. \The design of the Euromath system," Euromath Bulletin 1(1),
pp. 39-48, 1992.

[29] Diaz, A., Kaltofen, E., Schmitz, K., Valente, T., Hitz, M., Lobo, A., and Smyth,
P. \DSC: A System for Distributed Symbolic Computation," Proceedings of
ISSAC'91, Bonn, Germany, pp. 323-332, ACM Press, July 1991.

[30] Dalmas, S., Ga�etano, M., and Sausse, A. \ASAP: a protocol for symbolic com-
putation systems," INRIA Technical Report 162, March 1994.

55

[31] Abbott, J., and Traverso, C. \Speci�cation of the POSSO External Data Rep-
resentation," Technical report, Sept. 1995.

[32] Wolfram, S. Mathematica: A System for Doing Mathematics by Computer,
Addison-Wesley, 1988.

[33] Wolfram Research, Inc. \MathLink Reference Guide," Mathematica Technical
Report, 1993.

[34] Bonadio, A. and Warren, E. Theorist Reference Manual, Prescience Corporation,
814 Castro St., San Francisco, CA 94114, 1989.

[35] XML \http://www.arbortext.com/xml".

[36] SGML \http://www.sil.org/sgml/sgml.html".

[37] HTML \http://www.w3.org/TR/".

[38] Calculators \http://www-sci.lib.uci.edu/HSG/RefCalculators.html".

[39] Fitch, J. P. CAMAL User's Manual, University of Cambridge Computer Labo-
ratory, 2nd edition, 1983.

[40] Greuel, G. M., P�ster, G., and Sch�onemann, H. \Singular Reference Manual,"
Reports On Computer Algebra, number 12, Centre for Computer Algebra, Uni-
versity of Kaiserslautern, May 1997.

