Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Application Note

Multimedia Processor for Mobile Applications

ITU-R BT.656 Interface

EMMA Mobile 1

Document No.S19900EJ1V0AN00Date PublishedAug, 2009

© NEC Electronics Corporation 2009 Printed in Japan

PREFACE

Purpose	The purpose 1 ITU-R BT.65	of this document is to introduce the usage of EMMA Mobile 56 (NTS) interface.		
Organization	This documer	t includes the following:		
	Chapter 1. Overview			
	Chapter 2. Usage of NTS Interface			
	Chapter 3	8. Sample of NTS Operation		
	Appendix	NTS Driver Function		
Notation	Here explains	the meaning of following words in text:		
	Note	Explanation of item indicated in the text		
	Caution	Information to which user should afford special attention		
	Remark	Supplementary information		

Related document The following tables list related documents.

Reference Document

Document Name	Version/date	Author	Description
S19268EJ1V0UM00_1chip.pdf	1 st edition	NECEL	User's Manual
S19265EJ1V0UM00_ASMUGIO.pdf	1 st edition	NECEL	User's Manual
S19257EJ1V0UM00_ITU-R.pdf	1 st edition	NECEL	User's Manual
S19907EJ1V0AN00_GD.pdf	1 st edition	NECEL	GD Spec
S19901EJ1V0AN00_SPI.pdf	1 st edition	NECEL	Application Note
S19905EJ1V0AN00_I2C.pdf	1 st edition	NECEL	Application Note
	Dav. A	Analog	Specification
ADV7179KCP.pdf	Rev. A	Devices	

Disclaimers

- The information contained in this document is subject to change without prior notice in the future. Refer to the latest applicable data sheet(s) and user's manual when designing a product for mass production.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this documents or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customers' equipment shall be done under the full responsibility of the customer. NEC Electronics assume no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.

Note)

- 1. "NEC Electronics" as used in this document means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- 2. "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above)

CONTENTS

Chapter 1 Overview	7
1.1 Introduction	7
1.2 Development Environment	7
Chapter 2 Usage of NTS Interface	8
2.1 Normal Procedure of NTS Operation	8
2.2 Detail of Normal NTS Operation Procedure	9
2.2.1 NTS Initialization	9
2.2.2 Configure the External Encoder IC	10
2.2.3 Configure NTS module	10
2.2.4 Start NTS Processing	10
2.2.5 NTS Processing	10
2.2.6 NTS Reset	11
2.2.7 Reset the External Encoder IC	11
Chapter 3 Sample of NTS Operation	12
3.1 Outline of NTS Operation Sample	12
3.2 Operation Flow of NTS Example	13
3.3 Detail of NTS Sample	14
3.3.1 Prepare Source Data for NTS Sample	14
3.3.2 NTS Initialization	14
3.3.3 ADV7179 Setting	14
3.3.4 NTS Configuration	15
3.3.5 Start NTS Processing	17
3.3.6 NTS Processing	17
3.3.7 NTS Reset	17
3.3.8 Release ADV7179	17
3.4 ADV7179 Color Bar Function	18
Appendix A. NTS Driver Function	19
A.1 NTS API function list	19
A.2 Type Define	19
A.2.1 Naming rule and coding rule	19
A.2.2 Structure	19
A.3 Function Detail	20
A.3.1 Initialization Function	20
A.3.2 Release Function	21
A.3.3 Setup Function	22
A.3.4 Start Function	23

AN	INEX Modification History	26
	A.3.6 INT Handler Function	25
	A.3.5 INT Enable Function	24

LIST OF TABLES

Table 1-1 Hardware Environment	7
Table 1-2 Software Environment	7
Table 3-1 Configuration of NTS Sample	15
Table 3-2 Default Setting Value of ADV7179 for NTSC/PAL Mode	16
Table A-1 NTS Driver Function List	19
Table A-2 Structure Define	19

LIST OF FIGURES

Figure 1-1 Normal NTS Operation Flow	8
Figure 3-1 Data Flow Chart of NTS Samples	. 12
Figure 3-2 Operation Flow of NTS Sample	. 13
Figure A-1 NTS Initialization	. 20
Figure A-2 NTS Release	. 21
Figure A-3 NTS Setup	. 22
Figure A-4 NTS Start	. 23

Chapter 1 Overview

1.1 Introduction

In this document, the below contents of EMMA Mobile 1 ITU-R BT.656 (NTS) interface will be described.

- 1) the normal process procedure of NTS interface
- 2) usage sample of NTS

As additional, the EMMA Mobile 1 NTS driver interface of EMMA Mobile 1 evaluation program will be explained.

About detail of NTS interface, please refer to "EMMA Mobile 1 ITU-R BT.656 Interface User's Manual".

1.2 Development Environment

• Hardware environment of this project is listed as below.

Table 1-1 Hardware Environment

Name	Version	Maker
EMMA Mobile 1 evaluation board	-	NEC Electronics
(PSKCH2Y-S-0016-01)		
PARTNER-Jet ICE ARM	M20	Kyoto Microcomputer Co. Ltd

• Software used in this project is listed as below.

Table 1-2 Software Environment

Name	Version	Maker
GNUARM Toolchain	V4.3.2	GNU
WJETSET-ARM	V5.10a	Kyoto Microcomputer Co. Ltd

Chapter 2 Usage of NTS Interface

EMMA Mobile 1 NTS interface supports 2 standards: NTSC and PAL. Operation flows of NTS interface:

- 1) fetches YUV422 image data form a frame buffer;
- 2) converts it to ITU-R BT.656-compliant parallel data;
- 3) outputs to an external NTSC/PAL encoder IC

2.1 Normal Procedure of NTS Operation

Normal NTS operation procedure is shown as below.

Figure 1-1 Normal NTS Operation Flow

2.2 Detail of Normal NTS Operation Procedure

2.2.1 NTS Initialization

When do NTS initializations, unreset NTS clock by setting ASMU register as below. It's necessary to switch the alternate pin to NTS function.

Related register: RESETREQ0; RESETREQ0ENA; AHBCLKCTRL0; APBCLKCTRL0; GCLKCTRL2; GCLKCTRL2ENA; CHG_PINSEL_G64; CHG_PINSEL_G80; CHG_PULL_G08;

Explanation:

GIO P72 ~ P81 are alternated with NTS and other modules.

When switch the alternate pins to NTS function:

bit [31:16] of the register "CHG_PINSEL_G64" are set to "01 01 01 01 01 01 01 01 01"; bit [5:0] of the register "CHG_PINSEL_G80" are set to "01 01 01".

GIO P72 is alternated with NTS_CLK pin.

For NTS clock setting, configure "CHG_PULL_G72" as below:

Signal	Setting	Function	
IE	1	Allows input	
UPC	0	Not care	
POENB	1	Disable Pull-Up/Down	

Note:

1. More detail about the CHG registers, please refer to "EMMA Mobile 1 One Chip User's Manual".

2. About the explanation of all the ASMU registers mentioned in this document, please refer to **"EMMA Mobile 1 ASMU/GIO Interface User's Manual**".

2.2.2 Configure the External Encoder IC

Configure the external encoder IC according to its' specification or user's manual.

2.2.3 Configure NTS module

NTS interface supports PAL mode and NTSC mode. So configure the NTS module according to the specified output mode;

Set NTS interrupt register as necessary.

Related registers: NTS_CONTROL; NTS_FRAMESEL; NTS_YAREAAD_A/B/C; NTS_UVAREAAD_A/B/C; NTS_HOFFSET; NTS_INTENCLR; NTS_FFCLR; NTS_INTENSET;

2.2.4 Start NTS Processing

Start NTS processing by setting NTS_OUT to the not-0 value. Different setting value performs the different output mode.

Note:

Name	Setting	Function	
NTS_OUT	00b	Output OFF (all-0 data is output)	
	01b	Blackback output	
	10b	Blueback output	
	11b	Normal output	

2.2.5 NTS Processing

After start the NTS processing, the source data are fetched and converted to the NTS compliant parallel data. Then output to the external encoder NTSC/PAL IC.

2.2.6 NTS Reset

Reset NTS interface by setting the related ASMU registers, when exit from NTS function.

Related register: RESETREQ0; RESETREQ0ENA; AHBCLKCTRL0; APBCLKCTRL0; GCLKCTRL2; GCLKCTRL2ENA;

2.2.7 Reset the External Encoder IC

It's also necessary to reset and power off the external NTSC/PAL encoder IC, when exit from NTS function.

About the reset operation of the external encoder IC, please refer to its' specification or user's manual.

Chapter 3 Sample of NTS Operation

3.1 Outline of NTS Operation Sample

On EMMA Mobile 1 evaluation board (PSKCH2Y-S-0016-01), ADV7179 (manufacture: ANALOG DEVICES) is connected as the external NTSC/PAL encoder IC.

For show the usage of NTS interface with ADV7179, the below 2 samples are performed.

- NTSC mode; (NTSC and ADV7179 output)
- PAL mode; (PAL and ADV7179 output)

In the NTS samples, the data is transmitted as below:

Figure 3-1 Data Flow Chart of NTS Samples

As shown in the figure, EMMA Mobile 1 NTS will fetch the source YUV422 image data, and convert to NTS compliant data, then output to ADV7179.

1 set of TV monitor is connected to display the processed data via ADV7179.

Caution:

Please make sure all hardware for NTS interface are on READY status, before perform the NTS samples.

3.2 Operation Flow of NTS Example

Operation flow chart of the NTS sample is shown as below.

Figure 3-2 Operation Flow of NTS Sample

Application Note S19900EJ1V0AN00

3.3 Detail of NTS Sample

3.3.1 Prepare Source Data for NTS Sample

Load YUV422 data to frame A and frame B for NTS sample. Data stored in frame A is prepared for NTSC sample; Data stored in frame B is prepared for PAL sample.

3.3.2 NTS Initialization

Set ASMU and CHG registers, as listed in figure 3-2.

3.3.3 ADV7179 Setting

Reset and Initialize ADV7179. Reset ADV7179 by call SPI0 driver interface:

- 1) Initialize EMMA Mobile 1 SPI0 interface
- 2) Set GPIO10 of PMIC (reset pin) to output mode
- 3) Make GPIO10 output '0' and wait for stable
- 4) Make GPIO10 output '1'

Initialize ADV7179 by call SPI0 and I2C driver interface:

- 1) Initialize EMMA Mobile 1 I2C interface
- 2) Enable power output for ADV7179
- 3) Set ADV7179 with the default value of NTSC mode

Note:

Detail of SPI0 driver interface, please refer "EMMA Mobile 1 SPI Application Note". Detail of SPI0 driver interface, please refer "EMMA Mobile 1 I2C Application Note".

3.3.4 NTS Configuration

For different sample, the configuration is different.

Table 3-1 Configuration of NTS Sample

Sample	Module	Register	Setting		
		NTS_CONTROL	= 0;		
			{		
			UPSCALE = 0b: disable upscale function ;		
			OUTMODE = 0b: NTSC mode ;		
			CLKPOL = 0b: rising edge of NTS_CLKI ;		
			ENDIAN = 0b: Little endian ;		
			}		
NTSC	NISI/F	NTS_YAREAAD_A	= 0x3100_0000		
		NTS_UVAREAAD_A	= 0x3110_0000		
		NTS_HOFFSET	= 720		
		NTS_FRAMESEL	= 1		
			{		
			AREASEL = 01b: frame buffer A ;		
			}		
	ADV7179	Set ADV7179 registers with NTSC setting values (NOTE), please refer Table 3-2			
		NTS_CONTROL	= 4;		
			{		
			UPSCALE = 0b: disable upscale function ;		
			OUTMODE = 1b: PAL mode ;		
			CLKPOL = 0b: rising edge of NTS_CLKI ;		
	NTS I/F		ENDIAN = 0b: Little endian ;		
			}		
PAL		NTS_YAREAAD_A	= 0x3120_0000		
		NTS_UVAREAAD_A	= 0x3130_0000		
		NTS_HOFFSET	= 720		
		NTS_FRAMESEL	= 2		
			{		
			AREASEL = 10b: frame buffer B ;		
			}		
	ADV7179	Set ADV7179 registers with PAL setting values (NOTE), please refer Table 3-2			

Note:

1. Default setting value sequence of ADV7179 for NTSC/PAL mode are listed in the below table.

ADV7179 Register	Mode		
Name	NTSC	PAL	
Mode Register 0 [MR0]	00	0x00	0x05
Mode Register 1 [MR1]	01	0x10	0x10
Mode Register 2 [MR2]	02	0x00	0x00
Mode Register 3 [MR3]	03	0x00	0x00
Mode Register 4 [MR4]	04	0x10	0x00
Reserved	05	0x00	0x00
Reserved	06	0x00	0x00
Timing Mode Register 0 [TR0]	07	0x00	0x00
Timing Mode Register 1 [TR1]	08	0x00	0x00
Subcarrier Freq Reg 0	09	0x1E	0xCB
Subcarrier Freq Reg 1	0A	0x7C	0x8A
Subcarrier Freq Reg 2	0B	0xF0	0x09
Subcarrier Freq Reg 3	0C	0x21	0x2A
Subcarrier Phase Reg	0D	0x00	0x00
Closed Captioning Ext Data Byte 0	0E	0x00	0x00
Closed Captioning Ext Data Byte 1	0F	0x00	0x00
Closed Captioning Data Byte 0	10	0x00	0x00
Closed Captioning Data Byte 1	11	0x00	0x00
NTSC Pedestal Ctrl Reg 0 /	12	0x00	0x00
PAL TTX Ctrl Reg 0			
NTSC Pedestal Ctrl Reg 1 /	13	0x00	0x00
PAL TTX Ctrl Reg 1			
NTSC Pedestal Ctrl Reg 2 /	14	0x00	0x00
PAL TTX Ctrl Reg 2			
NTSC Pedestal Ctrl Reg 3 /	15	0x00	0x00
PAL TTX Ctrl Reg 3			
CGMS_WSS_0 [C/W0]	16	0x00	0x00
CGMS_WSS_1 [C/W1]	17	0x00	0x00
CGMS_WSS_2 [C/W2]	18	0x00	0x00
TeleText Request Ctrl Reg [TC07]	19	0x00	0x00

Table 3-2 Default Setting Value of ADV7179 for NTSC/PAL Mode

More detail about ADV7179 registers, please refer "ADV7179 Specification".

3.3.5 Start NTS Processing

Start NTS processing by setting "NTS_OUT" with not-0 value. For NTSC and PAL sample, set the register to "3"; it is normal output mode.

3.3.6 NTS Processing

After start the NTS processing, the source data are fetched and converted to the NTS compliant parallel data. Then output to ADV7179. It will be displayed in the connected TV monitor finally.

3.3.7 NTS Reset

After complete NTS NTSC and PAL function evaluation, reset NTS interface by setting ASMU registers as listed in figure 3-2.

3.3.8 Release ADV7179

Reset and power off ADV7179 as the below sequence.

- 1) Initialize SPI0
- 2) Set GPIO10 of PMIC (reset pin) to output mode
- 3) Make GPIO10 output '0'

3.4 ADV7179 Color Bar Function

As additional, ADV7179 color bar function is evaluated as an individual sample. It will generate and output an internal color bar test pattern. It is important to note that when color bars are enabled, the ADV7179 is configured in a master timing mode.

Under this sample, ADV7179 is used only. So the operations of NTS are unnecessary. Operation of this sample is as below:

- ADV7179 Setting Same with "<u>3.3.3 ADV7179 Setting</u>"
- Set ADV7179 to color bar mode Set bit[7] of ADV7179 Mode Register 1 with "1", to enable color bar function.
- 3) Check the color bar pattern displayed in TV monitor
- Reset and power off ADV7179
 Same with "<u>3.3.8 Release ADV7179</u>".

Appendix A. NTS Driver Function

A.1 NTS API function list

The following table shows the NTS interface functions:

Table A-1 NTS Driver Function List

Туре	Function Name	Function Detail	
Driver Function	em1_nts_init	Initialize NTS interface	
	em1_nts_release	Release NTS interface	
	em1_nts_setup	Configure NTS interface	
	em1_nts_start	Start NTS processing	
	em1_nts_irq_enable	Enable NTS Interrupt	
	em1_nts_irq_handle	NTS Interrupt handler	

A.2 Type Define

A.2.1 Naming rule and coding rule

About naming rule and coding rule, please refer to "GD_SPEC_EM1_AN&TP.pdf"

A.2.2 Structure

Structure Name	Structure Member
NTS_SETUP_ST	uchar upscale
	uchar outmode
	uint clkpol
	uint endian
	uint buffer_a_y
	uint buffer_b_y
	uint buffer_c_y
	uint buffer_a_uv
	uint buffer_b_uv
	uint buffer_c_uv
	uint hoffset
	uint frame_sel

Table A-2 Structure Define

A.3 Function Detail

A.3.1 Initialization Function

[Function Name]

em1_nts_init

[Format]

void em1_nts_init(void);

[Argument]

None

[Function Return]

None

[Function Flow]

[Note]

A.3.2 Release Function

[Function Name]

em1_nts_release

[Format]

void em1_nts_release(void);

[Argument]

None

[Function Return]

None

[Function Flow]

Figure A-2 NTS Release

[Note]

A.3.3 Setup Function

[Function Name]

em1_nts_setup

[Format]

DRV_RESULT em1_nts_setup (NTS_SETUP_ST* nts_st);

[Argument]

Parameter	Туре	I/O	Detail
nts_st	NTS_SETUP_ST *	Ι	All necessary setting for NTS

[Function Return]

DRV_ERR_PARAM;

DRV_OK;

[Function Flow]

[Note]

A.3.4 Start Function

[Function Name]

em1_nts_start

[Format]

void em1_nts_start(uint display_mode);

[Argument]

Parameter	Туре	I/O	Detail
	uint	I	output mode :
			OFF;
display_mode			Blackback;
			Blueback;
			Normal;

[Function Return]

None

[Function Flow]

Figure A-4 NTS Start

[Note]

A.3.5 INT Enable Function

[Function Name]

em1_nts_irq_enable

[Format]

void em1_nts_irq_enable(void);

[Argument]

None

[Function Return]

None

[Function Flow]

None

[Note]

A.3.6 INT Handler Function

[Function Name]

em1_nts_irq_handle

[Format]

void em1_nts_irq_handle(void);

[Argument]

None

[Function Return]

None

[Function Flow]

None

[Note]

Number	Modification Contents	Author	Date
Ver 1.00	New version		Aug, 4, 2009