LONworks for Grundfos pumps

CIM/CIU 100

Functional profile and user manual

English (GB) Functional profile and user manual

Original functional profile and user manual.

\sim	NI	T	N I	TS
	IN		N	1.5

CON	TENTS	
		Page
1.	Symbols used in this document	2
2.	Introduction	3
2.1	About this functional profile	3 3
2.2	Assumptions Definitions and abbreviations	
2.3	System diagram	
3.	Installation	
		-
4 . 4 1	CIM 100 LON module Connecting the LON module	
4.1	Registration in a LON network	5
4.3	LEDs	é
5.	Considerations when installing the E-pump or	`
٥.	Hydro Multi-E	7
6.	Power-on behaviour	8
7.	SNVT/UNVT details	ç
7.1	Network variable inputs	Ś
7.2	Network variable outputs	9
7.3	Manufacturer-defined network variables	Ś
8.	SCPT/UCPT details	10
8.1	Configuration properties	10
9.	Application examples	11
9.1	Complete LON-based system	11
9.2 9.3	Control with combined LON/AO/DO	12
9.3	Twin-head pump functionality with LON module and two single pumps	13
9.4	Twin-head pump functionality with two LON modules	
	and one twin-head pump	13
10.	Override functionality	14
11.	Pump controller functional block details	15
11.1	Pump setpoint	17
11.2	Requested pump operating mode	18
11.3	Pump capacity	18
11.4	Actual setpoint	19
11.5	Effective operating mode	19
11.6	Effective device control mode	20
11.7 11.8	Pump override stop command Override speed setpoint	22 22
11.9	Override pressure setpoint	22
11.10	Remote pressure sensor input	23
11.11	Remote flow sensor input	24
11.12	Pump status, diagnostic information	25
11.13	Pump pressure	25
11.14	Pump inlet pressure	25
11.15	Remote pressure	25
11.16	Pump flow (standard range)	26
11.17	Pump flow (extended range)	26
11.18	Remote flow	26
11.19 11.20	Pump speed	26
11.21	Pump override active Runtime	26 27
11.22	Total ontime	27
11.23	Pump fault status	27
11.24	Heat energy metering	27
11.25	Alarm code	29
11.26	Warning code	29
11.27	Liquid temperature	29
11.28	Remote temperature 1	29
11.29	Remote temperature 2	30
11.30	Tank level	30
11.31	Auxiliary sensor input	30
11.32 11.33	Power consumption in watts Power consumption in kilowatts	30
11.34	Energy consumption (standard range)	30 30
11.35	Energy consumption (extended range)	30
11.36	Send heartbeat	3
	Receive heartbeat	31

11.38	Control mode for normal operation	31
11.39	Maximum flow limit	31
11.40	Pump characteristic	32
11.41	Remote pressure-sensor minimum value	32
11.42	Remote pressure-sensor maximum value	32
11.43	Remote flow-sensor minimum value	33
11.44	Remote flow-sensor maximum value	33
11.45	Кр	33
11.46	Ti	33
11.47	Ts	33
12.	Node object functional block details	34
12.1	Object request	34
12.2	Object status	34
12.3	Location label	34
13.	Manufacturer-specific variables	35
13.1	Grundfos command	35
13.2	Grundfos info	35
14.	Product-specific network variables	36
15.	Fitting a sensor	38
16.	Device resource files	39
17.	Fault finding	40
18.	Grundfos alarm and warning codes	41

1. Symbols used in this document

If these safety instructions are not observed, it may result in malfunction or damage to the Caution equipment!

Note

Notes or instructions that make the job easier and ensure safe operation.

2. Introduction

2.1 About this functional profile

This functional profile describes the CIM 100 (LON Communication Interface Module 100) and the CIU 100 (LON Communication Interface Unit 100) for the following Grundfos E-pumps and Hydro Multi-E:

- UPE Series 2000
- GRUNDFOS MAGNA/MAGNA3
- TPE Series 1000/2000
- CRE/CRNE/CRIE
- NBE
- NKE
- CHIE
- MTRF
- CUE
- Hydro Multi-E.

References in the following:

- The CIM 100 is referred to as "LON module".
- · The CIU unit is referred to as "LON unit".
- The E-pumps, CUE, Hydro Multi-E, GRUNDFOS MAGNA and MAGNA3 are referred to as "E-Pump".

The data in this document are subject to change without prior notice. Grundfos cannot be held responsible for any problems caused directly or indirectly by using information in this functional profile.

2.2 Assumptions

This functional profile assumes that the reader is familiar with commissioning and programming LON devices. The reader should also have some basic knowledge of the anatomy of LON data communication.

2.3 Definitions and abbreviations

CIM 100	Communication Interface Module 100
CIU 100	Communication Interface Unit 100
CP	Configuration Properties
DRF	Device Resource Files
GENIbus	Proprietary Grundfos fieldbus standard
Н	Pressure (Head)
LED	Light-Emitting Diode
LON	Local Operating Network
nci	Network configuration property input
nro	Read-only configuration property
nv	Network variable
nvi	Network variable input
nvo	Network variable output
Q	Flow
R100	Grundfos remote control
SCPT	Standard Configuration Property Type
SNVT	Standard Network Variable Type
UCPT	User-defined Configuration Property Type
UFPT	User-defined Functional Profile Type
UNVT	User-defined Network Variable Type

2.4 System diagram

The system diagram gives an overview of how to connect the CIM 100/CIU 100 to the E-pump that is to be connected to a LON network.

CIM 100

The CIM 100 solution is an add-on communication module that is to be fitted in a Grundfos pump, using a 10-pin connection. In this setup, the pump will supply power to the CIM 100. See fig. 1.

CIU 100

The CIU 100 solution is a box with a power supply module and a CIM 100 LON module. It can either be mounted on a DIN rail or on a wall. See fig. 2.

This solution is used for Grundfos Hydro Multi-E and E-pumps that do not support an internal, add-on communication module (CIM 100). The enclosure class is IP54.

Pump with built-in CIM 100

Fig. 1 Example of CIM 100 solution

Pump object LON network CIU 100 GENIbus RS-485

Fig. 2 Example of CIU 100 solution

FM04 2329 2508

3. Installation

The LON module is programmed on delivery.
This means that the application program will start when the power supply is switched on.

The customer has to install the network, including assignment of module addresses, and make the required bindings.

4. CIM 100 LON module

The LON module is designed using an FT 3150 neuron transceiver, an FT-X1 transformer and a 64 Kbyte flash memory which enables updating of software.

This functional profile is compliant with version 1.0 of "Pump Controller Object" from LonMark International.

The LON module has been certified to adhere to LonMark Application Layer interoperability guidelines 3.4.

Self-documentation strings are used. This means that an installation tool can access the relevant information via the

The XIF file can be found on the CD-ROM with this functional profile.

Fig. 3 CIM 100 LON module

Pos.	Designation	Description
1	A	LON terminal A
2	В	LON terminal B
3	Screen	LON terminal for cable screen
4	LED1	Yellow service LED
5	Pin	Service pin (push-button)
6	LED2	Red/green status LED for internal communication between the CIM 100 and the E-pump

4.1 Connecting the LON module

Grundfos recommends to use a screened cable.

A LON network must be terminated. The termination depends on the network topology chosen.

Fitting the cable

Procedure:

See fig. 4.

Note

TM04 1956 1508

- 1. Connect the conductors to terminal A (pos. 1).
- 2. Connect the conductors to terminal B (pos. 2).
- 3. Connect the twisted screen ends to terminal "Screen" (pos. 3).

The screen must only be connected to the screen terminal of the CIM 100 LON module. See fig. 4, pos. 3.

The cable screen must never be connected to earth via the earth clamp. See fig. 4, pos. 4.

The stripped part of the cable screen must be as short as possible to reduce the impedance at Note high frequencies.

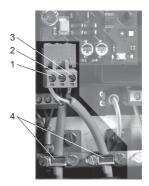


Fig. 4 Connecting the LON module

Pos.	Description
1	LON terminal A
2	LON terminal B
3	LON terminal for cable screen
4	Earth clamp

4.2 Registration in a LON network

E-pumps with a CIM 100 LON module are registered by a LON network in one of these ways:

- Service pin
- Bar code label.

Service pin

When the service pin push-button of the module is activated, the module will send a unique 48 bit ID code (Neuron ID) which is registered in the LON network. See fig. 5.

TM04 1958 1508

Fig. 5 Service pin

Bar code label

The Neuron ID on the module or on the enclosed bar code label is scanned and registered in the LON network. The bar code of the Neuron ID is in Code 128 format. The additional bar code label can be attached to the building installation plan.

4.3 LEDs

The CIM 100 LON module has two LEDs. See fig. 3.

- Yellow service LED (LED1)
- Red/green status LED (LED2) for internal communication between the CIM 100 and the E-pump.

4.3.1 LED1

The yellow LED on the CIM 100 functions as a service LED. When the E-pump is connected to the power supply, the service LED will flash once and then remain off if the installation has been made correctly. In case of deviations, see section 17. Fault finding and Echelon documentation.

The WINK command is supported by the LON module.

When the LON module receives a WINK command, the service LED (LED1) will flash five times with 2-second intervals and a duty cycle of 50 %. After five flashes, the service LED (LED1) goes out. See fig. 6.



Fig. 6 Flashing pattern

This flashing pattern must not be confused with the flashing pattern of an unconfigured device which will flash with 1-second intervals and a duty cycle of 50 %.

In a standard installation, the service LED (LED1) is permanently off

The use of a WINK command does not affect the operation of the LON module in any way.

4.3.2 LED2

Status	Description
Off.	The CIM 100 has been switched off.
Flashing red.	No internal communication between the CIM 100 and the E-pump.
Permanently red.	The CIM 100 does not support the connected E-pump.
Permanently green.	Internal communication between the CIM 100, and the E-pump is OK.

5. Considerations when installing the E-pump or Hydro Multi-E

Flow has duplicate readouts (nvoFlow, nvoFlowF). Both NVOs are active at all times.

For an E-pump with a maximum flow higher than 650 $\rm m^3/h$, the nvoFlow will display the invalid value (655.35 $\rm m^3/h$, 0xFFFF) for pump flows above this limit.

At the time of installation, it should be determined which of the flow NVOs to monitor.

For an E-pump with a maximum flow higher than 650 m^3/h , nvoFlowF should be used.

For an E-pump with a maximum flow lower than 650 m³/h, nvoFlow should be used as it offers a higher resolution.

See description of the NVOs in section 11. Pump controller functional block details.

For further details about the configuration, see the documentation for the relevant E-pump.

6. Power-on behaviour

A Grundfos LON module is designed to run with the following LON configuration:

- · Node ID: 1
- Subnet ID: 1
- Domain ID: 00:00:00:00:00:00 (6 bytes).

The LON module will immediately start operating with these settings on the LON network when the power supply is first switched on. These settings can be changed with an installation tool (not supplied by Grundfos).

If the LON module is switched off and on (power cycle), the actual NV values in the LON module will be lost and reset to their default values. The NV default values can be found in section 11. Pump controller functional block details.

CP values are preserved in the LON module over power cycles.

When switched on, the LON module will apply control mode as per the value of the CP nciControlMode. No other operation of the E-pump is applied until an update of any of the following NVs is received via the LON network:

- nviPumpSetpoint
- nviPumpOpMode
- nviOvdStop
- nviOvdPress
- nviOvdSpeed.

When an update is received, the LON module will start operating the E-pump.

The LON module will poll the following NVs immediately after power-on (if they are bound):

- nviPumpSetpoint
- nviPumpOpMode.

The LON module will continue to poll these NVs with 10-second intervals (if they are bound) until an update of any of the following NVs is received via the LON network:

- nviPumpSetpoint
- nviPumpOpMode
- nviOvdStop
- nviOvdPress
- nviOvdSpeed.

7. SNVT/UNVT details

Network variables of the node object are described in section 12. Node object functional block details.

7.1 Network variable inputs

NV #	Name	SNVT type	SNVT index	Description
1	nviPumpSetpoint	SNVT_switch	95	Setpoint for normal operation
2	nviPumpOpMode	SNVT_hvac_mode	108	Requested operating mode
6	nviPumpOvdStop	SNVT_switch	95	Pump override stop command
7	nviOvdSpeed	SNVT_lev_percent	81	Override speed setpoint
8	nviOvdPress	SNVT_press	30	Override pressure setpoint
10	nviRemotePress	SNVT_press	30	Sensor input, remote differential-pressure sensor
11	nviRemoteFlow	SNVT_flow_p	161	Sensor input, remote flow sensor

7.2 Network variable outputs

NV#	Name	Send heartbeat	SNVT type	SNVT index	Description
3	nvoPumpCapacity	Yes	SNVT_lev_percent	81	Pump capacity as percent of maximum
4	nvoEffOpMode	Yes	SNVT_hvac_mode	108	Effective operating mode
5	nvoControlMode	Yes	SNVT_dev_c_mode	162	Effective device control mode
13	nvoPumpStatus	Yes	SNVT_dev_status	173	Pump status, diagnostic information
14	nvoPressure	No	SNVT_press	30	Pump pressure
15	nvoFlow	No	SNVT_flow_p	161	Pump flow
16	nvoSpeed	No	SNVT_rpm	102	Pump speed
17	nvoPumpOverride	No	SNVT_switch	95	Pump override active
18	nvoRuntime	No	SNVT_time_hour	124	Operating hours
19	nvoPumpFault	No	SNVT_dev_fault	174	Fault status
21	nvoFluidTemp	No	SNVT_temp_p	105	Liquid temperature
22	nvoPower	No	SNVT_power	27	Electrical power consumption in watt
23	nvoPowerK	No	SNVT_power_kilo	28	Electrical power consumption in kilowatt
24	nvoEnergyConsum	No	SNVT_elec_kwh	13	Total pump energy consumption

NV # number is according to SFPTpumpController.

7.3 Manufacturer-defined network variables

Name	SNVT type	SNVT index	Description
nvoFlowF	SNVT_flow_f	53	Flow (floating point)
nvoRemoteFlow	SNVT_flow_f	53	Remote flow (floating point)
nvoRemotePress	SNVT_press	30	Remote pressure
nvoRemoteTemp	SNVT_temp	105	Remote temperature 1
nvoRemoteTemp2	SNVT_temp	105	Remote temperature 2
nvoEnergyConsumL	SNVT_elec_kwh_l	146	Energy consumption
nvolnletPressure	SNVT_press	30	Inlet pressure
nvoLevel	SNVT_length_f	54	Tank level
nvoAuxSensor	SNVT_lev_percent	81	Actual setpoint in %
nvoTotalOnTime	SNVT_time_hour	124	Total power-on time
nvoAlarmCode	SNVT_cont	8	Current system alarm code
nvoWarningCode	SNVT_cont	8	Current system warning code
nviGrundfosCmd	UNVT_GF_cmd		Request for sw/hw version
nvoGrundfosInfo	SNVT_str_asc	36	Sw/hw version according to nviGrundfosCmd
nvoPumpStatusOld	SNVT_state	83	Duplicate of nvoPumpStatus
nvoPumpFaultOld	SNVT_state	83	Duplicate of nvoPumpFault
nvoHeatEnergyCnt	SNVT_elec_kwh	146	Accumulated heat energy in total pump life time
nvoHeatPower	SNVT_power_kilo	28	Current heat power
nvoHeatTempDiff	SNVT_temp_p	105	Diff. temperature between forward and return pipes

8. SCPT/UCPT details

8.1 Configuration properties

SCPT name NV name Type or SNVT	SCPT index	Associated NVs	Description
SCPTmaxSendTime nciSndHrtBt SNVT_time_sec (107)	49	nv3, nv4, nv5, nv13	Maximum period of time that will elapse before the functional block automatically updates the associated network variables.
SCPTpumpCharacteristic nroPumpChar (structure)	233	Entire functional block	Maximum flow, maximum pressure and maximum speed of the pump define the pump characteristics.
SCPTlocation nciLocation SNVT_str_asc (36)	17	Entire functional block	Used to provide physical location of the device.
SCPTmaxFlowSetpoint nciFlowHighLim SNVT_flow_p (161)	237	Entire functional block	Used to limit the flow.
SCPTdeviceControlMode nciControlMode SNVT_dec_c_mode (162)	238	Entire functional block	Control mode for normal operation.
UCPT_Kp nciKp SNVT_multiplier (82)		Entire functional block	Gain for PI controller.
UCPT_Ti nciTi SNVT_time_sec (107)		Entire functional block	Integral time for PI controller.
UCPT_Ts nciTs SNVT_time_sec (107)		Entire functional block	Sample time for PI controller.

9. Application examples

9.1 Complete LON-based system

Any HVAC unit can use the pump object, either as an actuator where the pump speed is used to control the flow or pressure in the HVAC application, or the pump can be used as an intelligent device which can maintain a constant pressure in the system. In both cases, the pump can be monitored and manually controlled via the system.

In the following example, the pump is used as an intelligent device which is operating in PRESS_COMP control mode. The pump will automatically lower the pressure setpoint in proportion to the system flow. The unit changes the pump to minimum mode during the night via nviPumpOpMode and receives status of the pump operating mode from nvoEffOpMode. The HVAC unit uses nvoPumpStatus to retrieve status information from the pump. The controller can use this information to check pump faults and hardware overrides and whether the pump is running or not.

The pump is connected to a manual stop button which can be used to stop the pump. When the pump is stopped via nviPumpOvdStop, the HVAC unit can no longer control the pump via the normal setpoint.

The example also shows a local control and monitoring panel. Via this panel, the pump fault status as well as the pump flow and pressure can be viewed. Via this local control panel, it is possible to allocate a pressure setpoint to the pump. The pump will maintain a constant pressure which will override the HVAC unit.

The whole system is monitored via a main system.

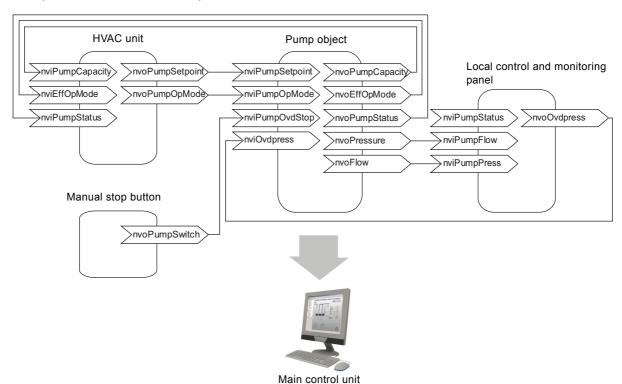
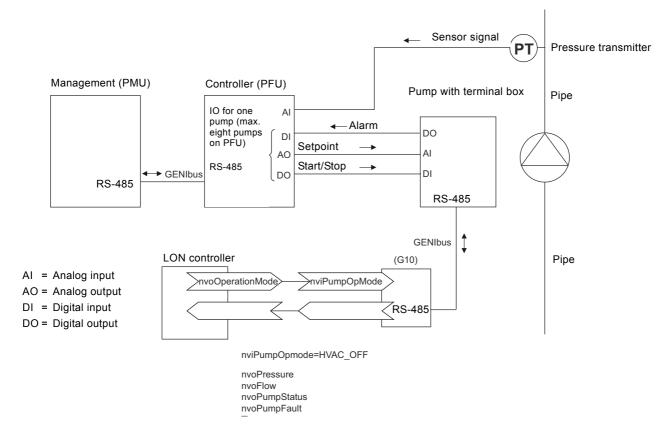
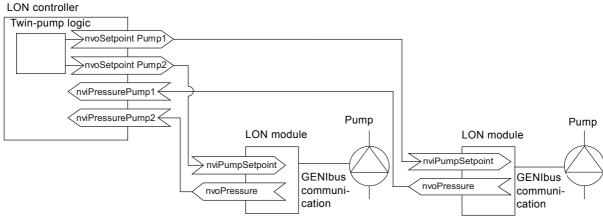


Fig. 7 LON-based control system

9.2 Control with combined LON/AO/DO

It is possible to control the pump via analog and digital outputs (AO/DO), e.g. when using the Grundfos PMU 2000 / PFU 2000, and to combine this with the monitoring features of a LON system.




Fig. 8 Control with combined LON/AO/DO

The LON controller forces the pump to "local control" by setting nviPumpOpMode to HVAC_OFF. In this way, the pump can be controlled via the analog and digital inputs (Al/DI) on the pump if it has been set up to do so with the Grundfos R100 remote control.

Pump status as well as pressure and flow readings can still be obtained via LON.

9.3 Twin-head pump functionality with LON module and two single pumps

With the LON module, it is possible to use a twin-head pump setup for two single pumps as shown in fig. 9.

Logic for displaying system pressure:

System pressure = nviPressurePump1 or nviPressurePump2

Note: NOT system pressure = nviPressurePump1 + nviPressurePump2

Fig. 9 Twin-head pump setup with LON module

The LON controller must handle all twin-head pump functionality (alternating or standby duty) and control the pumps as required.

9.4 Twin-head pump functionality with two LON modules and one twin-head pump

With two LON modules, it is possible of use a "real" twin-head pump as shown in fig. 10.

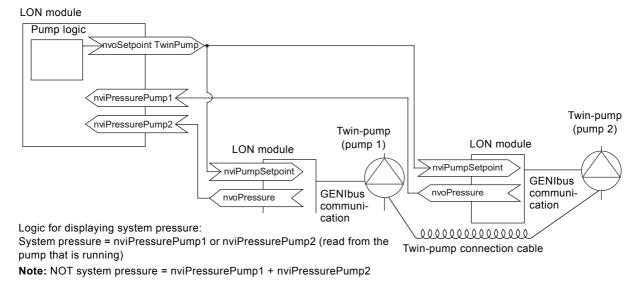


Fig. 10 Twin-head pump setup with LON control

The LON controller must handle the twin-head pump as a normal pump. The setpoint output of the LON controller shall be bound to both LON modules controlling the two pump heads of the twinhead pump.

The twin-head pump will handle all twin-head pump functionality itself. Both heads of the twin-head pump will receive the setpoint via LON. The active pump head will react to the received setpoint.

10. Override functionality

The pump controller profile includes network variable inputs to manually override the operation of the pump. A valid value on any of these variable inputs changes the pump to override mode.

The pump will not return to normal setpoint control until all manual override inputs are invalid. The override priority can be seen in fig. 11.

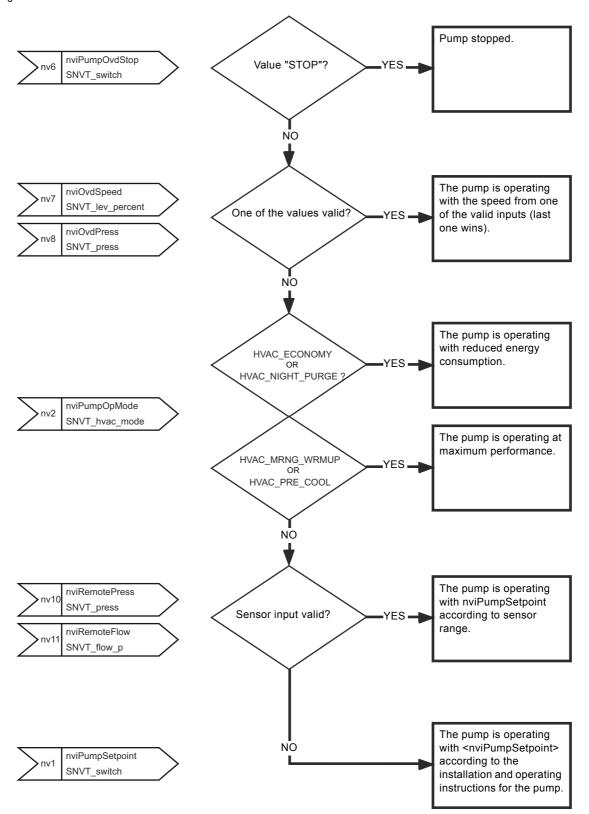


Fig. 11 Override functionality

11. Pump controller functional block details

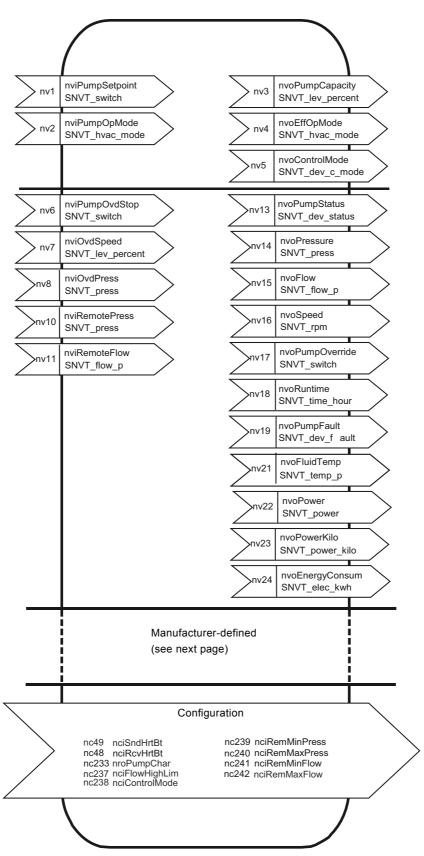


Fig. 12 Pump controller (standard part)

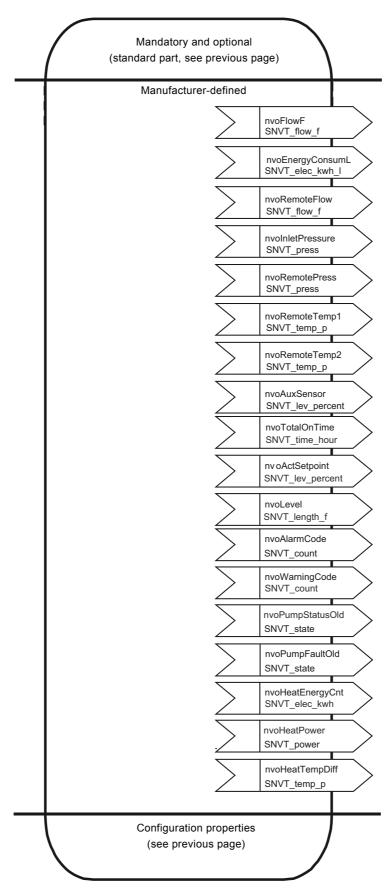


Fig. 13 Pump controller (manufacturer-defined part)

11.1 Pump setpoint

network input SNVT switch nviPumpSetpoint;

This network variable input provides start/stop control and a setpoint. The setpoint is given as a percentage of the effective maximum value (max. = 100 %). The setpoint value can represent the pump speed, pump pressure or pump flow, depending on the effective operating mode of the pump (nvoControlMode).

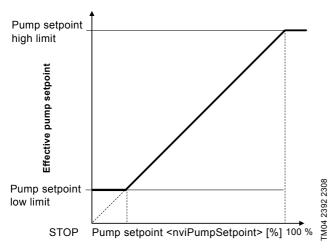


Fig. 14 Effective setpoint for closed-loop operation

$$X \cong \frac{\text{Pump setpoint low limit}}{\text{Pump setpoint high limit}} \times 100 \%$$
or
$$X \cong \frac{\text{Remote sensor low value}}{\text{Remote sensor high value}} \times 100 \%$$

Example

If the control mode is constant pressure (nvoControlMode = DCM_PRESS_CONST), and the setpoint limits for this control mode are 10 kPa and 100 kPa, "X" can be calculated to 10 %. This means that a setpoint value of 1 to 10 % provides a setpoint of 10 kPa (0 % stops the pump).

A setpoint value of 11 to 100 % provides a setpoint of 11 to 100 kPa.

Valid range

For n-state pumps:

State	Value	Equivalent percent	Requested speed
0	n/a	n/a	STOP
1	0	0 %	STOP
1	1 to (1/n) 200	0.5 % to (1/n) 100 %	Pump speed #1
1	1 + (1/n) 200 to (2/n) 200	0.5 % + (1/n) 100 % to (2/n) 100 %	Pump speed #2
1	1 + ((m-1)/n) 200 to (m/n) 200	0.5 % + ((m-1)/n) 100 % to (m/n) 100 %	Pump speed #m
1	1 + ((n-1)/n) 200 to 200	0.5 % + ((n-1)/n) 100 % to 100 %	Pump speed #n

For variable-speed pumps

State	Value	Equivalent percent	Requested speed
0		n/a	STOP
1	0	0 %	STOP
1	1 to 200	0.5 to 100 %	0.5 to 100 %
1	201 to 255	100 %	100 %

Default value

The pump will poll this network variable after power-up (if bound) to ensure a correct start-up value. It will keep polling the bound remote device with 10-second intervals until a valid value is received in any of the following network variables: nviPumpSetpoint, nviPumpOpMode, nviOvdPress, nviOvdSpeed, nviPumpOvdStop.

After power-up, a TPE Series 1000/2000 or CRE pump will operate with the setpoint (and operating mode) of the local settings of the pump until a valid input is given to any of the following network variables: nviPumpSetpoint, nviPumpOpMode, nviOvdPress, nviOvdSpeed, nviPumpOvdStop.

After power-up, a GRUNDFOS MAGNA or UPE Series 2000 pump will operate with the setpoint (and operating mode) of the remote settings of the pump until a valid input is given to any of the following network variables: nviPumpSetpoint, nviPumpOpMode, nviOvdPress, nviOvdSpeed, nviPumpOvdStop. The default value for nviPumpSetpoint is State = 0, Value = 0.0.

Product availability

11.2 Requested pump operating mode

network input SNVT hvac mode nviPumpOpMode;

This network variable input is typically used by a supervisory controller to override the pump controller operating mode. If the requested mode is not supported by the unit, the unit will treat it as an invalid value (treated as HVAC_NUL).

When the mode is HVAC_AUTO, the nviPumpSetpoint defines the setpoint of the pump.

When the mode is HVAC_MRNG_WRMUP or

HVAC_PRE_COOL, the pump operates at maximum capacity.

To save energy during the night, in the summer or under low-load conditions, the mode HVAC_ECONOMY or

HVAC_NIGHT_PURGE can be used. In this mode, the pump operates at minimum capacity.

Valid range

Value	Identifier	Description	
0	HVAC_AUTO	Normal operation: nviPumpSetpoint defines the effective setpoint.	
2	HVAC_MRNG_WRMUP	Morning warm-up: maximum-capacity mode.	
4	HVAC_NIGHT_PURGE	Night purge: minimum-capacity mode.	
5	HVAC_PRE_COOL	Morning cool-down: maximum-capacity mode.	
6	HVAC_OFF	The pump has been set to local mode via the network. In this mode, it cannot be controlled via the network, but it will continue to monitor its outputs.	
13	HVAC_ECONOMY	Energy saving: minimum-capacity mode.	
-1 (0xFF)	HVAC_NUL	Invalid value.	

The LON module will poll this network variable after power-up (if bound) to ensure a correct start-up value. It will keep polling the bound remote device with 10-second intervals until a valid value is received in any of the following network variables: nviPumpSetpoint, nviPumpOpMode, nviOvdPress, nviOvdSpeed, nviPumpOvdStop.

After power-up, the pump will operate with the operating mode (and setpoint) of the local settings of the pump until a valid input is given to any of the following network variables: nviPumpSetpoint, nviPumpOpMode, nviOvdPress, nviOvdSpeed, nviPumpOvdStop.

Default value

The default value for nviPumpOpMode is HVAC_AUTO.

Product availability

For product availability, see overview on page 36.

11.3 Pump capacity

network output SNVT_lev_percent nvoPumpCapacity;
This network variable output provides the actual pump capacity

as a percentage of the effective maximum-setpoint value (pump-specific setpoint high limit). A value of more than 100 % means that the pump is providing a value that is higher than the highest possible setpoint.

Valid range

-163.840 to 163.830 % (0.005 % or 50 ppm).

The value of 0x7FFF (163.835 %) represents invalid data and indicates that the capacity cannot be estimated.

When transmitted

This value is transmitted immediately when it has changed more than 0.5 % for nvoControlMode = DCM_SPEED_CONST or more than 2 % for other values of nvoControlMode.

Additionally, this network variable will be transmitted as a heartbeat output on a regular basis as specified by the maximum send time nciSndHrtBt configuration property.

Product availability

11.4 Actual setpoint

network output SNVT lev percent nvoActSetpoint;

This network variable output provides the actual pump setpoint as a percentage of the effective maximum-setpoint value (pump-specific setpoint high limit). This value makes it possible to monitor the influence that the control algorithm of e.g. proportional-pressure control has on the setpoint.

Valid range

-163.840 to 163.830 % (0.005 % or 50 ppm).

The value of 0x7FFF (163.835 %) represents invalid data and indicates that the actual setpoint cannot be estimated.

When transmitted

This value is transmitted immediately when it has changed more than 0.5 %.

Product availability

For product availability, see overview on page 36.

11.5 Effective operating mode

network output SNVT_hvac_mode nvoEffOpMode;

This network variable output provides the actual pump operating mode.

Valid range

Value	Identifier	Description
0	HVAC_AUTO	Normal operation: nviPumpSetpoint defines the effective setpoint.
2	HVAC_MRNG_WRMUP	Morning warm-up: maximum-capacity mode.
4	HVAC_NIGHT_PURGE	Night purge: minimum-capacity mode.
5	HVAC_PRE_COOL	Morning cool-down: maximum-capacity mode.
6	HVAC_OFF	The pump has been set to local mode via the network. In this mode, it cannot be controlled via the network, but it will continue to monitor its outputs.
13	HVAC_ECONOMY	Energy saving: minimum-capacity mode.
-1 (0xFF)	HVAC_NUL	Invalid value.

When transmitted

This value is transmitted immediately when it has changed.

Additionally, this network variable will be transmitted as a heartbeat output on a regular basis as specified by the maximum send time nciSndHrtBt configuration property.

Product availability

11.6 Effective device control mode

network output SNVT dev c mode nvoControlMode;

This network variable output provides the actual control mode of the pump. The actual control mode is determined by nciControlMode, nviOvdSpeed, nviOvdPress, nviRemotePress or nviRemoteFlow. See fig. 11 in section 10. Override functionality.

Valid range

Control mode	Description	
DCM_SPEED_CONST (0) The pump is operating in open-loop mode.	The E-pump setpoint will be interpreted as percentage of the maximum open-loop performance of the E-pump.	TM04 2289 2308
DCM_PRESS_CONST (1) The pump is operating in constant-pressure mode.	The E-pump setpoint will be interpreted as pressure setpoint. The E-pump will maintain a constant pressure. If the pump is in local operation with a control mode which is not available via the LON, for instance "Constant level", the control mode will be mapped to DCM_PRESS_CONST on the LON. It will only be possible to select these special control modes from the pump display or via remote control when the LON module is in HVAC_OFF mode.	TW04 2280 2308
DCM_PRESS_COMP (2) The pump is operating in compensated-pressure mode.	The E-pump setpoint will be interpreted as basic setpoint for the compensated-pressure mode (the black dot in the drawing). The E-pump will maintain a constant pressure, but automatically lower the actual pressure setpoint dependent on the flow (flow compensation, the straight line in the drawing).	H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DCM_FLOW_CONST (3) The pump is operating in constant-flow mode.	The E-pump setpoint will be interpreted as flow setpoint. The E-pump will maintain a constant flow.	TW04 2288 2308
DCM_TEMP_CONST (5) The pump is operating in constant-temperature mode.	The E-pump setpoint will be interpreted as temperature setpoint. The E-pump will maintain a constant temperature.	TW04 2287 2508
DCM_PRESS_AUTO (7) The pump is operating in constant-pressure mode.	In this mode, the setpoint has no effect except for starting and stopping the E-pump. The actual pressure setpoint of the E-pump is chosen and optimised automatically by the E-pump to suit the needs of the installation in the most effective way.	TW04 2287 2508

DCM_FLOW_CONST is only available for GRUNDFOS MAGNA pumps with a remote flow sensor connected via the LON network or TPE Series 1000 or CRE pumps with a flow sensor.

DCM_TEMP_CONST is only available for TPE Series 1000 or CRE pumps with a temperature sensor and for the MAGNA3 pump.

DCM_PRESS_AUTO is not available for all pumps.

For some TPE Series 1000 or CRE pumps, all control modes are not available at the same time. The control mode is determined by the sensor connected to the pump.

Maximum flow limit (nciFlowHighLim) can be enabled for MAGNA3 and TPE 2000 (versions H/I) pumps to limit the flow of the pump.

Control modes for TPE Series 1000 / CRE / CRNE / CRIE / NBE / NKE / CHIE / MTRE / CUE

Sensor type	SPEED_CONST	PRESS_CONST	PRESS_COMP	FLOW_CONST	TEMP_CONST	PRESS_AUTO
Pressure	•	•	-	-	-	-
Flow	•	-	-	•	-	-
Temperature	•	-	-	-	•	-

Control modes for TPE Series 2000 / UPE Series 2000 / GRUNDFOS MAGNA Series

Pump type	SPEED_CONST	PRESS_CONST	PRESS_COMP	FLOW_CONST	TEMP_CONST	PRESS_AUTO
TPE Series 2000	•	•	•	Н	Н	Н
UPE Series 2000	•	•	•	-	-	-
MAGNA	•	•	•	-	3	•
MAGNA with LON pressure sensor	-	•	-	-	-	-
MAGNA with LON flow sensor	-	-	-	•	-	-

^{3:} Only available on MAGNA3.

When transmitted

This value is transmitted immediately when it has changed. Additionally, this network variable will be transmitted as a heartbeat output on a regular basis as specified by the maximum send time nciSndHrtBt configuration property.

Product availability

H: Only available on version H/I and later.

11.7 Pump override stop command

network input SNVT switch nviPumpOvdStop;

This network variable input provides a manual override function to stop the pump, typically from a supervisory controller. The value of "OVDSTOP" in the table below stops the pump and has a higher priority than the value of the pump setpoint nviPumpSetpoint, the two remote sensor inputs nviRemotePress and nviRemoteFlow, a value on nviPumpOpMode other than HVAC_AUTO and the two override setpoints nviOvdSpeed and nviOvdPress.

The manual override status of the pump controller is indicated in nvoPumpOverride.

Valid range

State	Value	Equivalent percent	Requested operation
0	n/a	n/a	NORMAL
1	0	n/a	NORMAL
1	1 to 255	n/a	OVDSTOP
0xFF	n/a	n/a	Invalid (NORMAL)

Default value

The default value is 0xFFFF (invalid value) in the state field. The value will be adopted at power-up.

Product availability

For product availability, see overview on page 36.

11.8 Override speed setpoint

network input SNVT lev percent nviOvdSpeed;

This network variable input provides an override request and a speed setpoint, typically from a supervisory controller. This speed setpoint is given as a percentage of the maximum speed of the pump. When a valid value is received and the pump override stop command is not active, the current pump setpoint (nviPumpSetpoint or nviOvdPress) will be overridden, and the pump will be controlled according to the given speed setpoint. The pump then operates in the DCM_SPEED_CONST mode. Invalid values of all override setpoint inputs (nviOvdSpeed and nviOvdPress) and a normal status of the pump override stop command (nviPumpOvdStop) will change the pump back to NORMAL mode. The manual override status of the pump controller is indicated in the nvoPumpOverride network variable. The control flow can be seen from fig. 11.

Valid range

-163.840 to 163.830 % (0.005 % or 50 ppm).

The value of 0x7FFF (163.835 %) represents invalid data that must be interpreted as "no override requested".

A negative value will be interpreted as 0 %, and the nvoPumpStatus.pump_ctrl.setpt_out_of_range (setpoint out of range) will be set (1).

A value of more than 100 % will be interpreted as 100 %, and the nvoPumpStatus.pump_ctrl.setpt_out_of_range (setpoint out of range) will be set (1).

Default value

The default value is 0x7FFF (invalid value). The value will be adopted at power-up.

Product availability

For product availability, see overview on page 36.

11.9 Override pressure setpoint

network input SNVT press nviOvdPress;

This network variable input provides an override request and a pressure setpoint, typically from a supervisory controller. When a valid value is received and the pump override stop command is not active, the current pump setpoint (nviPumpSetpoint or nviOvdSpeed) will be overridden, and the pump will be controlled according to the given pressure setpoint. The pump then operates in the DCM_PRESS_CONST mode. Invalid values of all override setpoint inputs (nviOvdSpeed or nviOvdPress) and a normal status of the pump override stop command (nviPumpOvdStop) will change the pump back to NORMAL mode. The manual override status of the pump controller is indicated in the nvoPumpOverride network variable. The control flow can be seen from fig. 11.

Valid range

-3,276.8 to 3,276.7 kPa (0.1 kPa).

The value of 0x7FFF (3,276.7 kPa) represents invalid data that must be interpreted as "no override requested".

A value below the manufacturer-defined setpoint low-limit will be saturated to this value, and the

 $nvoPumpStatus.pump_ctrl.setpt_out_of_range \ (setpoint \ out \ of \ range) \ will \ be \ set \ (1).$

A value above the manufacturer-defined setpoint high-limit will be saturated to this value, and the nvoPumpStatus.pump_ctrl.setpt_out_of_range (setpoint out of range) will be set (1).

Default value

The default value is 0x7FFF (invalid value). The value will be adopted at power-up.

Product availability

11.10 Remote pressure sensor input

network input SNVT press nviRemotePress;

This network variable input allows the use of a remote differentialpressure sensor on the network as the feedback signal to the pump controller.

This input will only have effect when the LON module is used with a GRUNDFOS MAGNA pump. For other pump types, this input will be ignored.

A valid value of the nviRemotePress variable will disable the internal feedback signal of the pump controller and activate the remote-sensor operating mode, thus forcing the pump to run in constant-pressure control mode. This is indicated by the nvoPumpStatus.pump_ctrl.remote_press (remote pressure sensor) being set (1).

The nvoPumpCapacity variable will indicate the value of the pressure signal from the sensor as a percentage of its maximum value. This makes it possible to compare the sensor value with the nviPumpSetpoint value.

The nvoPressure variable always indicates the differential pressure across the pump flanges measured or estimated by the pump controller. This may help analysing the behaviour of the system.

When using nviRemotePress, the pressure setpoint is given by nviPumpSetpoint. The ranging of both the setpoint and the feedback is given by the configuration properties: nciRemMinPress and nciRemMaxPress. These values are used instead of the pump setpoint high- and low-limits.

When using nviRemotePress, the internal PI controller of the pump can be adjusted by means of the configuration properties nciKp, nciTi and nciTs. These configuration properties, including nciRemMinPress and nciRemMaxPress, are associated with the nviRemotePress network variable and can be identified by their type in the installation tool.

For a description of the individual configuration properties, see section 8.1 Configuration properties.

If the nviRemotePress variable receives an invalid value, or if the heartbeat (specified by nciRcvHrtBt) is missing, remote control is deactivated, and the pump controller will return to the control mode defined by nciControlMode.

Any valid value in the manual override inputs has higher priority than the remote-sensor control, and the pump controller will use the internal feedback signals.

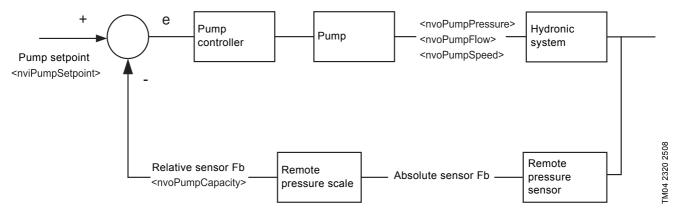


Fig. 15 Block diagram for remote pressure sensor

Valid range

-3,276.8 to 3,276.7 kPa (0.1 kPa).

The value of 0x7FFF (3,276.7 kPa) represents invalid data and can be interpreted as "not connected".

Default value

The default value is 0x7FFF (invalid value). The value will be adopted at power-up and if no update is received within the specified "receive heartbeat" time.

Product availability

11.11 Remote flow sensor input

network input SNVT flow p nviRemoteFlow;

This network variable input allows the use of a remote flow sensor on the network as the feedback signal to the pump controller.

This input will only have effect when the LON module is used with a GRUNDFOS MAGNA pump. For other pump types, this input will be ignored.

A valid value of the nviRemoteFlow variable will disable the internal feedback signal of the pump controller and activate the remote-sensor operating mode, thus forcing the pump to run in constant-flow control mode. This is indicated by the nvoPumpStatus.pump_ctrl.remote_flow (remote flow sensor) being set (1).

The nvoPumpCapacity variable will indicate the value of the flow signal from the sensor as a percentage of its maximum value. This makes it possible to compare the sensor value with the nviPumpSetpoint value.

The nvoFlow output variable always indicates the flow through the pump measured or estimated by the pump controller. This may help analysing the behaviour of the system.

When using nviRemoteFlow, the flow setpoint is given by nviPumpSetpoint. The ranging of both the setpoint and the feedback is given by the configuration properties: nciRemMinFlow and nciRemMinFlow). These values are used instead of the pump setpoint high- and low-limits.

When using nviRemoteFlow, the internal PI controller of the pump can be adjusted by means of the configuration properties nciKp, nciTi and nciTs. These configuration properties, including nciRemMinFlow and nciRemMaxFlow, are associated with the nviRemoteFlow network variable and can be identified by their type in the installation tool.

For a description of the individual configuration properties, see section 8.1 Configuration properties.

If the nviRemoteFlow variable receives an invalid value, or if the heartbeat (specified by nciRcvHrtBt) is missing, remote control is deactivated, and the pump controller will return to the control mode defined by nciControlMode.

Any valid value in the manual override inputs has higher priority than the remote-sensor control, and the pump controller will use the internal feedback signals.

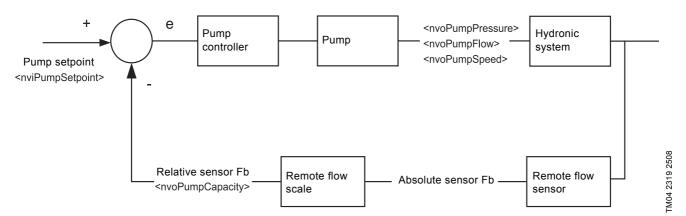


Fig. 16 Block diagram for remote flow sensor

Valid range

0 to 655.34 m³/h (0.01 m³/h).

The value of 0xFFFF (655.35 m³/h) represents invalid data and can be interpreted as "not connected".

Default value

The default value is 0xFFFF (invalid value). The value will be adopted at power-up and if no update is received within the specified "receive heartbeat" time.

Product availability

11.12 Pump status, diagnostic information

network output SNVT_dev_status nvoPumpStatus;
network output SNVT_state nvoPumpStatusOld;

This network variable output provides detailed diagnostic information on the status of the pump controller. nvoPumpStatusOld holds information identical to nvoPumpStatus. It is added for backwards compatibility and is not recommended for new designs.

Valid range

The bits below are supported.

Dit	Bit ı	name	Description	
Bit no.	nvoPumpStatus nvoPumpStatusOld		- Description	
0	device_fault	Bit 0	A pump-related fault or warning has been detected. See section 11.23 Pump fault status for detailed information. Some faults on UPE Series 2000 will be seen in this bit, but will not appear in nvoPumpFault due to their general nature.	
1	supply_fault	Bit 1	A system-related fault or warning has been detected. See section 11.23 Pump fault status for detailed information.	
3	speed_low	Bit 3	The pump is operating at the lowest possible speed. Therefore, the requested performance is not possible.	
4	speed_high	Bit 4	The pump is operating at the highest possible speed. Therefore, the requested performance is not possible.	
6	setpt_out_of_range	Bit 6	This bit is set if any of the override variables are out of range.	
8	local_control	Bit 8	The pump has been set to local mode by hardware override (push-buttons on pump, external STOP or with the R100).	
10	running	Bit 10	The pump is running.	
12	remote_press	Bit 12	The pump is using network pressure sensor.	
13	remote_flow	Bit 13	The pump is using network flow sensor.	

When transmitted

This value is transmitted immediately when it has changed. Additionally, this network variable will be transmitted as a heartbeat output on a regular basis as specified by the maximum send time nciSndHrtBt configuration property.

Product availability

For product availability, see overview on page 36.

11.13 Pump pressure

network output SNVT_press nvoPressure;

This network variable output provides the pressure across the pump flanges as measured or estimated by the pump.

Valid range

-3,276.8 to 3,276.7 kPa (0.1 kPa).

The value of 0x7FFF (3,276.7 kPa) represents invalid data and indicates that the pressure cannot be measured/estimated.

When transmitted

This value is transmitted immediately when it has changed more than 2 KPa.

Product availability

For product availability, see overview on page 36.

11.14 Pump inlet pressure

network output SNVT_press nvoInletPressure;

This network variable output provides the system inlet pressure as measured by the pump.

If no inlet pressure sensor is available in the system, nvolnletPressure will display the invalid value.

Valid range

-3,276.8 to 3,276.6 kPa (0.1 kPa).

The value of 0x7FFF (3,276.7 kPa) represents invalid data and indicates that the pressure cannot be measured or that no inlet pressure sensor is connected.

When transmitted

This value is transmitted immediately when it has changed more than 2 kPa.

Product availability

For product availability, see overview on page 36.

11.15 Remote pressure

network output SNVT_press nvoRemotePress;

This network variable output provides the pressure measured somewhere in the system with a pressure sensor connected to the pump.

Valid range

-3,276.8 to 3,276.7 kPa (0.1 kPa).

The value of 0x7FFF (3,276.7 kPa) represents invalid data and indicates that the pressure cannot be measured or that no remote pressure sensor is connected.

When transmitted

This value is transmitted immediately when it has changed more than 2 KPa

Product availability

11.16 Pump flow (standard range)

network output SNVT flow p nvoFlow;

This network variable output provides the flow through the pump as measured or estimated by the pump controller.

If the maximum pump flow is higher than 650 m³/h, nvoFlowF should be used as it offers an extended range.

Section 5. Considerations when installing the E-pump or Hydro Multi-E provides more information on the coherence of nvoFlow and nvoFlowF.

Valid range

0 to 655.34 m³/h (0.01 m³/h).

The value of 0xFFFF (655.35 $\rm m^3/h$) represents invalid data and indicates that the flow cannot be measured/estimated or that the flow is higher than 650 $\rm m^3/h$.

When transmitted

This value is transmitted immediately when it has changed significantly. The significance depends on the pump type.

- For UPE Series 2000, the value must change more than 0.2 m³/h.
- For GRUNDFOS MAGNA, the value must change more than 0.3 m³/h.
- For TPE Series 1000/2000, the value must change more than 0.5 m³/h.

Product availability

For product availability, see overview on page 36.

11.17 Pump flow (extended range)

network output SNVT flow f nvoFlowF;

This network variable output provides the flow through the pump as measured or estimated by the pump.

If the maximum pump flow is lower than 650 m³/h, nvoFlow should be used as it offers a higher resolution.

Section 5. Considerations when installing the E-pump or Hydro Multi-E provides more information on the coherence of nvoFlow and nvoFlowF

Valid range

-3.40282E38 to 3.40282E38 l/s.

If no flow sensor is available in the system, nvoFlowF will display a value of NaN (Not a Number).

When transmitted

This value is transmitted immediately when it has changed more than 1 l/s.

Product availability

For product availability, see overview on page 36.

11.18 Remote flow

network output SNVT flow f nvoRemoteFlowF;

This network variable output provides the flow measured somewhere in the system with a flow sensor connected to the pump.

Valid range

-3.40282E38 to 3.40282E38 l/s.

The value of 3.40282E38 l/s is not used as a physical representation of the flow, but represents invalid data and indicates that the flow cannot be measured or that no remote-flow sensor is connected.

If no remote-flow sensor is available in the system, nvoFlowF will display a value of NaN (Not a Number).

When transmitted

This value is transmitted immediately when it has changed more than 0.2 m³/h.

Product availability

For product availability, see overview on page 36.

11.19 Pump speed

network output SNVT_rpm nvoSpeed;

This optional network variable output provides the pump speed.

Valid range

0 to 65,534 rpm (1 rpm).

The value of 0xFFFF (65,535 rpm) represents invalid data and indicates that the speed cannot be measured/estimated.

When transmitted

This value is transmitted immediately when it has changed more than 107 rpm.

Product availability

For product availability, see overview on page 36.

11.20 Pump override active

network output SNVT_switch nvoPumpOverride;

This optional network variable output provides the manual override status of the pump. This variable has the value "OVERRIDE" in the table below if the pump setpoint has been overridden by one of the variables: nviOvdSpeed, nviOvdPress or nviOvdStop.

Valid range

State	ate Value Equivalent percent		Requested operation
0	0	0	NORMAL
1	200	100	OVERRIDE
0xFF	n/a	n/a	Invalid value

When transmitted

This value is transmitted immediately when it has changed.

Product availability

11.21 Runtime

network output SNVT time hour nvoRuntime;

This network variable output provides the total number of operating hours of the pump. After 65,535 hours, the counter is reset and will restart from zero (0).

Valid range

0 to 65,535 hours (1 hour), (2,730 days or 7.67 years).

When transmitted

This value is transmitted immediately when it has changed.

Product availability

For product availability, see overview on page 36.

11.22 Total ontime

network output SNVT time hour nvoTotalOnTime;

This network variable output provides the total number of hours the pump has been powered on. After 65,535 hours, the counter is reset and will restart from zero (0).

Valid range

0 to 65,535 hours (1 hour), (2,730 days or 7.67 years). If this variable is not supported by the pump, a value of 0 is displayed.

When transmitted

This value is transmitted immediately when it has changed.

Product availability

For product availability, see overview on page 36.

11.23 Pump fault status

network output SNVT_dev_fault nvoPumpFault; network output SNVT state nvoPumpFaultOld;

This network variable output provides fault information about the pump, based on warnings and alarms from the pump. nvoPumpFaultOld holds information identical to nvoPumpFault. It is added for backwards compatibility and is not recommended for new designs.

Note

General faults and some overtemperature faults on UPE Series 2000 will not appear on nvoPumpFault, but only on the nvoPumpStatus.device_fault bit. Therefore, a fault monitoring strategy should always include monitoring of nvoPumpStatus.

For a description of nvoPumpStatus, see section 11.12 Pump status, diagnostic information.

Both warnings and alarms will appear as faults in nvoPumpFault, except for warning and alarm codes corresponding to df_elect_failure and df_elect_failure_nf. For these, warnings will appear as df_elect_failure_nf, and alarms will appear as df_elect_failure.

Valid range

The valid range of SNVT_dev_fault. The following two tables show pump faults and their corresponding appearance on the R100 remote control.

If the LON module is unable to communicate with the pump for 30 seconds, the df_elect_failure bit is set. The fault is visible on the node object as well. See section 11. Pump controller functional block details. This fault will not be visible when using the R100.

11.24 Heat energy metering

network output SNVT_elec_kwh nvoHeatEnergyCnt;
network output SNVT_power_kilo nvoHeatPower;
network output SNVT_temp_p nvoHeatTempDiff;

These data points are used for heat energy metering by the MAGNA3 and MGE model H pumps. In order to use the heat energy meter function at the pump, an external sensor has to be connected. Please note that this feature is not to be used for billing purposes.

network output SNVT elec kwh nvoHeatEnergyCnt;

Valid range

0 to 65,535 kWh (1 kWh).

The value of 0xFFFF (65,535 kWh) represents invalid data and indicates that the power consumption cannot be measured/ estimated

When transmitted

This value is transmitted immediately when it has changed.

Product availability

For product availability, see overview on page 36.

network output SNVT_power_kilo nvoHeatPower;

Valid range

0 to 6,553.4 kW (0.1 kW).

The value of 0xFFFF (6,553.5 kW) represents invalid data and indicates that the power cannot be measured/estimated or that the power is higher than 6,500 kW.

When transmitted

This value is transmitted immediately when it has changed more than 2 W

Product availability

For product availability, see overview on page 36.

network output SNVT_temp_p nvoHeatTempDiff;

Valid range

-273.17 to +327.66 °C (0.01 °C).

The value of 0x7FFF (327.67 °C) represents invalid data and indicates that the temperature cannot be measured or that no remote temperature-sensor is connected.

When transmitted

This value is transmitted immediately when it has changed more than 1 °C.

Product availability

Pump faults, TPE Series 1000/2000 / CRE / CRNE / CRIE / NBE / NKE / CHIE / MTRE / CUE / GRUNDFOS MAGNA Series

D:4	Bit ı	name	- Description	Company dia a wayning/alawa an the D400
Bit no.	nvoPumpFault	nvoPumpFaultOld	- Description	Corresponding warning/alarm on the R100
0	sf_voltage_low	Bit 0	Supply voltage is too low.	Undervoltage (40) Undervoltage transient (41) Cut-in fault (dV/dt) (42) Inrush fault (155)
1	sf_voltage_high	Bit 1	Supply voltage is too high.	Overvoltage (32)
2	sf_phase	Bit 2	Power missing phase.	Electronic DC-link protection activated (ERP) (14)
3	sf_no_fluid	Bit 3	No liquid in pump.	Dry running (57)
4	sf_press_low	Bit 4	System pressure is too low.	-
5	sf_press_high	Bit 5	System pressure is too high.	Turbine operation (29)
8	df_motor_temp	Bit 8	Motor temperature is too high.	Overtemperature (64) Motor temperature 1 (65) Temperature too high, internal frequency converter module (t_m) (67)
9	df_motor_failure	Bit 9	Motor has fatal failure.	External fault signal (3) Too many restarts (from standby mode per 24 hours) (4) Too many hardware shutdowns (short standbys per minute) (7) Overload (48) Overcurrent (i_line, i_dc, i_mo) (49) Motor protection function, general shutdown (mpf) (50) Motor protection function 3 sec. limit (54) Motor current protection activated (MCP) (55) Underload (56)
10	df_pump_blocked	Bit 10	Pump is blocked.	Blocked motor/pump (51)
11	df_elect_temp	Bit 11	Electronic temperature is too high.	
12	df_elect_failure_nf	Bit 12	Electronic non-fatal failure.	Warning codes: Hardware fault, type 1 (72) Hardware shutdown (HSD) (73) Internal communication fault (76) Communication fault, twin-head pump (77) Hardware fault, type 2 (80) Verification error, BE parameter area (EEPROM) (85) Electronic rectifier protection activated (ERP) (105) Electronic inverter protection activated (EIP) (106) Communication fault, internal frequency converter module (156) Alarm and warning codes: Verification error, FE parameter area (EEPROM) (83)
13	df_elect_failure	Bit 13	Electronic fatal failure.	CIM fault (Communication Interface Module) (not visible on the R100) (159) Alarm codes: Leakage current (1) Hardware fault, type 1 (72) Hardware shutdown (HSD) (73) Internal communication fault (76) Communication fault, twin-head pump (77) Hardware fault, type 2 (80) Verification error, BE parameter area (EEPROM) (85) Electronic rectifier protection activated (ERP) (105) Electronic inverter protection activated (EIP) (106) Communication fault, internal frequency converter module (156)
14	df_sensor_failure	Bit 14	Sensor failure.	Sensor fault (88) Signal fault, (feedback) sensor 1 (89) Signal fault, speed sensor (90) Setpoint signal outside range (96)

Pump faults, UPE Series 2000

Ditno	Bit name		Description	Corresponding warning/alarm on the R100	
Bit no.	nvoPumpFault nvoPumpFaultOld		- Description		
0	sf_voltage_low	Bit 0	Supply voltage is too low.	Undervoltage	
1	sf_voltage_high	Bit 1	Supply voltage is too high.	Overvoltage	
2	sf_phase	Bit 2	Power missing phase.	-	
3	sf_no_fluid	Bit 3	No liquid in pump.	-	
4	sf_press_low	Bit 4	System pressure is too low.	-	
5	sf_press_high	Bit 5	System pressure is too high.	-	
8	df_motor_temp	Bit 8	Motor temperature is too high.	Overtemperature	
9	df_motor_failure	Bit 9	Motor has fatal failure.	-	
10	df_pump_blocked	Bit 10	Pump is blocked.	Pump blocked	
11	df_elect_temp	Bit 11	Electronic temperature is too high.	Overtemperature	
12	df_elect_failure_nf	Bit 12	Electronic non-fatal failure.	-	
13	df_elect_failure	Bit 13	Electronic fatal failure.	Communication fault between LON module and pump (not visible on the R100)	
14	df_sensor_failure	Bit 14	Sensor failure.	Differential-pressure sensor defective	

Additional fault information can be retrieved with the Grundfos R100 remote control.

When transmitted

This value is transmitted immediately when one of the bits has changed.

Product availability

For product availability, see overview on page 36.

11.25 Alarm code

network output SNVT_count nvoAlarmCode;

This network variable output provides the currently active alarm code from the pump.

In case of a common communication interface module fault (code 159), which is generated in the LON module solely, this will be displayed in nvoAlarmCode and override any alarm pending in the connected E-pump.

Valid range

See section 18. Grundfos alarm and warning codes.

When transmitted

This value is transmitted immediately when it has changed.

Product availability

For product availability, see overview on page 36.

11.26 Warning code

network output SNVT count nvoWarningCode;

This network variable output provides the currently active warning code from the pump.

Valid range

See section 18. Grundfos alarm and warning codes.

When transmitted

This value is transmitted immediately when it has changed.

Product availability

For product availability, see overview on page 36.

11.27 Liquid temperature

network output SNVT temp p nvoFluidTemp;

This network variable output provides the pumped-liquid temperature.

Valid range

-273.17 to +327.66 °C (0.01 °C).

The value of 0x7FFF (327.67 °C) represents invalid data and indicates that the temperature cannot be measured.

When transmitted

This value is transmitted immediately when it has changed more than 1 $^{\circ}\text{C}.$

Product availability

For product availability, see overview on page 36.

11.28 Remote temperature 1

network output SNVT_temp_p nvoRemoteTemp;

This network variable output provides the temperature measured somewhere in the system with a temperature sensor connected to the pump.

Valid range

-273.17 to +327.66 °C (0.01 °C).

The value of 0x7FFF (327.67 °C) represents invalid data and indicates that the temperature cannot be measured or that no remote temperature-sensor is connected.

When transmitted

This value is transmitted immediately when it has changed more than 1 $^{\circ}\text{C}.$

Product availability

11.29 Remote temperature 2

network output SNVT temp p nvoRemoteTemp2;

This network variable output provides the temperature measured somewhere in the system with a temperature sensor connected to the pump.

Valid range

-273.17 to +327.66 °C (0.01 °C).

The value of 0x7FFF (327.67 °C) represents invalid data and indicates that the temperature cannot be measured or that no remote temperature-sensor is connected.

When transmitted

This value is transmitted immediately when it has changed more than 1 °C.

Product availability

For product availability, see overview on page 36.

11.30 Tank level

network output SNVT_length_f nvoLevel;

This network variable output provides the liquid level in the tank of the hydraulic system as measured by the pump.

Valid range

0 to 3.40282E38 m.

A value of NaN (Not a Number) represents invalid data and indicates that the level cannot be measured or that no level sensor is connected

If no level sensor is available in the system, nvoLevel will display a value of NaN (Not a Number).

When transmitted

This value is transmitted immediately when it has changed more than 0.01 m.

Product availability

For product availability, see overview on page 36.

11.31 Auxiliary sensor input

network output SNVT_lev_percent nvoAuxSensor;

This network variable output enables the user to connect any kind of sensor to the product (e.g. a pH sensor), but the interpretation of 0 % and 100 % has to be managed somewhere else in the system.

Valid range

-163.840 to 163.830 % (0.005 % or 50 ppm).

The value of 0x7FFF (163.835 %) represents invalid data and indicates that no auxiliary sensor input is connected.

When transmitted

This value is transmitted immediately when it has changed more than 0.1 %.

Product availability

For product availability, see overview on page 36.

11.32 Power consumption in watts

network output SNVT power nvoPower;

This optional network variable output provides the actual power being consumed by the pump.

Valid range

0 to 6,553.4 W (0.1 W).

The value of 0xFFFF (6,553.5~W) represents invalid data and indicates that the power cannot be measured/estimated or that the power is higher than 6,500~W.

When transmitted

This value is transmitted immediately when it has changed more than 2 W.

Product availability

For product availability, see overview on page 36.

11.33 Power consumption in kilowatts

network output SNVT power kilo nvoPowerKilo;

This optional network variable output provides the actual power being consumed by the pump.

Valid range

0 to 6,553.4 kW (0.1 kW).

The value of 0xFFFF (6,553.5 kW) represents invalid data and indicates that the power consumption cannot be measured/ estimated

When transmitted

This value is transmitted immediately when it has changed more than 0.2 kW.

Product availability

For product availability, see overview on page 36.

11.34 Energy consumption (standard range)

network output SNVT elec kwh nvoEnergyConsum;

This optional network variable output provides the accumulated energy consumption of the pump. After 65,535 kWh, the counter is reset and will restart from 0 kWh.

Valid range

0 to 65,535 kWh (1 kWh).

The value of 0xFFFF (65,535 kWh) represents invalid data and indicates that the power consumption cannot be measured/ estimated

When transmitted

This value is transmitted immediately when it has changed.

Product availability

For product availability, see overview on page 36.

11.35 Energy consumption (extended range)

network output SNVT elec kwh l nvoEnergyConsumL;

This optional network variable output provides the accumulated electrical energy consumption of the pump.

After 214,748,364.6 kWh, the counter is reset and will restart from 0 kWh.

Valid range

-214,748,364.8 to 214,748,364.6 kWh (0.1 kWh).

The value of 0x7FFFFFFF (214,748,364.7 kWh) represents invalid data and indicates that the electrical energy consumption cannot be measured/estimated.

When transmitted

This value is transmitted immediately when it has changed.

Product availability

11.36 Send heartbeat

network input SNVT time sec nciSndHrtBt;

This network configuration property input sets the maximum period of time that will elapse before the functional block automatically updates the following network variables:

nv3, nvoPumpCapacity

nv4, nvoEffOpMode

nv5, nvoControlMode

nv13, nvoPumpStatus.

Valid range

0.0 to 6,553.4 sec. (0.1 sec.).

A value of 0xFFFF (6,553.5 sec.) represents invalid data and will disable the automatic update function.

A value of zero (0) will be used for the internal timer if the configured value is invalid. The value of zero (0) disables the "send heartbeat" function.

Default value

The default value is 0.0 (no automatic update).

Product availability

For product availability, see overview on page 36.

11.37 Receive heartbeat

network input config SNVT_time_sec nciRcvHrtBt;

This network configuration property input sets the maximum period of time that will elapse before the functional block automatically uses the default values for the following network variables:

nv10, nviRemotePress

nv11, nviRemoteFlow.

Valid range

0.0 to 6,553.4 sec. (0.1 sec.).

A value of 0xFFFF (6,553.5 sec.) represents invalid data and will disable the automatic update function.

A value of zero (0) will be used for the internal timer if the configured value is invalid. The value of zero (0) disables the "receive heartbeat" function.

Default value

The default value is 0.0 (no automatic update).

Product availability

For product availability, see overview on page 36.

11.38 Control mode for normal operation

network input config SNVT_dev_c_mode
nciControlMode;

This network configuration property input defines the device control mode to be used for the normal operating mode. For more details about the control modes, see section 11.6 Effective device control mode.

Valid range

The valid range is the same as that of nvoControlMode.

Default value

The default control mode for a pump is DCM_PRESS_COMP (value = 2).

Product availability

For product availability, see overview on page 36.

11.39 Maximum flow limit

Network input config SNVT flow p nciFlowHighLim;

This configuration property defines the maximum limit of the flow of the pump. Applies to MAGNA3 and TPE 2000 version H and later only. It can be enabled in all control modes.

Valid range

The valid range is 0.0 to 655.34 m³/h.

A value of 0xFFFF (655.35 m³/h) represents invalid data and will disable the flow limit function.

Default value

The default value is 0xFFFF, i.e. disabled.

Product availability

Only available on MAGNA3.

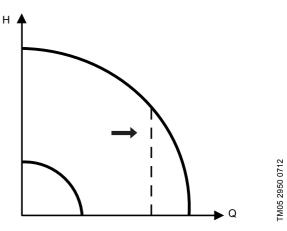


Fig. 17 Maximum flow limit

11.40 Pump characteristic

network input config SCPTpumpCharateristic
nroPumpChar;

This read-only configuration property input provides the basic characteristic data for the pump.

For further technical details, see installation and operating instructions for the relevant pump or Hydro Multi-E.

The configuration parameter consists of three variables.

Valid range

The valid ranges of the supported pump characteristics are shown below.

Variable	Description	Valid range	Invalid value
SNVT_rpm	Maximum pump speed	0 to 65,535 rpm	0xFFFF (65,535 rpm)
SNVT_press	Maximum pump pressure	-3,276.8 to 3,276.6 kPa	0x7FFF (3,276.7 kPa)
SNVT_flow_p	Maximum pump flow	0 to 655.35 m ³ /h	0xFFFF (655.35 m ³ /h)

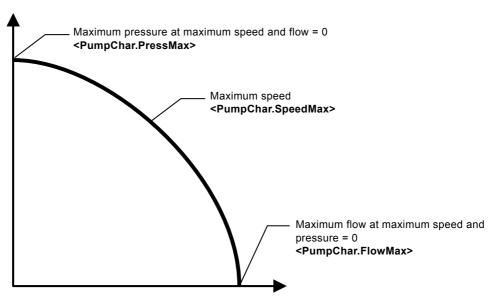


Fig. 18 Pump characteristics

Default value

nroPumpChar is a read-only property. The pump characteristic will be set according to the connected pump.

Product availability

For product availability, see overview on page 36.

11.41 Remote pressure-sensor minimum value

SCPTminRemotePressureSetpoint cp_family
nciRemMinPress;

Basic network variable type for

SCPTminRemotePressureSetpoint: SNVT_press.

This network configuration property input provides the minimum value for ranging the remote pressure sensor. Together with nciRemMaxPress, these range values replace the normal setpoint limits when the remote sensor is used.

See section 11.10 Remote pressure sensor input.

Valid range

-3,276.8 to 3,276.7 kPa (0.1 kPa).

The value of 0x7FFF (3,276.7 kPa) represents invalid data.

Default value

The default value is 0x7FFF (invalid value).

SCPT reference

SCPTminRemotePressureSetpoint (239).

Product availability

For product availability, see overview on page 36.

11.42 Remote pressure-sensor maximum value

SCPTmaxRemotePressureSetpoint cp_family
nciRemMaxPress;

Basic network variable type for

 ${\tt SCPTmaxRemotePressureSetpoint: SNVT_press.}$

This network configuration property input provides the maximum value for ranging the remote pressure sensor. Together with nciRemMinPress, these range values replace the normal setpoint limits when the remote sensor is used.

See section 11.10 Remote pressure sensor input.

Valid range

-3,276.8 to 3,276.7 kPa (0.1 kPa).

The value of 0x7FFF (3,276.7 kPa) represents invalid data.

Default value

The default value is 0x7FFF (invalid value).

SCPT reference

SCPTmaxRemotePressureSetpoint (240).

Product availability

11.43 Remote flow-sensor minimum value

SCPTminRemoteFlowSetpoint cp_family
nciRemMinFlow;

Basic network variable type for SCPTminRemoteFlowSetpoint: SNVT_flow_p.

This network configuration property input provides the minimum value for ranging the remote flow sensor. Together with nciRemMaxFlow, these range values replace the normal setpoint limits when the remote sensor is used.

See section 11.11 Remote flow sensor input.

Valid range

0 to 655.34 m^3/h (0.01 m^3/h).

The value of 0xFFFF (655.35 m³/h) represents invalid data.

Default value

The default value is 0xFFFF (invalid value).

SCPT reference

SCPTminRemoteFlowSetpoint (241).

Product availability

For product availability, see overview on page 36.

11.44 Remote flow-sensor maximum value

SCPTmaxRemoteFlowSetpoint cp_family
nciRemMaxFlow;

Basic network variable type for SCPTmaxRemoteFlowSetpoint: SNVT_flow_p.

This network configuration property input provides the maximum value for ranging the remote flow sensor. Together with nciRemMinFlow, these range values replace the normal setpoint limits when the remote sensor is used.

See section 11.11 Remote flow sensor input.

Valid range

0 to 655.34 m³/h (0.01 m³/h).

The value of 0xFFFF (655.35 m³/h) represents invalid data.

Default value

The default value is 0xFFFF (invalid value).

SCPT reference

SCPTmaxRemoteFlowSetpoint (242).

Product availability

For product availability, see overview on page 36.

11.45 Kp

UCPT_Kp cp_family nciKp;

Basic network variable type for

SCPTminRemotePressureSetpoint: SNVT_multiplier.

This network configuration property input defines the value of Kp in the PI controller. The value is used when an external pressure or flow sensor is connected.

See section 11.10 Remote pressure sensor input or 11.11 Remote flow sensor input.

Valid range

0 to 25.4 (0.1).

The value of 0xFFFF (6,553.5) represents invalid data.

Default value

The default value is 0xFFFF (invalid value). The value will be adopted at power-up.

UCPT reference

UCPT_Kp (6).

Product availability

For product availability, see overview on page 36.

11.46 Ti

UCPT Ti cp family nciTi;

Basic network variable type for

SCPTminRemotePressureSetpoint: SNVT_time_sec.

This network configuration property input defines the value of Ti in the PI controller. The value is used when an external pressure or flow sensor is connected

See section 11.10 Remote pressure sensor input or 11.11 Remote flow sensor input.

Valid range

0.0 to 6,553.4 sec. (0.1 sec.).

The value of 0xFFFF (6,553.5 sec.) represents invalid data.

Default value

The default value is 0xFFFF (invalid value). The value will be adopted at power-up.

UCPT reference

UCPT_Ti (4).

Product availability

For product availability, see overview on page 36.

11.47 Ts

UCPT_Ts cp_family nciTs;

Basic network variable type for

SCPTminRemotePressureSetpoint: SNVT time sec.

This network configuration property input defines the value of Ts in the PI controller. The value is used when an external pressure or flow sensor is connected.

See section 11.10 Remote pressure sensor input or 11.11 Remote flow sensor input.

Valid range

0.0 to 6,553.4 sec. (0.1 sec.).

The value of 0xFFFF (6,553.5 sec.) represents invalid data.

Default value

The default value is 0xFFFF (invalid value). The value will be adopted at power-up.

UCPT reference

UCPT_Ts (5).

Product availability

12. Node object functional block details

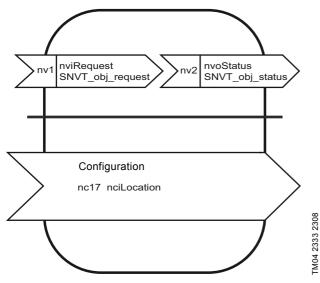


Fig. 19 Node object functional block

12.1 Object request

network input SNVT_obj_request nviRequest;

This network variable input provides the function to request a particular mode for a particular object within a node.

Valid range

The following values are supported.

No.	Request	Description
0	RQ_NORMAL	Enters the normal state. Cancels disabled state.
1	RQ_DISABLED	Disables functional block.
2	RQ_UPDATE_STATUS	Reports status of functional block (refer to nvoStatus).
5	RQ_REPORT_MASK	Reports status mask.
7	RQ_ENABLE	Enables functional block.
9	RQ_CLEAR_STATUS	Clears bits of nvoStatus after RQ_REPORT_MASK request.
10	RQ_CLEAR_ALARM	Resets alarms in the pump.

12.2 Object status

network output SNVT_obj_status nvoStatus;

This network variable output reports the status of any object within a node.

Bit no.	Status bit	Description
1	invalid_id	The requested ID is not implemented in this node.
2	invalid_request	Request for unimplemented function.
4	disabled	The function block is currently disabled.
12	electrical_fault	Electrical fault detected in pump.
13	unable_to_measure	The LON module is unable to communicate with the pump.
18	manual_control	The pump has been set to local control (push-buttons on pump, external STOP or with the R100) and is not controlled by the LON module.
19	in_alarm	The pump has an alarm.
21	report_mask	The node is reporting mask.

12.3 Location label

network input SNVT str asc nciLocation;

This configuration property input can be used to provide the location of the functional block (or device).

Valid range

Any NULL-terminated ASCII string of 31 bytes total length (including NULL).

Default value

The default value is an ASCII string containing all zeros ("\0").

13. Manufacturer-specific variables

13.1 Grundfos command

network input UNVT_GF_cmd nviGrundfosCmd;

This manufacturer-specific network variable input provides the function to request a particular information string from the E-pump. This string contains information about node software version and date which can be used when downloading new software to the node. The result from this command can be seen in nvoGrundfosInfo.

Valid range

No.	Command	Description
0	GF_NO_CMD	No command
1	GF_PRODUCT_VER	Product version (not used)
2	GF_PRODUCT_INFO	Product info
3	GF_SOFTWARE_VERSION	Software version
4	GF_SOFTWARE_DATE	Release date of software
5	GF_SOFTWARE_DEVELOPERS	Initials for software developers

13.2 Grundfos info

network output SNVT_str_asc nvoGrundfosInfo;

This manufacturer-specific network variable output provides the function to get an information string from the E-pump. This string contains information about node software version and date which can be used when downloading new software to the node. This string is the result from nviGrundfosCmd.

Valid range

Any NULL-terminated ASCII string of 31 bytes total length.

14. Product-specific network variables

Not all network variables are used with all pump types. The validity of a network variable depends on the pump connected to the LON module.

The following table gives an overview of network variables and their availability for the specific pumps.

Product availability

Product availability	UPE Series	GRUNDFOS	T CRE / CRNE	CUE		
Product availability	2000	MAGNA Series	1-phase	3-phase 0.55 - 7.5 kW	3-phase 11-22 kW	COL
nviPumpSetpoint	•	•	•	•	•	•
nviPumpOpMode	•	•	•	•	•	•
nviPumpOvdStop	•	•	•	•	•	•
nviOvdSpeed	•	•	•	•	•	•
nviOvdPress	•	•	•	•	•	•
nviRemotePress	-	•	-	-	-	-
nviRemoteFlow	-	•	-	-	-	_
nvoPumpCapacity	•	•	•	•	•	•
nvoEffOpMode	•	•	•	•	•	•
nvoControlMode	•	•	•	•	•	•
nvoPumpStatus	•	•	•	•	•	•
nvoPumpStatusOld	•	•	•	•	•	•
nvoPressure	•	•	•	•	•	•
nvoFlow	•	•	•	•	•	•
nvoFlowF	•	_		•	•	•
nvoSpeed	•	•	•	•	•	•
nvoSpeed nvoPumpOverride		<u> </u>	<u>-</u>			
· ·	•	•	•	•	•	•
nvoRuntime	•	•	•	•	•	•
nvoPumpFault	•	•	•	•	•	•
nvoPumpFaultOld	•	•	•	•	•	•
nvoFluidTemp	•	•	•	•	•	•
nvoPower	•	•	•	•	•	•
nvoPowerK	•	•	•	•	•	•
nvoEnergyConsum	•	•	•	•	•	-
nvoEnergyConsumL	•	•	•	•	•	•
nvoRemoteFlow		-	Н	G	•	•
nvoRemotePress	-	3	Н	G	•	•
nvoRemoteTemp1	-	-	Н	G	•	•
nvoRemoteTemp2	-	3	Н	I	•	•
nvoAuxSensor	-	-	Н	G	•	•
nvolnletPress	-	-	Н	G	•	•
nvoTotalOnTime	-	3	Н	G	•	•
nvoLevel	-	-	Н	G	•	•
nvoActSetpoint	-	•	•	•	•	•
nvoAlarmCode	-	•	•	•	•	•
nvoWarningCode	-	3	•	•	•	•
nvoHeatEnergyCnt	-	3	Н	-	-	-
nvoHeatPower	-	3	Н	-	-	-
nvoHeatTempDiff	-	3	Н	-	-	-
nviGrundfosCmd	•	•	•	•	•	•
nciSndHrtBt	•	•	•	•	•	•
nroPumpChar	•	•	•	•	•	•
nciLocation	•	•	•	•	•	•
nciRcvHrtBt	<u> </u>	•		<u> </u>	<u> </u>	
nciControlMode	•	•	•	<u>-</u>	•	•
nciRemMinPress	<u> </u>		<u> </u>	<u> </u>	•	•
nciRemMaxPress		•			<u>-</u>	
	-	•	-	-	-	-
nciRemMinFlow	-	•	-	-	-	-
nciRemMaxFlow	-	•	-	-	-	-

Draduct evallability	UPE Series	GRUNDFOS	T CRE / CRNE	CUE		
Product availability	2000	MAGNA Series	1-phase	3-phase 0.55 - 7.5 kW	3-phase 11-22 kW	CUE
nciFlowHighLim	-	3	-	-	-	-
nciKp	-	•	-	-	-	-
nciTi	-	•	-	-	-	-
nciTs	-	•	-	-	-	-

^{3:} Only available on MAGNA3.

G: Only available on model G and later versions.

H: Only available on model H and later versions.

I: Only available on model I and later versions.

15. Fitting a sensor

Applies to TPE Series 1000, CRE / CRNE / CRIE / NBE / NKE / CHIE / MTRE / CUE pumps.

When fitting a sensor to the pump, it is necessary to know the range limits for the SNVTs in this profile and the range for sensors connected to the pump.

The table below shows the maximum range for different types of sensors.

Sensor type	Unit	Range
	bar	0-32
	mbar	0-990
Pressure	mVs	0-330
riessuie	KPa	0-990
	psi	0-470
	ft	0-990
	m ³ /h	0-650
Flow	m ³ /s	0-0.1
FIOW	I/s	0-180
	gpm (US)	0-990
Tomporatura	С	-50-320
Temperature	F	-50-600
Other	%	0-100

If other sensor types than pressure sensors are fitted, it will not be possible to use the manual override variable nviOvdPress, but it will still be possible to use nviPumpOvdStop and nviOvdSpeed. When using the LON module with a TPE Series 1000, CRE, NKE or NBE pump, only one of the network variable outputs nvoPressure, nvoFlow, nvoFluidTemp will be valid.

The table below shows the relationship between sensor type and validity of network variable.

Sensor type	nvoPressure	nvoFlow	nvoFluidTemp
Pressure	•	-	-
Flow	-	•	-
Temperature	-	-	•
Other	-	-	-

16. Device resource files

The LON module contains UNVTs and UCPTs. Therefore, Grundfos is supplying DRFs. If the DRFs are used, the right formatting and type definition will be achieved.

The DRFs can be found on the CD-ROM with this functional profile.

The files can be installed by copying them to for example

C:\LONWORKS\TYPES\USER\GRUNDFOS\

Then use the ldrfcat.exe program to add the files.

Note For further information about how to install DRFs, see Echelon documentation.

UNVT_GF_cmd

UCPT_Kp

UCPT_Ti.

17. Fault finding

Faults in a LON module can be detected by observing the status of the service LED (LED1) and the LED for internal communication (LED2). See the tables below.

When the LON module is working properly on the LON network, the yellow service LED (LED1) is permanently off.

When an E-pump is connected to the LON module, the LED for internal communication (LED2) is permanently green.

Note

When the CIM/CIU 110 is connected to the power supply, the yellow service LED (LED1) will flash once.

CIM 100 fitted in an E-pump

Fa	ult (LED status)	Po	ssible cause	Remedy
1.	The service LED (LED1) remains off when the power supply is connected.		The CIM 100 has not been fitted correctly in the E-pump.	Fit the CIM 100 correctly in the E-pump.
		b)	No power supply to the CIM 100.	Check the power supply to the E-pump.
		c)	The CIM 100 is defective.	Replace the CIM 100.
2.	The service LED (LED1) is permanently on.	a)	The CIM 100 is defective.	Replace the CIM 100.
3.	The service LED (LED1) flashes when the power supply is connected to the	a)	The CIM 100 has no application software (application-less).	Try to download application software via a LON installation tool such as LonMaker.
	CIM 100, turns off, turns on again and remains permanently on.		The CIM 100 is defective.	Replace the CIM 100.
4.	The service LED (LED1) flashes every second.	c)	The CIM 100 has not been installed.	Install the CIM 100 by means of a LON installation tool such as LonMaker.
5.	The E-pump does not react to changes of settings, and the readout from the	a)	The CIM 100 does not support the E-pump connected.	Contact the nearest Grundfos company.
	LON network is incorrect. The LED for internal communication (LED2) is permanently red.	b)	The LON application may be wrong, for instance CIM 110 software where CIM 100 software is required.	Download correct software via a LON installation tool such as LonMaker.
6.	The E-pump does not react to changes of settings, and the readout from the LON network is incorrect. The LED for internal communication (LED2) is flashing red.	a)	The cable between the CIM 100 and the E-pump is connected incorrectly or damaged.	Connect the cable correctly, or replace the cable.

CIM 100 fitted in the CIU 100

Fa	ult (LED status)	Po	essible cause	Remedy
1.	The service LED (LED1) remains off	a)	No power supply to the CIU 100.	Check the power supply to the CIU 100.
	when the power supply is connected.	b)	The CIM 100 is defective.	Replace the CIM 100.
2.	The service LED (LED1) is permanently on.	a)	The CIM 100 is defective.	Replace the CIM 100.
3.	The service LED (LED1) flashes when the power supply is connected to the	a)	The CIM 100 has no application software (application-less).	Try to download application software via a LON installation tool such as LonMaker.
	CIM 100, turns off, turns on again and remains permanently on.	b)	The CIM 100 is defective.	Replace the CIM 100.
4.	The service LED (LED1) flashes every second.	a)	The CIM 100 has not been installed.	Install the CIM 100 by means of a LON installation tool such as LonMaker.
5.	The E-pump does not react to changes of settings, and the readout from the	a)	The CIM 100 does not support the E-pump connected.	Contact the nearest Grundfos company.
	LON network is incorrect. The LED for internal communication (LED2) is permanently red.	b)	The LON application may be wrong, for instance CIM 110 software where CIM 100 software is required.	Download correct software via a LON installation tool such as LonMaker.
6.	The E-pump does not react to changes of settings, and the readout from the LON network is incorrect. The LED for internal communication (LED2) is flashing red.	a)	The cable between the CIM 100 and the E-pump is connected incorrectly or damaged.	Connect the cable correctly, or replace the cable.

Note

Fault finding in a LON network requires a special tool such as Honeywell Excelon (not supplied by Grundfos).

18. Grundfos alarm and warning codes

Code	Description	Code	Description	Code	Description
1	Leakage current	32	Overvoltage	72	Hardware fault, type 1
2	Missing phase	33	Soon time for service (general service information)	73	Hardware shutdown (HSD)
3	External fault signal	35	Gas in pump head, deaerating problem	74	Internal supply voltage too high
4	Too many restarts	36	Discharge valve leakage	75	Internal supply voltage too low
5	Regenerative braking	37	Suction valve leakage	76	Internal communication fault
6	Mains fault	38	Vent valve defective	77	Communication fault, twin-head pump
7	Too many hardware shutdowns	40	Undervoltage	78	Fault, speed plug
8	PWM switching frequency reduced	41	Undervoltage transient	79	Functional fault, add-on module
9	Phase sequence reversal	42	Cut-in fault (dV/dt)	80	Hardware fault, type 2
10	Communication fault, pump	45	Voltage asymmetry	81	Verification error, data area (RAM)
11	Water-in-oil fault (motor oil)	48	Overload	82	Verification error, code area (ROM, FLASH)
12	Time for service (general service information)	49	Overcurrent (i_line, i_dc, i_mo)	83	Verification error, FE parameter area (EEPROM)
13	Moisture alarm, analog	50	Motor protection function, general shutdown (MPF)	84	Memory access error
14	Electronic DC-link protection activated (ERP)	51	Blocked motor/pump	85	Verification error, BE parameter area (EEPROM)
15	Communication fault, main system (SCADA)	52	Motor slip high	88	Sensor fault
16	Other	53	Kipped motor	89	Signal fault, (feedback) sensor 1
17	Performance requirement cannot be met	54	Motor protection function, 3 sec. limit	90	Signal fault, speed sensor
18	Commanded alarm standby (trip)	55	Motor current protection activated (MCP)	91	Signal fault, temperature 1 sensor
19	Diaphragm break (dosing pump)	56	Underload	92	Calibration fault, (feedback) sensor
20	Insulation resistance low	57	Dry running	93	Signal fault, sensor 2
21	Too many starts per hour	58	Low flow	94	Limit exceeded, sensor 1
22	Moisture switch alarm, digital	59	No flow	95	Limit exceeded, sensor 2
23	Smart trim gap alarm	60	Low input power	96	Setpoint signal outside range
24	Vibration	64	Overtemperature	97	Signal fault, setpoint input
25	Setup conflict	65	Motor temperature 1 (t_m or t_mo or t_mo1)	98	Signal fault, input for setpoint influence
26	Load continues even if the motor has been switched off	66	Temperature, control electronics (t_e)	99	Signal fault, input for analog setpoint
27	External motor protector activated (e.g. MP 204)	67	Temperature too high, internal frequency converter module (t_m)	104	Software shutdown
28	Battery low	68	External temperature/ water temperature (t_w)	105	Electronic rectifier protection activated (ERP)
29	Turbine operation (impellers forced backwards)	69	Thermal relay 1 in motor (e.g. Klixon)	106	Electronic inverter protection activated (EIP)
30	Change bearings (specific service information)	70	Thermal relay 2 in motor (e.g. thermistor)	110	Skew load, electrical asymmetry
31	Change varistor(s) (specific service information)	71	Motor temperature 2 (Pt100, t_mo2)	111	Current asymmetry

112 Cos e too high 167 Signal fault, analog input 3 195 Limit exceeded, sensor 6 Signal fault, pressure sensor 196 Operation with reduced efficiency (single-phase motors) 168 Signal fault, flow sensor 197 Operation with reduced efficiency (single-phase motors) 170 Signal fault, water-in-oil (WIO) 198 Operation with reduced pressure (single-phase motors) 170 Signal fault, water-in-oil (WIO) 198 Operation with reduced pressure (single-phase motors) 171 Signal fault, water-in-oil (WIO) 198 Operation with increased power consumption (single-phase motors) 172 Signal fault, moisture sensor 199 Process out of range (monitoring/ estimation/calculation/ca	Code	Description	Code	Description	Code	Description
Auxiliary winding fault (angle-phase motors) Auxiliary winding current too high (single-phase motors) Auxiliary winding current too high (single-phase motors) Auxiliary winding current too high (single-phase motors) Auxiliary winding current too low (single-phase motors) Auxiliary winding current too low (single-phase motors) Signal fault, water-in-oil (WIO) Auxiliary winding current too low (single-phase motors) Signal fault, motor position sensor Run capacitor, low (single-phase motors) Run capacitor, low (single-phase motors) Run capacitor, low (single-phase motors) (real auxiliary winding current too low (single-phase motors) (single-phase motors) Run capacitor, low (single-phase motors) (real auxiliary winding current too low (single-phase motors) (single-phase motors) Run capacitor, low (single-phase motors) (real auxiliary winding current too low (real auxiliary winding current too low (real auxiliary or or operation sensor (remos) Too single-phase motors (real auxiliary winding current assessor input high (retroo) (retroo) Real fact too expension Motor bearing temperature high (retroo) (remos) Too bettom bearing (retroo) (remos) Too bettom bearing Retroo individe eard (ref.) Too signal fault, tertor origo sensor Too bearing temperature high (retroo) (remos) Too bearing temperature high (retroo) (remos) Too bearing temperature high (retroo) (remos) Too bea	112	Cos φ too high	167	Signal fault, analog input 3	195	Limit exceeded, sensor 6
Auxiliary winding current too high (single-phase motors) 170 Signal fault, water-in-oil (WIO) 188 Coperation with reducte pressure sensor (PIO), general or (Limos) 171 Signal fault, water-in-oil (WIO) 188 Coperation with increased power consumption or sensor (PIO), general or (Limos) 172 Signal fault, amospheric pressure 200 Application alarm sestimation/calculation/control) 173 Signal fault, atmospheric pressure 200 Application alarm (signe)-phase motors) 174 Signal fault, atmospheric pressure 200 Application alarm (signe)-phase motors) 175 Signal fault, corposition sensor (Hall sensor) 176 Signal fault, corposition sensor 200 External sensor input high (PIO), in general or top bearing (Limos) 176 Signal fault, temperature 3 sensor (Limos) 177 Signal fault, temperature 3 sensor (Limos) 178 Signal fault, temperature 3 sensor (PIO), in developed to the sensor sensor (PIO), in developed to the sensor sensor (PIO), in developed to the sensor sensor (PIO), general or top bearing (PIO) in on-drive end (NEE) 177 Signal fault, thearing temperature sensor (PIO), general or top bearing (PIO) in on-drive end (NEE) 178 Signal fault, bearing temperature sensor (PIO), general or top bearing sensor (PIO), in on-drive end (NEE) 179 Signal fault, bearing temperature sensor (PIO), indide bearing sensor (PIO), general or top bearing sensor (PIO), sensor 200 Non-return valve fault (Signal fault, PIO sensor 201 Signal fault, processor 201 Signal fault, processor 202 Signal fault, processor 203 Signal fault, processor 203 Signal fault, processor 204 Signal fault, processor 205 Signal fault, processor 205 Signal fault, processor 206 Signal fault, processor 207 Signal fault, processor 207 Signal fault, processor 208 Signal fault, processor 208 Signal fault, processor 208 Signal fault, processor 209 Signal fault, processor 209 Signal fault, processor 209 Signal fault, processor 209 Signal fault, processor	113	Cos φ too low	168	Signal fault, pressure sensor	196	Operation with reduced efficiency
Auxiliary winding current too low (single-phase motors) Auxiliary winding current too low (single-phase motors) Start capacitor, low (single-phase motors) Start capacitor, low (single-phase motors) Run capacitor, low (single-phase motors) Run capacitor, low (single-phase motors) Motor temperature 3 (Pt100, Lmo3) Signal fault, rotor position sensor (Hall sensor) Motor temperature high (Pt100), 175 Signal fault, rotor origo sensor (Lmo3) Signal fault, rotor origo sensor (Lmo3) Alarm on all pumps Level float switch sequence inconsistency middle bearing temperature high (Pt100), 176 Bearing temperature high (Pt100), 177 Signal fault, temperature 2 sensor (Lmo3) Motor bearing temperature high (Pt100), 178 Signal fault, with a sensor in put high (Pt100) in drive end (DE) Motor bearing temperature high (Pt100) in on-drive end (NDE) Communication fault, add-on module Motor bearing temperature high (Pt100) in on-drive end (NDE) Communication fault, display Table Signal fault, bearing temperature sensor (Pt100), indide bearing Signal fault, bearing temperature sensor (Pt100), indide bearing Signal fault, bearing temperature sensor (Pt100), indide bearing Signal fault, percentage and the percentage sensor (Pt100), indide bearing Signal fault, percentage temperature sensor (Pt100), indide bearing Signal fault, percen	120		169	Signal fault, flow sensor	197	Operation with reduced pressure
Start apacitor, low (single-phase motors) 173 Signal fault, intosture sensor (Pt100), part trim gap sensor (Pt100), indelte bearing bearing temperature high (Pt100) in non-drive end (NDE) 179 (Pt100), indide bearing 179 (Pt100), in non-drive end (NDE) 179 (Pt100), indide bearing 179 (Pt100), in non-drive end (NDE) 179 (Pt100), indide bearing 179 (Pt100), in non-drive end (NDE) 179 (Pt100), indide bearing 179 (Pt100), in non-drive end (NDE) 179 (Pt100), indide bearing 179 (P	121		170	-	198	•
Run capacitor, low (single-phase motors) 1/2 sensor 200 Application alarm	122		171	Signal fault, moisture sensor	199	
Motor temperature Motor bearing Motor bearing Motor bearing Motor bearing temperature Motor bearing Motor bearing temperature Motor bearing Motor bearing temperature Motor bearing Motor bearin	123	•	172		200	Application alarm
Personal Searing temperature high (Pt100), in general or top bearing in general or top bearing in general personal sensor in (L_mo2) Signal fault, temperature 2 sensor (L_mo2) 203 Alarm on all pumps (L_mo2) Alarm on all pumps (L_mo2) 204 Inconsistency between sensors (L_mo3) 205 Level float switch sequence inconsistency 206 Water shortage, level 1 207 Water shortage, level 1 207 Water leakage 207 Water leakage 207 Water leakage 207 Water leakage 208 Cavitation 209 Non-return valve fault 208 Cavitation	124	•	173		201	External sensor input high
in general or top bearing Bearing temperature high (Pt100), model bearing Motor bearing temperature high (Pt100) in drive end (DE) Signal fault, smart trim gap sensor Motor bearing temperature high (Pt100) in drive end (DE) Signal fault, bearing temperature high (Pt100) in drive end (DE) Signal fault, bearing temperature high (Pt100) in drive end (DE) Signal fault, bearing temperature high (Pt100) in drive end (NDE) The sear of the sear o	144	•	174	Signal fault, rotor origo sensor	202	External sensor input low
Middle bearing 176	145		175		203	Alarm on all pumps
Motor bearing temperature high (Pt100) in drive end (DE) 178 Signal fault, vibration sensor 206 Water shortage, level 1	146		176		204	Inconsistency between sensors
Motor bearing temperature high (Pt100) in drive end (DE) 179 Signal fault, bearing temperature sensor (Pt100), general or top bearing 207 Water leakage	147		177	Signal fault, Smart trim gap sensor	205	
Motor bearing temperature night (Pt100) in non-drive end (NDE) 179 sensor (Pt100), general or top bearing 207 Water leakage	148		178	Signal fault, vibration sensor	206	Water shortage, level 1
Signal fault, PTC sensor (Pt100), middle bearing 208 Cavitation	149		179	sensor (Pt100), general or	207	Water leakage
181	152		180		208	Cavitation
Sensor (Pt100), bottom bearing Signal fault, extra temperature sensor Signal fault, general-purpose sensor Signal fault, general-purpose sensor Signal fault, general-purpose sensor Signal fault, general-purpose Signal fault, ge	153	Fault, analog output	181		209	Non-return valve fault
156 Communication fault, internal frequency converter module 184 Signal fault, general-purpose sensor 212 Diaphragm tank precharge pressure out of range 157 Real-time clock out of order 185 Unknown sensor type 213 VFD not ready 158 Hardware circuit measurement fault 186 Signal fault, power meter sensor 214 Water shortage, level 2 159 CIM fault (Communication Interface Module) 187 Signal fault, energy meter 215 Soft pressure build-up timeout 160 GSM modem, SIM card fault 188 Signal fault, user-defined sensor 216 Pilot pump alarm 161 Sensor supply fault, 5 V 189 Signal fault, level sensor 217 Alarm, general-purpose sensor high 162 Sensor supply fault, 24 V 190 (e.g. alarm level in WW application) 218 Alarm, general-purpose sensor low 163 Measurement fault, motor protection 191 Limit exceeded, sensor 2 (e.g. high level in WW application) 219 Pressure relief not adequate 164 Signal fault, LiqTec sensor 192 (e.g. overflow level in WW application) 220 Fault, motor contactor feedback 165 Signal fault, analog input 1 193 Limit exceeded, sensor 4 (e.g. low level in WW/tank filling application) 221 Fault, mixer contactor feedback	154	Communication fault, display	182		210	High pressure
frequency converter module frequency converted by Fressure out of range frequency freque	155	Inrush fault	183	-	211	Low pressure
Hardware circuit measurement fault 186 Signal fault, power meter sensor 214 Water shortage, level 2 159 CIM fault (Communication Interface Module) 187 Signal fault, energy meter 215 Soft pressure build-up timeout 160 GSM modem, SIM card fault 188 Signal fault, user-defined sensor 216 Pilot pump alarm 161 Sensor supply fault, 5 V 189 Signal fault, level sensor 217 Alarm, general-purpose sensor high 162 Sensor supply fault, 24 V 190 (e.g. alarm level in WW application) 218 Alarm, general-purpose sensor low 163 Measurement fault, motor protection 191 Limit exceeded, sensor 2 (e.g. high level in WW application) 219 Pressure relief not adequate 164 Signal fault, LiqTec sensor 192 (e.g. overflow level in WW application) 220 Fault, motor contactor feedback application) 193 Limit exceeded, sensor 4 (e.g. low level in WW/tank filling application) 221 Fault, mixer contactor feedback 165 Signal fault, analog input 1 193 Limit exceeded, sensor 4 (e.g. low level in WW/tank filling application) 221 Fault, mixer contactor feedback 165 Signal fault, analog input 1 193 Limit exceeded, sensor 4 (e.g. low level in WW/tank filling application) 221 Fault, mixer contactor feedback 165 Signal fault, analog input 1 193 Limit exceeded, sensor 4 (e.g. low level in WW/tank filling application) 221 Fault, mixer contactor feedback 165 Signal fault, analog input 1 193 Limit exceeded, sensor 4 (e.g. low level in WW/tank filling application) 221 Fault, mixer contactor feedback 165 Signal fault, analog input 1 193 Limit exceeded, sensor 4 (e.g. low level in WW/tank filling application) 221 Fault, mixer contactor feedback 165 Signal fault, analog input 1 193 Limit exceeded, sensor 4 (e.g. low level in WW/tank filling application) 221 Fault, mixer contactor feedback 165 Signal fault, analog input 1 193 Limit exceeded, sensor 4 (e.g. low level in WW/tank filling application) 221 Fault, mixer contactor feedback 165 Signal fault, analog input 1 193 Limit exceeded, sensor 4 (e.g. low language input 1 193 Limit exceeded, sensor 4 (e.g. low language	156	·	184		212	
fault 186 Signal fault, power meter sensor 214 Water shortage, level 2	157	Real-time clock out of order	185	Unknown sensor type	213	VFD not ready
159	158		186	Signal fault, power meter sensor	214	Water shortage, level 2
161 Sensor supply fault, 5 V 189 Signal fault, level sensor 217 Alarm, general-purpose sensor high Limit exceeded, sensor 1 (e.g. alarm level in WW application) 163 Measurement fault, motor protection 191 Limit exceeded, sensor 2 (e.g. high level in WW application) 218 Alarm, general-purpose sensor low 218 Pressure relief not adequate 219 Pressure relief not adequate Limit exceeded, sensor 3 (e.g. overflow level in WW application) 164 Signal fault, LiqTec sensor 192 (e.g. overflow level in WW application) 165 Signal fault, analog input 1 193 Limit exceeded, sensor 4 (e.g. low level in WW/tank filling application) 221 Fault, mixer contactor feedback	159		187	Signal fault, energy meter	215	Soft pressure build-up timeout
Sensor supply fault, 5 V Sensor supply fault, 5 V Sensor supply fault, 24	160	GSM modem, SIM card fault	188	Signal fault, user-defined sensor	216	Pilot pump alarm
162 Sensor supply fault, 24 V 190 (e.g. alarm level in WW application) 163 Measurement fault, motor protection 191 Limit exceeded, sensor 2 (e.g. high level in WW application) 164 Signal fault, LiqTec sensor 195 (e.g. overflow level in WW application) 196 Signal fault, analog input 1 197 Limit exceeded, sensor 3 (e.g. overflow level in WW application) 198 Pressure relief not adequate 220 Fault, motor contactor feedback application) 199 Limit exceeded, sensor 4 (e.g. low level in WW/tank filling application) 199 Pressure relief not adequate 220 Fault, motor contactor feedback application	161	Sensor supply fault, 5 V	189	Signal fault, level sensor	217	
protection 191	162	Sensor supply fault, 24 V	190	(e.g. alarm level in WW	218	
164 Signal fault, LiqTec sensor 192 (e.g. overflow level in WW application) 165 Signal fault, analog input 1 193 Limit exceeded, sensor 4 (e.g. low level in WW/tank filling application) 220 Fault, motor contactor feedback application 221 Fault, mixer contactor feedback	163	•	191	· ·	219	Pressure relief not adequate
level in WW/tank filling application	164	Signal fault, LiqTec sensor	192	(e.g. overflow level in WW	220	Fault, motor contactor feedback
166 Signal fault, analog input 2 194 Limit exceeded, sensor 5 222 Time for service, mixer	165	Signal fault, analog input 1	193		221	Fault, mixer contactor feedback
	166	Signal fault, analog input 2	194	Limit exceeded, sensor 5	222	Time for service, mixer

Code	Description	Code	Description	Code	Description
223	Maximum number of mixer starts per hour exceeded	232	Ethernet: Auto-disabled due to misuse	241	Motor phase failure
224	Pump fault (due to auxiliary component or general fault)	233	Ethernet: IP address conflict	242	Automatic motor model recognition failed
225	Communication fault, pump module	234	Back-up pump alarm	243	Motor relay has been forced (manually operated/commanded)
226	Communication fault, I/O module	235	Gas detected	244	Fault, On/Off/Auto switch
227	Combi event	236	Pump 1 fault	245	Pump continuous runtime too long
228	User-defined event	237	Pump 2 fault	246	User-defined relay has been forced (manually operated/ commanded)
229	Water on floor	238	Pump 3 fault	247	Power-on notice (device/system has been switched off)
230	Network alarm	239	Pump 4 fault	248	Fault, battery/UPS
231	Ethernet: No IP address from DHCP server	240	Lubricate bearings (specific service information)		

Subject to alterations.

Argentina

Bombas GRUNDFOS de Argentina S.A. Ruta Panamericana, ramal Campana Centro Industrial Garín - Esq. Haendel y Mozart
AR-1619 Garín Pcia. de Buenos Aires

Pcia. de Buenos Aires Phone: +54-3327 414 444 Telefax: +54-3327 45 3190

Australia GRUNDFOS Pumps Pty. Ltd. P.O. Box 2040 Regency Park South Australia 5942 Phone: +61-8-8461-4611 Telefax: +61-8-8340 0155

GRUNDFOS Pumpen Vertrieb Ges.m.b.H. Grundfosstraße 2 A-5082 Grödig/Salzburg Tel.: +43-6246-883-0 Telefax: +43-6246-883-30

Belgium

N.V. GRUNDFOS Bellux S.A. Boomsesteenweg 81-83 B-2630 Aartselaar Tél.: +32-3-870 7300 Télécopie: +32-3-870 7301

Belarus

Представительство ГРУНДФОС в 220125. Минск ул. Шафариянская, 11, оф. 56 Тел.: +7 (375 17) 286 39 72, 286 39 73 Факс: +7 (375 17) 286 39 71 E-mail: minsk@grundfos.com

Bosnia/Herzegovina

GRUNDFOS Sarajevo GRUNDFOS Sarajevo Trg Heroja 16, BiH-71000 Sarajevo Phone: +387 33 713 290 Telefax: +387 33 659 079 e-mail: grundfos@bih.net.ba

Brazil

BOMBAS GRUNDFOS DO BRASIL Av. Humberto de Alencar Castelo Branco, 630 CEP 09850 - 300

São Bernardo do Campo - SP Phone: +55-11 4393 5533 Telefax: +55-11 4343 5015

Bulgaria

Grundfos Bulgaria EOOD Slatina District Iztochna Tangenta street no. 100 BG - 1592 Sofia Tel. +359 2 49 22 200 Fax. +359 2 49 22 201 email: bulgaria@grundfos.bg

Canada

GRUNDFOS Canada Inc. 2941 Brighton Road Oakville, Ontario L6H 6C9 Phone: +1-905 829 9533 Telefax: +1-905 829 9512

GRUNDFOS Pumps (Shanghai) Co. Ltd. 50/F Maxdo Center No. 8 XingYi Rd. Hongqiao development Zone Shanghai 200336

Phone: +86 21 612 252 22 Telefax: +86 21 612 253 33

Croatia

GRUNDFOS CROATIA d.o.o. Cebini 37, Buzin HR-10010 Zagreb Phone: +385 1 6595 400 Telefax: +385 1 6595 499 www.grundfos.hr

Czech Republic

GRUNDFOS s.r.o. Čajkovského 21 779 00 Olomouc Phone: +420-585-716 111 Telefax: +420-585-716 299

Denmark GRUNDFOS DK A/S

Martin Bachs Vej 3 DK-8850 Bjerringbro Tlf.: +45-87 50 50 50 Telefax: +45-87 50 51 51 E-mail: info_GDK@grundfos.com www.grundfos.com/DK

Estonia

GRUNDFOS Pumps Eesti OÜ Peterburi tee 92G 11415 Tallinn Tel: + 372 606 1690 Fax: + 372 606 1691

Finland

OY GRUNDFOS Pumput AB Mestarintie 11 FIN-01730 Vantaa

Phone: +358-(0)207 889 900 Telefax: +358-(0)207 889 550

France

Pompes GRUNDFOS Distribution S.A. Parc d'Activités de Chesnes 57, rue de Malacombe F-38290 St. Quentin Fallavier (Lyon) Tél.: +33-4 74 82 15 15 Télécopie: +33-4 74 94 10 51

Germany GRUNDFOS GMBH

Schlüterstr. 33 40699 Erkrath Tel.: +49-(0) 211 929 69-0 Telefax: +49-(0) 211 929 69-3799 e-mail: infoservice@grundfos.de Service in Deutschland: e-mail: kundendienst@grundfos.de

HILGE GmbH & Co. KG Hilgestrasse 37-47 55292 Bodenheim/Rhein Germany Tel.: +49 6135 75-0 Telefax: +49 6135 1737 e-mail: hilge@hilge.de

Greece

GRUNDFOS Hellas A.E.B.E. 20th km. Athinon-Markopoulou Av. P.O. Box 71 GR-19002 Peania Phone: +0030-210-66 83 400 Telefax: +0030-210-66 46 273

Hong Kong GRUNDFOS Pumps (Hong Kong) Ltd. Unit 1, Ground floor Siu Wai Industrial Centre 29-33 Wing Hong Street & 68 King Lam Street, Cheung Sha Wan

Kowloon Phone: +852-27861706 / 27861741 Telefax: +852-27858664

Hungary GRUNDFOS Hungária Kft. Park u. 8 H-2045 Törökbálint, Phone: +36-23 511 110 Telefax: +36-23 511 111

GRUNDFOS Pumps India Private Limited 118 Old Mahabalipuram Road Thoraipakkam Chennai 600 096 Phone: +91-44 2496 6800

Indonesia

PT GRUNDFOS Pompa JI. Rawa Sumur III, Blok III / CC-1 Kawasan Industri, Pulogadung Jakarta 13930

Jakarta 13930 Phone: +62-21-460 6909 Telefax: +62-21-460 6910 / 460 6901

Ireland

GRUNDFOS (Ireland) Ltd. Unit A, Merrywell Business Park Ballymount Road Lower Dublin 12

Phone: +353-1-4089 800 Telefax: +353-1-4089 830

Italy

GRUNDFOS Pompe Italia S.r.l. Via Gran Sasso 4 I-20060 Truccazzano (Milano) Tel.: +39-02-95838112

Telefax: +39-02-95309290 / 95838461

GRUNDFOS Pumps K.K. GRUNDFOS Pumps K.K. Gotanda Metalion Bldg., 5F, 5-21-15, Higashi-gotanda Shiagawa-ku, Tokyo 141-0022 Japan Phone: +81 35 448 1391 Telefax: +81 35 448 9619

Korea

GRUNDFOS Pumps Korea Ltd. 6th Floor, Aju Building 679-5 Yeoksam-dong, Kangnam-ku, 135-916 Seoul, Korea

Phone: +82-2-5317 600 Telefax: +82-2-5633 725

Latvia

SIA GRUNDFOS Pumps Latvia Deglava biznesa centrs Augusta Deglava ielā 60, LV-1035, Rīga, Tālr.: + 371 714 9640, 7 149 641 Fakss: + 371 914 9646

Lithuania

GRUNDFOS Pumps UAB Smolensko g. 6 LT-03201 Vilnius Tel: + 370 52 395 430 Fax: + 370 52 395 431

Malaysia GRUNDFOS Pumps Sdn. Bhd. 7 Jalan Peguam U1/25 Glenmarie Industrial Park 40150 Shah Alam Selangor Phone: +60-3-5569 2922 Telefax: +60-3-5569 2866

Bombas GRUNDFOS de México S.A. de Boulevard TLC No. 15
Parque Industrial Stiva Aeropuerto Apodaca, N.L. 66600 Phone: +52-81-8144 4000 Telefax: +52-81-8144 4010

Netherlands

GRUNDFOS Netherlands Veluwezoom 35 1326 AE Almere Postbus 22015 1302 CA ALMERE Tel.: +31-88-478 6336 Telefax: +31-88-478 6332 E-mail: info_gnl@grundfos.com

New Zealand

GRUNDFOS Pumps NZ Ltd. 17 Beatrice Tinsley Crescent North Harbour Industrial Estate Albany, Auckland Phone: +64-9-415 3240 Telefax: +64-9-415 3250

Norway GRUNDFOS Pumper A/S Strømsveien 344 Postboks 235, Leirdal N-1011 Oslo Tlf.: +47-22 90 47 00 Telefax: +47-22 32 21 50

Poland

GRUNDFOS Pompy Sp. z o.o. ul. Klonowa 23 Baranowo k. Poznania PL-62-081 Przeźmierowo Tel: (+48-61) 650 13 00 Fax: (+48-61) 650 13 50

Portugal Bombas GRUNDFOS Portugal, S.A. Rua Calvet de Magalhães, 241 Apartado 1079 P-2770-153 Paço de Arcos Tel.: +351-21-440 76 00 Telefax: +351-21-440 76 90

Romania

GRUNDFOS Pompe România SRL Bd. Biruintei, nr 103 Pantelimon county Ilfov Phone: +40 21 200 4100 Telefax: +40 21 200 4101 E-mail: romania@grundfos.ro

Russia

ООО Грундфос Россия, 109544 Москва, ул. Школьная Тел. (+7) 495 737 30 00. 564 88 00 Факс (+7) 495 737 75 36, 564 88 11

Serbia

GRUNDFOS Predstavništvo Beograd Dr. Milutina Ivkovića 2a/29 YU-11000 Beograd Phone: +381 11 26 47 877 / 11 26 47 496 Telefax: +381 11 26 48 340

E-mail grundfos.moscow@grundfos.com

Singapore

GRUNDFOS (Singapore) Pte. Ltd. 25 Jalan Tukang Singapore 619264 Phone: +65-6681 9688 Telefax: +65-6681 9689

Slovenia

Slovenia GRUNDFOS d.o.o. Šlandrova 8b, SI-1231 Ljubljana-Črnuče Phone: +386 1 568 0610 Telefax: +386 1 568 0619 E-mail: slovenia@grundfos.si

South Africa

GRUNDFOS (PTY) LTD Corner Mountjoy and George Allen Roads Wilbart Ext. 2 Bedfordview 2008 Phone: (+27) 11 579 4800 Fax: (+27) 11 455 6066 E-mail: lsmart@grundfos.com

Spain

Bombas GRUNDFOS España S.A. Camino de la Fuentecilla, s/n E-28110 Algete (Madrid) Tel.: +34-91-848 8800 Telefax: +34-91-628 0465

Sweden

GRUNDFOS AB Box 333 (Lunnagårdsgatan 6) 431 24 Mölndal Tel.: +46 31 332 23 000 Telefax: +46 31 331 94 60

Switzerland

GRUNDFOS Pumpen AG Bruggacherstrasse 10 CH-8117 Fällanden/ZH Tel.: +41-1-806 8111 Telefax: +41-1-806 8115

Taiwan

GRUNDFOS Pumps (Taiwan) Ltd. 7 Floor, 219 Min-Chuan Road Taichung, Taiwan, R.O.C. Phone: +886-4-2305 0868 Telefax: +886-4-2305 0878

Thailand

GRUNDFOS (Thailand) Ltd. 92 Chaloem Phrakiat Rama 9 Road, Dokmai, Pravej, Bangkok 10250 Phone: +66-2-725 8999 Telefax: +66-2-725 8998

TurkeyGRUNDFOS POMPA San. ve Tic. Ltd. Sti. GRUNDFOS POMPA San. ve I Gebze Organize Sanayi Bölgesi Ihsan dede Caddesi, 2. yol 200. Sokak No. 204 41490 Gebze/ Kocaeli Phone: +90 - 262-679 7979 Telefax: +90 - 262-679 7905 E-mail: satis@grundfos.com

Ukraine

ТОВ ГРУНДФОС УКРАЇНА 01010 Київ, Вул. Московська 8б, Тел.:(+38 044) 390 40 50 Фах.: (+38 044) 390 40 59 E-mail: ukraine@grundfos.com

United Arab Emirates

GRUNDFOS Gulf Distribution P.O. Box 16768 Jebel Ali Free Zone Dubai Phone: +971 4 8815 166 Telefax: +971 4 8815 136

United Kingdom GRUNDFOS Pumps Ltd. Grovebury Road Leighton Buzzard/Beds. LU7 4TL Phone: +44-1525-850000 Telefax: +44-1525-850011

GRUNDFOS Pumps Corporation 17100 West 118th Terrace Olathe, Kansas 66061 Phone: +1-913-227-3400 Telefax: +1-913-227-3500

Uzbekistan

Представительство ГРУНДФОС в Ташкенте 700000 Ташкент ул.Усмана Носира 1-й тупик 5 Телефон: (3712) 55-68-15 Факс: (3712) 53-36-35

Revised 18.04.2013

© Copyright Grundfos Holding A/S

The name Grundfos, the Grundfos logo, and be think innovate are registered trademarks owned by Grundfos Holding A/S or Grundfos A/S, Denmark. All rights reserved worldwide.

96846344 0513

ECM: 1113692