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Preface

Are you prepared?
Don’t read this book unless you are a maintainer of LSE or excessively curious
about how things work. It will hurt! Also, this book assumes a thorough knowledge
of the material in the User’s Manual, the Developer’s Manual, and the API
Reference Guide.

Typographical conventions used in this book
The following typefaces are used in this book:

• Normal text

• Emphasized text

• The name of a program variable

• The name of a constant

• The name of an LSE module

• The name of a package

• The name of an domain class

• The name of an domain implementation

• The name of an attribute in a domain implementation description file

• The name of an emulator

• The name of an emulator capability

• The name of a module parameter

• The name of a module port

• Literal text

• Text the user replaces

• The name of a file

• The name of an environment variable

• The first occurrence of a term
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Chapter 1. How simulators get built

This chapter describes the process by which a simulator gets built. It documents the scripts and files
used. This chapter also describes the format of the "info" files used by LSS to communicate with the
simulator build process.

The build process
The main build script isls-build. This script takes as inputs a configuration description file written in
LSS, generates code, compiles the code, and outputs a collection of libraries (within a big directory
structure) for the simulator. These libraries are later linked with emulators byls-link to form a simulator
executable.

The steps ofls-build are:

1. Parse arguments.

2. Create a directory calledmachines if it is not present.

3. Backup an old machine directory, if present and requested to do so.

4. Remove old machine directory, if requested to do so.

5. Run lss. This program does the following:

a. Read configuration files and determine instance structure of the configuration. Determine
all types, parameter values, code functions, etc.

b. Create the output machine directory and andatabase subdirectory.

c. Place "information" files into theoutput_directory /database subdirectory. The
format of these files is given inthe Section calledInfo file formats.

d. Additional subdirectories with additional code tarballs or files may be created, but the
instance hierarchy subdirectories should not be.SIM_instance_info.m4 can indicate a
command to use to move additional code into the instance hierarchy.

6. Create the design database by reading the info files. APIs which are evaluated at code generation
time are evaluated as part of the database build for all code pieces but.clm files; many other APIs
are checked for the same code pieces.

7. Determine whether a clean rebuild is necessary. It is necessary if the user asked for it, the previous
build’s design database cannot be found, or the previous build failed while generating files. The way
the last condition is determined is that a file namedchanging_files is used as a "lock" for
generated files; it is created, then the files are created, then it is deleted. If this file is found at this
point, then the previous build failed and a clean rebuild is necessary. Reads the previous design
database if a clean rebuild is not needed.

8. Determine whether a new execution schedule is necessary and callls-scheduleto generate it if this
is the case. If a new schedule was needed, run schedule post-processing.
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Chapter 1. How simulators get built

9. Figure out how code blocks are to be invoked.

10. Determine whether theinclude directory,framework directory, or modules need to be rebuilt.

11. Lock the generated files by creatingchanging_files .

12. Create theinclude andframework directories if they need to be rebuilt. Use SHA hashes of the
tarballs to double check for changes.

13. Create the instance directory structure (calledMODULES).

14. For each module, if it needs to be rebuilt, clean out its directory, and detar the module tarball or run
the command specified inSIM_instance_info.py . Uses SHA hashes of the tarballs to double
check for changes.

15. Write the design database todatabase/SIM_schedule.dat

16. CreateSIM_inst_name.m4 files in each instance source directory needing to be rebuilt indicating
the instance name.

17. Find all instance*.mk files for instances needing to be rebuilt and rename them toMakefile ; if an
instance does not have such a file, create a defaultMakefile for it.

18. Remove orphaned module directories

19. Write a file namedquick_make.sh which contains make commands for each directory needing to
be rebuilt.

20. Unlock the directories by deletingchanging_files .

21. CreateMakefile for each intermediate level of the directory structure and the top level.

22. Generate code from .clm or .m4 templates if the .c files are out of date with respect to the .clm or
.m4. This step is done "early" here (as the Makefiles can do it as well) so that the design database
does not need to be reloaded once for every file generated.

23. Generate a makefile defining special compilation flags required by domains. This file is called
include/Make_for_this.mk .

24. Create the top-levelMakefile .

25. Write the emulator style fileemulator_style . This file indicates tols-link what kind of emulator
has been used so that it may look for the right set of command-line parameters. The possible values
arecompile andinterpret .

26. Createinclude/SIM_config.h with top-level parameter macros.

27. Substitute configuration information intoinclude/Make_include.mk .

28. If there is aquick_make.sh file and there is not amake_aborted file, runquick_make.sh to
generate and compile framework and module code, otherwise runmake -ein the machine directory.
The-e option is used on calls to make so that environment variables can override defaults set in the
makefile.

Themake_aborted file is used as a lock file to detect incomplete makes when using
quick_make.sh . It is created before runningquick_make.sh and then deletd afterwards.

The steps ofls-link are:
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Chapter 1. How simulators get built

1. Parse arguments. The exact arguments needed depend upon whethat type of emulators are to be
used, as given in theemulator_style file. Compiled emulators do not need binary names;
interpreted emulators do.

Open Issue

How do we deal with multiple emulators with multiple binaries since the typical
simulator command-line cannot?

2. Ensure that LIBERTY_SIM_LIB_PATH contains the default emulators and extensions directories

3. Copy benchmark binary if needed or discover compiled-code library for the benchmark.

4. Find all object libraries in the machine directory.

5. Find emulation libraries. Theemulator_style lists libraries by name or-l ; it may also include
-L to indicate library search paths. Any-l or -L words are passed through to the linker, while other
words are treated as library names and LIBERTY_SIM_LIB_PATH is used as a search path to find
them.

6. Find libraries listed using the-link_lib option. The word following a-link_lib is treated just
as emulation libraries are;-l and-L are passed through to the linker, while others are treated as
library names and LIBERTY_SIM_LIB_PATH is used as a search path to find them.

7. Figure out linking options needed by a compiled-code benchmark.

8. Link.

Files used in the build process
This section describes various files used as inputs to the build process or generated by the build process.
It begins with files which are installed by the LSE installation process (i.e.make install). It then
proceeds in the order in which files are generated during the building of a simulator; this order is
generallyinclude directory,framework directory, and module directories. Note, however, that some
files are seeded in each of these directories by the build scripts, as described inthe Section calledThe
build process.

Files installed by LSE
The following files are installed from theframework directory into
install_dir /share/lse/framework .

framework_code.tar - tarball for the framework directory
framework_inc.tar - tarball for the include directory
parmdecl.lss - top-level parameter definitions
scheduler/LSE_schedule.py - Python code for manipulating schedules
Make_include.mk - Template for common makefile rules
SIM_analysis.py - Python code for analyzing the design
SIM_apidefs.py - Python code for core APIs
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Chapter 1. How simulators get built

SIM_codegen.py - Python code for helping to generate C code
SIM_database.py - Python code for manipulating machine data structures
SIM_database_build.py - Python code to build the Python database
SIM_debug_database.py - Python script to interactively debug the database
SIM_rebuild.py - Python code for determining whether a rebuild is necessary
SIM_tokenizer.py - Python code for simple parsing of C code

A program calledls-schedule is built and installed intoinstall_dir /bin . This program does
schedule analysis. The source code used for this program is inframework/scheduler and is named:

scheduler.h - scheduler data structures
scheduler.c - scheduler code
develmain.c - main program for text-based (debugging) entry
realmain.c - main program for entry from design databases

The following files are installed from thescripts directory intoinstall_dir /bin .

ls-build - Script to build a simulator (generated fromls-build.in )
ls-create-module - Script to create an outline of a module
ls-link - Script to link simulators with emulators
ls-prep-bench - Script to create a Liberty compiled-code emulator
ls-run-bench - Script to run a simulator on a benchmark

TO DO

ls-prep-bench and ls-run-bench should be moved into the local-scripts CVS module
in the near future. They are "blank" in the standard distribution.

The following files are installed from theinclude directory intoinstall_dir /include/lse .

SIM_clp_interface.h - Header defining types and function a command-line processor can use
SIM_time.h - Time type and accessors
SIM_types.h - Basic simulator types

Domain files
LSE relies upon the presence of the following two files installed by thescripts module:

• install_dir /bin/l-create-domain-header - a Python script to create the domain header file

• install_dir /domains/LSE_domain.py - Base Python class for domains and a few constants

Individual domain classes install at least two files into theinstall_dir /share/domains directory.
The possible files are:

• domain .py - a Python module which includes, at a minimum, an object with a particular name
(LSE_DomainObject ) derived from the base domain class.

• domain .lss - a file defining alsspackage for the domain.

• domain .m4 - code to implement APIs and variables added by the domain. This file is optional.
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Chapter 1. How simulators get built

• domain / implementation .lss - a package per domain class implementation which define
implementation-specific types. These files are optional.

At present the only standard domain class isLSE_emu, which provides all the files. The class files are
provided in theemulib module and the implementation files in the various emulator implementation
modules.

Files in the built simulator database directory
The include directory begins with the "information" files created bylss. Further files are created by
different steps ofls-build in the following order:

• SIM_schedule.dat - The Python database; created by usingSIM_database_build.py and
calling a number of Python functions to analyze it.

• SIM_debug_database.py - Python script to interactively debug the database. Copied from
install_dir /share/lse/framework .

• SIM_schedule.in - Input to ls-schedule. Contains only the signal list and values of two parameters.

• SIM_schedule.out - Output ofls-schedule. Contains only the schedule.

• SIM_schedule.txt - Information about the schedule created while runningls-schedule.

The database file (SIM_schedule.dat ) is created with the PythoncPickle package. The
SIM_debug_database.py script can be used with thepython -i command to read the file so that the
database can be interactively examined.

Files in the built simulator include directory
ls-build detars the include directory tarball previously installed to produce the following files:

Make_module.mk - Default module makefile
SIM_all_types.h - Include all the data types in the system
SIM_allcb_api.m4 - APIs visible in all scopes not already in .h files
SIM_control.h.m4 - Template for core data structure definitions
SIM_database.m4 - m4 code to read the Python database
SIM_domain_types.h.m4 - Template for domain-dependent type definitions
SIM_dynid.h - Dynamic instruction ID manipulation
SIM_framework_inc.mk - renamed toMakefile
SIM_prefix.m4 - Prefix template for modules
SIM_quotes.m4 - Set up funny quotes and utility macros we use inm4
SIM_refcount.h - A type for reference counting
SIM_resolution.h - Resolution type and accessors
SIM_time.h - Time type and accessors
SIM_types.h - Basic simulator types
SIM_user_types.h.m4 - Template for user extensions to simulator datatypes

ls-build creates the following files:

• Make_include.mk - common makefile definitions. This file is produced by substituting text from the
template of the same name ininstall_dir /share/lse .
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• Make_for_this.mk - definition ofmakevariables for this configuration. Currently contains compile
flags for domain classes and instances.

Themakecommand in the include directory transforms all the*.h.m4 files into*.h files usinglm4.
(ls-build actually attempts to perform this transformation early, beforemake, as this will save database
load time.) It also creates a file calledincludedir with the full path name of the include directory. This
file is included bySIM_database.m4 to find the correct directory to search for the design database.

Structure of the include files

The include files fall into two classes we calltype headersandvariable declaration headers. Type
headers are used to declare types and method signatures upon those types. They may also include
inlinable methods. Variable declaration headers are used to declare external variables and utility
functions.

Most of the header files are type headers. The type header which all non-header C source files include
(after code generation) isSIM_all_types.h , which simply pulls in all the other type headers in the
proper order. No other type header should be included directly by any other source file. The other type
headers do *not* include all the headers they need; they rely instead onSIM_all_types.h to include
all the prerequisites. This is done to reduce build time in the C pre-processor. These prerequisites are
normally listed in a comment at the type of the type header’s code.

The only variable declaration header (at present) isSIM_control.h , which is included by most
non-header C source files to declare the core simulator data structures. This header file does not include
all the headers it needs; it relies upon the including file to have includedSIM_all_types.h before.

Files in the built simulator framework directory
ls-build creates theframework directory and detars the framework directory tarball previously installed
to produce the following files:

SIM_control.c.m4 - Definitions of core data structures and utility functions
SIM_framework_code.mk - Renamed toMakefile
SIM_initfinish.c.m4 - Template for initialization/finalization/start/finish routines
SIM_mainloop.c.m4 - Template for simulator main loop

Files from the tarball described as templates which have two suffixes are passed throughlm4 to produce
the file with the first suffix during themakecommand. (ls-build actually attempts to perform this
transformation early, beforemake, as this will save database load time.)

Files in each module instance’s src directory
Each module instance’s tarball is detar’d byls-build. The "head" file for each module has a ".clm "
suffix. Modules can be split across multiple files, but only if the additional files are included into the head
file using:

#LSE include <filename >
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Chapter 1. How simulators get built

makeknows how to handle.clm files because the module’s Makefile file must include
Make_module.mk from theinclude directory; this file (through its includes) provides the definition for
handling.clm files. The waymakeproceeds is that a.c file is generated which contains a prefix, the
module’s code, and a suffix. The prefix and suffix templates are in theinclude directory. (ls-build
actually attempts to perform this transformation early, beforemake, as this will save database load time.)

The prefix provides the following (order is not exact, as some things are intermingled):

• Read the database

• Include necessary type headers

• Prototypes for API implementation functions, control functions, data collectors, user functions, etc...

• Per-instance API definitions, including firing functions

• Control and user points

• Data collectors

The following is done to the module’s.clm file:

• API calls are checked and mapped to actual function names needed

• Instance variable names and function names are resolved (generally through flattening of the instance
name and prefixing)

The suffix provides the following:

• Query wrappers

• Wrappers for phase end/phase start/init/finish

Note that if a module wishes to create a "library" of functions to be shared among instances of the
module, the best way to do this will be to create a domain implementation of thelibrary domain class
and install that library in the install area. The source code for this library shouldnot be placed in the
module tarballs and can only know about instance data through parameters of calls to the library.

Identifier construction
The generated code has a lot of identifiers in it, and there needs to be a way to guarantee uniqueness.
This cannot be done in general without restricting the user’s choice of identifiers in some way. The rules
for the user are:

1. Do not start names with LSE or m4

2. Do not use two underscores in a row in a name or start a name with an underscore.

With these rules in place, the general way an identifier is constructed from a user’s identifier is with four
parts:

1. A prefix starting withLSE which indicates the subsystem or source of the identifier. Prefixes are
listed below. The prefix usually ends with a single underscore (_).
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Chapter 1. How simulators get built

The prefixes used are:

LSEan_ - Analysis: internal identifiers defined/generated inSIM_analysis.py
LSEap_ - API definitions: internal identifiers defined/generated inSIM_apidefs.py
LSEbl_ - Database build: internal identifiers defined/generated inSIM_database_build.py
LSEcg_ - Code generation: internal identifiers defined/generated inSIM_codegen.py
LSEdb_ - Database: internal identifiers defined/generated inSIM_database.py
LSEdc_ - Domain class identifier (the class name is in the hierarchical path)
LSEdi_ - Domain instance identifier (the instance name is in the hierarchical path)
LSEdy_ - Dynamic ids: internal identifiers defined inSIM_dynid.h .
LSEm4_ - A framework m4 macro
LSEmi_ - Module instance identifier
LSEpi_ - Port instance identifier
LSEpy_ - A framework Python function
LSEre_ - Resolutions: internal identifiers defined inSIM_resolution.h .
LSEsc_ - Scheduling: internal identifiers defined/generated inSIM_schedule.py .
LSErb_ - Rebuild: internal identifiers defined inSIM_rebuild.py .
LSEti_ - Time: internal identifiers defined inSIM_time.h .
LSEtk_ - Tokenizer: internal identifiers defined/generated inSIM_tokenizer.py .
LSEty_ - Types: internal identifiers defined inSIM_types.h .
LSEut_ - A user-defined type name or accessor
LSEuv_ - A user-defined variable or runtime parameter name
LSE_ - An identifier directly available to users in some way
LSEfw_ - Any other identifier that is not supposed to be directly available to users

2. The purpose of the identifier. This part ends with a double-underscore (__). It is not always present.

3. A "flattened" hierarchical path to the name (if any). Flattening is the process of turning dots (. ), the
normal hierarchical separator, into double-underscores (__), the flat separator. If present, the path is
usually followed by triple-underscores (___ ).

Open Issue

We might turn this path into a hash so that we do not make identifiers too long...

4. The name of something in the system, possibly flattened.

As an example of this construction, consider the nameLSE_CONTROL__foo__hey___out . The prefix is
LSE_. The purpose isCONTROL, which indicates that this is a control function. The flattened hierarchical
path isfoo__hey , so this is a control function for thefoo.hey module instance. Finally, the name is
out . So, this is theout control function of instancefoo.hey .

Python identifiers that are to remain local to a module are prepended with an underscore (_). They do not
always follow the naming convention because they do not have global scope.

API Identifier implementation
Possibly the nastiest thing to understand in the code generation process is how API identifiers actually
get implemented. This section attempt to demystify it a little bit.

The first necessary concept is that ofcode provenance. There are three possible sources for code:
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1. Fixed code within the framework (e.g.SIM_types.h .) This code is just normal C code; nothing
more really needs to be said about it.

2. Generated code within the framework. This is code which has to change due to differences in the
configuration. A good example of this is the static schedule for a timestep. This code is always
generated by Python code embedded into a file which is expanded when the file is processed by m4.

3. User-supplied code. Users can supply code in configurations, in module.clm files, and in domain
class files (both Python and macro). This is the hard-to-understand part of implementation and will
be the focus of the rest of this section.

All user-supplied codemustundergo parsing and translation . This applies to more code than you might
expect; for example, any "external" type in LSS is user-supplied code and must be translated. The reason
for this is that any user-supplied code could make references to API identifiers. These identifiers must be
translated into appropriate code and also often cause dependencies between module instances, which can
imply either rebuild conditions or even data dependencies affecting scheduling.

This translation step is accomplished via a "tokenizer" module in Python. This module is a generalization
of m4 for C and C-like code; it can parse argument lists respecting square and curly braces, and it can
output not only text, but also simple parse trees. Furthermore, the dictionaries of macros can be
manipulated as a search list, allowing us to easily map definitions in and out in bulk.

These tokenizer features allow us to have dictionaries which hold API definitions. For core APIs, the
dictionary entries generally define "tokenizer" macros — macros which use parse trees as input. This
makes it easier to extract instance names and port names from arguments in the presence of parenthesis.
Certain APIs also have "analysis" or "build" definitions which call the underlying API macro to do
argument parsing and then mark data dependencies or rebuild conditions. Domain APIs are handled in a
similar fashion, but because domain APIs must refer to a a domain class or instance, there is an
additional indirection. We also use a different dictionary for them.

We define a domain API dictionary to hold all identifiers from domains. For every identifier defined by a
domain, an entry is placed in the dictionary which points to a Python function which looks at the first
argument and determines whether it is a domain instance reference; otherwise, it searches for the
identifier in the domain search path. In either case it properly translates the reference to the unique
backend name for the identifier.

Part of the identifier definition is a description of how to create the backend identifier. This varies
dependencing upon the kind of identifier. LSE is responsible for creating the backend identifiers from
these descriptions in appropriate header/code files. Any of these descriptions can also beNone, which
indicates to LSE that the definition of the backend identifier is in the macrofile for the domain. These
definitions can includem4 macros, which makes things interesting, as the m4 macro definitions need to
be placed into the domain API dictionary as well.

So, what ends up happening is that the domain macro definitions get tokenized with the domain API
dictionary at the head of the dictionary list, causing them to be placed into the domain API dictionary.
This happens before any other user-supplied code is parsed. Then all other user-supplied code is parsed
with this dictionary and the "core" API dictionary, as well as any additional dictionaries inserted to
"hook" APIs for analysis of rebuild conditions or data dependencies.

Conversely, no code other than user-supplied code is automatically parsed and translated; other code
simply goes through normal m4 expansion, which actually needs few macros other than the m4 builtins.
(Those few macros are found inSIM_common.m4.) It is possible to parse and translate other code
through the tokenizer by creating a suitable tokenizer and then forcing the text through it; it is even
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Chapter 1. How simulators get built

possible to make the tokenizer look like an output stream that you can just write to and it will tokenize
for you. We do this in a few places where it seems easier to tokenize in pieces than to create large strings
to pass to the tokenizer.

Scope of types
One of the most difficult problems to deal with when generating code is the problem of resolving types.
Most types are declared and used within a specific scope in LSS, but the C type scope of the generated
code may be different. Keeping track of which types are in scope and which are not for a particular
chunk of generated code is a tricky business, and implementing it is even worse, as C does not allow us
to easily remove types from scope. This section describes how we deal with this problem.

Originally this section listed all the places in which types are used and what we wanted to be available at
each place. But after listing that, we were able to come up with some very simple rules:

1. All types defined to LSS are visible within LSS using LSS’s scoping rules. The${} notation is used
to access them in places where program text (such as user point values) is enclosed in
triple-angle-brackets (<<<>>>).

2. The LSS interpreter generates unique global names for each of the types, ensuring that a simple alias
of a type to a new name doesnot create a new global type and outputs a list of these, along with their
definitions. It also causes references to its types (in triple-angle-brackets) to translate to a particular
macro (LSEut_ref ) so the backend can easily translate the reference.

3. Some LSS types are made visible to the.clm file by exporting them with a specific local name to
the back end; these types arenot visible to the LSS file using the local name. These types are visible
only to the.clm file. LSS outputs a list of theselocal type aliases.

4. The backend hashes the type definitions to create stable names for the types to reduce the number of
forced rebuilds when types change. It also translates LSS type references and local type aliases.

5. For now, types can be defined in module and instance funcheader sections and data collector decl
sections, but these will eventually be removed. Such types are visible to the user points
(funcheaders), the .clm file (module funcheaders only), and data collectors (funcheaders and data
collector decls). These types may have greater visibility than that specified here, which may lead to
name clashes.

Supporting incremental build
The main problem for incremental rebuild is figuring out when things need to be rebuilt. Here’s
documentation of the cases where it is needed (or not needed) and why.

Rerun conditions for ls-schedule

1. The signal list changed in signal names, types, numbers, context numbers, or reduced dependencies
(not real dependencies). Note that names and types are only required so thatSIM_schedule.txt is
consistent when outputting the schedule.

2. Either of the two parameters used inls-schedulechanges.
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Chapter 1. How simulators get built

Rebuild conditions for the include directory

1. The directory tarball changed. This is checked by doing an SHA hash of the tarball.

2. The list of domain implementations changed or any domain changed identifiers, headers, compile
flags, attributes, or parameters.SIM_control.h andSIM_domain_types.h contain variable, API,
and hook definitions.

3. The list of instance names changed. This affects a variable declaration inSIM_control.h .

4. The list of structadds changed. Portions of theLSE_dynid_t andLSE_resolution_t structures are
defined inSIM_user_types.h .

5. Any port names, types, widths, controlempty, or independence changed. All this information is used
in generating the global message and status structures inSIM_control.h .

6. The list of user-defined types changed. User-defined types are defined inSIM_user_types.h .

7. Top-level parameters changed. These are used everywhere.

8. The list of user-defined variables changed. User-defined variables are declared inSIM_control.h .

9. A run-time variable definition changed. Run-time parameter variables are declared in
SIM_control.h .

Rebuild conditions for the framework directory

1. The include directory tarball changed. This is checked by doing an SHA hash of the tarball.

2. The directory tarball changed. This is checked by doing an SHA hash of the tarball.

3. The list of domain implementations changed or any domain changed identifiers, headers, compile
flags, attributes, or parameters.SIM_control.c contains variable, API, and hook definitions.

4. The list of instance names changed. This affects a variable declaration inSIM_control.c .

5. The list of structadds changed. Methods ofLSE_dynid_t andLSE_resolution_t are defined in
SIM_control.c .

6. Any port names, types, widths, independence, controlempty, or names changed. The global message
and status structures whose types depend upon this information are instantiated inSIM_control.c .

7. The list of user-defined types changed. The global message structure definition and user-defined
variables inSIM_control.c may depend upon the types which changed. Structadds may also
depend on these types.

8. Top-level parameters changed. These are used everywhere.

9. The list of user-defined variables changed. User-defined variables are instantiated in
SIM_control.c .

10.A run-time variable definition changed. Run-time parameter variables are instantiated in
SIM_control.c .

11.The context list changed.SIM_control.c has a list of pointers to contexts.

12.The schedule changed.SIM_control.c has a structure containing the static schedule as well as
dynamic section definitions.

13.The signal list changed in any way. May affectSIM_control.c or SIM_mainloop.c .

14.Top-level events/data collectors changed. The data collectors are instantiated inSIM_mainloop.c .
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Rebuild conditions for all module instances together

1. The include directory tarball changed. This is checked by doing an SHA hash of the tarball.

2. The list of domain implementations changed or any domain changed identifiers, headers, compile
flags, attributes, or parameters.SIM_control.h andSIM_domain_types.h contain variable, API,
and hook definitions.

3. Any domain compilation flags changed

4. The list of structadds changed. Inlined methods ofLSE_dynid_t andLSE_resolution_t which depend
upon their structure are included by module instances. Also, attribute and field accessor macros
depend upon structure. If fields of a module instance change or a module instance is deleted, must
rebuild because we do not know what module instance might have accessed those fields. This
rebuild condition is prevented when parameterLSE_use_direct_field_access is FALSE, as
the accessor methods no longer need to know the structure, but use indirect accesses.

5. Top-level parameters changed. Not all parameters cause a rebuild; this is implemented by assuming
that a change will cause a rebuild unless the parameter is on a list of exceptions or its name does not
start with the magicLSE_ prefix.

Rebuild conditions for individual module instances

1. The module instance is not in the old design.

2. The module tarball name or tarball contents changed. The contents check is done by doing an SHA
hash of the tarball.

3. Any port names, types, widths, independence, controlempty, or direction changed. API names and
implementations all depend upon this information. Also must rebuild if any port’s handler status
changed, because a firing function may call handlers directly (could be restricted to handler changes
with control function non-empty).

4. Any user-defined types used (transitively) by the module instance changed. It is important that the
transitive closure of type use be computed. Also, query calls imply use of their argument and return
value types. Note that we know the text of type use within anything provided bylss: code functions,
data collectors, structadds, query definitions, etc.; inside the .clm file we do not see it, but the .clm
can only use mapped types, and we know those.

5. Any user-defined variables used by the module instance changed. Note that we know the text of
variable use within code functions and data collectors; the .clm file cannot use these variables.

6. Any of a variety of module instance elements changed: parameters, phase/phase_end/phase_start
flags, events/data collectors, funcheader, codepoints, domain search path, callers, queries, structadds

7. Signals driven by a control function of this module instance change constant status. If this happens,
the control function contents must have changed, and that is part of the next condition. So.... this is a
redundant condition.

8. Port connectivity or scheduling information for the module instance changed. This affects port API
definitions and firing function generation.

9. Context numbers changed for the instance. This affects any calls/scheduling within the same
instance; context numbers needed for scheduling between instances are always calculated through
indirection in the port’s global info structure. When parameter
LSE_specialize_context_numbers is FALSE, within-instance context number calculation
uses offsets from a global variable and this condition does not need to be checked.

12
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10.Some items referenced by the module code across instances in code in triple-angle-brackets
changes. These items are structure fields, query signatures, and port widths. Note that port widths
are present because they are used to check arguments of port queries in the calling instance (not the
callee) even though theLSE_port_width call translates to a constant. Port aliases must also be
checked in this fashion.

Just for completeness, the reason parameters and port types are not included in this are given here.
Parameters are translated to constants in the codepoint text, which is compared separately. Port types
are translated to a backend type, which is compared through both the codepoint and the type
comparison logic.

11.The module contains an instance ref parameter parameter and anything accessable across instances
by .clm code has changed in the referenced instance. At present only structure fields are in this
category.

12.The module contains a literal parameter and anything accessable across instances by .clm code has
changed in any instance. At present only structure fields are in this category. Note that this can cause
many rebuilds for no good purpose; literal parameters should be avoided for this reason!

Furthermore, if a build is interrupted while the contents of the directories are being changed (i.e. before
makebegins), the directories and the database could be out of sync. It is necessary to detect this
condition and force a complete rebuild on the next attempt to build the system. This is done by using a
file calledchanging_files as a lock file to indicate that changes are in progress.

It would also be nice if we could use a "reduced" database when generating code for the individual
module instances, as the whole database is time-consuming to read. However, the presence of port and
general queries and field accessors complicates things: anywhere in the design is subject to query and
API parameter checking needs to know at least the names available in the design. Some checking could
be done at user/control function analysis (in fact, some already is), but there are still run-time checks to
be made. Note that the only cross-instance pointer in the database at present is the pointer due to port
connections.

Conditions that do not cause rebuilds.

1. Changes to the schedule or to the signal list do not cause rebuilds of all modules; only module
instances whose scheduling behavior on the ports or actual port connectivity changed require a
rebuild in this case. So if two different static schedules result because of a change in a control
function somewhere, only theframework directory, the module instance with the control function
that changed and potentially others connected to that port should need rebuilds.

2. Instances or ports disappearing do not cause rebuilds of all modules. This is because port and query
analysis occurs on all rebuilds and will catch any references made by API calls in control or user
functions to ports or queries that no longer exist.

Info file formats
There are eight "information" files which contain information about the configuration. These files are
placed in themachinename /include subdirectory. These files are:

File name: SIM_codepoint_info.py

13



Chapter 1. How simulators get built

Information about: code points

File name: SIM_domain_info.py

Information about: domains (not yet generated by LSS)

File name: SIM_event_info.py

Information about: events and data collectors

File name: SIM_instance_info.py

Information about: module instances

File name: SIM_parm_info.py

Information about: parameters

File name: SIM_port_info.py

Information about: ports and connections

File name: SIM_query_info.py

Information about: queries

File name: SIM_struct_info.py

Information about: user extensions to datatypes

File name: SIM_type_info.py

Information about: type definitions and mapping

File name: SIM_var_info.py

Information about: variables

The format of each of the files is described in the following sections. All of the files are parsed by
Python. The formats specify whether single quotes or raw-triple-quotes (i.e.r""" text """ ) are to be
used for some parameters. Raw-triple-quotes are always acceptable where single-quotes are required, but
single-quotes are not acceptable where raw-triple-quotes are required

SIM_codepoint_info.py

This file is parsed by Python. It is read once while the Python database is being built. It consists of a
number of function calls; the function definitions are inframework/SIM_database_build.py . The
functions and their parameters are:

add_funcheader_to_inst(inst, text)

inst Instance name (hierarchy denoted with ’. ’), single-quoted.

text The funcheader text, raw-triple-quoted
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add_codepoint_to_inst(inst, cpname, kind, text, dtext, rtype, params)

inst Instance name (hierarchy denoted with ’. ’), single-quoted.

cpname Codepoint name, single-quoted

kind One ofLSE_PointControl , LSE_PointUser , or LSE_PointDecode .

text The text of the code point, raw-triple-quoted.

dtext The default text of the code point, raw-triple-quoted.

rtype The return type of the code point, raw-triple-quoted. This should only be
supplied for user points, not decode or control points.

params The parameter list of the code point, raw-triple-quoted. This should only be
supplied for user points, not decode or control points.

SIM_domain_info.py

This file is parsed by Python. It is read once while the Python database is being built. It consists of a
number of function calls; the function definitions are inframework/SIM_database_build.py . The
functions and their parameters are:

add_domain_instance(dclassname, dimplname, dinstname, args)

dclassname Domain class name, single-quoted

dimplname Domain implementation name, single-quoted

dinstname Domain instance name, single-quoted

args Run-time arguments formatted as a raw-triple-quoted string

add_domain_searchpath(iname,lpath,hpath)

iname Full module instance name (hierarchy denoted with ’. ’), single-quoted

lpath Domain class search path specified in the module definition, given as a Python
list of two-tuples. The first element of the tuple is the single-quoted domain
class name and the second element of the tuple is the single-quoted domain
instance name.

hpath Additional domain search path inherited hierarchically, given as a Python list
of two-tuples. The first element of the tuple is the single-quoted domain class
name and the second element of the tuple is the single-quoted domain instance
name.
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Domain instance names should be unique. Numeric names are acceptable. Parameters of type domain
instance will have values equal to these names.

SIM_event_info.py

This file is parsed by Python. It is read twice while the Python database is being built; the first pass reads
events and the second one reads collectors. It consists of a number of function calls; the function
definitions are inframework/SIM_database_build.py . The macros and their parameters are:

add_event_to_inst(iname, ename, nstring, tstring)

iname Full instance name (hierarchy denoted with ’. ’), single-quoted

ename Event name, single-quoted

nstring Colon-separated list of data names, raw-triple-quoted

tstring Colon-separated list of data types, raw-triple-quoted

add_collector_to_inst(iname, ename, decl, init, record, report)

iname Full instance name (hierarchy denoted with ’. ’), single-quoted

ename Event name, single-quoted

decl Declaration text, raw-triple-quoted

init Initialization text, raw-triple-quoted

record Recording text, raw-triple-quoted

report Reporting text, raw-triple-quoted

SIM_instance_info.py

This file is parsed by Python. It is read once while the Python database is being built. It consists of a
number of function calls; the function definitions are inframework/SIM_database_build.py . The
functions and their parameters are:

add_inst(iname, mtype, start, phase, end, strict, reactive, tarball)

iname Full instance name (hierarchy denoted with ’. ’), single-quoted

mtype Module type name, single-quoted (WHAT ABOUT PACKAGE PARTS OF
NAME?)

start Does the instance have a phase_start method? (1=yes, 0=no)
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phase Does the instance have a phase method? (1=yes, 0=no)

end Does the instance have a phase_end method? (1=yes, 0=no)

strict Is the instance strict? (1=yes, 0=no)

reactive Is the instance reactive? (1=yes, 0=no)

tarball Tarball file name; if it begins with ’- ’, it is taken to be a command to run to
copy/generate module source files. This command will be run in the final
source file directory.

add_dep_annotation(iname, annotation)

iname Full instance name (hierarchy denoted with ’. ’), single-quoted

annotation annotation information; this is a list of 3-tuples. The elements of the tuple are:
a string indicating the source of the potential dependency, a string indicating
the target of the potential dependency (i.e. target depends upon source), a
string which is an expression comparing the port indices (held in
isporti/osporti).

SIM_parm_info.py

This file is parsed by Python. It is read once while the Python database is being built. It consists of a
number of Python function calls; the function definitions are inframework/SIM_database.py . The
calls and their parameters are:

add_parm_to_inst(inst, name, value, type, runtimed, clname, desc)

inst Instance name (hierarchy denoted with ’. ’), single-quoted; use the empty
string for top-level parameters.

name Parameter name, single-quoted

value The value of the parameter, triple-quoted as necessary

type The type name of the parameter, single-quoted

runtimed 1 if the parameter is to be made run-time changeable, 0 otherwise.

clname Command-line argument used to set the parameter if it is run-timed, ignored
otherwise

desc Description of the command-line argument used to set the parameter if it is
run-timed, ignored otherwise
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SIM_port_info.py

This file is parsed by Python. It is read twice while the Python database is being built. In the first pass
ports are read, and in the second pass connections are read. It consists of a number of function calls; the
function definitions are inframework/SIM_database_build.py . The functions and their parameters
are:

add_port_to_inst(iname, pname, width, direction, datatype, indepP, handlerP)

iname Full instance name of module (hierarchy denoted with. ), single-quoted

pname Port name, single-quoted

width Port width

direction Port direction (input or output ), single quoted

datatype Port datatype, single-quoted. The type should be the global datatype name

indepP Is the port independent? (1=yes, 0=no)

handlerP Does the port have a handler? (1=yes, 0=no)

connect_ports(from, to)

from Source port of connection inhierarchical_instance_name :
port_name [port_num ] format (hierarchy denoted with ’. ’), single-quoted

to Destination port of connection inhierarchical_instance_name :
port_name [port_num ] format (hierarchy denoted with ’. ’), single-quoted

alias_ports(hname, dir, rports)

hname Port name in hierarchical "wrapper" instance in
hierarchical_instance_name port_name format, single-quoted

dir Port direction (input or output ), single quoted

rports A Python list of equivalent "real" port instances where each port instance is
denoted inhierarchical_instance_name : port_name [port_num ]
format (hierarchy denoted with ’. ’), with each port instance being
single-quoted. An unconnected port instance is denoted withNone.

Because it is difficult in LSS to distinguish what ports are real due to adapters and what ports are
true aliases at the time at which the aliases are being output, it is legal to outputalias_ports calls
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for hierarchical ports which are actually defined by adapters; the backend ignores these aliases.

SIM_query_info.py

This file is parsed by Python. It is read once while the Python database is being built. It consists of a
number of function calls; the function definitions are inframework/SIM_database_build.py . The
functions and their parameters are:

add_query_to_inst(iname, qname, rtype, params)

iname Full instance name (hierarchy denoted with ’. ’), single-quoted

qname Query name, single-quoted

rtype C return type, raw-triple-quoted

params C parameter list, raw-triple-quoted

add_method_to_inst(iname, mname, rtype, params, locked)

iname Full instance name (hierarchy denoted with ’. ’), single-quoted

mname Method name, single-quoted

rtype C return type, raw-triple-quoted

params C parameter list, raw-triple-quoted

locked Is the method locked to the instance? (1=yes, 0=no)

SIM_struct_info.py

This file is parsed by Python. It is read once while the database is being built. It consists of a number of
function calls; the function definitions are inframework/SIM_database_build.py . The functions
and their parameters are:

add_to_struct(sname, iname, fields)

sname Name of structure to extend, single-quoted

iname Full instance name (hierarchy denoted with ’. ’), single-quoted
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fields A Python list where each element is a (type, name) tuple with each
element raw-triple-quoted. The values should be such that "type
name; " would be a valid C structure field definition. For example:
[ ( r"""int""", r"""foo""" ), ( r"""struct { float himom;
}""", r"""mystuff""" ) ]

SIM_type_info.py

This file is parsed by Python. It is read once while the Python database is being built. It consists of a
number of Python function calls; the function definitions are in
framework/SIM_database_build.py . The calls and their parameters are:

add_type(name, level, def)

name Global type name, single-quoted. The global type name must be unique and be
of the formLSEut_ #.

level Instance name at which the type was originally defined (hierarchy denoted
with ’ . ’), single-quoted; use the empty string for top-level type definitions .
Now obsolete.

def C type definition, raw-triple-quoted. Any use of user types in the definition
must be wrapped as a call toLSEut_ref . Array definitions must be wrapped
in calls toLSEut_arraydef . Structure definitions must be wrapped in calls
to LSEut_structdef .

add_type_mapping_to_inst(inst, localname, globalname)

inst Instance name (hierarchy denoted with ’. ’), single-quoted.

localname Local type name, single-quoted.

globalname Global type name, single-quoted.

All types referred to in any C type definition (e.g. structure fields) must be defined through a call to
add_type , except for thesystem typesanddomain types, which should not be defined through such a
call. The following are the system types:

• LSE_type_none- the type of ports with no associated data

• LSE_dynid_t - dynamic message identifier
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• LSE_resolution_t - resolution messages

• types defined by ANSI-C in<stdint.h > (e.g.uint16_t)

• all atomic C data types (e.g.char)

• boolean- boolean data type

Theadd_type calls must be output in an order such that all types referenced inside a given type
definition have already been added. For example, if type A is a structure with a field of type B, type B
must be added before type A. Also, global types referred to inadd_type_mapping_to_inst calls
must be added before the call.

Domain types (e.g.LSE_emu_addr_t) should be output as fully-qualified domain type names (e.g.
LSE_emu_addr_t([ emuinst ]) ). Note that users are not in general required to use ${} within
<<<>>> to get domain types unless the string ends up at a lower level of hierarchy where the primary
domain object for the domain has changed. Usually the backend will find the correct default object and
there will be no problem.

Value names of enumerated types in thedef parameter ofadd_type should be defined using
LSEut_enumdef( name) . Dollar-sign-curly-brace evaluation of string constants in LSS should output
LSEut_enumref( type , value name ) .

Array types are defined using theLSEut_arraydef macro inside of their definition. This macro takes
two arguments; the first is the size of the array (which must be a positive integer), while the second is the
name of the type (wrapped inLSEut_ref if it is a user-defined type) of the array elements.

Structure types are defined using theLSEut_structdef macro inside of their definition. This macro
takes one argument per field in the structure plus an extra empty argument at the end; each non-empty
argument must be made up of two words. The first word is the name of the type of the field in parenthesis
(and it should be anLSEut_ref call if a user-defined type). The second word is the field name.

SIM_var_info.py

This file is parsed by Python. It is read once while the Python database is being built. It consists of a
number of Python function calls; the function definitions are in
framework/SIM_database_build.py . The calls and their parameters are:

add_var(globalname, username, type)

globalname Variable name, single-quoted; the name should be of the formLSEut_ # and
be globally unique.

username Variable name provided by the user, single-quoted.

type Global type name, single-quoted.
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Rules for curly brace resolution.
There are three special rules for resolving curly braces in LSS:

1. Type references should be wrapped in aLSEut_ref macro call. The call takes the global type name
as its sole argument. The type name does not need to be m4-quoted as the backend parses these at
databse build time.

2. Variable references should be wrapped in aLSEuv_ref macro call. This call takes the global
variable name as its sole argument. The argument does not needs to be m4-quoted as the backend
parses these at database build time.

3. Enumerated type values should be wrapped in aLSEut_enumref macro call. This call takes two
arguments: the global type name and the enumerated value name. The arguments do not need to be
m4-quoted as the backend parses these at database build time.

4. Runtime parameter values should be wrapped in aLSEuv_rp_ref macro call. This call takes one
arguments: the command-line option name.

Adding APIs
We do not recommend that you add APIs directly to the framework; it is better to add them using the
official method for extending the APIs: domains. However, we do want to document how APIs are added
for maintenance purposes.

Important: If you add an identifier of any type, do not forget to update the API Reference Manual.

Adding types
Adding types is a simple process. There are several cases:

1. The type is to be visible to the user in all code and does not depend upon instance information in any
way. This case is the simplest; add the type toSIM_types.h . If the type is also to be visible inlss, it
should be added toLSS_builtins.lss .

If runtime parameters can have this type, there is one additional complication; in
SIM_initfinish.c.m4 you need to add the type to thetype2scanner Python mapping so that it
can be properly parsed on the command line. It may be necessary to add a new scanning routine to
match the type if one of the existing ones does not fit.

2. The type is to be visible to the user and depends upon instance information. Here the type is added
to SIM_user_types.h.m4 and will require use of embedded Python code to generate the correct
definition. It should be added before the types from LSS. If the type is also to be visible inlss, it
should be added toLSS_builtins.lss .
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It is unlikely that runtime parameters will have such a type, but if they do, they are handled as in the
previous case.

3. The type is not to be visible to the user but needs to be available to all code. Add such types to
SIM_control.h.m4 after the port structures. If the type depends upon instance information, you
will need to use embedded Python code. The type name should have aLSEfw_ prefix.

4. The type is not to be visible to the user but needs to be available to only a single instance. Add such
types toSIM_prefix.m4 after the domain macro definitions. the type depends upon instance
information (as it probably will), you will need to use embedded Python code. The type name
should have aLSEmi_ prefix.

Note that in all cases some cleverness may be needed when the new type is a structure to get incomplete
structure definitions (i.e.struct blah; ) into place in the right order to make everything work.

Refcounted types

The above descriptions assume that the type is not reference-counted. If it is, then some additional things
must be done:

1. The type namemustend in_t .

2. The type’s structure definition (and it must be a structure) must begin with a field calledsuper of
typeSIM_refcount_t.

3. Functions to cancel, register, and create the type must be added toSIM_all_types.h after
SIM_refcount.h has been included.See the corresponding routines inSIM_resolution.h for
examples. For a typeLSE_foo_t, the function names must beLSE_foo_cancel ,
LSE_foo_register , andLSE_foo_create .

These functions can also be put in a new file included at the same location inSIM_all_types.h . In
such a case, be certain to add the new file name to theframework_inc_TARSTUFF variable in
framework/Makefile.am .

4. Add return statements containing calls to the cancel and register functions inSIM_apidefs.py in
_LSEap_data_cancel , _LSEap_data_copy , and_LSEap_data_register . They should look
like the ones done forLSE_resolution_t.

5. In SIM_control.h.m4 , duplicate the lines referring toLSE_resolution_t in the "Datatype
refcounting" section, changingLSE_resolution_t to the new type name.

Adding variables
Variables are also simple to add. The declarations of variables should be added toSIM_control.h.m4 ,
after the port structures. The definitions of variables should be added toSIM_control.c.m4 , after the
port structures.
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Adding functions
Adding a function is more complex, as there are many more options for how to do this. This section will
not explain everything, particularly not the internal functions available for parsing arguments and putting
together APIs. It will give you an idea of what must be done and where to look for examples.

The first decision which must be made is when to evaluate the function. The options are:

• At code generation time - such APIs can be used in definitions, can easily use global information, and
can be used in#LSE if and#if , but must result in constants.

• At C pre-processing - such APIs can be used in#if , but generally have the worst argument checking
(as it is buried in CPP macros) and some difficulty using global information and must result in
constants.

• At run-time - such APIs have difficulty using global information, but the results can vary at runtime.

The actual translation of API function calls to final code can take place in one of several ways. They are:

• Completely translate the function call to a constant at code generation time. This approach must be
taken for functions evaluated at code generation time. An example isLSE_port_width .

• Translate the function call to C code at code generation time. This approach is often taken for
functions which are evaluated at run-time.

• Do not translate the function call at all; allow the C pre-processor and compiler to treat the call as a
normal macro or function invocation. All of the functions having to do withLSE_type_t use this
method.

Instructions for each method are given in the following sections. We will assume that we wish to add a
functionLSE_num_ports that returns the number of ports on a particular module instance.

Complete translation at code generation

1. Add an entry for the function toLSEap_codePreDict in SIM_apidefs.py . Try to keep
alphabetical order for easier reading. It should look like this:

"LSE_num_ports" :
(LSEtk_Tok_macro, 0, _LSEap_num_ports, None),

2. Add Python function_LSEap_num_ports to SIM_apidefs.py in the section where other API
macros are placed, keeping alphabetical order for easier reading of the file. This function should
return either a string or tokens which correspond to the value desired. See_LSEap_port_width for
a good example.

Translate to C code at code generation

1. Add an entry for the function toLSEap_codePreDict in SIM_apidefs.py . Try to keep
alphabetical order for easier reading. It should look like this:

"LSE_num_ports" :
(LSEtk_Tok_macro, 0, _LSEap_num_ports, None),
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2. Add Python function_LSEap_num_ports to SIM_apidefs.py in the section where other API
macros are placed, keeping alphabetical order for easier reading of the file. This function should
return either a string or tokens which correspond to the C code desired. Of course, in this example,
the C code is really a constant. See_LSEap_GLOBDEFfor an example.

If the C code involves C macro or function calls, there is additional work to be done. This depends upon
whether the function or macro calls must be generated on a per-instance basis.

Not per-instance macro or function calls

For a C macro, add it toSIM_control.h.m4 . For a C function, add its prototype to
SIM_control.h.m4 and its implementation toSIM_control.c.m4 .

Per-instance macro or function calls

For an example of how to handle per-instance macro or function calls, seeLSE_sim_keep_alive . The
steps are:

1. Add a Python functionLSEcg_num_ports to SIM_codegen.py . This function should take at least
the database and instance as arguments and return a string with the text of the function or macro
definition.

2. Add a line in the "internal per-instance API functions" section ofSIM_prefix.py to instantiate the
internal function’s code. This line looks like:

m4_pythonfile(print LSEcg_num_ports(LSE_db,
LSEpy_instance))

3. If the function can be used in user points or data collectors at the top-level, then add a line to
instantiate the code to the "internal API functions" section ofSIM_mainloop.c.m4 . This line looks
like:

m4_pythonfile(print LSEcg_num_ports(LSE_db,None))

If the API can access information beyond the local instance, the API must be registered with the rebuild
analysis. To do this:

1. Modify function _LSEap_num_ports to change its argumentargs[0] to a tuple consisting of the
original value ofargs[0] and any other information received from analysis; in our example, the
only other information would be the instance name.

2. Add a Python function_LSEbl_num_ports to SIM_database_build.py . This function would
look something like:

def _LSEbl_num_ports(tinfo,args,typelog):
rval = SIM_apidefs._LSEap_num_ports(tinfo,args,_LSEbl_env)
if _LSEbl_env[1]:

_LSEbl_env[1].instSeen[args[0][1]] = 1
return rval
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Note: This will only work if the API is accessing information already looked at for rebuild analysis. If it
accesses more information, function LSErb_referenced_changes in SIM_rebuild.py must be
modified.

Do not translate at all

If the function is to be a C macro, add it toSIM_control.h.m4 , otherwise, add its prototype to
SIM_control.h.m4 and its implementation toSIM_control.c.m4 .
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This chapter describes nasty guts of how domains are accessed by the simulator. It also describes some
emulator decisions. interfaces between the command-line processor, LSE, and domains.

Interface goals
The goals of the interfaces are to:

• Make it possible to embed Liberty into other systems (such as vertically-integrated systems like
MILAN).

• Make it possible to use domains (such as emulators) from a variety of sources with limited
modifications to their source code or even without source code availability.

• Recognize that some domains may have many different implementations and that different
experimental conditions may involve different domain implementations. In such situations,
recompilation should be minimized. For example, compiled-code emulators will produce a different
library for each benchmark. Ideally, nothing would need recompiled when a different benchmark is to
be run except for the emulator itself.

• Allow both domain instances and simulators to have run-time arguments to change some behaviors.

• Support domain implementations written in both C++ and C.

Design principles and decisions
There are some fundamental principles and design decisions driven by the goals:

• Simulator code is always generated. It can be specialized as needed to fit the situation. However, it
cannot be specialized at link time, so the simulator builder must know about the domains to be used.

• Command-line parser code should be a library. This allows it to be easily replaced by another
command-line parser, making it possible to embed Liberty into other systems.

• Linking should be accomplished through C++ to ensure that constructors for emulators written in C++
get called and that C++ system libraries are included as needed.

• All interface routines have "C" linkage.

• We are willing to have some inefficiency on entry to domain instances in return for flexibility, but
expect not to lose much because of code specialization on the simulator side.
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Termination conditions
How does the simulator or CLP know when to terminate? There are three ways to terminate:

1. An error condition occurs or a module or domain class or instance requests termination. In both
cases, the variableLSE_sim_terminate_now is set to a non-zero value (a negative value in the
case of errors).

2. The simulator has no more scheduled timesteps.

3. The termination count variable (LSE_sim_termination_count ) reaches zero. This variable is
initialized to zero at the beginning ofLSE_simulation_start . Domain classes and instances can
increment and decrement it. For example, an emulator may increment the count when there is a new
execution context created and decrement it when a context finishes. When the counter reaches zero
at the beginning of a time step, simulation terminates. Domains which change the termination count
indicate that they do so in their Python class object. If there are no domains which change the
termination count, it is initialized to1 so that this termination condition does not cause immediate
termination.

Implications for the build process

Multiple-definition identifiers
The most significant way in which the domain interfaces affect the build process is that many identifiers
(i.e. constants, types, variables, API calls) do not have one fixed, global definition. Instead, these
identifiers (such asLSE_emu_addr_t) depend upon which domain implementation (or even instance) is
being referenced.

Figuring out what the proper definition is for a particular reference to an identifier is difficult. There are
two ways it can be determined:

1. It can be stated explicitly by using a domain instance name as the first parameter of the API call or
an additional parameter on other identifiers, e.g.:LSE_emu_addr_t[ myinst ] . The name can also
be the name of a domain class for class-defined identifiers.

2. It can be found implicitly. This is possible unambiguously when there is no name conflict between
identifiers in different domain instances or domain classes. When there is a conflict, the ambiguity is
resolved using a "domain instance search path".

The way in which this gets implemented is that each domain instance must state all of its identifiers to
the backend. The backend creates a macro definition for each identifier. This definition translates to a call
to a Python domain name resolution function, which checks the current domain search path to determine
what the implicit domain instance should be for the identifier. This procedure works surprisingly well;
domain search paths can be easily manipulated while generating include and framework files to only
allow identifiers that should be in scope to be manipulated. Identifiers which are out of scope are ignored
and passed through to the output code, which prevents problems where a "non-interesting" domain
overrides an identifier in some module.
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Implementing identifiers
How are identifiers implemented? Constants and types are simple enough; the domain class
implementation gives a list of constants and types along with their definitions, which are placed in
SIM_domain_types.h . APIs and m4 macros are a bit more difficult.

Clearly, we must have a list of APIs and macros so we can do the mapping, just as we had for constants
and types. The trick is to have two ways to implement things: they can either be placed as identifiers with
non-None implementation (just as constants and types usually are), or they can be defined in an m4
"macro" file.

The structure of the macro file is defined by keywords which indicate whether the following section of
code is for classes or instances, and whether it is for headers, stand-alone (one-generation-only) code,
and macros (which appear in headers, stand-alon code, and modules). Within each section, there are
macro calls for defining per-class and per-inst macros and for translating identifiers into per-class or
per-inst identifiers. During database build, after the Python module is read, the macro file (if any) is read
and separated into sections.

Note: This split occurs without going through m4 first, so the keywords cannot be commented out or
qualified in any way.

Hooks
Hooks are known identifiers that a class or instance can fill with code.

Open Issue

At present, hooks must go in the macro file. Should we have a way to fill in their code
separately?

Callbacks
There are interesting issues when domain implemenations are to call functions or access variables
provided by the domain or by LSE (e.g.LSE_stderr . First, how do they name them, as
functions/variables provided by the domain will have LSE-munged names? Second, how do you get a
dynamic library to build and link properly with the main program when it uses variables that are outside?

The first issue could be resolved with macros supplied to domain implementers. The second is actually
possible with the right linker command-line flags and use of libtool. But either one is ugly. A better way
to go is to not attempt to statically name or link called-back functions or variables. Instead, the domain
class passes a structure with pointers to the functions and variables to the domain implementation when
it is initialized. This solution is simple, requires no special linking tricks and prevents domain
implementations from accessing parts of the simulator they should not. The only downside is that use of
callbacks requires an extra indirect reference.
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Linking
The linker script must search for domain libraries, which may be test-case specific. There are some tricky
things to worry about:

• There could be filename conflicts between test-case specific libraries.

• There can be symbol conflicts between domain libraries

The build process does at least know about the domain instances and the nominal library names.

Open Issue

• How do we get the linker to actually do all this? There will be symbol conflicts between
domain instances from the same domain class. Will need to rename symbols. Can do this
for static library with objcopy (awkwardly) or with special tool. For shared library, will need
special tool (objcopy does not change dynamic symbol tables); may not work. dlopen can
also be used, but some shared libraries cannot be dlopened and not all systems have it.

• Also need to get LD_LIBRARY_PATH right for copies of shared library domain
implementations.

• Symbol naming in support libraries and multiple-versioning of support libraries. In
particular, SimpleScalar cache/bpred models and ptrace support depend upon the
datatypes. I guess as long as the support libraries are part of the domain implementation
and the cache/bpred stuff becomes *module* code, there won’t be an issue (since the
module code gets compiled separately), but that’s ugly. A better idea: let the domain
implementation declare additional symbols to be exported to the simulator and let
wrappers be created for those. This also affects things like the "is it in bounds" check
routine for bliss....

Details of the emulator domain class
Emulators are an important domain class and have had much debate and thought invested in them. The
goals of the emulator interface were:

• Make Liberty configurations as ISA-independent as possible.

• Support multi-processing-element systems with heterogeneous ISAs.

• Support weird and wonderful new ISA ideas and paradigms for sharing state between execution
contexts.

• Allow switching between "pure" emulation and detailed simulation.

• Benchmarks should be choosable at link-time or run-time (link-time for compiled-code emulators,
run-time otherwise).
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Management of contexts
LSE is responsible for context management. The basic idea is that the simulator and emulators trade
opaque tokens which allow them to notify each other of events to the context. For example, emulators
call the context management library using the simulator token when they create new contexts or contexts
finish. The simulator uses the emulator token when calling emulator functions.

There is no need here to repeat the information in the Developer’s Manual and the User’s Manual about
the difference between hardware and software contexts. What should be pointed out is that LSE does
need to check the inputs to context management API calls to confirm that the context numbers are valid.

Contexts can be identified both by this global context number and by an opaque emulator token
(LSE_emu_ctoken_t). LSE must maintain a mapping from number to token for use by various emulator
APIs, but need not maintain a backwards mapping. LSE does not attempt to classify relationships (e.g.
kill children on parent death) among contexts.

LSE does not provide a scheduler for hardware contexts; emulators are responsible for maintaining
mappings and informing LSE of changes to the mappings. LSE keeps its own copy of the global
mappings. There are API calls (rather nasty ones) for trying to inform the emulator of how to manage the
mappings.

Open Issue

Can we do away with LSE needing to know all the mappings (it could be cheaper and less
confusing, but would require calls into the emulator to ask for the mapping, which does
happen quite rapidly)?

Open Issue

Another difficult problem in context management is the allocation/freeing of resources. Either
contexts must leak memory, or some sort of reference counting scheme must be used. Any
dynid in a context constitutes a reference, but there are also references involved in potential
dynid generators. How to deal with this is an open issue. (For now, we leak.)

Note: Contexts cannot be moved from one emulator instance to another.

Emulator instances
Emulator instances are domain instances and, as such, are "copies" of an emulator implementation’s code
and data. Different emulator instances are used mainly because some emulators may not be able to
support multiple contexts internally. Copying the code and data allows the emulator to be used multiple
times. Note, however, that when such copying occurs, sharing of data between contexts must pass
through LSE; all of the instances but one must treat the shared state space as external.
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The operandval capability.
This capability was a gut-wrencher. Originally we copied source operands into a source value array,
stuck results in a destination value array, and then wrote back from the result array. This was awfully
slow. We didn’t think that mattered too much, until we learned that statistical sampling is a desirable
methodology and that fast-forward speed matters immensely then (and found that the IA64 emulator
didn’t achieve 1 MIPS on a 733 MHz Pentium III).

So . . . after a lot of thinking, we decided to use pointers. Yes, it’s a bit weird when you first think about
it. Yes, not all operands are treated identically. But it makes data copy a microarchitectural thing, which
is more like hardware, and happens only during detailed simulation. Furthermore, it makes it easier to
handle register renaming; just change your destination pointers and don’t write back normally! In fact,
we had no way other than just a lot of slogging through data copying to make register renaming work
before.

One final thing: the thought did occur that maybe we should just not spec this and let each emulator
handle it on its own. After all, we don’t seem to write generic modules to handle operand values.
However, giving a spec gives emulator writers some guidance as to how we think they can best achieve
both performance and flexibility.

Old stuff to figure out how to say
Stuff to do on emulator init - Create, load, and map initial contexts. Binaries (if needed) and program
arguments are supplied for each context at this time.

Internal APIs for context manipulation (not documented elsewhere)

LSE_emu_contextno_t LSE_emu_context_alloc (int emuinstno );

Create a new context in emulator instance numberemuinstno . The context state is
LSE_contextstate_waiting . Returns the global context number for the newly created context.
This function may fail, returning-1 if the emulator instance cannot create more contexts.

Things a command-line processor extension for emulators might do

Open Issue

• Specifying state sharing in the CLP.

• Extending the command-line stuff to support breakpoints and debugging in different
emulators (if they support it).
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