
StarFISH
(For Inferring Star-formation Histories)

User Manual
version 1.1, May 2004

Jason Harris and Dennis Zaritsky
jharris@as.arizona.edu

dzaritsky@as.arizona.edu

Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts and no Back-Cover Texts.

2

Contents

1 Introduction 5
1.1 Overview . 5
1.2 Getting Started . 7
1.3 Compiling the Principal Code . 8
1.4 A Quick Run . 8
1.5 What’s New in Version 1.1 . 9

2 mklib 11
2.1 Pre-processing the Padua Isochrones . 13

3 synth 15

4 sfh 21

5 geteep and interp 25

6 testpop 27

7 repop 29

8 testchi 31

9 mkimages.sh 33

3

4 CONTENTS

Chapter 1

Introduction

1.1 Overview

The StarFISH package is a suite of FORTRAN programs designed to determine the best-
fit star formation history (SFH) of a stellar population. The package constructs a library
of synthetic color-magnitude diagrams (CMDs) based on theoretical isochrones and data-
derived determinations of the interstellar extinction, photometric errors, and distance
modulus. These synthetic CMDs are combined linearly and statistically compared to
observed photometry. When the best-fitting model is found, the amplitude coefficients
on each synthetic CMD describe the star formation history of the observed population.

If you have any comments, corrections, suggestions, or complaints, please email:
jharris@as.arizona.edu

To use the package, you need:

• Multicolor photometry of a stellar population.

• A (preferably empirical) photometric error model, typically derived from arti-
ficial star tests.

• A library of isochrones that covers relevant ranges in age and metallicity.

• a priori determination of the interstellar extinction and distance modulus.

• Estimates (or guesses) of the binary fraction and IMF slope.

5

6 CHAPTER 1. INTRODUCTION

The package consists of three main programs, and five support programs:

• mklib: constructs a library of isochrone photometry from raw isochrones.

• synth: constructs synthetic CMDs from the isochrones, applying the effects
of interstellar extinction, binarity, IMF, and photometric errors as appropriate
for the data.

• sfh: performs a maximum-likelihood comparison of composite model CMDs
and input data CMDs. The best-fit star formation history is output.

- interp: interpolates between adjacent isochrones, to improve resolution in
age and/or metallicity. Requires knowledge of equivalent evolutionary points
(EEPs) along each isochrone.

- testpop: constructs artificial stellar populations from the isochrones. testpop
incorporates the photometric errors, extinction, etc. exactly as is done in
synth. These populations can be input to sfh for testing purposes. (testpop
is in the subdirectory of the same name)

- repop: same as testpop, except used to construct an artificial popula-
tion from the SFH amplitudes found by sfh. This is useful for model/data
comparisons. (repop is in the subdirectory of the same name)

- testchi: allows one to examine the parameter space of the fit by hand.
SF amplitudes and other parameters can be interactively adjusted, and the
resulting fit recomputed on the fly. (testchi is in the subdirectory of the
same name)

- mkimages.sh: creates CMD images from the best-fit model. It also creates
CMD maps of each region’s contribution to the fitting statistic.

1.2. GETTING STARTED 7

1.2 Getting Started

To begin, you need to obtain the program code from the Magellanic Clouds Photometric
Survey website:
http://ngala.as.arizona.edu/mcsurvey/

As of this writing, the current version is 1.1. Note that there is a full version and
a compact version. The full version includes a sample pre-generated synthetic CMD
library for testing purposes. If you download the compact version, you can still generate
the sample synthCMD library, but it will take some time.

The following command will unpack the directory tree of the StarFISH distribution.
It will create a SFH-1.1 subdirectory in the current directory.

% tar zxvf SFH-1.1.tar.gz (or tar zxvf SFH-1.1compact.tar.gz)

or (on Solaris):
% gunzip SFH-1.1.tar.gz

% tar xvf SFH-1.1.tar

The package contents are shown in Table 1.

Table 1: Package Contents
File/Directory Name Description
manual/ The StarFISH manual (this document)
libcode/ source code and Makefile for the mklib program
synthcode/ source code and Makefile for the synth program
sfhcode/ source code and Makefile for the sfh program
commoncode/ source code used by multiple programs
interpcode/ source code and Makefile for the geteep and interp programs
input/ input data files for mklib, synth and sfh

/lib.dat sample mklib parameter file
/synth.dat sample synth parameter file
/sfh.dat sample sfh parameter file
/iso.dat sample isochrone description files
/iso.lock describes how isochrones are to be locked together
/test.cmds sample synthetic CMD description file
/mask.none file indicating CMD regions to ignore in the fit (default: null mask)
/test.hold file indicating which SFH amplitudes should be held fixed (default: none held)
/av/*.av sample extinction data files
/crowd/*.crowd sample crowding table from artificial star tests
/dtime.dat file describing age interval covered by each isochrone
/geteep.dat input file for geteep

/interp.dat input file for interp

/testchi.dat input file for testchi

testpop/ files related to the testpop support program
testchicode/ files related to the testchi support program
repop/ files related to the repop support program
grid/ files related to the grid support scripts
iso/ raw isochrone photometry from Girardi et al. (2002, 2000) and Bertelli et al. (1994)
testlib/1 sample isochrone library produced by mklib

test.syn/1 sample synthetic CMDs based on artificial star tests from an image of NGC 1978.
data/ input data photometry goes here (NGC 1978 photometry included)
output/ sfh results and the sfh.sm plotting script

1Not present in the compact version of the program

8 CHAPTER 1. INTRODUCTION

1.3 Compiling the Principal Code

Each principal program (mklib, synth, and sfh) has its own Makefile, in its source code
directory. To compile these programs, simply cd to the correct directory and type make:

% cd /path/to/SFH-1.1 (if not already in the SFH directory)
% cd libcode

% make

% cd ../synthcode

% make

% cd ../sfhcode

% make

Each program will be copied into the SFH-1.1 directory, which is where you should
run them. You are now ready to experiment with the code.

1.4 A Quick Run

We will use all of the default parameter values to go from a freshly downloaded and
compiled distribution to a successful first run of sfh. Steps labeled with an asterisk (*)
may be skipped if you downloaded the full version of StarFISH, because this version
already contains the pregenerated isochrone library and synthetic CMD library.

1. % cd /path/to/SFH-1.1 (if not already in the SFH directory)

2. (*) Prepare isochrones: (see Section 2.1)
% cd iso

% tar zxvf girardi.tar.gz (unpack the isochrones)
% gawk -f parse iso.awk isocz*.dat (parse isochrones)

3. (*) Generate isochrone library: (see Chapter 2)
% cd ..

% mkdir testlib (create target directory before running mklib!)
% ./mklib < input/lib.dat

4. (*) Generate Synthetic CMD library: (see Chapter 3)
% mkdir test.syn (create target directory before running synth!)
% ./synth < input/synth.dat

5. Perform SFH Solution: (see Chapter 4)
% ./sfh < input/sfh.dat

6. Plot solution:
% cd output

% sm (start supermongo plotting program)
sm> macro read sfh.sm (load sm script)
sm> sfh c1978 c1978 (display SFH solution)

1.5. WHAT’S NEW IN VERSION 1.1 9

1.5 What’s New in Version 1.1

There have been several improvements made since 1.0; the most important changes are
listed here. See the files ChangeLog and NEWSTUFF for more details.

• Fixed random-number generator. We found a periodicity in the previous one.

• More robust handling of input files. The programs are now much less picky about
the format of input files (note that input files from previous versions of StarFISH
are not compatible with this version).

• Input files can now contain comment lines. Any line in an input file that begins
with # or * will be ignored by the parser.

• Filenames in the input files can now be up to 40 characters long (previous maxi-
mum was 24 characters)

• Option to use Dolphin’s “Poisson” fit statistic instead of the chi-squared statistic.

• The photometric error model used in synth, testpop, and repop now properly
includes covariance between the color and magnitude errors.

• Option to use an analytic error model instead of an AST-derived crowding table in
synth, testpop, and repop.

• sfh writes the current best solution to the logfile more frequently.

• New empirical isochrone interpolation code (geteep and interp)

10 CHAPTER 1. INTRODUCTION

Chapter 2

mklib

mklib is used for processing raw isochrone photometry into a format usable by synth.
mklib applies a distance modulus, interpolates along the isochrone to a uniformly high
resolution, and computes occupation probabilities (OP) for each isochrone point.

The package currently ships with the Padua isochrones, most recently published by
Girardi et al. (2002). We found that the main sequence in these isochrones is too
coarsely sampled for our purposes, resulting in artificially ”lumpy” synthetic CMDs.
Therefore, mklib includes a photometric interpolation routine for points fainter than
the main sequence turn-off (MSTO; defined for each isochrone in the isofile). If your
isochrones do not require this interpolation, simply set the MSTO magnitude for each
isochrone to be fainter than any isochrone point.

The mklib input file (named input/lib.dat by default) contains the parameters
listed in Table 2 (the lines must be present in the listed order).

Table 2: mklib input file parameters
isofile [string] description of each isochrone: the input filename,

the output filename, the age, and the MSTO magnitude.
faint [real] the faint magnitude limit for the output isochrone library.

Should be several mag fainter than the data’s faint limit.
dmag [real] photometric distance between adjacent interpolated points.
dmod [real] distance modulus
gamma [real] logarithmic IMF slope (Salpeter = -1.35)
nmag [int] number of magnitude values per isochrone point
mag0 [int] which magnitude to check against faint and msto
iverb [int] verbosity flag (0=silent, 1=screen messages, 2=extra output files)

11

12 CHAPTER 2. MKLIB

To use mklib:

1. Create an isofile that describes your isochrones. This file will also be used
by synth. Each line in the file should contain the following space-delimited fields
(the column format does not matter):

log(age) [real number], input raw isochrone file [up to 40 chars], output

isochrone file [up to 40 chars], msto mag [real number]

msto mag is the absolute magnitude of each isochrone’s MSTO point. If you do not
know the MSTOs for your isochrones, you’ll need to identify them. Use the fact
that at the MSTO, the occupation probability changes dramatically.

2. Preprocess the isochrone photometry files. Each isochrone must be in its
own file with a name matching the isochrone’s entry in the input raw isochrone

file list (column 2 of the isofile). The columns required for the isochrone files are:

mass, mag1, mag2, mag3, ..., magN

where N is the equal to the nmag parameter in lib.dat. Column format does not
matter. The magnitudes should be expressed as absolute magnitudes; mklib will
apply the distance modulus specified in lib.dat and output apparent magnitudes.
For the default Padua isochrones, the input isochrone files are generated by the
parse iso.awk script. See the next section for details on the default isochrone-
processing. Make sure the mag0 parameter indicates the pass-band which should
be used for comparing to the faint and msto mag values.

3. Create the target output directory, if necessary. The output directory is
specfied as part of the output filenames in the isofile.

4. Run mklib:
% ./mklib < input/lib.dat

Depending on the verbosity flag, mklib may provide screen messages regarding
which isochrone it is working on. The output directory will contain the processed
isochrones, with the following columns:

mag1, mag2, mag3, ..., magN, OP, mass

where the magN are the apparent magnitudes in each band, OP is the relative occu-
pation probability associated with each point (determined from the IMF and from
the relative duration of each evolutionary stage), and mass is the initial mass of
each isochrone point, not including any mass-loss that may have occured since the
star was formed.

2.1. PRE-PROCESSING THE PADUA ISOCHRONES 13

2.1 Pre-processing the Padua Isochrones

The iso/ directory contains files related to the Padua isochrones, which we ship with
StarFISH for convenience. You are free to use any other isochrone set that you wish,
as long as it can be placed in the format that mklib requires (separate files for each
isochrone, with the column format specified in step 2 above).

The Padua isochrones are disributed as a tar archive, which we include in StarFISH
as the file iso/girardi.tar.gz. The archive contents are listed in Table 3.

Table 3: Padua isochrone package contents
isocz0[001,004,01,04,08,19,30].dat Girardi et al. isochrones
isocsummz0[001,004,01,04,08,19,30].dat Tables of Equivalent Evolutionary

Points (EEPs)
read.me Girardi’s readme file

Each of the isochrone files isocz0*.dat contains isochrones of all ages for a given
metallicity. StarFISH needs a separate file for each isochrone, so we provide the AWK
script parse iso.awk to divide each raw isochrone collection into individual files. We also
provide the script parse summ.awk to divide the EEP table collections into individual
EEP tables for each isochrone.

If you downloaded the full version of StarFISH, then you do not need to run the
parsing scripts; you already have the processed isochrone files, named iso/zNNNN tt.tt

(where NNNN is a 4-digit code for the metallicity, such as 0080; and tt.tt is the log of
the age, such as 10.00). If you do not have these files, generate them like this:

% cd iso

% tar zxvf girardi.tar.gz

% gawk -f parse iso.awk isocz*.dat

% gawk -f parse summ.awk isocsummz*.dat

If you are satisfied with the age and metallicity resolution provided by the default
Padua isochrones, then you are all done here. If you want to try to interpolate between
isochrones to increase age or metallicity resolution, refer to the chapter discussing the
interp support program.

14 CHAPTER 2. MKLIB

Chapter 3

synth

synth constructs a synthetic CMD library from the isochrone library, incorporating the
photometric effects of extinction, binarity, the IMF, and photometric errors. Each syn-
thetic CMD is represented as a list of “pixel values”, equal to the relative number of
stars found at the corresponding subregion in the CMD. If the data contain more than
two filters, then multiple CMDs can be created for each isochrone, so that all of the data
can be utilized in the fit. For example, if your data include U , B, and V photometry,
you might use synth to create two CMDs per isochrone: one with U − B vs. B axes,
and another with B − V vs. V axes.

Some of the user-provided parameters (extinction, photometric errors, and binarity)
are first encountered in the synth program. Others (the IMF and distance modulus)
have already been used to create the isochrones output by mklib. Therefore, if you need
to change the IMF or distance modulus you must run mklib first.

Depending on the age and metallicity resolution of your isochrone library, and on the
quality of your photometric data, it is likely that some of the isochrones are photomet-
rically degenerate. If synth is allowed to produce degenerate synthetic CMDs, then the
SFH solution determined by sfh will be ambiguous, and will suffer from large correlated
uncertainties among the SFH amplitudes. To avoid ambiguous SFH fits, synth can com-
bine photometrically-degenerate isochrones together into the same synthetic CMD. This
is referred to as locking the isochrones.

15

16 CHAPTER 3. SYNTH

The synth input file (input/synth.dat) contains the parameters listed in Table 4. Note
that synth input files from previous versions of StarFISH will no longer work.

Table 4: synth input file parameters
Filenames

isofile [string] description of the isochrones (can use the file from lib.dat)
lockfile [string] file describing the combination of degenerate isochrones
hotfile [string] list of extinction measurements of hot (young) stars
coldfile [string] list of extinction measurements of cool (old) stars
crowd1 [string] crowding table from artificial star test
crowd2 [string] output file for lookup table of binned delta-magnitudes

CMDs
nmag [int] same as nmag in lib.dat

ncmd [int] number of CMDs to construct per isochrone group
mag0 [int] same as mag0 in lib.dat

dpix [real] size of CMD pixels (in magnitudes) [NEW]
parameters for each of the CMDs

xeq [string] filter equation for the x-dimension
yeq [string] filter equation for the y-dimension
xmin [real] smallest allowable x-value
xmax [real] largest allowable x-value
ymin [real] smallest allowable y-value
ycmax [real] largest allowable y-value, for crowding table stars
ypmax [real] largest allowable y-value, for data/model stars
suffix [string] filename suffix for the synthetic CMD output files

Crowding
dbinx [real] width of crowding bins, in magnitudes
dbiny [real] height of crowding bins, in magnitudes
emin [real] minimum delta-magnitude cutoff
emax [real] maximum delta-magnitude cutoff
dbin [real] binsize of delta-magnitude histograms

Reddening parameters
red(i) [real] extinction in mag(i) (relative to the filter in which extinction is measured)

Run-time parameters
verb [int] verbosity flag (higher N = more output)
interp err [flag]2 1 = interpolate errors between bracketing crowding bins [NEW]
fake errs [flag]2 1 = use analytic error model instead of crowding table [NEW]
nscale [int] number of model stars in each CMD
seed [int] random seed value
mass1 [real] minimum mass (for OP normalization)
mass2 [real] maximum mass (for OP normalization)
gamma [real] logarithmic IMF slope (Salpeter = -1.35)
faint [real] faint limit for generated model stars
fbinary [real] binary fraction

2A flag is an int whose value can either be 0 or 1.

17

To use synth:

1. Construct the lockfile. This file describes how the isochrones are to be locked
together into groups. Again, this is necessary if isochrones of similar age are photo-
metrically degenerate, to avoid ambiguous SFH fits. The columns of the lockfile

are as follows (note that lockfiles from previous versions of StarFISH will no longer
work):

group id[int], isoname[up to 40 characters], synthfilestem [up to 40 characters]

group id identifies the locked group to which the isochrone belongs. The actual
group id values do not matter; when the value of one line is different from that of
the previous line, a new synthetic CMD is started.

isoname is the isochrone filename. It is only used to check against the filename in
the isofile. If they don’t match, an error is triggered; there must be a one-to-one
correspondence of the isochrones in the isofile and the lockfile.

synthfilestem is the filename stem for the output synthetic CMD pixel file. The
output filenames are constructed by concatenating the CMD suffixes specified in
synth.dat onto synthfilestem (these suffixes are typically the combination of
magnitudes; for example a U −B vs. B CMD might have a suffix of “.ub”).

2. Construct the extinction files (hotfile, coldfile). The extinction files each
contain a single column: extinction values, Aλ, measured in the magnitude whose
reddening parameter in synth.dat is set to 1.00 (in the provided synth.dat, red(3)
is set to 1.00; this is the V band, so the extinction files list AV values). There are
two files (hotfile and coldfile) to account for the different extinction properties
of young and old stellar populations. If you do not require population-dependent
extinction, simply point hotfile and coldfile to the same file. If you do not re-
quire extinction modeling at all, point hotfile and coldfile to the null extinction
file, input/av/zero.av.

3. Construct the crowding table (crowd1). This is most likely constructed from
artificial star tests. The crowding table contains:

ra, dec, mag1, dmag1, mag2, dmag2, ..., magN, dmagN

column format doesn’t matter. The crowding table should contain all artificial stars
injected into your data images, even if they were not detected in your photometric
pipeline. In fact, these non-recovered “dropout” stars are extremely important,
because synth uses them to determine the completeness rate as a function of pho-
tometric position in the CMDs. For bands in which an artificial star was detected,
the listed mag value is its recovered magnitude, and dmag is (mag(recovered) -
mag(input)). For bands in which an artificial star dropped out, mag is the star’s
input magnitude, and dmag is set to 9.99 in order to flag it as a dropout in that
band.

18 CHAPTER 3. SYNTH

If you decide not to perform artificial star tests on your images (although such tests
are highly recommended), you can either generate a fake crowding table by hand,
based on your estimates of the scatter and completeness rates in each band, or
you can set the fake errs parameter in synth.dat to 1, which will use a hueristic
analytic error model instead of the empirical crowding table. In this case, you
will need to modify the code in synthcode/fakecrowd.f to generate photometric
errors and completeness rates appropriate for your data. The comments in that file
will guide you in making these changes.

4. Decide how many CMDs you would like, and what their axes will be. You specify
the CMD axes with the xeq(icmd) and yeq(icmd) string variables in synth.dat.
These strings indicate the filter combination for each CMD axis. For example, you
have V RI photometry, and you are using V =1, R=2, I=3. Your first CMD could
be: V − I vs. V , so xeq(1) = 1-3, yeq(1) = 1. Your other “CMD” could be a
two-color diagram: V −R vs. V − I, so xeq(2) = 1-2, yeq(2) = 1-3. The strings
can be either the sum or the difference of two filter indices, or one index by itself.
Do not put whitespace in the equations; each must be a single “word”.

You will also need to specify photometric limits for each CMD (parameters xmin,
xmax, ymin, ycmax, and ypmax). Note that instead of one ymax, there are two
variables: ycmax and ypmax. ycmax is the faint limit for the crowding bins, and
ypmax is the faint limit for the CMD itself. ycmax should be at least 2 or 3 mag
fainter than ypmax, because very faint stars can be blended and detected at much
brighter magnitudes than their true magnitude.

Also specify the size of CMD “pixels” in the output synthetic CMD files (dpix), in
magnitudes.

Finally, specify a suffix string that will be concatenated with synthfilestem to
construct the output file name for each synthetic CMD. The suffices can be up
to 8 characters long, and typically indicate something about the CMD axes. For
example, a B − V vs. V CMD might have a suffix “.bv”.

5. Specify the size of the crowding bins in each direction (dbinx and dbiny). Artificial
stars in the crowding table are binned in the CMDs so that the brightness- and
color-dependence of the photometric errors can be accounted for. Independent
∆mag histograms will be constructed from the artificial stars present in each bin.

Specify the limits for the delta-mag histograms with emin and emax. Any ∆mag
value in the crowding table outside these limits is treated as a photometric dropout.

The dbin parameter sets the width of the bins in the delta-mag histograms (this
parameter used to determine the size of the synthetic CMD pixels as well, but there
is now a separate parameter for that: dpix).

6. Specify the reddening law to use, by setting the relative extinction for each band:
red(imag). The band for which you have measured extinction values in hotfile

and coldfile should have red(imag) = 1.0. The rest of the values should be the
extinction in that band, assuming the extinction in the reference band is 1.0. For

19

example, you have BV photometry, and measured AV extinction values. AV = 1.0.
If we assume that AV /E(B-V) = 3.2 = AV /(AB - AV), then AB = 1.3125.

7. Specify miscellaneous parameters. nscale sets the number of model stars to include
in each CMD. nscale should be much larger than the number of stars in your data
CMDs, so that the Poisson noise in the models is much smaller than in the data.
iseed is the random seed value; it can be any integer. mass1, mass2, and gamma are
IMF parameters used for normalizing the pixel values. synth will only attempt to
add model stars brighter than the faint parameter. This is an efficiency feature:
without this cutoff, the code would waste a lot of time adding undetectable stars.
Set faint to just fainter than where your completeness rate reaches 0%.

8. Once the parameter file is complete, and the other input files are ready, you can
finally run synth. It will take quite a bit of time to complete, depending on
computing power and the number of isochrones. I found it usually took several
hours to process 150 isochrones on a 700 MHz linux box.

You can examine the synthetic CMDs as images, using either the IRAF rtext com-
mand, or the mkgif.bat and pxl2ppm.awk scripts I provide in the commoncode directory.

20 CHAPTER 3. SYNTH

Chapter 4

sfh

sfh performs a “chi-squared-like” minimization comparison between data photometry
and a linear combination of the synthetic CMDs. Each synthetic CMD is modulated by
an amplitude that is proportional to the number of stars with the age and metallicity of
the synthetic CMD’s parent isochrone(s). These amplitudes form the multidimensional
parameter space of the minimization.

I say “chi-squared-like” because you may actually choose among three statistics to
determine the quality of the fit: chi-squared, Lorentzian, or Poisson. The three parame-
ters weight outliers slightly differently, but they are otherwise quite similar. Hereafter, I
will simply refer to the fitting statistic as “chi-squared”.

The minimization analysis employs the downhill simplex “amoeba” algorithm as de-
scribed in Numerical Recipes (Press et al.; hereafter NR). We have written our own
implementation of this algorithm. It works by sampling a small region of the parameter
space and determining the local chi-squared gradient. It then takes a small step in the
down-gradient direction, and determines the local chi-squared gradient around this new
location. The process iterates until a (nearly) zero gradient is found, signalling that a
minimum has been found.

The amoeba algorithm in NR has some safeguards against finding local minima, but
we found that it was still prone to getting stuck. The simplex by definition can only
sample parameter space along directions parallel to the N axes of the parameter space; it
is blind to off-axis directions. However, as it nears the minimum, lower chi-squared values
will tend to be found when a change in one parameter is complemented by a change in
one or more other parameters. In other words, downward gradients will tend to lie along
off-axis directions.

To remedy this problem with the pure simplex method, we add a random-search loop,
which is triggered whenever the simplex claims it has found a minimum. In the random-
search loop, we select a random direction in the multidimensional parameter space, and
take a small step along that direction. If the step yields a smaller chi-squared value,
we continue stepping along that direction until we reach a step that no longer decreases
chi-squared. This is repeated for a large number of random directions, and the parameter
space location which yielded the lowest overall chi-squared value is recorded. The simplex
is then restarted at this new parameter space location.

This iteration between the downhill simplex algorithm and the random-search loop

21

22 CHAPTER 4. SFH

is repeated until the random-search loop cannot find a direction which yields a lower
chi-squared value. We then accept the last simplex location as the true minimum, and
output the best-fit SFH amplitudes.

The sfh input file (input/sfh.dat) contains the following parameters:

Filenames
datpre [string] input data file prefix
cmdfile [string] Sample synthetic CMDs description file
maskfile [string] Allows one to ignore specified regions of the CMDs
holdfile [string] file w/ SFH amplitudes that should be held fixed
outfile [string] contains final best-fit SFH amplitudes
logfile [string] file w/ current best SFH (useful for monitoring, and for

restarting an interrupted run)
plgfile [string] log of all tested parameter locations

(this file will be very large; not used by default: iplg=0)
chifile [string] output file containing grid populations and chi-squared values

Synthetic CMD parameters
nfree [int] number of independent isochrone amplitudes
ncmd [int] number of CMDs over which to calculate chi-squared
npix [int] binning factor for CMDs
dpix [real] size of synthetic CMD pixels (same as in synth.dat)

Parameters for each CMD
suffix(i) [string] CMD filename suffix (same as in synth.dat)
xmin(i) [real] calculate chi-squared within these CMD limits
xmax(i) [real] calculate chi-squared within these CMD limits
ymin(i) [real] calculate chi-squared within these CMD limits
ymax(i) [real] calculate chi-squared within these CMD limits
nbox(i) [int] number of grid boxes within region defined by above limits

Runtime parameters
seed [int] random seed value
fit stat [int] 0 = use chi-squared; 1 = use Lorentzian; 2 = Use Poisson
uselog [flag] 1 = start searching at logged position in logfile
iplg [flag] 1 = generate plgfile (warning: this file will be very large!)
gtype [flag] grid definition flag (0 = uniform grid; 1 = custom grid)
iverb [int] verbosity flag (larger N = more screen output)
lambda [real] initial size of simplex
conf [real] confidence interval for computing errorbars (e.g., 1 sigma = 0.68)
cthr [real] if (∆χ2 > cthr), consider new location an improvement
ptol [real] if (|p new − p old| > ptol), consider new location different
ftol [real] if simplex’s chi-squared values span less than ftol, signal a zero

gradient (i.e., a minimum)
nvec [int] number of parameter space directions in random-search loop
ntry [int] number of iterations for determining errorbars

23

To use sfh:

1. construct the cmdfile. The file’s columns are:

z metal, log age, filenamestem

Column format does not matter. Note that some lines in the cmdfile may represent
multiple isochrones. In these cases, just choose a representative age/metallicity for
the group. These values are only used to identify the amplitudes in the output
file. The filenamestem needs to point to the synthetic CMD files generated with
synth.

2. Decide on a CMD gridding strategy. sfh works by binning the CMDs and
comparing the number of data and model stars in each bin. The default is to uni-
formly bin the CMDs in each dimension with a binsize of npix×dpix. If you want
to use a custom grid instead, write a subroutine to assign gridbox numbers to each
CMD pixel, add a call to your subroutine in grid.f, and set gtype to 1 in sfh.dat.
You must also add your custom-grid source code files to sfhcode/Makefile. An
example custom grid can be reviewed in the files ubbgrid.f, bvvgrid.f, and
viigrid.f. These grids were constructed for our LMC data, and are fine in densely
populated regions of the CMDs and coarse in sparsely populated regions.

The boxes in each CMD’s grid are identified by a single number, the box num-
ber. Thus the distribution of stars in the CMDs can be expressed as a two-
dimensional array whose indices identify the CMD and the gridbox within that
CMD: nstars(icmd, ibox). icmd refers to which CMD you are considering, ibox
is the number of the box in that CMD. Indicate the total number of boxes in each
CMD with the nbox(icmd) parameter.

3. Construct the maskfile. the file’s columns are:

icmd, ibox, maskflag

Column format does not matter. if maskflag=1, the stars in (icmd, ibox) will be
excluded from the determination of the fit.

4. Preprocess the data photometry. You need to have a separate photometry file
for each CMD. The filenames need to be (datpre + sffx(icmd)), where datpre and
sffx(icmd) are specified in input/sfh.dat. The first column in each CMD file is
the x-dimension magnitude, and the second column is the y-dimension magnitude.
Other columns are ignored, but could be used for (ra, dec) coordinates or other
useful information. Note that the sffx(icmd) values need to be the same as the
suffix(icmd) values in synth.dat, and that the CMD limits (xmin, xmax, ymin,
ymax) need to be the same also.

5. Adjust the sfh runtime parameters. The default values should work well, but
feel free to tweak them.

24 CHAPTER 4. SFH

6. Run sfh. Depending on the value of iverb, it may provide screen output on
its progress (status messages, current lowest chi-squared value). Generally, larger
values of iverb produces more screen output. iverb=0 will print no screen mes-
sages; iverb=3 provides “live” updates of the convergence process. If the run gets
interrupted for some reason, you can resume at the last logged position by setting
uselog=1 (assuming the logfile exists).

7. Evaluate the goodness-of-fit. When the run is complete, it will print out the
lowest chi-squared value found. Divide this by (nboxes-nfree) to get the reduced
chi-squared, which should probably be less than ∼ 10 for a good fit.

To examine the SFH solution, you can use the sfh.sm supermongo script (in the
output/ subdirectory). All of the customizable parameters for this script are col-
lected at the top of the file. See the comments in the file for guidance in adjusting
these settings.

If there is a problem with the SFH fit (e.g., high chi-squared value), you can use the
following diagnostics (each of these programs has its own Chapter in this manual):

(a) the repop program produces artificial stellar photometry based on the best-fit
amplitudes, to be compared to the data CMDs.

(b) the mkimages.sh script in the grid/ subdirectory, which converts the gridbox
populations in the chifile into images, and embeds them into an HTML
document for easy comparison.

(c) the testchi program allows you to tweak the SFH amplitudes and parameter
values. It then calculates a new chi-squared value for the new model.

Chapter 5

geteep and interp

geteep and interp are used to interpolate between isochrones to increase the nominal
matallicity and/or age resolution. To compile the programs, cd to the interpcode di-
rectory and type make. This will create the geteep and interp programs in the root
SFH-1.1 directory.

geteep identifies empirical “equivalent evolutionary points” (EEPs) in each isochrone.
True EEPs are stellar evolution events which can be identified in the isochrones, such
as “the main sequence turn-off” or “the tip of the red giant branch”. These are very
useful for interpolating between isochrones. In fact, the older Padua isochrones provide
EEP tables for this purpose, but the new isochrones published in 2002 did not have this
information (StarFISH includes the older EEP tables, but we don’t make use of them
since they are missing for some isochrones).

Since we don’t have EEP tables for all of the isochrones, we need a way to identify
EEPs (or something like them), which is what geteep does. It identifies empirical EEPs
(eEEPs) as local extrema in color or brightness, along the isochrone track in one of
the CMDs. Many of these points correspond to “true” EEPs (e.g., the TRGB is a
local brightness maximum). The point is to identify points which represent the same
evolutionary state in two similar isochrones; we feel that the color/brightness extrema
do this well.

The geteep input file has a two-line header. The first line contains an integer equal
to the number of magnitudes representing each point in the isochrones. The second line
contains an integer identifying the magnitude which will be the vertical “brightness”
axis in the target CMD (in which eEEPs will be identified). The horizontal axis is
automatically set to be the color index (mag(i-1) - mag(i)), so don’t choose “1” for the
vertical axis. The remainder of the file lists the isochrone files to be processed, and the
list of output isochrones in which eEEPs have been identified.

Once you have run geteep to identify and label the eEEPs in each isochrone, you can
run interp to interpolate between the isochrones. The interp input file has three header
lines at the top which identify the number of magnitudes, the vertical-axis magnitude,
and the fractional distance between the bracketing isochrones for the target interpolated
isochrones. For example, if the bracketing isochrones have metallicity 0.004 and 0.008,
and the target isochrones are to have metallicity 0.005, the fractional distance should be
0.25. (This assumes linear variation with metallicity, which is probably Ok over small

25

26 CHAPTER 5. GETEEP AND INTERP

changes in metallicity).
The rest of the interp input file is the list of isochrones to be interpolated. In

each row, column 1 is the first bracketing isochrone, column 2 is the second bracketing
isochrone, and column 3 is the target isochrone. Again, there is no strict column format;
each filename can be up to 40 characters long.

Chapter 6

testpop

testpop constructs artificial stellar photometry based on a user-specified star formation
history. It is basically a different front-end to the synth code base. Build testpop by
typing make in the testpop directory. testpop reads a (probably modified) version of
the synth input file, which must be named testpop/synth.dat. It also reads its own
input parameter file, which is specified on the command line:

% ./testpop < input file

The input file should contain the following 8 header lines:

pre [string] a prefix for the output photometry files (up to 8 characters)
lockflag [flag] 1 = use locked amplitudes (use lockfile in synth.dat)
nstars [int] an amp of 1.0 will draw nstars masses from the isochrone
dmod [real] delta-distance modulus. For adjusting the DM of the isochrones
fext [real] additional extinction multiplier
gamma [real] IMF slope (testpop recalculates OPs)
fbinary [real] Binary fraction
sfrflag [flag] 1 = amps are expressed as M�/yr; 0 = amps are Nstars/bin

The values for gamma and fbinary supercede the values in synth.dat. Immediately
following these 8 parameters, the input file should contain N lines with the following
columns:

AmpSFH, Zmetal, log(age), numiso

There should be one line for each isochrone in the isofile (if lockflag=0), or one line for
each independent isochrone group (if lockflag=1). testpop determines the number of
stars to generate for isochrone i according to the formula:

N(i) = nstars× Amp(i)× frac(i)×∆t(i)/numiso(i)

where: frac(i) is the fraction of the full mass range that is represented on the isochrone
(frac(i) decreases with age, as more stars have evolved to their non-luminous end-states);
∆t(i) is the duration of the age bin, in Gyr; and numiso(i) is the number of isochrones
in the current isochrone group. If sfrflag=0, then ∆t(i) = 1.0 for all i. If lockflag=0,
then numiso(i) = 1 for all i.

27

28 CHAPTER 6. TESTPOP

Be aware that, in general, many more stars are generated than actually appear in the
CMDs, because a large fraction of the generated stars will be too faint to detect.

testpop outputs ncmd output photometry files, each containing the following data:

magx, magy, ∆x, ∆y

These files may be used directly as input data to the sfh program.

Chapter 7

repop

repop is nearly identical to testpop. The only difference is that the input SFH am-
plitudes are generated from the SFH amplitudes output by sfh. repop constructs an
artificial stellar population based on the best-fit SFH solution, so that it can be com-
pared to the input population.

Before using repop, you must first generate the input SFH amplitudes file using
mkinput.awk:

% cd repop

% gawk -f mkinput.awk -v pre=file prefix sfh output file

You may need to modify this script to make it suitable to your data. Specifically, the
number of isochrone groups and number of isochrones per group are hard-coded, as are
the metallicity strings.

Now you can actually run repop, specifying the new input file on the command line:
% repop < file prefix.input

The number of stars constructed by repop is probably different from the number of
data stars. To generate the same number of stars, follow these steps:

1. use wc to count the number of stars in one of repop’s output CMD files, and the
corresponding input data CMD file.

2. multiply nscale (in the repop input file) by N(data)/N(repop)

3. run repop again

The repop.sm script can be used to display the CMDs of the generated population.
Again, you may need to modify this script. This script as written displays the repopu-
lated B-V,V CMD alongside the original B-V,V CMD for easy comparison. It takes two
arguments, the prefixes of the repopulated and original photometry files.

29

30 CHAPTER 7. REPOP

Chapter 8

testchi

testchi provides an interactive front-end to the fitstat.f subroutine, which calculates
the fitting statistic of a given model SFH. Compile testchi by typing make in the testchi
directory (the executable is placed in the root SFH-1.1 directory).

The testchi input file is a simplified version of the sfh input file, with several
parameters removed. The testchi input file contains the following parameters:

Filenames
datpre [string] input data file prefix
cmdfile [string] Sample synthetic CMDs description file
maskfile [string] Allows one to ignore specified regions of the CMDs
holdfile [string] file w/ SFH amplitudes that should be held fixed
ampfile [string] the input model SFH amplitudes to test
chifile [string] output file containing grid populations and chi-squared values

Synthetic CMD parameters
nfree [int] number of independent isochrone amplitudes
ncmd [int] number of CMDs over which to calculate chi-squared
npix [int] binning factor for CMDs
dpix [real] size of synthetic CMD pixels (same as in synth.dat)

Parameters for each CMD
suffix(i) [string] CMD filename suffix (same as in synth.dat)
xmin(i) [real] calculate chi-squared within these CMD limits
xmax(i) [real] calculate chi-squared within these CMD limits
ymin(i) [real] calculate chi-squared within these CMD limits
ymax(i) [real] calculate chi-squared within these CMD limits
nbox(i) [int] number of grid boxes within region defined by above limits

Runtime parameters
fit stat [int] 0 = use chi-squared; 1 = use Lorentzian; 2 = Use Poisson
gtype [flag] grid definition flag (0 = uniform grid; 1 = custom grid)
iverb [int] verbosity flag (larger N = more screen output)

To use testchi, adjust the parameters in testchi.dat (or create a new input file)
and run the program:

% ./testchi < input/testchi.dat

The chi-squared value resulting from a comparison of the data and the model described
by the outfile is printed to the screen, and the gridbox populations are written to the
chifile.

testchi is very useful for quickly seeing changes in the chi-squared value when the
SFH amplitudes (or other parameters) are changed. You can examine the distribution
of chi-squared in the CMDs using the chifile, and the mkimages.sh script.

31

32 CHAPTER 8. TESTCHI

Chapter 9

mkimages.sh

The grid subdirectory contains the script mkimages.sh, which generates images of the
CMDs from the grid box populations in the chifile, and generates an HTML document
which displays the images in a grid. The HTML document provides a very convenient
way to examine the quality of the model fit, and to diagnose what may be causing a poor
fit.

The script requires files named grid/gridN.index which contains a description of
the grid boxes in each of your CMDs (each CMD has its own index file). The columns
are:

ix, iy, ibox

where (ix, iy) are the synthetic CMD pixel coordinates, and ibox is the grid box to which
that pixel belongs. You can modify the program mkgrid.f to generate the gridN.index
files for your CMDs.

Once you have valid gridN.index files, you can use the mkimages.sh script to gener-
ate the images and HTML page. Before running the script, there are several parameters
which should be adjusted; see the ”CUSTOMIZATION” section of the mkimages.sh file.

When running the script, you specify a filename prefix for the HTML document and
images, and the name of the chifile on the command line:

% ./mkimages.sh c1978 ../output/c1978.chi

The script will generate 4 images per CMD, which will be placed in the images/

subdirectory. The images represent the grid box populations of the model and of the
data; the difference between model and data, and the contribution of each grid box to
the fitting statistic. You can view all of the images using the HTML document that is
created by the script.

33

34 CHAPTER 9. MKIMAGES.SH

Bibliography

[Bertelli et al. (1994)] Bertelli, G., Bressan, A., Chiosi, C., Fagotto, F., & Nasi, E. 1994,
A&AS, 106, 275

[Girardi et al. (2000)] Girardi, L., Bressan, A., Bertelli, G., & Chiosi, C. 2000, A&AS,
141, 371

35

