
                                                        

                     Global Affairs Office  

GDANSK UNIVERSITY OF TECHNOLOGY 

FACULTY OF ELECTRICAL AND CONTROL 

ENGINEERING 

 

STEPPING MOTOR CONTROLLING BY USING ARM 

MICROPROCESSOR 

 

AUTOR: SUPERVISOR: 

Chi Kin Lao  dr inż. Jarosław Guziński 

 

Gdansk 2012 

 

 

 

 

 



1 
 

ACKNOWLEDGEMENT 

Thanks IAESTE, Faculty of Electrical and Control Engineering of Gdansk University of 

Technology and Global Affairs Office for offer me this internship. 

 

Thanks my supervisor Dr. Guzinski for his great support. It was very nice to work with 

him. 

 

Thanks Dr. Kevin Hung for writing me the recommendation letter. 

 

Thanks my FYP partner Mr. U Kin Che and my roomate Mr. José Rua for their 

knowledge in programing. 

 

 



2 
 

Table of Content 

 

Acknowledgement -------------------------------------------------------------------------------------1 

Abstract ---------------------------------------------------------------------------------------------------3 

1. Introduction -----------------------------------------------------------------------------------------3 

2. Project kept in the lab ----------------------------------------------------------------------------4 

3. The control algorthim ----------------------------------------------------------------------------5 

4. Current control ------------------------------------------------------------------------------------6 

5. Immplementation ---------------------------------------------------------------------------------8 

6. Future development ----------------------------------------------------------------------------10 

7. Conculsion -----------------------------------------------------------------------------------------10 

8. Reference ------------------------------------------------------------------------------------------11 

9. Appendix I – The main.c Program of the Developed Embedded Programs --------12 

10. Appendix II - Create Embedded Programs for Testing Step by Step -----------------18 



3 
 

Abstract - In this laboratory training, the basics of stepper motor and its modern 

controls were learnt. An AMR microprocessor broad (controller) was offered as a 

pulse source to control a stepper motor with driver that is a project kept in the lab 

[1], and the embedded control programs were written in C language in µVision 4 

platform. 

 

1. Introduction 

Motors play an important role in automation, motor types with different structure 

and control methods can be divided into DC motors, AC motors, servo motors and 

stepper motors. In terms of power consumption, DC and AC motors have better 

power output. However, on control accuracy view, servo motors and stepper motors 

are the better choice. 

Stepper motor or pulse motor, unlike AC motors, DC motors, and servo motors. 

Because of high torque at low speed, high holding torque at rest, start/stop and 

reversing response is good, and the rotation angle is proportional to the input pulse 

and low angle error characteristics, the use of open-loop control to achieve 

closed-loop control of the demand for high-precision angle and high-precision 

positioning. 

Since the drive is simple, accurate positioning and control is open-loop, so it’s often 

be used in variety of precise positioning applications, such as on printer, plotter, 

floppy drive, and other devices. 

The objective of this training is to understand the knowledge of stepper motor and 

its control methods, and try to develop an embedded control programs work with 

ARM microprocessor. 

 



4 
 

2. Project Kept in the Lab 

[1] The stepper motor of the project kept in the lab is model EDS-20. Inside it, 

current can flow in a band in only one direction during operation. Unipolar control is 

thus imposed by the structure of the motor itself. The bands (totally 4) combination 

of the motor is illustrated in Fig.1. 

 

 

Fig.1. Bands combination of EDS-20 engine 

 

[1] The following figure shows a typical control system of a stepper motor. The driver 

in the original project was already well developed, and the main task of this training 

is to use only one ARM processor broad to generate pulse signals to the driver to 

control the motor. 

 

 

Fig.2. Typical control system of a stepper motor 

 

The next two sections will discuss the basic control theories on this unipolar motor. 

 

 

Control Logic Driver 

Power Supply 

Stepper Motor Pulse Source 



5 
 

3. The control algorithm 

[1] For the control of EDS-20 engine, the controller was designed to implement the 

algorithm work for 2/4 which is also known as two-phase. This algorithm is specific 

to unipolar motors reluctance. The ideal 2/4 switching of four-band motor is 

characterized by the fact that 2 bands are powered and 2 bands remain in open 

circuit condition at anytime, while the numbers of possible combinations of the 

powered bands are 4. Figure 3 [2] presents the ideal case of full step drive (2/4 

switching). 

 

 

Fig.3. Idealized process algorithm 2/4 

 

[1] In fact, during the implementation of the algorithm in motor windings will be 

slightly different from those shown in Figure 11. Deformation of ideal waveforms is 

caused by the presence of a delay time of rising and falling current in the individual 

bands. This phenomenon always appears to decrease the frequency of jumps. The 

course of the actual algorithm, 2/4 is shown in Figure 4. 

 

 

Fig.4. The actual course of the algorithm 2/4 

 

 



6 
 

4. Current Control 

As we know, the instantaneous torque generated in each band depends on the 

current flowing though in the band rather than the voltage drop on the band [5]. 

Each band in stepper motor is characterized by a resistance and inductance. 

Inductance makes the motor winding oppose current changes, and every RL circuit is 

characterized by a time constant τ = L / R, therefore limits high speed operation.  

[1] The original project already employed the control method “L/Rn” that reduces 

the time constant by series a resistor to the winding. Such method is simple enough 

but with a drawback on the heat energy consumption of the series resistor. 

 

There is a further current control method, so called pulse width modulation (PWM) 

technic, which normally using with microprocessor according to its highly integration 

and high speed operation and detection. PWM can achieve high dynamic together 

with reasonable power consumption. The method is to apply high voltage to the 

driver and a feedback path from the motor resistor to the ADC of the processor. 

When signal pulse comes to one of transistor input terminal of a winding (Figure 5 

[1]), according to the high supply voltage to the driver, the current flowing through 

the winding will increase and reach to working value very fast (high dynamic), but 

once the winding current or the voltage of the motor resistor exceed some value 

(normally below the rating current), the processor will trigger to switch off the signal, 

so the winding current will drop down, then similarly, once the winding current or 

the voltage of the motor resistor lower than some value, the processor will trigger to 

switch on the signal, so that to maintain the winding current around a expected 

value (Figure 6 [3]) during pulse period. 

 

 
Fig.5. Commutator Connection of EDS-20 

 



7 
 

Fig.6. Voltage pulse and winding current control with PWM 

 

 



8 
 

5. Implementation 

The implemented system is shown as Figure 7. [4] The ARM controller broad is 

supplied at 9 V, and the driver is powered by a voltage supply which will directly 

affect the torque and the maximum speed of the motor. The controller will keep 

listening to the buttons pressed by the user and generates the corresponding pulse 

signal to the driver, then the driver will converse the input signal to be large signal to 

control and supply the rotation of the stepper motor. Also, there is a LCD displaying 

information to the user. According to time limitation, the system was built without 

current control feedback, but the building method is discussed later in the future 

development. 

 

 

Fig.7. Overall system blocks diagram 

 

To realize the above system control, the connections and settings of the ARM broad 

are shown as below: 

- Output P0.8...12 of the processor as control pulse PINs is connected to the Inputs 

+5V, D0...D3 of EDS-20 correspondingly. (Note that ON/OFF of the winding LEDs 

A, B, C and D on EDS-20 is inversed to D0...3 correspondingly.) 

- Functions and its symbols of the buttons or input PINs are shown as table I 

- P0.27 (AIN0) as ADC input PIN for motor rotational delay 

- P0.29 (AIN2) and P0.30 (AIN3) is for LCD display 

- For jumpers JP11…14, KB1…4 connected to KB11…14 correspondingly 

- Jumper J10 for button “INT1” is on 

- Jumper “ANA_EN” for “AIN0” is on 

 

Table I 

Functions and its symbols of the buttons on the ARM broad 

Button S1 S2 S3 S4 INT1 

Function Continuously 

counterclockwise 

rotation 

Continuously 

clockwise 

rotation 

Counterclockwise 

rotation 

Clockwise 

rotation 

Stop 

Symbol << >> < > X 

PIN P0.4 P0.5 P0.6 P0.7 P0.14 

ARM Controller Driver 

+9V Supply Power Supply 

Stepper Motor 



9 
 

With the connection and settings mentioned above, the embedded programs were 

written, inside it the ADC and LCD display function is base on the ARM broad 

example. The following is the description of the “main.c” in “Appendix I”: 

 

Every time the program starts to run, it will display the stepper motor name 

“EDS-20” on the LCD and only power band A and band B in the motor at the 

beginning, then display functions of the buttons (Table I), and then after reading the 

variable resistance by the on chip ADC, motor rotational delay which depends on this 

reading will be displayed on the LCD. At this moment, the processor will keep 

listening to the buttons pressed by the user.  

 

- If “INT1” is pressed, functions of the buttons will display again and last for few 

second, then again keep listening to the buttons. 

 

- If “S1” or “S2” is pressed, the motor will rotate in counterclockwise or clockwise 

direction continuously with every new ADC delay reading. During the delay 

(written in for-loop), the processor will keep listening to the stop button “INT1”. 

(The rotation can be stop immediately as the processer will spend most of the 

time in the for-loop and the other lines in the program will be processed within a 

very short time. The performance of this stopping almost achieves to employ 

external interrupt.) If “INT1” is pressed, it will do the same process as mentioned 

before. During the non-delay period, if “S1” was pressed before, it will listen to 

“S2” for reverse rotation, and vice versa for “S2” was pressed before. 

 

- If “S3” or “S4” is being pressed, the motor will keep rotating in counterclockwise 

or clockwise direction with every new ADC delay reading until the button is 

released. After release pressing, if “INT1” is pressed, it will do the same process 

as mentioned before. 

 

 



10 
 

6. Future Development 

The embedded programs developed in this training contain basic rotational and 

speed controls on the motor, and with a LCD displaying feature. User can make the 

motor rotates or stops by pressing the buttons on the controller and can view the 

information displayed on LCD.  

The following would like to give some recommendation to have further advance 

control on the motor: 

a) According to safety reason, we always want the ARM processor can response to 

us to stop the motor at any time. External interrupt function can be applied to 

achieve this requirement. 

b) The motor rotational delay depends on the resistance reading from on chip ADC 

and also the processor speed. Timer interrupt function can be combined with the 

ADC to have precise timing control. 

c) PWM technic can be applied to achieve high dynamic in the motor. It can be 

realize by applying voltage feedback from the resistor “Rm” at the driver to one of 

the on chip ADCs. There are totally 4 ADCs with analog input PIN namely 

AIN0…3(P0.27…30) in the processor. As mentioned before, AIN0 is used for the 

motor rotational delay, and both of P0.29 and P0.30 are employed for the LCD 

display. The only unused ADC PIN in this program is AIN1 (P0.28), but note that 

the jumper “NTC_EN” (J5) must be switched OFF so that the AIN1 is really 

available. To measure the voltage on Rm correctly, the grounds of the driver and 

the processor should be connected, and another end of Rm should be connected 

to P0.28. 

 

Conclusion 

In this 6 weeks training, stepper motor and its control algorithms were learnt. A 

control program for stepper motor EDS-20 was designed with C langue in µVision 4 

and well tested by using ARM microprocessor LPC2129. The controls basically 

include speed control, clockwise and counterclockwise rotations, reversing rotation, 

stop rotating and LCD display function. Future developments employing external 

interrupt and timer interrupt in processor, and PWM technic for advance control 

were given in the last section. 

 



11 
 

Reference 

1. Krzysztof Jendraszek: Projekt i wykonanie przekształtnika do mikroprocesorowo 

sterowanego silnika skokowego, Gdansk 2008 

2. Stepper motor from WIKI: http://en.wikipedia.org/wiki/Stepper_motor 

3. Stepper motor and control: 

http://www.stepperworld.com/Tutorials/pgCurrentControl.htm 

4. LPC2129 user manual: 

http://www.keil.com/dd/docs/datashts/philips/user_manual_lpc2119_2129_2

194_2292_2294.pdf 

5. Stepper motor basics: http://library.solarbotics.net/pdflib/pdf/motorbas.pdf 

 

http://en.wikipedia.org/wiki/Stepper_motor
http://www.stepperworld.com/Tutorials/pgCurrentControl.htm
http://www.keil.com/dd/docs/datashts/philips/user_manual_lpc2119_2129_2194_2292_2294.pdf
http://www.keil.com/dd/docs/datashts/philips/user_manual_lpc2119_2129_2194_2292_2294.pdf
http://library.solarbotics.net/pdflib/pdf/motorbas.pdf


12 
 

Appendix I – The main.c Program of the Developed Embedded Programs 

/******************************************************************/ 

/* ZL5ARM Controller of the stepping motor EDS-20                       */ 

/* Inputs +5V and D0...D3 of EDS-20 is connected to P0.8...12 correspondingly  */ 

/* ON/OFF of LEDs A, B, C and D on EDS-20 is inverse to D0...D3 correspondingly */ 

/******************************************************************/ 

                   

#include <LPC21xx.H>      

#include "const_bit.h" 

#include "lcd.h" 

 

#define del_l 0x400000 

#define del_s 0x10000 

 

unsigned int step_val = 1;   // Totally 4 step values: 1 to 4, represent the states of D0 to D3 

 

void run (void);     // The core function for controlling 

void delay_ADC (void);          // Delay of the motor retation depends on the ADC reading 

void delay (unsigned int del_time); // Delay for LCD diaplay 

void stepping (int step_val);      // Only D0D1, D1D2, D2D3 or D3D1 will set "0" at any moment 

int clockwise (int step_val);    // Stepping changing for clockwise rotation 

int counterclockwise (int step_val); // Stepping changing for counterclockwise rotation 

void LCD_Hex(int hex);    // Hex digit display on the LCD 

 

int main (void) 

{ 

// Define in/output 

  IODIR0 = 0xFF00FF00;  

  IODIR1 = 0x00FF0000; 

 

  PINSEL1 &= !(BIT26 | BIT27 | BIT28 | BIT29); 

 

  PINSEL1 |= BIT22; 

  ADCR   = 0x002E0401;        // AC: 10 bit AIN0 @ 3MHz 

 

  LCDInit(); 

 

  LCDSendByte(0x01,0);    // clrscr 



13 
 

  delay(del_s); 

  

 // Display the stepping motor name * EDS-20 * in LCD 

  LCDSendByte(' ',1);  delay(del_l); 

  LCDSendByte(' ',1);  delay(del_l); 

  LCDSendByte(' ',1);  delay(del_l); 

  LCDSendByte('*',1);  delay(del_l); 

  LCDSendByte(' ',1);  delay(del_l); 

  LCDSendByte('E',1);  delay(del_l); 

  LCDSendByte('D',1);  delay(del_l); 

  LCDSendByte('S',1);  delay(del_l); 

  LCDSendByte('-',1);  delay(del_l); 

  LCDSendByte('2',1);  delay(del_l); 

  LCDSendByte('0',1);  delay(del_l); 

  LCDSendByte(' ',1);  delay(del_l); 

  LCDSendByte('*',1);  delay(del_l); 

  delay(del_l); 

  

 // Initialize the outputs D0D1D2D3 = "0011" 

 IOSET0 = 0x0000FF00;  

 IOCLR0 = 1<<9; 

 IOCLR0 = 1<<10; 

  

 run (); 

} 

///////////////////////////////////////////////////////////// 

 

void run (void) { 

LCDTextXY(0, 1, "1<< 2>> 3< 4> 5X"); // Display functions of the buttons (S1, S2, S3, S4, INT1) 

  delay(8*del_l); 

  LCDTextXY(0,1, "                "); 

  

delay_ADC (); // Show the current delay value of motor rotation 

  

// Loop function for buttons S1 to S4 and INT1 

  while (1) 

  { 

  // When S1 connected to P0.4 



14 
 

  if( !(IOPIN0 & 0x00000010)) 

  { 

         while (1) { //Rotate continuously 

// Changing step value for clockwise rotation 

    step_val = counterclockwise (step_val);  

    stepping (step_val);  

     

    if( !(IOPIN0 & 0x00000020)) {break;} // Break and rotate in counterclockwise 

when button INT1 is pressed 

   }  

  } 

   

  // When S2 connected to P0.5 

  else if( !(IOPIN0 & 0x00000020)) 

  { 

   while (1) { 

    step_val = clockwise (step_val); 

    stepping (step_val);  

     

    if( !(IOPIN0 & 0x00000010)) {break;} // Break and rotate in clockwise when button 

INT1 is pressed 

   } 

  } 

   

  // When S3 connected to P0.6 

  else if( !(IOPIN0 & 0x00000040)) 

  { 

   step_val = counterclockwise (step_val); 

   stepping (step_val); 

  } 

 

  // When S4 connected to P0.7 

  else if( !(IOPIN0 & 0x00000080)) 

  { 

   step_val = clockwise (step_val); 

   stepping (step_val); 

  } 

  else if( !(IOPIN0 & 0x00004000)) { 



15 
 

   run (); 

  } 

  } // While end 

} 

 

// Stepping motor steps to one of the 4 steps 

void stepping (int step_val)  { 

  if (step_val == 1) 

 { 

  IOSET0 = 0x0000F900; //Set both D2 and D3 "1" 

  IOCLR0 = 0x00000600; //Set both D0 and D1 "0" 

 } 

 else if (step_val == 2) 

 { 

  IOSET0 = 0x0000F300; //Set both D0 and D3 "1" 

  IOCLR0 = 0x00000C00; //Set both D1 and D2 "0" 

 } 

 else if (step_val == 3) 

 { 

  IOSET0 = 0x0000E700; //Set both D0 and D1 "1" 

  IOCLR0 = 0x00001800; //Set both D2 and D3 "0" 

 } 

 else if (step_val == 4) 

 { 

  IOSET0 = 0x0000ED00; //Set both D1 and D2 "1" 

  IOCLR0 = 0x00001200; //Set both D0 and D3 "0" 

 } 

  

 delay_ADC (); // Delay the motor rotation and display the delay value  

} 

 

void delay_ADC (void) { 

 unsigned int val; 

 int  t; 

  

 ADCR |= 0x01000000;                      // start converting AC 

    do 

 { 



16 
 

    val = ADDR;                            // read the conversion result 

  } while ((val & 0x80000000) == 0);       // wait for the end of the conversion of AC 

  ADCR &= ~0x01000000;                     // AC conversion end 

  val = (val >> 6) & 0x03FF; 

 

 // Display the reading value 

 LCDTextXY(0,1, "AIN0 = 0x"); 

 LCD_Hex((val >> 8) & 0x0F);    // 1st digit 

 LCD_Hex((val >> 4) & 0x0F);    // 2nd digit 

  LCD_Hex(val & 0x0F);      // 3rd digit 

  

 // Delay for the motor rotation 

 for(t = 0; t < (val*1000+0x20000); t++) { 

  if( !(IOPIN0 & 0x00004000)) { 

   run (); 

  } 

 } 

  

  val = (val >> 2) & 0x00FF; 

  IOCLR1 = 0x00FF0000;       // LED off 

  IOSET1 = 0x00FF0000 & (val << 16);  // 8 most significant bits of the conversion to LED 

} 

 

int clockwise (int step_val) { 

 switch (step_val) { 

  case 1: 

   return 4; 

  case 2: 

   return 1;  

  case 3: 

   return 2;  

  case 4: 

   return 3; 

 } 

} 

 

int counterclockwise (int step_val) { 

 switch (step_val) { 



17 
 

  case 1: 

   return 2; 

  case 2: 

   return 3;  

  case 3: 

   return 4;  

  case 4: 

   return 1; 

 } 

} 

 

void delay (unsigned int del_time)  

{  

  unsigned int i; 

   

  for(i = 0; i < del_time; i++);     

}             

 

void LCD_Hex(int hex) 

{ 

  if (hex > 9) LCDSendByte('A' + (hex - 10),1); 

  else         LCDSendByte('0' +  hex,1); 

} 

 



18 
 

Appendix II - Create Embedded Programs for Testing Step by Step 

 

The embedded programs were written in C langue in the microcontroller 

development kit (MDK) “µVision 4”, and the programs were compiled and tested on 

the processor in HEX format by using the programming tool “Flash Magic” via serial 

port. The following will tell how to do step by step from downloading µVision 4 to 

testing the program on processor. 

 

The below link is the official download web page of µVision 4: 

https://www.keil.com/demo/eval/arm.htm 

The programming tool “Flash Magic” can be found from another official website as 

shown as the following: 

http://www.flashmagictool.com/ 

 

After download and install the software, you may start to create a new project. You 

can view and download the official “Getting Started” guide in PDF format from the 

below link: 

http://www.keil.com/product/brochures/uv4.pdf 

At page 75, chapter 6 is talking about how to create embedded programs in detail.  

 

Don’t forget to generate the HEX file for testing on the processor, and it can be apply 

from the following steps with figures: 

I) In the Project Menu -> Options for Target… 

 

https://www.keil.com/demo/eval/arm.htm
http://www.flashmagictool.com/
http://www.keil.com/product/brochures/uv4.pdf


19 
 

II) A new window will pop up, then go to “Output”, and then tick the box “Create 

HEX File” 

 
 

III) Then go to “Linker”, and then tick the box “Use Memory Layout from…” 

 



20 
 

Then after finish writing programs and build it without any error, the HEX file can be 

compiled by using Flash Magic. The following is the compiling steps: 

In Step 1 

I) Select the testing processor (in this case is processor LPC2129) 

II) Choose the appropriate COM Port (in this case is COM 3) 

III) Set the Baud Rate of the COM Port to 19200 

IV) Select Interface to be None (ISP) 

V) Set Oscillator frequency to 12 MHz which is the same as the clock of LPC2129 

 

In Step 2 

VI) Tick the box “Erase all Flash+Code Rd Prot” 

 

In Step 3 

VII) Apply the location of the HEX file for compile 

 

In Step 5 

VIII) Click the “Start” button. (Remember to connect the computer and COM0 of the 

ARM broad via serial port; power the ARM broad; the jumper J7 on the ARM 

broad should be on ISP as we have chosen ISP interface before, and COM 

port on computer should be free for use or without access by other software 

else) 

 
 

Finally, you will see if the program works normally or not. 


