

LinkEHR-Ed

Archetype Editor
v0.8

User’s Manual

Copyright © 2005-2008

Biomedical Informatics Group – IBIME

ITACA Institute

Universidad Politécnica de Valencia

2

1. About us

The Biomedical Informatics (IBIME) area of the Institute for the Applications of

Advanced Information and Communication Technologies (ITACA) consists of 20

members and it is coordinated by Ph. D. Montserrat Robles Viejo.

ITACA is a research and development centre of the Universidad Politécnica de Valencia

(UPV), Spain, whose purpose is to promote and carry out research, technological

development and transference of results in the field of information and communication

technologies.

The research of IBIME-ITACA is concerned with the use and development of methods

and tools for the acquisition, processing and management of biomedical data and

knowledge. The research is characterised by its multidisciplinarity and close linkage

with health professional and institutions. IBIME collaborates with several national and

international groups working on bioinformatics and biomedical informatics mainly in

Europe and Canada due to European and National projects and research stays. The area

combines successfully four main fields of biomedical informatics, namely, health

information engineering, pattern-recognition, medical imaging and bioinformatics.

The Health Information Engineering area of IBIME has been working since 1999 in the

field of the efficient use of information and communication technologies for the

management of biomedical information. Current lines of work are:

• Standardization and modelling of electronic clinical history by means of

ontologies and archetypes of sanitary information

• Semantic interoperability of health information systems

• Integration of biomedical data

• Modelling and management of phenotypic information

• Visualization of biomedical information

More info:

About LinkEHR-Ed: http://pangea.upv.es/linkehr

About IBIME: http://www.ibime.upv.es

About ITACA: http://www.itaca.upv.es

About UPV: http://www.upv.es

Contact Information: You can contact us for any suggestions or bug notifications

through the project web page (see above) or by sending an email to:

José Alberto Maldonado

jamaldo@upv.es

David Moner

damoca@upv.es

Diego Boscá

diebosto@upv.es

3

2. About LinkEHR-Ed

LinkEHR-Ed is an integration editor which allows mapping an archetype to existing

data sources and generates the XQuery scripts that will extract and transform data from

the sources into a standardized XML document.

It is a result of a research project funded by the Spanish Ministry of Education and

Science, reference: TSI-2004-06475-C02 and TSI2007-66575-C02.

3. LinkEHR-Ed releases

Previous versions:

- LinkEHR-Ed v0.1: Just an ADL editor.

- LinkEHR-Ed v0.5: Archetype editor independent of the underlying reference

model used for defining attributes. This is the open source version.

- LinkEHR-Ed v0.5.1 to LinkEHR-Ed v0.5.4: Minor changes and bugs resolved.

- LinkEHR-Ed v0.8: Current release includes the integration archetypes feature.

Only for XML data sources.

Future versions:

- LinkEHR-Ed v0.9: This release will include support for relational data sources.

- LinkEHR-Ed v1: First final and usable version of the complete LinkEHR-Ed

4

4. What is LinkEHR-Ed?

LinkEHR-Ed is a visual tool implemented in Java under the Eclipse platform which

allows the edition of archetypes based on different reference models, the specification

of mappings between archetypes and data sources and the semi-automatic generation of

data conversion scripts which translate unnormalized data into XML documents which

conform to the reference model and at the same time satisfy the data constraints

imposed by archetypes.

LinkEHR-Ed explores the use of archetypes as a means to achieve standardization and

semantic data integration of distributed health data. The main objectives are twofold.

Firstly, in the context of data integration, to use of archetypes as a semantic layer over

the data repositories, whose contents need to be integrated and exchanged, associating

them with formal semantics. As aforementioned, the main purpose of archetypes is to

describe information in the form of a set of machine-processable domain concept

definitions based on a reference model. Therefore, archetypes may act as semantic

descriptions that capture the information contents of heterogeneous repositories.

Secondly, we intend to employ archetypes for making public existing clinical

information in the form of standardized EHR extracts. For this purpose, we take

advantage of their data definition facet, which was formalized in the previous section.

Archetypes explicitly specify the structure and content of valid instances of the

underlying reference model to which interchangeable data instances must conform.

Thus, it becomes necessary to transform data from the local sources with a particular

structure or schema to meet the data structures defined by archetypes. This problem is

known in the literature as the data exchange (translation or transformation) problem.

Data exchange requires at the schema level an explicit representation of how the source

and target schemas are related to each other; these explicit representations are called

mappings. Mappings between two schemas can be specified in different ways. They can

be a query expressed in SQL or XQuery, a predicate in first order logic, a set of

correspondences each of which relates a element from the source schema to an element

from the target schema or even a third schema that relates the other two via two sets of

correspondences, i.e. a reified mapping. At the data level, data transformations operate

on the instances of the schemas rather than on the schemas themselves, they transform

source instances into target instances according to the mapping defined between the

corresponding schemas. Data transformations may be expressed in a specific data

transformation language, such as XQuery or by using a general purpose language as

Java.

Since the health data to be made public resides in the underlying data sources, it is

necessary to define some kind of mapping information that links entities described in

the archetype (object nodes and attributes) to data elements in data repositories (e.g.

elements and attributes in the case of XML documents, tables and attributes in the case

of relational data sources). We use the term integration archetype to denote an archetype

for which a mapping specification to a set of data sources has been defined, i.e.:

Integration archetype = archetype + mapping specification.

5

An integration archetype can be considered to be a view that provides abstraction in

interfacing between the data sources that hold the data to be shared and the reference

model used to communicate these data in the form of standardized EHR extracts. It is

necessary to remark, that there exits a one to many relationship between archetypes and

integration archetypes. Given an archetype, there may be different mappings, one for

each different setting that wishes to use the archetype to describe and share its data.

LinkEHR-Ed is a visual tool for defining integration archetypes.

Although LinkEHR-Ed is oriented to the construction of integration archetypes it may

operate as a pure archetype editor. It can load ADL files and generate both ADL and

XML according to the XML schema defined by the Consortium OpenEHR. At its core

lies the Archetype Object Model an object oriented model for archetypes, this has also

been adopted by CEN/TC251 EN13606. It uses the Java implementation of the AOM

and the ADL parser developed by ACode, although several addition have been made in

order to satisfy extra requirements such a multi reference model support and mapping to

data sources.

With LinkEHR-Ed new archetypes can be defined from scratch, for instance to describe

the data structure and semantics of legacy data such as messages or database schemas. It

is also possible to define new archetypes by specializing or altering existing ones, such

as those drawn from a public available archetype repository. In any case, LinkEHR-Ed

is intended to support the mapping to data sources.

NOTE: LinkEHR-Ed has two main uses:

 - As a multireference model editor of archetypes.

 - As an integration archetype editor which allows the integration and standardization

of legacy data.

At this stage the first use is publicly available. The second is not open-sourced.

6

5. Archetype Edition: step by step tutorial

This guide will show up the basis of LinkEHR-Ed operation by showing you how to

import both OpenEHR and CEN EN13606 reference models into LinkEHR-Ed. Later

we will introduce how to open an archetype, a creation of a new archetype and the

specialization of an archetype.

1. Running LinkEHR-Ed for the first time
The first time you open LinkEHR-Ed you will see this window

Capture 1: LinkEHR-Ed first run

LinkEHR-Ed toolbar has available the most common used actions. Capture 2 shows

the meaning of buttons, although they should be auto explicative enough.

Capture 2: The meaning of the buttons on the toolbar

7

2. Configure LinkEHR-Ed
User preferences can be changed in LinkEHR-Ed’s configuration dialog. This dialog is

located at Help → Configure LinkEHR-Ed. The dialog has four tabs, each one controlling a

part of LinkEHR-Ed (see capture 3).

a. Languages tab: controls the interface language of LinkEHR-Ed. Currently

LinkEHR-Ed is only available in English, but we plan to release it on several

languages. That’s why the buttons have no effect at this moment.

b. Visualization tab: you can define the preferred visualization of the archetype tree

(in order to show the ontology description, classes’ names or both) and the default

font for the archetype tree. This also can be configured by pushing the button in

the archetype tree view at any time during the archetype edition.

c. Paths tab: you can change the paths used by LinkEHR-Ed, such as the internal

(physical) repository path and the location of language and terminology XML files.

d. Default author tab: you can insert the default information of the author in order to

avoid retyping it everytime you create a new archetype. The Default language refers

to the primary language selected by default when creating a new archetype through

the “Create new archetype” wizard.

8

Capture 3: Configuration of linkEHR-Ed

3. Adding the OpenEHR reference model to LinkEHR-Ed
To import a new reference model you have to open the import reference model wizard,

which is located under Reference Model → Import Reference Model. There you can

introduce the organization name, the model name and the XSD schemas defining the

reference model, as you can see in capture 4.

Since we are constraining an OO model, the distinction between classes and attributes is

crucial. In fact, different types of constraints are applied accordingly. For instance, classes

9

may be represented as elements or as type definitions. In the former approach, XML

instances contain elements tagged with the class names while in the latter class names only

appear in the schema. When importing a new reference model, it must be indicated whether

or not classes are represented as elements in the schema. It is supposes that all classes are

represented in the same way.

In the case of the OpenEHR official XML Schemas, you must set the combo “Represent

complex elements as” to Complex types.

Capture 4: Importing OpenEHR reference model

Once all this information has been introduced you can push Next button. In the next

wizard page will appear the list of entities available to be generated. The list is filled

with the entities in complexity order, as it is likely that the more complex entities will

be the ones basic to that model, also called Business Objects. If a needed entity does not

appear in the list you can move the slider in order to reveal less complex entities. They

are hidden at first to simplify the whole process.

When you have all the desired entities visible you only have to select them and click on

the arrow to the right. This will show the selected entities on the “included” list.

10

NOTE: Included entities will be the only ones available as basis for creating new

archetypes at the New archetype dialog.

When at least one entity is included you can finish the importation process. Capture 5

shows the entities of OpenEHR reference model.

Capture 5: The entities of OpenEHR reference model

Now we can check that the imported reference model has been included by trying to

create a new archetype. Push Archetype → New and the window of capture 6 will

appear. See section 5 for more details.

11

Capture 6: The new archetype wizard with the OpenEHR reference model included.

4. Adding CEN EN13606 reference model to LinkEHR-Ed
In the same way we have added the OpenEHR reference model we can add the CEN

EN13606 reference model to LinkEHR-Ed. So the first page will be as shown on the

capture 7.

NOTE: There is no official XML Schema for CEN EN13606. We have developed our own

schema and it is available through the LinkEHR-ED project webpage.

12

Capture 7: Importing CEN EN 13606

In the same way as before, we select the reference model entities to be included and

push finish. The entities needed for EN13606 are shown at capture 8.

13

Capture 8: Reference model entities for CEN EN13606

5. Creating a new archetype
To create a new archetype we only have to push the New Archetype button of the toolbar or

the menu Archetype → New and a wizard (shown at capture 6) will be opened. After

selecting the organization, reference model, entity, concept and language a new and empty

archetype will be loaded and ready for being edited (capture 9).

14

Capture 9: LinkEHR-Ed with a new archetype created.

6. Opening an archetype
This process is very straightforward. By pushing the Open button on the toolbar or the menu

Archetype → Open a typical system open dialog will be shown. Choosing then an ADL file

(version 1.4) will load it into LinkEHR-Ed.

If the ADL is not valid, an error will be shown indicating the line where the error has been

detected. Moreover, although the archetype tree can not be built the ADL code is available

and can be accessed through Go to ADL button (represented with this icon).

Looking at the ADL code will allow you to easily detect the error, fix it and recompile the

ADL text (by pushing the button again) to generate the visual representation of the

archetype.

7. Editing an archetype
The main window of LinkEHR-Ed has four main components or views:

a. Archetype tree view: Here is where the archetype structure is represented as a tree,

including its header and description, the definition tree, the language section and the

15

ontology section (capture 10). The button switches the definition branch of the

tree between technical and non-technical view.

Capture 10: The archetype tree containing all of its structure

b. Details view: At the right side of the screen is where the different forms for

introduction of data are loaded. A different form is associated to each kind of node

of the archetype tree (see captures 11, 12 and 13).

16

Capture 11: The archetype header a description form

Capture 12: The language section form

17

Capture 13: The ontology section form

c. Console view: This view shows the application messages and also has a tab to

watch the path of the selected node of the definition tree.

Capture 14: The console view

d. ADL view: Once an archetype has been loaded or created, you can always switch to

the ADL view in order to see and edit it. Every change made in the ADL will be

reparsed and validated before going back to the visual representation. You can

switch to the ADL view by pushing the button, and return to the previous

view by pushing it again.

18

Capture 15: The ADL edition view

The main edition process is done at the definition branch of the archetype tree. By clicking

on any node a form is shown in the details view with the editable information of the node.

This form will depend on the type of node:

• Attribute: There are views for editing properties of Single and Multiple attributes.

Capture 16: Single and multiple attributes view

19

• Complex Object: Occurrences of complex objects can be modified through their

respective form. Their ontology information (term definition and term binding) can

also be edited from this form.

Capture 17: CComplexObject edition view

• Internal Reference: When an internal reference is created, a list of the available

target nodes of the same reference model type is provided. You can change the

target node at any time or directly jump to its definition.

Capture 18: Internal reference view

20

• Archetype Slot: Properties of an archetype slot (includes and excludes) can be

edited from this form.

Capture 19: Archetype slot view

• Primitive Object: Each kind of primitive objects (corresponding to the basic types

string, integer, double, boolean, date, time and datetime) has its own form in order

to define their constraints or assumed values.

21

Capture 20: Samples of String and Integer primitive objects views

• Domain Types: Since LinkEHR-Ed is a model-independent editor, it is difficult to

design an interface for editing particular domain types. Due to this fact, at this stage

there is no visual interface for this kind of objects, but they can still be edited

textually by switching to the ADL view.

In order to edit the archetype you can add or delete new objects and attributes by clicking on

the “Add archetype constraint” button of the toolbar () or by right-clicking on the node

of the tree where do you want to perform those actions (captures 21 and 22). When you

choose to include a new Complex Object a pop up will show up to choose which kind of

object you want to add. As shown in capture 23, you can choose the new node to be an

object, an internal reference to another object of the same type or an archetype slot.

You can delete a node (objects and attributes) selecting the Delete option from the right-

click menu over the corresponding node.

NOTE: When two or more objects are assigned to a Single Attribute, a virtual node called

Alternatives will be created in the tree in order to show this specific fact. It is only an

informative node and has no other properties.

22

Capture 21: Pushing the “Add archetype constraint” button shows a menu showing the available actions…

Capture 22: …and so does clicking with right button on a node

23

Capture 23: Choosing the type of the node

8. Specializing an archetype
To create a specialization archetype you only have to push the “Specialize Archetype”

button of the toolbar or the menu Archetype → Specialize. A dialog will be displayed to

select the parent archetype of the specialization and to introduce the specialization name.

Pushing Ok will create the specialization archetype, with the structure of the parent

archetype already included. Then you can modify the specialized archetype the same way as

told at step 7.

9. Validating an archetype
Once you have created an archetype from scratch or opened it from an available ADL file,

you can validate it by pushing the Validate button . This validation assures that the

introduced constraints are effectively more constrained than those defined by a parent

archetype (if this is an specialization archetype) or by the reference model. In any other

case, an error message will be displayed with the path of the node where the validation

failed.

10. Save an archetype
Once you have finished the edition of an archetype, you can save it trough the Save button

or the Archetype → Save menu. You can choose an ADL format or an XML one (just a

prototype functionality in the second case).

24

11. LinkEHR-Ed current limitations
LinkEHR-Ed is a prototype tool from a research project in continuous evolution. At this

stage of the project it is not intended to be used in production or real environments but as a

tool which gives a formal approach to the archetype edition process. Some of its current

limitations are:

• Some XML Schemas of other reference models can fail, since their structure can be

diverse. Currently, many of the characteristic of W3C XML schemas are supported,

such as data types, name spaces, imports and includes (reference models can be

defined by using several files) and a wide range of structures such as complex and

simple types, elements, attributes, inheritance by extension and restriction,

sequence, choice, all, attributes, patterns and groups and their respective facets.

• Domain types are not fully supported since they depend on particular reference

model knowledge. They are usually correctly parsed and edited in the ADL view,

but they are not shown visually.

• Access to terminology services is not yet implemented, but terminology bindings

can be defined.

• Only ADL 1.4 is supported.

• Uncontrolled errors can occur. All notifications of bugs are welcome.

