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1 Introduction

This is a specification of the Grace Programming Language. This spec-
ification is notably incomplete, and everything is subject to change. In
particular, this version does not address:

• whether to support object nesting (Beta, Scala, Newspeak) or not
(Smalltalk, Python).

• collection syntax and collection literals

• tuples vs multiple values vs multiple returns

• nested static type system (although we’ve made a start)

• encapsulation system

• module system

• metadata (Java’s @annotations, C] attributes, final, abstract etc)

• purity and non-nulls.

• reflection

• assertions, data-structure invariants, pre & post conditions, contracts

• regexps

• test support

• libraries, including more Numeric types

For discussion and rationale, see http://gracelang.org.
Where this document gives “(options)”, we outline choices in the lan-

guage design that have yet to be made.
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2 User Model

All designers in fact have user and use models consciously
or subconsciously in mind as they work. Team design. . . requires
explicit models and assumptions.

Frederick P. Brooks, The Design of Design. 2010.

1. First year university students learning programming in CS1 and CS2
classes that are based on object-oriented programming.

(a) The courses may be structured objects first, or imperative first.
Is it necessary to support “procedures first”?

(b) The courses may be taught using dynamic types, static types, or
both in combination (in either order).

(c) We aim to offer some (but not necessarily complete) support for
“functional first” curricula, primarily for courses that proceed
rapidly to imperative and object-oriented programming.

2. University students taking second year classes in programming; algo-
rithms and data structures, concurrent programming, software craft,
and software design.

3. Faculty and teaching assistants developing libraries, frameworks, ex-
amples, problems and solutions, for first and second year programming
classes.

4. Programming language researchers needing a contemporary object-
oriented programming language as a research vehicle.

5. Designers of other programming or scripting languages in search of a
good example of contemporary OO language design.
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3 Syntax

Much of the following text assumes the reader has a minimal
grasp of computer terminology and a “feeling” for the structure
of a program.

Kathleen Jensen and Niklaus Wirth, Pascal: User Manual and Report.

Grace programs are written in Unicode. Reserved words are written in the
ASCII subset of Unicode. As a matter of policy, the names of methods
defined in the required libraries are also restricted to the ASCII subset of
Unicode.

3.1 Layout

Grace uses curly brackets for grouping, and semicolons as statement termi-
nators, and infers semicolons at the end of lines. Code layout cannot be
inconsistent with grouping.

code with punctuation:

while {stream.hasNext} do {
print (stream.read );

};
code without punctuation:

while {stream.hasNext} do {
print (stream.read)

}
A line break followed by an increase in the indent level implies a line

continuation, whereas line break followed by the next line at the same or
lesser indentation implies a semicolon (if one is permitted syntatically).

3.2 Comments

Grace’s comments delimiters follow C++ and Java’s line (“//”) comments.
Comments are not treated as white-space; each comment is conceptually
attached to the smallest immediately preceding syntactic unit; comments
following a blank line are attached to the largest immediately following
syntactic unit.

// comment to end−of−line
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3.3 Identifiers

Identifiers in Grace must begin with a letter and consist of letters and digits
thereafter.

Prime ’ characters may be used after the first character of an identifier.
An underscore “ ” acts as a placeholder identifier: it is treated as a fresh

identifier everywhere it is used.

3.4 Reserved Words

The ? indicates words related to design options not yet chosen.

assert case catch class const def extends false finally match method object
outer(?) prefix raise return self super true type var where

3.5 Tabs and Control Characters

Newline can be represented either by carriage return or by line feed; however,
a line feed that immediately follows a carriage return is ignored.

Tabs and all other non-printing control characters (except carriage and
line feed) are syntax errors, even in a string literal. (There are escape
sequences for including special characters in string literals.)

4 Built-in Objects

4.1 Numbers

Grace will support a single type Number. Number will maintain rational
computations in arbitrary precision, and inexact irrational computations
approximated to at least 64bit precision.

Implementations may support other numeric types: a full specification
of numeric types is yet to be completed.

Grace has three syntactic forms for numerals (literals that denote Numbers):

1. decimal numerals, written as strings of digits, optionally preceded by
a minus;

2. explicit radix numerals, written as a (decimal) number between 2 and
35 representing the radix, a leading x, and a string of digits, where the
digits from 10 to 35 are represented by the letters A to Z, in either
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upper or lower case. As a special case, a radix of 0 is taken to mean a
radix of 16. Explicit radix numerals may not be preceded by a minus.

3. base-exponent numerals, always in decimal, which use e as the expo-
nent indicator. Base-exponent numerals may be preceded by a minus.

All literals evaluate to exact rational Numbers; explicit conversions (such as
f64) must be used to convert rationals to other types.

Examples

1
−1
42
3.14159265
13.343e−12
−414.45e3
16xF00F00
2x10110100
0xdeadbeef // Radix zero treated as 16

4.2 Booleans

The keywords true and false denote the only two values of Grace’s Boolean
type. Boolean operators will generally be written using single characters &
for and, | for or, and prefix ! for not.

Examples

P & Q
toBe | toBe.not

“Short circuit” (a.k.a non-commutative) boolean operators take blocks
as their second argument:
Examples

P && { Q }
toBe || { !toBe }

4.3 Strings and Characters

String literals in Grace are written between double quotes, as in C, Java,
and Python. Strings literals support a range of escape characters such as
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”\t\b”, and also escapes for Unicode; these are listed in Table 1 Individual
characters are represented by Strings of length 1. Strings are immutable
Grace values (see §10) and so may be interned. Strings conform to the
protocol of an immutable IndexableCollection, and Grace’s standard library
will include mechanisms to support efficient incremental string construction.

Escape Meaning Escape Meaning

\\ backslash \’ single quote
\" double quote \b backspace
\n line-feed \r carriage-return
\t tab \l unicode newline
\f page down \e escape.
\{ left bracket \} right bracket

\ (\ space) non-breaking space

Table 1: Grace string escapes. A platform-dependent newline is either a line-
feed (lf) or a carriage-return (cr) or a cr-lf pair, depending on the platform.

Examples

”Hello World!”
”\t”
”The End of the Line\n”
”A”

4.4 (option) String interpolation

We are considering syntax so that strings (or expressions returning objects
that support the asString method) can be directly interpolated into strings.

Examples

”Adding {a} to {b} gives {a+b}”

5 Blocks

Grace blocks are lambda expressions; they may or may not have parameters.
If a parameter list is present, the parameters are separated by commas and
terminated by the −> symbol.
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{do.something}
{ i −> i +1}
{ sum, next −> sum +next }

Blocks construct objects with a single method named apply, or apply(n)
if the block has parameters. The block is evaluated by requesting the apply
method with the same number of arguments as the block has parameters.
It’s an error to provide fewer or more parameters.

for (1..10) do {
i −> print i

}

might be implemented as

method for (collection ) do (block) {
...

block.apply( collection .at( i ))
...

}

Here is another example:

var sum := 0
def summingBlock : Block<Number,Number> =
{ i :Number −> sum := sum +i }

summingBlock.apply(4) // sum is now 4
summingBlock.apply(32) // sum in now 36

Blocks are lexically scoped inside their containing method or block. A
“naked” block literal that is neither the target of a method request nor
passed as an argument is a syntax error.

The body of a block consists of a sequence of declarations and expressions
(option) and also statements, if we have them.

6 Declarations

Def and var declarations may occur anywhere within a method or block:
their scope is the whole of their defining block or method.

It is an error to declare an identifier that shadows a lexically enclosing
identifier.



8 Id: spec.tex 195 2011-10-21 19:24:33Z kjx

6.1 Constants

Constant definitions bind an identifier to the value of an initializer expres-
sion, optionally at a precise type.

Examples

def x = 3 ∗ 100 ∗ 0.01
def x:Number =3 // means the same as the above
def x:Number // Syntax Error : x must be initialised

Grace has a single namespace for methods and constants (and variables).
A constant declaration of x can be seen as creating a (nullary) reader method
x.

6.2 Variables

Grace supports variable declarations using the var keyword.

Uninitialized variables (of any type) are given a special “uninitialized”
value; accessing this value is an error (caught either at run time or at compile
time, depending on the cleverness of your implementor).

Examples

var x : = 3 // type of x is inferred .
var x: Rational : = 3 // explicit type.

Instance variables are reassigned using assignment methods (see §8.2). A
variable declaration of “x” can be seen as creating a reader method “x” and
an assignment method “x: =( )” Grace’s encapsulation system will control
the accessibility of each of these methods. You can think of the real instance
variable as having a unique secret name, which is known only to the accessor
methods.

Block and method temporary variables really exist, and can be the tar-
gets of real assignment statements.

It’s a deliberate design decision that assignment to a local variable and
requesting an assignment method on an object look identical.

It is an error to declare a block or method temporary variable that
shadows an enclosing method or assignment method (see §6)

Assignments return Nothing (Void/None/etc).
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6.3 Methods

Methods are declared with the method keyword, a name, optionally an
argument list, potentially repeated, optionally a return type declaration,
and a method body. Methods may not be nested.

Methods may contain one or more return e statements. If a return state-
ment is executed, the method terminates with the value of the expression e.
If the method returns None, then no expression may follow the return. If ex-
ecution reaches the end of the method body without executing a return, the
method terminates and returns the value of the last expression evaluated.

Assignment methods are named by an identifier suffixed with “ : =”.

Prefix operator methods will be named “prefix” followed by the operator
character(s).

Methods may have a “repeated parameter” to provide variable arity (aka
varargs). A repeated parameter, if present, must be the last parameter to
a method, and must be the only parameter after the last part of a multi-
part method name. Repeated parameters are designated by a prefix star
(asterix, “∗”) before the name of the parameter. Inside the method, the
repeated parameter has the type of an immutable collection of the declared
type — a parameter declared foo(∗args : String ) will have a type such as
args : ImmutableCollection<String>

Methods may optionally be declared or requested with generic type pa-
rameters. Formal generic type parametrs may be constriained with where
clauses.

Examples

method pi {3.141592634}

method greetUser {print ‘‘ Hello World!’’}

method +(other : Point) −> Point { (x +other.x) @ (y +other .y) }

method +(other)
{ (x +other .x) @ (y +other .y) }

method +(other)
{ return (x +other .x) @ (y +other .y) }

method foo:=(n : Number) −> None {
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print ”Foo currently {foo}, now assigned {n}”
super.foo: = n }

method choseBetween (a : Block<None>) and (b : Block<None>) −> None {
if (Random.nextBoolean)

then {a.apply} else {b.apply} }

method print( ∗args : Printable ) −> None

method sumSq<T>(a : T, b : T) −> T where T <: Numeric {(a ∗a) +(b ∗
b)}

class NumberFactory {
method prefix− −> Number
{ 0 − self }

}

7 Objects and Classes

Grace object constructor expressions and declarations produce individual
objects. Grace provides class declarations to create classes of objects all of
which have the same structure.

Grace’s class and inheritance design is complete but tentative. We need
experience before confirming the design.

7.1 Objects

Objects are created by object literals. The body of an object literal consists
of a sequence of declarations.

object {
def colour :Colour = Colour.tabby
def name:String = ”Unnamed”
var miceEaten := 0

}

Object literals are lexically scoped inside their containing method, or
block. In particular, any initializer expressions on fields or constants are
executed in that lexical context. (Whether methods are also in that scope
is the “nesting” question, see §1. The current design is that initializers are
nested, but not methods). Each time an object literal is executed, a new
object is created.
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A constant can be defined by an object literal, such as:

def unnamedCat = object {
def colour : Colour = Colour.tabby
def name : String = ”Unnamed”
var miceEaten := 0 }

to bind a name to an object. Repeated invocations of the reader method
unnamedCat will return the same object.

7.2 Classes

Objects literals have no provision for initializing the constant and variable
attributes of the created object other than via lexical scope.

Class declarations combine the definition of an object with the definition
of a factory object, where the factory object has a method, named new, that
creates “instances of the class”. A class declaration is similar to an object
literal, except that it may have parameters, like a block:

Examples

class CatFactory { aColour, aName −>
def colour : Colour = aColour
def name : String = aName
var miceEaten := 0

}

The new method takes as many arguments as the class has parameters. The
object that is returned by an execution of new has the fields and methods
listed in the body of the constructor that follows the class keyword. If
there are formal parameters to the class body, they are initialized to the
arguments to new, and are also in scope within the class.

So, in the above example, the constants colour and name are initialized
from the parameters aColour and aName, which are in turn initialized from
the first and second arguments to new:

def fergus = CatFactory.new(” tortoiseshell ”, ”Fergus Trouble”)

If the programmer wants a factory object with more methods, or method
names other than new, she is free to build such an object using nested object
constructors. The above declaration for class Cat is equivalent (modulo
types and modules) to the following nested object declarations:
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def CatFactory = object { // the cat factory
method new(aColour: Colour, aName: String) −> Cat {

object { // the cat herself
def colour : Colour : = aColour
def name : String : = aName
var miceEaten := 0

}
}

}

Notice that the type Cat describes the object returned from Cat.new, not
the factory object CatFactory.

7.3 Inheritance

Grace class declarations supports inheritance with “single subclassing, mul-
tiple subtyping” (like Java), by way of an inherits C clause in a class dec-
laration or object literal.

A new declaration of a method can override an existing declaration, but
overriding declarations must be annotated with <override>. Overridden
methods can be accessed via super calls §8.6. It is a static error for a field
to override another field or a method. This example shows how a subclass
can override accessor methods for a variable defined in a superclass (in this
case, to always return 0 and to ignore assignments).

class PedigreeCatFactory { aColour, aName −>
inherits Cat.new(aColour, aName)
var prizes : = 0
<override> method miceEaten {0};
<override> method miceEaten:= (n:Number) {return} //Just ignore

}

The right hand side of an inherits clause is restricted to be a class name,
followed by a correct request for that class’s new method.

7.4 Understanding Inheritance (under discussion)

Grace’s class declarations can be understood in terms of a flattening trans-
lation to object constructor expressions that build the factory object. Un-
derstanding this translation lets expert programmers build more flexible
factories.



Id: spec.tex 195 2011-10-21 19:24:33Z kjx 13

The above declaration for class PedigreeCat is broadly equivalent to the
following nested object declarations, not considering types, modules, and
renaming superclass methods so that an object’s method names must actually
be unique.

def PedigreeCatFactory = object { // the cat factory
method new(aColour: Colour, aName: String) −> PedigreeCat {

object { // the cat herself
def colour : Colour : = aColour
def name : String : = aName
<<private>> var Cat miceEaten := 0 // ugly . super−ugly
var prizes = 0
method miceEaten =0;
method miceEaten:=(n:Number) {return} //Just ignore

} // object
} // method new

} // object

7.5 Generic Classes

Classes may optionally be declared or instantiated with generic type pa-
rameters. Formal generic type parametrs may be constriained with where
clauses.

Examples

class VectorFactory<T> { size −>
var contents : = Array. size ( size )
method at(index : Number) −> T {return contents.at() }
method at(index : Number) put(elem : T) { }

}

class SortedVectorFactory<T>
where T <: Comparable<T> {

...
}

8 Method Requests

Grace is a pure object-oriented language. Everything in the language is an
object, and all computation proceeds by “requesting” an object to execute
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a method with a particular name. The response of the object is to execute
the method. When speaking of Grace, we distinguish the act of requesting
a method (which is exactly what Smalltalkers call “sending a message”),
and involves only a method name and some arguments, and executing that
method, which involves the code of the method, which is always local to the
receiver of the request.

8.1 Named Methods

A named method request is a receiver followed by a dot “.”, then a method
name (an identifier), then any arguments in parentheses. Parentheses are
not used if there are no arguments. To improve readability, a long argument
list may be interpolated between the “words” that makes up the method
name. This is determined by the declaration of the method. If the receiver
is self it may be left implicit, i.e., the self and the dot may both be omitted.

canvas.drawLineFrom(source)to(destination)
canvas.movePenToXY(x,y)
canvas.movePenToPoint(p)

print (”Hello world”)

pt.x

Grace does not allow overloading on argument type.

Parenthesis may be omitted where they would enclose a single argument,
provided that argument is a block literal, (option) a string literal, or (option)
a square bracket literal (if we allow square bracket collection literals).

8.2 Assignment Methods

A assignment method is an explicit receiver followed by a dot, then a method
name (an identifier) followed by “:=”, and then a single argument. If the
receiver is self it may be left implicit, i.e., the self and the dot may both
be omitted.

Examples

x : = 3
y: =2
widget. active : = true
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Assignment methods must return Nothing.

8.3 Binary Operator Methods

Grace allows operator symbols (sequences of operator characters) for binary
methods — methods with an explicit receiver and one argument. A binary
operator method is one or more operator characters, and may not match a
reserved symbol (for example “ .” is reserved, but “ .. ” is not).

Most Grace operators have the same precedence: it is a syntax error for
two different operator symbols to appear in an expression without parenthe-
sis to indicate order of evaluation. The same operator symbol can be sent
more than once without parenthesis and is evaluated left-to-right.

Four simple arithmetic operators do have precedence: / and ∗ over+and
−.

Examples

1 + 2 + 3 // evaluates to 6
1 + (2 ∗ 3) // evaluates to 7
(1 + 2) ∗ 3 // evaluates to 9
1 + 2 ∗ 3 // evalutes to 7
1 +∗+ 4 −∗− 4 //syntax error

Named method requests without arguments bind more tightly than op-
erator method requests. The following examples show first the Grace ex-
pressions as they would be written, followed by the parse.

Examples

1 + 2. i 1 + (2. i )
(a ∗ a) + (b ∗ b). sqrt (a ∗ a) + ((b ∗b). sqrt )
((a ∗ a) + (b ∗ b)). sqrt ((a ∗ a) + (b ∗b)). sqrt
a ∗ a + b ∗ b (a ∗ a) + (b ∗b)
a + b + c (a + b) + c
a − b − c (a − b) − c

8.4 Unary Prefix Operator Method

Grace supports unary prefix operator methods: since Grace does not sup-
port binary operator methods with implicit receivers there is no syntactic
ambiguity.
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Prefix operators bind with the same precedence as method requests with
no arguments, and therefore need parenthesis to disambiguate.

Examples

− (b + (4 ∗ a). sqrt )
− b.squared // illegal
(−b).squared
−(b.squared)

status .ok : = !(engine. isOnFire) & wings.areAttached & isOnCourse

8.5 Accessing Operator Method

Grace supports an accessing operator [] .

(option) Grace supports a two-argument accessing operator []: =.

Using these operators:

print ( a [3] ) // calls method [] on a with argument 3
a [3] : = ”Hello” // calls method [] on a with arguments 3 and ”Hello”

Note: Somewhere we need to have a list of reserved operators that cannot
be used normally.

[] : =

8.6 Super Requests

The reserved word super may be used only as an explicit receiver. In over-
riding methods, method requests with the pseudo-receiver super request
the prior overridden method with the given name from self . Note that no
“search” is involved; super-requests can be resolved statically, unlike other
method requests.

Examples

super.foo
super.bar (1,2,6)
super.doThis(3) timesTo(”foo”)
super + 1
!super
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foo(super) // syntax error
1 + super // syntax error

8.7 Encapsulation

The design of Grace’s encapsulation system has not yet begun in earnest.
Grace will use metadata annotations support <<private>> methods

that can be requested only from self or super.

8.8 Generic Method Requests

Methods may optionally be requested with actual generic type arguments
given explicitly. Where a method declared with formal generic type parame-
ters is requested in a statically typed context without explicit actual generic
type arguments, the actual types arguments will be inferred

Examples

sumSq<Integer64>(10.i64, 20.i64)

sumSq(10.i64, 20. i64)

9 Control Flow

Control flow statements in Grace are syntactically method calls. While the
design of the module system is not complete (in fact, hardly yet begun)
we expect that instructors will need to define domain-specific control flow
constructs in libraries — and these constructs should look the same as the
rest of Grace.

9.1 Basic Control Flow

If statements:

if ( test ) then {block}

if ( test ) then {block} else {block}

While statement:

while {test} do {block}
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For statement:

for ( collection ) do {item −> block body}

for (course . students) do { s :Student −> print s }

for (0.. n) do { i −> print i }

To allow for conventional syntax with a leading keyword ( if , while, for),
these methods are treated as if they were implicitly sent to self , which
implies that all objects must inherit the corresponding method.

9.2 Case (under discussion)

Grace will support a match/case construct. Match will take only one argu-
ment and match against a series of blocks introduced by “case”. Pattern
matching will support destructuring.

Examples

match (x)
// match against a literal constant

case { 0 −> ”Zero” }

// typematch, binding a variable − looks like a block with parameter
case { s : String −> print(s) }

// match against the value in an existing variable − requiring parenthesis like Scala
case { (pi) −> print(”Pi = ” ++ pi) }

// destructuring match, binding variables ...
case { Some(v) −> print(v) }

// match against placeholder , matches anythin
case { −> print(”did not match”) }

9.3 Exceptions (under discussion)

Grace supports basic unchecked exceptions. Exceptions will be generated
by the raise keyword with an argument of some subtype of Exception:
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raise UserException.new(”Oops...!”)

Exceptions are caught by a catch( )case( )” construct that syntactically
parallels match( )case( )”.

catch {def f = File .open(”data.store”)}
case {e : NoSuchFile −> print(”No Such File”); return}
case {e : PermissionError −> print(”No Such File”); return}
case {Exception −> print(”Unidentified Error ); System.exit}
finally {f . close}

Exceptions can’t be restarted. However, the stack frames that are termi-
nated when an exception is raised should be pickled so that they can be used
in the error reporting machinery (debugger, stack trace). “catch( )case( ) finally ( )”
construct and a “do( ) finally ( )” construct support finalization even through
exceptions. Following Scala, a “using( )do( )” construct supports resource
allocation and deallocation:

using (Closable .new) do { stranger −> //bound to the new Closable
stranger .doSomething

}
// the close method is automatically requested of the
// Closable when the block terminates

10 Equality and Value Objects

All objects will automatically implement the following non-overridable meth-
ods. (option) Library programmers are able to override these methods.

1. == and != operators implemented as per Henry Baker’s “egal” pred-
icate [2]. That is, immutable objects are egal if they are of the same
“shape” and if their fields’ contents are egal, while mutable objects
are only ever egal to themselves.

2. hashcode compatible with the egal.

As a consequence, immutable objects (objects with no var fields, which
capture only other immutable objects) will act as pure “value objects” with-
out identity. This means that a Grace implementation can support value
objects using whatever implementation is most efficient: either passing by
reference always, by passing some times by value, or even by inlining fields
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into their containing objects, and updating the field if the containing object
assigns a new value.

11 Types

Grace uses structural typing [11, 32, 16]. Types primarily describe the re-
quests objects can answer. Fields do not directly influence types, except
in so far as a field with publicly-visible accessor methods will cause those
methods to be part of the type (and in general to be visible to unconstrained
clients).

Unlike in other parts of Grace, Type declarations are always statically
typed, and their semantics may depend on the static types. The main case
for this is determining between identifiers that refer to types, and those that
refer to constant name definitions (introduced by def) which are interpreted
as Singleton types.

11.1 Basic Types

Grace’s standard prelude defines the following basic types:

• Object — the common interface of most objects

• Boolean — methods for true and false

• Number — numbers

• String — strings, and individual characters

• Pattern — pattern used in match/case statements

• Dynamic — dynamically typed expressions. If no types are provided on
method formal parameters, the types are taken as dynamic by default.

There is also a top type, which can be written {} as an empty object
type.

11.2 Object Types

Object types give the type of objects’ methods. The various Cat object and
class descriptions (see §7) would produce objects that conform to an object
type such as the following.
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{
colour −> Colour
name −> String
miceEaten −> Number
miceEaten:= ( : Number) −> None

}

For commonality with method declarations, method arguments may be
given both names and types within type declarations. A single identifier is
interpreted as a formal parameter name with type Dynamic.

11.3 Type Declarations

Types — and generic types — may be named in type declarations:

type MyCatType ={ color −> Colour; name −> String }
// I care only about names and colours

type MyGenericType<A,B> =
where A <: Hashable; where B <: disposable
{
hashStore( :A, :B) −> Boolean // pity not just (A,B)
cleanup( :B)
}

Grace has a single namespace: types live in the same namespace as
methods and variables.

11.4 Relationships between Types — Conformance Rules

The key relation between types is conformance. We write B <: A to mean
B conforms to A; that is, that B is a subtype of A, A is a supertype of B.
This section draws heavily on the wording of the Modula-3 report [11], with
apologies to Luca Cardelli et al.

If B <: A, then every object of type B is also an object of type A. The
converse does not apply.

If A and B are ground object types, then B <: A iff

• B contains every method in A

• Every B method must have the same number of arguments as A, with
the same distribution in multi-part method names.
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• Every method with parameters “(P1, ...Pn) −> R” in A must have a
corresponding method in B “(Q1, ...Qn) −> S”.

– Argument types may be contravariant: Pi <: Qi

– Results types may be covariant: S <: R

If a class or object B inherits from another class A, then B’s type should
conform to A’s type. If A and B are generic classes, then similar instantions
of their types should conform.

The conformance relationship is used in where clauses to constrain for-
mal generic type parameters of classes and methods.

11.5 Any and None

The type Any is the supertype of all types — and may also be written as {}.
The type None is the subtype of all types. There are no instances of

None. In particular, neither undefined and nor any kind of nil are instances
of None.

What happens if a method requested via Dynamic returns None, but the
caller attempts to use that None value”

11.6 Variant Types

Untagged, retained variant types, written T1 | T2 ... | Tn , may refer to
an object of any one of their component types. Instances of variant are
not themselves tagged as members of the variant, however instances can be
distinguised via their reified type information.

The only methods that may be requested via a variant type are methods
with exactly the same declaration across all members of the variant. (Op-
tion) methods with different signatures may be requested at the most most
specific argument types and least specific return type.

Variant types are retained as variants: they are not equivalent to the ob-
ject type which describes all common methods. This is so that the exhaus-
tiveness of match/case statements can be determined statically. In detail:

S <: S | T; T <: S | T
(S’ <: S) & (T’ <: T) =⇒ (S’ | T’) <: (S | T)
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11.7 Intersection Types

(option) Intersection types, written T1 & T2 & ... &Tn, may refer to an
object that conforms to all of the component types. The main use of inter-
section types is as bounds on where clauses.

class Happy<T>
where T <: (Comparable<T> & Printable & Happyable)

{ foo −>

}

11.8 Union Types

(option) Structural union types (sums), written T1 +T2 + ... + Tn, may
refer to an object that conforms to any of the component types. Unions are
mostly included for completeness: variant types subsume most uses.

11.9 Type subtraction

(option) A type written T1 − T2 has the interface of T1 without any of the
methods in T2.

11.10 Singleton Types

The names of singleton objects, typically declared in object declarations,
may be used as types. Singleton types match only their singleton object.
Singleton typs can be distinguised from regular types because Grace type
declarations are statically typed.

def null = object { method isNull −> Boolean {return true} }

class Some<T> { thing : T −>
method isNull −> Boolean {return false} }

type Option<T> =Some<T> | null

11.11 Nested Types

(Option) Types may be nested inside types, written T1.T2

In this way a type may be used as a specification module.
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11.12 Additional Types of Types

(option) Grace may support nullable types (written ?Type, defined as (Type|null ))
and exact types (written =Type)

(option) Grace probably will support Tuple types, probably written
Tuple<T1, T2... Tn>. We’re not yet sure how.

11.13 Syntax for Types

This is very basic - but hopefully better than nothing!

Type := GroundType | (GroundType (”|” | ”&”) GroundType)...
GroundType ::= BasicType | BasicType ”<” Type ”,”... ”>” | ”Selftype”
BasicType :: = TypeID | ”=” TypeID | ”?” TypeID | ”?=” TypeID

11.14 Reified Type Information Metaobjects and Type Lit-
erals

(option) Types are represented by objects of type Type (Hmm, should be
Type<T>?). Since Grace has a single namespace, so types can be accessed
by requesting their names.

To support anonymous type literals, types may be written in expressions:
type Type. This expression returns the type metaobject repesenting the
literal type.

11.15 Type Assertions

(option) Type assertions can be used to check conformance and equality of
types.

assert {B <: A}
// B ’conforms to’ A.
// B is a subtype of A

assert {B <: {foo( :C) −> D}
// B had better have a foo method from C returning D

11.16 Notes

1. (Option) Classes define a type (of the same name) — currently this
is NOT part of Grace

2. (Sanity Check) these rules
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3. (To be done) add in path types, types in objects.

4. What’s the relationship between “type members” across inheritance
(and subtyping???)

5. Classes are not types — are we sure about this?

6. Types are patterns (need to be to be matched against!)

7. Reified Generics formals are also patterns (see above)

8. On matching, How does destructuring match works? What’s the pro-
tocol? Who defines the extractor method? (not sure why this is here)

9. Somehow, do classes need to define a type that describes the objects
that are created by their factory methods.

10. Note that Generic Types use angle brackets, viz. ImmutableCollection<Figure>

11. can a type extend another type?

12. where do where clauses go?

13. method return types

14. Structural typing means we neither need nor want any variance anno-
tations! Becaue Grace is structural, programmers can always write an
(anonymous) structural type that gives just the interface they need —
or such types could be storted in a library.

15. Should ObjectTypes permit formal parameter names or not? §11.2?

16. What actually gets returned from None? §6.3 §11.5

17. Tuples §11.12. Syntax as a type? Literal Tuple Syntax?

18. Nesting.

12 Pragmatics

The distribution medium for Grace programs, objects, and libraries is Grace
source code.

Grace source files should have the file extension .grace. If, for any bizzare
reason a trigraph extension is required, it should be . grc

Grace files may start with one or more lines beginning with #: these
lines are ignored.
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13 Libraries

13.1 Collections

Grace will support some collection classes.
Collections will be indexed 1.. size by default; bounds should be able to

be chosen when explicitly instantiating collection classes.
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ML [35], Modula-2 [48], Modula-3 [11], Modular Smalltalk [47], Newspeak
[8, 6], Pascal [25], Perl [46], Racket [14], Scala [38, 37], Scheme [42], Self [45],
Smalltalk [18, 24, 9, 7], Object-Oriented Turing [20], Noney [32], Whiteoak
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A To Be Done

As well as the large list in Section 1 of features we haven’t started to design,
this section lists details of the language that remain to be done:

1. specify full numeric types

2. Block :: apply §5 — How should we spell “apply”? “run”?

3. confirm method lookup algorithm, in particular relation between lex-
ical scope and inheritance §8 (“Out then Up”). Is that enough? Does
the no-shadowing rule work? If it does, is this a problem?

4. confirm “super” or other mechaism for requesting overridden methods
§8.6

5. confirm rules on named method argument parenthesization §8.1

6. how are (mutually) recursive names initialised?

7. make the def keyword optional, or remove it, or return to const §6.1
post 10/02/2011.

8. support multiple constructors for classes §7.2

9. where should we draw the lines between object constructor expres-
sions/named object declarations, class declarations, and “hand-built”
classes? §7.3

10. what’s the difference between class FOO {} and def FOO =class {}
(for various values of “class”)

11. how do factories etc relate to “uninitialized” §6.2

12. decide what to do about equality operators §10

13. Support for identifying static type decltype and dynamic type typeid/foo.getType

14. Support for type test (like instanceof) and static casts.

15. What is the namespace of types? What is the syntax of types? §11
More to the point, what is the type system?

16. Multiple Assignment §6.2 ? f<T> ?
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17. Type assertions — should they just be normal assertions between
types? so e.g. <: could be a normal operator between types...?

18. Grace needs subclass compatibility rules

19. BRANDS. Brand Brand Brand.
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