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Abstract 
Augmented reality is a technology which allows 2D and 3D computer graphics to be 
accurately aligned or registered with scenes of the real-world in real-time. The potential 
uses of this technology are numerous, from architecture and medicine to manufacturing 
and entertainment. 
 
This thesis presents an overview of the (complex) research area of Augmented Reality and 
describes the basic parts of an Augmented Reality system. It points out the most significant 
problems and various methods of trying to solve them. This thesis also presents the design 
and implementation of an augmentation system that makes use of a three degrees of freedom 
orientation tracker. 



 

Mobil Förstärkt Verklighet 
 
Sammanfattning 
Augmented reality är en teknologi som gör det möjligt för två- och tredimensionell 
datorgrafik att på ett precist sätt överlappa scener från den verkliga världen i realtid. De 
potentiella användningsområdena för denna teknologi är flera, från arkitektur och medicin till 
tillverkningsindustri och underhållning. 
 
Det här arbetet ger en överblick av det mycket komplexa forskningsområdet Augmented 
Reality och beskriver de grundläggande delarna av ett Augmented Reality-system. Arbetet tar 
upp de mest signifikanta problemen och olika metoder för att försöka lösa dem. Det här 
arbetet presenterar också en design och implementation av ett Augmented Reality-system som 
använder sig av en orienteringssensor i tre dimensioner. 
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1. Introduction 

1.1. Why am I doing this and for who? 
1.1.1. Background 
This thesis was made at Erisson Research Medialab in Kista outside Stockholm. The goal of 
Ericsson for this work was to investigate new user interfaces and new areas of use for portable 
devices. Ericsson is, like all other mobile phone manufacturers, turning into a supplier of 
portable computers. The competition in this new market will be very intense when 
manufacturers of computers, digital assistants, mobile phones etc. meet. Mobile phones get 
more functionality, for example the ability to surf the web, while computers get phone 
functionality. Besides trying getting into new areas, new areas of use arise as well. One of the 
potential technologies is a new type of user interface called Augmented Reality (AR). 

1.1.2. Why AR? 
Augmented Reality is a potential future user interface. Portable computers face a few 
problems:  

• How can you have a large screen without making it hard to carry?  
• How can the user interface be easy to use efficiently and still be portable? 

Some years ago the ideal phone would have been small enough to fit in your pocket, with 
buttons just big enough that you could press them one at a time and the rest of the phone 
should have been covered with a colorful screen. This phone is possible to make today. To be 
able to improve further one idea is to move the screen from the phone to a pair of goggles. 
The physical form factor would still be small, while the usable screen size could be as big as 
we want it to be. With this kind of screen the Augmented Reality user interface would be 
possible and many new services and ways of using computers would be possible. 

1.1.3. Mission 
The mission of the thesis was specified as the following points: 

• Get an understanding of Mobile Augmented Reality (MAR) 
• Examine existing solutions for MAR 
• Investigate technical problems related to MAR 
• Investigate algorithms for mapping 3D synthetic worlds on 3D real worlds 
• Investigate algorithms for video object insertion in a MAR scene 
• Implement a prototype for MAR 

1.1.4. Method for solving the task 
The method for solving the task was to read available literature to get an understanding of 
Augmented Reality in general and an idea of what Mobile Augmented Reality is.  
Reading reports from projects will give an idea of existing solutions and the technical 
problems related to MAR/AR and also what algorithms are used for 3D mapping and video 
insertion. By using publicly available software libraries a prototype of MAR would be 
implemented. 

1.2. What is Augmented reality? 
What is Augmented Reality? If you have heard of Virtual Reality (VR) you might know that 
it is about surrounding a user completely with a virtual environment. VR is used in flight 
simulators and computer games for example. In short, with a VR system the user is taken 
away from the real world to a computer generated one. 
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Augmented Reality (AR) aims to leave the user in the real world and only to augment his 
experience with virtual elements. Note that although augmented reality generally is about 
visual augmentations, other means of augmentation are thinkable, such as sound, tangible 
devices and so on. 
Azuma [8] defines AR as systems that have the following three characteristics: 
1. Combine physical and virtual reality 
2. Interactive in real time 
3. Registered in 3–D 
Let us note here that although this definition is very broad, most researchers have 
concentrated on visual augmentation during the last years. Milgram [44] defines the Reality-
Virtuality continuum as shown in figure 1. The real world and a totally virtual environment 
are at the two ends of this continuum with the middle region called Mixed Reality. 
Augmented reality lies near the real-world end of the spectrum with the predominant 
perception being the real world augmented by computer-generated data. Augmented 
Virtuality is a term created by Milgram to identify systems that are mostly synthetic with 
some real world imagery added, such as texture mapping video onto virtual objects. 
 
 

 

 
 
 
 
 

Figure 1 Milgrams Reality – Virtuality continuum 

 
 
 
 
 
 
 
 
 
 
 

Figure 3 AR 
Courtesy Ericsson Medialab 

 

Figure 2 Real Environment 
Courtesy Ericsson Medialab 

Figure 5 Virtual Environment 
Courtesy Ericsson Medialab 

Figure 4 AV 
Courtesy Ericsson Medialab 

One can choose to look at AR as a mediator of information, or a filter, where the computer 
helps you do things in an intuitive way. 
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2. Motivation 
Who and what is AR for? Historically, the first computers took a lot of human effort to 
prepare to do simple tasks. Later the personal computer appeared, it was small and cheap 
enough for every person to have one. The user interface was better and less knowledge was 
needed to operate the computers. The WIMP1 user interface became standard and was fairly 
easy to learn for any person, no computer education was needed. The laptop appeared and you 
could carry your computer with you, although it was a bit bulky. The PDA2 appeared as a 
slimmed version of the laptop, containing calendar and phone numbers. The PDA was small 
enough to be carried all the time. All this evolution has been pretty linear, but with the palm 
sized computer it does not make much sense to make smaller devices since the device will be 
too small to use. The next step was by many believed to be “wearable computing”, i.e. 
computers integrated in your clothes and so small that you do not notice them. 
Technologically it is no problem producing such computers, but the WIMP interface did not 
fit at all to this kind of computer and researchers have been looking for new efficient ways of 
using them. Enter augmented reality. Augmented Reality (AR) constitutes a new user 
interface paradigm. Using light headsets and hand-held or worn computing equipment, users 
can roam their daily working environment while being continuously in contact with the 
dynamically changing virtual world of information provided by today’s multi-media 
networks. In many ways, AR is the logical extension to wearable computing concepts, 
integrating information in a more visual and three-dimensional way into the real environment 
than current text-based wearable computing applications. Adapted to the user’s current 
location, task, general experience and personal preferences the information is visualized three-
dimensionally and mixed with views of the real world.  
 
Consider visiting a foreign city for the very first time and not having any idea of where you 
are, or where you need to go. Instead of consulting your dictionary on how to ask for 
directions in the local language, you instead put on your pair of sunglasses and immediately 
your surroundings are no longer so foreign. With the built-in augmented reality system, your 
sunglasses have converted all of the real-world signs and banners into English. As you move 
or turn your head, the translated signs all maintain their correct position and orientation, and 
additional directional arrows and textual cues guide you towards your desired destination. 
When someone speaks to you in a foreign language the computer can translate in real time to 
your native language. 
 
Or consider a medical student training to become a heart surgeon. Instead of simply learning 
from textbooks and training videos, the student can apply his or her knowledge in an 
augmented reality surgery simulation. The entire operation can thus be simulated from start to 
finish in a realistic emergency room setting using computer-generated images of a patient, as 
well as force-feedback medical tools and devices to provide a true-to-life experience. While 
these seem like scenarios from a science fiction movie, they aren’t necessarily that far-fetched 
(actually some of them exist and are being used frequently). The key to creating an effective 
augmented reality experience is mimicking the real world as closely as possible. In other 
words, from a user interface perspective, the user should not have to learn to use the 
augmented reality system but instead should be able to make use of it immediately using his 
or her past experiences from the real world. Clearly, the visual aspect of augmented reality is 
a critical component in depicting this seamless environment, and the registration process thus 

                                                 
1 Windows Icons Menus Pointer 
2 Portable Digital Assistant 
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plays a central role. The registration process is based on tracking the environment, hence 
accurate trackers is the most important part of successful Augmented Reality. 
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3. History 
It all began in the late 1960s when Ivan Sutherland constructed the first computer based head 
mounted display. At the same time Bell Helicopter experimented with analogue systems that 
would augment the vision of helicopter pilots to be able to land in the dark using infrared 
cameras. During the 1970s and 1980s virtual reality research developed with the aid of 
military funding. In the early 1990s Boeing coined the term “Augmented Reality” describing 
their research on mounting cables in airplanes [33]. During the mid 1990s the motion 
stabilized display and fiducial tracking (see 7.7.1) technique appeared as well as some 
applications. During the late 1990s MARS3 [17] was developed at Columbia University 
which took AR out of the lab to the outdoor environment. More advanced applications 
appeared and research widened into areas of studies such as interaction and collaboration. 
This far in the early 2000s AR research is getting a lot of attention and custom hardware and 
commercial products begin to appear [1]. 

                                                

 
 

 
3 Mobile Augmented Reality System 
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4. Applications 
One can divide AR applications into classes to show the motivation of AR and what the 
current efforts are. I have chosen a few classes which I find interesting. 

4.1. Medical 
Surgeons use image data of patients for analysing and planning operations. The image data 
come from various medical sensors like magnetic resonance imaging, computed tomography 
or ultrasound imaging. These sensors can be used by an augmented reality system to give 
surgeons a real time x-ray vision, which in turn could make operations safer and less time 
consuming. 

Figure 4 Ultrasound AR 
Courtesy UNC Chapel Hill 

There are several projects exploring this area. At UNC Chapel Hill [24] a research group is 
working on a system that lets a physician see directly into a patient by using ultrasound 
echography imaging. At MIT a project [28] on image guided surgery has resulted in a surgical 
navigation system used regularly at Brigham and Women’s hospital which has shortened the 
average length of surgery from eight hours to five. 

4.2. Construction and repair 
A promising field of augmented reality is that of designing, assembling and repairing complex 
structures like machines or buildings. A group at Columbia [74] has designed a system that 
guides workers in the assembly of a space frame structure. 
A commercial consortium of seven companies is running a project called Starmate [65], 
which aims to develop a product for maintenance of complex mechanical elements assisting a 
user in assembly/disassembly and maintenance. 
  
 
 
 
  
 

 
 

Figure 5 X-ray view of engine 
Courtesy of Starmate 

Figure 6 Disassembly guidance  
Courtesy of Starmate 
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Other projects let the user add virtual buildings and structures to the environment as he walks 
around [51] by controlling a 3D modeller registered with the environment.  

4.3. Entertainment 
Entertainment is often found to be the strongest force to push a technology forward and this is 
likely to happen in the AR field as well. AR has been used in motion pictures for a long time 
by adding special effects or by placing actors in virtual sets. This however is not done in real 
time since the quality needed takes massive computation. 
The Archeoguide project [76] provides an augmented tour of ancient Greece. By using AR 
technology users can, compared to a virtual tour, see the actual site along with reconstructions 
of both buildings and people. This is a kind of edutainment that goes one step further than 
rides at theme parks. 

 
Figure 5 Archeoguide    Figure 6 ARQuake 
Courtesy of Intracom S.A., Greece   Courtesy University of South Australia 
 
Games using augmented reality have appeared in a number of forms, from simple ones like 
tic-tac-toe [38] and chess [53] via golf [26] and airhockey [47] to the complete augmented 
environments of ARQuake [69] and Game city [13].  

4.4. Military 
For many years military aircraft have used Head-Up Displays to augment the pilot’s view of 
the real world. Currently this technology is getting mobile providing the soldier with 
information of targets, avoiding dangerous areas and providing overview of the battlefield. 
The technology can be used to distinguish between friend and foe and for strategical planners 
to move units to avoid casualties [10][29][83].  
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4.5. Information 
The development of augmented reality could have the same impact on everyday life as the 
personal computer or the Internet had. In the beginning nobody knows what it should be used 
for, but later it becomes a necessity for everyday life. The physical location of the user could 

prove to be an important parameter when searching for and processing information. Also 
when moving away from the old windows-based interface of computers new applications and 
ways to do things will evolve. The picture below shows an example of what a future office 
environment may look like. Here the user has data available in the old traditional way with 
files and folders but with the strengths of their digital cousins added, like drag and drop and 
instant recalculation. 

Figure 7 Future office environment 
Courtesy of Ericsson Medialab 
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5. Augmented Environment 

5.1. Tracking and display technology 
In order to combine the real world with virtual objects in real-time we must configure tracking 
systems and display hardware. The two most popular display configurations currently in use 
for augmented reality are Video See-through and Optical See-through. 

5.1.1. Video see-through 
The simplest approach is the video see-through, as depicted in Figure 8. To get a sense of 
immersion in virtual reality systems, head-mounted displays (HMD) that fully encompass the 
user’s view are commonly employed. In this configuration, the user does not see the real 
world directly, but instead only sees what the computer system displays on the tiny monitors 
inside the HMD. The video camera continuously captures individual frames of the real world 
and feeds each one into the augmentation system. Virtual objects are then merged into the 
frame, and this final merged image is what users ultimately see in the HMD. By processing 
each frame individually, the augmentation system can use vision-based approaches to extract 
pose (position and orientation) information about the user for registration purposes (by 
tracking features or patterns, for example). Since each frame from the camera must be 
processed by the augmentation system, there is a potential delay from the time the image is 
captured to when the user actually sees the final augmented image. Finally, the quality of the 
imagery is limited by the resolution of the camera. The use of a stereo camera pair (two 
cameras) allows the HMD to provide a different image to each eye, thereby increasing the 
realism and immersion that the augmented world can provide. A large offset between the 
cameras and the user’s eyes can further reduce the sense of immersion, since everything in the 
captured scenes will be shifted higher or lower than where they should actually be (with 
respect to the user’s actual eye level). The displays available at the time of writing has quite 
narrow fields of view which will make them tiresome to use for longer periods of time. 
  
 

Video
merging

Graphics
system

Head-mounted
Display (HMD)

Video camera

display

Augmented video

Video of real world

Virtual
objects

Real
world

Users
viewHead

position

Figure 8 Video see-through 
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5.1.2. Optical see-through 
The other popular HMD configuration for augmented reality is the optical see-through display 
system, as depicted in Figure 11. In this setup, the user is able to view the real world through 
a semi-transparent display, while virtual objects are merged into the scene optically in front of 
the user’s eyes based on the user’s current position. Thus when users move their heads, the 
virtual objects maintain their positions in the world as if they were actually part of the real 
environment. Unlike the video see-through displays, these HMDs do not exhibit limited 
resolutions and delays when depicting the real world. However, the quality of the virtual 
objects will still be limited by the processing speed and graphical capabilities of the 
augmentation system. Therefore, creating convincing augmentations becomes somewhat 
difficult since the real world will appear naturally while the virtual objects will appear 
pixelated. Another disadvantage with optical see-through displays is their lack of single frame 
captures of the real world, since no camera is present in the default hardware setup. Thus 
position sensors within the HMD are the only facility through which pose information can be 
extracted for registration purposes. Some researchers have proposed hybrid solutions [54][84] 
that combine position sensors with video cameras in order to improve the pose estimation.  
 
 
 
 
 
 

Graphics
system

Head position Head-mounted
Display (HMD)

Optical
merging

Real
world

Virtual objects display

Users
view

Figure 9 Optical see through 

 
 
 
 

5.1.3. Other solutions 
Projection based displays. In this approach, the desired virtual information is projected 
directly on the physical objects to be augmented. In the simplest case, the intention is for the 
augmentations to be coplanar with the surface onto which they project and to project them  
from a single room-mounted projector, with no need for special eyewear. Another approach 

10/70 



 

for projective AR relies on headworn projectors, whose images are projected along the 
viewer’s line of sight at objects in the world. The target objects are coated with a 
retroreflective material that reflects light back along the angle of incidence. Multiple users can 
see different images on the same target projected by their own head-worn systems, since the 
projected images can’t be seen except along the line of projection. By using relatively low 
powered output projectors, nonretroreflective real objects can obscure virtual objects. 
Projectors worn on the head can be heavy. 
    Monitor based. This is a technique known as monitor based or fishtank based AR and it is 
the most avaliable solution for AR, where an ordinary personal computer and a web cam is all 
you need. It works in the same way as video see through AR, with the only difference that the 
users are not wearing the display and therefore do not get any immersive feeling. A subgroup 
of these are the handheld devices where the user actually can get some kind of immersion. 
The handheld device can act as a kind of magic magnifying glass showing virtual content 
when moving the device over objects. 

5.1.4. Other senses 
Hearing. The sense of hearing helps us learn from each other through communication. Sound 
can be used in augmented reality to enhance the experience of augmented reality and to 
reduce or even remove sounds.  
Touch. The sense of touch helps us learn about our world by feeling it and learning the size, 
texture and shape of things. By introducing haptic feedback many applications for augmented 
reality could be enhanced. Introducing touch is a difficult problem since the user has to have 
some kind of physical object to provide the sensation. For example if a user would like to pick 
up a virtual can standing on a real table the user could be wearing some kind of computer-
controlled glove. Other augmentations like letting a user climb a virtual tree seem more or 
less impossible to achieve. 
Smell. The sense of smell helps us enjoy life and helps us learn about unsafe conditions. It 
would be very difficult to augment smells as it would require some kind of device that can 
artificially produce smells and blend them with the already present ones. 
Taste. Taste helps us, among other things, to select and enjoy food. There are four tastes 
(sweet, sour, salt and bitter). Similar to smell this would be extremely difficult to realize. 
Fortunately smelling and tasting are the least dominant senses for humans and therefore 
would make the smallest difference to augmented reality. 
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6. Mathematics of Augmented Reality 
Before we can discuss the various solutions that have been proposed to solve the registration 
problem (see chapter 7, [8]), we need to review some key mathematical ideas. 

6.1. Coordinate Systems 
The mathematical nature of the registration problem that has to be solved is depicted in  
Figure 10. The three transformations that all augmented reality applications need to consider 
are Object-to-world, World-to-camera, and Camera-to-image plane. 

World coordinates

( ), ,w w wX Y Z

Camera screen 
coordinates

Camera
coordinates

( ),s sx y

( ), ,c c cX Y Z

 
Figure 10 Augmented Reality Coordinate Systems 

Object-to-world ( OM ) 
Assuming that we have a virtual object centered on its own local coordinate system, OM  will 
specify the transformation from this local system into a position and orientation within the 
world coordinate system that defines the real scene. 
World-to-camera ( CM ) 
The CM  transformation specifies the position and orientation (pose) of the video camera that 
is being used to view the real scene, allowing points in the real world to be specified in terms 
of the camera’s origin. 
 
Camera-to-image plane ( PM ) 
The PM  transformation defines a projection from 3D to 2D such that camera coordinates can 
be converted into image coordinates for final display onto a monitor or HMD. In order for an 
augmented reality application to correctly render a virtual 3D object on top of a real scene, the 
above three geometric transformations have to be accurate. An error in any one of the 
relationships will cause the registration to be inaccurate, reducing the realism of the final 
augmented scene. 
Since the virtual 3D objects will be rendered using standard 3D graphics hardware, it follows 
that they must be represented using traditional computer graphics data structures. The surface 

12/70 



 

of our virtual object can thus be represented as a triangular mesh, which consists of a set of 
3D vertices and a set of non-overlapping triangles connecting these vertices. Using 
homogeneous coordinates, the obvious approach to augmenting these virtual objects requires 
that we determine the 2D projection [u, v, h] of a 3D point in Euclidean space [x, y, z, w] 
using the following equation: 
[ ] ( ) ( ) ( ) [ ]3 4 4 4 4 4

T T
P C Ou v h M M M x y z w× × ×=  

The following sections will discuss ideas from projective vision that allow us to explicitly 
determine the PM , CM , and OM  transformations. 

6.2. Camera Models 
Assuming we have a [x, y, z] vertex in camera coordinates, projective geometry allows us to 
define the transformation PM  that can convert this 3D point into 2D image space. 

6.2.1. The Perspective Camera 

Focal length

Image
plane

Principal
point

X

Y

Z
Focal
point p

P

 
Figure 11 The pinhole camera 

Figure 11 shows the perspective or pinhole camera model, which is considered the most 
common geometric model for video cameras. The optical axis is defined as the line through 
the center of focus (a 3D point), which is perpendicular to the image plane. The distance 
between the image plane and the center of focus is referred to as the focal length (f). The 
principal point is the intersection of the optical axis and the image plane. Assuming we have 
any other point P = [X, Y, Z] in 3D, and if we consider the image plane to define our 2D 
image, then the 2D projection of P is the intersection between the image plane and the line 
through the center of focus and P, denoted by p = [x, y]. In other words, we have 

Xx f
Z
Yy f
Z

=

=
 

6.2.2. The Weak-Perspective Camera 
Since the perspective projection is a non-linear mapping, it tends to make vision problems 
difficult to solve. A commonly used approximation to the perspective camera model that 
simplifies certain computations is the weak-perspective camera. If, for any two points in a 
scene, the relative distance along the optical axis, Zδ , is significantly smaller than the average 
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depth, AvgZ , of the scene, then the approximation holds. Typically, 20Z AvgZδ < . 
Conceptually, we can think of the projection as a two-step projection. The first is a projection 
of the object points onto a plane that goes through AvgZ . The second is a uniform scaling of 
the AvgZ  plane onto the image plane. Mathematically, we have 

Avg

Avg

Xx f
Z

Yy f

=

=
          (1) 

Z
 
Typically, ZAvg can be the centroid of some small object in a scene. 

ZAvg

 
Figure 12 Weak perspective camera 

6.3. Camera Parameters 
There are two subsets of camera parameters that can be used to determine the relationship 
between coordinate systems. Known as the intrinsic and extrinsic parameters in the computer 
vision field, they are defined as follows:  
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6.3.1. Intrinsic Camera Parameters 
The intrinsic parameters are those related to the internal geometry of a physical camera. In 
other words, they represent the optical, geometric, and digital characteristics of a camera. The 
parameters are: 

1. The focal length 
2. The location of the image center in pixel space 
3. The pixel size in the horizontal and vertical directions  
4. The coefficient to account for radial distortion from the optics 

The second and third parameters allow us to link image coordinates (xim, yim), in pixels, with 
the respective coordinates (x, y) in the camera coordinate system. This is done quite simply: 

( )
( )

im x x

im y y

x x o s

y y o s

= − −

= − −
   (2) 

 
where ( , )x yo o  define the pixel coordinates of the principal point, and ( ),x ys s define the size 
of the pixels (in millimeters), in the horizontal and vertical directions respectively. Using 
Figure 11 as our reference, the sign change is required if we assume that the image has its x 
coordinates increasing to the right, and the y coordinates increasing going down, with the 
origin of the image in the top-left corner. The final parameter allows us to account for radial 
distortions that are evident when using camera optics with large fields of view. Typically, the 
distortions are most pronounced at the periphery of the image, and thus can be corrected using 
a simple radial displacement of the form 

( )
( )

2 4
1 2

2 4
1 2

1

1

d

d

x x k r k r

y y k r k r

= + +

= + +
   (3) 

 
where ( ,d d )x y  is the distorted point in camera space, and 2 2

dr x y2
d= + , k1 and k2 are 

additional intrinsic camera parameters, where k2 « k1. Usually k2 is set to 0. In many cases, 
radial distortion can be ignored unless very high accuracy is required in all parts of the image. 

6.3.2. Extrinsic Camera Parameters 
The extrinsic parameters are concerned with external properties of a camera, such as position 
and orientation information. They uniquely identify the transformation between the unknown 
camera coordinate system and the known world coordinate system. The parameters, as 
depicted in Figure 13, are:  

1.  The 3×3 rotation matrix R that brings the corresponding axes of the two coordinate 
systems onto one another 

2. The 3D translation vector T describing the relative positions of the origins of the two 
coordinate systems 

In other words, if we have a point Pw in world coordinates, then the same point in camera 
coordinates, Pc, would be: 
 

c wP RP T= +    (4) 
 
where 

00 10 20

01 11 21

02 12 22

r r r
R r r r

r r r

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

   (5) 
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defines the rotational information. 
   Therefore, if we ignore radial distortions, we can plug Eq.(2) and Eq.(4) into our perspective 
projection equation, resulting in: 

( ) ( )
( )

( ) ( )
( )

1

3

2

3

T
w

m x x T
w

T
w

m y y T
w

R P T
x o s f

R P T

R P T
y o s f

R P T

−
− − =

−

−
− − =

−

  (6) 

 
where iR , i = 1, 2, 3, denotes the 3D vector formed by the i-th row of the matrix R.  
   Separating the intrinsic and extrinsic components, and placing the equations into matrix 
form, we get: 

int

0
0
0 0 1

u x

v y

f o
M f o

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

⎥
⎥    (7) 

 
where fu = -f / sx and fv = -f / sy, which defines the transformation between camera space and 
image space, and 

00 10 20 1

01 11 21 2

02 12 22 3

ext

r r r t
M r r r t

r r r t

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

⎥
⎥

T T

   (8) 

 
where , and , which defines the transformation between 1 1

Tt R= − T 2 2
Tt R= − 3 3

Tt R= −
world coordinates and camera coordinates. 
   Therefore, our projection equation can now be expressed in homogeneous matrix form: 

1

2 int

3 1

w

w
ext

w

x
x

y
x M M

z
x

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

 (9) 

 
where x1/x3 = xim and x2/x3 = yim. 
Going back to our camera models, and setting some reasonable constraints on our parameters 
(ox = 0, oy = 0), we can express the perspective projection matrix as simply: 

int extM M M=  
Similarly, the weak-perspective camera matrix is: 

( )

00 01 02 0

int 10 11 12 1

30 0 0

u u u u

wp ext v u u u
T

f r f r f r f t
M M M f r f r f r f t

R P T

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥′ −⎣ ⎦

 

where  is the centroid of two points, P1 and P2 in 3D space. P′

6.4. Camera Calibration 
Now that we have defined our camera models and camera parameters, we have a method to 
associate the various coordinate systems from Figure 10. However, this assumes that we know 
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the actual values of our intrinsic and extrinsic parameters. The process of determining the 
intrinsic and extrinsic camera parameters is known as the camera calibration problem. 
The basic idea is to solve for the camera parameters based on the projection equations of 
known 3D coordinates and their associated 2D projections. Six or more such correspondences 
are required in order to solve a linear system of equations that can recover the twelve 
elements of a 3×4 projection matrix. There are two common methods for camera calibration. 
The first method attempts to directly estimate the intrinsic and extrinsic parameters based on 
finding features in a known calibration pattern. The second method first attempts to estimate 
the projection matrix linking world and image coordinates, and then uses the entries of this 
matrix to solve for the camera parameters. 
The major difficulty with these calibration approaches is the need to perform them manually 
in a separate calibration procedure. For the purposes of augmented reality, efficient and 
accurate camera calibration remains an open problem. 
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7. Registration 
Although different usage areas of AR have different problems, the main issue is generally the 
registration problem. The objects of the virtual and the real world must be perfectly aligned at 
all times or the illusion of coexistence will fail. The same problems exist in virtual reality as 
well, but due to the total immersion they are not as serious as in augmented reality. The 
virtual reality is helped by the fact that the visual sense is the strongest of our senses and can 
override the others in case of conflict. For example if we are in a totally immersed virtual 
environment and turn our head 20 degrees and the eyes register 19 degrees the visual sense 
will override the sense of balance and accept that we have actually turned 19 degrees. If this 
error would happen in AR it would be visually apparent that we have turned 20 degrees and 
therefore unacceptable. Research shows [39] that the human eye has a resolving power of a 
small fraction of a degree. So in order to obtain perfect registration one needs to build a 
system that has higher resolution than the human sensory system. Although this kind of 
system is not likely to appear in the near future most applications are usable at much lower 
resolutions due to the fact that the human brain automatically compensates for small errors in 
order to understand what it perceives. If the visual errors are kept at a sub pixel level we will 
actually never be able to detect them at all. 
 
Tracking 
AR requires technology that can accurately measure the position and orientation of a user in 
the environment, referred to as tracking. Although tracking can be applied to the whole body 
current research concentrates on tracking head movements. This section will try to overview 
the basic principles of tracking position and orientation instead of individual systems. 
 
For tracking to work effectively in Augmented Reality it should be accurate and at interactive 
speed. This overview uses the six principles used in [55]: time of flight (TOF), spacial scan, 
inertial sensing, mechanical linkages, phase-difference sensing and direct field sensing.  
 

7.1. Time of flight 
7.1.1. Ultrasonic 
The time of flight principle relies on measuring the time of propagation of acoustic signals 
between points, assuming that the propagation speed is constant. The most common 
frequency used is in the ultrasonic range, typically around 40 kHz, to prevent the user from 
hearing it. By using three emitters and three receivers, the position and orientation of the 
target can be calculated using triangulation   

Reference

Target

Figure 13 Ultrasonic tracker
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Problem with such a system is that the speed of sound varies with pressure, humidity, 
turbulence and it is sensitive to noise and line of sight. There is also a limit in the range of the 
system due to the loss of energy with the distance travelled. The update rate of the system is 
limited by the speed of sound. For this to work the reference will need to introduce a small 
delay between its three emissions so that the target can distinguish them. This fact reduces the 
maximum update rate by a factor three. Due to the sequential emissions this technique also 
has an error that is proportional to the speed of the target. A general solution to the sequential 
problem is to send emissions simultaneously using different frequencies.  

7.1.2. Electromagnetic 
By using electromagnetic signals instead of ultrasonic the update rate of the system can be 
increased dramatically but errors in time measures result in large position errors due to the 
speed of light. Such a system is the global positioning system (GPS) that uses 24 satellites and 
12 ground stations spread around the world. Each satellite has an atomic clock that is 
recalibrated every 30 sec. The resolution accomplished with such a system is on the order of 
10 meters. A more precise system, the differential GPS, uses emitting ground stations that 
refine the resolution to the order of a meter [46]. Drawbacks of GPS systems are their poor 
accuracy and resolution, and the failure of the technology if the direct lines of sight to the 
satellites are occluded. 

7.1.3. Optical gyroscopes 
Gyroscopes measure angular velocity. Optical gyroscopes rely on interferometry, i.e. optical 
interference. A laser beam is divided in two waves that travel within the interferometer in 
opposite directions. For no rotation, both waves combine out of phase because of the 
consecutive π phase shifts at mirror reflection. For a clockwise rotation of the device, the 
wave front propagating counter-clockwise travels a shorter path than the wave front 
propagating clockwise, producing interference at the output. The number of fringes is 
proportional to the angular velocity. Note: Although the phenomenon comes from TOF the 
measured variable is not time. 
 

7.2. Inertial sensing 
The principle is based on the attempt to preserve either a given axis of rotation (gyroscope) or 
a position (accelerometer) 

7.2.1. Mechanical gyroscope 
A mechanical gyroscope, in its simplest form, is a system based on the principle of 
conservation of the angular momentum that states that an object rotated at high angular speed, 
in the absence of external moments, conserves its angular momentum. A gyroscope makes a 
two degrees of freedom orientation tracker, thus at least two gyroscopes with perpendicular 
axes are needed to make a full 3DOF orientation tracker. The problem with mechanical 
gyroscopes is that the friction causes a small drift but periodic recalibrations (usually about 
once a second) will increase accuracy. 

7.2.2. Accelerometer 
An accelerometer measures the linear or angular acceleration of an object to which it is 
attached. It is a one degree of freedom device that generally consists of a small mass and a 
spring supporting system. Single and double integration of the output gives the speed and 
position. The unknown constants introduced in the integration cause an error. Accelerometers 
are small and cheap. Accelerometers in general drift a lot and need to be recalibrated several 
times a second. Due to this they are most often used in combination with other tracking 
techniques for tracking swift movements.  
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7.3. Mechanical linkages 
This type of tracking system uses mechanical linkages between the reference and the target. 
Two types of linkages have been used. One is an assembly of mechanical parts that can each 
rotate providing the user with multiple rotation capabilities. The orientations of the linkages 
are computed from the various linkages angles measured with incremental encoders or 
potentiometers. Other types of mechanical linkages are wires that are rolled on coils. A spring 
system ensures that the wires are tensed in order to measure the distance accurately. The 
degrees of freedom sensed by mechanical linkage trackers are dependent upon the 
constitution of the tracker mechanical structure. While six degrees of freedom are most often 
provided, typically only a limited range of motions is possible because of the kinematics of 
the joints and the length of each link. Also, the weight and the deformation of the structure 
increase with the distance of the target from the reference and impose a limit on the working 
volume. Mechanical linkage trackers have found successful implementations among others in 
force-feedback systems used to make the virtual experience more interactive. 

7.4. Phase difference 
Phase-difference systems measure the relative phase of an incoming signal from a target and a 
comparison signal of the same frequency located on the reference. As in the TOF approach, 
the system is equipped with three emitters on the target and three receivers on the reference. 
Ivan Sutherland’s head tracking system, built at the dawn of time when it comes to virtual 
reality, explored the use of an ultrasonic phase-difference head tracking system and reported 
preliminary results [68]. In Sutherland’s system, each emitter sent a continuous sound wave at 
a specific frequency. All the receivers detected the signal simultaneously. For each receiver, 
the signal phase was compared to that of the reference signal. A displacement of the target 
from one measurement to another produced a modification of the phases that indicated the 
relative motion of the emitters with respect to the receivers. After three emitters had been 
localized, the orientation and position of the target could be calculated. It is important to note 
that the maximum motion possible between two measurements is limited by the wavelength 
of the signal. Current systems use solely ultrasonic waves that typically limit the relative 
range of motion between two measurements to 8 mm. Future systems may include phase-
difference measurements of optical waves as a natural extension of the principle that may find 
best application in hybrid systems. Because it is not possible to measure the phase of light 
waves directly, interferometric techniques can be employed to this end. The relative range of 
motion between two measurements will be limited to be less than the wavelength of light 
unless the ambiguity is eliminated using hybrid technology. 

7.5. Direct field sensing 
7.5.1. Magnetic field sensing 
By circulating an electric current in a coil a magnetic field is generated. By placing a 
magnetic receiver in the vicinity a flux is introduced in the receiver. The flux is a function of 
the distance and the orientation of the receiver relative to the coil. The emitted field could 
either be an artificial one, making it possible to do six degrees of freedom measurements 
relative to the reference or the natural magnetic field of the earth making it a one degree of 
freedom tracker relative to the earth (compass). Magnetic trackers are inexpensive, 
lightweight, compact and do not suffer from occlusion. They are limited in range by the 
strength of the emitted electromagnetic field and are sensitive to metallic objects and 
electromagnetic noise. Using multiple emitters can expand the range. 
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7.5.2. Gravitational Field Sensing 
An inclinometer operates on the principle of a bubble clinometer. Common implementations 
use electrolytic or capacitive sensing of fluids. A simple implementation may measure the 
relative level of fluids in two branches of a tube to compute inclination. A common 
implementation measures the capacitance of a component being changed based on the level of 
fluid in the capacitor. Inclinometers are inexpensive, reference-free one degree of freedom 
orientation trackers that are limited in update rate by the viscosity of the fluid used. 

Figure 14 Bubble clinometer 

 

7.6. Spacial scan 
7.6.1. Beam scanning 
This technique uses scanning optical beams on a reference. Sensors on the target detect the 
time of sweep of the beams on their surface. This technique has very limited working volume 
and is only used in a small number of applications, for example tracking a pilot’s head 
orientation in airplane cockpits. 

7.7. Vision based 
Vision based pattern recognition 
Vision based trackers rely on light propagated along a line of sight to determine the position 
of a target in 3D space. Generally there are three types of sensors used for vision-based 
tracking [12]: 

• CCD sensors 
• CMOS sensors 
• LinLog sensors 

Charge Coupled Device (CCD) sensors have an array of capacitors whose charges are 
determined by the light intensity. CCDs are normally used in video cameras and are very 
popular in video-see-through AR. 
CMOS sensors are an integration of analog sensor circuitry and digital image processing onto 
a single chip. CMOS offers much higher sensitivity than CCD and has an internal structure 
similar to random access memory blocks making it easy to access parts of the captured image. 
A CMOS sensor can track sub images at several kfps. 
LinLog sensors have the ability to separate the mapping between incident illumination and 
pixel response in a linear and a logarithmic part. This means that they can adjust the range of 
linear operation without any further computations, which is useful in extreme illumination 
conditions. 
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The input of a visual tracker is a sequence of 2D images taken from a 3D scene. As the 
amount of information in each image is very large only parts of the image are used for 
tracking. These parts are selected based on knowledge of the object to track and are 
commonly known as feature based tracking. Since the acquired images are used not only for 
tracking, but also for a presentation of the scene, the most popular image acquisition device is 
a CCD based video camera mounted on a user’s head. 
 
This is the general pipeline of a video see-through system that uses the acquired image for 
both tracking and presentation: 
 

Image capture Pattern recognition Coordinate calculation Image rendering Image display

Figure 15 Image pipeline of video see-through tracker 

The key issue in real-time tracking is to robustly detect features in the input images within a 
short period of time. In order to achieve this goal artificial features can be put in the scene that 
have good properties for tracking. These are usually high contrast patterns known as fiducials. 
 
 

7.7.1. Fiducial based 
Determining the position and orientation of the camera is an important problem. Ideally we 
would like to obtain this information without prior knowledge about the cameras 
environment. In this regard stereovision is a natural choice, however stereo is computationally 
expensive.  

7.7.1.1. Determining the distance and orientation of a quadrangle 
   If prior knowledge of the environment is available then we can proceed differently. For 
example it is known that the orientation of a planar surface can be recovered by computing 
the perspective projection vanishing points of groups of parallel lines on the planar surface.  
Let , be the position vectors of the vertices of a planar quadrangle, denoted by 

, in a given coordinate system. Then there exists a pair of real numbers, 
, 0,...,3iP i =

0 1 2 3, , ,P P P P< > α , 
β , such that 3 0 1 0 2 0( ) (P P P P P P )α β= + − + − . Note that the values of α and β are 
independent of the choice of the coordinate system, and that noncolinearity implies that 

1α β+ ≠ . Obviously neither α nor β is zero. 
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Figure 16 Quadrangle 

   Let  be the position vectors of the perspective projections of  on the image 
plane (see 

, 0,...,3iV i = iP
Figure 16).  Then  determines the ray on which  must lie – i.e., there exist 

 such that . Two questions arise: 
iV iP

0ik > i iP k V= i

1. Is { }| 0,...,3iK k i= = a unique set? 
2. How do we determine it? 

K is indeed unique and can easily be determined from the s and s. iV iP
 
 
Theorem [32]: 

Given a pyramid, there cannot exist two different planes cutting the pyramid in identical 
quadrangles – i.e., if { }0 1 2 3, , ,P P P P  and { }0 1 2 3, , ,Q Q Q Q  are the vertices of any two 
quadrangles with ,Q  on the i-th edge of the pyramid, and if the two quadrangles are 
identical, then 

iP

i

i

iP Q=  for all 1,..,3i = . 
Proof: 

Without loss of generality, assume that the peak of the pyramid is at the origin. 
Since ,  are on the same edge, there exists  such that iP iQ 0ik > , 0,...,3i i iQ k P i= = . 
Since the s are coplanar, we know that there exist iP ,α β , neither of them equal to zero, 
and 1α β+ ≠ , such that ( ) ( )2P Pβ −3 0 1 0 0P P P Pα= + − + . This relation also holds for 

 i.e. there exists another pair of numbers 0 1 3, ,Q2 ,QQ Q ,α β′ ′  such that 
. ( )1 0Q Qα − + ( )2 0Q Qβ′ ′ −3 0Q Q= +
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Assuming that these two quadrangles are identical, then α α′ =  and β β′ = . 
Substituting  gives i iQ k P= i

( ) ( )3 3 0 0 1 1 0 0 2 2 0 0k P k P k P k P k P k Pα β= + − + − ⇒  ( )0 1 2
3 0 1

3 3

1k k kP P P
k k 2

3

P
k

α β α= − − + + β

2P

 

But  are linearly independent, and we already know that  0 1 2, ,P P P

3 0 1(1 )P P Pα β α β= − − + +  
Thus we conclude that  

0 1 2

3 3 3

1k k k
k k k

= = = , and then 

0 1 0 1i i
Q Q P P− = − ⇔ 0 0 1 0 1i i

k P P P P− = − ⇒   1ik =  for all 0,...,3i =  
   Assume that we have the image plane as shown in Figure 16, and that we know the focal 
length. Also assume that we know the dimensions of the known quadrangle – that is, we know 
the distance between each of the six pairs of the four vertices, and the values of α and β as 
defined above. 
   Let , be the position vectors of the vertices of the quadrangle in the camera 
frame, and let , be the position vectors of the corresponding image points. Then, 
obviously there exist , such that 

,  0,...,3iP i =
,  iV i 0,...,3=

0i ,  0,...,3k i> = i iP k Vi= . Following the argument in the 
above theorem, we have 

 ( )0 1 2
0 1 2

3 3 3

1k k kV V V
k k k

α β α β− − + + = 3V  (10) 

Since  are linearly independent, 0 1 2 3, , ,V V V V ( ) 0 1 21 , ,V V Vα β α β⎡ ⎤− −⎣ ⎦ , which is a 3×3 matrix, 

is invertible. So we can solve for 0

3

k
k

, 1

3

k
k

, and 2

3

k
k

. What remains is to determine . Since 3k

( )1 ,α β< − −0
0 1 2 3

3

, ,k V V V V
k

α β > , shown as 0 1 2 3, , ,W WW W< >

0 1 2 3, , ,P P

in Figure 16, is a quadrangle 

obtained by shrinking the original quadrangle P P< >
P

 along the edges of the pyramid 
until  is reached, it is similar to 3V 0 1, ,P P 2 3, P< > . Therefore can be determined by the 
relationship 

3k

( )

0 3 2
3

0
0 3

3 2

1

P P
k

k V V
k

α β

−
=

− − −
 

   Following the above procedure, we can recover the 3D positions of  in the 
camera frame. 

,  0,...,3iP i =

   The technique directly solves for the absolute positions of the vertices of the given 
quadrangle in the camera-centered frame (obviously the orientation of the quadrangle and the 
distance to, say, its center can be easily computed from ). Its implementation only requires 
knowledge of the relation among four coplanar points and their corresponding image 
coordinates. The computational effort only involves solving a system of three linear equations 
in three unknowns and some simple arithmetic operations. 

iP
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7.7.1.2. Determining the elements of exterior orientation of the camera 
   The elements of exterior orientation of a camera express its position and angular orientation 
(or pose) in the fixed world frame. The pose is expressed in terms of three consecutive 
rotations with angles ( ), ,θ φ ψ . These rotations define the angular relationships between the 
three axes of the world coordinate system. 

7.7.1.3. Decomposing the rotation component 
   The problem of determining the elements of exterior orientation can be solved with the 
results from the previous section. Let , 0,...,3iP i =  be the world coordinates of four coplanar 
points. Then, by applying the method from above, we can determine their corresponding 
coordinates in the camera coordinate system. We call them . From this 
correspondence we can determine the transformation from the world frame to the camera 
frame. Decomposing this transformation matrix, 

,  0,...,3iQ i =

Λ , into its translation, T, and rotation, R, 
components, we will have recovered the six elements of exterior orientation. 
R, as described above, is the result of three consecutive rotations, i.e. R R R Rψ φ θ= , where 

cos 0 sin
0 1 0

sin 0 cos
Rθ

θ θ

θ θ

−⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

⎥
⎥  is the rotation around the Y-axis, 

1 0 0
0 cos sin
0 sin cos

Rφ φ φ
φ φ

⎡ ⎤
⎢= ⎢
⎢ ⎥−⎣ ⎦

⎥
⎥

1

⎥
⎥

 is the rotation around the X-axis, 

cos sin 0
sin cos 0
0 0

Rψ

ψ ψ
ψ ψ

⎡ ⎤
⎢= −⎢
⎢ ⎥⎣ ⎦

 is the rotation around the Z-axis. 

It follows that: 
cos cos sin sin sin cos sin sin cos cos cos sin
cos sin sin sin cos cos cos sin sin cos sin cos

sin cos sin cos cos
R

θ ψ θ φ ψ φ ψ θ ψ θ φ ψ
θ ψ θ φ ψ φ ψ θ ψ θ φ ψ

θ φ φ θ φ

+ − +⎡ ⎤
⎢ ⎥= + +⎢ ⎥
⎢ ⎥⎣ ⎦

 

also noted as: 
00 10 20

01 11 21

02 12 22

r r r
R r r r

r r r

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

From 21 sinr φ= −  we get two possible solutions for φ  which are 

( )21arcsin
       

rφ
φ π φ
+

− +

⎧ = −
⎨

= −⎩
 

If cos 0φ ≠  then we can solve for the corresponding ψ  from 

01

11

cos sin
cos cos

r
r

φ ψ
φ ψ

=⎧
⎨ =⎩

 

and solve for θ  from 
00

10

cos cos sin sin sin
cos sin sin sin cos

r
r

θ ψ θ φ ψ
θ ψ θ φ

= +⎧
⎨ = +⎩ ψ
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Let ψ+ ,θ+ be the solutions obtained by choosing φ φ+= , and let ψ− ,θ−  be similarly defined. 
Then it is easy to see that 
ψ π ψ
θ π θ
− +

− +

= +⎧
⎨ = +⎩

 

This implies that  
02 sin cos cos sin sin

    sin cos cos sin sin
r θ ψ θ φ ψ

θ ψ θ φ
+ + + +

− − − −

= +
= + ψ

+

−

 

12 sin sin cos sin cos
    sin sin cos sin cos
r θ ψ θ φ ψ

θ ψ θ φ
+ + + +

− − − −

= − +
= − + ψ

+

−

 

22 cos cos
    cos cos
r θ φ

θ φ
+ +

− −

=
=

 

In other words, the two sequences of rotations R R Rψ φ θ+ + +
 and R R Rψ φ θ− − −

 are equivalent. Thus 

either of the triples ( ), ,θ φ ψ+ + +  and ( ), ,θ φ ψ− − −  can be chosen as the pose of the camera. We 

choose the one with positive subscripts. Note that ,
2 2
π πφ+

⎡ ⎤∈ −⎢ ⎥⎣ ⎦
. 

If cos 0φ = , we have two possibilities. 

1) 
2
πφ = − : letting 1ω θ ψ= − , R can be expressed as 

1 1

1 1

cos 0 sin
sin 0 cos

0 1 0
R

ω ω
ω ω

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

  

Then it is easy to solve for 1ω θ ψ= − , which gives us 1ψ θ ω= − . 

2)  
2
πφ = − : letting 2ω θ ψ= + ,R can be expressed as 

2 2

2 2

cos 0 sin
sin 0 cos

0 1 0
R

ω ω
ω ω

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Again we can solve for 2ω θ ψ= + , which gives us 2ψ ω θ= − . Thus if cos 0φ = , we have an 
infinite number of equivalent solutions of the form 

[1, , 0,
2

]2πφ ψ θ ω θ π= = − ∈  , or 

[ ]2, , 0
2

,2πφ ψ ω θ θ π= − = − ∈ . 

Since in each case all the solutions are equivalent, we can stipulate that 0θ = , and designate 
the pose as 

10, ,
2
πθ φ ψ= = = −ω , or 

20, ,
2
πθ φ ψ= = − =ω  

It is worth noting that in the above derivation, we only need the first two columns of the 
rotation matrix R. 
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7.7.1.4. Determining the position of the origin of the camera frame 
Now, let  be the position of the origin of the camera coordinate system in the world frame, 
and  be the first three elements of the fourth column of the transformation matrix . Then 
since 

0V

4T Λ

( )4 0T R R R Vψ φ θ= −  1 1 1
0 4V R R R Tθ φ ψ

− − −= −
we can recover the position of the origin of the camera coordinate system in the world frame. 
The problem is to find the transformation matrix Λ . 

7.7.1.5. Determining the transformation matrix 
First assume that the vertices of the quadrangle are situated in such a manner that their 
coordinates in the world frame (XYZ) have simple forms (see Figure 16 Quadrangle). 
 

( )0 0,0,0,1 TP = , , ( )1 1,0,0,1 TP X= ( )2 2 2, ,0,1 TP X Y= , ( )3 3 3, ,0,1 TP X Y=  

Let  be their corresponding coordinates in the camera frame 
(xyz); then we have 

( ), , ,1 , 0,...,3T
i i i iQ x y z i= =

i iQ = ΛP P, or         (11) Q = Λ
where 

( )0 1 2 3, , ,Q Q Q Q Q=  , and   ( )0 1 2 3, , ,P P P P P=

are 4×4 matrices. The fourth column of Λ , which is the translation component, can be readily 
seen to be ( )0 0 0, , ,1x y z

Λ
. Since the matrix P is of a simple form, we can solve for the first two 

columns of  easily. These are what is needed for the derivation of the three rotation angles 
θ ,φ  and ψ . 
   If the four vertices are not situated in the manner described, then we can still find a 
reference frame   X Y Z′ ′ ′  such that the coordinates of the four vertices in this frame, 

, have the form given above. The transformation, ,  0,...,3iP i′ = 1Λ  from the XYZ frame to the 
  X Y Z′ ′ ′  frame can be easily obtained, and we already know how to compute the second 

transformation, , from the 2Λ   X Y Z′ ′ ′  to the xyz frame, so the transformation, , from the 
XYZ frame to the xyz frame is given by 

Λ

2 1Λ = Λ Λ . Then the procedure developed earlier can 
be used to compute the six elements of exterior orientation of the camera. 
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( )1 1,0,0,1P x=

( )2 2 2, ,0,1P x y=

( )0 0,0,0,1P =

( )3 3 3, ,0,1P x y=

 
Figure 17 Quadrangle in xy-plane 

 

7.7.1.6. Shape restoration 
The method described above is an exact algorithm, and as such is sensitive to noise. Here is 
described a method which attempts to restore the shape of the quadrangle. The transformation 
matrices from the marker coordinates to the camera coordinates ( ) represented in  cmT
Eq. (12) are estimated using the method described above: 

00 10 20

01 11 21

02 12 22

1 0 0 0 1 1

c x

c y

c z

m

m

m

X R R R T X
Y R R R T Y
Z R R R T Z

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢=
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

m

 

 

3 3 3 1

0 0 0 1
1 1

m m

m
cm

m m

X X
R T Y Y

T
Z Z

× ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎥   (12) 

 

28/70 



 

Marker coordinates
( ), ,m m mX Y Z

Camera screen 
coordinates

Camera
coordinates

( ),c cx y

( ), ,c c cX Y Z

 
Figure 18 The relationship between marker and camera coordinates 

All variables in the transformation matrix are determined by substituting screen coordinates 
and marker coordinates of the detected marker's four vertices for ( , )c cx y and ( , )m mX Y  
respectively. After that, the normalization process can be done by using this transformation 
matrix. 

  (13) 
00 10 20

01 11 21

02 12 1 1

c m

c

hx N N N X
hy N N N Y
h N N

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢=⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

m

⎤
⎥
⎥
⎥⎦

When two parallel sides of a square marker are projected on the image, the equations of those 
line segments in the camera screen coordinates are the following: 
  (14) 1 1 1 2 2 20,        0a x b y c a x b y c+ + = + + =
 
For each of the markers, the value of these parameters has been already obtained in the line-
fitting process. Given the perspective projection matrix P that is obtained by the camera 
calibration in eq.(11), equations of the planes that include these two sides respectively can be 
represented as eq.(13) in the camera coordinates frame by substituting cx  and cy  in eq.(13) 
for x and y in eq.(14). 

  (15) 

00 01 02

11 12

0
0 0

,      
0 0 1 0
0 0 0 1 1 1

c c

c

c

P P P hx X
P P hy Y

P
h Z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

cP

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
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( ) ( )
( ) ( )

1 00 1 01 1 11 1 02 1 12 1

2 00 2 01 2 11 2 02 2 12 2

0

0
c c

c c

a P X a P b P Y a P b P c Z

a P X a P b P Y a P b P c Z

+ + + + + =

+ + + + + =
c

c

2

 (16) 

 
Given that the normal vectors of these planes are  and  respectively, the direction vector 
of two parallel sides of the square is given by the outer product 

1n 2n

1n n× . Given that two unit 
direction vectors that are obtained from two sets of two parallel sides of the square are  and 

, these vectors should be perpendicular. However, image-processing errors mean that the 
vectors will not be exactly perpendicular. To compensate for this two perpendicular unit 
direction vectors are defined by  and  in the plane that includes  and  as shown in 

1u

2u

1v 2v 1u 2u
Figure 19.  

1v

2v

1u

2u

 
Figure 19 

Given that the unit direction vector that is perpendicular to both  and  is , the rotation 
component  in the transformation matrix  from marker coordinates to camera 

coordinates specified in eq.

1v 2v 3v

3 3V × cmT

(12) is . 0 1 2
t t tV V V⎡ ⎤⎣ ⎦

  Since the rotation component  in the transformation matrix was given, by using eq.3 3V × (12)
and eq.(15), the coordinates of the four vertices of the marker in the marker coordinate frame 
and those coordinates in the camera screen coordinate frame, eight equations including the 
translation component x yWzW W  are generated and the values of these translation components 

x y zW W W can be obtained from these equations. 
     The transformation matrix found from the method mentioned above may include error. 
However this can be reduced through the following process: 
The vertex coordinates of the markers in the marker coordinate frame can be transformed to 
coordinates in the camera screen coordinate frame by using the transformation matrix 
obtained. Then the transformation matrix is optimized as a sum of the difference between 
these transformed coordinates and the coordinates measured from the image goes to a 
minimum. Though there are six independent variables in the transformation matrix, only the 
rotation components are optimized and then the translation components are reestimated by 
using the method mentioned above. By iteration of this process a number of times the 
transformation matrix is more accurately found. It would be possible to deal with all of six 

30/70 



 

independent variables in the optimization process. However, computational cost has to be 
considered. 

7.7.2. Homographies 
For pattern-based augmented reality, a planar pattern defines a world coordinate system into 
which virtual objects will be placed. It would be convenient if the planar pattern itself could 
be used to determine a projection matrix that could be directly applied to the coordinates of a 
virtual object for augmentation purposes. This would eliminate the need for a separate 
complicated calibration procedure, thus simplifying the system for the end-user. One way to 
do this is to use a projective transformation technique called homography. Homography 
comes from the observation that under perspective projection, the transformation between a 
world plane and its corresponding image plane is projective linear. A homography is a one-to-
one mapping between two images, which is defined by only eight parameters. This model 
exactly describes the image motion between two frames of a video sequence when 

1. Camera viewing is pure rotation 
2. Camera is viewing a planar scene 

Usually, feature displacement between two images depends on both the camera movement 
and the camera’s distance from the feature. A simple parameterized mapping is therefore not 
possible. However, in many circumstances, the homography represents a good approximation 
of the true image flow, particularly when the image structure is near planar, or the camera 
movement is small and the scene structure is mostly distant. 

 
Figure 20 Homography 

  

Consider a set of points in the first image of a sequence with homogeneous coordinates 
( , ,i i i )x y z , which are known to map to a set of points in the second image ( ), ,i i ix y z′ ′ ′ . The 
relationship between the two images is a homography if the following equation holds: 

31/70 



 

00 10 20

01 11 21

02 12 22

i i

i i

i i

i

i

i

x h h h x x
y h h h y H y
z h h h z z

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
′⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

In other words, the homography, H, maps coordinate x to coordinate x′. Note that these are 
homogenous coordinates and that each point on the screen is treated as a ray through the 
camera center. We find the actual image position by dividing the first and second components 
by the third. The homography is therefore a simple linear transformation of the rays passing 
through the camera center. Roughly speaking, the homography can encompass rotations, 
scaling, and shearing of the ray bundle. We can rewrite the equation as 

00 01 02

20 21 22

10 11 12

20 21 22

h x h y hx
h x h y h
h x h y hy
h x h y h

+ +′ =
+ +

+ +′ =
+ +

 

where  defines the [ , -th element of H. This can be further rewritten as two linear 
equations 

ijh ]i j

( )
( )

20 21 22 00 01 02

20 21 22 10 11 12

x h x h y h h x h y h

y h x h y h h x h y h

′ + + = + +

′ + + = + +
 

In matrix form we have 
1 0 0 0

0
0 0 0 1
x y x x x y x

x y y x y y y
′ ′ ′− − −⎛ ⎞

=⎜ ⎟′ ′ ′− − −⎝ ⎠
h  

where h [ ]00 01 02 10 11 12 20 21 22
Th h h h h h h h h=  is a 9-element vector containing the 

elements of H. Therefore with four such non-colinear point correspondences, we can solve for 
all the elements of H as follows 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1 1 1

1 1 0 0 0 0 0

2 2 2 2 2 2 2

2 2 0 0 0 0 0

3 3 3 3 3 3 3

3 3 0 0 0 0 0

1 0 0 0
0 0 0 1

0 0 0 0
0 0 0 1

0 0 0 0
0 0 0 1

0 0 0 0
0 0 0 1

x y x x x y x
x y y x y y y

x y x x x y x
x y y x y y y

x y x x x y x
x y y x y y y

x y x x x y x
x y y x y y y

′ ′ ′− − −⎛
⎜ ′ ′ ′− − −⎜
⎜ ′ ′ ′− − −
⎜ ′ ′ ′− − −⎜
⎜ ′ ′ ′− − −

′ ′ ′− − −
′ ′ ′− − −
′ ′ ′− − −⎝

0A

⎞
⎟
⎟
⎟
⎟
⎟ = =⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟

⎠

h h  

The solution h is thus the null-space of the 8×9 matrix A, which can be solved using known 
methods such as singular value decomposition Unfortunately, H alone cannot be directly used 
to augment virtual 3D objects into the image, since the Z component from pattern space is 
assumed to always be zero. However, recent works [58][86] show that if we know the camera 
calibration matrix and have prior knowledge of the relative position of some points in the 
plane we can calculate the camera’s full 3D transformation relative to the planar surface in the 
same way as for fiducial tracking. 
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7.7.3. Optical Flow 
Consider a point P that is depicted by a moving pinhole camera. Between two consecutive 
frames, the camera has rotated ( , , )x y zΩ Ω Ω  around, and translated ( ), ,x y zT T T  along its three 
coordinate axes. This is equivalent to keeping the camera still and moving the point, which is 

xT
zT

xΩ

zΩ
d

1p

2p

X

Z

yT

yΩ

1P
2P

Y
 

Figure 21 The point p moves from p1 to p2 in the camera coordinate system due to rotational and 
translational motion of the camera. 

shown in Figure 21, where the point moves from ( )1 1 1, ,P X Y Z= 1 2 to . The 
images in are denoted 

( )2 2 2, ,P X Y Z=

1( , , )I x y t  and 2( , , )I x y t  (or 1I  and 2I  for short), and the coordinates of 
the points in the image plane are represented by ( )1 1, 1p x y=  and (1 2 2, )p x y= . The 

displacement vector ( ),α β  (denoted d in Figure 21) of the point ( )11,x y  can be defined as  

2

2 1

1x x
y y

α
β
= −
= −

  (17) 

The displacement vector ( , )α β  thus tells where to find a corresponding point from image 1I  

in image 2I . If the displacement is defined for each pixel position ( ),x y  in image 1I , the 

result is a displacement field, ( ) ( )( , , , )x y x yα β , where both α  and β  depend on x and y. A 

pixel ( , )1 1x y  in image 1I  can then be found in ( ) ( )( )1,1 1 1 11, ,x x yα+ y x yβ+  in image 2I  
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Closely related to the displacement field is the velocity field ( ),u v , which is defined as the 
velocity of a pixel in the image plane. Thus 

dxu
dt
dyv
dt

=

=
  (18) 

where (  is the displacement vector generated by camera motion during dt . In he same 

manner as the displacement field, u and v are both functions of x and y; 
)  t,dx dy

( ),u u x y= , 

. If the time  between the two frames ( ),x yv v= 2t t tΔ = − 1 1I  and 2I  is known, the velocities 
u and v can be approximated using 

2 1

2 1

x xu
t

y yv
t t

t
α

β

−
≈ =

Δ Δ
−

≈ =
Δ Δ

  (19) 

Choosing the time scale such that  yields 1tΔ = ( ) ( ), ,u v α β≈ . This blurs the border between 
the velocity field and the displacement field. 
   If the object is fixed and only the camera moves, (or equivalently, if the camera is fixed but 
the object moves rigidly), the motion can be described by a rigid body transformation, 
 2 1P RP T= +  (20) 

where R is a 3  rotation matrix and 3× ( ), ,x y zT T T T=  is a translation vector. Furthermore, the 
projection from a three dimensional point to the image can be calculated using 

Xx f
Z
Yy f
Z

=

=
  (21) 

where f is the distance from the image plane to the center of projection as shown in Figure 21. 
By assuming that 1f = , that the rotation between frames is small, and that 1zT Z = , it is 
shown [4] that the displacement field can be calculated using 
( ) ( ) ( )
( ) ( ) ( )

2

2

, 1

, 1

x y z x z

y z y zx

u x y xy x y T T x Z

v x y y xy x T T y Z

≈ −Ω +Ω + −Ω + −

≈ −Ω + +Ω +Ω + −
 (22) 

where xΩ ,  and  are differential Euler angles around the x-, y- and z-axes respectively, 
as shown in 

yΩ zΩ
Figure 21.  
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Equation (22) is also valid for the velocity field. Setting ( ), , , , ,x y z x y zU TΔ = Ω Ω Ω T T , 
equation (22) can be written in matrix notation 

u

u

u c
U

v v
⎡ ⎤⎡ ⎤

= Δ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

  (23) 

or 
u

C U
v
⎡ ⎤

= Δ⎢ ⎥
⎣ ⎦

  (24) 

where 

 
( )

( )

2

2

1 0 1

1 1 0

u

v

y xy x Z y Zc
C

c xy x y Z x

⎡ ⎤− + −⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥− + − −⎣ ⎦ ⎣ ⎦Z
 (25) 

 

7.7.4. The optical flow constraint 
To estimate the optical flow, a model is needed that explains how the optical flow relates to 
the image intensity. A common approach is to assume that the projection of an object point 
onto a pixel preserves its brightness from one frame to another. This is not generally true, 
since many materials reflect different amounts of light at different angles, but it is a 
reasonable approximation. The assumption can be formulated 
( ) ( ), , 1 , ,I x u y v t I x y t+ + + =   (26) 

Taylor expanding the left side of equation (26) around (x,y,t) and removing higher order terms 
results in 
( ) ( ), , , ,

0
x y t

x y t

I x y t I u I v I I x y t

I u I v I

+ + + =

+ + =
  (27) 

The above equation is called the optical flow constraint equation, and is valid for small 
movements between frames. The notation can be further simplified to 

x y

u
tI I

v
⎡ ⎤

⎡ ⎤ = −⎢ ⎥⎣ ⎦
⎣ ⎦

I   (28) 

t

u
I I

v
⎡ ⎤

∇ = −⎢ ⎥
⎣ ⎦

  (29) 

 
 
 

7.7.5. Solutions using fiducial tracking 
Tracking artificial patterns with well-known properties is the most common way to do video 
based tracking. Once recognized the coordinates of the pattern relative to the camera can be 
calculated. Knowing the 2D location of 4 coplanar points gives one unique solution of the 
coordinate system of the marker. To identify a marker a symbol of some kind is often used. 
The symbol is matched with the reference using mean square error or standard deviation. The 
markers can vary in size to improve tracking range. Most vision based tracking systems use 
single size fiducials. This provides a small detection range due to the low resolution of current 
CCD cameras. Youngkwan Cho et al [85] have developed a fiducial system that can be 
detected at various ranges seamlessly. The idea is to use multi color multi size concentric 
rings, where parts of the rings can be detected as fiducials themselves. They have also 
developed a fiducial detection method that is less sensitive to varying lighting conditions 
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using light-invariant relationships between homogenous regions instead of thresholds for 
segmenting regions.  
 

 
 

 

Figure 22 Multi colored ring fiducial 
Courtesy of  University of California 

Traditionally fiducial regions are measured with a distance metric and a threshold. Defining a 
threshold that works for various lightning conditions is difficult because color values change 
depending on lighting conditions. Youngkwan et al developed a similarity measure that uses a 
probability function.  
 
Other papers [49] argue that the best fiducial is the square shape for easy camera position 
calculation and black and white colors for high contrast.  
 
Another approach used by the Townwear system [56] is to manually record natural landmarks 
and track them as if they were fiducials. The landmarks selected are not of as high quality as 
artificial ones, so in the Townwear system the user has to stand on a specific point and 
registration is limited to orientation only.  

7.7.6. Natural features 
The holy grail of mobile augmented reality is to be able to track natural features in a robust 
way without the need for fiducials. The usage of fiducials is quite a severe limitation to what 
kind of applications that can be implemented. If the real time constraint is relaxed some of the 
following techniques could be used today within certain applications and environments but 
for AR to work anywhere in realtime more research and faster hardware is still needed. Then 
again an introduction of other sensors of higher performance could also help solve the 
problem. 

7.7.6.1. Move matching 
Move matching algorithms simultaneously estimate camera motion and 3D structure of the 
imaged scene by tracking key points through the sequence. Methods for computing motion 
fields often rely on spatial and temporal gradients of the image intensity. The estimation of a 
pixel-density motion field is an ill-posed problem, so additional constraints are required. For 
example, a quadratic smoothness constraint or a higher order spatial-temporal derivative 
constraint make the problem solvable. Other approaches for motion estimation include 
feature-based methods that detect and track recognizable features throughout the image 
sequence. Correlation-based approaches compare small patches of an image with nearby 
patches in neighboring frames. Frequency based methods resolve image velocities in a 
spatiotemporal transformation domain. Today, those approaches don’t run in real time and are 
best suited for special effects and postproduction. However, these algorithms can potentially 
apply to AR if they can run in real time and operate casually (without using knowledge of 
what occurs in the future). Real-time applications contain abrupt and unpredictable motion 
that makes sequential approaches uncertain and fragile. There is also a problem with drift in 
these kinds of systems that needs to be addressed. 
 

36/70 



 

Neumann et al [45] obtained a robust estimation by integrating optical flow and region-
tracking methods into a closed loop architecture. They later extended the system [34] to use 
artificial landmarks (fiducials) for system initialization and camera calibration and line 
tracking for auto-calibration.  
 

7.7.6.2. Model based 
The model-based approach requires a 3D model of the environment and the system tries to 
identify features in the image to match against the model. In each frame pose estimation 
techniques are used to set up a correspondence between the 3D object coordinate system and 
the image. The capability to treat each image individually makes this method appropriate for 
real time AR. Due to the 3D model of the environment, there is no drift in the system. 
 
Behringer et al. have developed a hybrid system [10] that uses natural visual features of 
buildings for calibration by using CAD drawings. They use gradient scan for extraction of 
edges and a corner detection algorithm developed by Kanade-Lucas-Tomasi (KLT) [61] to 
detect features that can be matched with the internal 3D model of the environment. The 
system needs to be calibrated by specifying an initial position and orientation. Predictions of 
new features are based on the perspective projection of the internal CAD model. By using a 
1.4 GHz PC the system showed real-time registration (30 fps). The system is based on a 
camera motion estimation method called “visual servoing” which was first intended for 
guiding robots. 
 
Ribo et al [54] has a similar solution where they track corners using an algorithm that extends 
an edge detection method by Steinwendner et al [66]. The system saves changes in the 
environment for later runs making it a learning system. To overcome the fundamental 
problem of lag in the video based tracking system they use a custom built inertial tracker 
consisting of three accelerometers and three optical gyroscopes. The system showed near real-
time performance. 
 

7.7.6.3. Model-flow-Hybrid 
Ferrari et al developed a tracker [18] that uses affinely invariant regions meaning that the 
regions automatically deform their shape with changing viewpoint to keep them covering the 
identical physical parts of the scene. The image is matched with a pre-processed model view 
of the scene. This is a somewhat simpler problem than that of Ribo et al since they do not 
extract actual 3D coordinates of the camera or the scene and their system was able to run in 
real time on an ordinary workstation. 
Simon et al [62] show an example of a tracking system that lies between model based and 
move matching techniques. It does not rely on a known 3D model but uses 2D metric 
information in the image which is used to extract planar features from the 2D image to track 
the user’s change in orientation and position. This is a smart simplification of the general 
camera-tracking problem where a planar surface is visible somewhere in the scene. This could 
be considered a special case of the Neumann optical flow system. To improve accuracy they 
track multiple planes in the scene simultaneously. The system has a drift of about 5% of the 
traveled distance of the camera. The algorithm chosen makes the system run at approx 16 fps 
on an ordinary PC. 
 
A similar approach by Prince et al [52] is their Augmented reality camera tracking with 
homographies. They use projective transformation or homography of two images of a planar 
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scene to determine camera positions. A homography is a one-to-one mapping between two 
images that is defined by eight parameters. The model describes image motion when the 
camera is viewing a planar scene or when the motion is rotational. A characteristic property of 
homography is that it always maps a straight line to a straight line, although parallelism is not 
necessarily preserved. The system extracts image points from the scene using a corner 
detector. To filter out erroneous feature points between two images a statistical method 
known as random sample consensus (ransac [19]) is used which basically iterates over the 
different solutions until a good enough match is acquired. By knowing the camera calibration 
matrix and knowing the relative position of a planar surface the camera’s full 3D 
transformation relative to the planar surface can be calculated in the same way as for a 
fiducial tracking system. 

Conclusion 
To summarize, all tracking systems have their strengths and weaknesses that make them 
appropriate for different applications. Here is a summary table: 
 
Type Advantage Limitation 
Ultrasonic TOF small, light Sensitive to temperature, pressure, 

humidity, occlusion and ultrasonic 
noise. Low update rate. 

Electromagnetic TOF (GPS) large range bad precision 
Optical gyroscope small, light drift, only orientation 
Videometric pattern 
recognition 

good update rate, range and 
available in video see through 
AR 

sensitive to lighting conditions and 
occlusion 

Beam scanning  small range 
Mechanical gyroscope small, light drift, only orientation 
Accelerometer small, light Drift 
Mechanical linkage good accuracy, update rate  

and no lag, haptic feedback 
limited range 

Phase difference Less sensitive to noise than  
TOF systems, high data rate 

Drift. Sensitive to occlusion. Possible 
ambiguity in measured values. 

Magnetic field sensing inexpensive, lightweight, 
compact 

limited range, sensitive to metallic 
objects 

Gravitational field sensing small light reaction time limited by fluid used 
 
 
 We observe here that all tracking systems have weaknesses. In the following section we shall 
see how various implementations have worked around these weaknesses or eliminated them 
by using several tracking systems (hybrid tracking) that exploit strengths and compensate 
weaknesses of individual tracking technologies. 
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8. Hybrid tracking systems 
For prepared indoor environments, several systems demonstrate excellent registration. 
Typically such systems employ hybrid-tracking techniques (such as magnetic and video 
sensors) to exploit strengths and compensate weaknesses of individual tracking technologies. 
As a reference the human balance system can be seen as a hybrid tracking system consisting 
of three different sensors – the eyes, the inner ears and the muscles and joints of the body. The 
eyes have sensory receptors called rods and cones that pretty much work like the light 
receptors in a video camera. Receptors in muscles and joints provide the brain with 
information on stretch and pressure. The inner ear balance system is composed of three 
perpendicular semicircular canals filled with a fluid. Sensors within these canals make them 
the biological equivalent to accelerometers and inclinometers. 
 

8.1. General solutions 
Although many systems can handle the throughput of analyzing and rendering at 30 fps they 
can seldom do it in real time, the time spent in the graphics pipe is too long and a delay is 
introduced. To the user this appears as if the artificial objects are swimming behind. By using 
the knowledge of where the camera was some time ago, the system can try to predict where it 
is now.  
Yokokohji et al [82] built a system to predict head movement by using a video camera and a 
set of six accelerometers. The accelerometers have a much higher update rate than the video 

camera and could be tracked continuously while the graphics subsystem calculated the current 
pose. By feeding the accelerometer data into an Extended Kalman filter an estimation of the 
head movement during the last image calculation could be calculated. Yokokohji further 
observed that the rendering of the artificial image will take some time and therefore 
extrapolates the accelerometer data to estimate where the head will be when the rendering is 
finished. This extrapolation results in a small drift that is compensated at each camera frame 
taken. 

Figure 23 Accelerometer setup 
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  Furthermore they make the observation that most CCD cameras use interlaced scanning. 
This results in an image shift between odd and even lines in a moving camera as shown in 
Figure 25. By matching odd and even lines separately better matching is acquired. 

  
 

 
 
 

 
Figure 24 Landmark image in a static scene Figure 25 Landmark image when the camera 

moved quickly in the horisontal direction 
 
 
 

Most tracking systems collect sensor measurements sequentially and assume (mathematically) 
that they were collected simultaneously. If the user is moving the violation of the assumption 
introduces estimate error. This method is called multiple constraint method and has several 
drawbacks. First it has low update rate due to the need to collect multiple measurements per 
estimate. Second, the system of non-linear equations did not account for the fact that the 
sensor fixture continued to move throughout the collection of the sequence of measurements. 
Instead the method effectively assumes that the measurements were taken simultaneously. 
The violation of this simultaneity assumption could introduce significant error during even 
moderate motion. Finally, the method provided no means to identify or handle unusually 
noisy individual measurements. Thus, a single erroneous measurement could cause an 
estimate to jump away from an otherwise smooth track. 
   In contrast, the Single Constraint at a Time (SCAAT) algorithm produces tracker reports as 
each new measurement is made, rather than waiting to form a complete collection of 
observations. SCAAT is an algorithm that uses the Kalman filter. The key is that the single 
measurements provide some information about the user's state, and thus can be used to 
incrementally improve a previous estimate. By intentionally using each individual 
“insufficient” measurement immediately as it is obtained estimations can be generated more 
frequently, with less latency and with improved accuracy. SCAAT has been successfully used 
in the HiBall system at UNC Chapel Hill [1]. The HiBall is an optical 6DOF tracker 
implemented in hardware with 6 optical sensors and a grid of LEDs in the ceiling. 
   Another system using SCAAT is Constellation [20]. Constellation uses ultrasonic position 
tracking in combination with accelerometers for orientation tracking. The ultrasonic setup 
reduces size and cost as opposed to similar systems that use visual tracking. Both of these 
systems can cover large indoor environments needed by some AR applications. 
 

8.2. Errors in tracking 
Errors in tracking are divided into static and dynamic errors. Static errors are the ones that 
cause registration errors when the user and the environment are still. Dynamic ones are those 
that appear when the user or the environment is moving. 

8.2.1. Static 
The four main sources of static errors are: 
• Optical distortion 
• Errors in the tracking system 
• Mechanical misalignments 
• Incorrect viewing parameters (e.g., field of view, tracker-to-eye position and orientation, 
interpupillary distance) 
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Optical distortion exists more or less in all cameras and lens systems and is a usually 
systematic error. They can be mapped and compensated both optically and digitally. Digital 
image warping techniques are the most common solution. Digital compensation methods used 
to be computationally expensive but with current hardware this can be done in real-time using 
off the shelf components. 
Errors in the tracking are often the most serious type of static registration errors. These 
distortions are not easy to measure and eliminate, because that requires another 3-D ruler that 
is more accurate than the tracker being tested. These errors are often non-systematic and 
difficult to fully characterize. Almost all commercially available tracking systems are not 
accurate enough to satisfy the requirements of AR systems. 
Mechanical misalignments are discrepancies between the model or specification of the 
hardware and the actual physical properties of the real system. For example, the combiners, 
optics, and monitors in an optical see-through HMD may not be at the expected distances or 
orientations with respect to each other. If the frame is not sufficiently rigid, the various 
component parts may change their relative positions as the user moves around, causing errors. 
Mechanical misalignments can cause subtle changes in the position and orientation of the 
projected virtual images that are difficult to compensate. While some alignment errors can be 
calibrated, for many others it may be more effective to build it right initially. 
Incorrect viewing parameters, the last major source of static registration errors, can be 
thought of as a special case of alignment errors where calibration techniques can be applied. 
Viewing parameters specify how to convert the reported head or camera locations into 
viewing matrices used by the scene generator to draw the graphic images. For an HMD-based 
system, these parameters include: 
• Center of projection and viewport dimensions 
• Offset, both in translation and orientation, between the location of the head tracker and the 
eyes of the user 
• Field of view 
Incorrect viewing parameters cause systematic static errors. Take the example of a head 
tracker located above the eyes of the user. If the vertical translation offsets between the 
tracker and the eyes are too small, all the virtual objects will appear lower than they should. 
In some systems, the viewing parameters are estimated by manual adjustments, in a non-
systematic fashion. Such approaches proceed as follows: place a real object in the 
environment and attempt to register a virtual object with that real object. While wearing the 
HMD or positioning the cameras, move to one viewpoint or a few selected viewpoints and 
manually adjust the location of the virtual object and the other viewing parameters until the 
registration looks right. This may achieve satisfactory results if the environment and the 
viewpoint remain static. However, such approaches require a skilled user and generally do not 
achieve robust results for many viewpoints. Achieving good registration from a single 
viewpoint is much easier than registration from a wide variety of viewpoints using a single set 
of parameters. Usually what happens is satisfactory registration at one viewpoint, but when 
the user walks to a significantly different viewpoint, the registration is inaccurate because of 
incorrect viewing parameters or tracker distortions. This means many different sets of 
parameters must be used, which is a less than satisfactory solution. 
   Another approach is to directly measure the parameters, using various measuring tools and 
sensors. For example, a commonly used optometrist's tool can measure the interpupillary 
distance. Rulers might measure the offsets between the tracker and eye positions. Cameras 
could be placed where the eyes of the user would normally be in an optical see-through HMD. 
By recording what the camera sees, through the see-through HMD, of the real environment, 
one might be able to determine several viewing parameters. So far, direct measurement 
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techniques have enjoyed limited success; due to the difficulty of measuring the involved 
component’s exact properties [33]. 
   View-based tasks are another approach to calibration. These ask the user to perform various 
tasks that set up geometric constraints. By performing several tasks, enough information is 
gathered to determine the viewing parameters. For example, by asking a user wearing an 
optical see-through HMD to look straight through a narrow pipe mounted in the real 
environment constrains the eye of the user to be located along a line through the center of the 
pipe. Combining this with other tasks creates enough constraints to measure all the viewing 
parameters. All view-based tasks rely upon the user accurately performing the specified task 
and assume the tracker is accurate. If the tracking and sensing equipment isn’t accurate, then 
multiple measurements must be taken and optimizers used to find the best-fit solution. For 
video-based systems, an extensive body of literature exists in the robotics and 
photogrammetry communities on camera calibration techniques [12]. Such techniques 
compute camera viewing parameters by taking several pictures of an object of fixed and 
sometimes unknown geometry. These pictures must be taken from different locations. 
Matching points in the 2D images with corresponding 3D points on the object sets up 
mathematical constraints. With enough pictures, these constraints determine the viewing 
parameters and the 3D location of the calibration object. Alternately, they can serve to drive 
an optimization routine that will search for the best set of viewing parameters that fits the 
collected data. 
 

8.2.2. Dynamic 
Dynamic errors occur because of system delays, or lags. The end-to-end system delay is 
defined as the time difference between the moment that the tracking system measures the 
position and orientation of the viewpoint to the moment when the generated images 
corresponding to that position and orientation appear in the displays.  

Image capture Pattern recognition Coordinate calculation Image rendering Image display

 

Figure 26 Graphics pipeline of a typical video based AR system 

   These delays exist because each component in an Augmented Reality system requires some 
time to do its job. The delays in the tracking subsystem, the communication delays, the time it 
takes the scene generator to draw the appropriate images in the frame buffers, and the scan out 
time from the frame buffer to the displays all contribute to end-to-end lag. End-to-end delays 
of 100 ms are fairly typical on existing systems. Simpler systems can have less delay, but 
other systems have more. Delays of 250 ms or more can exist on slow, heavily loaded, or 
networked systems. 
End-to-end system delays cause registration errors only when motion occurs. Assume that the 
viewpoint and all objects remain still. Then the lag does not cause registration errors. No 
matter how long the delay is, the images generated are appropriate, since nothing has moved 
since the time the tracker measurement was taken. Compare this to the case with motion. For 
example, assume a user wears a see-through HMD and moves her head. The tracker measures 
the head at an initial time t. The images corresponding to time t will not appear until some 
future time t2, because of the end-to-end system delays. During this delay, the head of the user 
remains in motion, so when the images computed at time t finally appear, the user sees them 
at a different location than the one they were computed for. Thus, the images are incorrect for 
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the time they are actually viewed. To the user, the virtual objects appear to swim around and 
lag behind the real objects. 
System delays seriously hurt the illusion that the real and virtual worlds coexist because they 
cause large registration errors. With a typical end-to-end lag of 100 ms and a moderate head 
rotation rate of 50 degrees per second, the angular dynamic error is 5 degrees. At a 68 cm arm 
length, this results in registration errors of almost 60 mm. System delay is the largest single 
source of registration error in existing AR systems, outweighing all others combined [33]. 
Methods used to reduce dynamic registration fall under four main categories: 
• Reduce system lag 
• Reduce apparent lag 
• Match temporal streams (with video-based systems) 
• Predict future locations 
Reduce system lag: The most direct approach is simply to reduce, or ideally eliminate, the 
system delays. If there are no delays, there are no dynamic errors. Unfortunately, modern 
scene generators are usually built for throughput, not minimal latency. 
Recall that registration errors must be kept to a small fraction of a degree. At the moderate 
head rotation rate of 50 degrees per second, system lag must be 10 ms or less to keep angular 
errors below 0.5 degrees. Just scanning out a frame buffer to a display at 60 Hz requires 
16.67ms. 
Reduce apparent lag: Image deflection is a clever technique for reducing the amount of 
apparent system delay for systems that only use head orientation. It is a way to incorporate 
more recent orientation measurements into the late stages of the rendering pipeline. Therefore, 
it is a feed-forward technique. The scene generator renders an image much larger than needed 
to fill the display. Then just before scanout, the system reads the most recent orientation 
report. The orientation value is used to select the fraction of the frame buffer to send to the 
display, since small orientation changes are equivalent to shifting the frame buffer output 
horizontally and vertically. The size of the rendered image before cropping depends on the 
system lag. 
Match temporal streams: In video-based AR systems, the video camera and digitization 
hardware impose inherent delays on the user's view of the real world. This is potentially a 
blessing when reducing dynamic errors, because it allows the temporal streams of the real and 
virtual images to be matched. Additional delay is added to the video from the real world to 
match the scene generator delays in generating the virtual images. This additional delay to the 
video stream will probably not remain constant, since the scene generator delay will vary with 
the complexity of the rendered scene. Therefore, the system must dynamically synchronize 
the two streams. Note that while this reduces conflicts between the real and virtual, now both 
the real and virtual objects are delayed in time. 
Predict future locations. The last method is to predict the future viewpoint and object 
locations. If the future locations are known, the scene can be rendered with these future 
locations, rather than the measured locations. Then when the scene finally appears, the 
viewpoints and objects have moved to the predicted locations, and the graphic images are 
correct at the time they are viewed. For short system delays (under ~80 ms), prediction has 
been shown to reduce dynamic errors by up to an order of magnitude. Accurate predictions 
require a system built for real-time measurements and computation. Using inertial sensors 
makes predictions more accurate by a factor of 2 to 3. Predictors have been developed for a 
few AR systems, but the majority were implemented and evaluated with VE systems. More 
work needs to be done on ways of comparing the theoretical performance of various 
predictors and in developing prediction models that better match actual head motion. 
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8.3. Calibrated vs. Uncalibrated 
The majority of augmentation systems described in the previous sections relied on manual 
calibration procedures to determine the intrinsic camera parameters, followed by various 3-
point or 4-point pose estimation techniques to determine the extrinsic parameters. 
The problem with manual intrinsic calibration is the lack of support for zoom lenses, since the 
focal length changes. To address this problem, G. Simon et al [63] propose a method to detect 
camera motions and zoom variations in a video sequence (between two consecutive frames). 
Assuming that zoom and camera motion do not occur in the same frame, their algorithm is 
able to perform precise registrations in each separate case. If camera motion is detected, the 
system assumes the focal length is constant and thus can use a 3-point or 4-point pose 
estimation algorithm for the extrinsic parameters. On the other hand, if zoom is detected, the 
system only needs to determine new intrinsic parameters based on the positional change of 
tracked 2D/3D feature correspondences. Of course, this assumes that the initial intrinsic 
parameters are known at startup time. Additionally, since focal length will be progressively 
adjusted during zoom detections, there is the potential for accumulation error. 
Recently, computer vision researchers have been experimenting with semi-automatic 
calibration techniques that can be exploited by augmented reality systems. An algorithm that 
can recover both intrinsic and extrinsic parameters by tracking known quadrangular targets is 
described in [3]. A semi-automatic technique that can recover camera parameters from a 
homography by tracking a known planar pattern is also described in [86]. Similarly, [64] uses 
a homography to estimate the intrinsic and extrinsic parameters when tracking planar 
structures in natural environments. Some researchers have also been experimenting with 
completely uncalibrated registration for augmented reality. Affine object representations for a 
real-time augmentation system are described in [73], and thus do not require an explicit 
Euclidean calibration of the camera. Therefore, virtual objects can be registered by directly 
applying a computed 3×4 orthographic projection matrix. As described earlier, the 
disadvantage of this approach is the lack of realistic perspective distortion on the virtual 
objects when objects are observed close-up. Additionally, the lack of a proper perspective 
space limits the systems ability to accurately handle traditional computer graphics effects such 
as lighting and texture mapping on the virtual objects. Building upon the work in [40],[59] 
presents an algorithm for computing a perspective projection matrix without explicit 
Euclidean camera calibration. The technique is based upon projective reconstruction, which 
involves determining the fundamental matrix [81] between two images in a video sequence in 
order to reconstruct the 3D position of tracked 2D feature points. The drawback with this 
approach is the time-consuming fundamental matrix computation that occurs between every 
pair of consecutive video frames. 
For some applications, intrinsic and extrinsic camera calibration may not be required at all. 
Consider annotating real-world objects with simple 2D text or graphics. In these cases, 
accurate 2D tracking of planar patterns would be sufficient since a homography would 
precisely define a mapping from the 2D pattern space to the video frame, with automatic 
support for zoom lenses. 
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9. Software 
Most software used for AR applications is tailored for the specific task and is never made 
public. There are however a couple of ready to use publicly available software libraries and 
tools and I have chosen to review a couple of them, mainly the ARToolkit, since it is the 
library that was used in the demo implementation of this thesis. As AR increases in popularity 
it is likely that more software will become available. 

9.1. ARToolkit 
9.1.1. What is the ARToolkit? 
ARToolkit is a C language software library that lets programmers easily develop vision based 
Augmented Reality applications. 
 
One of the most difficult parts of developing an Augmented Reality application is precisely 
calculating the user’s viewpoint in real time so that the virtual images are exactly aligned with 
real world objects. ARToolkit uses computer vision techniques to calculate the real camera 
position and orientation relative to marked cards, allowing the programmer to overlay virtual 
objects onto these cards. The fast, precise tracking provided by ARToolkit enables rapid 
development of AR applications. 
 
ARToolkit currently runs on the SGI IRIX, PC Linux and PC Windows 95/98/NT/2000 
platforms. There are separate versions of ARToolkit for each. The functionality of each 
version of the toolkit is the same, but the performance may vary depending on the different 
hardware configurations. 
 
The current version of ARToolkit supports both video and optical see-through augmented 
reality. Optical see-through augmented reality typically requires a see-through head mounted 
display and has more complicated camera calibration and registration requirements. 
 
The ARToolkit was developed by Hirokazu Kato, Mark Billinghurst and Ivan Poupyrev [37]. 
The ARToolkit is distributed under the General Public License and can be downloaded from 
http://www.hitl.washington.edu/people/grof/SharedSpace/Download/. ARToolkit has been 
used in many projects and several modifications have been published (see 9.1.5). 

9.1.2. How does ARToolkit work? 
ARToolkit uses computer vision techniques to calculate the real camera viewpoint relative to 
a real world marker. There are several steps as shown in figure 30. First the live video image 
(figure 29a) is turned into a binary (black or white) image based on a lighting threshold value 
(figure 29b). This image is then searched for square regions. ARToolkit finds all the squares 
in the binary image, many of which are not the tracking markers. For each square, the pattern 
inside the square is captured and matched again some pre-trained pattern templates. If there is 
a match, then ARToolkit has found one of the AR tracking markers. ARToolkit then uses the 
known square size and pattern orientation to calculate the position of the real video camera 
relative to the physical marker. A 3×4 matrix is filled in with the video camera real world 
coordinates relative to the fiducial marker. This matrix is then used to set the position of the 
virtual camera coordinates. Since the virtual and real camera coordinates are the same, the 
computer graphics that are drawn precisely overlay the real marker (figure 29c). The OpenGL 
API is used for setting the virtual camera coordinates and drawing the virtual images. 
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Fig 29a: Input Video           Fig 29b: Thresholded Video    Fig 29c: Virtual Overlay 

 
The diagram below shows the image processing used in ARToolkit in more detail. 

 
Figure 30 ARToolkit pipeline 
Courtesy of University of Washington  

 

9.1.3. Main modules 
This section provides a partial listing of the external functions provided by ARToolkit. The 
ARToolkit library consists of four packages: 

1. AR32.lib: the bulk of the ARToolkit functions, including routines for marker 
tracking, calibration and parameter collection. 

2. ARvideoWin32.lib: a collection of video routines for capturing the video input 
frames. This is a wrapper around the Microsoft Vision SDK video capture routines. 

3. ARgsub32.lib: a collection of graphic routines based on the OpenGL and GLUT 
libraries. 

4. Strings32.lib: a collection of string processing routines. 
 

 
Fig 30 shows the hierarchical structure of libraries. 
Courtesy of University of Washington 
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In writing an ARToolkit application the following steps must be taken: 
1. Initialize the video path and read in the marker pattern files and camera parameters. 
2. Grab a video input frame. 
3. Detect the markers and recognized patterns in the video input frame. 
4. Calculate the camera transformation relative to the detected patterns. 
5. Draw the virtual objects on the detected patterns. 
6. Close the video path down. 
Note that step 1 is only done during startup and step 6 only during shutdown 
 
1. Initialize the video path and read in the marker pattern files and camera parameters. 
init() 
The init routine is called from the main routine and is used to open the video path and read 
in the initial ARToolkit application parameters. The key parameters for an ARToolkit 
application are: 

• The patterns that will be used for the pattern template matching and the virtual objects 
these patterns correspond to 

• The camera characteristics of the video camera being used, i.e. calibration parameters 
(see section 9.1.4) 

 
These are both read in from file names that can either be specified on the command line or by 
using default hard-coded file names. In the init routine the default camera parameter file 
name is Data/camera_para.dat, while the default object file name is Data/object_data. 
The file containing the pattern names and virtual objects is read in with the function call: 
 
/* load in the object data - trained markers and associated bitmap files */ 
if( (object=read_objectdata(odataname,&objectnum)) == NULL ) exit(0); 
 

In the function read_objectdata, all of the trained patterns corresponding to the pattern 
names are read into AR library. After these have been read in the video path is opened and the 
video image size found: 
 
/* open the video path */ 
if( arVideoOpen( vconf ) < 0 ) exit(0); 
/* find the size of the window */ 
if( arVideoInqSize(&xsize, &ysize) < 0 ) exit(0); 
printf("Image size (x,y) = (%d,%d)\n", xsize, ysize); 
 
The variable vconf contains the initial video configuration and is defined at the top of 
simpleTest.c. Then the camera parameters are read in: 
 
/* set the initial camera parameters */ 
if( arParamLoad(cparaname, 1, &wparam) < 0 ) { 
  printf("Camera parameter load error !!\n"); 
  exit(0); 
} 
Next, the parameters are transformed for the current image size, because camera parameters 
change depending on the image size, even if the same camera is used. 
 
arParamChangeSize( &wparam, xsize, ysize, &cparam ); 
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The camera parameters are set to those read in, the camera parameters printed to the screen 
and a graphics window opened: 
 
if( xsize < 400 ) arResampleFlag = 0; 
else arResampleFlag = 1; 
fullWindow = 0; 
arDistortedFittingFlag = 0; 
arDebug = 0; 
arInitCparam( &cparam ); 
printf("*** Camera Parameter ***\n"); 
arParamDisp( &cparam ); 
 
/* open the graphics window */ 
argInit( &cparam, 1.0, fullWindow, 2, 1, 0 ); 
 
If arDistortedFittingFlag = 1, the video shown in the video output window is warped to 
correct for the distortions present in most camera lenses. Section 9.1.4 describes the 
ARToolkit camera calibration utilities that can be used to collect camera lens parameters.  
 
If arDebug = 1, thresholded images are generated in the image processing step and shown 
onscreen to the user. This additional step slows down the image processing. Finally, the local 
variable fullWindow is used for the setup of the graphics window. If fullWindow is 1, the 
graphics are not drawn in a window, but full screen. 
 
2. Grab a video input frame. 
First a video frame is captured using the function arVideoGetImage: 
/* grab a video frame */ 
if( (dataPtr = (ARUint8 *)arVideoGetImage()) == NULL ) { 
  arUtilSleep(2); 
  return; 
} 
The video image is then displayed on screen. This can either be an unwarped image, or an 
image warped to correct for camera distortions. Warping the image produces a more normal 
image, but can result in a significant reduction in video frame rate. 
 
/* display the video image */ 
if( dispmode ) { 
  /* unwarped image */ 
  arDistortedFittingFlag = 0; 
  argDispImage2( dataPtr ); 
} 
else { 
  /* warped video image */ 
  arDistortedFittingFlag = 1; 
  argDispImage( dataPtr, 0, 0 ); 
} 
 
3. Detect the markers and recognized patterns in the video input frame. 
Extracting the rectangular markers is basically done in three steps: 

1. Thresholding, labeling, feature extraction (area, position) 
2. Contour extraction 
3. Four straight lines fitting 

 
If there is little fitting error of the four straight lines a rectangle is detected. The method is 
simple and therefore works fast. 
 
The function arDetectMarker is used to search the video image for squares that have the 
correct marker patterns: 
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/* detect the markers in the video frame */ 
if( arDetectMarker(dataPtr, thresh, &marker_info, &marker_num) < 0 ) { 
cleanup(); 
exit(0); 
} 
 

The number of markers found is contained in the variable marker_num, while marker_info 
is a pointer to a list of marker structures containing the coordinate information and 
recognition confidence values and object id numbers for each of the markers.  
Next, all the confidence values of the detected markers are compared to associate the correct 
marker id number with the highest confidence value: 
 
for( j = 0; j < marker_num; j++ ) { 
  if( object[i].id == marker_info[j].id ) { 
   if( k == -1 ) k = j; 
    else { 
     if( marker_info[k].cf < marker_info[j].cf ) k = j; 
    } 
  } 
} 
 
4. Calculate the camera transformation relative to the detected patterns. 
 

Fig 31 Coordinate systems of ARToolkit 
Courtesy of University of Washington 
 
These are the coordinate systems in ARToolkit. Usually the origin of the marker coordinates 
is at the center of the marker, but it can be changed to be anywhere on the marker surface. The 
relationship between marker and camera is what we want to get. There are two screen 
coordinate systems: the green one (left) is ideal screen coordinates, and red one (right) is 
observed screen coordinates. If there are no distortions, these two coordinate systems are 
identical, but usually the camera has distortions. The ARToolkit connects these two 
coordinate systems by the image distortion function that is calculated during the camera 
calibration (see section 9.1.4). 
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The marker and camera coordinates are related through a rotation and translation matrix TCM. 
The camera and ideal screen coordinates are related through a perspective projection  
matrix C.  

  
 
 
 
 

The perspective projections matrix compensates for radial distortion and image center 
displacement using the following equations: 

 
These equations don’t take scale into account, which is needed for the distortion compensated 
image to fit the screen. 

 
This is done by adding the scale parameter s to the equations: 
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The large number of dist_factor[2] is to make the number more human readable since the 
distortion factor f usually is a very small number. 
 
The estimation of the parameters of TCM is basically an optimization process. By supposing a 
certain parameter for the transformation from marker to camera, ideal screen coordinates of 
the marker can be calculated. By image processing the actual observed screen coordinates of 
the marker can be detected, which then can be transferred to ideal screen coordinates. If the 
supposed transformation is correct these two should be identical. ARToolkit has a cost 
function to measure the difference between the two: 
 

 
  
ARToolkit tries to change the transformation matrix to minimize the cost. ARToolkit supports 
two ways of setting up the initial condition for the optimization process: 
1 Geometrical calculation based on coordinates of 4 vertices  

• Independent in each image frame: Good feature. 
• Unstable result (Jitter occurs.): Bad feature. 

2 Use of information from previous image frame 
• Needs previous frame information.  
• Cannot use for the first frame. 
• Stable results. (This does not necessarily mean accurate results) 

 
The transformation between the marker cards and camera can then be found by using the 
arGetTransMat function: 
 
/* get the transformation between the marker and the real camera */ 
if( arGetTransMat(&marker_info[k], 
    object_center,  
    object[i].marker_width,  
    object[i].trans) < 0 ) { 
  object[i].visible = 0; 
}  
else { 
  object[i].visible = 1; 
} 
 

The real camera position and orientation relative to the marker object i are contained in the 
3×4 matrix, object[i].trans. 
 
5. Draw the virtual objects on the detected patterns. 
Finally, the virtual objects can be drawn on the card using the draw function: 
 
/* draw the virtual objects attached to the tracking patterns */ 
glClearDepth( 1.0 ); 
glClear(GL_DEPTH_BUFFER_BIT); 
draw( object, objectnum ); 

51/70 



 

 

The draw function and associated OpenGL graphics routines are contained in the file 
draw_object.c. In the draw function the 3×4 matrix contained in object[k].trans is 
converted to an array of 16 values, glpara, using the function call argConvGlpara. The 
glpara array is then passed to the draw_object function. These sixteen values are the 
position and orientation values of the real camera, so using them to set the position of the 
virtual camera causes any graphical objects to be drawn to appear exactly aligned with the 
corresponding physical marker. In the draw_object function the virtual camera position is 
set using the OpenGL function glLoadMatrixd(gl_para). Different graphical objects are 
then drawn depending on which marker card is in view, such as a cube for the pattern named 
“cube” and a cone for the pattern named “cone”. The relationship between the patterns and 
the virtual objects shown on the patterns is determined in the object_data file in the 
bin/Data directory. 
 
6. Close the video path down. 
The cleanup function is called to stop the video processing and close down the video path to 
free it up for other applications. This is accomplished by using the arVideoCapStop(), 
arVideoClose() and argCleanup() routines. 
 
 

9.1.4. Calibration 
In a video-see through AR interface, if the camera parameters are known then the video image 
can be warped to remove camera distortions. The important camera properties that must be 
measured include the center point of the camera image, the lens distortion and the camera 
focal length. The distortion parameters are measured once and stored in a file. 
   calib_dist uses the calib_dist.pdf image of a pattern of 6×4 dots spaced equally apart. 
When viewed through the camera lens, lens distortion causes a pincushion effect that 
produces uneven spacing between the dots in the camera image (see figure 31). The 
calib_dist program measures the spacing between the dots and uses this to calculate the 
lens distortion and image center point. 
 

 

Figure 32 
Courtesy of University of Washington 

Figure 33 
Courtesy of University of Washington 

Figure 34 
Courtesy of University of Washington 

   calib_cparam is used to find the camera focal length and other parameters. It uses the 
pattern contained in calib_cparam.pdf, a grid pattern of 7 horizontal lines and 9 vertical 
lines (see figure 33). The procedure is to place the camera perpendicular to the grid and 
manually fit lines until the grid is complete. The process is repeated at several distances from 
the grid to get a good measurement of camera focal length (see figure 33). 
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9.1.5. ARToolkit based applications 
ARToolkit provides the basic tracking capabilities that can be used to develop a wide range of 
AR applications. The Human Interface Technology Laboratory (HIT Lab) has been using 
ARToolkit to explore how augmented reality can be used to enhance face-to-face and remote 
conferencing. Figures 35 and 36 show two views of using AR for face-to-face collaboration. 
In this case several users gather around a table and each user is wearing a head mounted 
display with camera attached. On the table is a set of marker patterns with virtual objects 
attached. When the users look at the patterns they see these three dimensional virtual objects 
at the same time as their real environment and the other collaborations around the table. This 
seamless blend of real and virtual objects makes it very to easy for them to collaborate with 
their partners. 

 
Figure 35     Figure 36 
Courtesy of University of Washington   Courtesy of University of Washington 
 
The ARToolkit has also been used to support remote augmented reality conferencing. In this 
case a live virtual video image of a remote collaborator is shown on one of the marker cards. 
This enables video conferencing to move from the desktop computer out into the real world. 
Figure 37 shows the view of someone using the remote AR conferencing application. 
 

 
Figure 37 
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ARToolkit has been used as an education tool in museums [27] and in schools [60] helping 
visitors and students experiment with real objects and augmented information.  

Figure 38 Museum application showing an augmented 
view of PC internals on a separate screen. 
Courtesy University of Paderborn 

 
     A project has used the ARToolkit with good results in car design [21] and assembly [22] to 
give a more intuitive interface and to improve productivity. 
     Several projects have investigated the issue of user input using ARToolkit. Studierstube 
[75] and AMIRE [6] implement standard interfaces with icons, menus and pointers, whereas 
others explore gesture-based interaction [14]. 
   The MagicBook project [11] is an early attempt to explore how we can use a physical object 
to smoothly transport users between reality and virtuality. By using a normal book as the main 
interface object, people can turn the pages of the book, look at the pictures, and read the text 
without any additional technology. However, if a person looks at the pages through an 
augmented reality display, they see 3D virtual models appearing out of the pages and when 
they see a scene they particularly like, they can fly into the page and experience the story as 
an immersive virtual environment. In the VR view, they’re free to move about the scene at 
will, so using the MagicBook people can experience the full reality–virtuality continuum. One 
or more people may immerse themselves in the virtual world while others view the content as 
an augmented reality scene. In this case, those viewing the augmented reality scene will see a 
miniature avatar of the immersive user in the virtual world, while in the immersive world, 
people viewing the augmented reality scene appear as large, virtual heads looking down from 
the sky. 
   ARCampus [30] is an augmented reality application, designed as a guide through a 
university campus. It offers a 3D map of the campus area, shows routes to various buildings 
and offices, by using large sets of fiducials and recognizes name tags of university staff to 
offer additional information like email addresses, office hours and office location. 
   The Handheld AR [72] is a project that tries to make the ARToolkit run on a pocket PC 
platform. Although today’s PDAs have powerful CPUs they lack both FPU and 3D 
acceleration. The project uses SoftGL, a subset of OpenGL, to produce 3D. After compiler 
optimizations the ARToolkit achieved 10 image analyses per second. By sending the images 
to a PC over the network a speed of 25 analyses per second was achieved. 
 

9.1.6. Issues in AR toolkit 
There are some limitations to purely computer vision based AR systems. Naturally the virtual 
objects will only appear when the tracking marks are in view. This may limit the size or 
movement of the virtual objects. It also means that if users cover up part of the pattern with 
their hands or other objects the virtual object will disappear. 
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Malbezin et al [42] also made some research on the range issues of ARToolkit. The larger the 
physical pattern the further away the pattern can be detected and so the greater the volume the 
user can be tracked in. Table 1 shows some typical maximum ranges for square markers of 
different sizes. These results were gathered by making patterns of a range of different sizes 
(length on a side), placing them perpendicular to the camera and moving the camera back 
until the virtual objects on the squares disappeared. 
 
Pattern Size (cm) Usable Range (cm) 
7     40 
9     64 
11     86 
19     127 
Table 1: Tracking range for different sized patterns 
 
This range is also affected somewhat by pattern complexity. The simpler the pattern is the 
better. Patterns with large black and white regions (i.e. low frequency patterns) are the most 
effective. Replacing the 11 cm square pattern used above with a pattern of the same size but 
much more complex, reduced the tracking range from 86 to 38 cm. 
Tracking is also affected by the marker orientation relative to the camera. As the markers 
become more tilted and horizontal, less and less of the center patterns are visible and so the 
recognition becomes more unreliable. 
   Finally, the tracking results are also affected by lighting conditions. Overhead lights may 
create reflections and glare spots on a paper marker and make it more difficult to find the 
marker square. To reduce the glare patterns can be made from more non-reflective material, 
for example, by gluing black velvet fabric to a white base. The fuzzy velvet paper available in 
craft shops also works very well. 
 
The fiducials used in the ARToolkit have been thoroughly analyzed by Owen et al [49] in 
order to improve ambiguity, range and number of combinations. It is for example common 
that the ARToolkit cannot recognize the difference between the two fiducials shown in figures 
39 and 40. 

  
Figure 39  Figure 40 

Owen proposes a fiducial design based on a square black border containing an image created 
from a discrete cosine transform (DCT) basis function (Figure 41). Because there exists a fast 
transform used to identify DCT based patterns, they allow for fast identification. This is 
utilized in the MPEG video compression standard and allows for 256 unique fiducials.  
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Figure 41 

 
Another problem with the ARToolkit is the need to calibrate the camera manually.  
Abdullah et al [2] propose a self-calibration technique for the camera in a monitor-based AR 
display for the ARToolkit as an alternative to the manual calibration technique where the user 
has to select features of specific calibration patterns. They use a pinhole camera model that is 
described by a matrix K containing scale factors, slant between the axes and principal point 
coordinates.  
 
Lens distortion mainly comprises two components: radial and decentering. Radial distortion is 
caused by imperfect lens shape and decentering is usually caused by improper lens assembly. 
In order to keep the algorithm simpler for the ARToolkit, only radial distortion is included. 
The problem is solved using epipolar algebra by using Dornaika’s method [15] to calculate 
the fundamental matrix F containing the radial correction parameters. When the camera 
moves, images are corrected and the parameters of the fundamental matrix are minimized 
through an error function. The proposed algorithm is not as robust as the existing algorithm in 
the ARToolkit, but could be considered as a first step towards a more automatic calibration 
process without the needs for a particular pattern. Note that calibration was still done offline. 
 
The Tinmith project [74] discovered that the calibration process in the ARToolkit produces 
errors that do not appear until the toolkit is used together with other tracking devices. The 
Tinmith system uses world coordinates as a common base while ARToolkit only uses camera 
coordinates. An interesting property is that the transformation matrix generated by pattern 
recognition takes camera calibration into account and if the calibration data are bad this will 
result in an erroneous camera pose. However the same transformation matrix is used for 
drawing the virtual objects and effectively reversing the errors. No new calibration solution 
was proposed other than manually editing the camera calibration parameters. 
 
Another project [42] shows that tracking accuracy over large distances from 1 to 3 meters 
produces an error in position which increases with the distance from the target and that this 
error in X and in Y varies in opposing phase with the angle of the target. A correction filter is 
proposed to reduce the errors with 75%. 
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Figure 42 Position error when circling  Figure 43 Position error on X and Y axis 
around a fiducial target    

The problem of range is addressed in a more classical way by other projects extending the use 
of ARToolkit to work in larger areas. ARLib [70] uses a large number of fiducials to track the 
shelves and books of a library where fiducials are attached. The shelf geometry and the 
marker positions are stored to achieve one coordinate system for the whole library. Using 
more than 60 markers proved to be a bottleneck in the ARToolkit.  
     Attempts to use the ARToolkit over a larger area is seen in the ARCampus project [30] 
where fiducials are spread out on fixed points on the university at points of interest (entrances, 
bus stations, elevators, etc.). In this application the fiducials do not share the same coordinate 
system. Michael Kalkusch et al present a project [35] where a building is tracked with 
ARToolkit in a single coordinate system. They use a set of 40 markers that are reused in 
rooms and pathways and 25 markers that are unique and act as transition triggers between 
marker zones. They experienced that the varying lighting conditions in the building were a 
problem for setting the threshold of fiducial identification.  
     A similar project [71] divides the ARToolkit into several components to be able to 
dynamically load and unload fiducials when moving around a building. The splitting of 
ARToolkit into modules is taking it from a software library into a framework in the DWARF 
project [9][16]. 
 

9.1.7. Conclusions 
The ARToolkit is a very useful software library that can be used for many applications. Since 
it is open source it can be modified and extended in various ways, for example by adding 
sensors to do tracking other than video. 
   The usability range of the video tracking of ARToolkit is limited and there are currently two 
types of solutions for this problem – either put up many fiducials and integrate their 
coordinate system, or make applications that only need short operational ranges.  
   The camera calibration of the ARToolkit is a lengthy manual process. The accuracy from 
the calibration process is quite low and may be insufficient for some applications. For many 
modern cameras no calibration is necessary, making the calibration less of a problem. 
   The ARToolkit does not have any solutions for outdoor tracking other than putting up 
fiducials in all areas that should be tracked, but it can be extended with other trackers like 
GPS or magnetic trackers. 
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9.2. DWARF 
Distributed Wearable Augmented Reality Framework (DWARF) is a project started in May 
2000 by Klinker et al at Technical University Munich with the purpose of building a software 
framework for Augmented Reality with clearly defined interfaces between so called services. 
Most other AR systems are highly specialized monolithic programs that are difficult to change 
when the requirements change. The ambition of DWARF is high and ideally the 
implementation of an AR application should consist of the following steps: 

1. Install the DWARF system 
2. Describe the world (both real and virtual) using VRML 
3. Write modules for interaction and tracking devices if they are not available 
4. Write the application using the DWARF API and services 

The DWARF framework is at the time of writing still in beta stage of development. 

 
Figure 44 DWARF system design.  
Courtesy of the DWARF project. 

 

9.3. Studierstube 
Studierstube is a system whose purpose is to allow for multiple collaborating users to study 
scientific visualisations in a study room (Studierstube). The Studierstube system is realized as 
a collection of C++ classes that extend the OpenInventor Toolkit. Openinventor is a toolkit 
from SGI that is built on OpenGL with the purpose of simplifying 3D graphics programming. 
Studierstube is not developed with the intention to be a general software library for AR and is  
tailored towards collaborative visualisation. 
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Figure 45 Studierstube software structure.  
Courtesy of Studierstube 
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10. Demo implementation 
The final part of the thesis was to implement a demo of Augmented Reality. It was decided 
that the demo should not use any image processing for registration, but instead rely on 
orientation data provided by a sensor. The software used to implement the demo system 
consisted of the Java version of ARToolkit (JARToolkit) and some small programs written in 
Java and C++. We made the choice to use the ARToolkit since at the time of writing DWARF 
was not very mature and the software was not officially released, and Studierstube seemed too 
complex for our needs. 
 
The hardware used for testing consisted of a desktop PC computer with a 1GHz CPU, 512MB 
RAM running Windows 2000, a Vista Pro web camera from Philips and an MT9 orientation 
tracker from Xsens. The choice of equipment was based on the best available in Ericsson 
Media Lab at the time of implementation. 
 
The camera was a so-called web camera that was connected to the computer with a USB bus. 
Unfortunately the USB bus is limited to 12Mbit/s, which is not enough for real time video 
data. To achieve real-time video the camera has to compress the data before sending it, and 
consequently the computer has to spend CPU cycles decompressing it. This property limits 
the frame rates and/or resolutions to be rather low. 
 
The sensor was an MT9 from Xsens. The sensor contains 10 different sensors internally to be 
able to measure three degrees of freedom: pitch, yaw and roll, or orientation for short. The 
internal parts of the sensor consist of three gyroscopes, three accelerometers and one 
temperature sensor. According to the technical documentation of the sensor, all the internal 
sensors are measured in parallel, which should lead to accurate measurements. If the internal 
parts had been measured in a serial manner the small delays between the internal 
measurements could have been a source of error. 
 
The sensor came with a native driver for Windows and Linux respectively. The Windows 
driver consisted of a COM object that had to be installed (see Appendix A for a brief 
explanation of COM technology). An overview of the COM object and the data flow is shown 
in Figure 46. 
 

 
Figure 46 COM object structure and data flow 
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Unfortunately there was no Java driver available for the MT9 tracker so we had to develop 
that ourselves. We developed a small DLL in C++ that implemented calls for the basic 
functionality of the COM object accessing the tracker and made it available to Java using 
JNI4. The COM object proved to be unstable and the system crashed without explanation 
when calling the object from JARToolkit over JNI. To solve the problem we had to 
implement a small tracker server in java that acted as a bridge to the native DLL. We made 
the small server initialise the COM object and deliver tracker data over the network using 
Java object serialization. The solution proved to be working and we could now open a socket 
connection from within JARToolkit to the small tracker server to obtain tracker orientation 
data. The final structure is shown in Figure 47. 
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Figure 47 Data flow of tracker data to JARToolkit 

10.1. JARToolkit 
The JARToolkit is available in two versions – one high level implementation using Java3D 
and one low level implementation using OpenGL. We made the choice to use the OpenGL 
version for its convenient structure and to make use of our knowledge of OpenGL. The video 
stream pipeline of the ARToolkit works as follows: 

1. Capture video image from camera 
2. Search captured image for markers 
3. Find marker 3D position and orientation 
4. Identify markers 
5. Position and orient virtual objects 
6. Render 3D objects in video frame 

Since we would use an orientation tracker instead of the built in video tracker of the 
ARToolkit we could replace the steps 2 - 4 with one step: 

1. Capture video image from camera 
2. Acquire sensor orientation 
3. Position and orient virtual objects 
4. Render 3D objects in video frame 

The tracker data was acquired just before every frame was displayed. The tracker supported 
three different data formats: quaternion, rotation matrix and euler angles. Euler angles have a 
limitation in the form of a singularity at π/2 that also make angles close to this singularity 
                                                 
4 Java Native Interface, a way for Java to use programs written  in other languages 

61/70 



 

show large errors. Due to this fact euler angles was considered inappropriate for this 
application. From the remaining formats we selected quaternion format due to its compact 
format. The quaternion data [ ]Q x y z w=  was translated into a standard OpenGL 
normalized rotation matrix: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2

2 2

2 2

1 2 2 2 0

2 1 2 2

2 2 1 2

0 0 0

y z xy zw xz yw

xy zw x z yz xw
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xz yw yz xw x y

⎡ ⎤− + − +
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⎢ ⎥− − + −
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⎢ ⎥
⎢ ⎥⎣ ⎦

0

0

1

 

 The rotation matrix in combination with a hand made translation matrix 
1 0 0 0
0 1 0 0
0 0 1 200
0 0 0 1

T

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 

(where the value 200 was selected because it fits the screen well) was used to translate and 
rotate a virtual cube away from the virtual camera and to draw it on screen together with the 
captured image. 

10.2. Testing 
The orientation sensor proved to be very sensitive to metal objects. We used a small metal 
object that weighed about 1 kg and the sensor was affected from distances of more than 50 
cm. This is not a surprising result since the sensor contains a compass. 
 
To be able to do some testing we had to fix the sensor to the camera in some way to make 
their movement equal. Knowing the sensor’s sensitivity to metals we decided not to mount the 
sensor directly to the camera chassis but to use a plastic distance element between the two. 
We did not have access to any workshop so we reengineered a tissue holder found in the 
office supplies department (seeFigure 48). Even if the camera and the sensor are mounted 
with a distance between them their rotation center is still the same. 

 
Figure 48 

We used a square pattern (Figure 48) as a background to the overlaid object to be able to see 
the quality of the registration and to be able to detect any drift. Initial tests showed that the 
graphical object was overlaid in a stable manner and did not drift. During fast rotations of the 
camera the object displayed on screen correctly held its position with small lag, whereas the 
background image from the camera lagged behind. This was explained by the inherent nature 
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of the system where the picture display of the screen is at least one frame behind the capture 
of the picture. This is a property of all video see-through AR systems. We ran the image 
capture and display at 10 frames per second, thus making at least 100 ms delay of the video. 
The delay of the tracker controlled graphical object was significantly lower. We did test in all 
three degrees of rotation (yaw, pitch and roll) with good results – the overlaid object stayed in 
place.  
   There are other possible sources of error that could not be measured. These include 
shakiness of the hand when moving the camera, calculation rounding and pixel error. We 
assumed that if these errors exist they would be small enough to neglect. 

Figure 49 Camera and tracker fixture 
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10.3. Conclusion 
The JARToolkit is a useful software library for developing and testing AR applications. The 
development of the demo took approximately two weeks. Tracking using an orientation 
sensor is very fast and computationally cheap compared to fiducial tracking. The precision of 
the orientation sensor based tracking is worse than with fiducial tracking, but still good 
enough for many applications, for example an indoor pathfinding application. For an 
application showing which fuse to replace in a fusebox the precision would be too bad. We 
only did three degrees of freedom (3DOF) augmentation, so we had to fix the camera spatially 
and only move it orientationally around its focal point to achieve correct registration. The 
exact position of the focal point is somewhere within the camera housing and was not known 
and since we did not have the time or equipment to make a proper rig no exact measurements 
could be made. The overall impression showed stable registration. 

10.4. Future improvements 
To enhance the performance of the system a dedicated frame grabber card and/or a camera 
supporting uncompressed video would probably make the largest difference. Cameras 
supporting uncompressed video are uncommon but there is a standard (ITU-R 601) and there 
are a few cameras supporting it, for example the Sony DFW-VL500. These cameras use the 
IEEE 1394 serial interface working at 400Mbit/s and soon cameras supporting the next 
standard that allows for 800Mbit/s will be available. These cameras will have much better 
resolutions and framerates than USB-based web cameras. 
   An addition of another tracker for measuring another three degrees of freedom would make 
the system much more capable. The most probable sensor to add would be a GPS. The GPS 
has very low resolution (about 10 meters) but it could be used to select what information to be 
displayed using the orientation tracker. For example if the user is standing in the middle of a 
city square the GPS should be capable of locating the user and the orientation tracker could be 
used to display information of the surrounding buildings using simple signs. If more exact 
registration is needed one could let the user manually calibrate the position. 

64/70 



 

References 
 

[1] http://www.3rdtech.com/HiBall.htm 
[2] Abdullah J., Martinez K., “Camera self-calibration for the ARToolkit”, The First 

IEEE International Workshop on Augmented Reality Toolkit, 29 Sept. 2002  
Page(s): 5 

[3] Abidi M. A., Chandra T., “A New Efficient and Direct Solution for Pose Estimation 
Using Quadrangular Targets: Algorithm and Evaluation”. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol 17, no. 5, 1995. Page(s): 534-538. 

[4] Adiv G., “Determining Three-Dimensional Motion and Structure from Optical Flow 
Generated by Several Moving Objects”, IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol 7, no. 4, July 1985 Page(s) 384-401  

[5] Akenine-Möller T., Haines E., “Real-Time Rendering, second edition”, ISBN 1-
56881-182-9, AK Peters Ltd. 2002 

[6] “AMIRE”, http://webster.fh-hagenberg.at/amire/research.html, 20030826 
[7] Ascension, 3Dbird User Manual 20030826 
[8] Azuma R. T., “A Survey of Augmented Reality”, Presence: Teleoperators and 

Virtual Environments vol 6, no 4 August 1997 Page(s) 355-385  
[9] Bauer M., Bruegge B., Klinker G., MacWilliams A., Reicher T., Riss S., Sandor C., 

Wagner M., “Design of a component-based augmented reality framework”, 2001. 
Proceedings of IEEE and ACM International Symposium on Augmented Reality, 
29-30 Oct. 2001 Page(s): 45-54 

[10] Behringer R., Jun P., Sundareswaran V., “Model-based visual tracking for outdoor 
augmented reality applications”, Proceedings of International Symposium on Mixed 
and Augmented Reality, 30 Sept.-1 Oct. 2002 Page(s): 277-322 

[11] Billinghurst M., Kato H., Poupyrev I., “The MagicBook - moving seamlessly 
between reality and virtuality”, IEEE Computer Graphics and Applications, Volume: 
21 Issue: 3 , May/Jun 2001 Page(s): 6-8 

[12] Brandner  M., Ribo M., Pinz A., “State of the art of vision-based self-localisation”, 
1st International Workshop on Robotic Sensing, ROSE' 03, June 5-6, 2003  
Page(s): 18-23 

[13] Cheok A.D., Fong S.W., Xubo Y., Wang W., Lee M.H., Billinghurst M., Kato H., 
“Game-City: a ubiquitous large area multi-interface mixed reality game space for 
wearable computers”, Proceedings of Sixth International Symposium on Wearable 
Computers, 2002. (ISWC 2002), 7-10 Oct. 2002  Page(s): 156-157 

[14] Dias J.M.S., Santos P., Diniz N., Monteiro L., Silvestre R., Bastos R., “Tangible 
interaction for conceptual architectural design”, The First IEEE International 
Workshop on Augmented Reality Toolkit, 29 Sept. 2002 Page(s): 9 

[15] Dornaika F., Chung R., “An Algebraic Approach to Camera Self-Calibration”, 
Computer Vision and Image Understanding, 2001, Page(s): 195-215 

[16] “DWARF:Webhome”, 
http://wwwbruegge.in.tum.de/projects/lehrstuhl/twiki/bin/view/DWARF/WebHome.
html , 20030826 

[17] Feiner S., MacIntyre B., Höllerer T., Webster T., “A touring machine: Prototyping 
3D mobile augmented reality systems for exploring the urban environment”, 
Proceedings of ISWC '97 (First Int. Symp. on Wearable Computers), October 13-14, 
1997, Cambridge, MA., Page(s): 208-217 

[18] Ferrari V., Tuytelaars T., Van Gool L., “Markerless augmented reality with a real-
time affine region tracker“, Proceedings of IEEE and ACM International 
Symposium on Augmented Reality, 2001, 29-30 Oct. 2001 Page(s): 87 –96 

65/70 



 

[19] Fischler M.A., Bolles R.C., “Random Sample Consensus: A Paradigm for Model 
Fitting with Applications to Image Analysis and Automated Cartography,” Readings 
in Computer Vision: Issues, Problems, Principles and Paradigms, California, 1987, 
Page(s): 726-740. 

[20] Foxlin E., Harrington M., Pfeifer G., “Constellation: A Wide-Range Wireless 
Motion-Tracking System for Augmented Reality and Virtual Set Application”, 
Proceedings of SIGGRAPH98, 1998, Page(s): 371-378  

[21] Fruend J., Grafe M., Matysczok C., Vienenkoetter A., “AR-based training and 
support of assembly workers in automobile industry”, The First IEEE International 
Workshop on Augmented Reality Toolkit, 29 Sept. 2002, Page(s): 2 

[22] Fruend J., Matysczok C., Radkowski R., “AR-based product design in automobile 
industry”, The First IEEE International Workshop on Augmented Reality Toolkit, 29 
Sept. 2002, Page(s): 2 

[23] Gamma E., Helm R., Johnson R., Vlissides J., “Design Patterns”, October 1994, 
ISBN 0-201-63361-2, Addison-Wesley Pub Co 

[24] Garrett, William F., Fuchs H., Whitton M. C., State A., “Real-Time Incremental 
Visualization of Dynamic Ultrasound Volumes Using Parallel BSP Trees”, 
Proceedings of IEEE Visualization, San Francisco, CA, October 27 - November 1, 
1996, Page(s) 235-240. 

[25] Geiger C., Reimann C., Sticklein J., Paelke V., “JARToolkit – A Java Binding for 
ARToolkit”, The First IEEE International Workshop on Augmented Reality Toolkit, 
29 Sept. 2002 Page(s): 5 

[26] Govil A., You S., Neumann U., “A Video-Based Augmented Reality Golf 
Simulator”, Selected for technical demonstration in ACM Multimedia 2000, March 
2000 

[27] Grafe  M, Wortmann  R, Westphal, H., “AR-based interactive exploration of a 
museum exhibit”, The First IEEE International Workshop on Augmented Reality 
Toolkit, 29 Sept. 2002, Page(s): 5 

[28] Grimson W.E.L., Lozano-Perez T., Wells III W.M., Ettinger G.J., White S.J., 
Kikinis R., “An Automatic Registration Method for Frameless Stereotaxy, Image 
Guided Surgery, and Enhanced Reality Visualization”, Transactions on Medical 
Imaging, 1996 

[29] Hicks J.D., Flanagan R.A., Petrov P.V., Stoyen A.D., “Eyekon: augmented reality 
for battlefield soldiers”, Proceedings. 27th Annual NASA Goddard/IEEE Software 
Engineering Workshop 2002, 5-6 Dec. 2002, Page(s): 156-163 

[30] Hinn R., Redmer B., Domik G., “AR-Campus”, The First IEEE International 
Workshop on Augmented Reality Toolkit, 29 Sept. 2002, Page(s): 2 

[31] Holloway R., “Registration Errors in Augmented Reality”, Ph.D. dissertation. UNC 
Chapel Hill Department of Computer Science technical report TR95-016, August 
1995 

[32] Hung Yubin, Pen-Shu Yeh, David Harwood, “Passive ranging to known planar 
sets”, In IEEE Int. Conf. on Robotics and Automation 1985, Page(s): 80-85 

[33] Janin A.L., Mizell D.W., Caudell T.P., “Calibration of Head-Mounted Displays for 
Augmented Reality”, Proceedings of IEEE VRAIS '93 Seattle WA, 18-22 
September 1993, Page(s): 246-255 

[34] Jiang B., Neumann U., “Extendible tracking by line auto-calibration”, Proceedings 
of IEEE and ACM International Symposium on Augmented Reality 2001 , 29-30 
Oct. 2001, Page(s): 97-103 

66/70 



 

[35] Kalkusch M., Lidy T., Knapp N., Reitmayr G., Kaufmann H., Schmalstieg D., 
“Structured visual markers for indoor pathfinding”, The First IEEE International 
Workshop on Augmented Reality Toolkit, 29 Sept. 2002, Page(s): 8 

[36] Kato H., “Inside ARToolkit”, 
http://iihm.imag.fr/fberard/ens/ensimag/ensi3srvra/download/docTechnique/ART02-
Tutorial.pdf, 20030826 

[37] Kato H., Billinghurst M., Poupyrev I., “ARToolKit”, 
http://www.hitl.washington.edu/people/grof/SharedSpace/Download/ARToolKit2.3
3doc.pdf, 20030826 

[38] Klinker G., http://wwwbruegge.in.tum.de/people/klinker/ar/CICC-games.html, 
20030826 

[39] König; “Die Abhängigkeit der Scharfe von der Beleuchtungsintensität”, S. B. Akad. 
Wiss. Berlin 1897, Page(s) 559-575 

[40] Kutulakos K., Vallino J., “Calibration-free Augmented Reality”, IEEE Transactions 
on Visualization and Computer Graphics, vol 4 no 1, 1998 Page(s): 73-82 

[41] Ledermann F., Reitmayr G., Schmalstieg D., “Dynamically shared optical tracking”, 
The First IEEE International Workshop on Augmented Reality Toolkit, 29 Sept. 
2002, Page(s): 8 pp. 

[42] Malbezin P., Piekarski W., Thomas B.H., “Measuring ARToolKit accuracy in long 
distance tracking experiments”, The First IEEE International Workshop on 
Augmented Reality Toolkit, 29 Sept. 2002, Page(s): 2 pp. 

[43] Microsoft, http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncomg/html/msdn_comppr.asp, 20030826 

[44] Milgram, P., Kishino, F., “A Taxonomy of Mixed Reality Visual Displays”, IEICE 
Transactions on Information Systems, Vol E77-D (12), Dec. 1994. 

[45] Neumann U., You  S., “Natural feature tracking for augmented reality”, IEEE 
Transactions on Multimedia, Volume: 1 Issue: 1 , March 1999, Page(s): 53 –64. 

[46] Noe, P., Zabaneh K., “Relative GPS”, IEEE Position Location and Navigation 
Symposium, 1994, Page(s) 586-590 

[47] Ohshima T., Sato K., Yamamoto H., Tamura H., “AR2Hockey: A case study of 
collaborative augmented reality”, Proceedings of VRAIS'98., 1998, Page(s) 268-
295. 

[48] Yuichi O., Yasuyuki S., Hiroki I., Toshikazu O., Kaito T., “Share-Z: Client/Server 
Depth Sensing for See-Through Head-Mounted Displays”, Presence: Teleoperators 
& Virtual Environments Volume: 11 Number: 2, Page(s): 176 – 188 

[49] Owen C.B., Fan X., Middlin P., “What is the best fiducial?”, The First IEEE 
International Workshop on Augmented Reality Toolkit, 29 Sept. 2002, Page(s): 8 

[50] Piekarski W., Thomas B.H., “Using ARToolKit for 3D hand position tracking in 
mobile outdoor environments”, The First IEEE International Workshop on 
Augmented Reality Toolkit, 29 Sept. 2002, Page(s): 2 

[51] Piekarski W., Thomas B.H., “Tinmith-Metro: new outdoor techniques for creating 
city models with an augmented reality wearable computer”, Proceedings of Fifth 
International Symposium on Wearable Computers 2001, 8-9 Oct. 2001, Page(s): 31-
38. 

[52] Prince S.J.D., Xu K., Cheok A.D., “Augmented reality camera tracking with 
homographies”, IEEE Computer Graphics and Applications Volume: 22 Issue: 6, 
Nov.-Dec. 2002, Page(s): 39-45 

[53] Reitmayr G., Schmalstieg D., “Mobile collaborative augmented reality”, 
Proceedings of IEEE and ACM International Symposium on Augmented Reality 
2001, 29-30 Oct. 2001, Page(s): 114–123 

67/70 



 

[54] Ribo M., Lang P., Ganster H., Brandner M., Stock C., Pinz A., “Hybrid tracking for 
outdoor augmented reality applications”, IEEE Computer Graphics and 
Applications,  Volume: 22 Issue: 6, Nov.-Dec. 2002, Page(s): 54-63. 

[55] Rolland, J. P., Davis, L. D. and Baillot, Y. “A Survey of Tracking Technologies for 
Virtual Environments”, in Barfield, W. and Caudell, T. eds., Fundamentals of 
Wearable Computers and Augmented Reality, Lawrence Erlbaum, Mahwah, N. J., 
2001, 67-112. 

[56] Satoh K., Hara K., Anabuki M., Yamamoto H., Tamura H., “TOWNWEAR: An 
outdoor wearable MR system with high-precision registration”, Proceedings of 
ISMR2001, 2001, Page(s): 210-211 

[57] Schmidt J., Niemann H., Vogt S., “Dense disparity maps in real-time with an 
application to augmented reality”, Proceedings of Sixth IEEE Workshop on 
Applications of Computer Vision 2002, 3-4 Dec. 2002, Page(s): 225-230 

[58] Shimizu I., Zhang Z., Akamatsu S., Deguchi K., “Head Pose Determination from 
One Image Using a Generic Model”, Proceedings of IEEE Third International 
Conference on Automatic Face and Gesture Recognition, April 1998, Page(s) 100-
105 

[59] Seo Y., Hong K., “Weakly Calibrated Video-based Augmented Reality: Embedding 
and Rendering through Virtual Camera”, Proceedings of the IEEE and ACM 
International Symposium on Augmented Reality (ISAR), 2000, Page(s): 129-136. 

[60] Shelton B.E., Hedley N.R., “Using augmented reality for teaching Earth-Sun 
relationships to undergraduate geography students”, The First IEEE International 
Workshop on Augmented Reality Toolkit, 29 Sept. 2002, Page(s): 8 

[61] Shi J., Tomasi C., “Good Features to Track”, IEEE Conference on Computer Vision 
and Pattern Recognition, 1994, Page(s): 593-600 

[62] Simon G., Berger M., “Pose estimation for planar structures”, IEEE Computer 
Graphics and Applications, Volume: 22 Issue: 6, Nov.-Dec. 2002, Page(s): 46-53 

[63] Simon G., Berger M., “Registration with a Zoom Lens Camera for Augmented 
Reality Applications”, Proceedings of the 2nd IEEE International Workshop on 
Augmented Reality (IWAR), 1999, Page(s): 103-112 

[64] Simon G., Fitzgibbon A., Zisserman A., “Markerless Tracking using Planar 
Structures in the Scene”, Proceedings of the IEEE International Symposium on 
Augmented Reality (ISAR), 2000, Page(s) 120-128 

[65] Starmate Project, “http://vr.c-s.fr/starmate/”, 20030826 
[66] Steinwendner J., Schneider W., Bartl R., “Subpixel Analysis of Remotely Sensed 

Images”, Digital Image Analysis: Selected Techniques and Applications, chap. 12.2, 
W.G.Kropatsch and H. Bischof, eds., Springer-Verlag, New York, 2001, Page(s) 
346-350. 

[67] Ström J., “Model-Based Head Tracking and Coding”, Linköping Studies in Science 
and Technology Dissertation No. 733, February 2002 

[68] Sutherland I, “A head-mounted three-dimensional display”, 1968 Fall Joint 
Computer Conference, AFIPS Conference Proceedings, 1968, Page(s): 33, 757-764 

[69] Thomas B., Close B., Donoghue J., Squires J., De Bondi P., Morris M., Piekarski 
W., “ARQuake: an outdoor/indoor augmented reality first person application”, The 
Fourth International Symposium on Wearable Computers 2000, 16-17 Oct. 2000, 
Page(s): 139-146 

[70] Umlauf E.J., Piringer H., Reitmayr G., Schmalstieg D., “ARLib: the augmented 
library”, The First IEEE International Workshop on Augmented Reality Toolkit, 29 
Sept. 2002, Page(s): 2 

68/70 



 

[71] Wagner M., “Building wide-area applications with the ARToolkit”, The First IEEE 
International Workshop on Augmented Reality Toolkit, 29 Sept. 2002, Page(s): 7 

[72] Wagner M, “Handheld AR”, 
http://www.ims.tuwien.ac.at/research/handheld_ar/index.php, 20030826 

[73] Vallino J., “Interactive Augmented Reality”, PhD Thesis, University of Rochester, 
Rochester, NY. November 1998. 

[74] Webster A., “Augmented Reality in Architectural Construction, Inspection, and 
Renovation”, http://www.columbia.edu/cu/gsapp/BT/RESEARCH/PAPERS/ar-
asce.html, 20030826 

[75] Veigl S., Kaltenbach A., Ledermann F., Reitmayr G., Schmalstieg D., “Two-handed 
direct interaction with ARToolKit”, The First IEEE International Workshop on 
Augmented Reality Toolkit, 29 Sept. 2002, Page(s): 2 

[76] Vlahakis V., Ioannidis M., Karigiannis J., Tsotros M., Gounaris M., Stricker D., 
Gleue T., Daehne P., Almeida L., “Archeoguide: an augmented reality guide for 
archaeological sites”, IEEE Computer Graphics and Applications Volume: 22 Issue: 
5, Sept.-Oct. 2002, Page(s): 52-60. 

[77] Xiang Z., Fronz S., Navab N., “Visual marker detection and decoding in AR 
systems: a comparative study”, Proceedings of International Symposium on Mixed 
and Augmented Reality 2002 (ISMAR 2002), 30 Sept. 1 Oct. 2002, Page(s): 97-106 

[78] Xsens MTxB Technical Documentation 
[79] Xsens MT9 SDK Decumentation 
[80] Xsens MT9 Software Manual 
[81] Xu G., Zhang Z., “Epipolar Geometry in Stereo, Motion and Object Recognition: A 

Unified Approach”, Kluwer Academic Publishers, 1996. 
[82] Yokokohji Y., Sugawara Y., Yoshikawa T., “Accurate image overlay on video see-

through HMDs using vision and accelerometers”, Proceedings of Virtual Reality 
2000 IEEE, 18-22 March 2000, Page(s): 247 –254 

[83] You S., “GRIDS”; http://www.cs.unc.edu/~vicci/grids.html, 
http://graphics.usc.edu/cgit/pdf/summaries/SuyaResearch.pdf; Jan 2000 

[84] You S., Neumann U., “Fusion of Vision and Gyro Tracking for Robust Augmented 
Reality Registration”, IEEE Proceedings of Virtual Reality 2001, Page(s) 71-78 

[85] Youngkwan C., Neumann U., “Multi-ring color fiducial systems for scalable fiducial 
tracking augmented reality”, Proceedings of Virtual Reality Annual International 
Symposium 1998, 14-18 March 1998, Page(s): 212 

[86] Zhengyou Z., “A Flexible New Technique for Camera Calibration”. IEEE 
Transactions on Pattern Analysis and Machine Intelligence. Vol. 22, No. 11, 
November 2000 Page(s): 55-58 

 
 

69/70 



 

70/70 

Appendix A – COM technology 
 
COM (Component Object Model) refers to both a specification and an implementation 
developed by Microsoft [43] that provides a framework for integrating components. This 
framework supports interoperability and reusability of distributed software components by 
allowing developers to build systems by assembling reusable components from different 
vendors that communicate via COM.  
COM defines an application programming interface (API) to allow for the creation of 
components for use in integrating custom applications or to allow diverse components to 
interact. However, in order to interact, components must adhere to a binary structure. As long 
as components adhere to this binary structure, components written in different programming 
languages can interoperate.  
COM components consist of executable code distributed either as Win32 dynamic link 
libraries (DLLs) or as executables (EXEs). These are all registered in the Windows registry. 
The COM library uses this to get the location of a DLL or EXE.  
Some of the advantages of the Component Object Model are:  

• Wire Level Standard. The component users do not have to know anything about the 
underlying network mechanisms, TCP/IP or Serial Communications, to use the 
components.  

• Binary Standard. The client and server components can be developed with different 
tools and/or different programming languages, and they will all interact properly as 
long as they adhere to the COM programming model and binary standard.  

• Runtime Polymorphism. At runtime the client detects the right component it wants and 
uses its services. This means you do not have to recompile your client every time you 
make a change to your server. Once you release a component, if you want to make a 
change then you release a new component. If the client wants the new services, only 
then you have to modify your client.  
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