This user manual describes all items concerning the operation of this CNC system in detail. However, it is impossible to give particular descriptions for all unnecessary or unallowable operations due to length limitation and products application conditions; therefore, the items not presented herein should be considered impractical or unallowable.

Copyright is reserved to GSK CNC Equipment Co., Ltd. It is illegal for any organization or individual to publish or reprint this manual. GSK CNC Equipment Co., Ltd. reserves the right to ascertain their legal liability.

## **Preface**

Your Excellency,

We are honored by your purchase of this GSK 25i Milling Machining Center CNC System made by GSK CNC Equipment Co., Ltd.

This book is "PLC Programming and Connection" section of the User Manual Volume II.

This system can only be operated by authorized and qualified personnel as improper operation may cause accidents. Please carefully read this manual before use!

## Special caution:

The power supply fixed on/in the cabinet is exclusively used for the CNC system made by GSK.

It can't be applied to other purposes, or else it may cause serious danger.

# **Warning and Precaution**

Please read this manual and a manual from machine tool builder carefully before installation, programming and operation, and strictly observe the requirements.

This manual includes the precautions for protecting user and machine tool. The precautions are classified into Warning and Caution according to their bearing on safety, and supplementary information is described as Note. Read these Warnings, Caution and Note carefully before operation.

## Warning

User may be injured or equipment be damaged if operations instructions and procedures are not observed.

## Caution

Equipment may be damaged if operation instructions or procedures are not observed.

## Note

It is used to indicate the supplementary information other than Warning and Caution.

# **Announcement**

This manual describes various possibilities as much as possible. However, operations allowable or unallowable cannot be explained one by one due to so many possibilities that may involve with, so the contents that are not specially stated in this manual shall be considered as unallowable.

# Caution

- Functions, technical indexes (such as precision and speed) described in this user manual are only for this System. Actual function deployment and technical performance of a machine tool with this CNC system are determined by machine tool builder's design, so functions and technical indexes are subject to the user manual from machine tool builder.
- Refer to the user manual from machine tool builder for function and meaning of keys on control panel.

# **Precautions**

## ■ Delivery and storage

- Packing box over 6 layers in pile is not allowed.
- Never climb the packing box, neither stand on it, nor place heavy objects on it.
- Do not move or drag the products by the cables connected to it.
- Forbid collision or scratch to the panel and display screen.
- Avoid dampness, isolation and drenching.

## **■** Open-package inspection

- Confirm that the products are the required ones.
- Check that the products are not damaged in delivery.
- Confirm that the parts in packing box are in accordance with the order.
- Contact us in time if any inconsistence, shortage or damage is found.

#### **■** Connection

- Only qualified personnel can connect the System or check the connection.
- The System must be earthed, and the earth resistance must be less than  $0.1\Omega$ . The earth wire cannot be replaced by zero wire.
- The connection must be correct and firm to avoid any fault or unexpected consequence.
- Connect with surge diode in the specified direction to avoid damage to the System.
- Switch off power supply before plugging out or opening electric cabinet.

## ■ Troubleshooting

- Only competent personnel are supposed to inspect the System or machine.
- Switch off power supply before troubleshooting or changing components.
- Check for fault when short circuit or overload occurs. Restart can only be done after troubleshooting.
- Frequent switching on/off of the power is forbidden, and the interval time should be at least 1 min.

# **Safety Responsibility**

# Manufacturer's Responsibility

| ——Be responsible for the danger which should be eliminated and/or controlled on      |
|--------------------------------------------------------------------------------------|
| design and configuration of the provided CNC systems and accessories.                |
| ——Be responsible for the safety of the provided CNC systems and accessories.         |
| ——Be responsible for the provided information and advice for the users.              |
|                                                                                      |
| User's Responsibility                                                                |
| ——Be trained with the safety operation of CNC system and familiar with the safety    |
| operation procedures.                                                                |
| ——Be responsible for the dangers caused by adding, changing or altering to the       |
| original CNC systems and the accessories.                                            |
| —Be responsible for the failure to observe the provisions for operation, adjustment, |
| maintenance, installation and storage in the manual.                                 |

All specifications and designs herein are subject to change without further notice.

This manual is reserved by end user.

We are full of heartfelt gratitude to you for supporting us in the use of GSK's products.

# Contents

| PART 1 | PR   | OGRAMMING                                                               | 1    |
|--------|------|-------------------------------------------------------------------------|------|
| 1 S    | eque | nce Program Creating Process                                            | 3    |
|        | 1.1  | GSK25i PLC specifications                                               | 3    |
|        | 1.2  | What 's a Sequence Program                                              | 3    |
|        | 1.3  | Assignment of interface specifications (step 1)                         | 4    |
|        | 1.4  | Establishment of ladder diagram (step 2)                                | 4    |
|        | 1.5  | Sequence program debugging (step 3)                                     | 4    |
| 2 S    | eque | nce Program                                                             | 5    |
|        | 2.1  | Execution process of sequence program                                   | 5    |
|        | 2.2  | Repetitive cycle                                                        | 6    |
|        | 2.3  | Priority of execution(1 <sup>st</sup> level, and 2 <sup>nd</sup> level) | 6    |
|        | 2.4  | Sequence program structure                                              | 7    |
|        | 2.5  | Processing I/O (input/output) signals                                   | 8    |
|        | 2.6  | Interlocking                                                            | . 11 |
| 3      | Addr | ess                                                                     | 12   |
|        | 3.1  | Machine →PLC address (X)                                                | .13  |
|        | 3.2  | PLC→machine side address (Y)                                            | .15  |
|        | 3.3  | PLC→CNC address (G)                                                     | .16  |
|        | 3.4  | CNC→PLC address (F)                                                     | .17  |
|        | 3.5  | Internal relay address (R)                                              | .17  |
|        | 3.6  | Address of keep relay (K)                                               | .18  |
|        | 3.7  | Addresses(A) for message selection                                      |      |
|        | 3.8  | Address of counter (C)                                                  | .19  |
|        | 3.9  | Address of timer (T)                                                    | .19  |
|        | 3.10 | Address (D) of data table                                               | .20  |
|        | 3.11 | Label address (L)                                                       | .20  |
|        | 3.12 | Subprogram numbers (P)                                                  | .20  |
| 4      | PLC  | Basic Instruction                                                       | 21   |
|        | 4.1  | LD, LDI, OUT, OUTI command                                              | .22  |
|        | 4.2  | AND, ANI command                                                        | .22  |
|        | 4.3  | OR, ORI command                                                         | .23  |
|        | 4.4  | ORB command                                                             | .23  |
|        | 4.5  | ANB command                                                             | .24  |
| 5      | PLC  | Functional Instructions                                                 | 25   |
|        | 5.1  | END1 (1 <sup>st</sup> level sequence program end)                       |      |
|        | 5.3  | TMR (Timer)                                                             | .27  |
|        | 5.4  | TMRB (fixed timer)                                                      | .28  |
|        | 5.5  | TMRC (timer)                                                            | .29  |
|        | 5.6  | DECB (binary decode)                                                    |      |
|        | 5.7  | CTR (counter)                                                           |      |
|        | 5.8  | CTRC (counter)                                                          |      |
|        | 5.9  | ROTB (binary rotation control)                                          | .36  |

| 5.     | 10 CODB (binary code conversion)                   | . 38  |
|--------|----------------------------------------------------|-------|
| 5.     | 11 MOVE (logical product transfer)                 | . 40  |
| 5.     | 12 MOVOR (data transfer after logical or)          | . 41  |
| 5.     | 13 MOVB (transfer of 1 byte)                       | . 42  |
| 5.     | 14 MOVW (transfer of 2 bytes)                      | . 43  |
| 5.     | 15 MOVN (transfer of an arbitrary number of bytes) | . 43  |
| 5.     | 16 PARI (parity check)                             | . 44  |
| 5.     | 17 DCNVB (extended data conversion)                | . 45  |
| 5.     | 18 COMPB (binary compassion)                       | . 47  |
| 5.     | 19 COIN (coincidence check)                        | . 49  |
| 5.     | 20 DSCHB (data search)                             | . 50  |
| 5      | 21 XMOVB (binary indexed modifier data transfer)   | . 51  |
| 5      | 22 ADDB(addition)                                  | . 53  |
| 5.     | 23 SUBB (binary subtraction)                       | . 55  |
| 5.     | 24 MULB (binary multiplication)                    | . 56  |
| 5.     | 25 DIVB(binary division)                           | . 58  |
| 5.     | 26 NUMEB (definition of binary constant)           | . 60  |
| 5.     | 27 DIFU (Edge Up detection)                        | . 61  |
| 5      | 28 DIFD (Edge Down detection)                      | . 62  |
| 5      | 29 SFT (shift register)                            | . 63  |
| 5.     | 30 EOR (EOR)                                       | . 64  |
| 5.     | 31 AND (logical and)                               | . 66  |
| 5.     | 32 ORF (logical or)                                | . 67  |
| 5.     | 33 NOT (logical not)                               | . 69  |
| 5.     | 34 COM (common line control)                       | . 70  |
| 5.     | 35 COME (common line control end)                  | . 71  |
| 5.     | 36 JMP (jump)                                      | . 71  |
| 5.     | 37 JMPE (jump end)                                 | . 73  |
| 5.     | 38 CALL (conditional subprogram call)              | . 73  |
| 5.     | 39 CALLU (unconditional subprogram call)           | . 74  |
| 5.     | 40 JMPB(label jump 1)                              | . 75  |
| 5.     | 41 JMPC (label jump 2)                             | . 76  |
| 5.     | 42 LBL (label)                                     | . 76  |
| 5.     | 43 SP (subprogram)                                 | . 77  |
| 5.     | 14 SPE (end of a subprogram)                       | . 78  |
| 5.     | 45 WINDR (Reading of CNC data)                     | . 78  |
| 5.     | 46 WINDW (Writing of CNC data)                     | . 80  |
| 5.     | 47 AXLCTL(PLC axis control)                        | . 82  |
| 5.     | 48 PSGNL( Position signal output)                  | . 87  |
| 5.     | 49 PSGN2 (Position signal output 2)                | . 90  |
| 6 Lac  | der Writing Limit                                  | . 93  |
| PART 2 | FUNCTION                                           | . 95  |
| 1 Pre  | parations for operation                            | O.S   |
|        | Parations for operation                            |       |
| 1.     | . LINGIGOROV GIOD                                  | . /11 |

| NOTE | s           |                                                                                    | 162 |
|------|-------------|------------------------------------------------------------------------------------|-----|
| PART | 3 CC        | ONNECTION                                                                          | 161 |
|      | 10.1        | 1 Custom macro program                                                             | 157 |
| 10   |             | ogramming command                                                                  |     |
|      | 9.2         | PLC Axis Control Function                                                          |     |
|      | 9.1         | External Data Inputting                                                            | 139 |
| 9    | PLO         | C Control Function                                                                 | 139 |
|      | 8.5         | Spindle Safety Speed Selection                                                     |     |
|      | 8.4         | Detection for Spindle Speed Fluctuation                                            |     |
|      | 8.3         | Rigid tapping                                                                      |     |
|      | 8.2         | Spindle Orientation                                                                |     |
| •    | 8.1         | Spindle speed control mode                                                         |     |
| 8    | _           | idle Speed Function                                                                |     |
|      | 7.3         | •                                                                                  |     |
|      | 7.1         |                                                                                    |     |
| 7    | W, S<br>7.1 | , T Auxiliary Function  Miscellaneous function                                     |     |
| -    |             | Override                                                                           |     |
|      | 6.1         | Rapid traverse rate                                                                |     |
| 6    |             | edrate Control                                                                     |     |
| _    | 5.5         | 3                                                                                  |     |
|      | 5.4         | - F                                                                                |     |
|      | 5.3         | Testing a program                                                                  |     |
|      | 5.2         |                                                                                    |     |
|      | 5.1         | Cycle start/feed hold                                                              | 111 |
| 5    | Auto        | omatic operation                                                                   | 111 |
|      | 4.3         | The 2 <sup>nd</sup> , 3 <sup>rd</sup> , and 4 <sup>th</sup> Reference Point Return | 109 |
|      | 4.2         | Reference Return (without Block)                                                   | 109 |
|      | 4.1         | Manual reference point return                                                      | 107 |
| 4    |             | erence Point Return                                                                |     |
|      | 3.2         |                                                                                    |     |
| 3    | 3.1         | JOG feed/incremental feed                                                          |     |
| 3    |             | ual operation                                                                      |     |
|      | 2.3         | Position Switch Signal  Synchronous Axis Control                                   |     |
|      | 2.2         |                                                                                    |     |
|      | 2.1         | Axis Moving Signal                                                                 |     |
| 2    |             | rdinate axis control function                                                      |     |
|      | 1.5         | ·                                                                                  |     |
|      | 1.4         | Interlock                                                                          |     |
|      | 1.3         | Alarm signal                                                                       |     |
|      | 1.2         | CNC overtravel signal                                                              |     |

| 2. SYST | EM INSTALLATION POSITION                                                | 162 |
|---------|-------------------------------------------------------------------------|-----|
| 3. PRO  | FECTIVE GROUND                                                          | 162 |
| 4. SUPF | PRESSING INTERFERENCE                                                   | 162 |
| 1       | GSK25i System Box Interface                                             | 164 |
| 2       | Operation panel interface                                               | 165 |
|         | 2.1 Sketch map of machine operation panel interface                     | 165 |
|         | 2.2 CNC system communication interface XS21                             | 165 |
|         | I/O Interface                                                           |     |
| 4       | External Position Detection Unit                                        | 168 |
| 5       | Interconnection Graph                                                   | 170 |
| 6       | PC serial communication wire                                            | 171 |
|         | MPG Wiring                                                              |     |
|         | Operation Panel Signal Line                                             |     |
| 9       | Ethernet Communication Connection                                       | _   |
| 10      | Connected with the Spindle Servo                                        |     |
| 11      | Connected with the Spindle Converter                                    |     |
| 12      | Connection Method of Z Brake, System Power-on Control                   |     |
| 13      | I/O Input, Output Signal                                                | 182 |
|         | 13.1 Connection method of input signal                                  |     |
|         | 13.2 Connection method of output signal                                 | 183 |
|         | 13.3 Definition of input signal point                                   | 184 |
|         | 13.4 Definition of output signal point                                  | 186 |
| App     | pendix 1 CNC and PLC interface signal table                             | 189 |
| App     | pendix 2 Signal Address List(Arranged by the address)                   | 193 |
|         | pendix3 Factory Standard PLC Function Debugging (MV1.35 turntable style |     |
| ma      | chine)                                                                  |     |
|         | 3.1 Address Definition                                                  |     |
|         | 3.2 Parameter Setting                                                   |     |
|         | 3.3 M Code List                                                         |     |
|         | 3.4 PLC Function                                                        |     |
|         | 3.5 PLC Alarm Signals                                                   |     |
| • • •   | pendix 4 Installation Dimension Drawing                                 |     |
| 4.1     | GSK25i-M installation dimension (vertical 10.4 inch color screen)       |     |
| 4.2     | , , , , , , , , , , , , , , , , , , , ,                                 |     |
| 4.3     | ,                                                                       |     |
| 4.4     | GSK25i-MH operation panel installation dimension (horizontal)           |     |
| 4.5     |                                                                         |     |
| 4.6     | •                                                                       |     |
| 4.7     |                                                                         |     |
| 4.8     | External position detection unit GSK25i-PDU installation dimension      | 227 |

# Part 1 Programming

1

# 1

# **Sequence Program Creating Process**

# 1.1 GSK25i PLC specifications

Specification of GSK25i PLC are as follows(see Table 1-1):

Table 1-1

| Specification                          | GSK25i PLC                    |  |
|----------------------------------------|-------------------------------|--|
| Programming method language            | Ladder, command table         |  |
| Number of ladder level                 | 2                             |  |
| 1 <sup>st</sup> level execution period | 8ms                           |  |
| Mean processing time of basic command  | 0.5(µs/step)                  |  |
| Program capacity                       | 12000 steps                   |  |
|                                        | P: 10                         |  |
| Command                                | Functional command: 44        |  |
| Internal relay (R)                     | 1100 bytes (R0 to R1099)      |  |
| Data table (D)                         | 1860 bytes (D0 to D1859)      |  |
| Meter (C)                              | 400 bytes (C0 to C399) 100PCS |  |
| Timer (T)                              | 200 bytes (T0 to T199) 100PCS |  |
| PLC alarm detection (A)                | 32 bytes(A0 to A31)           |  |
| Keep relay (K)                         | 32 bytes(K0 to K31)           |  |
| Label (L)                              | 9999 (L1~L9999)               |  |
| Subprogram (P)                         | 512 (P1~P512)                 |  |
| Machine →PLC(X)                        | 128 bytes (X0 to X127)        |  |
| PLC→machine (Y)                        | 128 bytes (Y0 to Y127)        |  |
| CNC→PLC(F)                             | 256 bytes (F0 to F255)        |  |
| PLC→CNC(G)                             | 256 bytes (G0 to G255)        |  |

# 1.2 What 's a Sequence Program

A sequence program is a program for sequence control of machine tools and other systems.

The program is converted into a format to enable CPU execute encoding and arithmetic processing, and stored into RAM. CPU reads out every instruction stored in the memory at a high-speed and executes the program by arithmetic operation

The sequence program is written firstly from ladder.

## 1.3 Assignment of interface specifications (step 1)

After deciding the control object specification, calculate the number of input/output signal points, create the interface specification.

For input/output interface signals, see *II Connection*.

# 1.4 Establishment of ladder diagram (step 2)

Express the control operations decided by 25i ladder diagram. For the timer, meter, etc, which cannot be expressed with relay symbol, are expressed with the functional instructions.

The edited ladder should be converted into the corresponding PLC instruction i.e. instruction list to store.

## 1.5 Sequence program debugging (step 3)

The sequence program can be debugged in two ways:

- 1) Debug by simulator
  - Instead of the machine, connect a simulator (consisting of lamps and switches). Switch ON/OFF stands for the input signal state of machine, lamp ON/OFF for the output signal state.
- 2) Actual operation debugging
  - Debug sequence program through operating the machine. Do measures against the unexpected affairs before debugging.

# 2 Sequence Program

Since PLC sequence control handled by software and operates on principle difference from a general relay circuit, the sequence control method must be fully understood in order to design PLC sequence program.

## 2.1 Execution process of sequence program

In general relay control circuit, each relay operates at approximately the same time, in the figure below for example, when relay A operate, the relay D and E operate at approximately the same time(when contacts B and C are off)., In PLC sequence control, each relay of circuit operates sequentially. When relay A operates, relay D operates, then relay E. Thus each relay operates in sequence (Programmed sequence) which can be written as a ladder diagram, see Fig.2-1 (a).

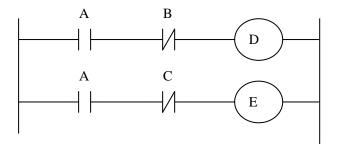



Fig. 2-1(a)

Fig.2.1(b) and (c) illustrate operations varying from the relay circuit to PLC programs.

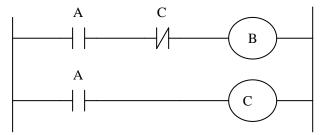



Fig. 2-1(b)

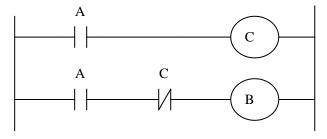



Fig.2-1(c)

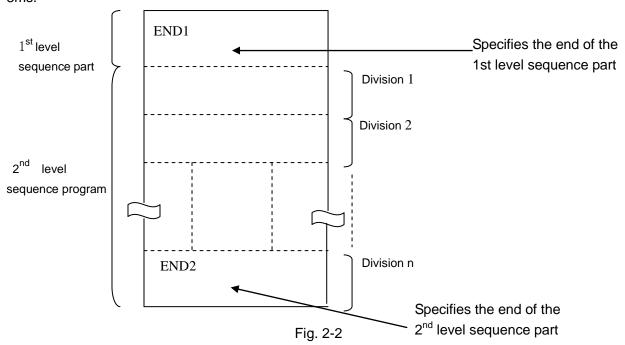
### (1) Relay circuit

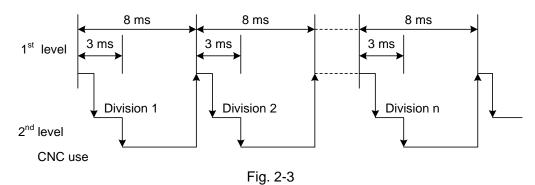
In Fig. 2.1(b) and (c), the operations A and B are the same. Turning on A turns on B and C. Turning on C turns off B.

In Fig.2.1(b), as in the relay circuit, turning on A turns on B and C, and after one cycle of the PLC sequence, turns off B. But in Fig.2.1(c), turning on A turns on C, but B does not turn on

## 2.2 Repetitive cycle

The PLC executes the ladder diagram from the beginning to the end. When the ladder diagram ends, the program starts over from the beginning. This is called repetitive operation.


The execution time from the beginning to the end of the ladder diagram is called the sequence processing time. The shorter the process time is, the better the signal response becomes.


# 2.3 Priority of execution(1<sup>st</sup> level, and 2<sup>nd</sup> level)

GSK25i PLC consists of two parts: 1<sup>st</sup> level sequence part, 2<sup>nd</sup> level sequence part. They have different execution period.

The 1<sup>st</sup> level sequence part operates every 8 ms, which can deal with the short pulse signal with high-speed response). For example: Emergency stop, Jump, Overtravel etc. EDN1 command is edited when the first program is not used.

The 2<sup>nd</sup> level sequence part operates every 8\*n ms. Here N is a dividing number for the 2<sup>nd</sup> level sequence part. The 2<sup>nd</sup> level sequence part is divided into n part, and every part is executed every 8ms.





After the last 2<sup>nd</sup> level sequence part (division n) is executed, the sequence program is executed again from the beginning. Thus, when the dividing number is n, the cycle of execution is 8\*n ms. The 1<sup>st</sup> level sequence operates every 8ms, and the 2<sup>nd</sup> level sequence every 8\*n ms. If the steps of the 1<sup>st</sup> level sequence is increased, the steps of the 2<sup>nd</sup> level sequence operating within 8ms becomes less, thereby increasing the dividing number and making the processing time longer. Therefore, it is desirable to program so as to reduce the 1<sup>st</sup> level sequence to a minimum.

## 2.4 Sequence program structure

With the conventional PLC, a ladder program is described sequentially. By employing a ladder language that allows structured programming, the following benefits are derived:

- 1. A program can be understood and developed easily
- 2. A program error can be found easily.
- 3. When an operation error occurs, the cause can be found easily.

Three major structured programming capabilities are supported:

### 1) Subprogram

A subprogram can consist of a ladder sequence as the processing unit.

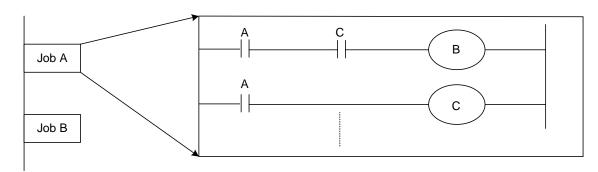



Fig. 2-4

#### 2) Nesting

The Ladder subprograms can call the other ladder subprogram to execute the job.

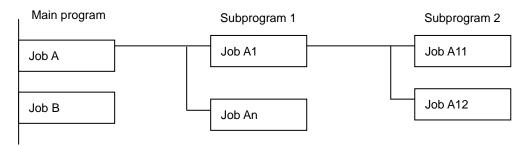
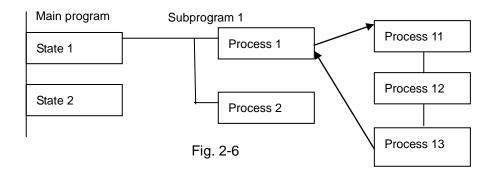




Fig. 2-5

## 3) Conditional branch

The main program loops and checks whether conditions are satisfied. If a condition is satisfied, the corresponding subprogram is executed. If the condition is not satisfied, the subprogram is jumped.



# 2.5 Processing I/O (input/output) signals

Input signal processing:

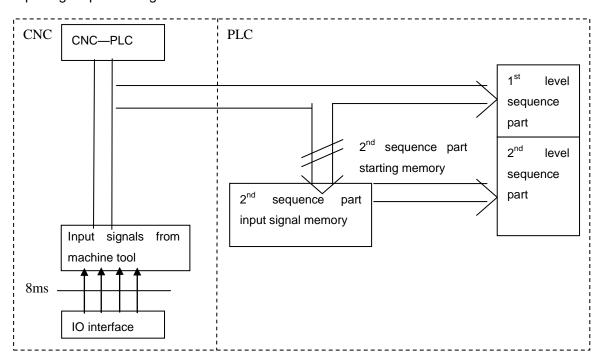



Fig. 2-7

## Output signal processing:

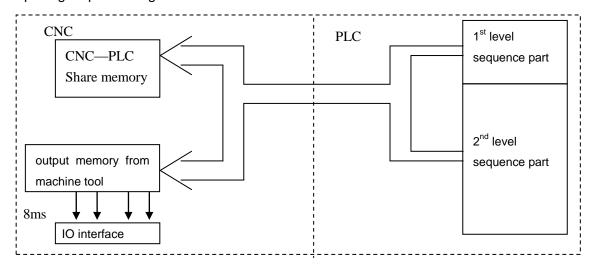



Fig. 2-8

## 2.5.1 Input signal processing

## (1) Input memory of NC

The input signals from NC are loaded in memory of NC and are transferred to the PLC at intervals of 8ms. Since the 1<sup>st</sup> level sequence part directly refer to these signal and process operations.

#### (2) Input signal memory to machine tool

The input signal memory stores signals transferred from the machine tool at intervals of 8ms period. Since the 1<sup>st</sup> level sequence part directly refer to these signal and process operations.

## (3) 2<sup>nd</sup> level input signal memory

The  $2^{nd}$  level input signal memory is also called as  $2^{nd}$  level synchronous input signal memory. The stored signals are processed by the  $2^{nd}$  level sequence part. State of the signals set this memory synchronizes with that of  $2^{nd}$  level sequence part.

Input memory Signals from NC and machine tool are transferred to the  $2^{nd}$  level input signal memory only at the beginning of execution of the  $2^{nd}$  level sequence part. Therefore, the state of the  $2^{nd}$  level synchronous input signal memory does not change from the beginning to end of the execution of the  $2^{nd}$  level sequence part.

# 2.5.2 Output signal processing

#### (1) NC output memory

The output signals are transferred form the PLC to the NC output memory at intervals of 8ms.

#### (2) Output signals to machine tool

Output signal to the machine tool from PLC output signal memory to the machine tool at intervals of 8ms.

Note:

The state of the NC input memory, NC output memory, input signals from machine, input/output memory signals to machine can be checked by using the PC self-diagnosis function. The self-diagnosis number specified is the address number used by the sequence program.

## 2.5.3 Synchronous processing the short pulse signal

1<sup>st</sup> program can process the short pulse signal. When the short pulse signal change is less than 8ms, i.e. when the system executes the 1<sup>st</sup> program, the input signal state can change to cause the followings.

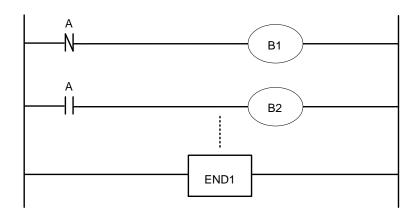



Fig. 2-9

When A=0 and B1=1, A becomes 1, at the moment, the system executes the next ladder statement to make B2=1. so, B1 and B2 become 1.

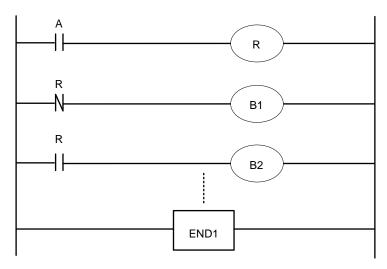



Fig. 2-10

When the medium relay R synchronously processes the signal A, B1, B2 are not 1 at the same time.

# 2.5.4 Difference state of signals between 1st level and 2nd level

The state of the same input signal may be different in the 1<sup>st</sup> level and 2<sup>nd</sup> level sequences as different input memory are used. That is, at 1<sup>st</sup> level, processing is performed using input signal memory and at 2<sup>nd</sup> level, processing is performed using the 2<sup>nd</sup> level synchronous input signal memory. Therefore, it is possible for a 2<sup>nd</sup> level sequence execution at the worst, compared with a 1<sup>st</sup> level input signal.

This must be kept in mind when writing the sequence program.

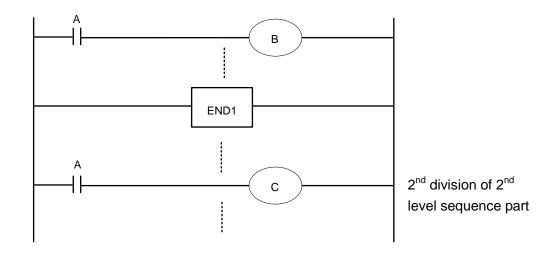



Fig. 2-11

When the processing is 1st 8ms, A=1, and B=1 after 1st sequence part is executed. At the same time, 2nd sequence part is started to execute A=1 is stored to the 2nd sequence part and the 1st division of 2nd sequence part is executed.

When the processing is 2nd 8ms, A=0, and B=0 after 1st sequence part is executed. And then 2nd division of 2nd sequence part is executed, at this time, A is still 1. So C=1. So, B and C are different.

# 2.6 Interlocking

Interlocking is externally important in sequence control safety.

Interlocking with the sequence program is necessary. However, interlocking with the end of the electric circuit in the machine tool magnetic cabinet must not be forgotten. Even though logically interlocked with the sequence program (software), the interlock will not work when trouble occurs in the hardware used to execute the sequence program. Therefore, always provide an interlock inside the machine tool magnetic cabinet panel to ensure operator safety and to protect the machine from damage.

# 3 Address

An address shows a signal location. Addresses include input/output signals with respect to the machine, the input/output signals with respect to the CNC, the internal relays, the meters, the timer, the keep relays, and data table. Each address consists of an address number and a bit number. Its serial number regulations are as follows:

Address regulations:

The address comprises the address type, address number and the bit number in the format as shown below:

 $\underline{X}$   $\underline{000}$ .  $\underline{6}$ Type Address number Bit number

Type: including X, Y, R, F, G K, A, D, C, T

Address number: decimal serial number stands for one byte.

Bit number: octal serial number,  $0\sim7$  stands for  $0\sim7$  bit of byte of front address number

GSK25i PLC address type is as follows Fig.3-1:

# Machine to PLC X Machine to PLC X Nesting PLC to machine Y Output signal Machine to PLC X Nesting PLC to machine Y Output signal PLC to machine Y Output signal

Fig. 3-1

| Address | Address explanation                   | Address range |
|---------|---------------------------------------|---------------|
| X       | machine→PLC(128 bytes)                | X0∼X127       |
| Υ       | PLC→machine(128 bytes)                | Y0∼Y127       |
| F       | CNC→PLC(256 bytes)                    | F0∼F255       |
| G       | PLC→CNC(256 bytes)                    | G0∼G255       |
| R       | Internal relay(1100 bytes)            | R0∼R1099      |
| D       | Data register(1860 bytes)             | D0∼D1859      |
| С       | Counter (400 bytes)                   | C0∼C 399      |
| Т       | Timer (200 bytes)                     | T0∼T199       |
| Α       | Timer preset data register (32 bytes) | A0∼A31        |
| K       | Keep relay (32 bytes)                 | K0∼K31        |

Table 3-1

## 3.1 Machine →PLC address (X)

X addresses of GSK25i PLC are divided into three:

- 1. X addresses are assigned to IO input interface.
- 2. X addresses are assigned to the input press keys on MDI panel.
- 3. X addresses are assigned to other external interfaces, such as the spindle, MPG control signal input.

## **3.1.1** Assignment of IO module X address

The addresses are from X9 to X119. Its type is INT8U, 111 types.

The signal specification of X addresses can be customized by customer according to the actual operation. X addresses are used to connect the machine tool with the ladder. For the initial definition of input address, see *Chapter Four Connection*.

## **3.1.2** Assignment of MDI panel X address

The addresses are from X0 to X8, 9 bytes. They correspond to the press keys on MDI panel. The corresponding relationship between them and the press keys on the standard panel is as Fig. 3-2:

Table 3-2

| INPUT KEY ON       | PLC     | INPUT KEY ON              | PLC       |
|--------------------|---------|---------------------------|-----------|
| OPERATION PANEL    | ADDRESS | OPERATION PANEL           | ADDRESS   |
| Auto mode          | X0.0    | -Z                        | X3.5      |
| Edit mode          | X0.1    | -4                        | X3.6      |
| MDI mode           | X0.2    | -5                        | X3.7      |
| Manual mode        | X0.3    | Spindle CCW               | X4.0      |
| MPG mode           | X0.4    | Spindle stop              | X4.1      |
| Zero mode          | X0.5    | Spindle CW                | X4.2      |
| DNC mode           | X0.6    | Spindle orientation       | X4.3      |
| USER1              | X0.7    | F0 / 0.001                | X4.4      |
| Single block       | X1.0    | 25% / 0.01                | X4.5      |
| Jump               | X1.1    | 50% / 0.1                 | X4.6      |
| Machine lock       | X1.2    | 100% / 1                  | X4.7      |
| Auxiliary lock     | X1.3    |                           |           |
| +4                 | X1.4    |                           |           |
| +Z                 | X1.5    |                           |           |
| -Y                 | X1.6    | Tool magazine in feed     | X5.3      |
| +5                 | X1.7    | Tool retraction           | X5.4      |
| Dry run            | X2.0    | Tool change manipulator   | X5.5      |
| Overtravel release | X2.1    | Tool magazine CCW         | X5.6      |
| Optional stop      | X2.2    | Tool magazine zero        | X5.7      |
| Program restart    | X2.3    | Clamp/release             | X6.0      |
| +X                 | X2.4    | USR2                      | X6.1      |
| Rapid              | X2.5    | USR3                      | X6.2      |
| Step               | X2.6    | USR4                      | X6.3      |
| -X                 | X2.7    | Feed hold                 | X6.4      |
| Cooling            | X3.0    | Cycle start               | X6.5      |
| Lubricating        | X3.1    | Tool magazine CCW         | X6.6      |
| Chin removed       | X3.2    | Feedrate override, up to  | X7.0-X7.4 |
| Chip removal       |         | 24-gear(no output light)  |           |
| Working light      | X3.3    | Spindle override, up to   | X8.0-X8.3 |
| vvoiking light     |         | 16-gear (no output light) |           |
| +Y                 | X3.4    | Emergency stop            | X8.4      |

## 3.1.3 MPG signal input X address

Table 3-3

| ı          | MPG signal input            | PLC address |
|------------|-----------------------------|-------------|
| HDC0_STP   | (MPG emergency stop signal) | X121.0      |
| HDC0_MX100 | (MPG federate override)     | X120.0      |
| HDC0_MX10  | (MPG federate override)     | X120.1      |
| HDC0_MX1   | (MPG federate override)     | X120.2      |
| HDC0_5     | (5 <sup>th</sup> axis)      | X120.3      |
| HDC0_4     | (4 <sup>th</sup> axis)      | X120.4      |
| HDC0_Z     | (Z axis)                    | X120.5      |
| HDC0_Y     | (Yaxis)                     | X120.6      |
| HDC0_X     | (X axis)                    | X120.7      |

## 3.2 PLC→machine side address (Y)

Y addresses of GSK25i PLC are divided into three:

- 1. Y addresses are assigned to IO input interface.
- 2. Y addresses are assigned to the indicators on MDI panel.
- 3. Y addresses are assigned to the indicators on MPG.

## 3.2.1 Y address of I/O output interface

The addresses are from Y8 to Y119. Its type is INT8U, 112 types.

The signal specification of Y addresses can be customized by customer according to the actual operation. Y addresses are used to connect the machine tool with the ladder. For the initial definition of input address, see *Chapter Four Connection*.

## 3.2.2 Assignment of IO module Y address

The addresses are from Y0 to Y7, 8 bytes. They correspond to the indicators on MDI panel. Addresses and indicators are as the following Table.3-4:

Table 3-4

| OUTPUT KEY ON                    | PLC     | OUTPUT KEY ON                         | PLC     |
|----------------------------------|---------|---------------------------------------|---------|
| OPERATION PANEL                  | ADDRESS | OPERATION PANEL                       | ADDRESS |
| Auto key indicator               | Y0.0    | -Z key indicator                      | Y3.5    |
| Edit key indicator               | Y0.1    | -4 key indicator                      | Y3.6    |
| MDI key indicator                | Y0.2    | -5 key indicator                      | Y3.7    |
| Manual key indicator             | Y0.3    | Spindle CCW key indicator             | Y4.0    |
| MPG key indicator                | Y0.4    | Spindle stop key indicator            | Y4.1    |
| Zero key indicator               | Y0.5    | Spindle CW key indicator              | Y4.2    |
| DNC key indicator                | Y0.6    | Spindle orientation key indicator     | Y4.3    |
| USER1 key indicator              | Y0.7    | F0 / 0.001 key indicator              | Y4.4    |
| Single block key indicator       | Y1.0    | 25% / 0.01 key indicator              | Y4.5    |
| Jump key indicator               | Y1.1    | 50% / 0.1 key indicator               | Y4.6    |
| Machine lock indicator           | Y1.2    | 100% / 1 key indicator                | Y4.7    |
| Auxiliary lock indicator         | Y1.3    | Tool magazine infeed key indicator    | Y5.3    |
| +4 key indicator                 | Y1.4    | Tool retraction key indicator         | Y5.4    |
| +Z key indicator                 | Y1.5    | Tool change key indicator             | Y5.5    |
| -Y key indicator                 | Y1.6    | Tool magazine CCW key indicator       | Y5.6    |
| +5 key indicator                 | Y1.7    | Tool magazine zero key indicator      | Y5.7    |
| Dry run key indicator            | Y2.0    | Clamp/release tool key indicator      | Y6.0    |
| Overtravel release key indicator | Y2.1    | USR2 key indicator                    | Y6.1    |
| Optional stop key indicator      | Y2.2    | USR3 key indicator                    | Y6.2    |
| Program restart key indicator    | Y2.3    | USR4 key indicator                    | Y6.3    |
| +X key indicator                 | Y2.4    | Feed hold key indicator               | Y6.4    |
| Rapid key indicator              | Y2.5    | Cycle start key indicator             | Y6.5    |
| Step key indicator               | Y2.6    | Tool magazine CW key indicator        | Y6.6    |
| -X key indicator                 | Y2.7    | X zero return indicator               | Y7.0    |
| Cooling key indicator            | Y3.0    | Y zero return indicator               | Y7.1    |
| Lubricating key indicator        | Y3.1    | Z zero return indicator               | Y7.2    |
| Chip removal key indicator       | Y3.2    | 4 <sup>th</sup> zero return indicator | Y7.3    |
| Working light key indicator      | Y3.3    | 5 <sup>th</sup> zero return indicator | Y7.4    |
| +Y key indicator                 | Y3.4    | System alarms                         | Y7.6    |

# 3.2.3 MPG signal light output

| MPG signal light output    | Y120.0  |
|----------------------------|---------|
| ivii O signai ligni output | 1 120.0 |

## 3.3 PLC→CNC address (G)

Addresses are from G0 to G255. Type: INT8U,256 bytes. G addresses are the signals from PLC to NC, and these signals have been defined in designing the CNC system and cannot be modified. The concrete is referred to Appendix 1.

## 3.4 CNC→PLC address (F)

Addresses are from F0 to F255. Type: INT8U,256 bytes. F addresses are the signals from NC to PLC, and these signals have been defined in designing the CNC system and cannot be modified. The concrete is referred to Appendix 1.

## 3.5 Internal relay address (R)

The address area is cleared to zero when the power is turned on. Type: INT8U, with 1100 bytes.

## R relay address number



Fig. 3-2

Note: the addresses from R1000 are used by PLC. For example: ADDB, SUBB functional command operation result are output to the register:

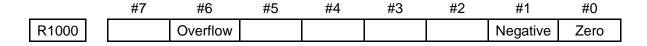



Fig. 3-3

# 3.6 Address of keep relay (K)

The area is used for the keep relays and PLC parameters. Since this area is nonvolatile, the content of the memory do not disappear even when the power is turned off.

Type: INT8U, with 32 bytes

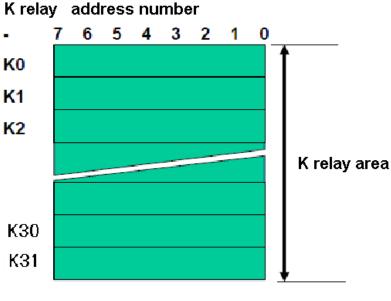



Fig. 3-4

# 3.7 Addresses(A) for message selection

The address area is cleared to zero when the power is turned on.

Type: INT8U, with 32 bytes.

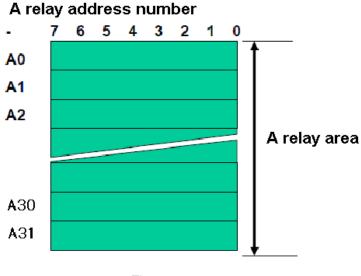



Fig. 3-5

## 3.8 Address of counter (C)

The area is used as storing current counting value in meter.

Type: 400 bytes.

C1 $\sim$ C100: count range: 0 $\sim$ 65535, can set increase/reducing count, and the counting value does not disappear even when the power is turned off.

## C counter address number

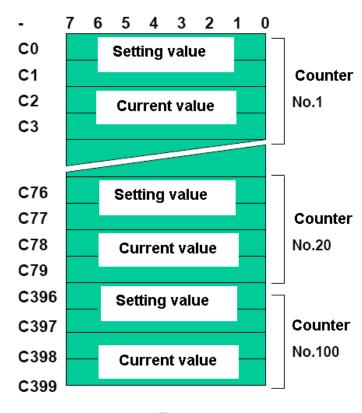
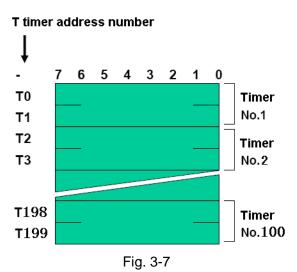
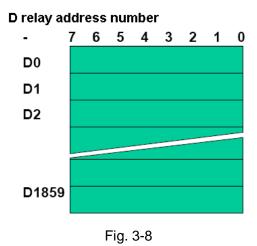




Fig. 3-6

# 3.9 Address of timer (T)

Type: 200 bytes.

T1~T100. The timing value does not disappear even when the system is turned off.




## 3.10 Address (D) of data table

Each data register has 8-bit, two continuous data registers can store 16-bit data, four continuous data registers can store 32-bit data.

The content of the memory do not disappear even when the power is turned off.

Number of data table: D0~D1859, 1860 bytes.



# 3.11 Label address (L)

Label addresses are used to specify jump destination labels and LBL labels in JMPB instructions. Range:  $L0\sim L9999$ 

# 3.12 Subprogram numbers (P)

Subprogram numbers are used to specify destination subprogram labels and SP instruction subprogram labels in CALL and CALLU instruction.

Range: P0~P511.

4

# PLC Basic Instruction

Designing a sequence program begins with writing a ladder diagram. The ladder diagram is written using relay contact symbols and functional instruction code. Logic written in the ladder diagram is entered as a sequence program in the Programmer. There are two sequence program entry methods. One is the entry method with the mnemonic language (PLC instructions such as LD, AND, OR). The other is the relay symbols of the ladder diagram. When the relay symbol method is used, the ladder diagram format can be used and programming can be performed without understanding the PLC instruction format.

Actually, however, the sequence program entered by the relay symbol method is also internally converted into the instruction corresponding to the PLC instruction.

The basic instructions are often used when the sequence program is designed, and the execute one-bit operation.

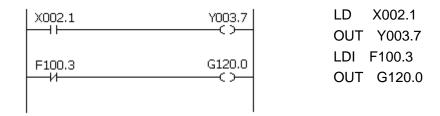
GSK25i basic instructions are as follows(see Table 4-1):

Table 4-1

| Instruction | Function                                                               |
|-------------|------------------------------------------------------------------------|
| LD          | Shifts left the content by one bit in register and sets the state of a |
|             | specified signal in ST0.                                               |
| LDI         | Shifts left the content by one bit in register and inverts the logic   |
| LDI         | state of a specified signal and sets it in ST0.                        |
| OUT         | Outputs the results of logic operation to a specified address.         |
| OUTI        | Inverts the results of logical operations and output it to a specified |
| 0011        | address.                                                               |
| AND         | Induces a logical product.                                             |
| ANI         | Inverts the state of a specified signal and induces a logical          |
| AINI        | product.                                                               |
| OR          | Induces a logical sum.                                                 |
| ORI         | Inverts the state of a specified signal and induces a logical sum.     |
| ORB         | Sets the logical sum of ST0 and ST1, and shifts the stack register     |
| OND         | right by one bit.                                                      |
| ANB         | Sets the logical product of ST0 and ST1, and shifts the stack          |
| VIAD        | register right by one bit.                                             |

# 4.1 LD, LDI, OUT, OUTI command

Instructions and functions (Table 4-2):


Table 4-2

| Instruction | Function                                                                         |  |
|-------------|----------------------------------------------------------------------------------|--|
| LD          | Shifts left the content by one bit in register and sets the state of a specified |  |
| LD          | signal in ST0.                                                                   |  |
| LDI         | Shifts left the content by one bit in register and sets the logic state of a     |  |
| LDI         | specified signal in ST0.                                                         |  |
| OUT         | Outputs the results of logic operation to a specified address.                   |  |
| OUTI        | Inverts the results of logical operations and output it to a specified address.  |  |

Instruction specifications:

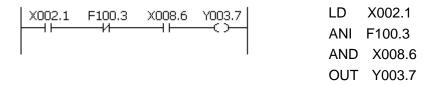
- OUT, OUTI are the output relay, internal relay instructions. They cannot be used to input relay.
- The parallel OUTI instruction can be continuously used many times.

## Programming



# 4.2 AND, ANI command

Instructions and functions (Table 4-3):


Table 4-3

| Instruction | Function                                                               |  |
|-------------|------------------------------------------------------------------------|--|
| AND         | Induces a logical product.                                             |  |
| ANI         | Inverts the state of a specified signal and induces a logical product. |  |

Instruction specifications:

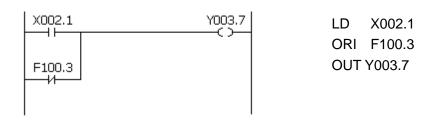
 AND, ANI can connect with one contact in serial. The serial contact numbers are not limited and they can be used many times.

## Programming



# 4.3 OR, ORI command

Instructions and functions (Table 4-4)


Table 4-4

| Instruction | Function                                                           |  |
|-------------|--------------------------------------------------------------------|--|
| OR          | Induces a logical sum.                                             |  |
| ORI         | Inverts the state of a specified signal and induces a logical sum. |  |

Instruction specification:

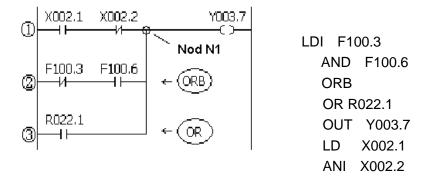
- OR, ORI can connect with one contact in parallel.
- OR, ORI begins from their step, which can connect with the mentioned step in parallel.

## Programming:



## 4.4 ORB command

Instruction and function(Table 4-5):


Table 4-5

| Instruction                      | Function                                            |  |
|----------------------------------|-----------------------------------------------------|--|
| ORB                              | Sets the logical sum of ST0 and ST1, and shifts the |  |
| stack register right by one bit. |                                                     |  |

Instruction specification:

ORB a sole instruction without other address.

#### **Programming**



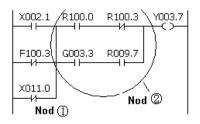
As the above figure, there are three branch circuit 1, 2, 3 from left bus to the node N1, among which 1, 2 is circuit block in series; when there is the serial circuit block in the parallel from the bus to node or between nodes, the following branch end uses ORB instruction except for the first branch.

The branch ③ is not serial circuit block to use OR instruction.

ORB and ANB are instructions without operation components, indicating the ORB, ANB relationship between circuit blocks.

## 4.5 ANB command

Instruction and function (Table 4-6):


Table 4-6

| Instru | uction | Function                                                                                 |
|--------|--------|------------------------------------------------------------------------------------------|
| 1A     | NΒ     | Sets the logical product of ST0 and ST1, and shifts the stack register right by one bit. |

## Instruction specification

- When the branch loop (parallel loop block) is connected to the previous loop in series, use ANB instruction. The starting point of branch uses LD, LDI instruction, after the parallel loop block ends, ANB instruction is connected to previous loop in series.
- ANB a sole instruction without other address.

## Programming



LD X002.1
ORI F100.3
ORI X011.0
LD R100.0
ANI R100.3
LD G003.3
AND R009.7
ORB ← (1)
ANB ← (2)
OUT Y003.7

As the above figure and instruction list, (1)ORB reports the series circuit block in block (2)is connected parallel (2)ANB reports the block (1) and (2) are connected in series.

# 5 PLC Functional Instructions

Basic instructions such as controlling operations of machine tool are difficult to program, therefore, functional instructions are available to facilitate programming.

25i PLC functional instruction as follows(Table 5-1):

Table 5-1

| No. | Instruction | Processing                                    |
|-----|-------------|-----------------------------------------------|
| 0   | END1        | End of a 1 <sup>st</sup> level ladder program |
| 1   | END2        | End of a 2 <sup>nd</sup> level ladder program |
| 2   | TMR         | Timer processing                              |
| 3   | TMRB        | Fixed timer processing                        |
| 4   | TMRC        | Timer processing                              |
| 5   | DECB        | Binary decoding                               |
| 6   | CTR         | Counter processing                            |
| 7   | CTRC        | Counter processing                            |
| 8   | ROTB        | Binary rotation control                       |
| 9   | CODB        | Binary code conversion                        |
| 10  | MOVE        | Data transfer after logic AND                 |
| 11  | MOVOR       | Data transfer after logic OR                  |
| 12  | MOVB        | Transfer of 1 byte                            |
| 13  | MOVW        | Transfer of 2 bytes                           |
| 14  | MOVN        | Transfer of an arbitrary number of bytes      |
| 15  | PARI        | Parity check                                  |
| 16  | DCNVB       | Data conversion                               |
| 17  | COMPB       | Binary comparison                             |
| 18  | COIN        | Coincidence check                             |
| 19  | DSCHB       | Binary data search                            |
| 20  | XMOVB       | Binary indexed data transfer                  |
| 21  | ADDB        | Binary addition                               |
| 22  | SUBB        | Binary subtraction                            |
| 23  | MULB        | Binary multiplication                         |
| 24  | DIVB        | Binary division                               |
| 25  | NUMEB       | Binary constant definition                    |
| 26  | DIFU        | Edge Up detection                             |

| 27 | DIFD   | Failing edge detection         |
|----|--------|--------------------------------|
| 28 | SFT    | Register shift                 |
| 29 | EOR    | Exclusive OR                   |
| 30 | AND    | Exclusive AND                  |
| 31 | OR     | Exclusive OR                   |
| 32 | NOT    | Logic NOT                      |
| 33 | СОМ    | Common line control            |
| 34 | COME   | End of common line control     |
| 35 | JMP    | Jump                           |
| 36 | JMPE   | End of a jump                  |
| 37 | CALL   | Conditional subprogram call    |
| 38 | CALLU  | Unconditional subprogram call  |
| 39 | JMPB   | Label jump                     |
| 40 | JMPC   | Label jump                     |
| 41 | LBL    | Label                          |
| 42 | SP     | Subprogram                     |
| 43 | SPE    | End of a subprogram            |
| 44 | WINDR  | Reading data on the CNC window |
| 45 | WINDW  | Writing data on the CNC window |
| 46 | AXLCTL | PLC axial control              |
| 47 | PSGNL  | Position signal output         |
| 48 | PSGN2  | Position signal output 2       |

# 5.1 END1 (1<sup>st</sup> level sequence program end)

**Function:** It must be specified once in a sequence program, either at the end of the 1<sup>st</sup> level sequence, or at the beginning of the 2<sup>nd</sup> level sequence when there is no 1<sup>st</sup> level sequence. The 1<sup>st</sup> level is used to execute the actions required high respond speed such as emergency stop, jump etc.. Format:

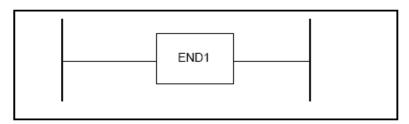



Fig. 5-1

## **Command table format:**

Table 5-2

| No. | Command | Operand | Remark                               |
|-----|---------|---------|--------------------------------------|
| 1   | FUNC    | 0       | End of 1 <sup>st</sup> level program |

# 5.2 END2 (2nd level sequence program end)

Function:

Specify at the end of 2<sup>nd</sup> level sequence.

Format:

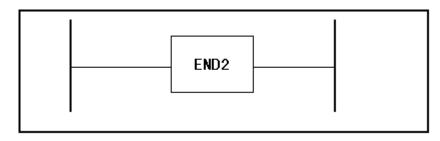



Fig. 5-2

## **Command table**

Table 5-3

| No. | Command | Operand | Remark                               |
|-----|---------|---------|--------------------------------------|
| 1   | FUNC    | 1       | End of 2 <sup>nd</sup> level program |

Note: Only the subprograms of SP head, SPE end are added to the ladder following END2, otherwise, the system prompts the wrong.

# 5.3 TMR (Timer)

Function:

This is an on-delay timer.

Format:

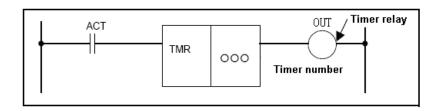



Fig. 5-3

## **Command table format:**

Table 5-4

| No. | Command | Operand | Remark               |
|-----|---------|---------|----------------------|
| 1   | LD      | 0000.0  | Exclusive conditions |
| 2   | FUNC    | 2       | Timer command TMR    |
| 3   | PRM     | 000     | Timer number         |
| 4   | OUT     | 0000.0  | Timer relay          |

**Control conditions**: ACT=0, turns off timer relay.

ACT=1, start TIMER.

Concrete working conditions are as follows:

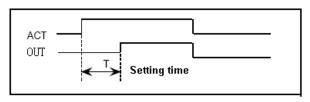



Fig. 5-4

#### Parameter:

Timer number: reports with  $\circ\circ\circ$ ,  $\circ\circ\circ$  are the number(1 $\sim$ 100).

## Output:

OUT: timer relay.

OUT =1 ACT processing is done and reaches the preset time, the timer relay processing is done, OUT =1.

OUT =0 ACT processing is not done or has not reached the preset time, the timer relay is turned off, OUT =0.

## Setting timer:

For timer TMR delay time setting value, 1<sup>st</sup> -20<sup>th</sup> timer take 48ms as the unit setting, and the maximum setting value is 3145680ms; when the value less than 48ms is omitted; 21<sup>st</sup> to 100<sup>th</sup> timer take 8ms as the unit setting and the maximum setting value is 524280ms, and the value less than 8ms is omitted.

For example: when the 1<sup>st</sup> timer value is 100ms, the set actual value is 96ms, 100=48×2+4 and the remainder 4 is omitted.

# 5.4 TMRB (fixed timer)

## Function:

The timer is used as a fixed on-delay timer.

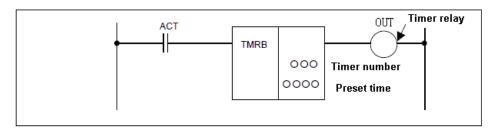



Fig. 5-5

Table 5-5

| No. | Command | Operand | Remark               |
|-----|---------|---------|----------------------|
| 1   | LD      | 0000.0  | Exclusive conditions |
| 2   | FUNC    | 3       | Fixed timer TMRB     |
| 3   | PRM     | 000     | Timer number         |
| 4   | PRM     | 0000    | Timer time           |
| 5   | OUT     | 0000.0  | Timer relay          |

#### Control condition:

ACT=0: turn off timer relay.

ACT=1: start timer.

## Parameter:

Timer number set timer number of the fixed timer (1~100).

Timer time setting preset time (set delay time 8ms~999999ms)

The range of the preset time is 8ms nd the remainder is omitted. For example: the preset is 38ms, 38==8\*4+6, and the remainder is discarded and the actual setting time is only 32ms.

## Timer relay:

OUT: timer relay.

OUT=1 ACT processing is done and reaches the preset time, the timer relay processing is done, OUT=1.

OUT=0 ACT processing is not done or has not reached the preset time, the timer relay is turned off, OUT=0.

Note: TMR timer number can set the timer parameter to be modified, and it is saved when power-off; the fixed timer number of TMRB is a timer parameter directly processed in the system internal, is not saved when power off, and cannot be modified by the user.

# 5.5 TMRC (timer)

#### Function:

TMRC is the on-delay timer using the address to set the fixed time. The processing data type is the binary data.

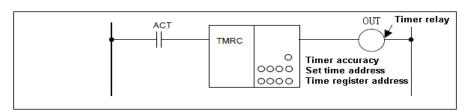



Fig. 5-6

Table 5-6

| No. | Command | Operand | Remark               |
|-----|---------|---------|----------------------|
| 1   | LD      | 0000.0  | Exclusive conditions |
| 2   | FUNC    | 4       | TMRC command         |
| 3   | PRM     | 0       | Timer precision      |
| 4   | PRM     | 0000    | Timer time address   |
| 5   | PRM     | 0000    | Time register        |
| 6   | OUT     | 0000.0  | Timer relay          |

## Control condition:

ACT=0: turns off the timer relay.

ACT=1: starts the timer.

## Parameter:

Timer precision: timer precision, parameter setting value, setting time and error are as follows:

Table 5-7

| Timer accuracy | Setting value | Setting time        | Timer accuracy error |
|----------------|---------------|---------------------|----------------------|
| 8 ms           | 0             | 8 ms to 52428 ms    | 0 to ±8ms            |
| 48 ms          | 1             | 48 ms to 3145680 ms | 0 to ±8ms            |
| 1s             | 2             | 1s to 65535 s       | 0 to ±8ms            |

Setting time address: the first address of the timer set time filed.

Timer register address: the first address of a specified continuous four-byte R is used as the system working area and is used in timer working.

## Timer relay:

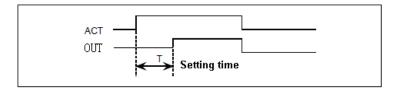



Fig. 5-7

## OUT: timer relay.

- OUT =1 ACT processing is done and reaches the preset time, the timer relay processing is done,, OUT =1.
- OUT =0 ACT processing is not done or has not reached the preset time, the timer relay is turned off, OUT =0.

# **5.6 DECB** (binary decode)

## Function:

DECB decodes the binary data with 1, 2, 4 bytes, the corresponding output data is 1 when one of the specified 8-digit continuous data is equal to the code data, and 0 when not.

The command is used to decode M or T function.

#### Format:

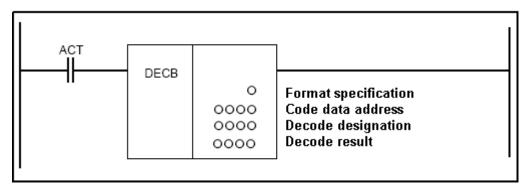



Fig. 5-8

## **Control condition:**

ACT=0: resets all the output data bits.

ACT=1: decodes data. Results of processing is set in the output data address.

## Command table format:

Table 5-8

| No. | Command | Operand | Remark                |
|-----|---------|---------|-----------------------|
| 1   | LD      | 0000.0  | Control condition     |
| 2   | FUNC    | 5       | DECB command          |
| 3   | PRM     | 0       | Format specification  |
| 4   | PRM     | 0000    | Code data address     |
| 5   | PRM     | 0000    | Decode designation    |
| 6   | PRM     | 0000    | Decode output address |

#### Parameters:

Format specification: Set the size of code data to the 1<sup>st</sup> digit of the parameter.

0001: code data is in binary format of 1-byte length.

0002: code data is in binary format of 2-byte length.

0004: code data is in binary format of 4-byte length.

Code data address: specify an address of a memory code data.

Decoding designating: designate the first number of the decoding continuous codes.

Decoding result address: designate an address of the output decoding result covering

1-byte. The decoding result of the designated number is output to

the 0-digit of the address, and the decoding result of the specified number +1 is output to 1-digit and the continuous 8 numbers are done like this.

## Example:

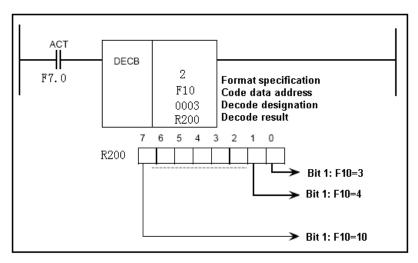



Fig. 5-9

After F7.0 is turned on, 2-byte data of F10 $\sim$ F11 are decoded. When the decoding data is in the range 3 $\sim$ 10, the corresponding bit of R200 becomes 1.

# 5.7 CTR (counter)

## Function:

The counter data type is the binary format and has the following functions to meet its application.

- Preset counter
   Output a signal when the preset count is reached.
- Ring counter
   Upon reaching the preset count, returns to the initial value by issuing another count signal.
- Up/down counter
   The count can be either up or down.
- Selection of initial value
   Select the initial value as either 0 or 1.

### Format:

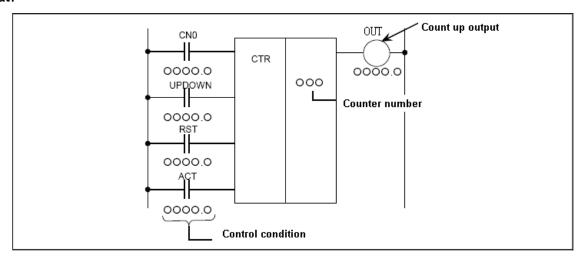



Fig. 5-10

## Command table format:

Table 5-9

| No. | Command | Operand | Remark          |
|-----|---------|---------|-----------------|
| 1   | LD      | 0000.0  | CN0             |
| 2   | LD      | 0000.0  | UPDOWN          |
| 3   | LD      | 0000.0  | RST             |
| 4   | LD      | 0000.0  | ACT             |
| 5   | FUNC    | 6       | CTR             |
| 6   | PRM     | 0000    | Counter number  |
| 7   | OUT     | 0000.0  | Count up output |

## **Control conditions:**

CN0: Specify the initial value

CN0=0 begins the value of the counter with 0.

CN0=1 begins the value of the counter with 1.

UPDOWN: specify up or down counter:

UPDOWN=1 Up counter (the initial value is set by CN0).

UPDOWN=0 Down counter(the counter begins with te preset value).

RST: reset

RST=0 Releases reset.

RST=1 Enables reset. When OUT is reset to 0, the counter value is reset to the initial value(when the Up counter is done, it is 0 or 1 according to CN0 setting), when it is Down counter, it is the preset value of the counter).

ACT: Counter signal

ACT=1: counter is made by catching the rise of ACT.

ACT=0: counter does not operate. OUT does not change.

## Parameter:

Counter number : specify the counter number and it is  $1\sim100$ .

## Output:

OUT : when the count is up to a preset value, the Up count reaches the maximum value or the minimum value, OUT = 1.

Note: When the counter is Up edge, the system executes the count. When the count number is repetitive, the operation is unexpected.

The current, preset value of the counter is set in 【Counter】 of 【PLC parameter】 in PLC window.

# 5.8 CTRC (counter)

#### Function:

The data in the counter is binary and the counter has the following functions.

1) Preset counter

Preset the count value and if the count reaches this preset value, outputs to show that.

2) Ring counter

This is the ring counter which is reset to the initial value when the count signal is input after the count reaches the preset value.

3) Up/down counter

This is the reversible counter to be used as both the up counter and down counter.

4) Selection of the initial value

Either 0 or 1 can be selected as the initial value.

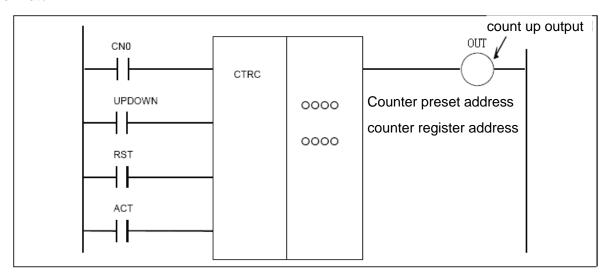



Fig. 5-11

Table 5-10

| No. | Command | Operand | Remark                   |
|-----|---------|---------|--------------------------|
| 1   | LD      | 0000.0  | CN0                      |
| 2   | LD      | 0000.0  | UPDOWN                   |
| 3   | LD      | 0000.0  | RST                      |
| 4   | LD      | 0000.0  | ACT                      |
| 5   | FUNC    | 7       | CTRC command             |
| 6   | PRM     | 0000    | Counter preset address   |
| 7   | PRM     | 0000    | Counter register address |
| 8   | OUT     | 0000.0  | Count up output          |

## **Control conditions:**

CN0: Specifying the initial value

CN0=0 the count value starts with 0.

CN0=1 the count value starts with 1.

UPDOWN: Specifying up or down counter

UPDOWN=1 Up counter.

UPDOWN=0 Down counter.

RST: reset

RST=0 release reset.

RST=1 enable reset. When OUT is set to 0 the count value is reset to the initial value.

ACT: count signal

ACT=1: the counter operates at the rise of this signal.

ACT=0: the counter does not operate, OUT does not change.

## Parameter:

Counter preset value address: the first address of the counter preset value field with 2-byte is set. The continuous 2-byte memory space from the first address is required for this field and the field D is binary and its range is 0~32767.

Counter register address: The first address of the counter register field is set, the continuous

4-byte memory space from the first address is required for this field
and the field D is normally used. The first two-byte is accumulated
value and the second two –byte is the system working area.

Note: When field R is specified as the counter register address, the counter starts with count value "0" after powered on.

## Output:

OUT: When the count value reaches the preset value, the count reaches the maximum in the Up count or the minimum value in the Down count, OUT = 1.

# 5.9 ROTB (binary rotation control)

## Function:

It is used to control the rotor, such as the tool post, rotary table, etc., and the data processed by ROTB is binary.

#### Control conditions:

CN0: specify the starting number of the rotor.

CNO=0 begins the number of the position of the rotor with 0.

CNO=1 begins the number of the position of the rotor with 1.

DIR : select the rotation direction via the shorter path or not.

DIR=0 no direction is selected. The direction of rotation is only forward.

DIR=1 selected. The direction of rotation is forward or reverse via the shorter path.

POS: specify the operating conditions.

POS=0 calculates the Designation position.

POS=1 calculates the position one position before the Designation position.

INC: specify the position or the number of steps.

INC=0 calculates the number of the position. When the position one position before the Designation position is to be calculated, specify INC=0 and POS=1.

INC=1 calculates the number of steps. When the difference between the current position and the Designation position is to be calculated, specify INC=1 and POS=0.

ACT: Execution command

ACT= 0: the ROT command is not executed and OUT does not change.

ACT=1: ROT command is executed.

## Format:

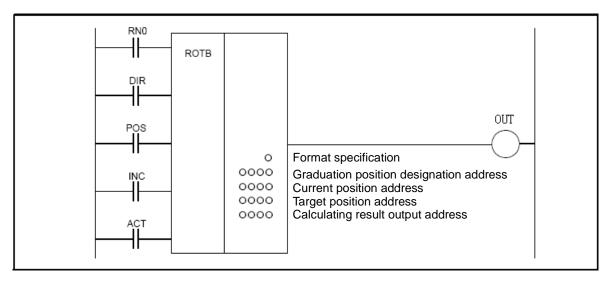



Fig. 5-12

## Command table format:

**Table 5-11** 

| NIa | Commond | 0.5.5.5.5.5 | Demesti                           |
|-----|---------|-------------|-----------------------------------|
| No. | Command | Operand     | Remark                            |
| 1   | LD      | 0000.0      | RN0                               |
|     |         |             | Selection of the shortest path    |
| 2   | LD      | 0000.0      | DIR                               |
| 3   | LD      | 0000.0      | Operation condition POS           |
| 4   | LD      | 0000.0      | Selection of calculation position |
| 4   | LD      | 0000. 0     | or number of step INC             |
| 5   | LD      | 0000.0      | ACT                               |
| 6   | FUNC    | 8           | ROTB                              |
| 7   | PRM     | 0           | Format specification              |
| 8   | PRM     | 0000        | Rotor indexed position address    |
| 9   | PRM     | 0000        | Current position address          |
| 10  | PRM     | 0000        | Target position address           |
| 11  | PRM     | 0000        | Calculating result output address |
| 12  | OUT     | 0000.0      | Rotation direction output         |

## Parameter:

Format : specifies data length (1, 2, or 4 bytes).

1: 1 byte

2: 2 bytes

4: 4 bytes

Rotor indexed address: specifies the address containing the number of rotary element positions to be indexed.

Current position address: specifies the address to store the current position.

Designation position address: specifies the address (or command value) to store the Designation position, such as the address of T code is output from CNC.

Calculation result output address: calculate the rotary steps of rotor and the step to reach the Designation position or the position before the Designation. When the calculated result is used, whether ACT is 1 or not is checked.

## Output:

OUT: the rotation direction output. The rotation direction via the short paths output to OUT. OUT =0: the direction is forward (FOR); OUT =1: it is reverse (REV), FOR and REV definitions are as Fig. 5-13, the direction to increase the rotor position number is forward(FOR); to decrease the position number is reverse(REV).

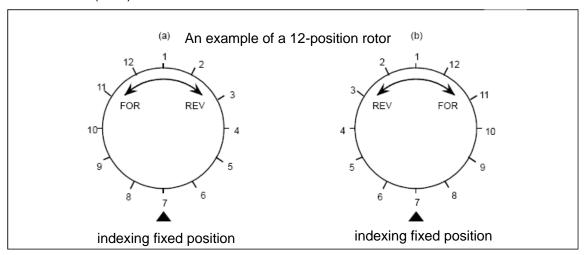



Fig. 5-13

# **5.10** CODB (binary code conversion)

#### Function:

The command converts the data in binary format to an optional binary format 1-byte, 2-byte or 4-byte, and the maximum quantity of conversion table is 256.

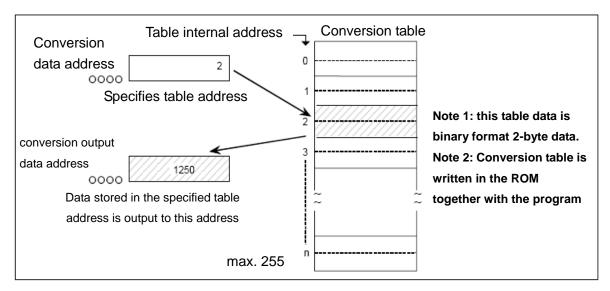



Fig. 5-14

### Format:

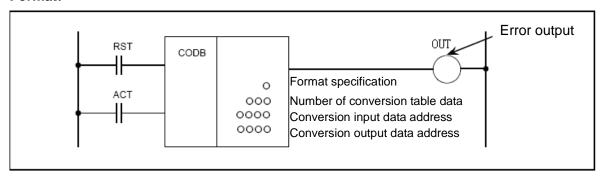



Fig. 5-15

## Command table format:

Table 5-12

| No. | Command | Operand | Remark                         |
|-----|---------|---------|--------------------------------|
| 1   | LD      | 0000.0  | RST                            |
| 2   | LD      | 0000.0  | ACT                            |
| 3   | FUNC    | 9       | CODB                           |
| 4   | PRM     | 0       | Format specification           |
| 5   | PRM     | 0000    | Number of data table           |
| 6   | PRM     | 0000    | Conversion input data address  |
| 7   | PRM     | 0000    | Conversion output data address |
| 8   | TABLE   | 0000    | Table address 0 inverts data   |
| 9   | :       | :       |                                |
| 10  | :       | :       |                                |
| n   | OUT     | 0000.0  | Error output                   |

## **Control conditions:**

RST reset

RST=0 do not reset.

RST=1 reset error output OUT.

ACT activate command

ACT=0 do not execute COD command.

ACT=1 execute COD command.

#### Parameter:

Format specification: designates binary numerical size in the conversion table.

- 1: numerical data is binary 1-byte data.
- 2: numerical data is binary 2-byte data.
- 4: numerical data is binary 4-byte data.

Number of conversion table data: designates size (1-256) of conversion table data can be made.

Conversion input data address: data in the conversion data table can be taken out by specifying the table number. The address specifying the table number is called conversion input data address, and 1-byte memory is required from

the specified address.

Conversion data output address: memory of the byte length specified in the format specification is necessary from the specified address.

## Output:

When there are any abnormality when executing the CODB command, OUT=1 and error will be output.

# **5.11 MOVE** (logical product transfer)

## Function:

ANDs logical multiplication data and input data, and outputs the results to a specified address. Can also be used to remove unnecessary bits from an eight-bit signal in a specific address, etc..

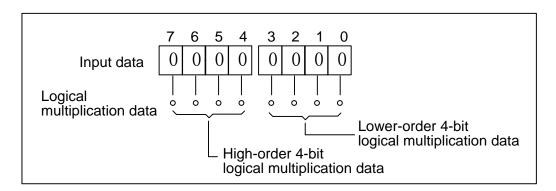



Fig. 5-16

## Format:

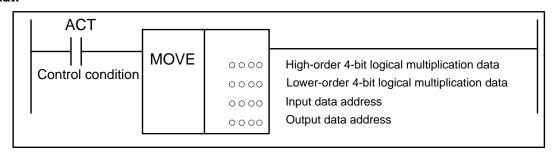



Fig. 5-17

## **Command table format:**

**Table 5-13** 

| No. | Command | Operand | Remark                                       |
|-----|---------|---------|----------------------------------------------|
| 1   | LD      | 0000.0  | ACT                                          |
| 2   | FUNC    | 10      | MOVE                                         |
| 3   | PRM     | 0000    | high-order 4-bit logical multiplication data |
| 4   | PRM     | 0000    | Low-order 4-bit logical multiplication data  |
| 5   | PRM     | 0000    | Input data address                           |
| 6   | PRM     | 0000    | Output data address                          |

## **Control conditions:**

ACT=0: MOVE command is not executed.

ACT=1: MOVE command is executed.

## Using example:

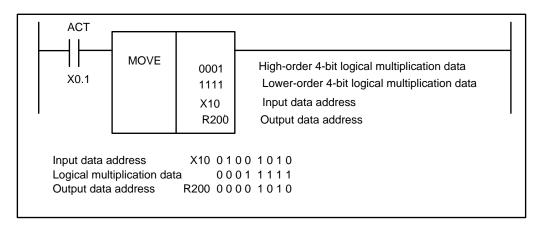



Fig. 5-18

# 5.12 MOVOR (data transfer after logical or)

## **Function:**

This command Ors the input data and the logical or data and transfer the result to the destination.

## Format:

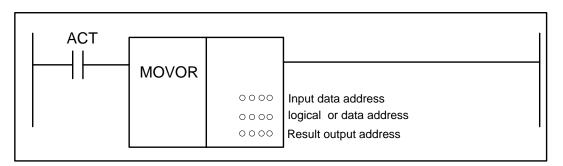



Fig. 5-19

## **Command table format:**

Table 5-14

| No. | Command | Operand | Remark             |
|-----|---------|---------|--------------------|
| 1   | LD      | 0000.0  | ACT                |
| 2   | FUNC    | 11      | MOVOR              |
| 3   | PRM     | 0000    | Input data address |
| 4   | PRM     | 0000    | Logical or data    |
| 5   | PRM     | 0000    | Output data        |

#### **Control conditions:**

ACT=0: do not execute MOVOR command.

ACT=1: execute MOVOR.

#### Parameter:

Input data address: specifies the address for the input data.

Logical or data address: specifies the address of the logical or data with which to OR the

transferred data.

Output address: output the result in the logical sum data address.

# 5.13 MOVB (transfer of 1 byte)

#### Function:

The command transfer 1-byte data from a specified source address to a specified destination address.

#### Format:

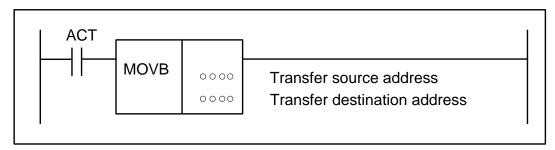



Fig. 5-20

## Command table format:

Table 5-15

| No. | Command | Operand | Remark                       |
|-----|---------|---------|------------------------------|
| 1   | LD      | 0000.0  | ACT                          |
| 2   | FUNC    | 12      | MOVB                         |
| 3   | PRM     | 0000    | Transfer source address      |
| 4   | PRM     | 0000    | Transfer destination address |

## Control conditions:

ACT Execution specification

ACT=0 : do not execute MOVB command and no data is transferred.

ACT=1 : execute MOVB command and one-byte data is transferred.

#### Parameter:

Data source address : specifies source address.

Data destination address : specifies destination address.

# 5.14 MOVW (transfer of 2 bytes)

## **Function:**

The command transfers 2-bytes data from a specified source address to a specified destination address.

#### Format:

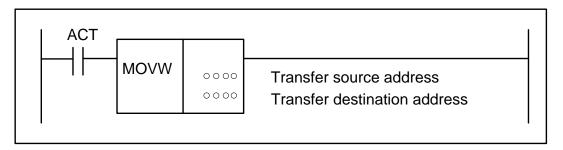



Fig. 5-21

## Command table format:

**Table 5-16** 

| No. | Command | Operand | Remark                       |
|-----|---------|---------|------------------------------|
| 1   | LD      | 0000.0  | ACT                          |
| 2   | FUNC    | 13      | MOVW                         |
| 3   | PRM     | 0000    | Transfer source address      |
| 4   | PRM     | 0000    | Transfer destination address |

#### **Control conditions:**

ACT Execution specification

ACT=0 : do not execute MOVW, no data is transferred.

ACT=1 : execute MOVW command and two-byte data is transferred.

## Parameter:

Data source address: specifies source address.

Data destination address: specifies destination address.

# 5.15 MOVN (transfer of an arbitrary number of bytes)

## Function:

The command transfers data consisting of an arbitrary number of bytes from a specified source address to a specified destination address.

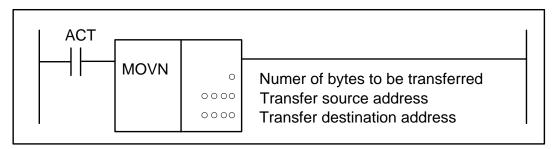



Fig. 5-22

**Table 5-17** 

| No. | Command | Operand | Remark                            |
|-----|---------|---------|-----------------------------------|
| 1   | LD      | 0000.0  | ACT                               |
| 2   | FUNC    | 14      | MOVN                              |
| 3   | PRM     | 0       | Number of bytes to be transferred |
| 4   | PRM     | 0000    | Transfer source address           |
| 5   | PRM     | 0000    | Transfer destination address      |

#### Control conditions:

ACT execution specification

ACT=0 : do not execute MOVN command, no data is transferred.

ACT=1 : execute MOVE command, and a specified number of bytes are

transferred.

## Parameter:

Number of bytes to be transferred : specify the number  $(1\sim200)$  of bytes to be transferred.

Data source address: specifies the source address.

Data destination address: specifies the destination address.

# 5.16 PARI (parity check)

## Function:

Checks the parity of code signals, and outputs an error if an abnormality is detected. Specifies either an even-or odd-parity check. Only one-byte (eight bits) of data can be checked.

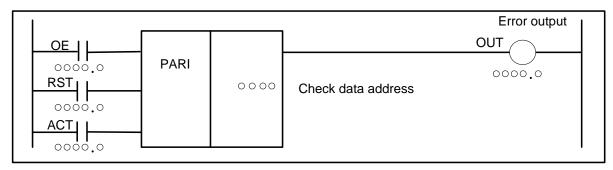



Fig. 5-23

Table 5-18

| No. | Command | Operand | Remark             |
|-----|---------|---------|--------------------|
| 1   | LD      | 0000.0  | O.E                |
| 2   | LD      | 0000.0  | RST                |
| 3   | LD      | 0000.0  | ACT                |
| 4   | FUNC    | 15      | PARI               |
| 5   | PRM     | 0000    | Check data address |
| 6   | OUT     | 0000.0  | Error output       |

## **Control conditions:**

O.E specify even or odd.

O.E=0: even-parity check.

O.E=1: odd-parity check.

RST reset

RST=0: disables reset.

RST=1: sets error output coil OUT, that is, when OUT =1, RST=1. OUT =0.

ACT execution command

ACT=0: parity checks are not performed and the output does not change.

ACT=1: execute PARI command, performing a parity check.

## Output:

If the result of executing the PARI command is abnormal, the check address data has 1-bit even in the odd check or 1-bit odd in the even check, OUT=1.

# 5. 17 DCNVB (extended data conversion)

#### Function:

This command converts 1, 2, and 4-byte binary code into BCD or vice versa.

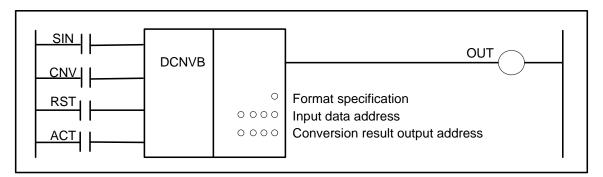



Fig. 5-24

Table 5-19

| No. | Command | Operand | Remark                   |
|-----|---------|---------|--------------------------|
| 1   | LD      | 0000.0  | SIN                      |
| 2   | LD      | 0000.0  | CNV                      |
| 3   | LD      | 0000.0  | RST                      |
| 4   | LD      | 0000.0  | ACT                      |
| 5   | FUNC    | 16      | DCNVB                    |
| 6   | PRM     | 0       | Format specification     |
| 7   | PRM     | 0000    | Input data address       |
| 8   | DDM     | 0000    | Conversion result output |
| 0   | PRM     | 0000    | address                  |
| 9   | OUT     | 0000.0  | Error output             |

#### **Control conditions:**

SIN sign of the data to be converted

This parameter is significant only when you are converting BCD data into binary coded data. It gives the sign of the BCD data. Though it is insignificant when you are converting binary into BCD data, you cannot omit it.

SIN=0: BCD code to be input is positive.

SIN=1: BCD code to be input is negative.

CNV type of conversion

CNV=0: convert binary data into BCD data.

CNV=1: convert BCD data into binary data.

RST reset

RST=0: release reset.

RST=1: reset error output coil OUT, that is, when OUT=1 and RST=1, OUT=0.

ACT execution command

ACT=0: data is not converted, and OUT does not change.

ACT=1: data is converted.

## Parameter:

Format specification : specify data length.

1: 1 byte.

2: 2 bytes.

4: 4 bytes.

Input data address conversion: specify the address containing the input data address. The address of the specified table number is called as the input address of the conversion data. The address needs to provide a memory with one byte.

Address for the conversion result output: specify the output address of conversion data. Specify the number of byte of memory in the format starting from the specified address.

## **Error output (OUT):**

OUT =0: correct conversion.

OUT =1: abnormally.

The data to be converted is specified as BCD data but is found to be binary data, or the specified number of bytes(byte length) cannot contain the BCD data into which a binary data is converted, OUT=1.

# Operation output register R1000

Set the register after the data conversion. When the binary data is converted into BCD data, and definition of each bit is as follows (table 5-25):

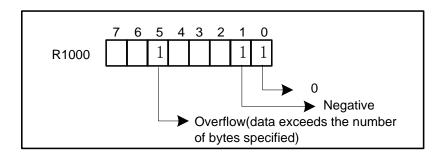



Fig. 5-25

# 5. 18 COMPB (binary compassion)

## Function:

Compare the size of two binary data and comparison result is stored in the comparison result address. Specify enough byte in memory area when executing COMPB command to memory input and comparison values.

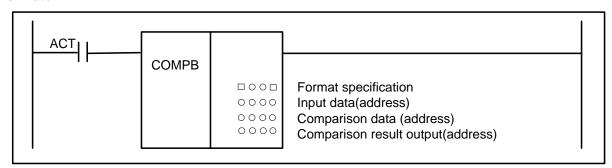



Fig. 5-26

Table 5-20

| No. | Command | Operand | Remark                   |
|-----|---------|---------|--------------------------|
| 1   | LD      | 0000.0  | ACT                      |
| 2   | FUNC    | 17      | СОМРВ                    |
| 3   | PRM     | 000     | Format specification     |
| 4   | PRM     | 0000    | Input value              |
| 5   | PRM     | 0000    | Comparison data address  |
| 6   | PRM     | 0000    | Comparison result output |

## **Control conditions:**

ACT=0: does not execute COMPB command.

ACT=1: execute COMPB command.

#### Parameter:

Format destination: the specified format (constant or address) of input data and specified data length (1, 2 bytes).

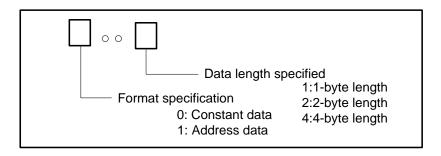



Fig. 5-27

Input data: specifies the comparison input data. The input data can be specified as either a constant or the address.

Comparison data: specifies the comparison data address.

Comparison result output: specifies the comparison result output covering one byte.

Comparison result output address:

| Comparison result output address bit:                                               | bit5 | Bit2 | Bit1 | Bit0 |
|-------------------------------------------------------------------------------------|------|------|------|------|
| Input data = data compared                                                          | 0    | 0    | 0    | 1    |
| Input data>data compared                                                            | 0    | 0    | 1    | 0    |
| Input data <data compared<="" td=""><td>0</td><td>1</td><td>0</td><td>0</td></data> | 0    | 1    | 0    | 0    |
| data overflow                                                                       | 1    | 0    | 0    | 0    |

# **5.19** COIN (coincidence check)

## **Function:**

Checks whether the input value and comparison value coincide and the command is available with the binary data.

## Format:

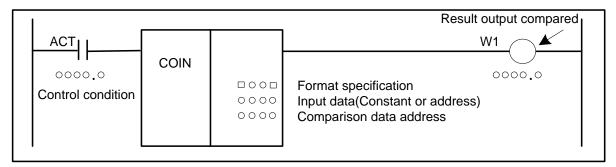



Fig. 5-29

## **Command table format:**

Table 5-21

| No. | Command | Operand | Remark                   |
|-----|---------|---------|--------------------------|
| 1   | LD      | 0000.0  | ACT                      |
| 2   | FUNC    | 18      | COIN                     |
| 3   | PRM     | 000     | Input value format       |
| 4   | PRM     | 0000    | Input value              |
| 5   | PRM     | 0000    | Comparison value address |
| 6   | OUT     | 0000.0  | Result output compared   |

## **Control conditions:**

ACT execution command

ACT=0: the command is not executed and OUT does not change.

ACT=1: the command is executed and the result is output to OUT.

## Parameter:

Input data format: specifies input data format (constant or address) and specifies data length (1 or 2 bytes)

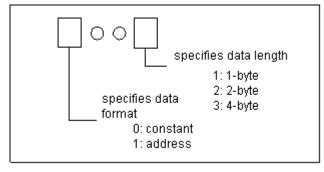



Fig. 5-30

Input data: the input data can be specified as either a constant or an address storing it. Comparison data address: specifies the address storing the comparison data.

## Output:

OUT : OUT =0: input data ≠ comparison data.

OUT =1: input data = comparison data.

# 5.20 DSCHB (data search)

## Function:

The command is used to searches the data in the data table. Searches the data table for a specified data, outputs an address storing it counting from the beginning of the data table. If the data cannot be found, OUT=1.

The command is available to the binary data, and the number of data (table capacity) in the data table.

## Format:

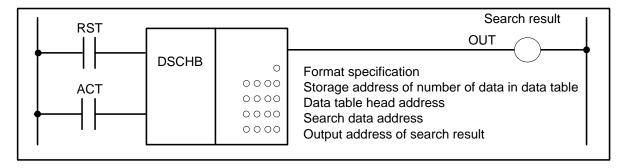



Fig. 5-31

## Command table format:

**Table 5-22** 

| No. | Command | Operand | Remark                           |
|-----|---------|---------|----------------------------------|
| 1   | LD      | 0000.0  | RST                              |
| 2   | LD      | 0000.0  | ACT                              |
| 3   | FUNC    | 19      | DSCHB                            |
| 4   | PRM     | 0       | Format specification             |
| 5   | PRM     | 0000    | Number of data of the data table |
| 6   | PRM     | 0000    | Data table head address          |
| 7   | PRM     | 0000    | Data table search address        |
| 8   | PRM     | 0000    | Search result output address     |
| 9   | OUT     | 0000.0  | Error output                     |

## **Control conditions:**

RST reset

RST=0: release reset.

BYT=1: enable a reset, this is, sets OUT to 0.

ACT execution command

ACT=0: the command is not executed and OUT does not change.

ACT=1: the command is executed, and the table internal number storing the desired data is output, if the data cannot be found, OUT is set to1.

#### Parameter:

Format specification: specifies the length to search data.

1: 1-byte length

2: 2-byte length

4: 4-byte length

Number of data of the data table: the size of the data table. The byte length specified by the address is assigned to the memory area requiring the byte.

The number of data of data table is n+1 (the beginning of

the data table is 0 and the end is n)

Data table head address: set the data head address. The head address must D address of D data table.

Search data address: set the address of the data to be searched.

Search result output address: if the data being searched for is found, the internal number of the table storing the data is output to this field. The search result output address field requires memory whose size is the number of bytes conforming to the size of the data specified by byte.

## Output:

OUT =0: the data to be searched exists.

OUT =1, the data to be searched does not exist.

# 5.21 XMOVB (binary indexed modifier data transfer)

## Function:

This functional command instructs reading and rewriting of data in the data. The number of data (table capacity) in the data table can be specified by specifying the address. The data processed is binary.

### Format:

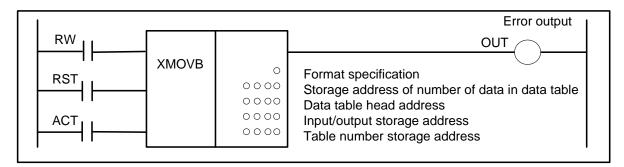



Fig. 5-32

## Command table format:

Table 5-23

| No. | Command | Operand | Remark                            |
|-----|---------|---------|-----------------------------------|
| 1   | LD      | 0000.0  | RW                                |
| 2   | LD      | 0000.0  | RST                               |
| 3   | LD      | 0000.0  | ACT                               |
| 4   | FUNC    | 20      | XMOVB                             |
| 3   | PRM     | 0       | Format specification              |
| 5   | PRM     | 0000    | Data capacity                     |
| 6   | PRM     | 0000    | Data table head address           |
| 7   | PRM     | 0000    | Input/output data storage address |
| 8   | PRM     | 0000    | Table number storage address      |
| 9   | OUT     | 0000.0  | Error output                      |

#### **Control conditions:**

RW read, write designation

RW=0: read data from data table.

RW=1: write data to data table.

RST reset

RST=0: release reset.

RST=1: reset, OUT =0.

ACT activation command

ACT=0: do not execute XMOVB command, OUT does not change.

ACT=1: execute XMOVB command.

#### Parameter:

Format specification: specifies data length.

1: 1-byte length

2: 2-byte length

4: 4-byte length

Storage address of number of data table: it is used to store the number of data in the data

table, the number of byte is as follows with the specified length and the effective range of data is determined by the byte length specified by the format.

1-byte length: 1 to 255.

2-byte length: 1 to 65535 (actually, set a value below the size of the D area).

4-byte length: 1 to 99999999 (actually, set a value below the size of the D area).

Data table head address: sets head address in the data table. The memory area of data table is: the byte length x the number of data table. The head address must be D address in D data table.

Input/output(I/O) data storage address: in case of the reading, set the address of the memory which stores a reading result. In case of the writing, set the address of the memory which stores a writing result.

Index storage address: set the address of the memory in which an index value is stored. The memory with the byte length set in format specification is necessary.

When setting an index value above the value to set in storage address of number of data table, it causes error output OUT=1.

## Output:

In the case where the index value set in the index storage address exceeds the value set in the storage address of number of data table, OUT=1, and the reading or writing of the data table is not executed.

OUT =0, No error.

OUT =1: Error found.

# 5.22 ADDB(addition)

## Function:

The command is used to the binary addition operation with 1-, 2- or 4-byte length. The addend data and the output data of addition operation result are set with the storage address of the corresponding byte length

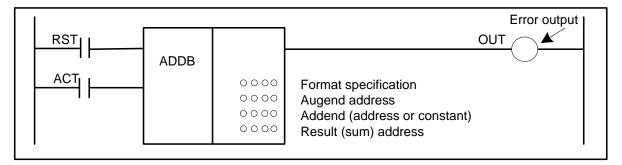



Fig. 5-33

Table 5-24

| No. | Command | Operand | Remark                     |
|-----|---------|---------|----------------------------|
| 1   | LD      | 0000.0  | RST                        |
| 2   | LD      | 0000.0  | ACT                        |
| 3   | FUNC    | 21      | ADDB                       |
| 4   | PRM     | 000     | Format specification       |
| 3   | PRM     | 0000    | Summand address            |
| 5   | PRM     | 0000    | addend address             |
| 6   | PRM     | 0000    | Sum output storage address |
| 7   | OUT     | 0000.0  | Error output               |

## **Control conditions:**

RST reset

RST=0: release reset.

RST=1: reset OUT =1.

ACT execution command

ACT=0: do not execute ADDB command.

ACT=1: execute ADDB command.

#### Parameter:

Format designation: specifies the data length (1, 2, 4 bytes) and the specified method of addend (constant or address.

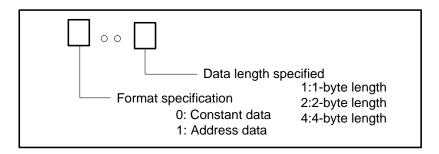



Fig. 5-34

Summand address: specifies the address.

Addend: the specified method of addend is determined by the format specification.

Sum output address: specifies the address to which the sum is to be output.

## Output:

OUT =0: operation normability.

OUT =1: operation abnormality.

When the result of addition exceeds the specified data length, OUT=1.

Operation output register(R1000):

Each bit of operation output register:

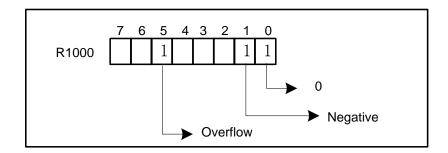



Fig. 5-35

# **5.23** SUBB (binary subtraction)

## Function:

This command is used to the binary subtraction with 1-, 2-, 4-length. The minuend data, the subtraction operation output data need to set the storage address of corresponding byte length.

#### Format:

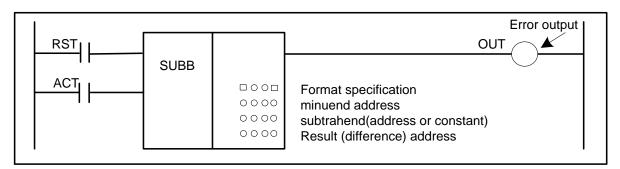



Fig. 5-36

## Command table format:

Table 5-25

| No. | Command | Operand | Remark                           |
|-----|---------|---------|----------------------------------|
| 1   | LD      | 0000.0  | RST                              |
| 2   | LD      | 0000.0  | ACT                              |
| 3   | FUNC    | 22      | SUBB                             |
| 4   | PRM     | 000     | Format specification             |
| 3   | PRM     | 0000    | Minuend address                  |
| 5   | PRM     | 0000    | subtrahend                       |
| 6   | PRM     | 0000    | Operation output storage address |
| 7   | OUT     | 0000.0  | Error output                     |

#### **Control conditions:**

RST reset

RST=0: release reset.

RST=1: reset OUT =1.

ACT execution command

ACT=0: do not execute SUBB command.

ACT=1: execute SUBB command.

#### Parameter:

Format specification: specifies the data length (1-, 2-, 4-byte) and the specified method of the subtrahend (constant or address).

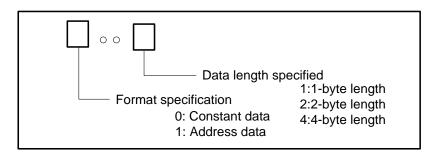



Fig. 5-37

Minuend address : set the address storing the minuend.

Subtrahend : the specified method of the subtrahend depends on the format

specification.

Operation result output address: set the address to which the operation result is output.

## Output:

OUT =0: operation normability.

OUT =1: operation abnormality.

When the operation result exceeds the specified data length, OUT=1.

## Operation result register (R1000):

Each bit of operation result register:

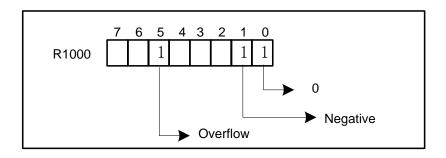



Fig. 5-37

# 5.24 MULB (binary multiplication)

#### Function:

This command multiplies 1-, 2-, 4-byte binary data. The operation result is output to the operation result output address. The multiplicand data and the multiplication operation result output data need to set the storage address of corresponding byte length.

## Format:

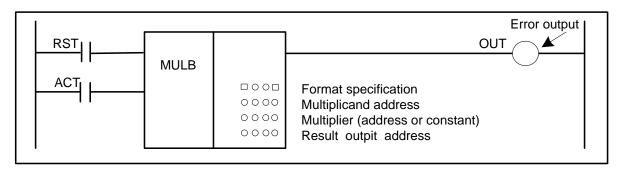



Fig. 5-39

## Command table format:

Table 5-26

| No. | Command | Operand | Remark                                  |
|-----|---------|---------|-----------------------------------------|
| 1   | LD      | 0000.0  | RST                                     |
| 2   | LD      | 0000.0  | ACT                                     |
| 3   | FUNC    | 23      | MULB                                    |
| 4   | PRM     | 00      | Format specification                    |
| 3   | PRM     | 0000    | Multiplicand address                    |
| 5   | PRM     | 0000    | Multiplier                              |
| 6   | PRM     | 0000    | Operation result output storage address |
| 7   | OUT     | 0000.0  | Error output                            |

## **Control conditions:**

RST reset

RST=0: release reset.

RST=1: reset OUT =1.

ACT execution command

ACT=0 : do not execute MULB command.

ACT=1: execute MULB command.

#### Parameter:

Format specification: specifies the data length (1-, 2-, 4-byte) and the specified method of the multiplication (constant or address).

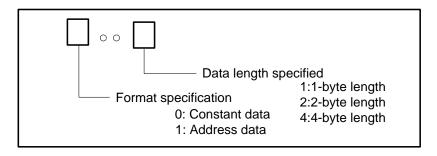



Fig. 5-40

Multiplicand address : address containing the multiplicand.

Multiplier data : the specified method of the multiplier is determined by the format

specification.

Operation result output address: specifies the address to contain the operation result.

## **Output:**

OUT =0: operation normability.

OUT =1: operation abnormality.

When the result of multiplication exceeds the specified data length, OUT=1.

## Operation result register(R1000):

Each bit of operation result register:

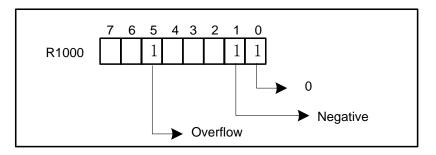



Fig. 5-41

# 5.25 DIVB (binary division)

## Function:

This command divides 1-, 2-, 4-byte binary data. The operation result is output to the operation result output address. The divisor and the dividend and the operation result output data need to set the storage address of corresponding byte length.

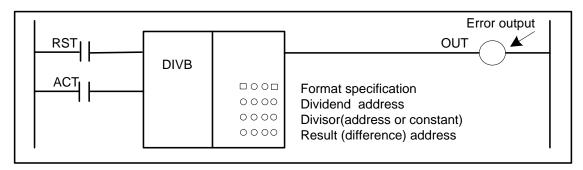



Fig. 5-42

Table 5-27

| No. | Command | Operand | Remark                          |
|-----|---------|---------|---------------------------------|
| 1   | LD      | 0000.0  | RST                             |
| 2   | LD      | 0000.0  | ACT                             |
| 3   | FUNC    | 24      | DIVB                            |
| 4   | PRM     |         | Format specification            |
| 5   | PRM     | 0000    | Dividend address                |
| 6   | PRM     | 0000    | Divisor                         |
| 7   | PRM     | 0000    | Operation result output storage |
| ,   | FRIVI   |         | address                         |
| 8   | OUT     | 0000.0  | Error output                    |

## **Control conditions:**

RST reset

RST=0: release reset .

RST=1: reset OUT =1.

ACT execution command

ACT=0: do not execute DIVB command.

ACT=1: execute DIVB command.

## Parameter:

Format specification: specifies the data length (1-, 2-, 4-byte) and the specified method of the divisor data (constant or address).

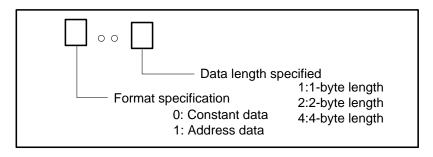



Fig. 5-43

Dividend address: sets the address storing the dividend.

Divisor : the specified method of the divisor is determined by the format specification.

Operation result output address: specifies the address to which operation result is output.

## Output:

OUT =0: operation normality.

OUT =1: operation abnormality.

When the divisor is 0, OUT=1.

## Operation result register(R1000):

Each bit of operation result register:

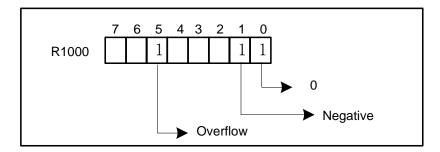



Fig. 5-44

Remainder output register:

The remainder is stored to R1002-R1005 according to the data length when there is the remainder.

# **5.26** NUMEB (definition of binary constant)

#### Function:

This command is used to the decimal constant data assign to the specified address. The output data is the binary data and is stored to the specified storage address. The data length can be 1-, 2- or 4- byte length according to the specified.

#### Format:

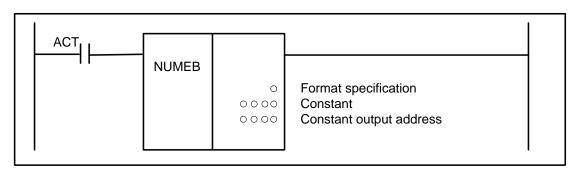



Fig. 5-45

#### Command table format:

Table 5-28

| No. | Command | Operand | Remark                  |
|-----|---------|---------|-------------------------|
| 1   | LD      | 0000.0  | ACT                     |
| 2   | FUNC    | 25      | NUMEB                   |
| 3   | PRM     | 0       | Format specification    |
| 4   | PRM     | 0000    | Constant                |
| 5   | PRM     | 0000    | Constant output address |

## Control conditions:

ACT execute Command

ACT=0 : do not execute NUMEB command .

ACT=1 : execute NUMEB command .

#### Parameter:

Format specification: specifies the data length.

1: 1-byte length.

2: 2-byte length.

4: 4-byte length.

Constant : specifies the defined constant and its value is the decimal data.

Constant output address: specifies the address to output the operation result.

# 5.27 DIFU (Edge Up detection)

#### Function:

The command sets the output relay to 1 for one scanning period on a Edge Up of the output signal.

## Format:

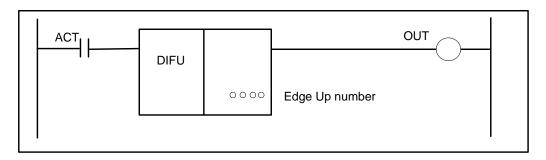



Fig. 5-46

## Command table format:

Table 5-29

| No. | Command | Operand | Remark         |
|-----|---------|---------|----------------|
| 1   | LD      | 0000.0  | ACT            |
| 2   | FUNC    | 26      | DIFU           |
| 3   | PRM     | 0000    | Edge Up signal |
| 4   | OUT     | 0000.0  | Output         |

## **Control conditions:**

ACT execute Command

ACT=0 : do not execution command.

ACT=1 : execution command, output signal sets one scanning period on

the ACT Edge Up.

## Parameter:

Edge Up number: specifies the Edge Up along the command serial number and its range is 1 to 256.



## Warning:

If the same number is used for another DIFU command or a DIFD command in one ladder diagram, operation is not guaranteed.

## Output (OUT):

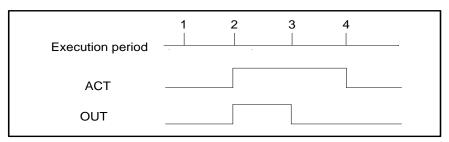



Fig. 5-47

# 5.28 DIFD (Edge Down detection)

## Function:

The command sets the output relay to 1 for one scanning period on a Edge Down of the output signal.

#### Format:

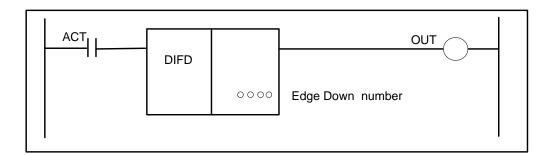



Fig. 5-48

## Command table format :

Table 5-30

| No. | Command | Operand | Remark           |
|-----|---------|---------|------------------|
| 1   | LD      | 0000.0  | ACT              |
| 2   | FUNC    | 27      | DIFD             |
| 3   | PRM     | 0000    | Edge Down signal |
| 4   | OUT     | 0000.0  | output           |

## **Control conditions:**

ACT execution command

ACT=0 : do not execute command.

ACT=1 : execution command, output signal sets one scanning period on

the ACT Edge Down.

#### Parameter:

Edge Down number: specifies the Edge Down along the command serial number and its range is 1 to 256.



#### Warning:

If the same number is used for another DIFU command or a DIFD command in one ladder diagram, operation is not guaranteed.

#### Output (OUT):

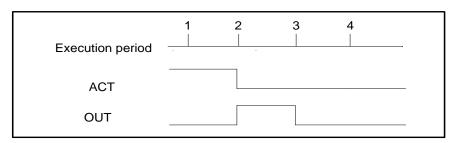



Fig. 5-49

# **5.29** SFT (shift register)

#### **Function:**

The command shifts 2-byte data by a bit to the left or right.

OUT=1 when data "1" is shifted from the left extremity (bit 15) in left shift or from the right extremity (bit 0) in right shift.

#### Format:

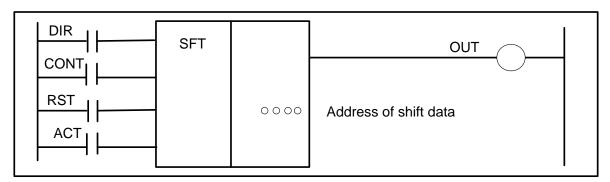



Fig. 5-50

#### Command table format:

Table 5-31

| No. | Command | Operand | Remark     |
|-----|---------|---------|------------|
| 1   | LD      | 0000.0  | DIR        |
| 2   | LD      | 0000.0  | CONT       |
| 3   | LD      | 0000.0  | RST        |
| 4   | LD      | 0000.0  | ACT        |
| 5   | FUNC    | 28      | SFT        |
| 6   | PRM     | 0000    | Shift data |
| 7   | OUT     | 0000. 0 | output     |

#### **Control conditions:**

DIR specifies shift direction

DIR=0 left shift

DIR=1 right shift

CONT specifies condition

CONT=0 the condition of a data bit is set to the original bit position of the on "0"bit.

CONT=1 the condition of a data bit is set to the original bit position of the on "1" bit..

RST reset

RST=0 OUT is not reset

RST=1 OUT reset (OUT =0)

ACT execution condition

ACT=0 do not execute SFT command

ACT=1 execute shift. When ACT=1, set ACT to 0.

#### Parameter:

Shift data address: designate addresses which require a continuous 2-byte memory for shift data.

#### Output:

OUT: OUT =0 "1" is not shifted out after the shift operation.

OUT =1 "1" is shifted out after the shift operation.

#### 5.30 EOR (EOR)

#### Function:

The EOR instruction exclusive-Ors the contents of address A with a constant (or the contents of address B), and stores the result at address C.

#### Format:

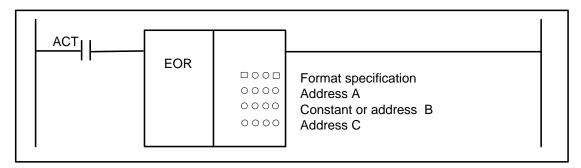



Fig. 5-51

#### Command table format:

Table 5-32

| No. | Command | Operand | Remark                |
|-----|---------|---------|-----------------------|
| 1   | LD      | 0000.0  | ACT                   |
| 2   | FUNC    | 29      | EOR                   |
| 3   | PRM     | 000     | Format specification  |
| 4   | PRM     | 0000    | Address A             |
| 5   | PRM     | 0000    | Constant or address B |
| 6   | PRM     | 0000    | Address C             |

#### **Control conditions:**

ACT execution condition

ACT=0: do not execute EOR command.

ACT=1: execute EOR command.

#### Parameter:

Format specification: Specify a data length (1-, 2-, 4-byte) and an input data format(constant or address).

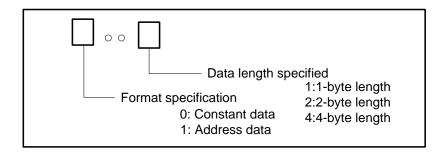



Fig. 5-52

Address A : the head address of the input data to be exclusive-ORed.

Constant or address B: Input data to be exclusive-ORed with A. the designation is determined by the format, that is, constant or address.

Address C: Address used to store the result of an exclusive EOR operation. The result of an exclusive EOR operation is stored starting at this address, and has the data length specified in Length format specification.

#### Example:

When address A and B hold the following data:

| Address A | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
|-----------|---|---|---|---|---|---|---|---|
| Address B | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

The result of the exclusive EOR operation is as follows:

| Address C |   |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|
| Address C | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
|           |   |   |   |   |   |   |   |   |

## 5.31 AND (logical and)

#### Function:

The command ANDs the contents of address A with a constant ( or the contents of address B), and stores the result at address C.

#### Format:

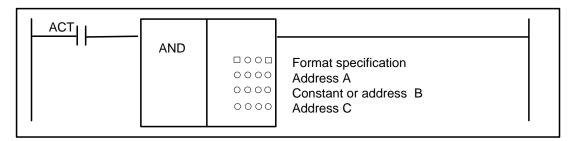



Fig. 5-53

#### Command table format :

Table 5-33

| No. | Command | Operand | Remark                |
|-----|---------|---------|-----------------------|
| 1   | LD      | 0000.0  | ACT                   |
| 2   | FUNC    | 30      | AND                   |
| 3   | PRM     | 000     | Format specification  |
| 4   | PRM     | 0000    | Address A             |
| 5   | PRM     | 0000    | Constant or address B |
| 6   | PRM     | 0000    | Address C             |

#### **Control conditions:**

ACT execution conditions

ACT=0: do not execute AND command.

ACT=1: execute AND command.

#### Parameter:

Format specification: Specify a data length (1-, 2-, 4-byte) and an input data format(constant or address).

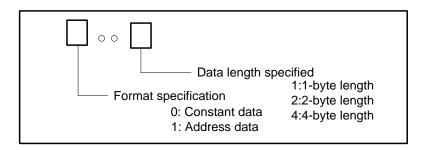



Fig. 5-54

Address A : the head address of the input data to be exclusive-ANDed.

Constant or address B: Input data to be exclusive-ANDed with A. the designation is determined by the format, that is, constant or address.

Address C: Address used to store the result of an exclusive AND operation. The result of an exclusive AND operation is stored starting at this address, and has the data length specified in Length format specification.

#### Example:

When address A and address B hold the following data:

| Address A | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
|-----------|---|---|---|---|---|---|---|---|
| Address B | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

The result of the AND operation is as follows:

| Address C | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
|-----------|---|---|---|---|---|---|---|---|
|-----------|---|---|---|---|---|---|---|---|

# 5.32 ORF (logical or)

#### Function:

The command Ors the contents of address A with a constant (or the contents of address B), and stores the result at address C.

#### Format:

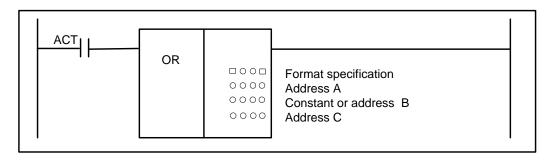



Fig. 5-55

#### Command table format :

Table 5-34

| No. | Command | Operand | Remark                |
|-----|---------|---------|-----------------------|
| 1   | LD      | 0000.0  | ACT                   |
| 2   | FUNC    | 31      | OR                    |
| 3   | PRM     | 000     | Format specification  |
| 4   | PRM     | 0000    | Address A             |
| 5   | PRM     | 0000    | Constant or address B |
| 6   | PRM     | 0000    | Address C             |

#### Control conditions:

ACT execution condition

ACT=0: do not execute ORF command.

ACT=1: execute ORF command.

#### Parameter:

Format specification: Specify a data length (1-, 2-, 4-byte) and an input data format(constant or address).

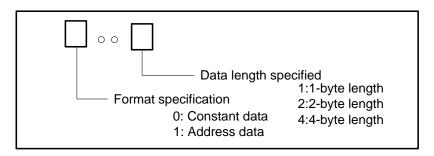



Fig. 5-56

Address A: the head address of the input data to be ORed.

Constant or address B: Input data to be ORed with A. the designation is determined by the format, that is, constant or address.

Address C: Address used to store the result of an ORF operation. The result of an ORF operation is stored starting at this address, and has the data length specified in length format specification.

#### Example:

When address A and address B have the following data:

| Address A | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
|-----------|---|---|---|---|---|---|---|---|
| Address B | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

The result of the OR operation is as follows:

| Address C | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
|-----------|---|---|---|---|---|---|---|---|

# **5.33** NOT (logical not)

### **Function:**

The command inverts each bit of the contents of address A, and stores the result at address B.

#### Format:

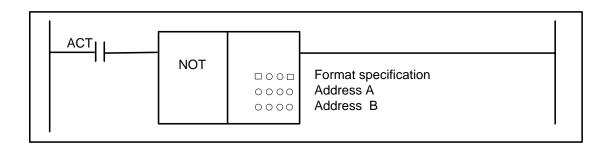



Fig. 5-57

#### Command table format:

Table 5-35

| No. | Command | Operand | Remark               |
|-----|---------|---------|----------------------|
| 1   | LD      | 0000.0  | ACT                  |
| 2   | FUNC    | 32      | NOT                  |
| 3   | PRM     |         | Format specification |
| 4   | PRM     | 0000    | Address A            |
| 5   | PRM     | 0000    | Address B            |

#### **Control conditions:**

ACT execution condition

ACT=0, do not execute NOT command.

ACT=1, execute NOT command.

#### Parameter:

Format specification: specifies a data length (1-, 2-, 4-byte).

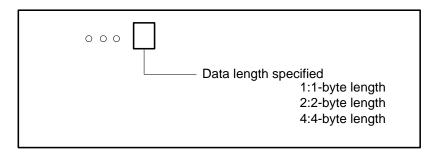



Fig. 5-58

Address A : specifies the head address of the input data to be inverted bit by bit.

Address B : specifies the address used to output the result of a NOT operation. The result of a NOT operation is stored starting at this address, and has the data length specified in format specification.

#### Example:

When address A and B have the following data:

| Address A | 1 | 1 | 1 | 0 | 0 | 0   | 1   | 1 |
|-----------|---|---|---|---|---|-----|-----|---|
|           |   |   |   |   |   | i l | i I |   |

The result of the NOT operation is as follows:

| Address B | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
|-----------|---|---|---|---|---|---|---|---|
|           |   |   |   |   |   |   |   |   |

## **5.34** COM (common line control)

#### **Function:**

This command can be used to control the coil working from COM to COME (common line end command). The system specifies 0 for the number of coils and uses the common line control end command to use this function. The system alarms when the common line end command is not specified.

#### Format:

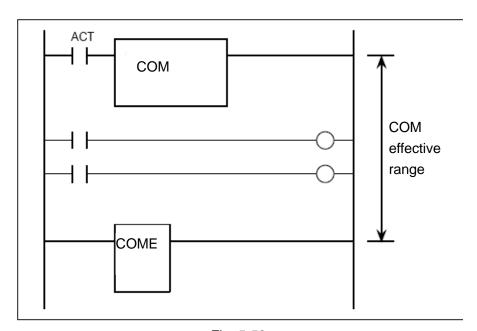



Fig. 5-59

#### Command table format :

Table 5-36

| No. | Command | Operand | Remark |
|-----|---------|---------|--------|
| 1   | LD      | 0000.0  | ACT    |
| 2   | FUNC    | 33      | COM    |

#### **Control conditions:**

ACT=0: the specified number of coils or the coils within the region specified are unconditionally turned off (set to 0).

ACT=1: not execute.

#### Parameter:

Specifies the number of coil: specifies to 0 and use COM specifying range.

#### Note:

- 1. In the range specified with a COM instruction, no additional COM instruction can be specified.
- 2. the coil for WRT.NOT in the range specified with a COM instruction is singly set to 1 (OUTN=1) ACT=0.

### 5.35 COME (common line control end)

#### **Function:**

The instruction can be used to specify the control range of the common control line instruction (COM). This instruction cannot be used alone. It must be used together with the COM instruction.

#### Format:

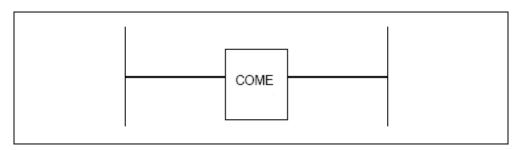



Fig. 5-60

#### Command table format:

Table 5-37

| No. | Command | Operand | Remark |
|-----|---------|---------|--------|
| 1   | FUNC    | 34      | COME   |

# **5.36 JMP** (jump)

#### Function:

The JMP transfers control to a ladder. When the JMP command is executed, the execution process jumps to the jump end command but does not execute the logic command (including functional command) between JMP and JMPE command. The specified coil number is 0. when the system uses JMPE command, it jumps the range. The system prompts the alarms when it does not command the jump end command.

#### Format:

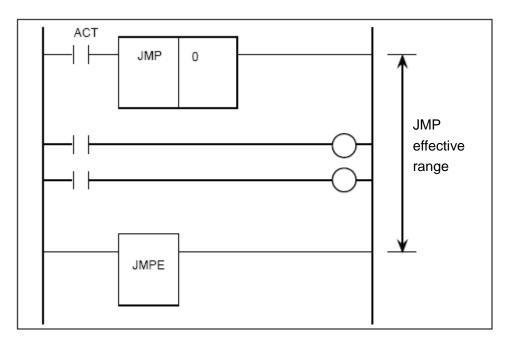



Fig. 5-61

#### Command table format:

Table 5-38

| No. | Command | Operand | Remark |
|-----|---------|---------|--------|
| 1   | LD      | 0000.0  | ACT    |
| 2   | FUNC    | 35      | JMP    |
| 3   | PRM     | 0       |        |

#### **Control conditions:**

ACT=0: do not execute jump. The next command after the JMP command is executed.

ACT=1: jump the logical command (including functional command) in the specified range, and execute the program.

#### Parameter:

Specifies the number of coil: it is set to 0, use JMPE to specify the range.

#### Note:

JMP command operation.

ACT=1: the program jumps to the place where the jump end command (JMPE) is. The logical command (including functional command) in the specified range is not executed.

In compiling the program, do not create a program in which a combination of JMP and JMPE command is used to cause a jump to and from a sequence between the COM and COME command. The ladder sequence may not be able to operate normally after the jump.

# 5.37 JMPE (jump end)

#### Function:

Specifies the end of JMP(jump command) range. The command must be used together with JMP command.

#### Format:

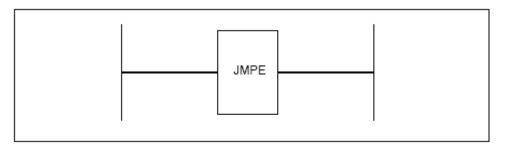



Fig. 5-62

#### Command table format:

Table 5-39

| No. | Command | Operand | Remark |
|-----|---------|---------|--------|
| 1   | FUNC    | 36      | JMPE   |

# 5.38 CALL (conditional subprogram call)

#### **Function:**

A jump occurs to the subprogram when a condition is satisfied.

The command has the characteristics and limits as follows:

- \* Many call command can call the same one subprogram.
- \* The call command can be nested.
- \* The subprogram must follow END2 to be compiled.

#### Format:

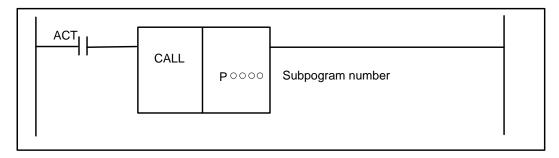



Fig. 5-63

#### Command table format:

Table 5-40

| No. | Command | Operand       | Remark            |
|-----|---------|---------------|-------------------|
| 1   | LD      | 0000.0        | ACT               |
| 2   | FUNC    | 37            | CALL              |
| 3   | PRM     | <b>P</b> 0000 | Subprogram number |

#### **Control conditions:**

ACT execution conditions

ACT=0: do not execute CALL command.

ACT=1: execute CALL command, call the subprogram which number is specified.

#### Parameter:

Subprogram number : specifies the called subprogram number. The subprogram number range is  $P1 \sim P512$ .

# 5.39 CALLU (unconditional subprogram call)

#### **Function:**

The system unconditionally calls the specified subprogram when it executes the command CALLU.

#### Format:

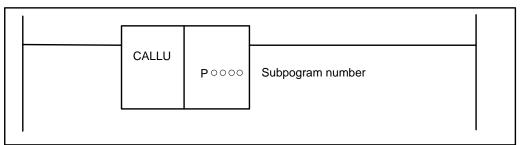



Fig. 5-64

#### Command table format:

Table 5-41

| No. | Command | Operand       | Remark            |
|-----|---------|---------------|-------------------|
| 1   | FUNC    | 38            | CALLU             |
| 2   | PRM     | <b>P</b> 0000 | Subprogram number |

#### Parameter:

Subprogram number : specifies the subprogram number of a subprogram to be called. The subprogram number must be specified in the P address form. A number from P1 to P512 can be specified.

# 5.40 JMPB (label jump 1)

#### Function:

The JMPB command transfers control to a ladder after the label set in a ladder program.

The JMPB has the following characteristics and limitations:

- \* More than one jump command can be coded for the same label.
- \* The jump command can transfer control freely before and after the command within the program unit (main program or subprogram) in which the command is coded.
- \* Jump commands can be nested.
- \* Jump END1 and END2 are forbidden.

#### Format:

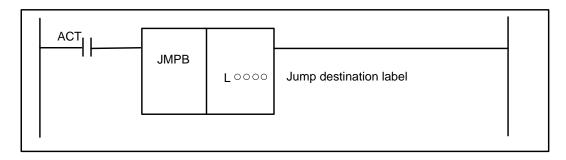



Fig. 5-65

#### Command table format:

Table 5-42

| No. | Command | Operand | Remark                        |
|-----|---------|---------|-------------------------------|
| 1   | LD      | 0000.0  | ACT                           |
| 2   | FUNC    | 39      | JMPB                          |
| 3   | PRM     | L0000   | Jump destination label number |

#### **Control conditions:**

ACT execution conditions

ACT=0, do not jump, execute the next command after JMPB command.

ACT=1, jump to the next after the specified label, execute the next command after the label.

#### Parameter:

Jump destination label LX: specifies the label of the jump destination. The label number must be specified in the L address head. A value from L1 to L9999 can be specified.

## 5.41 JMPC (label jump 2)

#### Function:

The JMPC functional command returns control from a subprogram to the label code position of the main program. The specifications of the JMPC command are the same as those of the JMPB command, except that JMPC always returns control to the main program.

#### Format:

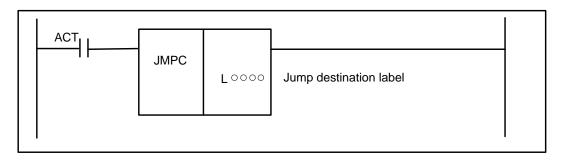



Fig. 5-66

#### Command table format:

Table 5-43

| No. | Command | Operand       | Remark                 |
|-----|---------|---------------|------------------------|
| 1   | LD      | 0000.0        | ACT                    |
| 2   | FUNC    | 40            | JMPC                   |
| 3   | PRM     | <b>L</b> 0000 | Jump destination label |

#### **Control conditions:**

ACT execution condition

ACT=0: the command after the JMPC command is executed.

ACT=1: control is transferred to the ladder after the specified label.

#### Parameter:

Jump destination label: specifies the label of the jump destination. The label number must be specified in the L address head. A number from L1 to L9999 can be specified.

Note: when the command is used to jump back to a previous command, care must be taken not to cause an infinite loop.

#### 5.42 LBL (label)

#### Function:

The command specifies a label in ladder program for the jump destination of JMPB and JMPC. Note: one Lx label only use LBL one time, otherwise, the system alarms.

#### Format:

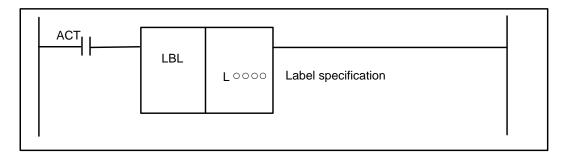



Fig. 5-67

#### Command table format:

Table 5-44

| No. | Command | Operand | Remark              |
|-----|---------|---------|---------------------|
| 1   | LD      | 0000.0  | ACT                 |
| 2   | FUNC    | 41      | LBL                 |
| 3   | PRM     | L0000   | Label specification |

#### Parameter:

Label specification Lx: specifies the jump destination. The label number must be specified in L address head. A label number from L1 to L9999 can be specified.

# 5.43 SP (subprogram)

#### **Function:**

The SP command is used to create a subprogram for CALL and CALLU call, and SP is used with the mentioned later SPE to specify the subprogram range.

#### Notes:

- 1. the subprogram must follow END2 to be compiled.
- 2. can not set another subprogram in one subprogram.

#### Format:

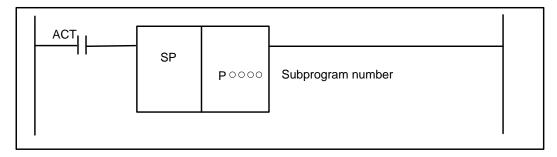



Fig. 5-68

#### Command table format:

| _  |   |        |        |
|----|---|--------|--------|
| Та | h | $\sim$ | 5-45   |
| 10 | u |        | ·)-4·) |

| No. | Command | Operand       | Remark            |
|-----|---------|---------------|-------------------|
| 1   | LD      | 0000.0        | ACT               |
| 2   | FUNC    | 42            | SP                |
| 3   | PRM     | <b>P</b> 0000 | Subprogram number |

#### Parameter:

Subprogram number : specifies the called subprogram label number in the P address form.

The subprogram number range is P1~P512, and the specified subprogram number must be unique within the sequence program.

# 5.44 SPE (end of a subprogram)

#### Function:

- \* SPE is used with the S P command to specify the subprogram range.
- \* when the functional command is executed, control is returned to the main program that calls the subprogram.
  - \* the subprogram must follow END2 to be compiled.

#### Format:

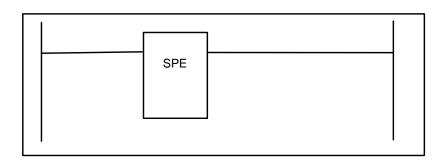



Fig. 5-69

#### Command table format:

Table 5-46

| No. | Command | Operand | Remark |
|-----|---------|---------|--------|
| 1   | FUNC    | 43      | SPE    |

# 5.45 WINDR (Reading of CNC data)

#### Function:

Data exchange window between PLC and CNC is set for reading CNC data from PLC. "WINDR" is classified into two types;

1. Data reading is completed in a section of scan time (high-speed response function)

2. Data reading is completed in sections of scan time (low-speed response function)

#### Format:

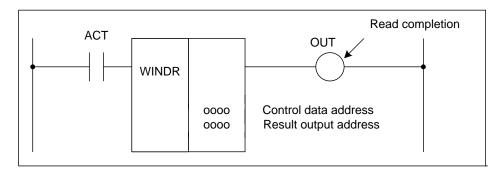



Fig. 5-70

#### Command table format:

**Table 5-47** 

| No. | Command | Operand | Remark                |
|-----|---------|---------|-----------------------|
| 1   | LD      | 0000.0  | ACT                   |
| 2   | FUNC    | 44      | WINDR                 |
| 3   | PRM     | 0000    | Control data address  |
| 4   | PRM     | 0000    | Result output address |
| 5   | OUT     | 0000.0  | Reading completion    |

#### **Control conditions:**

ACT execution condition

ACT=0 : do not execute WINDR function

ACT=1: execute WINDR command

#### Parameter:

#### Control data address

Data storage area is set by PLC byte address.

#### **Control data:**

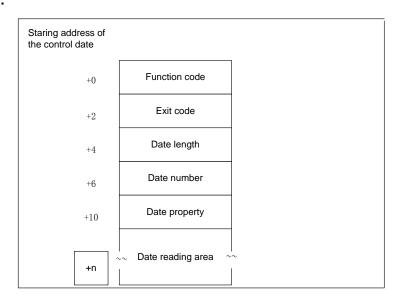



Fig. 5-71

Note: See table 5-48 for the function codes.

#### **Output:**

OUT = 0: "WINDR" is not executed or "WINDR" is being executed.

OUT = 1 : Reading is finished. When low-speed response function is used, reset "ACT" is necessary after reading data.

#### **Operation result register:**

When error occurs in "WINDR" execution time, set the bit of operation result output register.

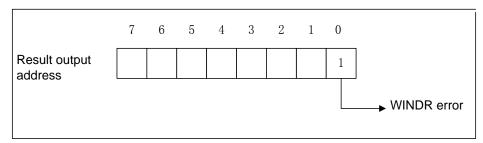



Fig. 5-72

# 5.46 WINDW (Writing of CNC data)

#### Function:

Data exchange window between PLC and CNC is set for writing CNC data from PLC. "WINDW" belongs to low-speed response function.

#### Format:

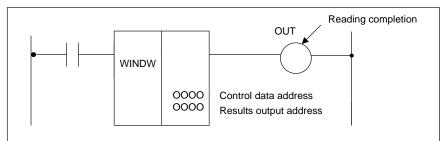



Fig. 5-73

#### **Command table format:**

**Table 5-47** 

| No. | Command | Operand | Remark                |
|-----|---------|---------|-----------------------|
| 1   | LD      | 0000.0  | ACT                   |
| 2   | FUNC    | 45      | WINDW                 |
| 3   | PRM     | 0000    | Control data address  |
| 4   | PRM     | 0000    | Result output address |
| 5   | OUT     | 0000.0  | Writing completion    |

#### **Control conditions:**

ACT execution condition

ACT=0: do not execute WINDW function

ACT=1: execute WINDW command. Reset "ACT" is necessary after writing data.

#### Parameter:

Control data address

Head address of the data storage area is specified by PLC byte.

#### **Control data:**

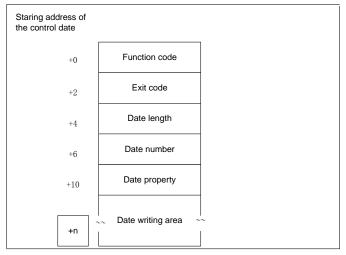



Fig. 5-74

Note: table 5-48 for function codes.

#### **Output:**

OUT = 0 : indicates "WINDW" is not executed or "WINDW" is being executed.

OUT = 1 : writing completion. When low-speed response function is used, reset "ACT" is necessary after writing data.

#### **Operation result register:**

When error occurs in "WINDR" execution time, set the bit of operation result output register.

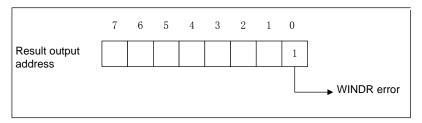



Fig. 5-75

Table 5-48 List of function code

| Function                               | Function code | Response speed | Property   |
|----------------------------------------|---------------|----------------|------------|
| Reading CNC state information*         | 0             | High speed     | Read only  |
| Reading tool offset                    | 1             | High speed     | Read only  |
| Writing tool offset                    | 2             | Low speed      | Write only |
| Reading offset of workpiece zero point | 3             | High speed     | Read only  |
| Writing offset of workpiece zero point | 4             | Low speed      | Write only |
| Reading parameter                      | 5             | Low speed      | Read only  |
| Writing parameter                      | 6             | Low speed      | Write only |
| Reading set data                       | 7             | Low speed      | Read only  |
| Writing set data                       | 8             | Low speed      | Write only |
| Reading user macro variable            | 9             | Low speed      | Read only  |
| Writing user macro variable            | 10            | Low speed      | Write only |
| Reading data of screw pitch            | 11            | Low speed      | Read only  |
| Writing data of screw pitch            | 12            | Low speed      | Write only |

| Reading current program number              | 13 | High speed | Read only  |
|---------------------------------------------|----|------------|------------|
| Reading current sequence number             | 14 | High speed | Read only  |
| Reading actual speed of control axis        | 15 | High speed | Read only  |
| Reading absolute coordinate of control axis | 16 | High speed | Read only  |
| Reading mechanical coordinate of control    | 17 | High speed | Read only  |
| axis                                        |    |            |            |
| Reading skipped space of control axis       | 18 | High speed | Read only  |
| Reading input motor load current            | 19 | High speed | Read only  |
| Writing motor torque limit data             | 20 | Low speed  | Write only |
| Reading actual spindle speed                | 21 | High speed | Read only  |
| Reading digital spindle load information    | 22 | High speed | Read only  |
| Reading relative coordinate of control axis | 23 | High speed | Read only  |
| Reading distance-to-go                      | 24 | High speed | Read only  |
| Reading modal data                          | 25 | Low speed  | Read only  |
| Reading diagnosis data                      | 26 | High speed | Read only  |
| Reading time data                           | 28 | Low speed  | Read only  |
| Reading P code macro variable               | 29 | Low speed  | Read only  |
| Writing P code macro variable               | 30 | Low speed  | Write only |
| Writing tool number low speed response      | 31 | Low speed  | Write only |
| Relative coordinate preset                  | 32 | Low speed  | Write only |

# 5.47 AXLCTL(PLC axis control)

#### Function:

The function is used for processing DI/DO signal of PLC control axis.

#### Format:

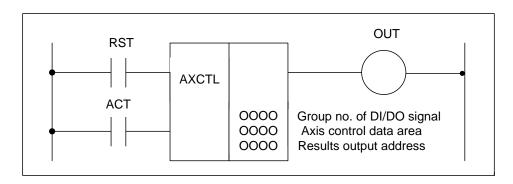



Fig. 5-76

#### **Command table format:**

Table 5-49

| No. | Command | Operand | Remark                       |
|-----|---------|---------|------------------------------|
| 1   | LD      | 000.0   | RST                          |
|     | LD      | 000.0   | ACT                          |
| 2   | FUNC    | 46      | PLC axis control function    |
| 3   | PRM     | 0000    | Group number of DI/DO signal |
| 4   | PRM     | 0000    | Axis control data address    |
| 5   | PRM     | 0000    | Result output address        |
| 6   | OUT     | 0.000   | Execution complete           |

#### **Control condition:**

RST Reset command

RST=0 : Release reset

RST=1 : Set the reset signal to 1 to clear all codes, and the code being executed is stopped.

ACT Execution code

ACT=0 : do not execute AXCTL function

ACT=1: execute AXCTL function

#### Parameter:

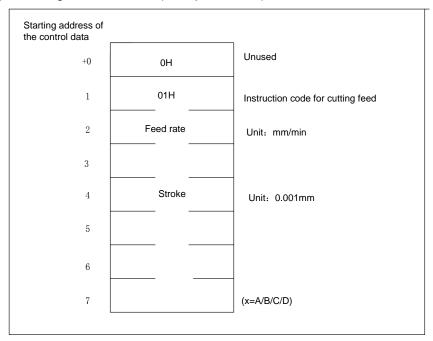
(a) Group number of DI/DO signal

1: Group A (G142 to G149, F130 to F132)

2: Group B (G154 to G161, F133 to F135)

3: Group C (G166 to G173, F136 to F138)

4: Group D (G178 to G185, F139 to F141)


(b) Data address of axis control

Select the address contains PLC axis control data.

| Starting address of the control data |                      | 1                                       |
|--------------------------------------|----------------------|-----------------------------------------|
| +0                                   | System reserved area | Specifies 0                             |
| 1                                    | Control instruction  | Set EC0x-EC6x specifying instruction    |
| 2                                    | Instruction data 1   | Set EIF0x-EC15x specifying instruction  |
| 3                                    |                      |                                         |
| 4                                    | Instruction data 2   | Set EID0x-EID31x specifying instruction |
| 5                                    |                      |                                         |
| 6                                    |                      |                                         |
| 7                                    |                      | (x=A/B/C/D) indicates group number      |

#### Example:

1) Cutting feed condition (feed per minute)



Note: relevant CNC parameter for axis move must be set.

#### Output:

OUT=0: usually 0. OUT=1 indicates AXCTL command is completed.

Once the processing (OUT=1) is completed, ACT=0 must be set.

OUT=1: When PLC axis control command is stored in CNC or axis movement is performed, OUT=1.

Note: 1. No matter what the condition of ACT, OUT may become 1.

2. It has nothing to do with the condition of alarm signal.

#### **Operation result register:**

When error occurs in PLC control axis processing, set the corresponding bit of operation result output register.

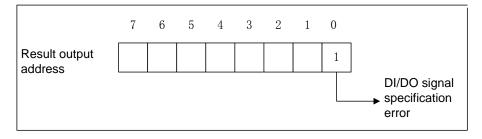



Fig. 5-72

Table 5-50 List of axis control signal

| No. | Mark         | Signal address                               | Significance                                      | I/O    |
|-----|--------------|----------------------------------------------|---------------------------------------------------|--------|
| 1   | EAX1-EAX4    | G136.0-3                                     | Control axis selection signal                     | Input  |
| 2   | EC0g-EC6g    | G143.0-6, G155.0-6,<br>G167.0-6, G179.0-6    | Axis control command signal                       | Input  |
| 3   | EIF0g-EIF15g | G144-G145, G156-G157<br>G168-G169, G180-G181 | Axis control federate signal                      | Input  |
| 4   | EID0g-EID31g | G146-G149, G158-G161<br>G170-G173, G182-G185 | Axis control data signal                          | Input  |
| 5   | EBUFg        | G142.7, G154.7<br>G166.7, G178.7             | Axis control command reading signal               | Input  |
| 6   | EBSYg        | F130.7, F133.7,<br>F136.7, F139.7            | Reading completion signal of axis control command | Output |
| 7   | ECLRg        | G142.6, G154.6<br>G166.6, G178.6             | Reset                                             | Input  |
| 8   | ESTPg        | G142.5, G154.5<br>G166.5, G178.5             | Axis control pause signal                         | Input  |
| 9   | ESBKg        | G142.3, G154.3<br>G166.3, G178.3             | Block stop signal                                 | Input  |
| 10  | EMSBKg       | G143.7, G155.7<br>G167.7, G179.7             | Block stop invalid signal                         | Input  |
| 11  | EM11g-EM48g  | F132; F135;<br>F138; F141;                   | Miscellaneous function code signal                | Output |
| 12  | EMFg         | F131.0, F134.0,<br>F137.0, F140.0            | Miscellaneous function gating signal              | Output |
| 13  | EMF2g        | F131.2, F134.2,<br>F137.2, F140.2            | Miscellaneous function 2 gating signal            | Output |
| 14  | EMF3g        | F131.3, F134.3,<br>F137.3, F140.3            | Miscellaneous function 3 gating signal            | Output |
| 15  | EFINg        | G142.0, G154.0,<br>G166.0, G178.0            | Miscellaneous function completion signal          | Input  |
| 16  | ESOFg        | G142.4, G154.4<br>G166.4, G178.4             | Servo off signal                                  | Input  |
| 17  | EMBUFg       | G142.2, G154.2<br>G166.2, G178.2             | Buffer invalid signal                             | Input  |
| 18  | *EAXSL       | F129.7                                       | Control axis state selection signal               | Output |
| 19  | EINPg        | F130.0, F133.0,<br>F136.0, F139.0            | In-position signal                                | Output |
| 20  | EIALg        | F130.2, F133.2,<br>F136.2, F139.2            | Alarm signal                                      | Output |
| 21  | EGENg        | F130.4, F133.4,<br>F136.4, F139.4            | Axis movement signal                              | Output |

| 22 | EDENg               | F130.3, F133.3,            | Miscellaneous function       | Output    |
|----|---------------------|----------------------------|------------------------------|-----------|
| 22 | LDLING              | F136.3, F139.3             | execution signal             | Output    |
| 23 | EOTNa               | F130.6, F133.6,            | Negative ever travel signal  | Output    |
| 23 | EOTNg               | F136.6, F139.6             | Negative over travel signal  | Output    |
| 24 | EOTDa               | F130.5, F133.5,            | Desitive ever travel signal  | Output    |
| 24 | EOTPg               | F136.5, F139.5             | Positive over travel signal  | al Output |
| 25 | EFV0-EFV7           | G151.0-G151.7              | Feedrate override signal     | Input     |
| 26 | EOVC                | G150.5                     | Override canceling signal    | Input     |
| 27 | EDOVA EDOVA         | ROV1, EROV2 G150.0, G150.1 | Rapid traverse override      | loout     |
| 21 | 27 EROV1, EROV2     |                            | signal                       | Input     |
| 28 | EOV0                | F129.5                     | Override 0% signal Out       |           |
| 29 | ESKIP               | X13.6                      | Skip signal                  | Input     |
| 30 | EADEN1-EADEN4       | F112.0-3                   | Assignment completion        | Output    |
| 30 | EADENT-EADEN4       | F112.0-3                   | signal                       |           |
| 31 | EADLIE <sub>a</sub> | F131.1, F134.1             | D. Duffer acquiried signal D | Outout    |
| 31 | EABUFg              | F137.1, F140.1             | B Buffer occupied signal B   | Output    |
| 32 | EACNT1-EACNT4       | F182.0-3                   | Control signal               | Output    |
| 22 | *+ED1-*+ED6         | G118.0-G118.4              | External deceleration        | Innut     |
| 33 | *-ED1-*-ED6         | G120.0-G120.4              | signal                       | Input     |

Table 5-51 Axis control function

| Command | Action          | Data 1                | Data 2         | Explanation           |
|---------|-----------------|-----------------------|----------------|-----------------------|
| 00h     | Panid traverse  | Rapid traverse speed  | Total movement | Operation is the same |
| OOH     | Rapid traverse  | Rapid traverse speed  | Total movement | as in CNC G00         |
| 01h     | Cutting feed    | Cutting feed rate     | Total movement | Operation is the same |
| OIII    | rate per minute | Culling leed rate     | Total movement | as in CNC G94G01      |
| 02h     | Cutting feed    | Feed rate per rev     | Total movement | Operation is the same |
| 0211    | rate per rev    | reed fale per fev     | Total movement | as in CNC G95G01      |
| 03h     | Feed jump per   | Cutting food rate     | Total movement | Operation is the same |
| USII    | minute          | Cutting feed rate     | Total movement | as in CNC G31G01      |
| 04h     | Pause           | - —                   | Dougo timo     | Operation is the same |
| 0411    | rause           |                       | Pause time     | as in CNC G04         |
|         | Reference       |                       |                | Operation is the same |
| 05h     |                 | _                     | _              | as manual reference   |
|         | point return    |                       |                | return                |
| 06h     | Continuous      | Continuous feed rate  | Food position  | Operation is the same |
| OOH     | feed            | Continuous reed rate  | Feed position  | as CNC JOG feed       |
| 07h     | 1st reference   | Rapid traverse speed  |                | Operation is the same |
| 0711    | point return    | Rapid traverse speed  |                | as CNC G28            |
| 08h     | 2nd reference   | Panid traverse speed  | _              | Operation is the same |
| UOII    | point return    | Rapid traverse speed  |                | as CNC G30P2          |
| 00h     | 3rd reference   | Danid traverse and ad | _              | Operation is the same |
| 09h     | return          | Rapid traverse speed  |                | as CNC G30P3          |

| 0Ah | 4th reference return             | Rapid traverse speed | _                           | Operation is the same as CNC G30P4                  |
|-----|----------------------------------|----------------------|-----------------------------|-----------------------------------------------------|
| 12h | 1st<br>miscellaneous<br>function | _                    |                             | Operation is the same as CNC miscellaneous function |
| 14h | 2nd<br>miscellaneous<br>function | _                    | Miscellaneous function code | Operation is the same as CNC miscellaneous function |
| 15h | 3rd<br>miscellaneous<br>function | _                    |                             | Operation is the same as CNC miscellaneous function |
| 20h | Machine coordinate selection     | Rapid traverse speed | Mechanical coordinate       | Operation is the same as CNC G53                    |

#### Note:

Command indicates axis control commands EC0g-EC6g.

Data 1 indicates axis control federate signal EIF0g-EIF15g.

Data 2 indicates axis control data signal EID0g-EID31g.

Continuous feed command is immediate command, it is not stored in CNC.

# 5.48 PSGNL( Position signal output)

#### Function:

It is position signal output 1, which is used for specifying the area range in coordinate system of the current position.

#### Format:

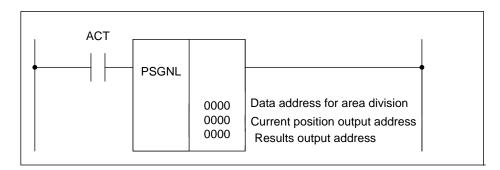
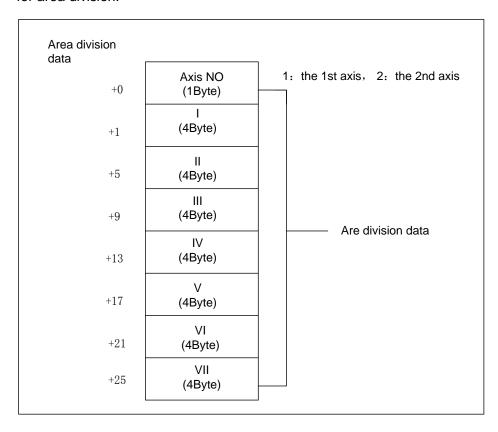



Fig. 5-73

#### **Command table format:**

Table 5-52

| No. | Command | Operand | Remark                      |  |
|-----|---------|---------|-----------------------------|--|
| 1   | LD      | 000.0   | ACT                         |  |
| 2   | FUNC    | 48      | PSGNL                       |  |
| 3   | PRM     | 0000    | Area division data address  |  |
| 4   | PRM     | 0000    | Current position outputting |  |
| 4   | PRIVI   | 0000    | address                     |  |
| 5   | PRM     | 0000    | Results outputting address  |  |


#### **Control conditions:**

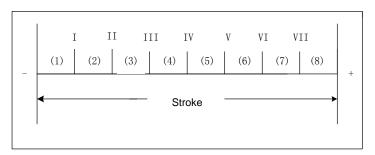
ACT=0 : do not execute PSGNL function ACT=1 : execute PSGNL function

#### Parameter:

#### (1) Area division data address

Set head address of area division data. 29 bytes from the address are provide data for area division.




Axis No sets axis number (a binary one-byte data)

(Example) Axis No = 1 : The  $1^{st}$  axis of the coordinate system.

Axis No = 2: The  $2^{nd}$  axis of the coordinate system.

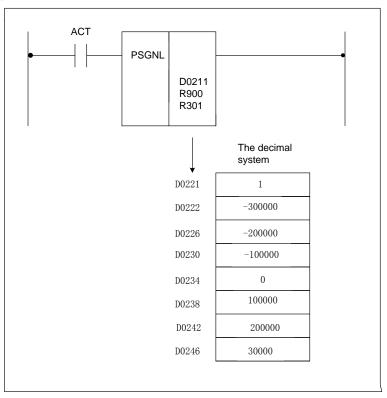
Division data for areas (I, II, III, ..., VII) are 4-byte binary data.

(Area division example): total stroke is divided into 8 areas by 7 division points, see the figure below:



#### (2) Current area output address

The address is used for outputting area in coordinate system of the current position.


| Current position | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Output address   | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |

Corresponding position in coordinate system of the current position is set to 1.

#### (3) Operation result output register

When error occurs in PSGNL processing, the corresponding bit of the result output register is set to 1.

#### Position signal usage example:



For the above figure and area division data, if ACT=1, current position output (R1000) are as follows:

R1000.0=1: current position is bigger than 300.00mm in machine coordinate system.

R1000.1=1: current position is bigger than 200.00mm but smaller than 300.00mm in machine coordinate system.

R1000.2=1: current position is bigger than 100.00mm but smaller than 200.00mm in machine coordinate system.

R1000.3=1: current position is bigger than 0mm but smaller than 100.00mm in machine coordinate system.

R1000.4=1: current position is bigger than -100.00mm but smaller than 0mm in machine coordinate system.

R1000.5=1: current position is bigger than -200.00mm but smaller than -100.00mm in machine coordinate system.

R1000.6=1: current position is bigger than -300.00mm but smaller than -200.00mm in machine coordinate system.

R1000.7=1: current position is bigger than -300.00mm in machine coordinate system.

# 5.49 PSGN2 (Position signal output 2)

#### Function:

When the current position is in the specified area by the parameter, OUT=1.

#### **Format**

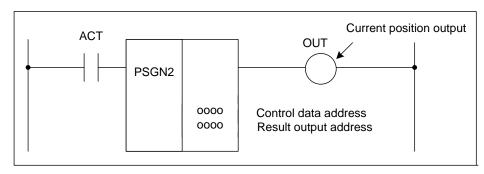
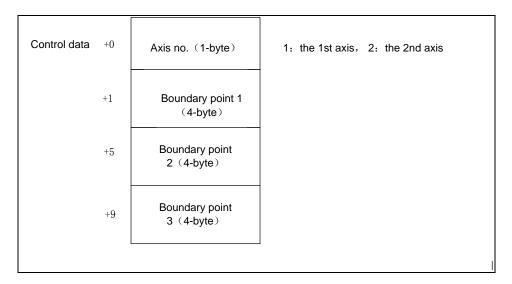



Fig. 5-70

#### **Command table format:**

Table 5-53

| No. | Command | Operand | Remark                          |  |  |
|-----|---------|---------|---------------------------------|--|--|
| 1   | LD      | 0000.0  | ACT                             |  |  |
| 2   | FUNC    | 49      | PSGN2                           |  |  |
| 3   | PRM     | 0000    | Control data address            |  |  |
| 4   | PRM     | 0000    | Operation result output         |  |  |
| 5   | OUT     | 0000.0  | Current position output address |  |  |

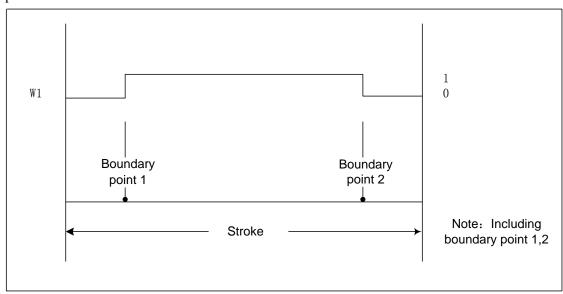

#### **Control conditions:**

ACT=0 : do not execute PSGN2 function ACT=1 : execute PSGN2 function

#### Parameter:

(1) Control data address

Set head address of control data



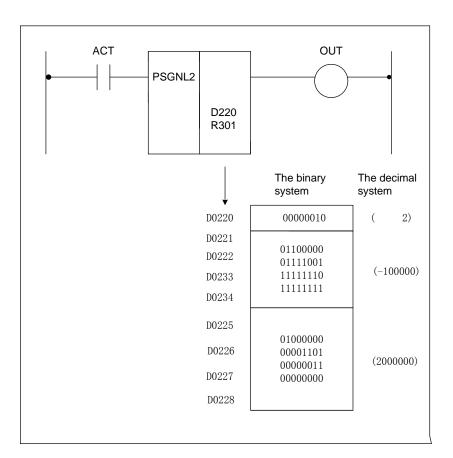

Axis number setting (binary one-byte number)

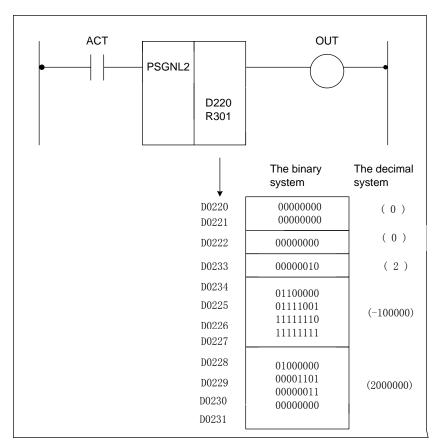
(Example) Axis number = 1 : 1<sup>st</sup> axis coordinate

Axis number =  $2 : 2^{nd}$  axis coordinate

#### Example of area division




#### (2) Operation result output address


When error occurs in PSGN2 processing, corresponding bit of operation result output register is set to 1.

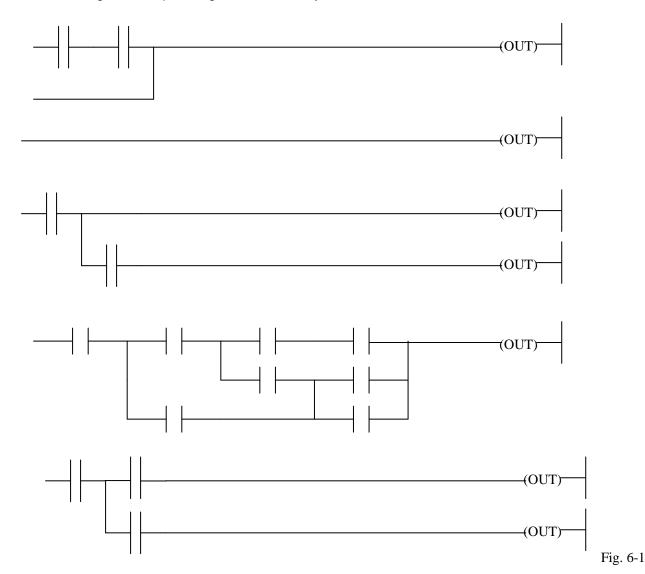
#### Output:

OUT=0: Current position is beyond the specified position in machine coordinate system OUT=1: Current position is within the specified position in machine coordinate system Usage example of position signal:

The example explains how to output position signal in machine coordinate of 2<sup>nd</sup> axis from the path 1. If the position is between -100.000mm to 200.000m, set control data address to D0220.






For the above ladder diagram and control data, if ACT=1, when -100.000<= 2<sup>nd</sup> axis position in machine coordinate <=200mm, OUT=1.

# 6 Ladder Writing Limit

Ladder writing limit constraints are as follows:

- 1. Sequence program must have END1 and END2 which are taken as the end marks of 1<sup>st</sup> level and 2<sup>nd</sup> level sequence part, and END1 must be before END2.
- 2. They only support the parallel output and do not support the multi-level output.
- 3. The result output address in all basic instructions and output function instruction are not set the following addresses:
  - 1) Counter preset address DC, timer preset address DT.
  - 2) ) X address on IO input interface and CNC→PLC F address.

The followings are the phrasing error, and the system will alarm.



# Part 2 Function

# 1 Preparations for operation

## 1.1 Emergency stop

Symbol \*ESP ( X008.4 G008.4 )

Type PLC→NC

Function The machine is stopped immediately by inputting emergency stop button.

When you press Emergency Stop button on the machine operation panel, emergency stop signal \*ESP is changed into 0, the machine movement stops in a moment.

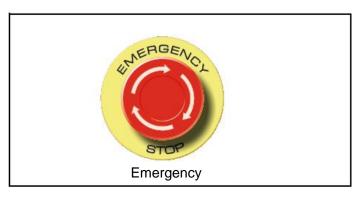


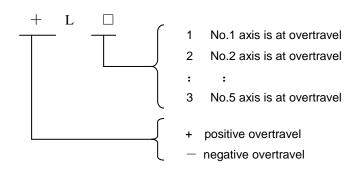

Fig. 1-1

This button is locked when it is pressed. Although it varies with the machine tool builder, the button can usually be unlocked by twisting it right.

#### Signal

|      | #7 | #6 | #5 | #4   | #3 | #2 | #1 | #0 |
|------|----|----|----|------|----|----|----|----|
| X008 |    |    |    | *ESP |    |    |    |    |
|      |    |    |    |      |    |    |    |    |
| G008 |    |    |    | *ESP |    |    |    |    |

# 1.2 CNC overtravel signal


Signal  $+*L1\sim+*L5(G114#0\sim G114#4, X9.6, X10.0, X10.2, X10.4, X10.6)$ 

-\*L1~-\*L5(G116#0~G116#4, X9.7, X10.1, X10.3, X10.5, X10.7)

Type  $PLC \rightarrow NC$ 

Function When the tool tries to move beyond the stroke end set by the machine tool limit switch,

the tool decelerates and stops as a result of tripping the limit switch, and an OVERTRAVEL alarm is displayed. The signal indicates the control axis reaches the stroke limit, each direction of the control axis has this signal. +, - of the signal indicates the direction. The number corresponds to the control axis.



When it is "0", the control unit operates as follows:

\*In automatic operation, if even one axis overtravel signal becomes to "0", all axes are decelerated to stop, an alarm is given and operation is halted.

\*In manual operation, only the axis whose overtravel signal has turned to "0" is decelerated to a stop, and the axis can be moved in the opposite direction.

\*Once the axis overtravel signal has turned to "0", the axis direction is registered. Even if the signal returns to "1", it is not possible to move that axis in that direction until the alarm is cleared.

#### Signal address:

|      | #7  | #6  | # 5 | #4  | #3  | #2  | # 1 | #0  |
|------|-----|-----|-----|-----|-----|-----|-----|-----|
| G114 |     |     |     | +L5 | +L4 | +L3 | +L2 | +L1 |
| G116 |     |     |     | -L5 | -L4 | -L3 | -L2 | -L1 |
|      | #7  | #6  | #5  | #4  | #3  | #2  | #1  | #0  |
| X009 | -L1 | +L1 |     |     |     |     |     |     |
| X010 | -L5 | +L5 | -L4 | +L4 | -L3 | +L3 | -L2 | +L2 |

# 1.3 Alarm signal

Symbol: AL (F001 # 0)

Type: NC→PLC

Function: When an alarm is triggered in the CNC, the alarm signal is set to 1, and the alarm is displayed on the screen. The alarm indicates that CNC is in alarm state, and the

following alarm occurs:

- a) NC alarm
- b) Overtravel alarm
- c) Servo alarm

The alarm signal is set to 1 when::

——The CNC is placed in the alarm state.

Runcti

The alarm signal is set to 0 when:

——The alarm has been released by resetting the CNC.

Signal address:

|      | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 |
|------|----|----|----|----|----|----|----|----|
| F001 |    |    |    |    |    |    |    | AL |

#### 1.4 Interlock

#### All axes interlock signal

\* IT (G008#0)

Type **PLC**→**NC** 

**Function** 

These signals disable machine movement along axes. When any of these signals is activated during movement, tool movement along the affected axis is decelerated, then stopped. When the \*IT is set to "0", the axis movement is decelerated and stopped. In automatic operation, the system stops in automatic run state(the signal STL is "1", the signal SPL is "0").

#### Signal address

| G008 |  |  |  | *175 |
|------|--|--|--|------|
| 0008 |  |  |  | "11  |

Interlock signal for each axis

Symbol +MIT1~+MIT5 (G132#0~G132#4) -MIT1~-MIT5 (G134#0~G134#4)

Type PLC→NC

**Function** inhibit the specified axis to specify the axis movement.

| Signal | Axis direction                | Signal | Axis direction                |
|--------|-------------------------------|--------|-------------------------------|
| +MIT1  | 1 <sup>st</sup> axis positive | -MIT1  | 1 <sup>st</sup> axis positive |
| +MIT2  | 2 <sup>nd</sup> axis          | -MIT2  | 2 <sup>nd</sup> axis positive |
|        | positive                      |        |                               |
| +MIT3  | 3 <sup>rd</sup> axis          | -MIT3  | 3 <sup>rd</sup> axis positive |
|        | positive                      |        |                               |
| +MIT4  | 4 <sup>th</sup> axis positive | -MIT4  | 4 <sup>th</sup> axis positive |
| +MIT5  | 5 <sup>th</sup> axis positive | -MIT5  | 5 <sup>th</sup> axis positive |

when the axial interlock signal becomes "1", the CNC applies interlock only in the corresponding axial direction. However, during automatic operation, all axes will stop.

#### Signal address

| G132 |  | +MIT5 | +MIT4 | +MIT3 | +MIT2 | +MIT1 |
|------|--|-------|-------|-------|-------|-------|
| G134 |  | -MIT5 | -MIT4 | -MIT3 | -MIT2 | -MIT1 |

# Part 2

## 1.5 Operation mode selection

Operation mode selection

Symbol MD1, MD2, MD3, INC (G43.0, G43.1, G43.2, G43.4)

Type NC→PLC

Function System operation mode is selected according to the signal state

| Inp | out selec | tion sign | Output | Operation    |             |
|-----|-----------|-----------|--------|--------------|-------------|
| INC | MD3       | MD2       | MD1    | MD1 signal m |             |
| 0   | 0         | 0         | 0      | MMDI         | MDI         |
| 0   | 0         | 0         | 1      | MMEM         | Auto        |
| 0   | 0         | 1         | 0      | MEDT         | Edit        |
| 0   | 0         | 1         | 1      | MH           | MPG         |
| 0   | 1         | 0         | 0      | MJ           | Manual      |
| 0   | 1         | 0         | 1      | MZRO         | Zero return |
| 0   | 1         | 1         | 0      | MRMT         | DNC         |
| 1   | 1         | 0         | 0      | MINC         | Step        |

## Signal address

|      | #7 | #6 | #5 | #4  | #3 | #2  | #1  | #0  |  |
|------|----|----|----|-----|----|-----|-----|-----|--|
| G043 |    |    |    | INC |    | MD3 | MD2 | MD1 |  |

Operation mode confirmation signal

Symbol: MINC, MH, MJ, MMDI, MRMT, MMEM, MEDT, MZRO (F003#0~F003#7)

Type: NC→PLC

Function: Specifies the currently selected operation mode.

Signal address:

|      | #7   | #6   | #5   | #4   | #3   | #2 | #1 | #0   |
|------|------|------|------|------|------|----|----|------|
| F003 | MZRO | MEDT | MMEM | MRMT | MMDI | MJ | МН | MINC |

# **2** Coordinate axis control function

## 2.1 Axis Moving Signal

Symbol: MV1~MV5(F102.0~F102.4)

Type: NC→PLC

Function: The signal from CNC to PLC. It indicates the corresponding axis is moving.

| MV1  | The 1 <sup>st</sup> axis is moving |
|------|------------------------------------|
| MV 2 | The 2 <sup>nd</sup> axis is moving |
| MV 3 | The 3 <sup>rd</sup> axis is moving |
| MV 4 | The 4 <sup>th</sup> axis is moving |
| MV 5 | The 5 <sup>th</sup> axis is moving |

## Output is 1 when:

When the CNC is outputting position move command, the corresponding axis moving signal changes into 1. It remains 1 though the axis does not move and the operation is controlled by interlock, override signal.

In manual mode, the selection signal of the corresponding axis becomes 1.

Output is 0 when:

After sending the CNC position move command, axis stops and the corresponding axis move signal becomes 0. Servo driver delay is not considered here.

## Signal address:

|      | #7 | #6 | #5 | #4  | #3  | #2  | #1  | #0  |
|------|----|----|----|-----|-----|-----|-----|-----|
| F102 |    |    |    | MV5 | MV4 | MV3 | MV2 | MV1 |

## 2.2 Axis move direction signal

Symbol: MVD1 $\sim$ MVD5(F106.0 $\sim$ F106.4)

Type: NC→PLC

**Function:** The signal from CNC to PLC. It indicates the move direction of the corresponding axis.

| MVD1 | 1 <sup>st</sup> axis is moving in negative direction |
|------|------------------------------------------------------|
| MVD2 | 2 <sup>nd</sup> axis is moving in negative direction |
| MVD3 | 3 <sup>rd</sup> axis is moving in negative direction |
| MVD4 | 4 <sup>th</sup> axis is moving in negative direction |
| MVD5 | 5 <sup>th</sup> axis is moving in negative direction |

Output is 1 when:

The corresponding axis signal changes into 1 when the axis is moving in negative direction.

Output is 0 when:

The corresponding axis signal changes into 0 when the axis is moving in positive direction.

Note: The axis move direction signal remains the state before axis stop.

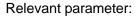
## Signal address:

|      | #7 | #6 | #5 | #4   | #3   | #2   | #1   | #0   |
|------|----|----|----|------|------|------|------|------|
| F106 |    |    |    | MVD5 | MVD4 | MVD3 | MVD2 | MVD1 |

## 2.3 Position Switch Signal

Symbol: PSW01~PSW32(F70~F73)

Type: NC→PLC


**Function:** The signal from CNC to PLC, 32-point in total. When the mechanical coordinate of the specified axis (by parameter N2500-N2531) is in the range specified by parameter, the corresponding signal becomes 1. It is software analog action.

| Symbol | Address | Function                                |  |  |  |
|--------|---------|-----------------------------------------|--|--|--|
| PSW01  | F70.0   | 1st position switch signal              |  |  |  |
| PSW02  | F70.1   | 2 <sup>nd</sup> position switch signal  |  |  |  |
| :      | :       | :                                       |  |  |  |
| :      | :       | :                                       |  |  |  |
| PSW31  | F73.6   | 31 <sup>st</sup> position switch signal |  |  |  |
| PSW32  | F73.7   | 32 <sup>nd</sup> position switch signal |  |  |  |

## Signal address:

| F070                   | PSW08 | PSW07 | PSW06 | PSW05        | PSW04  | PSW03 | PSW02 | PSW01 |  |
|------------------------|-------|-------|-------|--------------|--------|-------|-------|-------|--|
|                        |       |       | Pos   | ition switch | signal |       |       |       |  |
| F071                   | PSW16 | PSW15 | PSW14 | PSW13        | PSW12  | PSW11 | PSW10 | PSW09 |  |
| _                      |       |       | Pos   | ition switch | signal |       |       |       |  |
| F072                   | PSW24 | PSW23 | PSW22 | PSW21        | PSW20  | PSW19 | PSW18 | PSW17 |  |
| Position switch signal |       |       |       |              |        |       |       |       |  |
| F073                   | PSW32 | PSW31 | PSW30 | PSW29        | PSW28  | PSW27 | PSW26 | PSW25 |  |

Position switch signal



|      | #7 | #6 | #5 | #4 | #3  | #2 | #1 | #0 |
|------|----|----|----|----|-----|----|----|----|
| 2401 |    |    |    |    | SWI |    |    |    |

SWI: Position switch valid symbol

- 0: Position switch is invalid
- 1: Position switch is valid

| 2500 | Servo axis no. to position switch 1  |  |  |  |  |  |
|------|--------------------------------------|--|--|--|--|--|
| ~    | ~                                    |  |  |  |  |  |
| 2531 | Servo axis no. to position switch 16 |  |  |  |  |  |

Set servo axis number for each position switch. When the number is set to 0, the corresponding position switch is invalid. It corresponds to X axis when the number is 1, to Y axis when the number is 2, to Z axis when the number is 3, to the 4<sup>th</sup> axis when the number is 4, and so on.

| 2532   | Max. value for action range of position switch 1  |
|--------|---------------------------------------------------|
| ~      | ~                                                 |
| 2563   | Max. value for action range of position switch 32 |
| 2564   | Min. value for action range of position switch 1  |
|        | <u> </u>                                          |
| $\sim$ | ~                                                 |
| 2595   | Min. value for action range of position switch 32 |

Set action range of each position switch by mechanical coordinate value.

## 2.4 Synchronous Axis Control

## **Function**

Two motors are operated simultaneously by one axis command to propel the feed axis, which is usually called gantry axis function. The motors are primary, secondary moter separately.

## Relevant parameter:

|      | #7 | #6 | #5 | #4 | #3 | #2 | #1  | #0  |  |
|------|----|----|----|----|----|----|-----|-----|--|
| 4020 |    |    |    |    |    |    | ADJ | SYN |  |

| SYN  |   | Feed  | axis | synchronous     | valid s | vmbol   |
|------|---|-------|------|-----------------|---------|---------|
| DIII | • | 1 CCu | anis | o ynichii onous | vanu s  | YIIIOOI |

0 : Invalid

1 : Valid

ADJ: Synchronous reversion mode of feed axis

0 : Invalid1 : Valid

| 4021 | Main control axis number                     |
|------|----------------------------------------------|
| 4022 | Allowed tolerance of the machine coordinate  |
| 4023 | Synchronous error allowed by position offset |
| 4024 | Compensation allowed by synchronous          |

# 3

## **Manual operation**

## 3.1 JOG feed/incremental feed

#### General

JOG feed

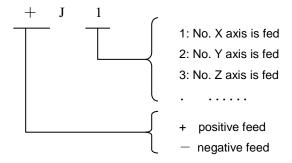
In JOG mode, setting a feed axis and direction selection bit to 1 on the machine operator's panel moves the machine along the selected axis in the selected direction.

Incremental feed

In incremental feed mode, setting a feed axis and direction selection bit to 1 on the machine operator's panel moves the machine one step along the selected axis in the selected direction. The minimum distance the machine moves, is the least input increment. The step can be 10, 100, or 1000 times the least input increment.

The only difference between JOG feed and incremental feed is the method of selecting the feed distance. In JOG feed, the machine continues to be fed while the following signals selecting the feed axis and direction are 1: +J1, -J1, +J2, -J2, +J3, -J3, etc. In incremental feed, the machine is fed by one step. Using JOG feedrate override dial can regulate JOG feedrate. The step distance can be selected by MPG feed movement distance  $G19\#4\sim G19\#5$ .

Signal


Feed axis and direction selection signal

+J1~+J5 (G100#0~G100#4)

 $-J1\sim-J5$  (G102#0 $\sim$ G102#4)

[Classification] Input signal. PLC→NC

[Function] In JOG feed or Incremental feed mode, select the required feed axis and direction. +/- in the signal name indicates the feed direction, the number corresponds to the controlled axis.



## [Operation]

When the signal is set to 1, the control unit operate as follows:

\* When JOG feed or incremental feed is allowed, the control unit moves the specified axis in the specified direction.

When the signal is set to 1 in JOG feed, the control unit continues to move that axis

## Signal address

| G100 |  | +J5 | +J4 | +J3 | +J2 | +J1 |
|------|--|-----|-----|-----|-----|-----|
| G102 |  | -J5 | —J4 | —Ј3 | -J2 | -J1 |

Manual rapid traverse selection signal

RT (G19#7)

[Classification] PLC→NC

[Function] Select the rapid traverse rate in JOG feed or incremental feed mode.

[Operation] When the JOG feed signal becomes 1, the federate is increased, it is controlled by rapid traverse override.

## Signal address

|     | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 |
|-----|----|----|----|----|----|----|----|----|
| G19 | RT |    |    |    |    |    |    |    |

## 3.2 MPG / Step feed

Signal HS1A、HS1B、HS1C(G018#0~G018#2)

Classification PLC→NC

General In MPG feed mode, select the feed axis of MPG.

| HS1C | HS1B | HS1A | Selected axis |
|------|------|------|---------------|
| 0    | 0    | 1    | X             |
| 0    | 1    | 0    | Y             |
| 0    | 1    | 1    | Z             |
| 1    | 0    | 0    | 4             |
| 1    | 0    | 1    | 5             |
| 1    | 1    | 0    | 6             |

## Signal address:

|      | #7 | #6 | #5 | #4 | #3 | #2   | #1   | #0   |
|------|----|----|----|----|----|------|------|------|
| G018 |    |    |    |    |    | HS1C | HS1B | HS1A |

## MPG/incremental feed selection signal

MP1, MP2 (G019#4~G19#5)

[Classification] PLC→NC

[Function] The signal selects the movement distance of each pulse of MPG in MPG

feed, and also selects the movement distance of each step in the

incremental feed.

| MP2(G19.5) | MP1(G19.4) | Override  |
|------------|------------|-----------|
| 0          | 0          | <b>×1</b> |
| 0          | 1          | ×10       |
| 1          | 0          | ×100      |
| 1          | 1          | ×1000     |

## Signal address:

|      | #7 | #6 | # 5 | #4  | #3 | #2 | #1 | #0 |
|------|----|----|-----|-----|----|----|----|----|
| G019 |    |    | MP2 | MP1 |    |    |    |    |

# 4 Reference Point Return

## 4.1 Manual reference point return

#### General

In manual reference point return mode, the machine tool move in the specified direction by setting the position parameter N1004#5 to execute the reference point return. The selected axis on the panel reports the axis to execute the machine zero return, which is not related to the move direction of axis.

When the system with absolute position detection unit is used, the specified position is kept. It unnecessary to create reference point after power on, the reference return will performed directed when reference return is executed.

Reference return deceleration signal

\*DEC1~ \*DEC5 (X9#0~X9#4)

Classification PLC→NC

Function

Movement speed of manual reference return is reduced, and the reference point is searched at low speed. **X9#0~X9#4** is high-speed I/O signal, which is sent to CNC directly not through PLC. Parameter N2401#5 sets deceleration signal level of reference return.

## Signal address:

|      | #7 | #6 | # 5 | #4    | #3    | #2    | #1    | # 0   |
|------|----|----|-----|-------|-------|-------|-------|-------|
| X009 |    |    |     | *DEC5 | *DEC4 | *DEC3 | *DEC2 | *DEC1 |

Requirements for deceleration block of manual reference return:

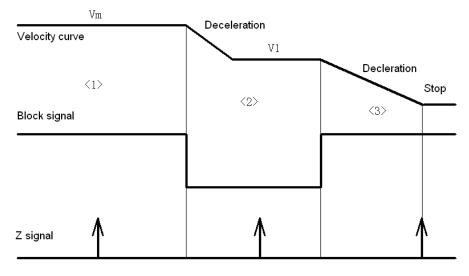



Fig. 4-1 The process of manual reference return

The min. length of deceleration block

L= ((Vm/60) \* (Vm/60) - (V1/60) \* (V1/60)) / (2\*a\*1000) +D

Vm: Reference return speed, which is set by parameter N1235

V1: FL speed of reference return, which is set by parameter N1234

a : Deceleration/acceleration speed, which is set by parameter N1444

D : Movement per rev of servo motor, which is set by parameter N1060

## Reference point return completion signal

ZP1~ZP5(F94#0~F94#4)

[Classification] NC→PLC

[Function] These signals report that the machine tool is at the reference point on a controlled axis.

| ZP1 | 1 <sup>st</sup> axis reference point return completion signal |
|-----|---------------------------------------------------------------|
| ZP2 | 2 <sup>nd</sup> axis reference point return completion signal |
| ZP3 | 3 <sup>rd</sup> axis reference point return completion signal |
| ZP4 | 4 <sup>th</sup> axis reference point return completion signal |
| ZP5 | 5 <sup>th</sup> axis reference point return completion signal |

[Output conditions] When these signals becomes 1:

- Manual reference point return is completed and the current position is in the in-position area.
- The automatic reference point return(G28) is completed and the current position is in the in-position area.
- The reference point return check is completed and the current position is in the in-position area.

When the signal becomes 0:

The machine tool moves from the reference point.

## Signal address:

|      | #7 | #6 | #5 | #4  | #3  | #2  | #1  | #0  |
|------|----|----|----|-----|-----|-----|-----|-----|
| F094 |    |    |    | ZP5 | ZP4 | ZP3 | ZP2 | ZP1 |

## Reference point establishment signal

ZRF1~ZRF4(F120#0~F120#4)

[Classification] NC→PLC

[Function] Notify the system that the reference point has been established.

| ZRF1 | 1 <sup>st</sup> reference point establishment signal |
|------|------------------------------------------------------|
| ZRF2 | 2 <sup>nd</sup> reference point establishment signal |
| ZRF3 | 3 <sup>rd</sup> reference point establishment signal |
| ZRF4 | 4 <sup>th</sup> reference point establishment signal |
| ZRF5 | 5 <sup>th</sup> reference point establishment signal |

[Output condition] The signal becomes 1 when :

- When the reference point is established after the manual reference point return.
- When the reference point is established using the absolute position detector at initial power-on.

The signal becomes 0 when:

When the reference point is lost.

## Signal address:

|      | #7 | #6 | #5 | #4   | #3   | #2   | #1   | #0   |  |
|------|----|----|----|------|------|------|------|------|--|
| F120 |    |    |    | ZRF5 | ZRF4 | ZRF3 | ZRF2 | ZRF1 |  |

## 4.2 Reference Return (without Block)

General

Reference return deceleration switch is not used to realize reference return. When the system parameter N1001#1 is set to 1, the function is valid.

Procedures:

1. In manual mode, move the axis to the adjacent place where reference

point to be set.

- 2. Select reference return mode, and press axis moving key on the panel to choose the axis to return the reference point. The axis moves to reference point in the direction set by parameter N1004#5 at FL speed. Its direction has nothing to do with the one selected by key.
- 3. The system stops when one-turn signal is seized in the process of the CNC returns to the reference point. The position where the system stops is set to be the reference point. The reference return completion  $(\mathsf{ZPn})$  signal and reference position establishment  $(\mathsf{ZRFn})$  signal are set to 1.

## 4.3 The 2<sup>nd</sup>, 3<sup>rd</sup>, and 4<sup>th</sup> Reference Point Return

 $2^{\text{nd}},\,3^{\text{rd}},\,\text{and}\,\,4^{\text{th}}$  reference point return completion signal

Signal: 2<sup>nd</sup> reference point return ZP21~ZP25(F96#0~F96#4)

 $3^{rd}$  reference point return ZP31 $\sim$ ZP35(F98#0 $\sim$ F98#4)

## 4<sup>th</sup> reference point return ZP41~ZP45(F100#0~F100#4)

Classification:  $NC \rightarrow PLC$ 

**Function:** In command G30, the numbers behind p are used to specify which point is returned to. Axis position specified by the same block is used to select reference return axis.

Set  $2^{nd}$ ,  $3^{rd}$ , and  $4^{th}$  reference point coordinate parameter as: N1051, N1052,

N1053.

ZP 
$$\diamondsuit$$
  $\Box$ 
 $\diamondsuit$  2:  $2^{nd}$  reference point
3:  $3^{rd}$  reference point
4:  $4^{th}$  reference point
$$\Box$$
 1:  $1^{st}$  axis
2:  $2^{nd}$  axis
.....

The signal becomes 1 when:

• The 2<sup>nd</sup>, 3<sup>rd</sup>, and 4<sup>th</sup> reference point return is completed by command G30 and the current position is in the in-position area.

The signal becomes 0 when:

The machine tool moves from the reference point.

|      | #7 | #6 | #5 | #4   | #3   | #2   | #1   | #0   |
|------|----|----|----|------|------|------|------|------|
| F096 |    |    |    | ZP25 | ZP24 | ZP23 | ZP22 | ZP21 |
| F098 |    |    |    | ZP35 | ZP34 | ZP33 | ZP32 | ZP31 |
| F100 |    |    |    | ZP45 | ZP44 | ZP43 | ZP42 | ZP41 |

# 5 Automatic operation

## 5.1 Cycle start/feed hold

#### General

\* Start of automatic

When automatic operation start signal ST is set to 1 then 0 while the CNC operation(cycle start) is in memory mode, DNC operation mode or MDI mode, the CNC enters the automatic operation start state then starts operating.

The signal ST is ignored as follows:

- When the CNC is in other modes except for MEM, RMT or MDI mode.
- 2. When the feed hold signal (SP) is set to 0.
- 3. The emergency stop signal (ESP) is set to 0.
- 4. When the reset signal (ERS) is set to 1.
- 5. When <RESET> on MDI panel is pressed.
- 6. When CNC is in the state of alarm.
- 7. When the automatic operation is started.

In automatic operation, the CNC enters the feed hold and stops run as follows:

- 1. When the feed hold signal (\*SP) is set to 0.
- 2. The operation mode becomes manual, MPG, Zero return operation mode.

In automatic operation, the CNC enters the feed hold and stops run as follows:

- The single block instruction is end when the single block is running.
- 2. MDI operation is completed.
- 3. CNC alarms.
- 4. The single block instruction is end after the mode is changed to others or Edit mode.

In automatic operation, the CNC enters the reset and stops running as follows:

- 1. When the emergency stop signal (ESP) is set to 1.
- 2. When the external reset signal (ERS) is set to 1.
- 3. When <RESET> on MDI panel is pressed.

\* Halt of automatic operation

(Feed hold)

When the feed hold signal SP is set to 0 in automatic operation, the CNC enters the halt state and stops operation. At the same time, cycle start lamp signal STL is set to 0 and feed hold lamp signal SPL is set to 1. Re-setting signal SP to 0 in itself will not restart automatic operation. To restart automatic operation, first set signal SP to 0, then set signal ST to 1 and to 0.

When signal \* SP is set to 0 during the execution of a block containing only the M, S, T, or B function, signals STL is immediately set to 0, signal SPL is set to 1, and the CNC enters the feed hold state. If the FIN signal is subsequently sent from the PLC, the CNC executes processing up until the end of the block that has been halted. Upon the completion of that block, signal SPL is set to 0 (signal STL remains set to 0) and the CNC enters the automatic operation stops state.

During threading

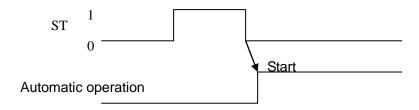
When signal SP is set to 0 during threading, the CNC enters the feed hold state after executing a threading block.

During tapping in a canned cycle
 When signal SP is set to 0 during tapping in a canned cycle (G84),
 signal SPL is immediately set to 1 but operation continues until the
 tool returns to the initial level or R point level after the completion of

When a macro command is being executed
 Operation stops after the currently executing macro command has been completed.

## Signal Cycle start signal

ST (G7#2)


[Classification] PLC→NC

[Function] Start the automatic operation.

tapping.

[Operation] When signal ST is set to 1 then 0 in automatic operation(Auto), DNC and MDI mode, the CNC enters the cycle start state and starts operations.

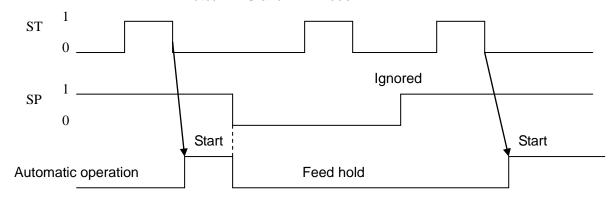
#### In Auto, DNC and MDI mode



Feed hold signal

SP (G8#5)

[Classification] PLC→NC


[Function]

Halt the automatic operation

[Operation]

In Auto mode, SP signal is set 1, CNC enters the feed hold and stops running. When SP signal is set to 0, the automatic operation does not start.

In Auto, DNC and MDI mode



Cycle start lamp signal

STL (F000#5)

[Type] NC→PLC

[Function]

The signal reports PLC that the automatic operation is entered.

The signal is set to 1 or 0, which is determined by CNC state as Table 5.1.

Feed hold lamp signal

STL (F000#4)

[Type] NC→PLC

[Function] The signal reports PLC that the feed hold is entered.

The signal is set to 1 or 0, which is determined by CNC state as Table 5.1.

Automatic operation signal

Feed hold lamp signal

OP (F000#7)

[Type] NC→PLC

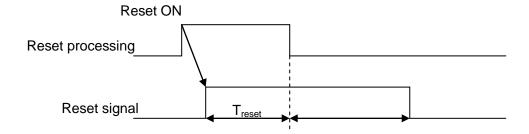
Function The signal reports PLC that the automatic operation is performing The signal is set to 1 or 0, which is determined by CNC state as Table 5.1.

Table 5.1

|                              | Cycle start lamp STL | Feed hold lamp SPL | Automatic operation lamp OP |
|------------------------------|----------------------|--------------------|-----------------------------|
| Cycle start                  | 1                    | 0                  | 1                           |
| Feed hold                    | 0                    | 1                  | 1                           |
| Automatic operation stopping | 0                    | 0                  | 0                           |
| Reset                        | 0                    | 0                  | 0                           |

## Signal address

|      | #7 | #6 | #5  | #4  | #3 | #2 | #1 | #0 |
|------|----|----|-----|-----|----|----|----|----|
| G007 |    |    |     |     |    | ST |    |    |
| !    |    |    |     |     |    |    |    |    |
| F000 | OP |    | STL | SPL |    |    |    |    |


## 5.2 Reset

General

CNC is reset and enters the reset state.

- 1. When the emergency signal (ESP) is set to 1.
- 2. When the external reset signal (ERS) is set to 1.
- 3. When <RESET> on MDI panel is pressed.

When the CNC is reset, the resetting signal RST is output to the PLC. The resetting signal RST is set to 0 when the resetting signal output time has elapsed after the above conditions have been released.



When the CNC is reset during automatic operation, automatic operation is stopped and is decelerated to stop. When the CNC is reset during the execution of the MF, SF or TF signal is set to 0 within 16ms.

## Signal External reset signal

ERS (G8#7)

[Classification] PLC→NC

[Function] reset the CNC.

[Operation] turning the signal ERS to 1 resets the CNC and enters the reset state.

While the CNC is reset, the resetting signal RST turns to 1.

## Reset signal

RST (F001#1)

[Classification] NC→PLC

[Function] Notifies the PLC that the CNC is being reset. This signal is used for reset processing on the PLC.

The signal is set to 1 when:

- 1. When the emergency stop signal (ESP) is set to 1.
- 2. When <RESET> on MDI panel is pressed.
- 3. <RESET> key on MDI is pressed.

The signal is set to 0 when:

When the reset signal output time set by a parameter is completed after the above are released and CNC is reset.

## Signal address

|      | #7  | #6 | # 5 | #4 | #3 | #2 | #1  | #0 |
|------|-----|----|-----|----|----|----|-----|----|
| G008 | ERS |    |     |    |    |    |     |    |
|      |     |    |     |    |    |    |     |    |
| F001 |     |    |     |    |    |    | RST |    |

## 5.3 Testing a program

#### General

Before machining is started, the automatic running check can be executed. It checks whether the established program can operate the machine as desired. This check can be accomplished by running the machine or view the position display change without running the machine.

## 5.3.1 Machine tool lock

#### General

The change of the position display can be monitored without moving the machine.

When all-axis machine lock signal MMLK is set to 1, output pulses to the servo motors are stopped in manual or automatic operation. The instructions are distributed, however, updating the absolute and relative coordinates. The operator can therefore check if the instructions are correct by monitoring the position display.

## Signal

## machine lock signal

## MLK G044#1)

[Classification] PLC→NC

[Function] The signal reports PLC of the state of all-axis machine tool lock signal.

[Operation] When this signal is set to 1, pulses are not output to the servo motors for all axes in manual or automatic operation.

## All-axis machine lock check signal

#### MMLK (F004#1)

[Classification] NC→PLC

[Function] Notifies the PLC of the state of the all-axis machine lock signal.

When the signal is set to 1, all-axis machine tool lock signal is set to 1.

When the signal is set to 0, all axes machine tool lock signals are set to 0.

## Signal address

|      | #7 | #6 | # 5 | #4 | #3 | #2 | #1   | #0 |
|------|----|----|-----|----|----|----|------|----|
| F004 |    |    |     |    |    |    | MMLK |    |
|      |    |    |     |    |    |    |      |    |
| G044 |    |    |     |    |    |    | MLK  |    |

## 5.3.2 Dry run

## General

Dry run is valid only for automatic operation. The tool is moved at a constant feedrate regardless of the federate specified in the program. The feedrate is set by the data parameter P1210.

This function is used to check the movement of the tool without a workpiece.

## Signal

Dry run signal

## DRN (G046#7)

[Classification] PLC→NC

[Function] Enables dry run.

[Operation] When the signal is set to 1, the machine tool moves at the feedrate specified for dry run.

When the signal is 0, the machine tool normally moves.

## Caution:

When the dry run signal is changed from 0 to 1 or 1 to 0 during the movement of the machine, the feedrate of the machine is first decelerated to 0 before being accelerated to the specified feedrate.

## Dry run check signal

MDRN (F002#7)

[Classification] NC→PLC

[Function] Notifies the PLC of the state of the dry run signal.

[Operation] The signal is set to 1 in the following case:

——When the dry run signal DRN is set to 1.

The signal is set to 0 in the following case:

——When the dry run signal DRN is set to 0.

## Signal address

|      | #7   | #6 | #5 | #4 | #3 | #2 | #1 | #0 |
|------|------|----|----|----|----|----|----|----|
| G046 | DRN  |    |    |    |    |    |    |    |
|      |      |    |    | -  |    |    |    |    |
| F002 | MDRN |    |    |    |    |    |    |    |

## 5.3.3 Single block

**General** The single block operation is valid in automatic operation mode (Auto mode).

When the single block signal (SBK) is set to 1 during automatic operation, the CNC enters the automatic operation stop state after executing the current block. In subsequent automatic operation, the CNC enters the automatic operation stop state after executing each block in the program. When the single block signal (SBK) is set to 0, normal automatic operation is stored.

## Signal Single block signal SBK (G046#1)

[Classification] PLC→NC

[Function] Enables single block operation.

[Operation] Execute the single block when the signal is set to1.

Execute the normal operation when the signal is set to 0.

#### Single block check signal

## MSBK (F004#3)

[Classification] NC→PLC

[Function] The signal reports PLC of the state of single block signal.

[Operation] The signal is set to 1 as follows:

——When the single block signal SBK is set to1.

The signal is set to 0 as follows:

——When the single block signal SBK is set to 0.

#### Caution:

## 1. Operations in thread cutting

When the SBK signal becomes 1 in thread cutting, the operation stops after the first non-thread cutting signal after thread cutting instruction.

## 2. Operation in canned cycle

When the SBK signal becomes 1 during canned cycle operation, the operation stops at each positioning, approach, drilling and retraction instead of the end of the block. The SPL signal becomes 1 while the STL signal becomes 0, showing that the end of the block has not been reached. When the execution of one block is completed, the STL and SPL signals become 0 and the operation is stopped.

## Signal address

|      | #7 | #6 | # 5 | #4 | #3   | #2 | #1  | #0 |
|------|----|----|-----|----|------|----|-----|----|
| G046 |    |    |     |    |      |    | SBK |    |
|      |    |    |     |    |      |    |     |    |
| F004 |    |    |     |    | MSBK |    |     |    |

## 5.4 Optional block skip

General

When a slash followed by a number is specified at the head of a block, and optional block skip signal BDT is set to 1 during automatic operation, the block is ignored.

#### Signal Skip optional block signal

## BDT (G044#0)

[Classification] PLC→NC

[Function] Select whether a block with "/" is neglected.

[Operation] During automatic operation, when BDT is 1, the block with "/" is neglected.

The program is normally executed when BDT is 0.

Optional block skip check signal

## MBDT (F004#0)

[Classification] NC→PLC

[Function] The signal reports PLC of the state of skip optional block BDT.

# Function

## Signal address

|      | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0   |
|------|----|----|----|----|----|----|----|------|
| G044 |    |    |    |    |    |    |    | BDT  |
|      |    |    |    |    |    |    |    |      |
| F004 |    |    |    |    |    |    |    | MBDT |

## 5.5 Program restart

General

A program may be restarted at a block by specifying the sequence number of the block, after automatic operation is stopped because of a broken tool or for holidays. This function can also be used as a high-speed program check function.

There are two types of restart methods:

P type: restart after a tool is broken down.

Q type: restart after holiday.

Signal

Program restart signal

## SRN<G006#0>

[Classification] PLC → NC

[Function]

Select the program restart

[Operation]

When the program restart signal is set to 1 to search for the sequence number of the block to be restarted, the LCD screen changed to the program restart screen. When the program restart signal is set to 0, and automatic operation is activated, the machine moves back to the machining restart point at dry run speed along the axes one by one. When the machine moves to the restart point, machining restarts.

Signal during program restart

#### SRNMV<F002#4>

[Classification] NC→PLC

[Function] Report the program is started.

[Output conditions] The signal becomes 1 when:

—The program restart signal is set to 0 after the LCD screen changes to the program restart screen.

The signal is set to "0" when:

—The program restart sequence ends(the tool has been moved to the restart point on all controlled axes).

## Signal address

|      | #7 | #6 | # 5 | #4   | #3 | #2 | #1 | #0  |
|------|----|----|-----|------|----|----|----|-----|
| G006 |    |    |     |      |    |    |    | SNR |
| F002 |    |    |     | SRNM |    |    |    |     |

# **6** Feedrate Control

## 6.1 Rapid traverse rate

## General

A rapid traverse rate is set for each axis by the data parameter P1225, so no rapid traverse rate need be programmed.

The following overrides can be applied to a rapid traverse rate with the rapid traverse override signal:

F0, 25%, 50%, 100%.

F0: it is set by the data parameter P1231.

## Signal

## rapid traversing signal

RPDO (F002#1)

[Type] NC→PLC

[Function] The signal indicates that a move command is executed at rapid traverse.

[Output condition] "1" indicates that an axis starts moving after rapid traverse has been selected.

"0" indicates that an axis starts moving after a federate other than rapid traverse has been selected. This holds true for both automatic and manual operation modes.

## Note:

- The rapid traverse in automatic operation includes all rapid traverses in canned cycle
  positioning, automatic reference point return, etc., as well as the move command
  G00. The manual rapid traverse also includes the rapid traverse in reference position
  return.
- 2. Once rapid traverse has been selected, this signal remains "1", including during a stop, until another federate has been selected and movement is started.

## Signal address

|      | #7 | #6 | #5 | #4 | #3 | #2 | #1   | #0 |
|------|----|----|----|----|----|----|------|----|
| F002 |    |    |    |    |    |    | RPDO |    |

## 6.2 Override

## 6.2.1 Rapid traverse override

General

An override of four steps (F0, 25%, 50%, 100%) can be applied to the rapid traverse rate. F0 is set by a parameter P1231.

1% step by step method can be used to select rapid traverse rate in the range of  $0\sim100\%$ .

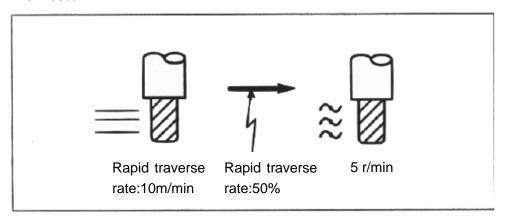



Fig. 6-1

Feedrate

Actual feedrate is obtained by multiplying the rapid traverse rate preset by a parameter by the override value determined by this signal (including manual reference point return, program zero return).

F0 rate

It is set by the data parameter P1231.

Signal rapid traverse rate override signal ROV1 ROV2<G14.0 G14.1> ROV1 ROV2 (G14.0 G14.1)

[Classification]

 $PLC \rightarrow NC$ 

[Function] These signals override the rapid traverse rate.

| Rapid traverse | Rapid traverse override signal |                |  |  |  |  |
|----------------|--------------------------------|----------------|--|--|--|--|
| ROV2           | ROV1                           | Override value |  |  |  |  |
| 0              | 0                              | F0             |  |  |  |  |
| 0              | 1                              | 25%            |  |  |  |  |
| 1              | 0                              | 50%            |  |  |  |  |
| 1              | 1                              | 100%           |  |  |  |  |

Fig. 6-2

Signal address:

|      | #7 | #6 | #5 | #4 | #3 | #2 | #1   | #0   |
|------|----|----|----|----|----|----|------|------|
| G014 |    |    |    |    |    |    | ROV2 | ROV1 |

## 1% step rapid traverse override selection signal HROV(G096.7)

HROV(G096.7) Signal: Classification: **PLC** $\rightarrow$ **NC** 

Function: Select rapid traverse override control signal.

When the signal is 0, ROV1 ROV2 (G14.0 G14.1) is selected by rapid

traverse override.

When the signal is 1, HROV0~HR0V6(G96.0~G96.6) is selected by

rapid traverse override, 1% step rapid traverse override is valid.

## Signal address:

|      | #7   | #6 | #5 | #4 | #3 | #2 | #1 | #0 |
|------|------|----|----|----|----|----|----|----|
| G096 | HROV |    |    |    |    |    |    |    |

1% step rapid traverse override signal

HROV0~ HROV06(G096.0~G96.6)

Signal: HROV0~ HROV06(G096.0~G96.6)

Classification: **PLC**→**NC** 

Function: Rapid override in 0~100% can be applied by 7-bit binary data

(G096.0~G96.6) step by step (1%).

When the binary data exceeds 100, the override is restricted in 100%.

## Signal address:

|      | #7 | #6    | # 5   | #4    | #3    | #2    | #1    | #0    |
|------|----|-------|-------|-------|-------|-------|-------|-------|
| G096 |    | HROV6 | HROV5 | HROV4 | HROV3 | HROV2 | HROV1 | HROV0 |

## 6.2.2 Feedrate Override

## Feedrate override

\*FV0~\*FV7 (G012) Signal:

Classification: **PLC**→**NC** 

Function: Manual and cutting federate override control

Feedrate override is a 8-bit binary code, which can be chosen by the min.

1% step in the range of 0%~254%. Actual feedrate is obtained by multiplying

the commanded speed by the override value

Override

G012(\*FV0~\*FV7)

Override

- G63 tapping mode
- Cutting feed of tapping canned cycle

Signal address:

|      | #7   | #6   | #5   | #4   | #3   | #2   | #1   | #0   |
|------|------|------|------|------|------|------|------|------|
| G012 | *FV7 | *FV6 | *FV5 | *FV4 | *FV3 | *FV2 | *FV1 | *FV0 |

#### **Safety Feedrate Selection** 6.2.3

G012(\*FV0~\*FV7)

Safety federate selection signal

Signal: FVL (G019#6)

Classification:  $\textbf{PLC} {\rightarrow} \textbf{NC}$ 

Function: Restrict max. speed of rapid traverse and cutting feed

When the signal is 1, rapid traverse and cutting federate of CNC axes

are restricted by parameter N1260.

Signal address:

|      | #7 | #6  | # 5 | #4 | #3 | #2 | #1 | #0 |
|------|----|-----|-----|----|----|----|----|----|
| G019 |    | FVL |     |    |    |    |    |    |

# 7 M, S, T Auxiliary Function

#### 7.1 Miscellaneous function

Basic procedure

The following signals are used for the following functions.

Table 7-1

| Function               | Program |             | Output signal |                         |        |  |  |  |
|------------------------|---------|-------------|---------------|-------------------------|--------|--|--|--|
| Function               | address | Code signal | Strobe signal | Distribution end signal | signal |  |  |  |
| Miscellaneous function | М       | M**         | MF            |                         |        |  |  |  |
| Spindle function       | S       | S00∼S31     | SF            | DEN                     | FIN    |  |  |  |
| Tool function          | Т       | T00~T31     | TF            |                         |        |  |  |  |

Each function uses different program addresses and different signals, but they all input and output signals in the same way, as described below.( A sample procedure for the miscellaneous function is described below. The procedures for the spindle speed function and the tool function are obtained simply by substituting S, T in place of M.)

- Suppose that MXXX is specified during a program: If XXX is not set, the CNC alarms.
- (2) After the code signals M00~M31 is sent, the strobe signal MF is set to 1. The code signal is the binary representation of the programmed value XXX.
  - If a move, dwell, spindle speed, or other function is specified in the same block as the miscellaneous function, the execution of the other function is started when the code signal of the miscellaneous function is sent.
- (3) When the strobe signal is set to 1, the PLC reads the code signal and performs the corresponding operation.
- (4) To execute an operation after the completion of the move, dwell or other function specified in the block, wait until distribution end signal DEN is set to 1.
- (5) Upon completion of the operation, the PLC sets completion signal FIN to 1. The completion signal is used by the miscellaneous function, spindle speed function, tool function described later, and other functions. If any of these functions are executed simultaneously, the completion signal must be set to 1 upon completion of all the functions.
- (6) If the completion signal remains set to 1 for longer than period, the CNC sets the strobe signal to 0 and reports that the completion signal has been received.
- **(7)** When the strobe signal is set to 0, set the completion signal to 0 in the PLC.

- (8) When the completion signal is set to 0, the CNC sets all code signals to 0 and completes all sequences of the miscellaneous function.
- (9) Once all other commands in the same block have been completed, the CNC executes the next block.
  - 1. When the spindle speed is executed, the tool function is S code, T code signal is sent.
  - 2. When the spindle speed, the tool function code signal is maintained until a new code for the corresponding function is specified.

The timing diagram is as follows:

One miscellaneous function specified in a block

DEN: 0\_\_\_\_\_

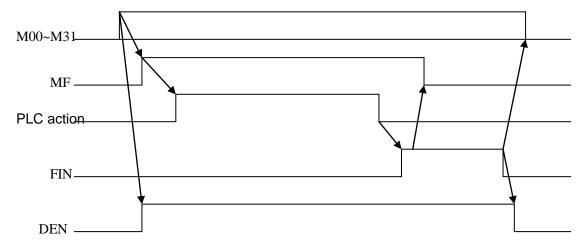



Fig. 7-1

Move command and miscellaneous function in the same block, execute a miscellaneous function with waiting for move command completion:

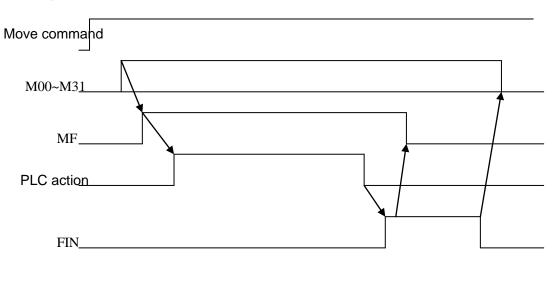
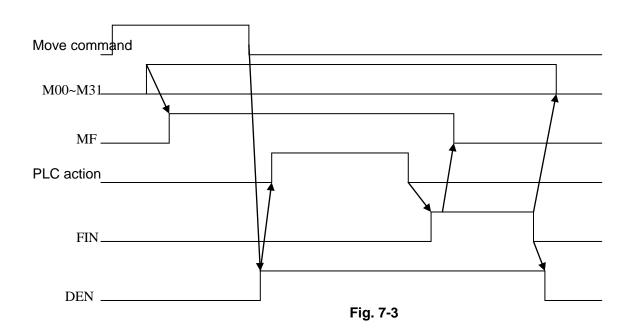




Fig. 7-2

Move command and miscellaneous function in the same block, execute a miscellaneous function with waiting for move command completion:



Signal Miscellaneous function code signals

M00~M31 (F010~F013)

Classification NC→PLC

Function NC sends miscellaneous function data signal

Miscellaneous function strobe signal

MF (F007#0)

[Classification] NC→PLC

[Function] Strobe signal for M code when the code is performed by NC.

Note:

- 1. The following miscellaneous functions are only processed in the CNC; they are not output to the PLC when programmed:
  - \* M98, M99,
  - \* M code that calls a subprogram
  - \* M code that calls a custom macro
- 2. The miscellaneous functions listed below is directly performed by CNC. Code signal can not be output. However, NC will send output signal to the PLC during execution.

Table 7-2

| M Code   | Output | Address |  |
|----------|--------|---------|--|
| IVI Code | signal | Address |  |
| M00      | DM00   | F009#7  |  |
| M01      | DM01   | F009#6  |  |
| M02      | DM02   | F009#5  |  |
| M30      | DM30   | F009#4  |  |

3.  $M00\sim M31$  are output to M code in the binary BCD format.

For example: M5 corresponds to 00000000, 00000000, 00000000, 00000101 M decoding signal

## Spindle speed code signals

S00~S31 (F022~F025)

[Classification] NC→PLC

[Function] These signals report that the spindle speed sent to the PLC. S code is a binary number. For example: S20 corresponds to 00000000, 00000000, 00000000, 00010100.

## Spindle speed strobe signal

SF (F007#2)

[Classification] NC→PLC

[Function] These signals report that spindle speed function have been specified.

For the output conditions and procedure, see the description of "Basic procedure".

## Tool function code signal

T00~T31 (F026~F029)

[Classification] NC→PLC

[Function] Tool T command data sent to PLC. T command value is a binary number. For example: T12 corresponds to 00000000, 00000000, 000001100.

## **Tool function strobe signal**

TF (F007#3)

[Classification] NC→PLC

[Function] These signals indicates the actually specified tool function.

For the output conditions and procedure, see the description of "Basic procedure".

#### Miscellaneous function end signal

FIN (G004#3)

[Classification] PLC→NC

[Function] The response signal from PLC to the NC at the end of the miscellaneous function. After receiving the end signal, CNC executes the current block miscellaneous function.

For the operation and procedure, see the description of "Basic procedure".

## Distribution end signal

DEN (F001#3)

[Classification] NC→PLC

[Function] When movement command in the block is performed, the signal turns to 1.

When M, S, T command is in the same block with movement command,

M, S, T command is executed after performing movement command.

## Signal address:

|      | #7   | #6   | #5   | #4   | #3  | #2  | #1  | #0  |
|------|------|------|------|------|-----|-----|-----|-----|
| G004 |      |      |      |      | FIN |     |     |     |
| F001 |      |      |      |      | DEN |     |     |     |
| F007 |      |      |      |      | TF  | SF  |     | MF  |
| F009 | DM00 | DM01 | DM02 | DM30 |     |     |     |     |
| F010 | M07  | M06  | M05  | M04  | M03 | M02 | M01 | M00 |
| F011 | M15  | M14  | M13  | M12  | M11 | M10 | M09 | M08 |
| F012 | M23  | M22  | M21  | M20  | M19 | M18 | M17 | M16 |
| F013 | M31  | M30  | M29  | M28  | M27 | M26 | M25 | M24 |
| F022 | S07  | S06  | S05  | S04  | S03 | S02 | S01 | S00 |
| F023 | S15  | S14  | S13  | S12  | S11 | S10 | S09 | S08 |
| F024 | S23  | S22  | S21  | S20  | S19 | S18 | S17 | S16 |
| F025 | S31  | S30  | S29  | S28  | S27 | S26 | S25 | S24 |
| F026 | Т07  | T06  | T05  | T04  | Т03 | T02 | T01 | T00 |
| F027 | T15  | T14  | T13  | T12  | T11 | T10 | T09 | T08 |
| F028 | T23  | T22  | T21  | T20  | T19 | T18 | T17 | T16 |
| F029 | T31  | T30  | T29  | T28  | T27 | T26 | T25 | T24 |

## 7.2 Auxiliary function lock

**General** Inhibits execution of a specified M, S, and T function. That is, code signals and strobe signals are not issued. This function is used to check a program.

Signal Auxiliary function lock signal

AFL (G05#6)

[Classification] PLC→NC

[Function]

The signal selects the auxiliary function lock, i.e., the signal disables the execution of the specified M, S, T function.

When the signal becomes 1, the control unit functions are as follows:

- 1. The control unit does not execute M, S, T functions specified for automatic operation, DNC operation, or MDI operation. That is, the control unit stops the output of code signals and strobe signals.
- 2. If this signal turns to "1" after code signal output, the output operation is executed in the ordinary manner until its completion (that is, until the FIN signal is received, and the strobe signal turns to "0").
- 3. Among the miscellaneous functions, M00,M01, M02 and M30 are executed even when this signal is "1". All code signal, strobe signal and decoding signal are output in the ordinary manner.
- 4. Among the miscellaneous functions, even when this signal is "1", those functions(M98 and M99) that are executed in the control unit without outputting their execution results are executed in the ordinary manner.

## Auxiliary function lock check signal MAFL (F004#4)

[Classification] NC→PLC

[Function] The signal reports the state of auxiliary function lock signal AFL.

When the signal is 1, the auxiliary function lock signal AFL is 1.

When the signal is 0, the auxiliary function lock signal AFL is 0.

#### Signal address

|      | #7 | #6  | # 5 | #4   | #3 | #2 | #1 | #0 |
|------|----|-----|-----|------|----|----|----|----|
| G005 |    | AFL |     |      |    |    |    |    |
| ·    |    |     |     |      |    |    |    |    |
| F004 |    |     |     | MAFL |    |    |    |    |

## 7.3 Multi-M Code in A Block

**General** Commonly a block only specifies one M code, while at most three M codes are specified in a block by using this function. The M codes are performed in the sequence of 1<sup>st</sup>, 2<sup>nd</sup> and 3<sup>rd</sup> code. Using this function, programming is simplified, execution time of processing program is shortened.

The function is valid when CNC parameter N1803#6 is set to 1. PLC support is necessary when multi-M code function is used.

Signal for the 2nd M code function

Signal: M100~M131 (F014~F017)

Classification: NC→PLC

Function: 2nd M code function signal from NC

Signal for the 3<sup>rd</sup> M code function

Signal: M100~M131 (F018~F021)

Classification: NC→PLC

**Function:** 3<sup>rd</sup> M code function signal from NC

Strobe signal for the 2nd M code function

**Signal:** MF (F007#5)

Classification: NC→PLC

**Function:** M code strobe signal from NC when the 2<sup>nd</sup> code is being executed

Strobe signal for the 3<sup>rd</sup> M code function

**Signal: MF (F007#6)** 

Classification: NC→PLC

**Function:** M code strobe signal from NC when the 3<sup>rd</sup> code is being executed.

When program specifies Maa Mbb Mcc, as programming sequence, the system executes Maa as 1<sup>st</sup> code, Mbb as 2<sup>nd</sup> code and Mcc as 3<sup>rd</sup> code. Three M code has function code signal and strobe signal separately, which are sent to PLC simultaneously when the block is executed.

Execution sequence for 2<sup>nd</sup>, 3<sup>rd</sup> M function code and other miscellaneous function code are the same.

## Signal address

#6 #7 #4 #1 #0 #5 #3 #2 F014 M107 M106 M105 M102 M101 M100 M104 M103

Signal for the 2nd M code function

**F015** M115 M114 M113 M112 M111 M110 M109 M108

#### Signal for the 2nd M code function F016 M123 M122 M121 M120 M119 M118 M117 M116 Signal for the 2<sup>nd</sup> M code function F017 M131 M130 M129 M128 M127 M126 M125 M124 Signal for the 2<sup>nd</sup> M code function F018 M207 M206 M205 M204 M203 M202 M201 M200 Signal for the 3<sup>rd</sup> M code function F019 M215 M214 M213 M212 M210 M209 M208 M211 Signal for the 3<sup>rd</sup> M code function F020 M223 M221 M222 M220 M219 M218 M217 M216 Signal for the 3<sup>rd</sup> M code function

M228

M227

M226

M225

M224

F021

M231

M230

M229

# 8 Spindle Speed Function

## 8.1 Spindle speed control mode

## 8.1.1 Analog Spindle

General The analog spindle is defined that the spindle speed is controlled by CNC output analog voltage value. CNC changes S code to analog voltage to output to machine spindle to control the spindle speed. The range of analog voltage is ±10V. The actual output analog voltage is obtained multiplying spindle controlled S value by the spindle speed.

Spindle speed code signal

Signal **S00~S31** (**F022~F025**)

[Classification] NC→ PLC

[Function] These signals report the actually specified the spindle speed function.

For the output condition and the procedure, see "Basic procedure".

Use S code output of analog spindle.

**Note:** S00 $\sim$ S31 is output to S code in the binary BCD format.

S4 corresponds to 00000000, 00000000, 00000000, 00000100.

## Spindle stop signal

Signal \*SSTP (G029#6)

[Classification] PLC→NC

[Function] Control spindle enable signal

When the signal is 1, CNC outputs enable signal to the spindle. When the signal is 0, CNC cut off the spindle enable signal.

When the analog spindle is being used, an offset voltage in the spindle motor

speed amplifier may cause the spindle motor to rotate at low speed even if the command output to the spindle is zero. The \*SSTP signal can be used to stop the motor in such a case.

## Spindle speed override signal

Signal SOV0 $\sim$ SOV7 (G030#0 $\sim$ #5)

[Classification] PLC→NC

[Function] Spindle speed override is controlled by a 8-bit binary number

#### Spindle motor pole selection signal

Signal SGN (G033#5)

[Classification] PLC→NC

[Function] CNC can output ±10V analog voltage. The pole of analog voltage to the spindle

is selected by SGN signal.

CNC outputs negative voltage to the spindle when the signal is 1.

CNC outputs positive voltage to the spindle when the signal is 0.

## Spindle enabling signal

## Signal ENB<F001#4>

[Classification]  $NC \rightarrow PLC$ 

[Function] Spindle enabling state confirmation

The ENB signal is logical 1 when a nonzero command output is sent to the spindle. If the command is logical 0, the ENB signal becomes logical 0.

## Spindle alarm state signal

Signal SPALM (F045#0) [Classification]  $NC \rightarrow PLC$ 

[Function] Note CNC that the spindle is in alarm state

## Spindle zero speed signal

**Signal SST** (**F045**#1)

[Classification] NC→ PLC

[Function] Note CNC that the spindle is stopped and the speed is 0.

## Signal address

|      | #7   | #6    | # 5  | #4   | #3   | #2   | #1    | #0   |
|------|------|-------|------|------|------|------|-------|------|
| G029 |      | *SSTP |      |      |      |      |       |      |
|      | #7   | #6    | # 5  | #4   | #3   | #2   | #1    | #0   |
| G030 | SOV7 | SOV6  | SOV5 | SOV4 | SOV3 | SOV2 | SOV01 | SOV0 |
|      | #7   | #6    | #5   | #4   | #3   | #2   | #1    | #0   |
| G033 |      |       | SGN  |      |      |      |       |      |
|      | #7   | #6    | #5   | #4   | #3   | #2   | #1    | #0   |
| F001 |      |       |      | ENB  |      |      |       |      |
|      | #7   | #6    | #5   | #4   | #3   | #2   | #1    | #0   |
| F022 | S07  | S06   | S05  | S04  | S03  | S02  | S01   | S00  |
|      | #7   | #6    | #5   | #4   | #3   | #2   | #1    | #0   |
| F023 | S15  | S14   | S13  | S12  | S11  | S10  | S09   | S08  |
|      | #7   | #6    | #5   | #4   | #3   | #2   | #1    | #0   |
| F024 | S23  | S22   | S21  | S20  | S19  | S18  | S17   | S16  |
|      | #7   | #6    | #5   | #4   | #3   | #2   | #1    | #0   |
| F025 | S31  | S30   | S29  | S28  | S27  | S26  | S25   | S24  |
|      |      |       |      |      |      |      |       |      |

## 8.1.2 Spindle Gear Control

#### General

Gear control is defined that the 2-gear or multi-gear control manner. There are two types of gear method: M type and T type, they can be selected by parameter N5001#6GTT. M type gear change controls 3-level gear. In M type, gear is changed automatically by signal GR1, GR2 and GR3 specified by S command and gear speed parameter. T type gear change controls 4-level gear. Gear shift should be completed before spindle rotation. CNC outputs speed value according to the setting of gear signal GR21, GR22 and gear speed parameter.

## M type gear shift

Although S instructs the spindle speed, the actual is to control the spindle motor. So, CNC needs to confirm the corresponding relation between the spindle motor and gear. Like S instruction selection. CNC selects the gear according to the previously defined gear speed range by parameter to report PLC to select the corresponding the gear by using the gear change select signal (GR3, GR2, GR1). At the same time, CNC outputs the spindle motor speed according to the selected gear. CNC outputs the instruction corresponded to the spindle (GR1, GR2, GR3 output) speed by specifying S0~S99999 during MDI mode. 2 or 3 speed gear (GR1, GR2, GR3) is set simultaneously output to the gear select signal. When the S command is executed, CNC simultaneously output SF signal).

Significance of gear shift signal is as follows: (Table 8-1)

Table 8-1

| Gea | rsignal | No. 2 gear | No. 3 gear | Gear parameter |  |
|-----|---------|------------|------------|----------------|--|
| GR1 | F34.0   | Low Low    |            | N5120          |  |
| GR2 | F34.1   | High       | Medium     | N5121          |  |
| GR3 | F34.2   |            | High       | N5122          |  |

## Signal:

M type gear shift

Signal: GR1,GR2,GR3 (F034#0 $\sim$ #2)

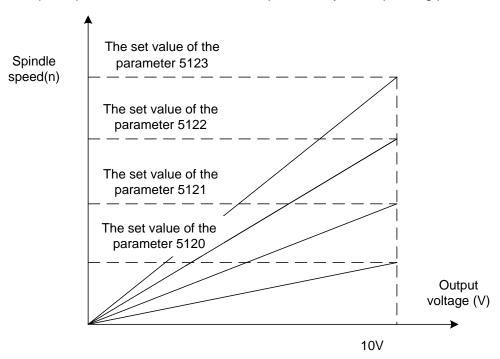
Classification: NC→ PLC

Function: The signal notes selected gear level of PLC

#### Rotation speed selection for spindle gear shift

**Signal: SOR ( G029#5 )** Classification: PLC →NC

Function: When the signal is 1, speed set by parameter N5110 from CNC is sent to


spindle motor for low-speed rotation control of the spindle gear shift.

## Signal address:

|      | #7 | #6 | # 5 | #4 | #3 | #2  | #1  | #0  |
|------|----|----|-----|----|----|-----|-----|-----|
| F034 |    |    |     |    |    | GR3 | GR2 | GR1 |
|      | #7 | #6 | #5  | #4 | #3 | #2  | #1  | #0  |
| G029 |    |    | SOR |    |    |     |     |     |

#### T type gear shift

T type gear shift is defined that CNC selects the actual gear by signal GR21 and GR22. Then the CNC outputs speed command based on the speed set by corresponding parameter.



#### T type gear selection signal for gear change

Signal: GR21,GR22 ( G028#1 $\sim$ #2 )

Classification: PLC →NC

Function: The signal reports the gear selected by NC spindle Significance for gear change signal is as follows (table 8-2):

Table 8-2

| Gear select | ion signal | Coor | Doromotor |
|-------------|------------|------|-----------|
| GR22        | GR21       | Gear | Parameter |
| 0           | 0          | 1    | 5120      |
| 0           | 1          | 2    | 5121      |
| 1           | 0          | 3    | 5122      |
| 1           | 1          | 4    | 5123      |

# 8.2 Spindle Orientation

General It is used to make the spindle stop at a certain position, whish is also called spindle

exact stop.

Spindle orientation signal

Signal: ORCM ( G070#6 ) Classification: PLC →NC

Function: The orientation signal from CNC to the spindle when the signal is 1.

Spindle orientation completion signal

Signal: ORAR (F045#7)

Classification: NC→ PLC

Function: Notes CNC that the spindle is in orientation completion state.

#### Address:

|      | #7   | #6   | #5 | #4 | #3 | #2 | #1 | #0 |
|------|------|------|----|----|----|----|----|----|
| G070 |      | ORCM |    |    |    |    |    |    |
|      | #7   | #6   | #5 | #4 | #3 | #2 | #1 | #0 |
| F045 | ORAR |      |    |    |    |    |    |    |

### 8.3 Rigid tapping

#### General

During a tapping cycle, synchronous control is applied to the tapping operation of a tapping axis and the operation of the spindle.

Namely, during rigid tapping (G74, G84), CNC needs to detect the rotation direction signal of spindle to confirm the cutting feed direction and machining process.

#### **Signal**

#### rigid tapping signal RGTAP (G61#0)

[Classification] PLC →NC

[Function] Reports to the servo to enter the rigid tapping mode.

After the system executes the rigid tapping command, the system sends the signal to the servo that the CNC has entered the rigid tapping command.

RGTAP 1: the current CNC is in the rigid tapping mode.

0: the current CNC is not in the rigid tapping

#### Signal address

| - 1g. 1a. 1a. 1 | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0    |
|-----------------|----|----|----|----|----|----|----|-------|
| G061            |    |    |    |    |    |    |    | RGTAP |

#### Signal

#### spindle drive unit speed/position switch completion signal

**VPO** 〈**F076#3**〉

(Classification) NC→ PLC

(Function) reports the PLC confirmation signal after the spindle drive unit completes entering the rigid tapping state.

when the system executes the rigid tapping command, PLC sends to the spindle drive unit to enter the rigid tapping state. After the spindle drive unit completes the rigid tapping switch to enter the rigid tapping state, the signal notifies the PLC that the spindle has completed the control switch to enter the rigid tapping state.

# Signal address #7 #6 #5 #4 #3 #2 #1 #0 F076 VPO

## 8.4 Detection for Spindle Speed Fluctuation

Function When the deviation value between the actual spindle speed and specified speed exceeds the range set by parameter, alarm 322 Spindle speed is abnormal occurs, and the system stops to protect workpiece, equipment and personnel safety.

Conditions for executing speed fluctuation detection:

NC parameter N5001#0(SVD) is set to 1.

Actual speed of the spindle is sent to NC.

#### Relevant parameter:

|      | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0  |
|------|----|----|----|----|----|----|----|-----|
| 5001 |    |    |    |    |    |    |    | SVD |

SVD: Spindle speed fluctuation detection

0 : Invalid1 : Valid

5010

Set the speed range (%) for starting speed fluctuation detection

When the deviation between spindle feedback speed and specified speed is in the percentage range set by the parameter, the spindle fluctuation detection is started. Once one of the condition set by parameter N5010 and N5013 is satisfied, the spindle fluctuation detection begins to perform.

5011 Allowed spindle speed fluctuation ratio (%) for spindle speed fluctuation detection

Allowed speed fluctuation percentage sent back by the spindle when spindle speed fluctuation detection is performing. System alarm occurs when exceeding the ranges set by parameter N5011 and N5012 simultaneously.

5012 Allowed spindle speed fluctuation value (rpm) for spindle speed fluctuation detection

Allowed spindle speed fluctuation value for spindle speed fluctuation detection. System alarm occurs when exceeding the ranges set by parameter N5011 and N5012 simultaneously.

The time between spindle speed change to speed fluctuation detection (ms)

Interval between specifying spindle speed variation to the detection speed fluctuation. Once one of the condition set by parameter N5010 and N5013 is satisfied, the spindle fluctuation detection begins to perform.

#### 8.5 **Spindle Safety Speed Selection**

#### Signal for spindle safety speed selection

Signal: SVL (G033#4)

 $PLC \rightarrow NC$ Classification:

Function: It is used to restrict the max. speed of spindle. When the signal is 1,

the max. speed is restricted by parameter N5118.

#### Signal address:

|      | #7 | #6 | #5 | #4  | #3 | #2 | #1 | #0 |
|------|----|----|----|-----|----|----|----|----|
| G033 |    |    |    | SVL |    |    |    |    |

# 9 PLC Control Function

## 9.1 External Data Inputting

**General** External signal sends specified data from PLC to CNC, and the specified action is performed.

External data inputting function:

| External data reading | Function address selection |   | Data signal | Function |       |      |     |                  |                    |
|-----------------------|----------------------------|---|-------------|----------|-------|------|-----|------------------|--------------------|
| ESTB                  | EA6                        | Е | Е           | Е        | Е     | Е    | Е   |                  |                    |
|                       |                            | Α | Α           | Α        | Α     | Α    | Α   | ED31~ED0         |                    |
|                       |                            | 5 | 4           | 3        | 2     | 1    | 0   |                  |                    |
| 1                     | 0                          | 0 | 0           | 0        | 0     | 0    | 0   | Program number   | External program   |
|                       |                            |   |             |          |       |      |     | in binary system | search             |
| 1                     | 0                          | 0 | 1           | Co       | mp    | ens  | ati | Offset value in  | External tool      |
|                       |                            |   |             | on       |       |      |     | binary system    | compensation       |
|                       |                            |   |             | sp       | ecif  | ying | J   |                  |                    |
| 1                     | 0                          | 1 | 0           | Of       | fset  | а    | xis | Offset value in  | External workpiece |
|                       |                            |   |             | se       | lecti | ion  |     | binary system    | coordinate offset  |
| 1                     | 0                          | 1 | 1           | Of       | fset  | а    | xis | Offset value in  | External           |
|                       |                            |   |             | se       | lecti | ion  |     | binary system    | mechanical zero    |
|                       |                            |   |             |          |       |      |     |                  | point offset       |

#### Relevant parameter:

External data reading

Signal: ESTB(G13.7)
Classification: PLC→NC

Function: Begins to read external data.

**External data address** 

Signal: EA0~EA6(G13.0~G13.6)

Classification: PLC→NC

**Function:** Specifies the address of external data and realizes the function.

**External inputting data** 

Signal: ED0~ED31(G0.0~G3.7)

Classification: PLC→NC

**Function:** Specifies the data in external data inputting.

**External data reading completion** 

Signal: EREND(F60.0)
Classification: NC→PLC

Function: Reports that the external data inputting signal has been read by NC.

External data search has completed

Signal: ESEND(F60.1)
Classification: NC→PLC

Function: Reports that specification of external data inputting signal has been completed by NC.

#### External data reading is cancelled

Signal: ESCAN(F60.2) Classification: NC→PLC

Function: Reset signal has been input and the parameter N1971#7 has set to 1 after inputting

external data reading signal to NC and before performing search operation, the search

operation is not performed and the signal is output.

#### **Function descriptions:**

#### **External program selection:**

External program selection is realized by external signal calling CNC stored program. It is used to select corresponding program by external switch signal when several programs are performed in one machine. The range of the program can be selected is from O1 to O9999. The program that named by non-numeric character can not be selected.

Set function selection address signals EA0~EA6 to 0 when executing external program selection function. Send the number of the program to be selected to the signal address ED0~ED31 by binary data, then set external data reading signal ESTB to 1. CNC can receive external program selection signal at any mode, but the function of external program selection only be performed in reset mode when CNC operates automatically.

Control sequence diagram is as follows:

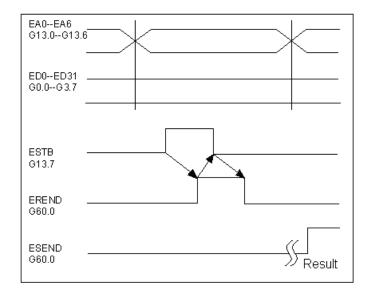



Fig. 9-2

#### Offset axis selection:

| Axis                 | EA3 | EA2 | EA1 | EA0 |
|----------------------|-----|-----|-----|-----|
| 1 <sup>st</sup> axis | 0   | 0   | 0   | 0   |
| 2 <sup>nd</sup> axis | 0   | 0   | 0   | 1   |
| 3 <sup>rd</sup> axis | 0   | 0   | 1   | 0   |
| 4 <sup>th</sup> axis | 0   | 0   | 1   | 1   |
| 5 <sup>th</sup> axis | 0   | 1   | 0   | 0   |
| 6 <sup>th</sup> axis | 0   | 1   | 0   | 1   |

#### 9.2 PLC Axis Control Function

**General** Parameter setting makes the axis separate from CNC, the axis no longer receive CNC command, but execute PLC specified function. PLC axis operates separately, it does not have linkage compensation relationship with CNC axis.

CNC performs the following control functions:

- 1. Rapid traverse
- 2. Cutting feed (feed per minute and feed per rev)
- 3. Jump (feed per minute)
- 4. Pause
- 5. Reference return
- 6. Manual continuous feed
- 7. Return reference point 1~4
- 8. 1~3 miscellaneous function
- 9. Mechanical coordinate selection

#### Signal:

#### Table for PLC axis control signal

Table 9-1

| No. | Symbol       | Signal address       | Significance                  | I/O    |
|-----|--------------|----------------------|-------------------------------|--------|
| 1   | EAX1-EAX4    | G136.0-3             | Control axis selection signal | Input  |
| 2   | EC0g-EC6g    | G143.0-6, G155.0-6,  | Control axis command signal   | Input  |
|     |              | G167.0-6, G179.0-6   |                               |        |
| 3   | EIF0g-EIF15g | G144-G145, G156-G157 | Axis control federate signal  | Input  |
|     |              | G168-G169, G180-G181 |                               |        |
| 4   | EID0g-EID31g | G146-G149, G158-G161 | Axis control data signal      | Input  |
|     |              | G170-G173, G182-G185 |                               |        |
| 5   | EBUFg        | G142.7, G154.7       | Axis control command reading  | Input  |
|     |              | G166.7, G178.7       | signal                        |        |
| 6   | EBSYg        | F130.7, F133.7,      | Reading completion signal     | Output |
|     |              | F136.7, F139.7       |                               |        |
| 7   | ECLRg        | G142.6, G154.6       | Reset signal                  | Input  |
|     |              | G166.6, G178.6       |                               |        |

| 8  | ESTPg         | G142.5, G154.5  | Axis control pause signal           | Input     |
|----|---------------|-----------------|-------------------------------------|-----------|
|    |               | G166.5, G178.5  | and common paradic original         |           |
| 9  | ESBKg         | G142.3, G154.3  | Block stop signal                   | Input     |
|    |               | G166.3, G178.3  |                                     |           |
| 10 | EMSBKg        | G143.7, G155.7  | Block stop invalid signal           | Input     |
|    | g             | G167.7, G179.7  |                                     |           |
| 11 | EM11g-EM48g   | F132; F135;     | Miscellaneous function code signal  | Output    |
|    |               | F138; F141;     |                                     | 0 0 4 0 0 |
| 12 | EMFg          | F131.0, F134.0, | Miscellaneous function strobe       | Output    |
|    |               | F137.0, F140.0  | signal                              |           |
| 13 | EMF2g         | F131.2, F134.2, | Miscellaneous function 2 strobe     | Output    |
|    |               | F137.2, F140.2  | signal                              |           |
| 14 | EMF3g         | F131.3, F134.3, | Miscellaneous function 3 strobe     | Output    |
|    | _             | F137.3, F140.3  | signal                              |           |
| 15 | EFINg         | G142.0, G154.0, | Miscellaneous function completion   | Input     |
|    |               | G166.0, G178.0  | signal                              |           |
| 16 | ESOFg         | G142.4, G154.4  | Servo off signal                    | Input     |
|    |               | G166.4, G178.4  |                                     |           |
| 17 | EMBUFg        | G142.2, G154.2  | Buffer invalid signal               | Input     |
|    |               | G166.2, G178.2  |                                     |           |
| 18 | *EAXSL        | F129.7          | Control axis selection state signal | Output    |
| 19 | EINPg         | F130.0, F133.0, | In-position signal                  | Output    |
|    |               | F136.0, F139.0  |                                     |           |
| 20 | EIALg         | F130.2, F133.2, | Alarm signal                        | Output    |
|    |               | F136.2, F139.2  |                                     |           |
| 21 | EGENg         | F130.4, F133.4, | Axis movement signal                | Output    |
|    |               | F136.4, F139.4  |                                     |           |
| 22 | EDENg         | F130.3, F133.3, | Miscellaneous execution signal      | Output    |
|    |               | F136.3, F139.3  |                                     |           |
| 23 | EOTNg         | F130.6, F133.6, | Negative over travel signal         | Output    |
|    |               | F136.6, F139.6  |                                     |           |
| 24 | EOTPg         | F130.5, F133.5, | Positive over travel signal         | Output    |
|    |               | F136.5, F139.5  |                                     |           |
| 25 | EFV0-EFV7     | G151.0-G151.7   | Feedrate override signal            | Input     |
| 26 | EOVC          | G150.5          | Override cancel signal              | Input     |
| 27 | EROV1, EROV2  | G150.0, G150.1  | Rapid traverse signal               | Input     |
| 28 | EOV0          | F129.5          | Override 0% signal                  | Output    |
| 29 | ESKIP         | X13.6           | Skip signal                         | Input     |
| 30 | EADEN1-EADEN4 | F112.0-3        | Distribution completion signal      | Output    |
| 31 | EABUFg        | F131.1, F134.1, | Buffer memory is occupied           | Output    |
|    |               | F137.1, F140.1  |                                     |           |
| 32 | EACNT1-EACNT4 | F182.0-3        | In controlling                      | Output    |
| 33 | *+ED1-*+ED6   | G118.0-G118.4   | External deceleration signal        | Input     |
|    | *-ED1-*-ED6   | G120.0-G120.4   |                                     |           |

#### Illustration:

PLC command specifies control signal(table 9-1)to release each control function. CNC provides 4-group I/O signal group for PLC control. The groups are group A, group B, group C and group D. Each group has related I/O signal. The parameter N7010 decides which signal group controls the axis.

Small letter g in the I/O signal name stands for signal group. For example, g in axis control command reading signal EBUFg, actually it is not a signal in group EBUFg, g represents A,B,C,D, it is the signal of group A, group B, group C and group D. EBUFg is a expression way of signal EBUFA,EBUFB,EBUFC,EBUFD.

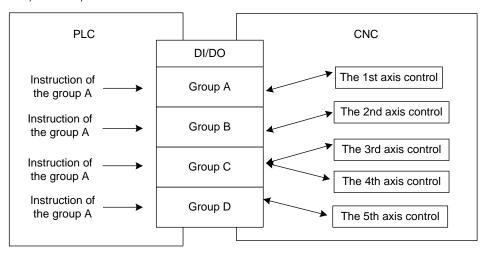



Fig.9.1 PLC axis control diagram

| Group number | Input signal     | Output signal   |
|--------------|------------------|-----------------|
|              | address          | address         |
| Group A      | G142-G149,G150.5 | F130-F132,F142, |
|              | G150.0,1,6,7     | F129.5,7        |
| Group B      | G154-G161,G162.5 | F133-F135,F145, |
|              | G150.0,1,6,7     | F129.5,7        |
| Group B      | G166-G173,G174.5 | F136-F138,F148, |
|              | G150.0,1,6,7     | F129.5,7        |
| Group B      | G178-G185,G186.5 | F139-F141,F151, |
|              | G150.0,1,6,7     | F129.5,7        |

#### Signal allocation of each group

#### **Operating procedure**

- (1) Set group DI/DO of PLC axis control in parameter N7010.When multiple axes are moving simultaneously in one group, make sure that federate, acceleration/deceleration time, axis property etc. parameters are set to the same one.
- (2) When the axis is to be controlled by PLC directly, selection signal EAX1 $\sim$  EAX4 of the controlled axis should be set to 1, making it a PLC axis separate from CNC management.
- (3) Specify PLC axis execution action.

  Axis control command signal EC0g~EC6g controls the action type. Axis federate signal EIF0g~EIF15g controls axis control federate. Axis control

data signal EID0g~EID31g controls movement or other data.

The above mentioned signals and block stop prohibition signal specifies the command of one block. These signals are general named axis control block data signal.

| Related signal for PLC | axis controls | one-block data |
|------------------------|---------------|----------------|
|------------------------|---------------|----------------|

| General name            | Signal name                   | Signal       | Data type   |
|-------------------------|-------------------------------|--------------|-------------|
| of signals              |                               | abbreviation |             |
| Assis santral           | Block stop prohibition signal | EMSBKg       | Bit         |
| Axis control block data | Axis control command signal   | EC0g∼EC6g    | Byte        |
| signal                  | Axis control federate signal  | EIF0g~EIF15g | Character   |
|                         | Axis control data signal      | EID0g~EID31g | 2-character |

- (4) When setting data action of a block is specified, the axis control command signal EBUFg logic is reversed. If EBUFg is 0 before, it set to be 1. If EBUFg is 1 before, it set to be 0.Logic of the axis control command reading completion signal EBSYg of CNC output signal should be the same as signal EBUFg logic, otherwise, the reversing operation can not be performed.
- (5) When PLC executes several actions continuously, the commanded block is processed in CNC at first.

Therefore, though a command is being executed, the next block can be read to CNC side if the CNC is free. As the figure bellow: [2] and [3] are read to the CNC buffer during the command [1] is being executed, [4] is in the state of setting axis control block data.

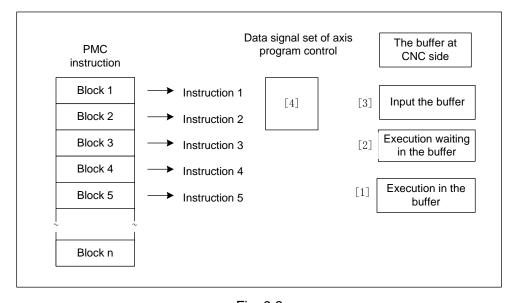



Fig. 9.2

After command [1] is completed,

Command [2]: executes waiting in the buffer → executing in the buffer

Command [3]: inputs waiting in the buffer → executes waiting in the buffer

Command [4]: Command the block → transmission input to the buffer. After

**Function** 

finishing the transmission from the command [4], specify the command [5] at the CNC side (axis control block data signal setting)

#### Command operating sequence diagram

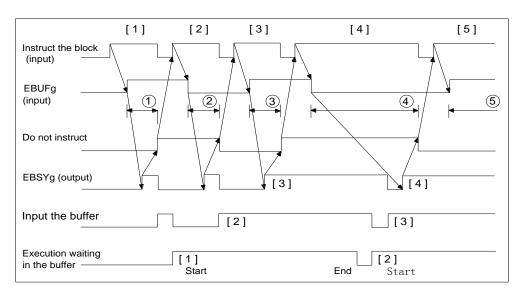



Fig. 9.3 PLC axis control command sequence diagram

The next block can not be specified in [1], [2], [3], [4], [5]. The buffer is occupied in block [4].

The state of buffer of CNC side can be judged by either-or of axis control command reading signal EBUFg of input signal sent by PLC side and axis control command reading completion EBSYg of output signal sent by CNC side.

#### State of buffer at PLC side

| EBUFg | EBSYg | (XOR) Addition -without -carry | State of buffer at PLC side                                                                                                                                                       |
|-------|-------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0     | 0                              | The block reading of the last time is completed, the                                                                                                                              |
| 1     | 1     | U                              | next one can be specified at PMC side.                                                                                                                                            |
| 0     | 1     |                                | The block specified has not been read, the block is being read or the buffer is occupied, that is to say, it is waiting for buffer space. In this state, the next block           |
| 1     | 0     | 0                              | can not be specified at PMC side. In addition, signal EBUFg reverse can not be performed. If reverse is performed at this state, the block has been commanded may become invalid. |

#### (6) Perform procedure [3] and [4] repeatedly.

If the last block command exchange is completed, other command is not necessary, set control axis signal EAX1~EAX5 to 0. Signal EAX1~EAX5 should be set to 0 after the block is being executed or the one waits for the buffer space or the one

input to the buffer is completed. If EAX1~EAX5 is set to 0 when the block is being executed or it waits for the buffer space or the block has input to the buffer. At the same time, the block executing stops, the one waits for the buffer space and the one input to the buffer become invalid.

The signal EAXSL decides whether a block in executing or waits for buffer space or input to the buffer. Moreover, CNC and PLC management exchange is unnecessary for the axis of control turret, brace and ATC, set the signal EAX1 $\sim$ EAX5 to 1 all the time. It unnecessary to set the signal EAX1~EAX5 to 0 though the command exchange is completed. After all specified command are performed, if there is not other block to be executed, the execution may stop automatically.

(7) When control axis selection signal EAX1~EAX5 changes from 1 to 0, it returns to CNC management state.

#### Function:

#### **Axis control function**

Table 9-2

| Command | Action                  | Data 1                          | Data 2            | Explanation                                               |
|---------|-------------------------|---------------------------------|-------------------|-----------------------------------------------------------|
| 00h     | Rapid traverse          | Rapid<br>traverse<br>speed      | Total<br>movement | Perform the same operation as CNC G00                     |
| 01h     | Cutting feed per minute | Cutting feedrate                | Total<br>movement | Perform the same operation as CNC G94G01                  |
| 02h     | Cutting feed per rev    | Cutting<br>feedrrate per<br>rev | Total<br>movement | Perform the same operation as CNC G95G01                  |
| 03h     | Feed skip per<br>minute | Cutting feedrate                | Total<br>movement | Perform the same operation as CNC G31G01                  |
| 04h     | Pause                   | _                               | Pause time        | Perform the same operation as CNC G04                     |
| 05h     | Reference<br>return     | -                               | _                 | Perform the same operation as CNC manual reference return |
| 06h     | Continuous feed         | Continuous feed rate            | Feed direction    | Perform the same operation as CNC JOG feed                |
| 07h     | 1st reference return    | Rapid move speed                | _                 | Perform the same operation as CNC G28                     |
| 08h     | 2nd reference<br>return | Rapid<br>traverse<br>speed      | _                 | Perform the same operation as CNC G30P2                   |
| 09h     | 3rd reference return    | Rapid move speed                | _                 | Perform the same operation as CNC G30P3                   |
| 0Ah     | 4th reference<br>return | Rapid<br>traverse<br>speed      | _                 | Perform the same operation as CNC G30P4                   |

| 12h | Miscellaneous | _        | Miscellaneous | The function is the same as |
|-----|---------------|----------|---------------|-----------------------------|
|     | function 1    |          | function code | CNC miscellaneous           |
|     |               |          |               | function                    |
| 14h | Miscellaneous | _        |               | The function is the same as |
|     | function 2    |          |               | CNC miscellaneous           |
|     |               |          |               | function                    |
| 15h | Miscellaneous | _        |               | The function is the same as |
|     | function 3    |          |               | CNC miscellaneous           |
|     |               |          |               | function                    |
| 20h | Machine       | Rapid    | mechanical    | The function is the same as |
|     | coordinate    | traverse | coordinate    |                             |
|     | selection     | speed    |               | CNC G53                     |

Volume II

#### Note:

Command indicates axis control command signal EC0g-EC6g.

Data1 indicates axis control federate signal EIF0g-EIF15g.

Data 2 indicates axis control data signal EID0g-EID31g.

Continuous feed command is commanded immediately, it is not stored at CNC side.

#### 1. Rapid traverse

Rapid traverse speed: linear axis unit is 1mm/min, rotation axis unit is 1deg/min, range: 1-65535. Total movement: it is incremental movement, in 0.1um.

#### 2. Cutting federate per minute

Cutting federate: it is the same as rapid traverse.

Total movement: it is increment movement in 0.1um.

#### 3. Cutting feed per rev

Cutting feed per rev: linear axis is 0.0001mm/rev, rotation axis is 0.0001deg/rev, range: 1-65535 Total movement: it is incremental movement in 0.1um.

#### 4. Feed per minute

Cutting federate: it is the same as rapid traverse.

Total movement: it is total movement in 0.1um.

#### 5. Pause

Pause time: the unit is ms, the range is 1-9999999.

#### 6. Reference return

The operation is the same as CNC axis reference return.

#### 7. Continuous feed

Continuous federate: besides the functions as rapid move, speed change is able. The speed changes once ebuf changes. The ebuf varies with ebuf. The max. value is 65535\*override (when the override

is cancelled, the value is 100)

#### 8. 1/2/3/4 reference return

Rapid traverse speed: it is the same as rapid traverse.

If the machine does not return to the reference point, alarm occurs.

#### 9. 1/2/3 miscellaneous function

Miscellaneous code that specifies one-byte miscellaneous function.

Note that it has independent miscellaneous strobe and miscellaneous end signal from CNC.

#### 10. Mechanical coordinate selection

Rapid traverse speed: it is the same as rapid traverse.

Mechanical coordinate value: the unit of the actual machine coordinate value is the same as rapid traverse.

#### Signal description:

#### (1) select axis control selection signal

Signal: EAX1 $\sim$ EAX5 ( G0136.0 $\sim$ G0136.3 )

Classification: PLC →NC

Function:

PLC axis control is valid when the signal is 1.

PLC axis control is invalid when the signal is 0. Note that when control axis selection signal \*EAXSL is 0, the control selection shift can be performed based on the signal. If axis control shift is performed when \*EAXSL is 1, alarm 311 occurs. Alarming signal EIALg is set to 1. On the contrary, alarm occurs when the signal is set to 1 during CNC is in execution.

In addition, if the signal is set to 1 after control axis selection signal is set to 0, alarm 311 occurs. Alarming signal EIALg will not be 1, though alarm occurs at the CNC side, command based on the PLC axis control can be performed.

#### (2) Axis control command signal

Signal: EC0g $\sim$ EC6g (G143.0 $\sim$ 6, G167.0 $\sim$ 6, G179.0 $\sim$ 6)

Classification: PLC →NC

Function:

See table 9-2 for the significance of each command.

#### (3) Axis federate signal

Signal: EIF0g~EIF15g (G144~145, G156~157, G168~169, G180~181)

Classification: PLC →NC

Function:

See table 9-2 for the significance of each command.

#### (4) Axis control data signal

Signal: EIF0g~EIF31g (G146~149, G158~161, G170~173, G182~185)

Classification: PLC →NC

Function:

It is one of the axis control block signal. Please refer to command list for its significance.

#### (5) Control command reading signal

Signal: EBUFg (G142.7, G154.7, G166.7, G178.7)

Classification: PLC →NC

Function:

Command data for CNC reading one block from PLC axis control.

See 9.3 for the operation procedures of the signal.

#### (6) Axis control reading completion signal

Signal: EBSYg (F130.7,F133.7,F136.7,F139.7)

Classification: NC →PLC

Function:

CNC notes PLC that one-block command data controlled by PLC axis has been read in buffer signal. See figure 9.3 for the signal operation procedure.

#### (7) Reset signal

Signal: ECLRg (G142.6,G154.6,G166.6,G178.6 )

Classification: PLC →NC

Function:

Reset PLC axis control command.

When the signal is set to 1

- (1) Axis deceleration stops when the axis is moving
- (2) Execution stops when it is in pause
- (3) Execution stops when the miscellaneous function is being executed

At the same time, the commands in buffer are all cleared. The input control command is invalid when the signal is 1. When specifying continuous feed command (EC0g $\sim$ EC6g : 06h), set reset signal ECLRg to 1, that is completion signal. Meanwhile, servo motor decelerates to stop. Axis moving signal EGENg is set to 0, and axis control selection state signal EAXSL is set to 0.

Confirm control axis selection state signal EAXSL is set to 0 first, set the reset signal ECLRg to 1.

In addition, set reset signal ECLRg to 1 before axis moving signal EGENg is set to 0.

#### (9) Block stop signal

Signal: ESBKg (G142.3,G154.3,G178.3)

Classification:  $PLC \rightarrow NC$ Block stop invalid signal

Signal: EMSBKg (G143.7,G155.7,G167.7,G179.7)

Classification: PLC →NC

Function:

To stop a block or prohibit a block to stop.

If the block stop signal ESBKg is set to 1 when the command sent by PLC

is in execution. After the execution is completed, axis control stops.

When the block stop signal ESBKg is set to 0, the command after buffering is performed. However, when stop prohibition signal EMSBKg is 1, block stop signal ESBKg is invalid. See figure 9.4 for command action sequence diagram.

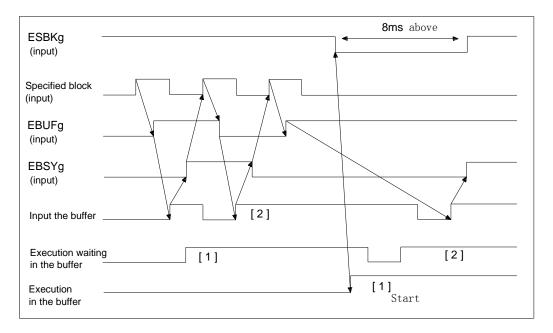



Fig. 9.4 Relevant signal sequence diagram to P block stop

#### (10) PLC miscellaneous function

Miscellaneous function code

Signal: EM11g~EM28g (F132,F135,F138,F141)

Classification: NC→PLC Miscellaneous strobe signal

Signal: EMFg (F131.0, F134.0, F137.0, F140.0)

Classification: NC→PLC
Miscellaneous 2 strobe signal

Signal: EMF2g (F131.2,F134.2,F137.2, F140.2)

Classification: NC→PLC Miscellaneous 3 strobe signal

Signal: EMF3g (F131.3,F134.3,F137.3, F140.3)

Classification: NC→PLC

Miscellaneous function completion signal Signal: EFINg (G142.0,G154.0,G166.0,G178.0)

Classification: PLC→ NC

Function:

It reports whether the miscellaneous function has completed or not.

When the signal is setting to 1, the command sent by PLC is miscellaneous function (  $EC0g \sim EC6g : 12h$ ). miscellaneous function 2 ( $EC0g \sim EC6g : 14h$ ). When miscellaneous 3 ( $EC0g \sim EC6g : 15h$ ), miscellaneous function code is specified by one-byte

signal (EID0g~EID7g).

CNC sends miscellaneous function code EID0g $\sim$ EID7g, EID8g $\sim$ EID15G to miscellaneous function code signal EM11g $\sim$ EM28g, and waits for miscellaneous function completion signal EFINg. When returns to miscellaneous function completion signal EFINg, it enters to the next command block.

The time of miscellaneous function code and miscellaneous function strobe pulse signal sending, miscellaneous function completion signal receiving are the same to the CNC controlled miscellaneous function (M function).

#### (11) Servo off signal

Signal: ESOFg (G142.4,G154.4,G166.4,G178.4)

Classification:  $PLC \rightarrow NC$ 

Function:

It controls servo enable signal.

Set the signal to 1 to change enable state of PLC controlled axis to servo off state. Set the signal to 0 to connect the servo.

#### (12) Buffer prohibition signal

Signal: EMBUFg (G142.2,G154.2,G166.2,G178.2)

Classification:  $PLC \rightarrow NC$ 

Function:

When set the signal to 1, the program read in buffer is continue to perform. Only when blocks in current buffering or in execution waiting buffer are all performed, and the buffer is empty, system will read in the command sent by PLC axis.

Reading command in

Outputting axis control reading completion signal EBSYg while CNC reads commands at buffer empty state to judge buffer prohibition state.

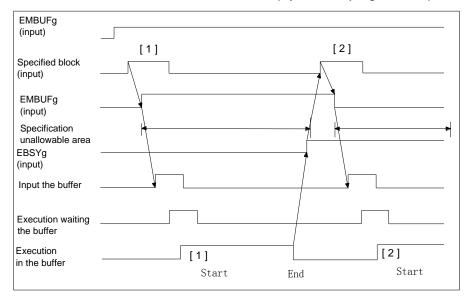



Fig. 9.5 Related signal sequence diagram to buffer

Part

The following commands that are not related to buffer prohibition signal EMBUFg are always executed in buffer prohibition state.

- (1) Skip feed per minute (EC0g~EC6g : 03h)
- (2) Reference return (EC0g~EC6g: 05h)
- (3) The 1<sup>st</sup> reference return (EC0g $\sim$ EC6g : 07h)
- (4) The  $2^{nd}$  reference return (EC0g $\sim$ EC6g : 08h)
- (5) The  $3^{rd}$  reference return (EC0g $\sim$ EC6g : 09h)
- (6) The 4<sup>th</sup> reference return (EC0g~EC6g : 0Ah)
- (7) Mechanical coordinate selection (EC0g~EC6g: 20h)

#### (13) Control axis selection state signal

Signal: \*EAXSL ( F129.7) Classification: NC→PLC

Function.

State signal indicate whether controlled by PLC axis.

When the signal is 0, control axis selection signal can be shifted between EAX1 $\sim$ EAX4.

The signal is 1 when:

PLC control axis is moving.

Reading block in buffer.

Servo off signal ESOFg is 1.

The signal is 1, control axis selection signal shift between  $EAX1 \sim EAX$  is invalid. If shift is performed, system alarm occurs.

#### (14) In-position signal

Signal: EINPg (F130.0,F133.0,F136.0,F139.0)

Classification: NC→PLC

Function:

It reports whether PLC axis is in position.

The signal becomes 1 when the PLC controlled axis moves in position.

When the axis is in deceleration state, performs the in-position detection and does not reach in-position range, the next command will not perform.

#### (15) Alarm signal

Signal: EIALg (F130.2,F133.2,F136.2,F139.2)

Classification: NC→PLC

Function:

Indicates alarm state that is related to PLC axis control.

The signal becomes 1 when PLC controlled axis occurs servo alarm, overtravel alarm and alarm. Release the alarm by the following operation. When the reset signal ECLRg is set to 1, the signal becomes 0.

#### Servo alarm

Please confirm the reason for alarming and reset the CNC.

#### **Overtravel alarm**

Please move axis in the range of storage stroke limit and

reset the CNC. The commands that make axis moves to the range of storage stroke during alarming as shown in the following:

- (1) Rapid traverse (EC0g~EC6g: 00h)
- (2) Cutting feed—feed per minute (EC0g~EC6g: 01h)
- (3) Cutting feed—feed per minute (EC0g~EC6g: 02h)
- (4) Continuous feed (EC0g~EC6g: 06h)

#### (16) Axis is moving

Signal: EGENg (F130.4,F133.4,F136.4,F139.4)

Classification: NC→PLC

Function:

It indicates axis moving state.

The command sent by PLC becomes 1 in rapid move  $(EC0g\sim EC6g:00h)$ , cutting feed  $(EC0g\sim EC6g:01h)$  etc. axis moving state. It keeps 0 when pause command  $(EC0g\sim EC6g:04h)$  is performed.

#### Note:

The signal that *the axis is moving* becomes 0 at the end of axis distribution. (deceleration becomes 0)

#### (17) Miscellaneous function is in execution

Signal: EDENg (F130.3,F133.3,F136.3,F139.3)

Classification: NC→PLC

Function:

It reports miscellaneous function is in execution.

When the commands sent by PLC is miscellaneous function (EC0g $\sim$ EC6g : 12h), miscellaneous 2 (EC0g $\sim$ EC6g : 14h), miscellaneous 3 (EC0g $\sim$ EC6g : 15h), after sending miscellaneous function code EID0g $\sim$ EID15g to miscellaneous function code signal EM11g $\sim$ EM48g while before returning to miscellaneous function completion signal EFINg, the signal is 1.

See figure 9.6 for command operation timing sequence diagram.

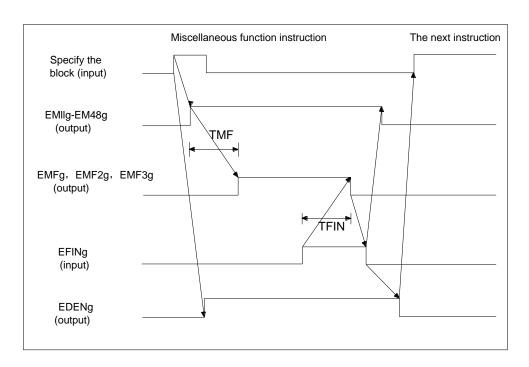



Fig. 9.6 Related signal time diagram to miscellaneous function

#### (18)**Overtravel signal**

Signal: negative overtravel EOTNg(F130.6,F133.6,F136.6,F139.6)

Negative overtravel EOTNg(F130.5,F133.5,F136.5,F139.5)

Classification: NC→PLC

Function:

It reports overtravel state.

When overtravel alarm occurs,

If exceeds stroke limit at the negative side: negative direction signal **EOTNg** 

If exceeds stroke limit at the positive side: alarm signal EIALg becomes 1 while the positive direction signal EOTPg changes to 1 as well. After releasing overtravel alarm, the signal becomes 0 when reset signal ECLRg is set to 1.

#### (19)Feedreate override signal

Signal: EFOV0 $\sim$ EFOV7 (G151.0 $\sim$ G151.7)

Classification: PLC→NC

Function:

Cutting federate override application to federate commanded by PLC are the same as CNC federate override processing.

#### (20)Override canceling signal

Signal: EOVCg (G150.5) Classification: PLC→NC

Function:

Disable PLC axis federate override.

When setting the signal to 1, cutting federate override is fixed at 100%, rapid traverse override is not affected.

#### (21) Rapid traverse override signal

Signal: EROV1, EROV2 (G150.0 $\sim$ 1)

Classification: PLC→NC

Function:

Application rapid traverse override to PLC are the same to CNC rapid traverse override signal processing.

F0 speed is set by parameter N1231.

#### (22) Override 0% signal

Signal: EOV0 (F129.5)
Classification: NC →PLC

Function:

The signal reports whether the federate override is 0%, which becomes 1 when federate override is at 0%.

#### (23) Skip signal

Signal: ESKIP (X013.6)

Classification: I/O direct input signal

Function:

If the signal is set to 1 during skip cutting command is in execution, the current executing block stops and the next block is performed. The signal is a natural signal in PLC control.

#### (24) Distribution completion signal

Signal: EADEN1 $\sim$ EADEN5 (F112.0 $\sim$ .4)

Classification: NC →PLC

Function:

Reports that system is in distribution state based on PLC axis control. By sending command from PMC, the signal becomes 0 when the axis is moving. The signal is 1 when the axis stops. However, the signal will not change to 1 if moving command is stopped by axis control pause signal ESTPg.

#### (25) Buffer is occupied

Signal: EABUFg (F131.1, F134.1, F137.1, F140.1)

Classification: NC→PLC

Report the buffer state of PLC axis control command.

If there is commanded block in the buffer when inputting group, the signal becomes 1. The signal becomes 0 if there is no command.

#### (26) Controlling signal

Signal: EACNT1~EACNT5<F182.0~F182.3>

Classification: NC→PLC

Function:

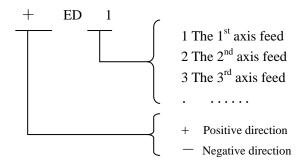
Indicates that PMC axis is in controlling.

When control axis selection signal \*EAXSL is 1, axis position signal of the related axis in control becomes 1. While the servo off signal ESOFg is 1, the signal becomes 1 as well.

#### (27) External deceleration signal

Signal: Positive external deceleration +ED1 $\sim$ +ED5 (G118.0 $\sim$ G118.4)

# 2 Functi


#### Negative external deceleration -ED1~-ED5 (G120.0~G120.4)

#### Classification: PLC→ NC

#### Function:

When the signal is 1, federate of the axis corresponding direction decelerates to the specified external deceleration speed. If the signal does not change to 1, the axis speed will not be effected.

 $\,+\,$  and  $\,-\,$  in the signal name indicate deed direction, the number corresponds to the control axis.



#### (28) Reference return signal

**Signal:** The 1<sup>st</sup> reference return completion signal ZP1 $\sim$ ZP5 (F94.0 $\sim$ .4)

The  $2^{nd}$  reference return completion signal ZP21 $\sim$ ZP25 (F96.0 $\sim$ .4)

The 3<sup>rd</sup> reference return completion signal ZP31~ZP35 (F98.0~.4)

The 4<sup>th</sup> reference return completion signal ZP41~ZP45 (F100.0~.4)

Classification: NC→ PLC

#### Function:

The signal significance of PLC axis and CNC control axis reference return.

The number at the end indicate control axis number. The signal becomes 1 after completing the reference return and in position. The signal changes to 0 when moving from reference point, emergency stop and servo alarm occurs.

#### Related parameter to PLC axis

7010 Axis DI/DO group selection in PLC axis control

The parameter sets DI/DO group number for axis control command in PLC axis control.

| Set value | Significance                    |
|-----------|---------------------------------|
| 0         | Not use PLC axis control        |
| 1         | Use DI/DO signal of the group A |
| 2         | Use DI/DO signal of the group B |
| 3         | Use DI/DO signal of the group C |
| 4         | Use DI/DO signal of the group D |

# 10 Programming command

### 10.1 Custom macro program

#### General

Although subprograms are useful for repeating the same operation, the custom macro function also allows use of variables, arithmetic and logic operations, and conditional branches for easy development of general programs. A machining program can call a custom macro with a simple instruction, just like a subprogram.

This means that a functions of general use can be formed when programming a certain function as custom macro. That is, programs can be written using variables for data that might change or be unknown. This can be further applied to group technology.

Signal

User macro program input signal

UI000~UI013 (G054, G055, G056, G057)

UI100~UI113 (G226, G227, G228, G229)

UI200~UI213 (G230, G231, G232, G233)

UI300~UI313 (G234, G235, G236, G237)

[Classification]

**PLC** $\rightarrow$ **NC** 

[Function]

These signals which are taken as one of system variable is read by macro program, used for the interface signal between macro program and PLC.

The system variable corresponding to these signals are as follows: (Table 10-1):

Table 10-1

| Signals | Address | Q'ty | Variables |
|---------|---------|------|-----------|
| UI000   | G54#0   | 1    | #1000     |
| UI001   | G54#1   | 1    | #1001     |
| UI002   | G54#2   | 1    | #1002     |
| UI003   | G54#3   | 1    | #1003     |
| UI004   | G54#4   | 1    | #1004     |
| UI005   | G54#5   | 1    | #1005     |
| UI006   | G54#6   | 1    | #1006     |
| UI007   | G54#7   | 1    | #1007     |
| • • •   | • • •   |      | •••       |
|         | • • •   | 1    | •••       |
| • • •   | •••     | 1    | •••       |
| UI029   | G57#5   | 1    | #1029     |
| UI030   | G57#6   | 1    | #1030     |

| UI031       | G57#7     | 1  | #1031 |
|-------------|-----------|----|-------|
| UI000~UI031 | G54~G57   | 32 | #1032 |
| UI100~UI131 | G226~G229 | 32 | #1033 |
| UI200~UI231 | G230~G233 | 32 | #1034 |
| UI300~UI331 | G234~G237 | 32 | #1035 |

Note: #1032 is variable with 32-bit as follows:

#### Signal address

|       | #7    | #6    | #5    | #4    | #3    | #2    | #1    | #0    |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| #1032 | UI007 | UI006 | UI005 | UI004 | UI003 | UI002 | UI001 | UI000 |
|       |       |       |       |       |       |       |       |       |
| #1032 | UI015 | UI014 | UI013 | UI012 | UI011 | UI010 | UI009 | UI008 |
|       |       |       |       |       |       |       |       |       |
| #1032 | UI023 | UI022 | UI021 | UI020 | UI019 | UI018 | UI017 | UI016 |
|       |       |       |       |       |       |       |       |       |
| #1032 | UI031 | UI030 | UI029 | UI028 | UI027 | UI026 | UI025 | UI024 |

#### Custom macro program

output signal

UO000~UO031 (F054~F057)

UO100~UO131 (F226~F229)

UO200~UO231 (F230~F233)

UO300~UO331 (F234~F237)

[Type] Output signal.

[Function] T These signals which are taken as one of system variable are read/written by macro program, used for the interface signal between macro program and PLC.

The system variable corresponding to these signals are as follows (Table 10-2):

Table 10-2

| Signals     | Address   | Q'ty | Variables |
|-------------|-----------|------|-----------|
| UO000       | F54#0     | 1    | #1100     |
| UO001       | F54#1     | 1    | #1101     |
| UO002       | F54#2     | 1    | #1102     |
| UO003       | F54#3     | 1    | #1103     |
| UO004       | F54#4     | 1    | #1104     |
| UO005       | F54#5     | 1    | #1105     |
| UO006       | F54#6     | 1    | #1106     |
| UO007       | F54#7     | 1    | #1107     |
|             | • • •     |      | •••       |
| • • •       |           | 1    |           |
|             |           | 1    | •••       |
| UO029       | F57#5     | 1    | #1129     |
| UO030       | F57#6     | 1    | #1130     |
| UO031       | F57#7     | 1    | #1131     |
| UO000~UO031 | F54~F57   | 32   | #1132     |
| UO100~UO131 | F226~F229 | 32   | #1133     |
| UO200~UO231 | F230~F233 | 32   | #1134     |
| UO300~UO331 | F234~F237 | 32   | #1135     |

Note: #1132 is variable with 32-bit variable as follows:

|       | #7    | #6    | #5    | #4    | #3    | #2    | #1    | #0    |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| #1132 | UO007 | UO006 | UO005 | UO004 | UO003 | UO002 | UO001 | UO000 |
| #1132 | UO015 | UO014 | UO013 | UO012 | UO011 | UO010 | UO009 | UO008 |
|       |       |       |       |       |       |       |       |       |
| #1132 | UO023 | UO022 | UO021 | UO020 | UO019 | UO018 | UO017 | UO016 |
|       |       |       |       |       |       |       |       |       |
| #1132 | UO031 | UO030 | UO029 | UO028 | UO027 | UO026 | UO025 | UO024 |

# Part 3 Connection

#### **Notes**

### 1. Machine electric box requirements

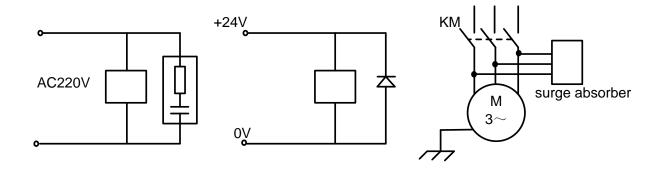
The machine electric boxes of the installation system and the drive unit use the fully closed dust-proof design to effectively protect the dust, the lubrication and the coolant from entering any internal components, and the temperature difference between the inner and the outer of the electric box cannot exceed  $10^{\circ}$ C. If can not meet the requirement, heat exchange system is needed. The max. temperature should not exceed  $45^{\circ}$ C.

### 2. System installation position

CNC system is the control core of the whole CNC machine, and it is prior to be placed in the position where there is the small temperature increasing and the less electromagnetic radiation interference. The spindle drive unit with strong power and the feed axis drive unit should be installed on the upper because their much heat. I/O should be placed in the below.

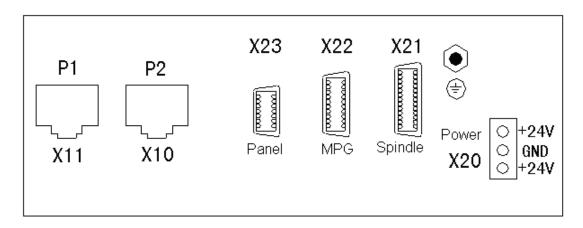
### 3. Protective ground

Machine electric box should be grounded, the consecutive of the protective grounding should be meet with GB 5226.1-2008 requirements. It is necessary with the stable ground for the system stably running, each grounding wire of all components of the system cannot be series each other, and grounding bar (thickness  $\geq$ 3mm copper) should be installed in the electric box, the grounding resistance of the ground connected with the grounding bar should be equal to or less than  $0.1\Omega$ , and the protective grounding terminal of each component should be separately connected with the grounding bar with the stubby yellow-green wiring.


## 4. Suppressing interference

Although the system uses the anti-interference in design to avoid the external interference influence, the following measures in the installation and connection should be executed to get the stable and reliable run.

- a) use the insolated transformer to CNC power supply;
- b) the installation of the CNC system should be far away from the ones bringing inference;
- c) CNC signal should use the shield cable which should be far away from the power


electromagnetic interference, and which should be straight, otherwise, which causes the interference signals;

- d) Parallel RC circuit in AC coil, and the RC circuit should approach the inductive load;
- e) Inversely parallel freewheeling diode in the two terminals of DCcoil;
- f) Parallel surge absorber in AC motor winding terminal.



# GSK25i System Box Interface

GSK 25i system box interface is as follows:



P1(x11): Ethernet interface one

| pin explanation of another |                          |  |  |  |  |
|----------------------------|--------------------------|--|--|--|--|
| tern                       | terminal of crystal plug |  |  |  |  |
| pin No.                    | pin explanation          |  |  |  |  |
| 1                          | TX1+                     |  |  |  |  |
| 2                          | TX1-                     |  |  |  |  |
| 3                          |                          |  |  |  |  |
| 4                          | NC                       |  |  |  |  |
| 5                          | NC                       |  |  |  |  |
| 6 RX1-                     |                          |  |  |  |  |
| 7 NC                       |                          |  |  |  |  |
| 8                          | NC                       |  |  |  |  |

P2(x10): Ethernet interface two

| pin ex  | pin explanation of another |  |  |  |  |
|---------|----------------------------|--|--|--|--|
| term    | ninal of crystal plug      |  |  |  |  |
| pin No. | pin explanation            |  |  |  |  |
| 1       | TX2+                       |  |  |  |  |
| 2       | TX2-                       |  |  |  |  |
| 3       | 3 RX2+                     |  |  |  |  |
| 4       | 4 NC                       |  |  |  |  |
| 5 NC    |                            |  |  |  |  |
| 6       | 6 RX2-                     |  |  |  |  |
| 7       | 7 NC                       |  |  |  |  |
| 8       | NC                         |  |  |  |  |

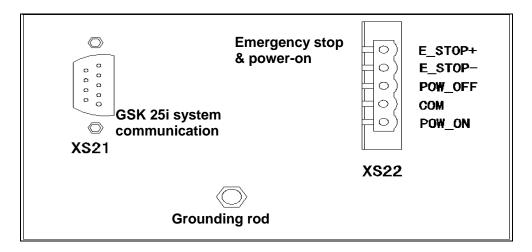
X20:Power



X23 :Operation panel interface

| •  |      |    |      |
|----|------|----|------|
| 1  | P24V | 2  |      |
| 3  | P0V  | 4  |      |
| 5  |      | 6  | RXD- |
| 7  | RXD+ | 8  |      |
| 9  |      | 10 |      |
| 11 | 0V   | 12 |      |
| 13 | TXD+ | 14 | TXD- |

X22: MPG interface


| 1  | +5V  | 11 | P_24V |
|----|------|----|-------|
| 2  |      | 12 |       |
| 3  | STP  | 13 |       |
| 4  | LED  | 14 | PB-   |
| 5  | НХ   | 15 | PB+   |
| 6  | HY   | 16 | PA+   |
| 7  | HZ   | 17 | PA-   |
| 8  | H4   | 18 | X100  |
| 9  | H5   | 19 | X1    |
| 10 | P_0V | 20 | X10   |
|    |      |    |       |

X21:Spindle interface

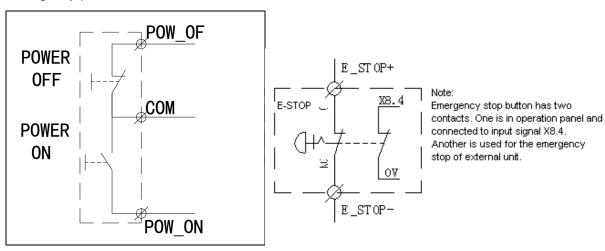
| 1  | SVC+  | 14 |      |
|----|-------|----|------|
| 2  |       | 15 |      |
|    | SVC-  | 16 | PB+  |
| 4  | CP+   | 17 | PB-  |
| 5  | CP-   | 18 | PA+  |
| 6  | DIR-  | 19 | PA-  |
| 7  | DIR+  | 20 |      |
| 8  | ALM   | 21 | P_0V |
| 9  | COIN  | 22 | VP   |
| 10 | ZSP   | 23 | EN   |
| 11 | VP0   | 24 | STA0 |
| 12 | SAR   | 25 | ZSL  |
| 13 | P 24V | 26 | ARST |

# 2 Operation panel interface

### 2.1 Sketch map of machine operation panel interface



### 2.2 CNC system communication interface XS21


| 1  | P24V | 2  |      |
|----|------|----|------|
| 3  | P0V  | 4  |      |
| 5  |      | 6  | RXD- |
| 7  | RXD+ | 8  |      |
| 9  |      | 10 |      |
| 11 | 0V   | 12 |      |
| 13 | TXD+ | 14 | TXD- |

\*TXD+, TXD-, RXD+, RXD-: RS485 difference communication signal;

\*0V: reference ground of difference signal;

\*P24V, P0V: 24V input

Emergency power on interface XS22



Power-on interface

Emergency stop interface

# 3

# I/O Interface

#### Sketch map of I/O interface

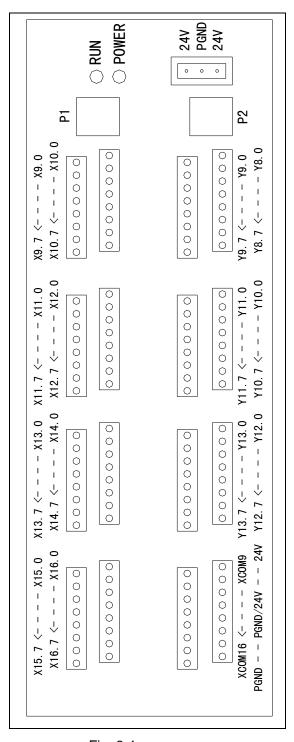



Fig. 3-1

#### **11/O** power interface

| XS34(3-male) |     |  |
|--------------|-----|--|
| 1            | 24v |  |
| 2            | 0v  |  |
| 3            | 24v |  |

Fig. 3-2

\*0V: share with the corresponding ground of the machine.

#### 2P1, P2 are the industrial Ethernet interface



Fig. 3-3

#### Input signal interface

Input signal address on the I/O unit is X9~~X16, 8-byte, 64-point.

Output signal address on the I/O unit is Y8~~Y13, 6-byte, 48-point.

Note: COM9~COM16 are selection terminals of common end of the input signal. They determines whether the group of input signal is HIGH or LOW is valid:

- (1) When COM is connected with 24V, the corresponding input point being connected with LOW (0V) is valid;
- (2) When COM is connected with 0V, the corresponding input point being connected with HIGH (24V) is valid.

When using several I/O extended links, the address distribution is as follows according to Ethernet connection sequence:

Input signal address is X9~~X16 for the 1<sup>st</sup> I/O, output signal address is Y8~~Y13. Input signal address is X17~~X24 for the 2<sup>nd</sup> I/O, output signal address is Y14~~Y19.

Input signal address is X25~~X32 for the  $3^{rd}$  I/O, output signal address is Y20~~Y25.

:

Input signal can be expanded up to X119, output signal can be expanded to Y119.



# **External Position Detection Unit**

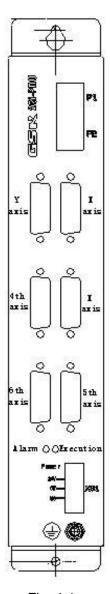



Fig. 4-1

RCN226. Note: Axis interface adopts HEIDEHAIN EnDat2.2 draft for connecting HEIDEHAIN EnDat2.2 absolute linear grating and angle encoder. Selectable linear grating is LC100 or LC400 aeries. For example: LC183,LC483.

Selectable encoder is RCN200, For example: RCN226.

#### Power interface for external position detection unit

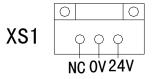



Fig. 4-2

Note: NC terminal is not used.

#### P1, P2 are the industrial Ethernet interface

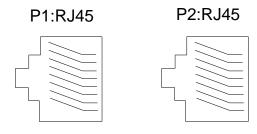



Fig. 4-3

#### Axis data interface

Axis data interface is a 15-core D-sub female-type plug, which is used to connect HEIDEHAIN EnDat absolute detection unit.

Selection for HEIDEHAIN auxiliary cable.

# HEIDEHAIN grating and cable selection for GSK25i system

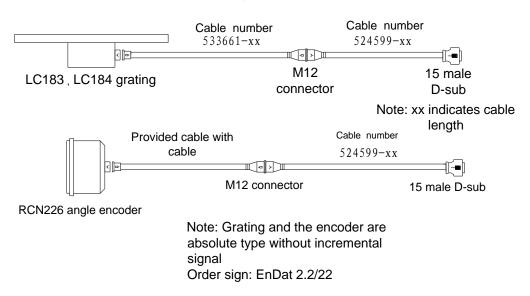



Fig. 4-4

# 5 Interconnection Graph




Fig. 5-1



# PC serial communication wire

Communication connection between the system and PC RS232 is as Fig. 6-1.





Fig. 6-1

PC communication cable connection is as Fig. 6-2.

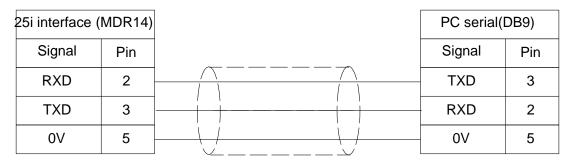



Fig. 6-2

7

# **MPG** Wiring

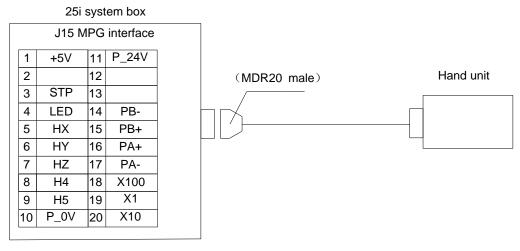



Fig. 7-1

External MPG signal connection is as Fig. 7-2.

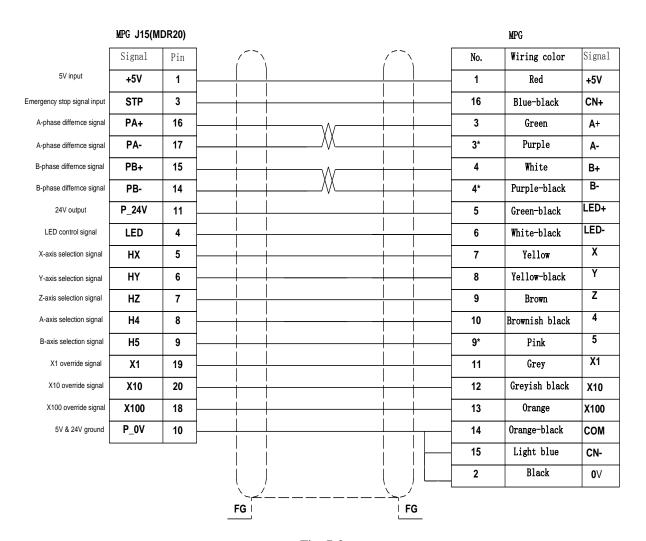



Fig. 7-2

#### Signal explanations:

1. HA+, HA-, HB+, HB- are input signal of MPG A, B phase.

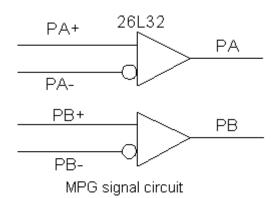
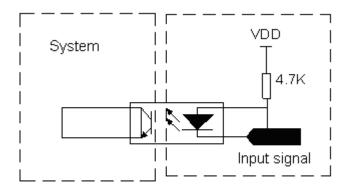




Fig. 7-3

**2.** MPG input signal X1, X10, X100, HX, HY, HZ, H4, H5, STP. Its internal interface circuit are as follows:



Input interface circuit of MPG

Fig. 7-4

#### MPG signal point definition.

Table 7-1

| Signal name | PLC address | Signal function               | 1/0 |
|-------------|-------------|-------------------------------|-----|
| HX          | X120.7      | X axis selection signal input | 1   |
| HY          | X120.6      | Y axis selection signal input | 1   |
| HZ          | X120.5      | Z axis selection signal input | 1   |
| H4          | X120.4      | 4 axis selection signal input | 1   |
| H5          | X120.3      | 5 axis selection signal input | 1   |
| X1          | X120.2      | X1 override signal input      | I   |
| X10         | X120.1      | X10 override signal input     | 1   |
| X100        | X120.0      | X100 override signal input    | I   |
| STP         | X121.0      | Emergency stop signal input   | I   |
| LED         | Y120.0      | LED lamp output               | 0   |

# **Operation Panel Signal Line**

GSK25I CNC system communicates with the operation panel by RS485 serial interface as Fig. 8-1.

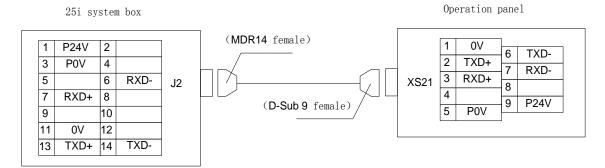
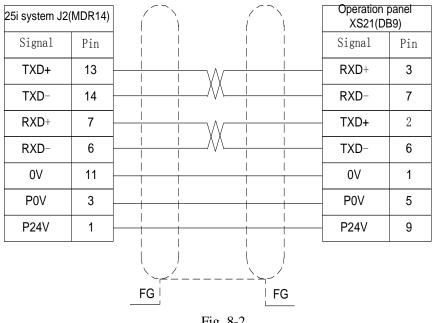




Fig. 8-1

#### Cable connection of operation panel is as Fig. 8-2.



# 9

# **Ethernet Communication Connection**

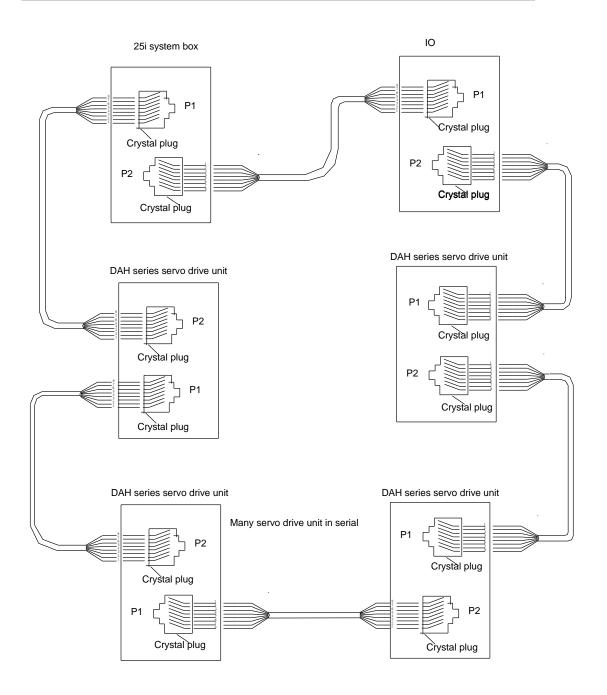



Fig. 9-1

Cable connection drawing of Ethernet Connection drawing 1:

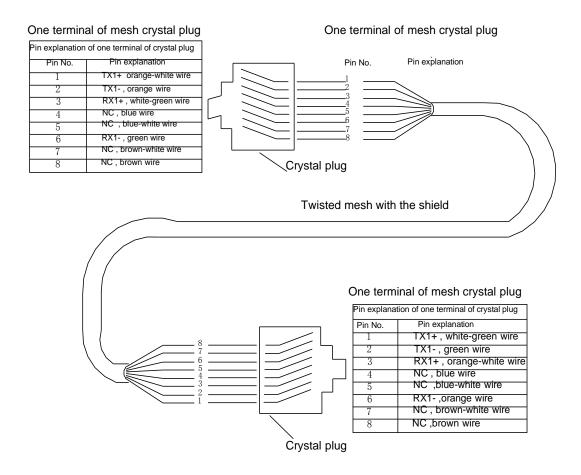
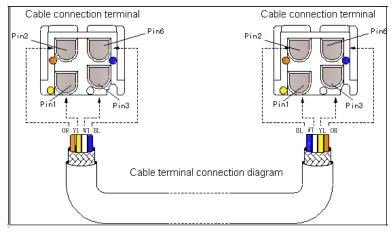




Fig. 9-2

#### Connection drawing 2:

#### Cable connection terminal



# Connected with the Spindle Servo

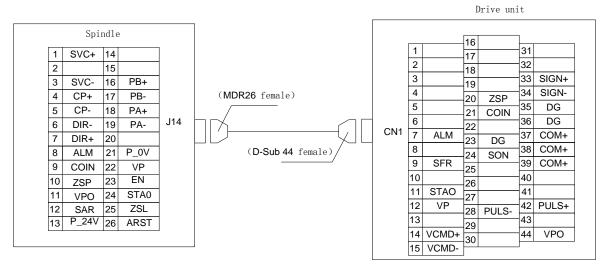



Fig. 10-1

#### Cable connection drawing of spindle.

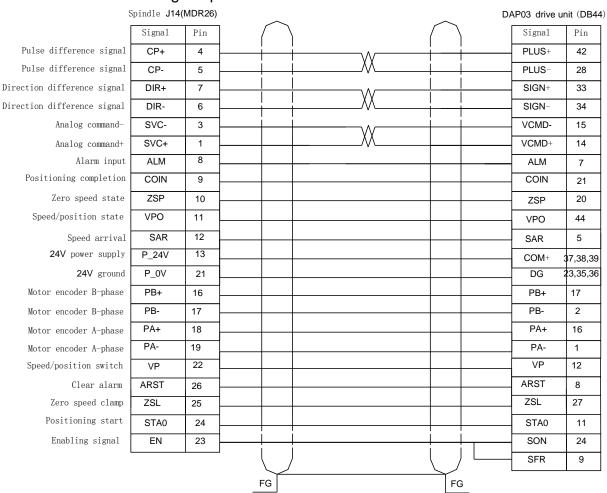



Fig. 10-2

Signal explanations:

1. Encoder signal input; PA+/PA- , PB+/PB- is differential input signal for A, B phase of the encoder. Its interface circuit is as follows:

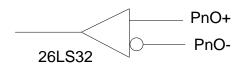



Fig. 10-3

2. Spindle IO input signal: ALM, COIN, ZSP, VPO, SAR, its interface circuit is as follows:

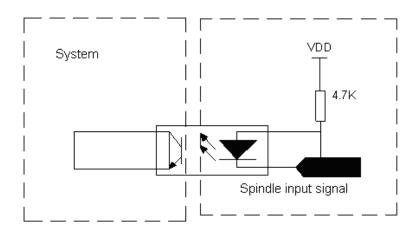
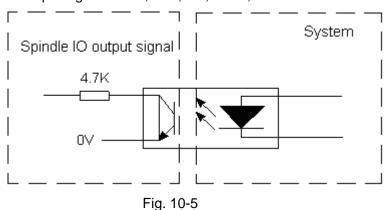




Fig. 10-4

3. Spindle IO input signal: ARST, ZSL, EN, STA0, VP. Its connection diagram is as follows:



4. Position, direction pulse output signal: CO+/CP-, DIR+/DIR-, which connection diagram is as follows:

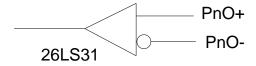



Fig. 10-6

5. Analog command signal: SVC-/SVC+, which connection diagram is as follows:

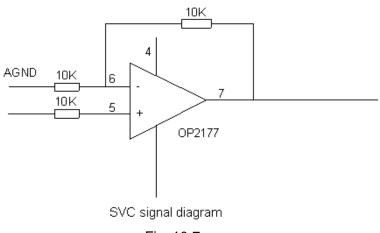



Fig. 10-7

# 11

# **Connected with the Spindle Converter**

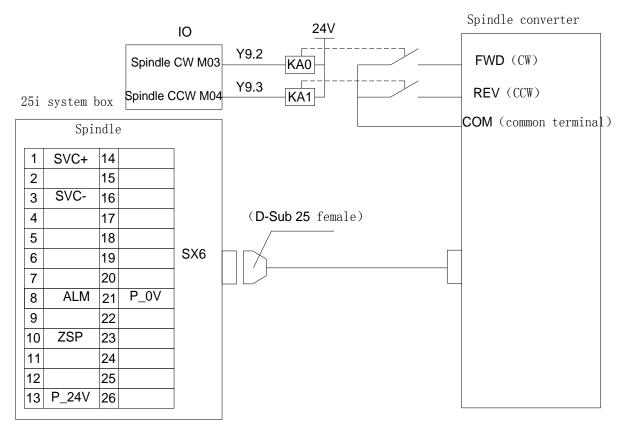



Fig. 11-1

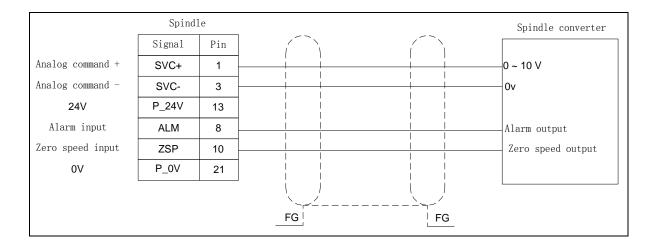



Fig. 11-2

# **12**

# Connection Method of Z Brake, System Power-on

# Control

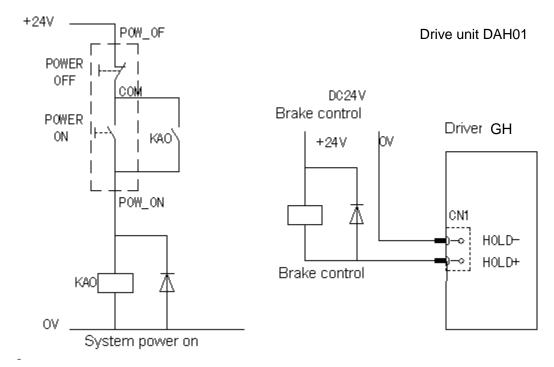



Fig. 12-1

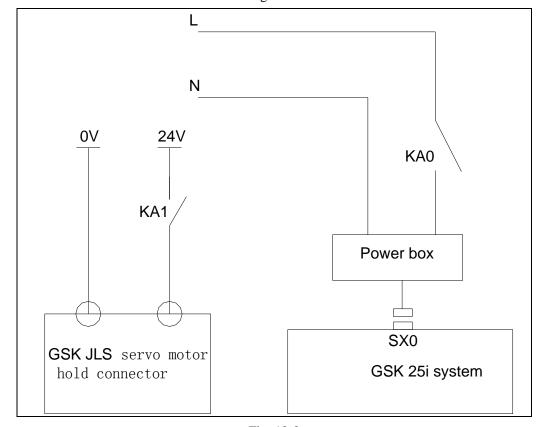



Fig. 12-2

# 13 I/O Input, Output Signal

#### 13.1 Connection method of input signal

COM terminal of each group of address determines whether HIGH or LOW input is valid:

- (1) When COM is connected with 24V, each input point connected with LOW (0V) is valid;
- (2) When COM is connected with 0V, each input point connected with HIGH (24V) is valid.

#### connection method when LOW is valid

#### connection method when HIGH is valid

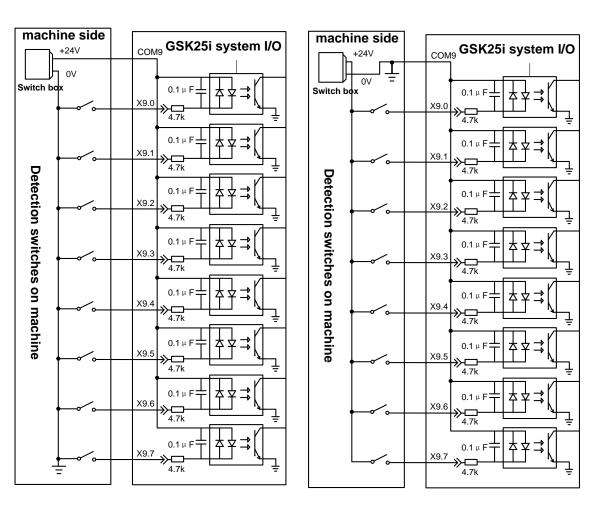



Fig. 13-1

\*Note: An input point has 8 groups including 64 points, the above figure takes the example of the group of X9.0—X9.7, and the connection methods of other groups are the same.

## 13.2 Connection method of output signal

An output signal has 48 points using the output ULN280-3, max. flowing current of each point is 200mA.

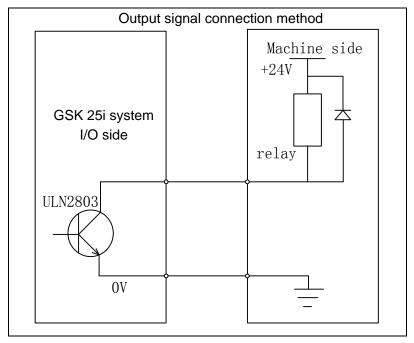



Fig. 13-2

# 13.3 Definition of input signal point

Table 13-1

| Terminal No. | PLC address | Signal name      | Signal function                                                                                              | 1/0 |
|--------------|-------------|------------------|--------------------------------------------------------------------------------------------------------------|-----|
| X9.0         | X9.0        | *DECX<br>(fixed) | X zero return deceleration input signal, normally-closed contact, power-off is valid                         | ı   |
| X9.1         | X9.1        | *DECY<br>(fixed) | Y zero return deceleration input signal, normally- closed contact, power-off is valid                        | ı   |
| X9.2         | X9.2        | *DECZ<br>(fixed) | Z zero return deceleration input signal, normally-<br>closed contact, power-off is valid                     | ı   |
| X9.3         | X9.3        | *DEC4(fixed)     | 4 <sup>th</sup> zero return deceleration input signal, normally- closed contact, power-off is valid          | ı   |
| X9.4         | X9.4        | *DEC5 (fixed)    | 5 <sup>th</sup> zero return deceleration input signal, normally- closed contact, power-off is valid          | I   |
| X9.5         | X9.5        |                  |                                                                                                              |     |
| X9.6         | X9.6        | *+LX (fixed)     | X positive limit( short circuit when not be used) normally- closed contact, power-off is valid               | I   |
| X9.7         | X9.7        | *-LX (fixed)     | X negative limit( short circuit when not be used) normally- closed contact, power-off is valid               | I   |
|              |             |                  |                                                                                                              |     |
| X10.0        | X10.0       | *+LY (fixed)     | Y positive limit( short circuit when not be used) normally- closed contact, power-off is valid               | I   |
| X10.1        | X10.1       | *-LY (fixed)     | Y negative limit( short circuit when not be used) normally- closed contact, power-off is valid               | I   |
| X10.2        | X10.2       | *+LZ (fixed)     | Z positive limit( short circuit when not be used) normally- closed contact, power-off is valid               | I   |
| X10.3        | X10.3       | *-LZ (fixed)     | Z negative limit( short circuit when not be used) normally- closed contact, power-off is valid               | I   |
| X10.4        | X10.4       | *+L4 (fixed)     | 4 <sup>th</sup> positive limit( short circuit when not be used) normally- closed contact, power-off is valid | I   |
| X10.5        | X10.5       | *-L4 (fixed)     | 4 <sup>th</sup> negative limit( short circuit when not be used) normally- closed contact, power-off is valid | ı   |
| X10.6        | X10.6       | *+L5 (fixed)     | 5 <sup>th</sup> positive limit( short circuit when not be used) normally- closed contact, power-off is valid | I   |
| X10.7        | X10.7       | *-L5 (fixed)     | 5 <sup>th</sup> negative limit( short circuit when not be used) normally- closed contact, power-off is valid | I   |
|              |             |                  |                                                                                                              |     |
| X11.0        | X11.0       | LUB.ALM          | Lubricating pump alarm input                                                                                 | I   |
| X11.1        | X11.1       | DOOR             | Safe door input                                                                                              | ı   |
| X11.2        | X11.2       | HYPUP.ALM        | Hydraulic pump overload input signal                                                                         | I   |
| X11.3        | X11.3       | AIRPRE.ALM       | Air pressure check alarm input signal                                                                        | I   |
| X11.4        | X11.4       | CLNM.ALM         | Cooling pump motor overload alarm input signal                                                               | I   |
| X11.5        | X11.5       | CHIPM.ALM        | Chip removal motor overload input signal                                                                     | I   |
| X11.6        | X11.6       | MGPLA.ALM        | Cutter disk motor overload input signal                                                                      | I   |
| X11.7        | X11.7       | USER.ALM1        | Custom alarm 1 input terminal                                                                                | I   |

#### **Volume II PLC Programming and Connection**

| Terminal | PLC     | <u> </u>    | 0: 1                                           |                                     |     |
|----------|---------|-------------|------------------------------------------------|-------------------------------------|-----|
| No.      | address | Signal name | Signal function                                |                                     | I/O |
| X12.0    | X12.0   | GR1.M       | Spindle No. 1 gea                              | r(in-position check)                | I   |
| X12.1    | X12.1   | GR2.M       | Spindle No. 2 gea                              | r(in-position check)                | I   |
| X12.2    | X12.2   |             |                                                |                                     | I   |
| X12.3    | X12.3   | SPCL.ALM    | Spindle oil cooler                             | alarm input signal                  | I   |
| X12.4    | X12.4   | LUBPRE.I    | Lubrication pump                               | pressure detection                  |     |
| X12.5    | X12.5   | TRLCK.I     | Release tool (ir                               | n-position check)                   |     |
| X12.6    | X12.6   | TCLCK.I     | Clamp tool(in-                                 | position check)                     | ı   |
| X12.7    | X12.7   | CKST        | Release/clar                                   | np tool button                      | ı   |
|          |         |             |                                                |                                     |     |
| X13.0    | X13.0   | 4UCLPI      |                                                | in-position check                   | I   |
| X13.1    | X13.1   | 4CLPI       | 4 <sup>th</sup> axis clamp in-position check   |                                     | l   |
| X13.2    | X13.2   |             |                                                |                                     |     |
| X13.3    | X13.3   |             |                                                |                                     |     |
| X13.4    | X13.4   | 5UCLPI      | 5 <sup>th</sup> axis release in-position check |                                     | I   |
| X13.5    | X13.5   | 5CLPI       | 5 <sup>th</sup> axis clamp in-position check   |                                     | I   |
| X13.6    | X13.6   |             |                                                |                                     |     |
| X13.7    | X13.7   |             |                                                |                                     |     |
| X14.0    | X14.0   | T-BARE      |                                                | Cutter disk in-position (disk-type) | I   |
| X14.1    | X14.1   | TZER.I      | Tool magazine z                                | zero return signal                  |     |
| X14.2    | X14.2   | TCN.I       | -                                              | unting signal                       |     |
| X14.3    | X14.3   | TFN.I       | Tool magazine forward in-position              | Cutter set is vertical              | I   |
| X14.4    | X14.4   | TBK.I       | Tool magazine backward in-position             | Cutter set is horizontal            | I   |
| X14.5    | X14.5   |             |                                                | ATC original point                  |     |
| X14.6    | X14.6   |             |                                                | ATC tool holding                    |     |
| X14.7    | X14.7   |             |                                                | ATC stops                           |     |

Note: X15.0—X15.7, X16.0—X16.7 together have 16 input signal interfaces to the user.

## 13.4 Definition of output signal point

| Terminal | PLC     |                                             |                                           |     |
|----------|---------|---------------------------------------------|-------------------------------------------|-----|
| No.      | address | Signal name Signal function                 |                                           | I/O |
| Y8.0     | Y8.0    | CLN.O                                       | Cooling (coolant) pump output             | 0   |
| Y8.1     | Y8.1    | MGFR.O                                      | Tool magazine forward/ cutter set is      | 0   |
| 10.1     | 10.1    | vertical (Output signal)                    |                                           | O   |
| Y8.2     | Y8.2    | MGBK.O Tool magazine backward/ cutter set i |                                           | 0   |
| 10.2     | 10.2    | WOBK.O                                      | horizontal (Output signal)                |     |
| Y8.3     | Y8.3    |                                             |                                           | 0   |
| Y8.4     | Y8.4    | TRL.M                                       | Release too/air blowing (Output signal)   | 0   |
| Y8.5     | Y8.5    | MGCW.O                                      | Tool magazine CW (Output signal)          | 0   |
| Y8.6     | Y8.6    | MGCCW.O                                     | Tool magazine CCW (Output signal)         | 0   |
| Y8.7     | Y8.7    | HYPR.O                                      | Hydraulic oil pump output                 | 0   |
|          |         | <b>-</b>                                    |                                           |     |
| Y9.0     | Y9.0    | LUB.O                                       | Lubricating pump output                   | 0   |
| Y9.1     | Y9.1    | OR.T                                        | Overtravel release                        | 0   |
| Y9.2     | Y9.2    | M03                                         | Spindle CW (Output signal)                | 0   |
| Y9.3     | Y9.3    | M04                                         | Spindle CCW (Output signal)               | 0   |
| Y9.4     | Y9.4    | RED.ALL                                     | Red lamp alarm output                     | 0   |
| Y9.5     | Y9.5    | YEL.ALL                                     | Yellow lamp output (normally wait)        | 0   |
| Y9.6     | Y9.6    | GRE.ALL                                     | Green lamp output (machine normally runs) | 0   |
| Y9.7     | Y9.7    |                                             |                                           | 0   |
|          |         |                                             |                                           |     |
| Y10.0    | Y10.0   | GR1.O                                       | Spindle No.1 gear output                  | 0   |
| Y10.1    | Y10.1   | GR2.O                                       | Spindle No.2 gear output                  | 0   |
| Y10.2    | Y10.2   | GR3.O                                       | Spindle No.3 gear output                  | 0   |
| Y10.3    | Y10.3   |                                             |                                           | 0   |
| Y10.4    | Y10.4   |                                             |                                           |     |
| Y10.5    | Y10.5   |                                             |                                           |     |
| Y10.6    | Y10.6   |                                             |                                           |     |
| Y10.7    | Y10.7   |                                             |                                           |     |
|          |         |                                             |                                           |     |
| Y11.0    | Y11.0   | LAMP.L                                      | Machine working lamp                      | 0   |
| Y11.1    | Y11.1   | CLN2.O                                      | chip water valve output                   | 0   |
| Y11.2    | Y11.2   | CFN.O                                       | Spindle blowing output                    | 0   |
| Y11.3    | Y11.3   | CLN-2.0                                     | Workpiece blowing output                  | 0   |
| Y11.4    | Y11.4   | CHIP1.CW                                    | Chip removal 1 CW output                  | 0   |
| Y11.5    | Y11.5   | CHIP1.CCW                                   | Chip removal 1 CCW output                 | 0   |
| Y11.6    | Y11.6   | CHIP2.CW                                    | Chip removal 2 output                     | 0   |
| Y11.7    | Y11.7   |                                             |                                           | 0   |
|          |         |                                             |                                           |     |

| Y12.0 | Y12.0 | 4UCLPO | 4 <sup>th</sup> axis release output | 0 |
|-------|-------|--------|-------------------------------------|---|
| Y12.1 | Y12.1 | 4-CLPO | 4 <sup>th</sup> axis clamp output   | 0 |
| Y12.2 | Y12.2 | 5UCLPO | 5 <sup>th</sup> release output      | 0 |
| Y12.3 | Y12.3 | 5-CLPO | 5 <sup>th</sup> clamp output        | 0 |
| Y12.4 | Y12.4 |        |                                     |   |
| Y12.5 | Y12.5 |        |                                     |   |
| Y12.6 | Y12.6 |        |                                     |   |
| Y12.7 | Y12.7 |        |                                     |   |
|       |       |        |                                     |   |
| Y13.0 | Y13.0 |        |                                     |   |
| Y13.1 | Y13.1 |        |                                     |   |
| Y13.2 | Y13.2 |        |                                     |   |
| Y13.3 | Y13.3 |        |                                     |   |
| Y13.4 | Y13.4 |        |                                     |   |
| Y13.5 | Y13.5 |        |                                     |   |
| Y13.6 | Y13.6 |        |                                     |   |
| Y13.7 | Y13.7 |        |                                     |   |

# Appendix 1 CNC and PLC interface signal table

|           | F code                                  |           |
|-----------|-----------------------------------------|-----------|
| Address   | Signal name                             | Symbol    |
| F000#4    | Automatic run pause signal              | SPL       |
| F000#5    | Automatic run start signal              | STL       |
| F000#6    | Servo ready signal                      | SA        |
| F000#7    | Automatic run signal                    | OP        |
| F001#0    | Alarm signal                            | AL        |
| F001#1    | reset signal                            | RST       |
| F001#3    | Distribution end signal                 | DEN       |
| F001#4    | Spindle enabling signal                 | ENB       |
| F001#7    | Read end signal                         | MA        |
| F002#1    | Rapid feed signal                       | RPDO      |
| F002#4    | Program restart signal                  | SRNMV     |
| F002#6    | Cutting feed signal                     | CUT       |
| F002#7    | Dry run check signal                    | MDRN      |
| F003#0    | Incremental feed selection signal       | MINC      |
| F003#1    | MPG feed selection signal               | MH        |
| F003#2    | Manual continuous feed selection signal | MJ        |
| F003#3    | Select manual data input signal         | MMDI      |
| F003#4    | Select DNC run signal                   | MRMT      |
| F003#5    | Select automatic run signal             | MMEM      |
| F003#6    | Memory edit selection signal            | MEDT      |
| F003#7    | Machine zero return detection signal    | MZRO      |
| F004#0    | Jump optional block detection signal    | MBDT      |
| F004#1    | All-axes machine lock signal            | MMLK      |
| F004#3    | Single block signal                     | MSBK      |
| F004#4    | Auxiliary function lock signal          | MAFL      |
| F004#5    | Manual reference point return signal    | MREF      |
| F007#0    | Auxiliary function strobe signal        | MF        |
| F007#2    | Spindle speed strobe signal             | SF        |
| F007#3    | Tool function strobe signal             | TF        |
| F007#5    | No.2 M function strobe signal           | MF2       |
| F007#6    | No. 3M function strobe signal           | MF3       |
| F009#4    | -                                       | DM30      |
| F009#5    | 7                                       | DM02      |
| F009#6    | 7                                       | DM01      |
| F009#7    | M decoding signal                       | DM00      |
| F010~F013 | Auxiliary function signal               | M00-M31   |
| F014~F017 | No. 2M function signal                  | M100~M131 |
| F018~F021 | No. 3M function signal                  | M200~M231 |

| F022~F025   | Spindle function signal                                           | S00~S31             |
|-------------|-------------------------------------------------------------------|---------------------|
| F026~F029   | Tool function signal                                              | T00~T31             |
| F034#0~#2   | Gear selection signal(output)                                     | GR10,GR20,GR30      |
| F045#0      | Spindle alarm signal                                              | SPALM               |
| F045#1      | Spindle zero-speed signal                                         | SST                 |
| F045#3      | Speed arrival signal                                              | SAR                 |
| F045#7      | Orientation completion signal                                     | ORAR                |
| F054~F057   | Output signal used to user macro program                          | UO000~UO031         |
| F060#0      | External data read completion                                     | EREND               |
| F060#1      | External data search completion                                   | ERSND               |
| F060#2      | External data read cancel                                         | ESCAN               |
| F061#0      | B-axis release signal                                             | BUCLP               |
| F061#1      | B axis clamp signal                                               | BCLP                |
|             | Signal for reaching the required number of                        |                     |
| F062#7      | workpiece                                                         | PRTSF               |
| F065#0      | Spindle rotation direction signal                                 | RGSPP               |
| F70#0~F71#7 | Position switch signal                                            | PSW01-PSW16         |
| F076#3      | Speed/position switch completion                                  | VPO                 |
| F094        | Reference point return end signal                                 | ZP1~ZP5             |
| F096        | 2 <sup>nd</sup> reference point return end signal                 | ZP21~ZP24           |
| F098        | 3 <sup>rd</sup> reference point return end signal                 | ZP31~ZP34           |
| F100        | 4 <sup>th</sup> 2 <sup>nd</sup> reference point return end signal | ZP41~AP44           |
| F102        | Axis moving signal                                                | MV1~MV5             |
| F106        | Axis movement direction signal                                    | MVD1~MVD5           |
| F120        | Reference point creation signal                                   | ZRF1~ZRF5           |
| F124        | Travel limit arrival signal                                       | +OT0~+OT4           |
| F126        | Travel limit arrival signal                                       | -OT0~-OT4           |
| F226~F229   | 3                                                                 | UO100~UO131         |
| F230~F233   | Output signal used to macro program                               | UO200~UO231         |
| F234~F237   |                                                                   | UO300~UO331         |
|             |                                                                   |                     |
| G codes     | Address                                                           | Signal name         |
| G000~G003   | External data input data signal                                   | ED0~ED31            |
| G004#3      | Completion signal                                                 | FIN                 |
| G004#4      | No. 2M function end signal                                        | MFIN2               |
| G004#5      | No. 3M f unction end signal                                       | MFIN3               |
| G005#0      | Auxiliary function end signal                                     | MFIN                |
| G005#6      | Auxiliary function lock signal                                    | AFL                 |
| G006#0      | Program restart signal                                            | SRN                 |
|             | Override cancel signal                                            | OVC                 |
| G006#4      |                                                                   |                     |
| G006#4      | Skin signal                                                       | II IMPP             |
| G006#6      | Skip signal                                                       | JUMPP<br>STLK       |
|             | Skip signal Start lock signal Automatic run start signal          | JUMPP<br>STLK<br>ST |

### Volume $\ \, \mathbb{II} \quad \, \text{PLC Programming and Connection}$

| G008#4         Emergency stop signal         *ESP           G008#5         Feed pause signal         *SP           G008#2         Optional stop signal(add)         SOP           G008#6         Reset & tap rewinding signal         RRW           G008#7         External reset signal         ERS           G010-G011         Manual feedrate override signal         FV0-FV7           G012         Feedrate override signal         FV0-FV7           G013#0 ~G013#6         External data input address signal         EA0-EA6           G013#7         External data read signal         ESTB           G014#0,#1         Rapid feedrate override signal         ROV1,ROV2           G018#0-#3         MPG feed axis selection signal         HS1A-HS1D           MPG feed movement selection         G018#0-#3         MPG feed movement selection           G019#4,#5         signal(incremental feed signal)         MP1,MP2           G019#6         Safety speed selection for feed         FVL           G019#7         Manual rapid feed selection signal         RT           G029#4         Spindle speed arrival signal         SAR           G029#6         Spindle stop signal         SOR           G29#6         Spindle stop signal         SSTP <t< th=""><th></th><th></th><th></th></t<>                                                                                                                                                                                            |                |                                              |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------|-------------|
| G008#2 Optional stop signal(add) SOP G008#6 Reset & tap rewinding signal RRW G008#7 External reset signal ERS G010~G011 Manual feedrate override signal FV0~JV15 G012 Feedrate override signal FV0~FV7 G013#0~G013#6 External data input address signal EAO~EA6 G013#7 External data read signal ESTB G014#0,#1 Rapid feedrate override signal ROV1,ROV2 G018#0~#3 MPG feed axis selection signal HS1A~HS1D MPG feed movement selection G019#4,#5 signal(incremental feed signal) MP1,MP2 G019#6 Safety speed selection for feed FVL G019#7 Manual rapid feed selection signal RT G028#1-#2 Gear selection signal SAR G029#5 Spindle orientation signal SOR G29#6 Spindle stop signal SOV0~SOV7 G033#5 Spindle motor command polar selection signal SON G033#6 Spindle motor command polar selection signal SIND G033#7 Spindle motor command selection signal SIND G043#0~#2 Mode selection signal SIND G043#0~#2 Mode selection signal MD1,MD2,MD4 G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal BDT G044#1 Single block signal SBK G046#7 Dry run signal SBK G054~G057 Macro call input signal CRTAP G070#4 Spindle CW rotation SRVA G070#5 Spindle orientation output signal CRTAP G070#6 Spindle orientation output signal CRTAP | G008#4         | Emergency stop signal                        | *ESP        |
| G008#6         Reset & tap rewinding signal         RRW           G008#7         External reset signal         ERS           G010~G011         Manual feedrate override signal         JV0~JV15           G012         Feedrate override signal         FV0~FV7           G013#0~G013#6         External data input address signal         EAO-EA6           G013#7         External data read signal         ESTB           G014#0,#1         Rapid feedrate override signal         ROV1,ROV2           G018#0~#3         MPG feed axis selection signal         HS1A~HS1D           MPG feed movement selection           G019#4,#5         signal(incremental feed signal)         MP1,MP2           G019#6         Safety speed selection for feed         FVL           G019#7         Manual rapid feed selection signal         RT           G028#1-#2         Gear selection signal (input)         GR1,GR2,           G029#4         Spindle speed arrival signal         SAR           G029#5         Spindle speed override signal         SOR           G29#6         Spindle orientation signal         SOV0~SOV7           G033#5         Spindle motor command polar selection signal         SSIN           G033#6         Spindle motor command polar selection signal         SIND                                                                                                                                                                                                        | G008#5         | Feed pause signal                            | *SP         |
| G008#7         External reset signal         ERS           G010~G011         Manual feedrate override signal         JV0~JV15           G012         Feedrate override signal         FV0~FV7           G013#0 ~G013#6         External data input address signal         EA0~EA6           G013#7         External data read signal         ESTB           G014#0,#1         Rapid feedrate override signal         ROV1,ROV2           G018#0~#3         MPG feed axis selection signal         HS1A~HS1D           MPG feed movement selection         G019#4,#5         signal(incremental feed signal)         MP1,MP2           G019#6         Safety speed selection for feed         FVL           G019#7         Manual rapid feed selection signal         RT           G028#1-#2         Gear selection signal(input)         GR1,GR2,           G029#4         Spindle speed arrival signal         SAR           G029#5         Spindle stop signal         SSTP           G030         Spindle speed override signal         SOV0~SOV7           G033#5         Spindle motor command polar selection signal         SGN           G033#6         Spindle motor command polar selection signal         SIND           G043#0~#2         Mode selection signal         MD1,MD2,MD4           G044#0 </td <td>G008#2</td> <td>Optional stop signal(add)</td> <td>SOP</td>                                                                                                                        | G008#2         | Optional stop signal(add)                    | SOP         |
| G010-G011 Manual feedrate override signal JV0-JV15 G012 Feedrate override signal FV0-FV7 G013#0 ~G013#6 External data input address signal EA0~EA6 G013#7 External data read signal ESTB G014#0,#1 Rapid feedrate override signal ROV1,ROV2 G018#0-#3 MPG feed axis selection signal HS1A-HS1D  MPG feed movement selection signal(incremental feed signal) MP1,MP2 G019#6 Safety speed selection for feed FVL G019#7 Manual rapid feed selection signal RT G028#1-#2 Gear selection signal SAR G029#4 Spindle speed arrival signal SOR G29#6 Spindle stop signal SOR G29#6 Spindle stop signal SOV0-SOV7 G033#5 Spindle motor command polar selection signal SIND G033#6 Spindle motor command polar selection signal SIND G043#0-#2 Mode selection signal MD1,MD2,MD4 G043#4 Step run selection signal MD1,MD2,MD4 G044#0 Jump optional block signal MLK G046#1 Single block signal SBK G046#7 Dry run signal DRN G054-G057 Macro call input signal CRCM G070#6 Spindle CVW rotation SFRA G070#6 Spindle override signal ORCM G096#0-#6 1% rapid feedrate override signal ORCM G096#0-#6 1% rapid feedrate override signal ORCM                                                                                                                                                                                                                                                                                                                                                                            | G008#6         | Reset & tap rewinding signal                 | RRW         |
| G012 Feedrate override signal FV0~FV7 G013#0 ~G013#6 External data input address signal EA0~EA6 G013#7 External data read signal ESTB G014#0,#1 Rapid feedrate override signal ROV1,ROV2 G018#0~#3 MPG feed axis selection signal HS1A~HS1D MPG feed movement selection G019#4,#5 signal(incremental feed signal) MP1,MP2 G019#6 Safety speed selection for feed FVL G019#7 Manual rapid feed selection signal RT G028#1-#2 Gear selection signal(input) GR1,GR2, G029#4 Spindle speed arrival signal SAR G029#5 Spindle orientation signal SOR G29#6 Spindle stop signal SOV0~SOV7 G033#5 Spindle motor command polar selection signal SGN G033#6 Spindle motor command polar selection signal SIND G043#0-#2 Mode selection signal SIND G043#0-#2 Mode selection signal MD1,MD2,MD4 G043#4 Step run selection signal INC G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal BDT G044#1 All-axes machine lock signal SBK G046#7 Dry run signal DRN G054-G057 Macro call input signal RGTAP G070#4 Spindle CCW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                    | G008#7         | External reset signal                        | ERS         |
| G013#0 ~G013#6 External data input address signal EA0~EA6 G013#7 External data read signal ESTB G014#0,#1 Rapid feedrate override signal ROV1,ROV2 G018#0~#3 MPG feed axis selection signal HS1A~HS1D MPG feed movement selection G019#4,#5 signal(incremental feed signal) MP1,MP2 G019#6 Safety speed selection for feed FVL G019#7 Manual rapid feed selection signal RT G028#1-#2 Gear selection signal (input) GR1,GR2, G029#4 Spindle speed arrival signal SAR G029#5 Spindle orientation signal SOR G29#6 Spindle stop signal SON G033#5 Spindle motor command polar selection signal SGN G033#6 Spindle motor command polar selection signal SIND G033#7 Spindle motor command selection signal SIND G043#0~#2 Mode selection signal MD1,MD2,MD4 G043#4 Step run selection signal BDT G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal SBK G046#7 Dry run signal DRN G054-G057 Macro call input signal RGTAP G070#4 Spindle CW rotation SRVA G070#5 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal ORCM G096#0~#6 Spindle orientation output signal ORCM G096#0~#6 HROV-HROV6                                                                                                                                                                                                                                                                                                                                                           | G010~G011      | Manual feedrate override signal              | JV0~JV15    |
| G013#7 External data read signal ESTB G014#0,#1 Rapid feedrate override signal ROV1,ROV2 G018#0~#3 MPG feed axis selection signal HS1A~HS1D MPG feed movement selection signal(incremental feed signal) MP1,MP2 G019#6 Safety speed selection for feed FVL G019#7 Manual rapid feed selection signal RT G028#1-#2 Gear selection signal (input) GR1,GR2, G029#4 Spindle speed arrival signal SAR G029#6 Spindle orientation signal SOR G29#6 Spindle speed override signal SOV0~SOV7 G033#5 Spindle motor command polar selection signal SSIN G033#6 Spindle motor command selection signal SSIN G033#7 Spindle motor command selection signal SIND G043#0~#2 Mode selection signal MD1,MD2,MD4 G043#4 Step run selection signal BDT G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal SBK G046#1 Single block signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal RGTAP G070#4 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G012           | Feedrate override signal                     | FV0~FV7     |
| G014#0,#1 Rapid feedrate override signal ROV1,ROV2 G018#0~#3 MPG feed axis selection signal HS1A-HS1D  MPG feed movement selection signal(incremental feed signal) MP1,MP2 G019#6 Safety speed selection for feed FVL G019#7 Manual rapid feed selection signal RT G028#1-#2 Gear selection signal(input) GR1,GR2, G029#4 Spindle speed arrival signal SAR G029#5 Spindle orientation signal SOR G29#6 Spindle stop signal SON G033#5 Spindle motor command polar selection signal SSIN G033#7 Spindle motor command selection signal SIND G043#0~#2 Mode selection signal SIND G043#4 Step run selection signal INC G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal RGTAP G070#4 Spindle CW rotation SFRA G070#6 Spindle override signal ORCM G096#0~#6 1% rapid feedrate override signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G013#0 ~G013#6 | External data input address signal           | EA0~EA6     |
| G018#0~#3 MPG feed axis selection signal MPG feed movement selection signal MPG feed movement selection signal(incremental feed signal) MP1,MP2 G019#6 Safety speed selection for feed FVL G019#7 Manual rapid feed selection signal RT G028#1-#2 Gear selection signal(input) GR1,GR2, G029#4 Spindle speed arrival signal SAR G029#5 Spindle orientation signal SOR G29#6 Spindle stop signal SON G033#5 Spindle motor command polar selection signal SGN G033#6 Spindle motor command polar selection signal SIND G033#7 Spindle motor command selection signal SIND G043#0~#2 Mode selection signal MD1,MD2,MD4 G043#4 Step run selection signal INC G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal BDT G044#1 Single block signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal RGTAP G070#4 Spindle CCW rotation SFRA G070#6 Spindle orientation output signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G013#7         | External data read signal                    | ESTB        |
| MPG feed movement selection signal(incremental feed signal) MP1,MP2 G019#6 Safety speed selection for feed FVL G019#7 Manual rapid feed selection signal RT G028#1-#2 Gear selection signal(input) GR1,GR2, G029#4 Spindle speed arrival signal SAR G029#5 Spindle orientation signal SOR G29#6 Spindle stop signal SOV0~SOV7 G033#5 Spindle motor command polar selection signal G03#6 Spindle motor command polar selection signal SIND G03#7 Spindle motor command selection signal G043#0-#2 Mode selection signal MD1,MD2,MD4 G044#0 Jump optional block signal G044#1 All-axes machine lock signal MC46#1 Single block signal G054~G057 Macro call input signal MC4AP G070#4 Spindle CCW rotation SFRA G070#6 Spindle orientation output signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G014#0,#1      | Rapid feedrate override signal               | ROV1,ROV2   |
| G019#4,#5 signal(incremental feed signal) MP1,MP2 G019#6 Safety speed selection for feed FVL G019#7 Manual rapid feed selection signal RT G028#1-#2 Gear selection signal(input) GR1,GR2, G029#4 Spindle speed arrival signal SAR G029#5 Spindle orientation signal SOR G29#6 Spindle stop signal SOV0~SOV7 G033#5 Spindle motor command polar selection signal SGN G03#6 Spindle motor command polar selection signal SIND G033#7 Spindle motor command selection signal SIND G043#0-#2 Mode selection signal INC G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal RGTAP G070#4 Spindle CCW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal ORCM G096#0~H60 1% rapid feedrate override signal ORCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G018#0~#3      | MPG feed axis selection signal               | HS1A~HS1D   |
| G019#6 Safety speed selection for feed FVL G019#7 Manual rapid feed selection signal RT G028#1-#2 Gear selection signal(input) GR1,GR2, G029#4 Spindle speed arrival signal SAR G029#5 Spindle orientation signal SOR G29#6 Spindle stop signal SOV0~SOV7 G030 Spindle speed override signal SGN G03#5 Spindle motor command polar selection signal SSIN G033#6 Spindle motor command polar selection signal SIND G043#0~#2 Mode selection signal SIND G043#4 Step run selection signal INC G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal BDT G046#1 Single block signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal Ul000~Ul031 G061#0 Rigid tapping signal RGTAP G070#4 Spindle CCW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | MPG feed movement selection                  |             |
| G019#7 Manual rapid feed selection signal G028#1-#2 Gear selection signal(input) GR1,GR2, G029#4 Spindle speed arrival signal G029#5 Spindle orientation signal G29#6 Spindle stop signal G030 Spindle speed override signal G034#5 Spindle motor command polar selection signal G034#6 Spindle motor command polar selection signal G033#6 Spindle motor command polar selection signal G033#7 Spindle motor command selection signal G043#0~#2 Mode selection signal G044#4 Step run selection signal G044#0 Jump optional block signal G044#1 All-axes machine lock signal G046#1 Single block signal G046#7 Dry run signal G054~G057 Macro call input signal G061#0 Rigid tapping signal G070#4 Spindle CW rotation SRVA G070#5 Spindle orientation output signal G08CM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G019#4,#5      | signal(incremental feed signal)              | MP1,MP2     |
| G028#1-#2 Gear selection signal(input) GR1,GR2, G029#4 Spindle speed arrival signal SOR G29#6 Spindle stop signal SOV0~SOV7 G033#5 Spindle motor command polar selection signal G03#6 Spindle motor command polar selection signal SON G033#6 Spindle motor command polar selection signal G03#7 Spindle motor command selection signal G043#0~#2 Mode selection signal MD1,MD2,MD4 G043#4 Step run selection signal INC G044#0 Jump optional block signal G044#1 All-axes machine lock signal G046#1 Single block signal G046#7 Dry run signal DRN G054~G057 Macro call input signal G061#0 Rigid tapping signal RGTAP G070#5 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G019#6         | Safety speed selection for feed              | FVL         |
| G029#4 Spindle speed arrival signal SAR G029#5 Spindle orientation signal SOR G29#6 Spindle stop signal SOV0~SOV7 G030 Spindle speed override signal SON G03#5 Spindle motor command polar selection signal SSIN G033#6 Spindle motor command polar selection signal SIND G033#7 Spindle motor command selection signal SIND G043#0~#2 Mode selection signal MD1,MD2,MD4 G043#4 Step run selection signal INC G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal MLK G046#1 Single block signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal Ul000~Ul031 G061#0 Rigid tapping signal RGTAP G070#4 Spindle CCW rotation SRVA G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G019#7         | Manual rapid feed selection signal           | RT          |
| G029#6 Spindle orientation signal SOR G29#6 Spindle stop signal *SSTP G030 Spindle speed override signal SOV0~SOV7 G033#5 Spindle motor command polar selection signal SGN G033#6 Spindle motor command polar selection signal SIND G033#7 Spindle motor command selection signal SIND G043#0~#2 Mode selection signal INC G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal MLK G046#1 Single block signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal RGTAP G070#4 Spindle CCW rotation SRVA G070#5 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G028#1-#2      | Gear selection signal(input)                 | GR1,GR2,    |
| G29#6 Spindle stop signal *SSTP G030 Spindle speed override signal SOV0~SOV7 G033#5 Spindle motor command polar selection signal SGN G033#6 Spindle motor command polar selection signal SIND G033#7 Spindle motor command selection signal SIND G043#0~#2 Mode selection signal MD1,MD2,MD4 G043#4 Step run selection signal INC G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal MLK G046#1 Single block signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal UI000~UI031 G061#0 Rigid tapping signal RGTAP G070#4 Spindle CCW rotation SRVA G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G029#4         | Spindle speed arrival signal                 | SAR         |
| G030 Spindle speed override signal SOV0~SOV7 G033#5 Spindle motor command polar selection signal SGN G033#6 Spindle motor command polar selection signal SSIN G033#7 Spindle motor command selection signal SIND G043#0~#2 Mode selection signal MD1,MD2,MD4 G043#4 Step run selection signal INC G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal MLK G046#1 Single block signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal Ul000~Ul031 G061#0 Rigid tapping signal RGTAP G070#4 Spindle CCW rotation SRVA G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G029#5         | Spindle orientation signal                   | SOR         |
| G033#5 Spindle motor command polar selection signal SGN G033#6 Spindle motor command polar selection signal SIND G033#7 Spindle motor command selection signal SIND G043#0~#2 Mode selection signal MD1,MD2,MD4 G043#4 Step run selection signal INC G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal MLK G046#1 Single block signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal Ul000~Ul031 G061#0 Rigid tapping signal RGTAP G070#4 Spindle CCW rotation SRVA G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G29#6          | Spindle stop signal                          | *SSTP       |
| G033#6 Spindle motor command polar selection signal SSIN G033#7 Spindle motor command selection signal SIND G043#0~#2 Mode selection signal MD1,MD2,MD4 G043#4 Step run selection signal INC G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal MLK G046#1 Single block signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal UI000~UI031 G061#0 Rigid tapping signal RGTAP G070#4 Spindle CCW rotation SRVA G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G030           | Spindle speed override signal                | SOV0~SOV7   |
| G033#7 Spindle motor command selection signal SIND G043#0~#2 Mode selection signal MD1,MD2,MD4 G043#4 Step run selection signal INC G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal MLK G046#1 Single block signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal UI000~UI031 G061#0 Rigid tapping signal RGTAP G070#4 Spindle CCW rotation SRVA G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G033#5         | Spindle motor command polar selection signal | SGN         |
| G043#0~#2 Mode selection signal MD1,MD2,MD4 G043#4 Step run selection signal INC G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal MLK G046#1 Single block signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal UI000~UI031 G061#0 Rigid tapping signal RGTAP G070#4 Spindle CCW rotation SRVA G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G033#6         | Spindle motor command polar selection signal | SSIN        |
| G043#4 Step run selection signal INC G044#0 Jump optional block signal BDT G044#1 All-axes machine lock signal MLK G046#1 Single block signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal UI000~UI031 G061#0 Rigid tapping signal RGTAP G070#4 Spindle CCW rotation SRVA G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G033#7         | Spindle motor command selection signal       | SIND        |
| G044#0  Jump optional block signal  BDT  G044#1  All-axes machine lock signal  MLK  G046#1  Single block signal  SBK  G046#7  Dry run signal  G054~G057  Macro call input signal  G061#0  Rigid tapping signal  G070#4  Spindle CCW rotation  SRVA  G070#5  Spindle CW rotation  SFRA  G070#6  Spindle orientation output signal  G096#0~#6  1% rapid feedrate override signal  HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G043#0~#2      | Mode selection signal                        | MD1,MD2,MD4 |
| G044#1 All-axes machine lock signal MLK G046#1 Single block signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal Ul000~Ul031 G061#0 Rigid tapping signal RGTAP G070#4 Spindle CCW rotation SRVA G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G043#4         | Step run selection signal                    | INC         |
| G046#1 Single block signal SBK G046#7 Dry run signal DRN G054~G057 Macro call input signal UI000~UI031 G061#0 Rigid tapping signal RGTAP G070#4 Spindle CCW rotation SRVA G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G044#0         | Jump optional block signal                   | BDT         |
| G046#7 Dry run signal DRN G054~G057 Macro call input signal UI000~UI031 G061#0 Rigid tapping signal RGTAP G070#4 Spindle CCW rotation SRVA G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G044#1         | All-axes machine lock signal                 | MLK         |
| G054~G057 Macro call input signal UI000~UI031 G061#0 Rigid tapping signal RGTAP G070#4 Spindle CCW rotation SRVA G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G046#1         | Single block signal                          | SBK         |
| G061#0 Rigid tapping signal RGTAP G070#4 Spindle CCW rotation SRVA G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G046#7         | Dry run signal                               | DRN         |
| G070#4 Spindle CCW rotation SRVA G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G054~G057      | Macro call input signal                      | UI000~UI031 |
| G070#5 Spindle CW rotation SFRA G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G061#0         | Rigid tapping signal                         | RGTAP       |
| G070#6 Spindle orientation output signal ORCM G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G070#4         | Spindle CCW rotation                         | SRVA        |
| G096#0~#6 1% rapid feedrate override signal HROV0~HROV6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G070#5         | Spindle CW rotation                          | SFRA        |
| 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G070#6         | Spindle orientation output signal            | ORCM        |
| G096#7 1% rapid feedrate override select signal HROV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G096#0~#6      | 1% rapid feedrate override signal            | HROV0~HROV6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G096#7         | 1% rapid feedrate override select signal     | HROV        |
| G100#0~#4 Feed axis and direction signal +J1~+J5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G100#0~#4      | Feed axis and direction signal               | +J1~+J5     |
| G102#0~#4 Feed axis and direction signal -J1~-J5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G102#0~#4      | Feed axis and direction signal               | -J1~-J5     |
| G108#0~#4 Each axis machine lock signal MLK1~MLK5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G108#0~#4      | Each axis machine lock signal                | MLK1~MLK5   |
| G114#0~#4 Overtravel signal *+L1~*+L5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G114#0~#4      | Overtravel signal                            | *+L1~*+L5   |
| G116#0~#4 Overtravel signal *-L1~*-L5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G116#0~#4      | Overtravel signal                            | *-L1~*-L5   |
| G118#0~#4 External deceleration signal *+ED1~*+ED5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G118#0~#4      | External deceleration signal                 | *+ED1~*+ED5 |
| G120#0~#4 External deceleration signal *-ED1~*-ED5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G120#0~#4      | External deceleration signal                 | *-ED1~*-ED5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G132#0~ G132#4 | Positive interlock of each axis              | +MIT1~+MIT5 |

| G134#0~ G134#4 | Negative interlock of each axis    | -MIT1~-MIT5 |
|----------------|------------------------------------|-------------|
| G226~G229      |                                    | UI100~UI131 |
| G230~G233      | Input signal used to macro program | UI200~UI231 |
| G234~G237      |                                    | UI300~UI331 |

# Appendix 2 Signal Address List (Arranged by the address)

| 2.1 | F signal | address lis | t (NC-PLC) |
|-----|----------|-------------|------------|
|-----|----------|-------------|------------|

| Operating Servo ready Cycle start Feed hold |  |  |  |  |  |  |  |
|---------------------------------------------|--|--|--|--|--|--|--|
| AL                                          |  |  |  |  |  |  |  |
| t Alarr                                     |  |  |  |  |  |  |  |
|                                             |  |  |  |  |  |  |  |
| averse                                      |  |  |  |  |  |  |  |
| MINC                                        |  |  |  |  |  |  |  |
| Incrementa                                  |  |  |  |  |  |  |  |
| MBDT                                        |  |  |  |  |  |  |  |
|                                             |  |  |  |  |  |  |  |
| Skip                                        |  |  |  |  |  |  |  |
| Skip                                        |  |  |  |  |  |  |  |
| · .                                         |  |  |  |  |  |  |  |
| MF M function                               |  |  |  |  |  |  |  |
| MF M function                               |  |  |  |  |  |  |  |
| MF M function                               |  |  |  |  |  |  |  |
| MF M function strobe                        |  |  |  |  |  |  |  |
| MF M function strobe                        |  |  |  |  |  |  |  |
| MF M function strobe M00                    |  |  |  |  |  |  |  |
| MF M function strobe M00                    |  |  |  |  |  |  |  |
| MF M function strobe M00 M08                |  |  |  |  |  |  |  |
| MF M function strobe M00 M08                |  |  |  |  |  |  |  |
| MF M function strobe M00 M08 M16            |  |  |  |  |  |  |  |
| _                                           |  |  |  |  |  |  |  |

2M Miscellaneous function code signal

| F015 | M115                                  | M114 | M113 | M112    | M111         | M110         | M109       | M108 |  |
|------|---------------------------------------|------|------|---------|--------------|--------------|------------|------|--|
|      | 2M Miscellaneous function code signal |      |      |         |              |              |            |      |  |
| F016 | M123                                  | M122 | M121 | M120    | M119         | M118         | M117       | M116 |  |
|      |                                       | '    | •    | 2M Mis  | scellaneous  | function c   | ode signal |      |  |
| F017 | M131                                  | M130 | M129 | M128    | M127         | M126         | M125       | M124 |  |
|      |                                       |      | •    | 2M Mis  | scellaneous  | function c   | ode signal |      |  |
| F018 | M207                                  | M206 | M205 | M204    | M203         | M202         | M201       | M200 |  |
|      |                                       |      |      | 2M Mis  | scellaneous  | s function c | ode signal |      |  |
| F019 | M215                                  | M214 | M213 | M212    | M211         | M210         | M209       | M208 |  |
|      |                                       |      |      | 3M Mis  | scellaneous  | s function c | ode signal |      |  |
| F020 | M223                                  | M222 | M221 | M220    | M219         | M218         | M217       | M216 |  |
|      |                                       |      | _    | 3M Mis  | scellaneous  | function c   | ode signal |      |  |
| F021 | M231                                  | M230 | M229 | M228    | M227         | M226         | M225       | M224 |  |
|      | 3M Miscellaneous function code signal |      |      |         |              |              |            |      |  |
| F022 | S07                                   | S06  | S05  | S04     | S03          | S02          | S01        | S00  |  |
|      |                                       | ,    |      | Spindle | e function o | ode signal   |            |      |  |
| F023 | S15                                   | S14  | S13  | S12     | S11          | S10          | S09        | S08  |  |
|      |                                       |      |      | Spindle | e function o | ode signal   |            |      |  |
| F024 | S23                                   | S22  | S21  | S20     | S19          | S18          | S17        | S16  |  |
|      |                                       | _    | _    | Spindle | e function o | ode signal   |            |      |  |
| F025 | S31                                   | S30  | S29  | S28     | S27          | S26          | S25        | S24  |  |
|      | Spindle function code signal          |      |      |         |              |              |            |      |  |
| F026 | T07                                   | T06  | T05  | T04     | T03          | T02          | T01        | Т00  |  |
|      |                                       |      |      | Tool fu | nction code  | e signal     |            |      |  |
| F027 | T15                                   | T14  | T13  | T12     | T11          | T10          | T09        | T08  |  |
|      |                                       |      |      | Tool fu | nction code  | e signal     | ,          |      |  |
| F028 | T23                                   | T22  | T21  | T20     | T19          | T18          | T17        | T16  |  |
|      |                                       | _    |      | Tool fu | nction code  | e signal     |            |      |  |
| F029 | T31                                   | T30  | T29  | T28     | T27          | T26          | T25        | T24  |  |
|      |                                       |      |      |         |              |              |            |      |  |

### Volume $\ \, \mathrm{II} \quad \, \text{PLC Programming and Connection}$

|           |                                                                                                 |       |       | Tool f       | unction cod       | de signal   |                          |                         |
|-----------|-------------------------------------------------------------------------------------------------|-------|-------|--------------|-------------------|-------------|--------------------------|-------------------------|
| F034      |                                                                                                 |       |       |              |                   | GR3O        | GR2O                     | GR1O                    |
|           |                                                                                                 |       |       |              |                   | Gear s      | election sig             | nal output              |
| F045      | ORAR                                                                                            |       |       |              |                   |             | SST                      | SPALM                   |
| Spindle o | orientation<br>on signal                                                                        |       |       |              |                   | Spindle zei | ro speed signal          | Spindle alarm<br>signal |
| F054      | UO007                                                                                           | UO006 | UO005 | UO004        | UO003             | UO002       | UO001                    | UO000                   |
|           |                                                                                                 |       | User  | macro prog   | ram output        | signal      |                          |                         |
| F055      | UO015                                                                                           | UO014 | UO013 | UO012        | UO011             | UO010       | UO009                    | UO008                   |
|           |                                                                                                 | !     | User  | macro prog   | ram output        | signal      |                          |                         |
| F056      | UO023                                                                                           | UO022 | UO021 | UO020        | UO019             | UO018       | UO017                    | UO016                   |
|           | User macro program output signal                                                                |       |       |              |                   |             |                          |                         |
| F057      | UO031                                                                                           | UO030 | UO029 | UO028        | UO027             | UO026       | UO025                    | UO024                   |
|           |                                                                                                 |       | User  | macro prog   | ram output        | signal      |                          |                         |
| F060      |                                                                                                 |       |       |              |                   | ESCAN       | ESEND                    | EREND                   |
|           | External data External data External data  Reading cancelled Search completed Reading completed |       |       |              |                   |             |                          |                         |
| F061      |                                                                                                 |       |       | reading      | CLP5              | UCLP5       | CLP4                     | UCLP4                   |
|           |                                                                                                 |       | ļ.    | 5 axis c     | I<br>lamp 5axis u | nclamp 4 a  | xis clamp 4              | axis unclamp            |
| F062      |                                                                                                 | PRSF3 | PRSF2 | PRSF1        | ,                 |             |                          | OPTC                    |
|           | Part 1 arrive                                                                                   | -     | -     | Part countin | g                 | C           | Operati<br>communication | on panel<br>on abnormal |
| F065      |                                                                                                 |       |       |              |                   |             | RGSPM                    | RGSPP                   |
|           |                                                                                                 | •     | •     | •            | •                 | Spindle     | rotation d               | rection signal          |
| F066      |                                                                                                 |       |       |              |                   | RTAP        |                          |                         |
|           |                                                                                                 | •     | •     | •            | •                 | Rigid tapp  | ing                      |                         |
| F070      | PSW08                                                                                           | PSW07 | PSW06 | PSW05        | PSW04             | PSW03       | PSW02                    | PSW01                   |
|           |                                                                                                 | •     | •     | Position     | switch sign       | al          | •                        |                         |
| F071      | PSW16                                                                                           | PSW15 | PSW14 | PSW13        | PSW12             | PSW11       | PSW10                    | PSW09                   |
|           |                                                                                                 |       |       | Position     | switch sign       | al          |                          |                         |

| F072 | PSW24                  | PSW23    | PSW22             | PSW21                   | PSW20        | PSW19        | PSW18                   | PSW17                   |
|------|------------------------|----------|-------------------|-------------------------|--------------|--------------|-------------------------|-------------------------|
|      |                        |          |                   | Position                | switch sign  | al           |                         |                         |
| F073 | PSW32                  | PSW31    | PSW30             | PSW29                   | PSW28        | PSW27        | PSW26                   | PSW25                   |
|      | Position switch signal |          |                   |                         |              |              |                         |                         |
| F076 |                        |          |                   |                         | VPO          |              |                         |                         |
|      |                        | 1        |                   |                         | Peed posit   | ion shifting | completion              | )<br>                   |
| F094 |                        |          |                   | ZP5                     | ZP4          | ZP3          | ZP2                     | ZP1                     |
|      |                        |          |                   | 5th axis                | 4th axis     | 3rd axis     | 2nd axis                | 1st axis                |
|      |                        |          |                   | returns                 | returns      | returns      | returns                 | returns                 |
| F096 |                        |          |                   | ZP25                    | ZP24         | ZP23         | ZP22                    | ZP21                    |
|      |                        |          | 5 <sup>th</sup> 6 | axis to 4 <sup>th</sup> | axis to 3    | rd axis to   | 2 <sup>nd</sup> axis to | 1 <sup>st</sup> axis to |
|      | reference point 2      |          |                   |                         |              |              |                         |                         |
| F098 |                        |          |                   | ZP35                    | ZP34         | ZP33         | ZP32                    | ZP31                    |
|      |                        | ļ        | 5 <sup>th</sup> 6 | exis to 4 <sup>th</sup> | axis to 3    | rd axis to   | 2 <sup>nd</sup> axis to | 1 <sup>st</sup> axis to |
|      |                        |          | refer             | rence point             | 3            |              |                         |                         |
| F100 |                        |          |                   | ZP45                    | ZP44         | ZP43         | ZP42                    | ZP41                    |
|      |                        |          | 5 <sup>th</sup> 6 | axis to 4 <sup>th</sup> | axis to 3    | rd axis to   | 2 <sup>nd</sup> axis to | 1 <sup>st</sup> axis to |
|      |                        |          | refer             | rence point             | 4            | 1            |                         |                         |
| F102 |                        |          |                   | MV5                     | MV4          | MV3          | MV2                     | MV1                     |
|      |                        |          |                   | Axis 5                  | Axis 4       | Axis 3       | Axis 2                  | Axis 1                  |
|      |                        |          |                   | is moving               |              |              |                         |                         |
| F106 |                        |          |                   | MVD5                    | MVD4         | MVD3         | MVD2                    | MVD1                    |
|      |                        | <u> </u> | <u> </u>          | Axis 5                  | Axis 4       | Axis 3       | Axis 2                  | Axis 1                  |
|      |                        |          |                   | moving dir              | ection       |              |                         |                         |
| F120 |                        |          |                   | ZRF5                    | ZRF4         | ZRF3         | ZRF2                    | ZRF1                    |
|      |                        |          |                   | Axis 5                  | Axis 4       | Axis 3       | Axis 2                  | Axis 1                  |
|      |                        |          | 1                 | reference               | point creat  | ion          |                         |                         |
| F124 |                        |          |                   | +OT5                    | +OT4         | +OT3         | +OT2                    | +OT1                    |
|      |                        | •        | •                 | Axis 5                  | Axis 4       | Axis 3       | Axis 2                  | Axis 1                  |
|      |                        |          |                   |                         | irection ove |              |                         |                         |
| F126 |                        |          |                   | -OT5                    | -OT4         | -OT3         | -OT2                    | -OT1                    |
|      | L                      |          |                   |                         |              |              |                         |                         |

Axis 5 Axis 4 Axis 3 Axis 2 Axis 1 negative direction overtravel

| F155 | USK7                        | USK6  | USK5        | USK4        | USK3       | USK2   | USK1  | USK0  |
|------|-----------------------------|-------|-------------|-------------|------------|--------|-------|-------|
|      |                             | l     | Jser-define | d interface | software a | ddress |       |       |
| F156 | USK15                       | USK14 | USK13       | USK12       | USK11      | USK10  | USK9  | USK8  |
|      |                             | l     | Jser-define | d interface | software a | ddress |       |       |
| F157 | USK23                       | USK22 | USK21       | USK20       | USK19      | USK18  | USK17 | USK16 |
|      |                             | l     | Jser-define | d interface | software a | ddress |       |       |
| F158 | USK31                       | USK30 | USK29       | USK28       | USK27      | USK26  | USK25 | USK24 |
|      |                             | l     | Jser-define | d interface | software a | ddress |       |       |
| F159 | USK39                       | USK38 | USK37       | USK36       | USK35      | USK34  | USK33 | USK32 |
|      |                             | ·     | Jser-define | d interface | software a | ddress |       |       |
| F226 | UO107                       | UO106 | UO105       | UO104       | UO103      | UO102  | UO101 | UO100 |
|      |                             |       | User n      | nacro progr | am output  | 2      |       |       |
| F227 | UO115                       | UO114 | UO113       | UO112       | UO111      | UO110  | UO109 | UO108 |
|      | User macro program output 2 |       |             |             |            |        |       |       |
| F228 | UO123                       | UO122 | UO121       | UO120       | UO119      | UO118  | UO117 | UO116 |
|      |                             |       | User n      | nacro progr | am output  | 2      |       |       |
| F229 | UO131                       | UO130 | UO129       | UO128       | UO127      | UO126  | UO125 | UO124 |
|      |                             |       | User n      | nacro progr | am output  | 2      |       |       |
| F230 | UO207                       | UO206 | UO205       | UO204       | UO203      | UO202  | UO201 | UO200 |
|      |                             |       | User n      | nacro progr | am output  | 3      |       |       |
| F231 | UO215                       | UO214 | UO213       | UO212       | UO211      | UO210  | UO209 | UO208 |
|      |                             |       | User n      | nacro progr | am output  | 3      |       |       |
| F232 | UO223                       | UO222 | UO221       | UO220       | UO219      | UO218  | UO217 | UO216 |
|      |                             | _     | User n      | nacro progr | am output  | 3      |       |       |
| F233 | UO231                       | UO230 | UO229       | UO228       | UO227      | UO226  | UO225 | UO224 |
|      |                             | _     | User n      | nacro progr | am output  | 3      |       |       |
| F234 | UO307                       | UO306 | UO305       | UO304       | UO303      | UO302  | UO301 | UO300 |
|      |                             |       | User n      | nacro progr | am output  | 4      |       |       |
| F235 | UO315                       | UO314 | UO313       | UO312       | UO311      | UO310  | UO309 | UO308 |
|      |                             |       | User n      | nacro progr | am output  | 4      |       |       |

| F236  | UO323                                  | UO322                      | UO321    | UO320         | UO319       | UO318        | UO317  | UO316           |
|-------|----------------------------------------|----------------------------|----------|---------------|-------------|--------------|--------|-----------------|
|       |                                        | •                          | User     | macro prog    | ram output  | t 4          |        | <b>-</b>        |
| F237  | UO331                                  | UO330                      | UO329    | UO328         | UO327       | UO326        | UO325  | UO324           |
| 2.2 G | Signal Ac                              | ddress Li                  |          | macro prog    | ram output  | 1 4          |        |                 |
| G000  | ED7                                    | ED6                        | ED5      | ED4           | ED3         | ED2          | ED1    | ED0             |
|       |                                        |                            | Data     | a signal of e | external da | ta inputting |        |                 |
| G001  | ED15                                   | ED14                       | ED13     | ED12          | ED11        | ED10         | ED09   | ED8             |
|       |                                        | •                          | Data     | a signal of e | external da | ta inputting | •      |                 |
| G002  | ED23                                   | ED22                       | ED21     | ED20          | ED19        | ED18         | ED17   | ED16            |
|       |                                        |                            | Data     | a signal of e | external da | ta inputting | · !    | <b>-</b>        |
| G003  | ED31                                   | ED30                       | ED29     | ED28          | ED27        | ED26         | ED25   | ED24            |
|       | Data signal of external data inputting |                            |          |               |             |              |        |                 |
| G004  |                                        |                            |          |               | FIN         |              |        |                 |
|       |                                        |                            |          |               | Completi    | ion signal   |        |                 |
| G005  |                                        | AFL                        |          |               |             |              |        |                 |
|       |                                        | M.S.T lock                 | (        |               |             |              |        |                 |
| G006  |                                        |                            |          |               |             |              |        | SRN             |
|       |                                        |                            |          |               |             |              |        | Restart         |
| G007  |                                        | EXLM                       |          |               |             | ST           |        |                 |
|       |                                        | ored strok<br>mit 1 shifti |          |               |             | Cycle st     | tart   |                 |
| G008  | ERS                                    |                            | *SP      | *ESP          |             | SOP          |        | *IT             |
|       | Eternal res                            | et F                       | eed hold | Emergenc      | y stop      | Optimal s    | stop / | All axis interl |
| G010  | *JV07                                  | *JV06                      | *JV05    | *JV04         | *JV03       | *JV02        | *JV01  | *JV00           |
| l     |                                        |                            |          | Manual fed    | derate over | ride         |        |                 |
| G011  | *JV15                                  | *JV14                      | *JV13    | *JV12         | *JV11       | *JV10        | *JV09  | *JV08           |
| L     |                                        |                            |          | Manual fed    |             |              |        |                 |
| G012  | *FV7                                   | *FV6                       | *FV5     | *FV4          | *FV3        | *FV2         | *FV1   | *FV0            |
|       |                                        | . ~                        | 1        | Manual for    |             |              |        |                 |

|      |             | _         | 1                           | 1            |                       |              |              |              |
|------|-------------|-----------|-----------------------------|--------------|-----------------------|--------------|--------------|--------------|
| G013 | ESTB        | EA6       | EA5                         | EA4          | EA3                   | EA2          | EA1          | EA0          |
|      | ternal data |           |                             | Addr         | ess signal            | of external  | data inputt  | ing          |
|      | eading sign | iai<br>T  |                             |              |                       |              |              |              |
| G014 |             | WPC3      | WPC2                        | WPC1         |                       |              | ROV2         | ROV1         |
|      | 3# part c   | ounting 2 | # part cour                 | nting 1# pa  | art counting          | j R          | apid federa  | ate override |
| G018 |             |           |                             |              |                       | HS1C         | HS1B         | HS1A         |
|      |             | •         |                             | •            |                       | MPG ax       | is selectior | signal       |
| G019 | RT          | FVL       | MP2                         | MP1          |                       |              |              |              |
| Maı  | nual rapid  | Feed safe | tv MPG o                    | verride sele | ection signa          | al           |              |              |
|      | tion signal | speed sel | •                           |              | J                     |              |              |              |
| G028 |             |           |                             |              |                       | GR2          | GR1          |              |
|      |             | 1         |                             |              |                       | Gear sele    | ection signa | al           |
| G029 |             | *SSTP     | SOR                         | SAR          |                       |              |              |              |
|      | Spino       |           | oindle shifti<br>peed selec | •            | arrival               |              |              | ,            |
| G030 | SOV7        | SOV6      | SOV5                        | SOV4         | SOV3                  | SOV2         | SOV1         | SOV0         |
|      |             |           | S                           | pindle spe   | ed override           | signal       |              |              |
| G033 |             |           | SGN                         | SVL          |                       |              |              |              |
|      |             | -         | dle comman                  | •            | e safety<br>selection |              |              |              |
| G043 |             |           |                             | INC          |                       | MD4          | MD2          | MD1          |
|      |             |           | S                           | step mode    |                       | Mode s       | election sig | ınal         |
| G044 |             |           |                             |              |                       |              | MLK          | BDT          |
|      |             |           |                             |              |                       | Mad          | chine lock   | Skip signal  |
| G046 | DRN         |           |                             |              |                       |              | SBK          |              |
|      | Dry run     | •         | ·                           | •            |                       | I            | Step         |              |
| G054 | UI007       | UI006     | UI005                       | UI004        | UI003                 | UI002        | UI001        | UI000        |
|      |             | !         |                             | User macro   | program i             | nputting sig | ınal         |              |
| G055 | UI015       | UI014     | UI013                       | UI012        | UI011                 | UI010        | UI009        | UI008        |
|      |             | 1         |                             | lloor moone  |                       | nnuttina sic | un al        |              |

User macro program inputting signal

| G056 | UI023                | UI022                       | UI021 | UI020                                    | UI019                              | UI018               | UI017                 | UI016               |
|------|----------------------|-----------------------------|-------|------------------------------------------|------------------------------------|---------------------|-----------------------|---------------------|
|      |                      | •                           | L     | Jser macro                               | program in                         | outting sign        | al                    |                     |
| G057 | UI031                | UI030                       | UI029 | UI028                                    | UI027                              | UI026               | UI025                 | UI024               |
|      |                      |                             | L     | Jser macro                               | program in                         | outting sign        | al                    |                     |
| G061 |                      |                             |       |                                          |                                    |                     |                       | RGTAP               |
|      |                      |                             | •     | •                                        |                                    | -                   | R                     | igid tapping        |
| G070 |                      | ORCM                        |       |                                          |                                    |                     |                       |                     |
|      | •                    | ndle orientat<br>out signal | tion  |                                          |                                    | •                   | 1                     |                     |
| G096 | HROV                 | HROV6                       | HROV5 | HROV4                                    | HROV3                              | HROV2               | HROV1                 | HROV0               |
|      | 1% rapid o selection | verride                     |       | 1%                                       | 6 rapid fede                       | rate overri         | de signal             |                     |
| G100 |                      |                             |       | +J5                                      | +J4                                | +J3                 | +J2                   | +J1                 |
|      |                      |                             |       | ne 5 <sup>th</sup> axis<br>ositive selec | The 4 <sup>th</sup><br>ction       | The 3 <sup>rd</sup> | The 2 <sup>nd</sup>   | The 1 <sup>st</sup> |
| G102 |                      |                             |       | -J                                       | -J                                 | -J                  | -J                    | -J1                 |
|      |                      |                             |       | he 5 <sup>th</sup> axis<br>egative sel   | The 4 <sup>th</sup> ection         | The 3 <sup>rd</sup> | The 2 <sup>nd</sup>   | The 1 <sup>s</sup>  |
| G114 |                      |                             |       | *+L5                                     | *+L4                               | *+L3                | *+L2                  | *+L1                |
|      |                      |                             |       | The 5 <sup>th</sup> axis<br>Positive ove | The 4 <sup>th</sup>                | The 3 <sup>rd</sup> | The 2 <sup>nd</sup>   | The 1               |
| G116 |                      |                             |       | *-L5                                     | *-L4                               | *-L3                | *-L2                  | *-L1                |
|      |                      |                             |       | he 5 <sup>th</sup> axis<br>egative ove   | The 4 <sup>th</sup><br>ertravel    | The 3 <sup>rd</sup> | The 2 <sup>nd</sup>   | The 1 <sup>s</sup>  |
| G118 |                      |                             |       | *+ED5                                    | *+ED4                              | *+ED3               | *+ED2                 | *+ED1               |
|      |                      | 1                           | T     | he 5 <sup>th</sup> axis                  | The 4 <sup>th</sup>                | The 3 <sup>rd</sup> | The 2 <sup>nd</sup>   | The 1 <sup>s</sup>  |
|      |                      |                             | P     | ositive exte                             | ernal decele                       | eration             |                       |                     |
| G120 |                      |                             |       | *-ED5                                    | *-ED4                              | *-ED3               | *-ED2                 | *-ED1               |
|      |                      | ,                           |       | he 5 <sup>th</sup> axis<br>egative ext   | The 4 <sup>th</sup><br>ernal decel |                     | d The 2 <sup>nd</sup> | The 1 <sup>s</sup>  |
| G132 |                      |                             |       | +MIT5                                    | +MIT4                              | +MIT3               | +MIT2                 | +MIT1               |
|      |                      |                             |       | he 5 <sup>th</sup> axis<br>Positive dire | The 4 <sup>th</sup>                |                     | The 2 <sup>nd</sup>   | The 1 <sup>s</sup>  |

| G134 |                                   |       |       | -MIT5                    | -MIT4               | -MIT3       | -MIT2                 | -MIT1              |
|------|-----------------------------------|-------|-------|--------------------------|---------------------|-------------|-----------------------|--------------------|
|      |                                   | -     |       | The 5 <sup>th</sup> axis | The 4 <sup>th</sup> |             | d The 2 <sup>nd</sup> | The 1 <sup>s</sup> |
|      |                                   | 1     |       | <del>-</del>             |                     | T           |                       |                    |
| G226 | UI107                             | UI106 | UI105 | UI104                    | UI103               | UI102       | UI101                 | UI100              |
|      |                                   | _     | _     | User macro               | program i           | nput signal | 2                     |                    |
| G227 | UI115                             | UI114 | UI113 | UI112                    | UI111               | UI110       | UI109                 | UI108              |
|      |                                   |       |       | User macro               | program i           | nput signal | 2                     |                    |
| G228 | UI123                             | UI122 | UI121 | UI120                    | UI119               | UI118       | UI117                 | UI116              |
|      |                                   |       |       | User macro               | program i           | nput signal | 2                     |                    |
| G229 | UI131                             | UI130 | UI129 | UI128                    | UI127               | UI126       | UI125                 | UI124              |
|      |                                   | •     | •     | User macro               | program i           | nput signal | 2                     |                    |
| G230 | UI207                             | UI206 | UI205 | UI204                    | UI203               | UI202       | UI201                 | UI200              |
|      | User macro program input signal 3 |       |       |                          |                     |             |                       |                    |
| G231 | UI215                             | UI214 | UI213 | UI212                    | UI211               | UI210       | UI209                 | UI208              |
|      | User macro program input signal 3 |       |       |                          |                     |             |                       |                    |
| G232 | UI223                             | UI222 | UI221 | UI220                    | UI219               | UI218       | UI217                 | UI216              |
|      |                                   |       |       | User macro               | program i           | nput signal | 3                     |                    |
| G233 | UI231                             | UI230 | UI229 | UI228                    | UI227               | UI226       | UI225                 | UI224              |
|      |                                   | •     | •     | User macro               | program i           | nput signal | 3                     |                    |
| G234 | UI307                             | UI306 | UI305 | UI304                    | UI303               | UI302       | UI301                 | UI300              |
|      |                                   |       | •     | User macro               | program i           | nput signal | 4                     |                    |
| G235 | UI315                             | UI314 | UI313 | UI312                    | UI311               | UI310       | UI309                 | UI308              |
|      |                                   | •     | •     | User macro               | program i           | nput signal | 4                     |                    |
| G236 | UI323                             | UI322 | UI321 | UI320                    | UI319               | UI318       | UI317                 | UI316              |
|      |                                   | 1     |       | User macro               | program i           | nput signal | 4                     |                    |
| G237 | UI331                             | UI330 | UI329 | UI328                    | UI327               | UI326       | UI325                 | UI324              |
|      |                                   | 1     | •     | User macro               | program i           | nput signal | 4                     |                    |

User macro program input signal 4

# Appendix 3 Factory Standard PLC Function Debugging (MV1.35 turntable style tool machine)

This section is only used to system built-in standard PLC, which matches three to five axes NC boring and milling machine and turntable style tool machine center. Please refer to the manual provided by the machine tool manufacturer when the machine tool manufacturer does not have the ladder diagram.

#### 3.1 Address Definition

### 3.1.1 Input X Address by Standard Machine Operation Panel Key

Attached list 3-1

| X address input by | PLC address | X address input by    | PLC address |  |
|--------------------|-------------|-----------------------|-------------|--|
| operation panel    |             | operation panel       |             |  |
| Auto mode          | X0.0        | -Z                    | X3.5        |  |
| Edit mode          | X0.1        | -4                    | X3.6        |  |
| MDI mode           | X0.2        | -5                    | X3.7        |  |
| Manual mode        | X0.3        | Spindle CCW           | X4.0        |  |
| MPG mode           | X0.4        | Spindle stop          | X4.1        |  |
| Zero return        | X0.5        | Spindle CW            | X4.2        |  |
| DNC mode           | X0.6        | Spindle exact stop    | X4.3        |  |
| USER1              | X0.7        | F0 / 0.001            | X4.4        |  |
| Step               | X1.0        | 25% / 0.01            | X4.5        |  |
| Skip               | X1.1        | 50% / 0.1             | X4.6        |  |
| Machine lock       | X1.2        | 100% / 1              | X4.7        |  |
| M.S.T lock         | X1.3        |                       |             |  |
| +4                 | X1.4        |                       |             |  |
| +Z                 | X1.5        |                       |             |  |
| -Y                 | X1.6        | Tool magazine forward | X5.3        |  |
| +5                 | X1.7        | Tool retraction       | X5.4        |  |
| Dry run            | X2.0        | Tool change           | X5.5        |  |
| Overtravel release | X2.1        | Magazine CCW          | X5.6        |  |
| Ontional aton      | X2.2        | Magazine zero point   | X5.7        |  |
| Optional stop      |             | return                |             |  |
| Program restart    | X2.3        | Clamp / Release       | X6.0        |  |
| +X                 | X2.4        | USR2                  | X6.1        |  |
| Rapid traverse     | X2.5        | USR3                  | X6.2        |  |
| Step               | X2.6        | USR4                  | X6.3        |  |

| -X           | X2.7 | Feed hold               | X6.4      |
|--------------|------|-------------------------|-----------|
| Cooling      | X3.0 | Cycle start             | X6.5      |
| Lubrication  | X3.1 | Magazine CW             | X6.6      |
|              | X3.2 | Feedrate override,      | X7.0-X7.4 |
| Chip removal |      | indicating max. gear 24 |           |
|              |      | (without output lamp)   |           |
|              | X3.3 | Spindle override,       | X8.0-X8.3 |
| Lamp         |      | indicating max. gear 16 |           |
|              |      | (without output lamp)   |           |
| +Y           | X3.4 | Emergency stop X8.4     |           |

### **MPG Signal Input X Address**

Attached list 3-2

|         | MPG signal input        | PLC Address |
|---------|-------------------------|-------------|
| STP     | (MPG emergency stop     | X121.0      |
| signal) |                         |             |
| X100    | (MPG federate override) | X120.0      |
| X10     | (MPG federate override) | X120.1      |
| X1      | (MPG federate override) | X120.2      |
| H5      | (5 axis selection)      | X120.3      |
| H4      | (4 axis selection)      | X120.4      |
| HZ      | (Z axis selection)      | X120.5      |
| HY      | (Y axis selection)      | X120.6      |
| HX      | (X axis selection)      | X120.7      |

### 3.1.3 Standard Machine Operation Panel Output Y Address

Attached list 3-3

| Operation panel output | PLC address | Operation panel output | PLC address |
|------------------------|-------------|------------------------|-------------|
| Auto key lamp          | Y0.0        | -Z key lamp            | Y3.5        |
| Edit key lamp          | Y0.1        | -4 key lamp            | Y3.6        |
| MDI key lamp           | Y0.2        | -5 key lamp            | Y3.7        |
| Manual kay lamp        | Y0.3        | Spindle CCW key        | Y4.0        |
| Manual key lamp        |             | lamp                   |             |
| MDC koy lomp           | Y0.4        | Spindle stop key       | Y4.1        |
| MPG key lamp           |             | lamp                   |             |
| Zero point return      | Y0.5        | Spindle CW key         | Y4.2        |
| lamp                   |             | lamp                   |             |
| DNC kov lama           | Y0.6        | Spindle exact stop     | Y4.3        |
| DNC key lamp           |             | key lamp               |             |
| USER1key lamp          | Y0.7        | F0 / 0.001 key lamp    | Y4.4        |

| Step key lamp               | Y1.0 | 25% / 0.01 key lamp                  | Y4.5 |
|-----------------------------|------|--------------------------------------|------|
| Skip key lamp               | Y1.1 | 50% / 0.1 key lamp                   | Y4.6 |
| Machine lock key lamp       | Y1.2 | 100% / 1 key lamp                    | Y4.7 |
| M.S.T lock key lamp         | Y1.3 | Magazine forward lamp                | Y5.3 |
| +4 key lamp                 | Y1.4 | Magazine retraction lamp             | Y5.4 |
| +Z key lamp                 | Y1.5 | Tool changing key<br>lamp            | Y5.5 |
| -Y key lamp                 | Y1.6 | Tool magazine CCW key lamp           | Y5.6 |
| +5 key lamp                 | Y1.7 | Tool magazine zero point return lamp | Y5.7 |
| Dry run key lamp            | Y2.0 | Tool clamp / tool release key lamp   | Y6.0 |
| Overtravel release key lamp | Y2.1 | USR2 key lamp                        | Y6.1 |
| Optional stop lamp          | Y2.2 | USR3 key lamp                        | Y6.2 |
| Program restart<br>lamp     | Y2.3 | USR4 key lamp                        | Y6.3 |
| +X key lamp                 | Y2.4 | Feed hold key lamp                   | Y6.4 |
| Rapid key lamp              | Y2.5 | Cycle start kay lamp                 | Y6.5 |
| Step key lamp               | Y2.6 | Tool magazine CW key lamp            | Y6.6 |
| -X key lamp                 | Y2.7 | X axis reference point lamp          | Y7.0 |
| Cooling key lamp            | Y3.0 | Y axis reference point lamp          | Y7.1 |
| Lubrication key lamp        | Y3.1 | Z axis reference point lamp          | Y7.2 |
| Chip removal key lamp       | Y3.2 | 4 axis reference point lamp          | Y7.3 |
| Working lamp                | Y3.3 | 5 axis reference point lamp          | Y7.4 |
| +Y key lamp                 | Y3.4 | System alarm                         | Y7.6 |

## 3.1.4 MPG Signal Output Y Address

## 3.1.5 I/O Unit Input X Address

| Terminal<br>No. | PLC address | Signal name        | Signal function                                                                                                | 1/0 |
|-----------------|-------------|--------------------|----------------------------------------------------------------------------------------------------------------|-----|
| X9.0            | X9.0        | *DECX (fixed)      | X axis reference return deceleration signal, normally closed contact are valid when they are off.              | I   |
| X9.1            | X9.1        | *DECY<br>( fixed ) | Y axis reference return deceleration signal, normally closed contact are valid when they are off.              | I   |
| X9.2            | X9.2        | *DECZ<br>( fixed ) | Z axis reference return deceleration signal, normally closed contact are valid when they are off.              | I   |
| X9.3            | X9.3        | *DEC4<br>( fixed ) | The 4 <sup>th</sup> reference return deceleration signal, normally closed contact are valid when they are off. | I   |
| X9.4            | X9.4        | *DEC5              | The 5 <sup>th</sup> reference return deceleration signal, normally closed contact are valid when they are off. | I   |
| X9.5            | X9.5        |                    |                                                                                                                |     |
| X9.6            | X9.6        | *+LX               | X axis positive limit, normally closed contact are valid when they are off.                                    | I   |
| X9.7            | X9.7        | *-LX               | X axis negative limit, normally closed contact are valid when they are off.                                    | I   |
|                 |             |                    |                                                                                                                |     |
| X10.0           | X10.0       | *+LY               | Y axis positive limit, normally closed contact are valid when they are off.                                    | I   |
| X10.1           | X10.1       | *-LY               | Y axis negative limit, normally closed contact are valid when they are off.                                    | I   |
| X10.2           | X10.2       | *+LZ               | Z axis positive limit, normally closed contact are valid when they are off.                                    | I   |
| X10.3           | X10.3       | *-LZ)              | Z axis negative limit, normally closed contact are valid when they are off.                                    | I   |
| X10.4           | X10.4       | *+L4               | The 4 <sup>th</sup> axis positive limit, normally closed contact are valid when they are off.                  | I   |
| X10.5           | X10.5       | *-L4               | The 4 <sup>th</sup> axis negative limit, normally closed contact are valid when they are off.                  | I   |
| X10.6           | X10.6       | *+L5               | The 5 <sup>th</sup> axis positive limit, normally closed contact are valid when they are off.                  | I   |
| X10.7           | X10.7       | *-L5               | The 5 <sup>th</sup> axis negative limit, normally closed contact are valid when they are off.                  | I   |
|                 |             |                    |                                                                                                                |     |
| X11.0           | X11.0       | LUB.ALM            | Lubrication pump alarm input signal                                                                            | I   |
| X11.1           | X11.1       | DOOR.ALM           | Protection door alarm input signal                                                                             | I   |
| X11.2           | X11.2       | HYPUP.ALM          | Hydraulic pump overload input signal                                                                           | I   |
| X11.3           | X11.3       | AIRPRE.ALM         | Pressure detection alarm input signal                                                                          | I   |
| X11.4           | X11.4       | CLNM.ALM           | Cooling pump motor overload alarm input signal                                                                 | I   |
| X11.5           | X11.5       | CHIPM.ALM          | Chip removal motor overload input signal                                                                       | I   |
| X11.6           | X11.6       | MGPLA.ALM          | Cutting disk motor overload input signal                                                                       | I   |
| 2)0(1.7         | X11.7       | ARM.ALM            | Arm motor overload input signal                                                                                | I   |

Volume  $\ \, \mathbb{I} \ \,$  PLC Programming and Connection

| Terminal No. | PLC address | Signal name | Signal function                                         |                                           | 1/0 |  |
|--------------|-------------|-------------|---------------------------------------------------------|-------------------------------------------|-----|--|
|              |             |             |                                                         |                                           |     |  |
| X12.0        | X12.0       | GR1.M       | Spindle gear 1(ir                                       | n-position detection)                     | I   |  |
| X12.1        | X12.1       | GR2.M       | Spindle gear 2 (in-position detection)                  |                                           |     |  |
| X12.2        | X12.2       |             |                                                         |                                           | I   |  |
| X12.3        | X12.3       | SPCL.ALM    | Spindle oil coole                                       | er alarm input signal                     | I   |  |
| X12.4        | X12.4       | LUBPRE.I    | Lubrication pump                                        | pressure detection                        | ı   |  |
| X12.5        | X12.5       | TRLCK.I     | Tool release (in-                                       | -position detection)                      | ı   |  |
| X12.6        | X12.6       | TCLCK.I     | `                                                       | position detection)                       | ı   |  |
| X12.7        | X12.7       | CKST        | . ,                                                     | lamp tool key                             | I   |  |
|              |             |             |                                                         |                                           | 1   |  |
| X13.0        | X13.0       | 4UCLPI      | The 4 <sup>th</sup> axis releases in-position detection |                                           |     |  |
| X13.1        | X13.1       | 4CLPI       | The 4 <sup>th</sup> axis clamp                          | s in-position detection                   | I   |  |
| X13.2        | X13.2       |             |                                                         |                                           | I   |  |
| X13.3        | X13.3       |             |                                                         |                                           | I   |  |
| X13.4        | X13.4       | 5UCLPI      | The 5 <sup>th</sup> axis releases in-position detection |                                           |     |  |
| X13.5        | X13.5       | 5CLPI       | The 5 <sup>th</sup> axis clamps in-position detection   |                                           |     |  |
| X13.6        | X13.6       |             |                                                         |                                           | I   |  |
| X13.7        | X13.7       |             |                                                         |                                           | I   |  |
|              |             |             |                                                         |                                           |     |  |
| X14.0        | X14.0       | T-BARE      |                                                         | Cutting disk in-position (mechanical arm) | ı   |  |
| X14.1        | X14.1       | TZER.I      | Tool magazine ze                                        | ro point return signal                    | I   |  |
| X14.2        | X14.2       | TCN.I       | Tool co                                                 | ount signal                               | I   |  |
| X14.3        | X14.3       | TFN.I       | Magazine forwards in-position (turntable style)         | Cutter set is vertical (mechanical arm)   | I   |  |
| X14.4        | X14.4       | TBK.I       | Magazine retracts in-position (turntable style)         | Cutter set is horizontal (mechanical arm) | I   |  |
| X14.5        | X14.5       | ATCZERO.I   |                                                         | ATC reference point (mechanical arm)      | I   |  |
| X14.6        | X14.6       | ATCHOLD.I   |                                                         | ATC holds tool (mechanical arm)           | I   |  |
| X14.7        | X14.7       | ATCSTOP.I   |                                                         | ATC stop (mechanical arm)                 | I   |  |

Note: There are group X15.0—X15.7 and group X16.0—X16.7, two groups of input points 16 in total for users.

# 3.1.6 I/O Unit Output Y Address

| Termin | PLC     | Signal name | Signa                                    | al function                             | I/O |
|--------|---------|-------------|------------------------------------------|-----------------------------------------|-----|
| al No. | address |             |                                          |                                         |     |
| Y8.0   | Y8.0    | CLN.O       | <u> </u>                                 | ant ) pump output                       | 0   |
| Y8.1   | Y8.1    | MGFR.O      | Magazine<br>forward<br>(turntable style) | Cutter set is vertical (mechanical arm) | 0   |
| Y8.2   | Y8.2    | MGBK.O      | Magazine retraction (turntable style)    | Cutter set is vertical (mechanical arm) | 0   |
| Y8.3   | Y8.3    |             |                                          |                                         | 0   |
| Y8.4   | Y8.4    | TRL.M       | Tool release                             | e (output signal)                       | 0   |
| Y8.5   | Y8.5    | MGCW.O      | Magazine C\                              | W (output signal)                       | 0   |
| Y8.6   | Y8.6    | MGCCW.O     | Magazine CC                              | CW (output signal)                      | 0   |
| Y8.7   | Y8.7    | ARM.O       | Mechanical arm                           | motor (output signal)                   | 0   |
|        |         |             |                                          | ·                                       |     |
| Y9.0   | Y9.0    | LUB.O       | Lubricant                                | t pump output                           | 0   |
| Y9.1   | Y9.1    | OR.T        | Overtra                                  | avel release                            | 0   |
| Y9.2   | Y9.2    | M03         | Spindle CW                               | / (output signal)                       | 0   |
| Y9.3   | Y9.3    | M04         | Spindle CCV                              | V (output signal)                       | 0   |
| Y9.4   | Y9.4    | RED.L       | Red li                                   | ight signal                             | 0   |
| Y9.5   | Y9.5    | YEL. L      | Yellow light output                      |                                         | 0   |
| Y9.6   | Y9.6    | GRE. L      | Green light output                       |                                         | 0   |
| Y9.7   | Y9.7    | HYPR.O      | Hydraulic o                              | oil pump output                         | 0   |
|        |         |             |                                          | ·                                       |     |
| Y10.0  | Y10.0   | GR1.O       | Spindle (                                | gear 1 output                           | 0   |
| Y10.1  | Y10.1   | GR2.O       | Spindle (                                | gear 2 output                           | 0   |
| Y10.2  | Y10.2   |             |                                          |                                         | 0   |
| Y10.3  | Y10.3   |             |                                          |                                         | 0   |
| Y10.4  | Y10.4   |             |                                          |                                         |     |
| Y10.5  | Y10.5   |             |                                          |                                         |     |
| Y10.6  | Y10.6   |             |                                          |                                         |     |
| Y10.7  | Y10.7   |             |                                          |                                         |     |
|        |         |             |                                          |                                         |     |
| Y11.0  | Y11.0   | LAMP.L      | Machine                                  | e work lamp                             | 0   |
| Y11.1  | Y11.1   | CLEAN.O     | Chip remov                               | al pump output                          | 0   |
| Y11.2  | Y11.2   |             |                                          |                                         | Ο   |
| Y11.3  | Y11.3   | CLN-2.O     | Workpie                                  | ce air output                           | 0   |
| Y11.4  | Y11.4   | CHIP        | Chip rer                                 | noval output                            | 0   |
| Y11.5  | Y11.5   |             |                                          |                                         | 0   |
| Y11.6  | Y11.6   |             |                                          |                                         | 0   |
| Y11.7  | Y11.7   |             |                                          |                                         | 0   |

| Y12.0 | Y12.0 | 4UCLPO | The 4 <sup>th</sup> axis release output | 0 |
|-------|-------|--------|-----------------------------------------|---|
| Y12.1 | Y12.1 | 4-CLPO | The 4 <sup>th</sup> axis clamp output   | 0 |
| Y12.2 | Y12.2 | 5UCLPO | The 5 <sup>th</sup> axis release output | 0 |
| Y12.3 | Y12.3 | 5-CLPO | The 5 <sup>th</sup> axis clamp output   | 0 |
| Y12.4 | Y12.4 |        |                                         |   |
| Y12.5 | Y12.5 |        |                                         |   |
| Y12.6 | Y12.6 |        |                                         |   |
| Y12.7 | Y12.7 |        |                                         |   |
|       |       |        |                                         |   |
| Y13.0 | Y13.0 |        |                                         |   |
| Y13.1 | Y13.1 |        |                                         |   |
| Y13.2 | Y13.2 |        |                                         |   |
| Y13.3 | Y13.3 |        |                                         |   |
| Y13.4 | Y13.4 |        |                                         |   |
| Y13.5 | Y13.5 |        |                                         |   |
| Y13.6 | Y13.6 |        |                                         |   |
| Y13.7 | Y13.7 |        |                                         |   |

# 3.2 Parameter Setting

# K parameter setting

| n param | eter setting                                                         |                |              | 1                                    |
|---------|----------------------------------------------------------------------|----------------|--------------|--------------------------------------|
| Address | Function                                                             | Set value: 0   | Set value: 1 | Remarks                              |
| K0.6    | Tool magazine function                                               | Off            | On           |                                      |
| K1.1    | Lubricant pressure detection function                                | Off            | On           |                                      |
| K1.2    | Protection door alarm function                                       | Off            | On           |                                      |
| K2.0    | External Mpg function                                                | Off            | On           |                                      |
| K2.2    | Rapid transverse and federate override are controlled simultaneously | Off            | On           |                                      |
| K2.5    | Magazine forward / retract valve selection                           | Use two valves | Use a valve  | Used by turntable style tool machine |
| K2.7    | Spindle control analog voltage selection                             | ±10V           | 0~10V        |                                      |
| K3.1    | Mechanical arm jog mode selection                                    | Continuous jog | Step jog     | Used by arm magazine                 |
| K3.4    | Z negative direction limit during tool changing                      | Off            | On           | Used by turntable style tool machine |

| K3.6  | Tool magazine debugging state                                            | Retraction                       | In feed                            |                    |
|-------|--------------------------------------------------------------------------|----------------------------------|------------------------------------|--------------------|
| K4.0  | The 4 <sup>th</sup> axis release/clamp device selection                  | No                               | Yes                                |                    |
| K4.1  | The 5 <sup>th</sup> axis release/clamp device selection                  | No                               | Yes                                |                    |
| K4.2  | The 4 <sup>th</sup> /5 <sup>th</sup> axis release/clamp signal selection | With release /clamp signals      | Only with clamp signal             |                    |
| K4.4  | The 4 <sup>th</sup> axis automatic release function                      | Off                              | On                                 | If it is on during |
| K4.5  | The 5 <sup>th</sup> axis automatic release function                      | Off                              | On                                 | moving operation,  |
| K4.6  | The 4 <sup>th</sup> axis automatic clamp function                        | Off                              | On                                 | it clamps          |
| K4.7  | The 5 <sup>th</sup> axis automatic clamp function                        | Off                              | On                                 | moving.            |
| K7.1  | Whether to detect spindle zero speed signal during tool releasing        | Detect                           | Not detect                         |                    |
| K7.2  | Spindle two-gear M type shift function                                   | No                               | Yes                                |                    |
| K7.3  | Whether to detect release/clamp tool signal                              | Detect                           | Not detect                         |                    |
| K7.5  | Spindle is off or not when protection door alarm occurs                  | No                               | Yes                                |                    |
| K9.0  | All axis hardware overtravel detection                                   | Detect                           | Not detect                         |                    |
| K9.4  | The 4 <sup>th</sup> axis overtravel alarm detection                      | Detect                           | Not detect                         |                    |
| K9.5  | The 5 <sup>th</sup> axis overtravel alarm detection                      | Detect                           | Not detect                         |                    |
| K11.0 | Lubrication alarm input signal                                           | Connect to normally open contact | Connect to normally closed contact |                    |
| K11.1 | Protection door alarm input signal                                       | Connect to normally open contact | Connect to normally closed contact |                    |
| K11.2 | Hydraulic alarm input signal                                             | Connect to normally open contact | Connect to normally closed contact |                    |
| K11.3 | Pressure alarm input signal                                              | Connect to normally open contact | Connect to normally closed contact |                    |
| K11.4 | Cooling pump alarm input signal                                          | Connect to normally open contact | Connect to normally closed contact |                    |
| K11.5 | Chip removal alarm input signal                                          | Connect to normally open contact | Connect to normally closed contact |                    |
| K11.6 | Magazine cutting disk alarm input signal                                 | Connect to normally open contact | Connect to normally closed contact |                    |

## **Volume II PLC Programming and Connection**

| K11.7 | Mechanical | arm | alarm | input | Connect  | to   | normally | Connect   | to  | normally |  |
|-------|------------|-----|-------|-------|----------|------|----------|-----------|-----|----------|--|
| KII./ | signal     |     |       |       | open con | tact |          | closed co | nta | act      |  |

## C parameter setting

| Counter | Current value        | Preset value                 | Function |
|---------|----------------------|------------------------------|----------|
| No.     |                      |                              |          |
| 4       | Lubricant pump oil   | Lubricant pump stop interval |          |
| '       | supply time (second) | time (minute)                |          |
|         | Magazine tool        |                              |          |
| 2       | changing position    | Magazine cutter number       |          |
|         | cutter set number    |                              |          |

Note: Before the version MV1.34, PLC uses T parameter to set lubricant time. T6+T7 is total stop time of the automatic lubricant pump, T8 is oil supply time which in ms.

## 3.3 M Code List

| M<br>code | Function                         | M code | Function                                     |
|-----------|----------------------------------|--------|----------------------------------------------|
| M00       | Program stop                     | M19    | Spindle orientation                          |
| M01       | Selection stop                   | M29    | Rigid tapping                                |
| M02       | Program end                      | M30    | Program end and return                       |
| M03       | Spindle CCW                      | M37    | Detecting probe blowing on                   |
| M04       | Spindle CW                       | M38    | Detecting probe blowing off                  |
| M05       | Spindle stop                     | M39    | Cancel rigid tapping                         |
| M06       | Tool change                      | M54    | Spindle tool release                         |
| M07       | Workpiece blowing cooling        | M55    | Spindle tool clamp                           |
| M08       | Cooling pump on                  | M60    | Magazine tool selection (turntable magazine) |
| M09       | Cooling, blowing off             | M61    | Tool changing condition detection            |
| M10       | The 4 <sup>th</sup> axis clamp   | M65    | Magazine forwards/cutter set is vertical     |
| M11       | The 4 <sup>th</sup> axis release | M66    | Magazine retracts/ cutter set is horizontal  |
| M20       | The 5 <sup>th</sup> axis clamp   | M98    | Subprogram call                              |
| M21       | The 5 <sup>th</sup> axis release | M99    | Subprogram return or circulation             |

## 3.4 PLC Function

## 3.4.1 Basic Function

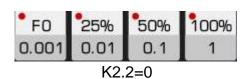
### 1) External MPG box function

After fixing external MPG according to the connection diagram, external MPG will be operated automatically. The MPG can be performed by setting parameter K2.0 to 1 or closed by setting parameter K2.0 to 0.

The working lamp turns on when the external MPG axis selection signal is on. Axis positive/negative direction lamp on the machine operation panel lights up means that the axis is controlled by the MPG. When override signal on the external MPG box is on, the corresponding movement volume is indicated on the machine operation panel.

| MPG box                    | <b>×</b> 1  | ×10         | ×100       | <b>×</b> 1 |
|----------------------------|-------------|-------------|------------|------------|
| override key               |             |             |            |            |
| Operation panel indication | FO<br>0.001 | 25%<br>0.01 | 50%<br>0.1 | 100%       |
| Corresponding movement     | 0.001       | 0.01        | 0.1        | 1          |

Note: The emergency button is invalid when the external MPG function is not used.


#### Control signal:

| Address | Function           | Remarks |
|---------|--------------------|---------|
| X121.0  | MPG emergency      |         |
|         | stop               |         |
| X120.0  | X100 (MPG federate |         |
|         | override)          |         |
| X120.1  | X10 (MPG federate  |         |
|         | override)          |         |
| X120.2  | X1 (MPG federate   |         |
|         | override)          |         |
| X120.3  | 5 axis selection   |         |
| X120.4  | 4 axis selection   |         |
| X120.5  | Z axis selection   |         |
| X120.6  | Y axis selection   |         |
| X120.7  | X axis selection   |         |
| Y120.7  | MPG signal lamp    |         |
|         | output             |         |
| K2.0    | External MPG       | 0: off  |
|         | function           | 1: on   |

#### 2) Rapid federate override selection

When the parameter K2.2 is set to 0, manual rapid traverse and G00 override are controlled by F0, 25%, 50%, 100% keys on the operation panel. Override initial value is 50%. When the parameter K2.2 is set to 1, manual rapid traverse and G00 override are controlled

by cutting feed switch on the panel. The switch also control cutting feed and rapid traverse override. The range of the rapid traverse override is 0%~100%, adjustment incremental is 10%. The override is handled as 100% when it exceeds 100%, and the cutting federate is handled as the actual selected value, K2.2=1.





- 3) Spindle control analog voltage pole selection
  - When K2.7=0, spindle control analog voltage output is ±10V.

When K2.7=1, spindle control analog voltage output is 0~10V.

- 4) The 4<sup>th</sup>, 5<sup>th</sup> turntable control signal
  - It is used for releasing/clamping signal control for different unit manufacturer.
  - When there is a releasing/clamping unit on the 4<sup>th</sup>, 5<sup>th</sup> turntable, set K4.0=1, K4.1=1.
  - When there is not a releasing/clamping unit on the 4<sup>th</sup>, 5<sup>th</sup> turntable, set K4.0=0、K4.1=0.
  - When there is a releasing/clamping detection unit on the 4<sup>th</sup>, 5<sup>th</sup> turntable:
    - Set K4.0=1, K4.1=1, K4.2=0 when there are releasing and clamping detection units.
    - Set K4.0=1, K4.1=1, K4.2=1 when there is only clamping detection switch.

M codes (M10、M11、M20、M21) controls the releasing/clamping of the 4<sup>th</sup>, 5<sup>th</sup> axis turntable. Or it can be realized by setting parameter, it releases before axis moving, and clamps after the moving.

- K4.4=1 when the 4<sup>th</sup> axis releases automatically, K4.4=0 when the 4<sup>th</sup> axis does not release.
- K4.5=1 when the 5<sup>th</sup> axis releases automatically, K4.5=0 when the 5<sup>th</sup> axis does not release.
- K4.6=1 when the 4<sup>th</sup> clamps automatically, K4.6=0 when the 4<sup>th</sup> axis does not clamp.
- K K4.7=1 when the 5<sup>th</sup> clamps automatically, K4.7=0 when the 5<sup>th</sup> axis does not clamp.
- 5) Spindle tool releasing/clamping control
- Not to detect the spindle zero speed signal during spindle tool releasing, set K7.1 to 1; set K7.1 to 0 to detect it.

When the spindle does not have tool releasing/clamping switch signal, set K7.3=1; the spindle has the detection switch, set K7.3=0.

- 6) Hardware overtravel
  - When all axis hardware overtravel detection is shielded, K9.0=1; K9.0=0 when it is not shielded.
  - When the  $4^{th}$  axis hardware overtravel, K9.4=1; while the  $5^{th}$  axis hardware overtravel, K9.5=1.
  - When the 4<sup>th</sup> axis hardware overtravel is not shielded, K9.4=0, K9.5=0 when the 5<sup>th</sup> axis hardware overtravel is not shielded.

Note: In order to ensure the machine tool safety, please confirm that hardware overtrave of the machine tool is valid.

#### 7) Three-color control

#### Control signal

| Address | Function | Remarks                               |
|---------|----------|---------------------------------------|
| Y9.4    | Red      | The system is in alarm state          |
| Y9.5    | Yellow   | The system is in operation state      |
| Y9.6    | Green    | The system is automatically operating |

#### 8) Lubrication pump control

C1: Preset value set the lubrication pump stop time interval, unit: minute
 C1: The current value set the lubrication pump automatic fule supply time, unit: second
 C11: The current value display the executed lubrication pump stop interval time, unit: minute

When the current value and the preset value of the C1 are not 0. After C1 preset value is specified, the lubrication pump starts work. If set K1.1 to during lubrication pump operation, the pump stops after setting the current value of the C1. If K1.1 is set to 1, the pump stops one-second delay after the operation of X12.4 pressure switch. If the pressure is not reached after setting the C1 current value, alarm 2032 occurs. The pressure switch is on at the time lubrication pump start up, the alarm 2010 occurs.

- 2. If K1.1 is set to 1 when manually press down the lubrication key, the pump stops one-second delay after the operation of the X12.4 pressure switch. When K1.1 is set to 0, and the current of C1 IS NOT 0, the pump stops after the operation of the pump current setting value. When the current value of the C1 is 0, the lubrication pump stops after releasing the lubrication pump.
- 3. The lubrication pump work time interval is accumulated, and the current accumulated value is saved after power off. It continue to count after reset. When the emergency stop, preset and the current value is set to 0, the accumulative timing stops.
- 4. The lubrication pump does not output when the emergency stop, reset and lubrication alarm occurs.
- 5. When the current value of the C11 is bigger than the preset value of C1, the system alarm 2043 occurs. PLC parameter setting error.
- 6. When the K11.1 is set to 0, the lubrication alarm signal X11.0 is 1 or K11.1 is set 1, lubrication alarm input signal X11.0 is 0, the system alarm 2000 occurs. The lubrication pump does not output when the alarm occurs.

#### **Control signal:**

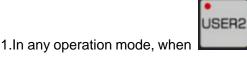
| Address | Function                                   | Remark                  |
|---------|--------------------------------------------|-------------------------|
| X3.1    | Lubrication key                            |                         |
| Y3.1    | Lubrication lamp                           |                         |
| Y9.0    | Lubrication pump output                    |                         |
| X11.0   | Lubrication alarm input signal             |                         |
| X12.4   | Lubrication pressure detection signal      |                         |
| K1.1    | Whether to detect the lubrication pressure | 0: Not detect 1: Detect |
| K11.0   | Lubrication alarm signal selection         | 0: Normally-open        |
|         |                                            | 1: Normally-closed      |

#### 9) Cooling pump control

- 1. The cooling pump does not output at the system power on.
- 2. In any operation mode, the cooling pump output state turns over once when press down the cooling key on the panel once.
  - 3. Control cooling pump M code: M8 cooling pump on, N9 cooling pump off.
  - 4. When cooling pump overload alarm and emergency stop, reset, the output is off.
  - 5. In automatic operation, protection door alarm cooling pump is off when the cooling pump is outputting. The cooling pump is on once the protection door is closed. The cooling pump can be operated manually if there is no protection door alarm.

## **Control signal:**

| Address | Function                       | Remarks            |
|---------|--------------------------------|--------------------|
| X3.0    | Cooling key                    |                    |
| Y3.0    | Cooling key lamp               |                    |
| Y8.0    | Cooling pump control output    |                    |
| X11.4   | Cooling pump overload          |                    |
| K11.4   | Cooling alarm signal selection | 0: Normally open   |
|         |                                | 1: Normally closed |


## 10) Hydraulic pump control

- 1. When the system power on and the emergency stop key is released, the hydraulic pump outputs to enter the work state.
- 2 When the emergency stop key is pressed or hydraulic pump alarms, hydraulic pump is off. It returns to the output state after releasing the alarm and emergency stop key.

## Control signal:

| Address | Function             | Remarks            |
|---------|----------------------|--------------------|
| Y9.7    | Cooling pump control |                    |
|         | output               |                    |
| X11.2   | Hydraulic pump       |                    |
|         | overload             |                    |
| K11.2   | Hydraulic alarm      | 0: Normally-open   |
|         | signal selection     | 1: Normally-closed |

#### 11) Workpiece air cooling control



output state turns over once.

key on the panel is pressed workpiece air cooling

- 2. Control cooling pump M code: M7 workpiece air cooling on, M9 workpiece air cooling off.
- 3. Output is off when emergency stop and reset is working.

#### Control signal:

| Address | Function                      | Remarks   |
|---------|-------------------------------|-----------|
| X6.1    | Workpiece air cooling key     | USER2 key |
| Y6.1    | Workpiece air cooling lamp    | USER2 key |
| Y11.3   | Workpiece air cooling control |           |
|         | output                        |           |

#### 12) Protection door alarm control

- 1. The protection door function is valid when the parameter K1.2 is set to 1.
- 2. When the program is cycle started in auto or DNC mode, the system alarms if the protection is open.
- 3. Protection door alarm signal: 1001 the door is not closed, please close the protection door before starting the machine tool.
- 4. The program execution is stopped when the protection door alarm occurs. Close the door and press the cycle start key to perform the program.
- 5. Whether to close the spindle when PLC parameter K7.5 selection alarm occurs. If selected spindle off, the spindle continue to run after selecting the spindle off.
- 6. If open the protection door in the mode except auto or DNC mode, the alarm does not occur but the max. speed and the max. federate are limited.

The spindle speed limit NC parameter: N5118, maximum federate limit NC parameter: N1260.

#### Control signal:

| Address | Function                             | Remarks            |
|---------|--------------------------------------|--------------------|
| X11.1   | Protection door alarm input signal   |                    |
| K1.2    | Protection door alarm function       | 0: on              |
|         |                                      | 1: off             |
| K11.1   | Protection door alarm signal inverts | 0: normally-open   |
|         |                                      | 1: normally-closed |

# 3.4.2 Turntable Type Magazine Debugging

#### 1) Related parameter to the magazine

Set K0.6=1 when the machine with a magazine, set K0.6=0 if there is no magazine.

There only one forward valve controls tool forward and retraction, set K2.5=1. Set K2.5=0 if there are two valves.

If Z negative-direction position limitation function is on during tool changing, set K3.4=1, if it is off, set K3.4=0. When using Z negative limitation function, it is necessary to set position switch function in the system, the setting is as follows: 2401#3SWI=1, 2500=3, 2532=1, 2564= the position where 1mm after the Z axis 2<sup>nd</sup> reference point during tool changing. During tool changing, Z axis negative direction position switch controls Z axis negative moving range when the magazine does not in retraction position.

Set K3.6=1 when enter to the tool debugging state. Set K3.6=0 after retracting the debugging mode.

Counter C parameter setting:

Preset value in the counter C2 sets the magazine total tool number. The current value sets the cutting disk number of the current tool changing.

Note: The magazine action can be controlled by the key on the panel or moving the feed axis slowly when the magazine does not at retraction position. Because part interlock is released by the debugging, please operate it with caution.

### 2) Operation procedures for tooling changing of the turntable type magazine

- 1. After executing M6 Txx instruction, see if the program judgment instruction tool number meets the requirements, tool changes if meets the requirements.
- 2. Z axis returns to the 1<sup>st</sup> reference point.
- 3. X, Y axes return to the 1<sup>st</sup> reference point.
- 4. Z axis returns to the 2<sup>nd</sup> reference point and the spindle orientation is performed.
- 5. Magazine forwards and clamps the tool of the current spindle.
- 6. The cylinder hits the tool and tools on the spindle is released.
- 7. Z axis returns to the 1<sup>st</sup> reference point, and return the tools back to the magazine.
- 8. Turn the cutter to the new position at the cutting disk.
- 9. Z axis returns to the 2<sup>nd</sup> reference point. Clamp the tool after inputting the cutter to the spindle.
- 10. The magazine retracts and the tool changing is completed.

## 2) Tool changing program of turntable type magazine

| O9001                             | (Tool changing macro program)                                          |
|-----------------------------------|------------------------------------------------------------------------|
| N010IF[#1000EQ1]GOTO190           | (Turn the tool to the end when it is in the spindle,                   |
| machine lock, miscellaneous lock) |                                                                        |
| N012M61                           | (Tool changing condition detection)                                    |
| N020G15G40G49G80G69G50            | (Cancel the module)                                                    |
| N030G50.1X0Y0Z0                   | (Cancel the module)                                                    |
| N040#1=#4003                      | (Save G90/G91module)                                                   |
| N060G28G91Z0                      | (Z axis returns to the 1 <sup>st</sup> reference point)                |
| N070G28X0Y0                       | (X, Y axes returns to the 1 <sup>st</sup> reference point)             |
| N080G30G91Z0M19                   | (Z axis returns to the 2 <sup>nd</sup> reference point and orientation |
| is performed)                     |                                                                        |
| N090M65                           | (Tool magazine forwards)                                               |
| N100M54                           | (Spindle releases the cutter)                                          |
| N110G4X0.3                        | (Delay 0.3S)                                                           |
| N120G28G91Z0                      | (Z axis lifts and returns to the 1 <sup>st</sup> reference point)      |
| N130M60                           | (Select new cutter)                                                    |
| N140G04X0.2                       | (Delay 0.2S)                                                           |
| N150G30G91Z0                      | (Z axis returns to the 2 <sup>nd</sup> reference point)                |
| N160M55                           | (Spindle clamps the tool)                                              |
| N170M66                           | (Tool magazine retracts)                                               |
| N180G#1M05                        | (Return to the module and release the orientation)                     |
| N190M99                           | (Tool changing ends)                                                   |
| %                                 |                                                                        |

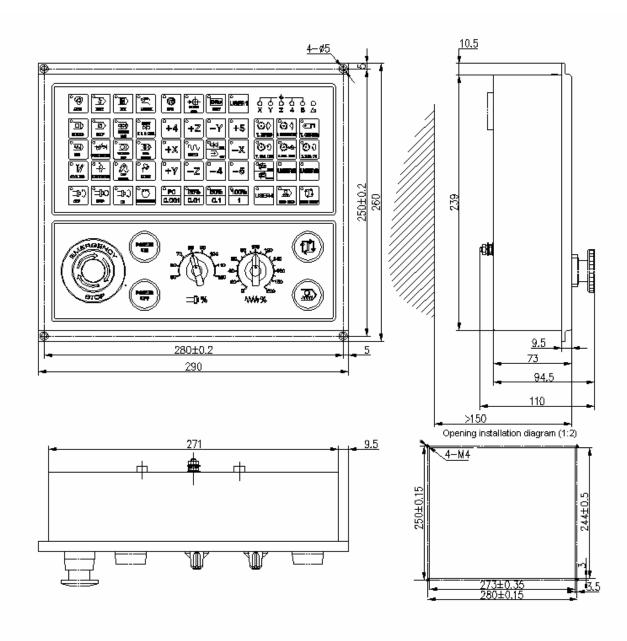
Note: In the radius compensation, the compensation is cancelled automatically. Set the related tool D code again after tool changing.

# 3.5 PLC Alarm Signals

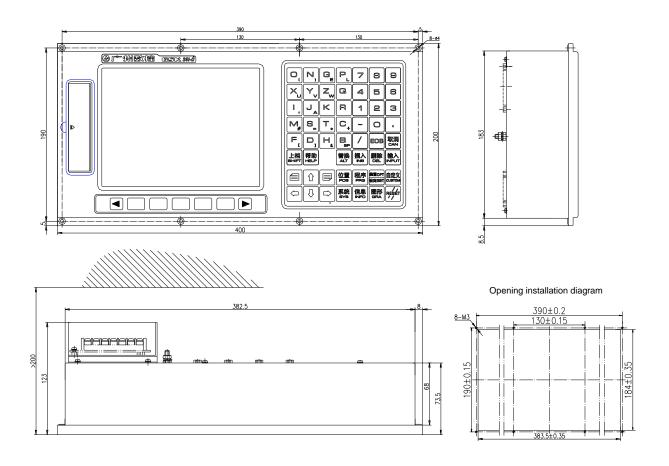
| Address | Alarm<br>No. | Alarm signal                                                                                                           | Remarks |
|---------|--------------|------------------------------------------------------------------------------------------------------------------------|---------|
| A0.0    | 2000         | The lubrication pump is short of oil, pressure or the pump has fault                                                   |         |
| A0.1    | 1001         | The door is not closed, please close the protection door and start the machine again                                   |         |
| A0.2    | 1002         | Hydraulic motor overload, check the motor load and the wire                                                            |         |
| A0.3    | 2003         | Air pressure low alarm, air pressure is low or pressure detection circuit faults                                       |         |
| A0.4    | 1004         | Cooling pump motor overload, check the motor load and the circuit                                                      |         |
| A0.5    | 1005         | Chip removal motor overload, check the motor load and the wire                                                         |         |
| A0.6    | 1006         | Cutting disk overload, check the motor load and the wire                                                               |         |
| A1.0    | 2010         | Lubrication pressure switch state is wrong                                                                             |         |
| A1.1    | 1011         | Releasing/ clamping signal X12.5, X12.6 is wrong                                                                       |         |
| A1.2    | 1012         | Releasing or clamping tool instruction execution overtime                                                              |         |
| A1.3    | 2013         | Tool releasing is not allowed during the spindle rotation                                                              |         |
| A1.4    | 1014         | The cutting disk does not rotate after executing tool selection instruction or it is performed without counting signal |         |
| A1.5    | 1015         | Tool selection instruction overtime                                                                                    |         |
| A1.6    | 1016         | Tool magazine counting switch stop position is wrong                                                                   |         |
| A1.7    | 1017         | The magazine forward or retraction instruction execution overtime                                                      |         |
| A2.0    | 1020         | Tool magazine forward or retraction signal X14.3, X14.4 is wrong                                                       |         |
| A2.1    | 2021         | The spindle is not allowed to rotate when the tool magazine does not at safety position                                |         |
| A2.2    | 2022         | The spindle is not allowed to rotate when the spindle releasing/clamping signal is abnormal                            |         |
| A2.3    | 1023         | The instruction tool number is not in the allowed range, that is, tool number is 0 or it exceeds the total tool number |         |
| A2.4    | 1024         | The spindle cooling system alarms, alarm signal address X12.3                                                          |         |
| A2.5    | 1025         | The operation communication is interrupted                                                                             |         |
| A2.6    | 2026         | k3.6 debugging state is on, please operate with caution, and turn it off after completion                              |         |
| A2.7    | 1027         | When the magazine does not at retraction position, the                                                                 |         |

|           | spindle can not be moved if the tool is not released or                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | stop exactly                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1030      | Specified the undefined M code                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A3.1 2031 | The spindle can not be operated manually in rigid                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2031      | tapping state                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2022      | The lubrication pump does not reach the preset pressure                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2032      | in the specified working time.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1022      | Instruction T is not specified when executing M06 tool                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1033      | changing instruction                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1034      | The 4 <sup>th</sup> axis is not released                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1035      | The 5 <sup>th</sup> axis is not released                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1026      | Z axis moves out of the limit range when the magazine                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1036      | does not at the retraction position                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1037      | The turntable is not clamped                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1040      | The spindle orientation overtime                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1041      | Spindle VP shifting action overtime                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1010      | Tool change can not be started when the magazine does                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1042      | not at retraction position                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2043      | PLC parameter setting is wrong                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1044      | Spindle gear shift overtime                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2045      | Spindle gear signal is wrong                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | 2031<br>2032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1040<br>1041<br>1042<br>2043<br>1044 | stop exactly  1030 Specified the undefined M code  2031 The spindle can not be operated manually in rigid tapping state  2032 The lubrication pump does not reach the preset pressure in the specified working time.  1033 Instruction T is not specified when executing M06 tool changing instruction  1034 The 4 <sup>th</sup> axis is not released  1035 The 5 <sup>th</sup> axis is not released  2 axis moves out of the limit range when the magazine does not at the retraction position  1037 The turntable is not clamped  1040 The spindle orientation overtime  1041 Spindle VP shifting action overtime  1042 Tool change can not be started when the magazine does not at retraction position  2043 PLC parameter setting is wrong  1044 Spindle gear shift overtime |

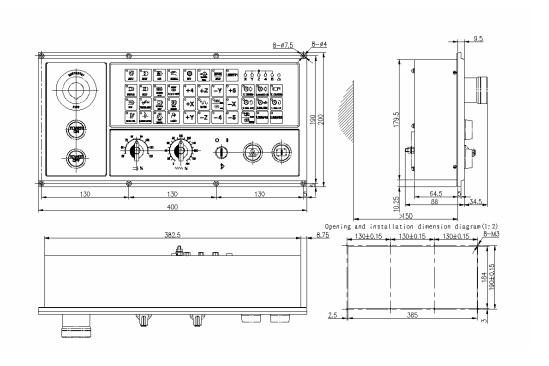
## Note:


If PLC alarm in the range 1000~1999 occurs, the system displays the alarm state and the automatic operation stops. It is a prompt message if in the range 2000~2999, and the automatic operation state will not be affected.

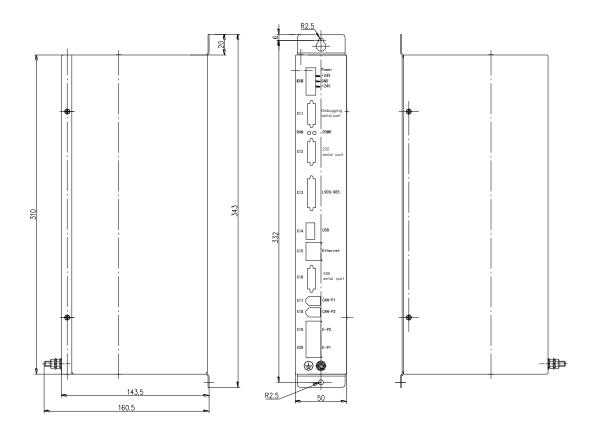
# **Appendix 4 Installation Dimension Drawing**


# 4.1 GSK25i-M installation dimension (vertical 10.4 inch color screen)

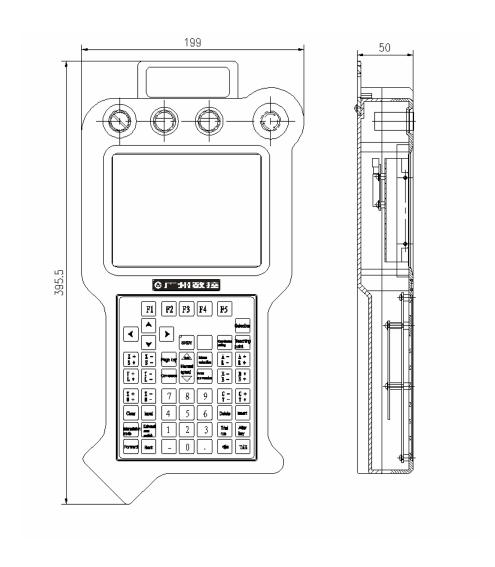



# 4.2 GSK25i-M operation panel installation dimension (vertical)

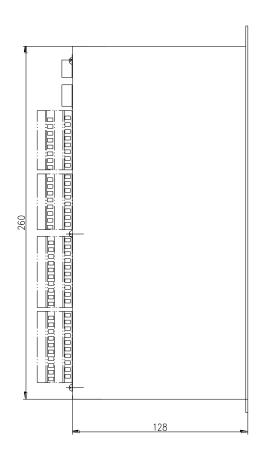


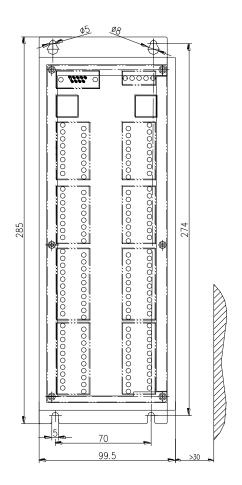

# 4.3 GSK25i-MH box installation dimension (horizontal 8.4 inch color screen)



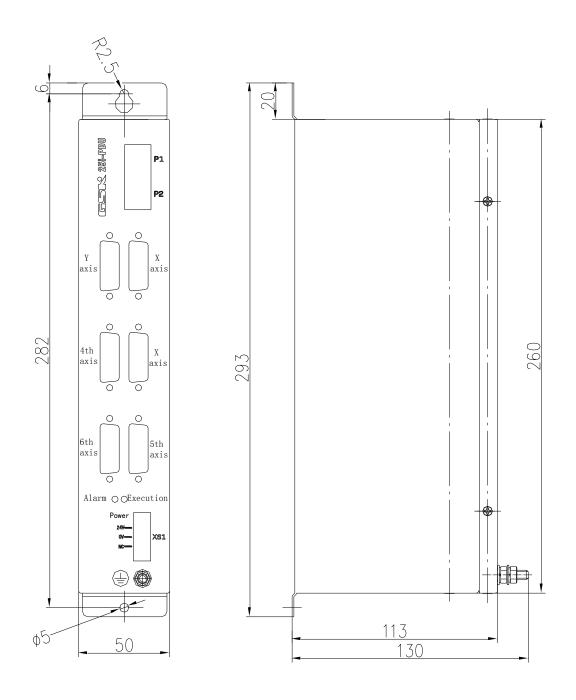

# 4.4 GSK25i-MH operation panel installation dimension (horizontal)




## 4.5 GSK25i-Ra box installation dimension




# 4.6 GSK25i-Ra teaching box dimension




## 4.7 I/O unit installation dimension





# 4.8 External position detection unit GSK25i-PDU installation dimension

