

EUROPEAN SPACE AGENCY
OPS
GI

 SOFTWARE QUALITY AND
CODING RULES

Reference: EGOS-QA-XX-TN-9007
Version: 1.3 Draft A
Date: 2005-04-25

EUROPEAN SPACE AGENCY
OPS
GI

VERSION: 1.0 DRAFT B - 2004-12-01 I / III © COPYRIGHT EUROPEAN SPACE AGENCY 2004

Document Title: Software Quality and Coding Rules

Document Reference: EGOS-QA-XX-TN-9007

Document Version: 1.0 Draft B Date: 2004-12-01

Abstract

Approval Table:

Action Name Function Signature Date
Prepared by: Eduardo Gomez 2004-10-29

Verified by: YYYY-MM-DD

Approved by: Please update
EgosAuthorisationList
property

 YYYY-MM-DD

Authors and Contributors:

Name Contact Description Date
Eduardo Gomez Eduardo.Gomez@esa.int Author 2004-10-29

Nuno Sebastião Nuno.sebastiao@esa.int Contributor 2004-12-01

Distribution List:

© COPYRIGHT EUROPEAN SPACE AGENCY, 2005
The copyright of this document is vested in European Space Agency. This document may only be reproduced in whole or in part,
stored in a retrieval system, transmitted in any form, or by any means electronic, mechanical, photocopying, or otherwise, with the
prior permission of the owner.

Document Change Log

Issue Date Description
 YYYY-MM-DD

Document Change Record

DCR No: 00 Originator:

Date: Approved by:

Document Title: Software Quality and Coding Rules

Document Reference: EGOS-QA-XX-TN-9007

Page Paragraph Reason for Change

mailto:Eduardo.Gomez@esa.int
mailto:Nuno.sebastiao@esa.int

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

TABLE OF CONTENTS
1. INTRODUCTION... 1

1.1 PURPOSE... 1
1.2 SCOPE... 1
1.3 GLOSSARY ... 1

1.3.1 Quality model (software) ... 1
1.3.2 Static model (software) .. 1
1.3.3 Metric.. 1
1.3.4 Reusability .. 1
1.3.5 Portability (a quality characteristic)... 1
1.3.6 Check .. 1
1.3.7 Acronyms ... 1
1.3.8 Definition of Terms.. 2

1.4 REFERENCES .. 2
1.4.1 Applicable documents.. 2
1.4.2 Reference documents ... 2

1.5 DOCUMENT OVERVIEW... 2
2. DEFINITION OF THE QUALITY MODEL... 3

2.1 INTRODUCTION .. 3
2.2 HOW TO MEASURE QUALITY .. ERROR! BOOKMARK NOT DEFINED.
2.3 MAPPING TO SPEC.. 8
2.4 CHECKLISTS... 10

2.4.1 Documentation Checks.. 10
2.4.2 effectiveness checks ... 11
2.4.3 Operability checks.. 11
2.4.4 PA checks ... 13
2.4.5 Process checks.. 14
2.4.6 Reliability checks ... 15
2.4.7 Reusability checks.. 15
2.4.8 Safety checks.. 15
2.4.9 Static analysis ... 15
2.4.10 Traceability checks... 16

3. DEFINITION OF THE STATIC MODEL... 17
3.1 INTRODUCTION .. 17
3.2 RULE CLASSIFICATION... 17

3.2.1 Core Rules .. 17
3.2.2 Recommended Rules ... 20
3.2.3 De-scoped Rules... 21

3.3 COMPLIANCE METHODOLOGY .. 21
3.3.1 Automated checks .. 21
3.3.2 Manual Inspections .. 23

DETAILED MAPPING TO SPEC... 24

ANNEX A QUALITY MODEL TREE.. 27

TABLE OF TABLES
TABLE 1 - LIST OF CHECKS TO BE APPLIED... 3
TABLE 2 - LIST OF METRICS (BASED ON C++) .. 5
TABLE 3 - ASSOCIATION OF CHECKS AND GOAL PROPERTIES.. 10
TABLE 4 - STATIC RULES CLASSIFICATION.. 17
TABLE 5 - CORE STATIC RULES.. 20
TABLE 6 - RECOMMENDED STATIC RULES... 21
TABLE 7 - DE-SCOPED STATIC RULES.. 21

VERSION: 1.0 DRAFT B - 2004-12-01 II / III © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

TABLE 8 - AUTOMATED STATIC CHECKS... 23
TABLE 9 - MANUAL STATIC CHECKS ... 23
TABLE 10 - MAPPING BETWEEN SPEC METRICS AND CHECKS IN THIS MODEL .. 26
TABLE 11 - MAPPING BETWEEN SPEC METRICS AND METRICS MEASURED IN THIS MODEL.. 26
TABLE 12 - LIST OF METRICS THAT CANNOT BE FOUND IN SPEC.. 27
TABLE 13 - THE FULL SPEC MODEL (GOAL PROPERTIES, PROPERTIES AND METRICS)... 30

TABLE OF FIGURES
Error! No table of figures entries found.

VERSION: 1.0 DRAFT B - 2004-12-01 III / III © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

1. Introduction

1.1 Purpose
The objective of this document is to provide the definition of a software quality and static model.

The quality model is expressed either by a set of values that can be measured on the source code and
has to fall within a given range (e.g. comment frequency) or as a set of specific conditions that need to be
verified at one or more points in the lifecycle (e.g. “the architectural documentation has to be based on
the object-oriented approach” or “all the requirements have to be covered by a validation mechanism”).

The static model defined in this document presents a classification of the rules defined in [] and presents
methods for checking the compliance of software code:
In general, measurements on the source code are referred to as “metrics”, while the verification of
requirements that need to be met are referred to as “checks”.

1.2 Scope
This quality model is applicable to all development projects related to infrastructure software to be
accepted by OPS-GI. The quality requirements implicitly or explicitly contained in this document apply

- To the work performed by the contractor personnel
- To the acceptance process performed by OPS-GI personnel

1.3 Glossary

1.3.1 Quality model (software)
Set of characteristics and the relationships between them which provide the basis for specifying quality
requirements and evaluating quality [ISO/IEC 9126--1:2001] (from [RD-2]).

1.3.2 Static model (software)
Set of coding standards that, in accordance to the quality model, define the rules to which the software
product source code shall comply with [ISO/IEC 9126--1:2001] (from [RD-2]).

1.3.3 Metric
Defined measurement method and the measurement scale
NOTE 1 Metrics can be internal or external, and direct or indirect.
NOTE 2 Metrics include methods for categorising qualitative data.
[ISO/IEC 9126--1:2001] (from [RD-2])

1.3.4 Reusability
Degree to which a software module or other work product can be used in more than one computer
program or software system [IEEE 610.12:1990] (from [RD-2]).

1.3.5 Portability (a quality characteristic)
capability of software to be transferred from one environment to another (from [RD-2]).

1.3.6 Check
Verification of a quality requirement. Note: this definition is specific to this document

1.3.7 Acronyms
Acronyms Description

VERSION: 1.0 DRAFT B - 2004-12-01 1 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

1.3.8 Definition of Terms
Terms Description

1.4 References

1.4.1 Applicable documents
Ref. Document Title Issue and Revision, Date
[AD-1]

1.4.2 Reference documents
Ref. Document Title Issue and Revision, Date
[RD-1] Space Engineering: software – Part 1: Principles and

requirements
ECSS-E-40 part 1B, 28.11.04

[RD-2] Space product assurance: software product assurance ECSS-Q-80B, 10-10-03

[RD-3] SPEC TN3, Space Domain Specific Software Product
Quality Models, Requirements and Related Evaluation
Methods

TBS, 20-02-2002

[RD-4] Software engineering—Product quality—Parts 1, 2, 3 and 4 ISO/IEC 9126, 15-06-01

[RD-5] Software Development Practices 1, 2004-12-01

[RD-6] C++ Naming and Coding Conventions S2K-MCS-TN-9003-TOS-GIC,
issue 1.1, 04-11-2003

[RD-7] Generic Coding Conventions S2K-MCS-TN-9004-TOS-GIC,
issue 1.1, 22-10-2003

[RD-8] Rulechecker C++ Reference Manual Logiscope 6.1, May 2004

[RD-9] C and C++ Coding Standards BSSC (2000)1, issue 1, 30,
03,2000

1.5 Document Overview
Section 2 of the document defines the simplified quality model and how to apply it. More specifically:

- Paragraph 2.1 provides an introduction and some background details;
- Paragraph Error! Reference source not found. explains how to apply the model from a

practical point of view;
- Paragraph 2.3.2 explains how the metrics and checks defined in this document map into quality

properties as defined in [RD-3](SPEC model)
- Paragraph 2.5 defines the specific checks that need to be applied

Detail traceability information between the SPEC model and the metrics and checks defined here can be
found in 0, while Annex A contains a table that summarizes the SPEC model.

VERSION: 1.0 DRAFT B - 2004-12-01 2 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

2. Definition of the quality model

2.1 Introduction
A quality model is composed of several main properties (sometimes also called factors) that
characterised the software quality. These properties are further characterised by sub-properties
(sometimes known as criteria), which, in turn can be measured using a specific methodology, known as a
metric. The quality model is completed by assigning a value (or range) to each metric. The quality model
presented in this document is based on [RD-3] and [RD-4].

There are two kinds of metrics. The first group consists of measurements that can be obtained by
inspecting the code (e.g. number of lines per method). Such measurements will provide a numerical
result that has to fall within the specified range. These metrics are suitable for automation using a tool.
The name “metric” is used in this document to refer to them.

The selection of the values for the metrics is mainly based on the values provided in [RD-3]. If the metric
in question is not present in this document, then a suitable value has been obtained based on common
practice. All the values provided for the metrics will need to be tuned, as experience is gained.

The metrics are based on C++, but the same values have been applied for JAVA. This may need to be
reviewed in the future based on the experience gained. Some of the metrics are not relevant for Java.
The list of specific metrics to be applied for C++ and for Java is provided in Error! Reference source not
found.

The second kind of metrics consists of checklists. The output of the metric is discrete, in the sense that it
can be 1 if the checklist is fulfilled or 0 if not. Not all the items in the checklists maybe always applicable,
therefore some items in the checklist may simply be disregarded if proper justification is provided. This
set of checklists is strictly based on [RD-3] and has been adapted to the type of developments typically
carried out under OPS-GIC control. Safety related items, in particular, have been disregarded in most
cases, since infrastructure software developed under OPS-GIC contracts has not yet been validated to
be used on environments with safety implications.
For clarity reasons Metrics defined in [RD-3] (SPEC) are referred to as SPEC metrics and the model
defined in the same document as the SPEC quality model. The complete quality model tree as
defined in [RD-3], with properties, sub-properties and SPEC metrics is presented in Annex A.

2.2 The metrics
This document attempts to simplify the application of the SPEC quality model by defining 10 checklists
(instead of the 85 metrics defined in [RD-3] which are listed in Table 1.

Documentation Checks
Effectiveness checks

Operability checks
PA checks

Process checks
Reliability checks

Reusability checks
Safety checks
Static analysis

Traceability checks
Table 1 - List of checks to be applied

In addition to these checklists, 56 metrics and their values have been defined. The collection of these
metrics can be easily automated. A configuration file for the tool Logiscope (from Telelogic) can be
provided. The configuration file has adopted as metric value the one in [RD-3] if the equivalent SPEC
metric exists and the default Logicope value if an equivalent SPEC metric does not exist or if the default

VERSION: 1.0 DRAFT B - 2004-12-01 3 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

Logiscope value is more restrictive (or reasonable). The full list of metrics is provided in Table 2. The last
column in the table specified whether the metric is also applicable to Java code.

name Logiscope
aggregated metric

max
value

min
value applicability Applicable to

Java
Attribute hiding factor (MOOD) ap_ahf 1 0.7 application No
Attribute inheritance factor
(MOOD)

ap_aif 0.6 0.3 application No

Coupling between objects ap_cbo application No

Number of Levels in the Call
Graph

ap_cg_levl 9 2 application No

Number of application classes ap_clas application No

Coupling factor (MOOD) ap_cof 0.18 0.03 application No
Hierarchical Complexity of the
Inheritance Graph

ap_inhg_cpx 2 1 application Yes

Number of Levels in the
Inheritance Graph

ap_inhg_levl 4 1 application Yes

Method hiding factor (MOOD) ap_mhf 0.4 0.1 application No
Method inheritance factor
(MOOD)

ap_mif 0.8 0.6 application No

Polymorphism factor (MOOD) ap_pof 1 0.3 application No
Rate of class autonomy AUTONOM 100 30 class No
Average coupling between
objects

AVG_CBO 10 0 application No

Average of the VG of the
application's functions

AVG_VG 5 0 application Yes

Average size of statements AVGS 7 1 funcion No
Relative call graph Hierarchical
complexity

cg_hiercpx 5 1 funcion No

Number of relative call graph
levels

cg_levels 12 1 funcion No

Relative call graph Structural
complexity

cg_strucpx 3 0 funcion No

Relative call graph System
testability

cg_testab 1 0 funcion No

Coupling between classes cl_cobc 12 0 class No
Number of dependent methods cl_dep_meth 6 0 class No
Lack of cohesion of methods cl_locm class No

Weighted Methods per Class cl_wmc 25 0 class Yes
Comments frequency COMF 0.99 0.3 funcion Yes
Class Comments Frequency COMFclass 0.99 0.3 class Yes
Number of destructuring
statements

ct_bran 0 0 funcion Yes

Number of out statements ct_exit 1 0 funcion Yes
Number of nestings ct_nest funcion Yes

Number of paths ct_path 60 1 funcion Yes
Cyclomatic number (VG) ct_vg 12 1 funcion Yes
Number of direct used classes cu_cdused 7 0 class Yes
VERSION: 1.0 DRAFT B - 2004-12-01 4 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

name Logiscope
aggregated metric

max
value

min
value applicability Applicable to

Java
Number of direct users classes cu_cdusers 4 0 class Yes
Number of callers dc_calling 7 0 funcion No
Number of direct calls dc_calls 5 0 funcion No
Number of local variables dc_lvars 5 0 funcion No
Encapsulation rules ENCAP 5 0 class No
Fan In FAN_IN 4 0 funcion No
Fan in of a class FAN_Inclass 15 0 class No
Fan Out FAN_OUT 4 0 funcion No
Fan out value of a class FAN_OUTclass 20 0 class No
Number of parameters passed
by reference

ic_paradd 2 0 funcion No

Number of function parameters ic_param 5 0 funcion Yes
Number of parameters passed
by value

ic_parval 2 0 funcion No

Number of distinct uses of
external attributes

ic_varpe 2 0 funcion No

Number of base classes in_bases 3 0 class Yes
Number of children in_noc 2 0 class Yes
Number of relative call graph
call-paths

IND_CALLS 30 1 funcion No

Number of statements lc_stat 20 1 funcion Yes
Number of levels LEVL 4 1 funcion Yes
Percentage of non-member
functions

NMM_Ratio 10 0 application No

Ratio of recursive edges on the
call graph

RECU_Ratio 5 0 application No

Specializability SPECIAL 25 0 class Yes
Testability TESTAB 100 0 class Yes
Ratio of repeated inheritances
in the application

URI_Ratio 10 0 application Yes

Usability USABLE 10 0 class Yes
Vocabulary frequency VOCF 4 1 funcion No

Table 2 - List of metrics (based on C++)

In summary, applying this quality model consist of:

- Measure the value of the metrics in Table 2, combine them using the provided models and
identify these areas that should be improved. It should be noted the failure of one single metric
does not provide enough information to evaluate the code. Metrics have to be combined using
the models. The measurement can be fully automated using Logiscope and batch processing
(see [RD-5]).

- Go through the checklists at the beginning and end of the lifecycle phases of the project
ensuring that the relevant requirements are taken into account and verified

2.3 The quality models
The experience in using the model has shown that the maintainability metrics cannot be used without
further processing. One single metric does not provide reliable information about a piece of code. A
VERSION: 1.0 DRAFT B - 2004-12-01 5 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

combination of them has to be used instead. Unfortunately [RD-3] does not define any criteria to classify
the combination of the values of the metrics. Therefore two approaches are proposed. The first approach
is based in using the model proposed by Logiscope (with some minor corrections taken from SPEC). The
second approach is based on mapping SPEC metrics to Logiscope metrics and defining a “SPEC”
quality model based on them so that the code can be automatically reviewed.

2.3.1 The “logiscope” quality model for maintainability

The so-called maintainability model is based on factors (goal properties in [RD-3] terminology) and each
factor is based on a number of criteria (properties in [RD-3] terminology). Each criterion corresponds to a
weighted combination of metrics. The next sections will show the models used at the levels of
application, class and methods.

For each factor and criterium, Logiscope provides a scale of results (poor, fair, good and excellent).
Results labelled poor (be it a function, class or application level) should be investigated and corrected or
justified.

2.3.1.1 Logiscope model for applications

Factor Criterion
application_MAINTAINABILITY application_TESTABILITY

 application_STABILITY
 application_CHANGEABILITY
 application_ANALYZABILITY

Table 3 - Factors at aplication level in the Logiscope model

Criterion Metric Weight
application_ANALYZABILITY RECU_Ratio 1.0

 ap_cof 1.0
 ap_mif 1.0
 ap_aif 1.0
 AVG_CBO 1.0
 ap_inhg_levl 1.0

application_CHANGEABILITY ap_mif 1.0
 ap_pof 1.0
 NMM_Ratio 1.0
 URI_Ratio 1.0
 ap_inhg_levl 1.0

application_STABILITY ap_cof 1.0
 ap_ahf 1.0
 ap_mhf 1.0
 ap_inhg_cpx 1.0
 AVG_CBO 1.0

application_TESTABILITY ap_cg_levl 1.0
 ap_ahf 1.0
 ap_mhf 1.0
 NMM_Ratio 1.0
 AVG_VG 1.0

Table 4 - Criteria at application level in the Logiscope model

2.3.1.2 Logiscope for classes

Factor Criterion
class_MAINTAINABILITY class_TESTABILITY

VERSION: 1.0 DRAFT B - 2004-12-01 6 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

 class_STABILITY
 class_CHANGEABILITY
 class_ANALYZABILITY

class_REUSABILITY class_ANALYZABILITY
 class_SPECIALIZABILITY
 class_USABILITY

Table 5 - Factors at class level in the Logiscope model

Criterion Metric Weight
class_ANALYZABILITY COMFclass 1.0

 FAN_OUTclass 1.0
 FAN_INclass 1.0
 cl_dep_meth 1.0
 in_bases 1.0
 cl_wmc 1.0

class_CHANGEABILITY SPECIAL 1.0
 USABLE 1.0
 ENCAP 1.0

class_STABILITY cu_cdusers 1.0
 cl_cobc 1.0
 In_noc 1.0
 AUTONOM 1.0

class_TESTABILITY cu_cdused 1.0
 TESTAB 1.0
 in_bases 1.0

class_USABILITY AUTONOM 1.0
 ENCAP 1.0
 USABLE 1.0

class_SPECIALIZABILITY AUTONOM 1.0
 ENCAP 1.0
 SPECIAL 1.0

Table 6 - Criteria at class level in the Logiscope model

2.3.1.3 Logiscope foir methods and functions

Factor Criterion
function_MAINTAINABILITY function_TESTABILITY

 function_STABILITY

 function_CHANGEABILITY

 function_ANALYZABILITY

relativeCall_MAINTAINABILITY relativeCall_TESTABILITY

 relativeCall_STABILITY

 relativeCall_ANALYZABILITY

Table 7 - Factors at method level in the Logiscope model

Criterion Metric Weight

VERSION: 1.0 DRAFT B - 2004-12-01 7 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

Function_TESTABILITY ic_param 1.0

 ct_path 1.0

 LEVL 1.0

 dc_calls 1.0

function_STABILITY ic_param 1.0

 dc_calls 1.0

 ct_exit 1.0

 ic_varpe 1.0

 dc_calling 1.0

Function_CHANGEABILITY ct_bran 1.0

 VOCF 1.0

 dc_lvars 1.0

 ic_param 1.0

function_ANALYZABILITY COMF 1.0

 AVGS 1.0

 lc_stat 1.0

 ct_vg 1.0

relativeCall_ANALYZABILITY cg_levels 1.0

 cg_strucpx 1.0

RelativeCall_STABILITY cg_hiercpx 1.0

 IND_CALLS 1.0

relativeCall_TESTABILITY IND_CALLS 1.0

 cg_testab 1.0

Table 8 - Criteria at method level in the Logiscope model

2.3.2 The “SPEC” model for maintainability
Using the mapping defined in A.2, it is possible to create a second model that will report any non-
compliance with a SPEC maintainability model. The evaluation of the results of this model is based on a
discrete failed/passed output for each factor and criterium which can be traced to a specific metric. Non-
compliances with SPEC shall be investigated and corrected or justified. A known problem of SPEC is the
use of switch constructs as they can easily break the maximum cyclomatic number. If such an error is
reported it can be ignored.

2.3.2.1 Logiscope metrics used in SPEC

The Logiscope metrics used to build the SPEC model are reported in A.2. To simplify the reading of the
tables, the equivalent SPEC metric has been provided in an extra column.

2.3.2.2 SPEC for applications

Factor Criterion
application_SPEC application_SPEC_modularity

VERSION: 1.0 DRAFT B - 2004-12-01 8 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

Table 9 - Factors at application level in the SPEC model

Criterion Metric
(logiscope)

Metric (SPEC) Min Max Weight

application_SPEC_modularity ap_cbo MAIN.MO.M3 - - 1.0
Table 10 - Criteria at application level in the SPEC model

2.3.2.3 SPEC for classes

Factor Criterion
class_SPEC class_SPEC_Modularity

 class_SPEC_Documentation
Table 11 - Factors at class level in the SPEC model

Criterion Metric
(Logiscope)

Metric (SPEC) Min Max Weight

class_SPEC_Documentation COMFclass DOQ.AD.M1 .3 1 1.0
class_SPEC_Modularity cu_cdused MAIN.MO.M1 0 7 1.0

Table 12 Criteria at class level in the SPEC model

2.3.2.4 SPEC for methods and functions

Factor Criterion
SPEC function_SPEC_verifiability

 function_SPEC_modularity
 function_SPEC_Documentation
 function_SPEC_Analysablity
Table 13 - Factors at method level in the SPEC model

Criterion Metric
(logiscope)

Metric (SPEC) Min Max Weight

function_SPEC_Analysablity LEVL MAIN.AN.M4 1 4 1.0
 lc_stat MAIN.AN.M7 1 20 1.0
 AVGS MAIN.AN.M6 1 7 1.0
 ct_vg MAIN.AN.M2 1 12 1.0

function_SPEC_Documentation COMF DOQ.AD.M1 .31 1 1.0
function_SPEC_modularity lc_stat MAIN.AN.M7 1 20 1.0
function_SPEC_verifiability ct_vg MAIN.AN.M2 1 12 1.0

Table 14 - Criteria at method level in the SPEC model

2.4 Mapping to SPEC
This section presents a simplified mapping to SPEC where only goal properties are taken into account.
A detailed mapping (based on metrics) can be found in section 3. Metrics are only relevant for the
property maintainability2. The mapping between checks and goal properties is provided in Table 15. For
C++ code, the metric URI_Ratio (Ratio of repeated inheritances in the application) can be mapped to the
existing coding standard rule PC.26.C++.D, which completely forbids diamond shaped inheritances (the
value of this metric should therefore been set to zero for C++).

Goal property as defined in [RD-3] Checklist used

1 Value changed with regard to the original SPEC proposal

2 The metric number of application classes (ap_class) is also mapped to re-usability, however, there
are no values imposed for this metric and therefore it is not considered.

VERSION: 1.0 DRAFT B - 2004-12-01 9 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

Documentation Quality Documentation Checks
Functionality Traceability checks

PA checks
Documentation checks
Static analysis

Maintainability Static analysis
Documentation checks
PA checks

Operability Documentation checks
Operability checks

Reliability Reliability checks
Re-usability Reusability checks
Suitability for safety Safety checks
Software Development Effectiveness Process checks
System Engineering Effectiveness Effectiveness checks

Table 15 - Association of checks and goal properties

2.5 Checklists

2.5.1 Documentation Checks
The check procedure shall ensure that:

ARCHITECTURAL DESIGN DOCUMENTATION
- There are no ambiguities
- The object oriented approach is applied consistently.
- A top-down approach I used to decompose the software into components
- Design trade-offs are properly documented.
- The architectural design contains a `physical model', which describesthe design of the software using
implementation terminology.
- For each component the following information is detailed:data input;functions to be performed;data
output.
- Re-used components are clearly identified.
- COTS are clearly identified.
- Data structures that interface components are defined.
- Data structure definitions include the:
* Description of each element (e.g. name, type, dimension);
* relationships between the elements (i.e. the structure);
* range of possible values of each element;
* initial values of each element.
- The control flow between the components is defined
- The architectural design defines the major components of the software and the interfaces between
them.
- The architectural design defines or references all external interfaces
- The architectural design documentation covers all the software requirements
- CPU and memory shall be confirmed in accordance with the margins set by the system requirements.
- A table cross-referencing software requirements to parts of the architectural design is provided
- The architectural design is sufficiently detailed to allow the project leader to draw up a detailed
implementation plan and to control the overall project during the remaining development phases
- The detailed design defines all components

REQUIREMENTS
- There are no conflicting requirements
- There are no ambiguous requirements
- The set of requirements defines the system completely
- There are no replicated erquirements

VERSION: 1.0 DRAFT B - 2004-12-01 10 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

USER DOCUMENTATION
- The User manual contains an overview of the system
- Each operation is described in the User manual
- Cautions and warnings are described in the User manual
- For each operation the User manual provides:
* set-up and initialisation
* input operations
* What results to expect
- The User manual provides probable errors and possible causes
- The User manual reports error messages and recovery procedure
- The user manual covers all software requirements
- The complete set of documentation is available on-line and can be easily accessed by typing keywords
or using a context-based help environment

OTHER DOCUMENTATION
- Traceability matrixes ensure that each input to a phase is traceable to an output of that phase
- Traceability matrixes ensure that each output to a phase is traceable to an input of that phase
- The validation tests are properly documented reporting test design, cases, procedures and reports
- The test documentation include traceability (validation tests shall be traceable to the user requirement
or upper level technical specification)

2.5.2 effectiveness checks
The check procedure shall ensure that:
- The system components interfaces have been analyzed
- All Interface control Documents are available
- The correct implementation of the interfaces of the software component
with other system components has been verified

2.5.3 Operability checks

The check procedure targets the installation and checkout phases and shall ensure that

- A reliable estimate of how long the installation/upgrade should take is described in the installation kit
- The installation documentation includes an accurate specification of all of:
* required platform
* Operating system
* Other SW required
* other prerequisites
- The software automatically checks that all required installation files etc. are present on the distribution
medium and advices the operator if files are missing
- There a set of step-by-step instruction in a manual computer-based installation guide or easily accessed
file in the distribution medium that efficiently and unambiguously guides the installation
- If options relating to the customisation of the software are offered to the operator, default options are
proposed and explained in understandable terms
- Help is provided to operators on the choice of non-default options
- Installation is allowed in operator-specified directory or disk
- The operator can roll-back to a previous step in the procedure without prejudice (i.e. it is not necessary
to re-start whole procedure if , for example, the operator changes his mind about a choice of option)
- If the installation/upgrade process automatically modifies existing files, such as those associated with
the environment (e.g. PATH), the operator is informed
- The installation procedure be cancelled at any time
- If new directories are automatically created, the operator is informed
- If new files are automatically added to existing directories the operator is informed
- Product-parts are suitably identified, inventoried and referenced without confusion in
installation/upgrade instructions
- The distribution medium is protected so that operators cannot inadvertently overwrite it
- The execution of the installation procedure is problem free
- Names of application-specific menus, functions, commands, keywords etc. are self-explanatory.

VERSION: 1.0 DRAFT B - 2004-12-01 11 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

- Name of Application-specific menus, functions, commands, keywords are easy to remember
- Application-specific Icons and other displayed objects have an obvious meaning
- Actions on application-specific objects are generic
- At least 90% of each of the following conform to a common layout:
* Data entry panels and forms
* Data display panelsFields
* Menus
* Command-lines
* Prompts
* Error messages
* Help information
- There are consistent conventions for:
* Operation of selection mechanisms
* Actions of non-application-dependent function keys, buttons
* Operations on windows
- Display screens and panels are well laid-out and uncluttered
- Character-sets, icons, graphics, etc. have good legibility
- Window manipulation functions include a:
* Close function
* Moving function
* Restore function
* Resize function
* Minimise function
* Maximise function
- Allows operator to save files in operator-specified directory/filename
- Prompts operator to save work whenever closing or quitting (i.e. does not just exits)
- Open files with the proper extension
- Files export to other applications
- Print to networked printer
- On completion of a function, the operator is told (or can easily find out) which functions he/she can
invoke next (e.g. by means of a function menu-bar)
- On completion of a function, the operator can directly move the program into a familiar, ‘home’ state
(e.g. into a root-menu)
- The design of menus, commands, selection mechanisms, etc. lets the operator move quickly to where
he/she wants to go:
* minimum number of elementary operator-actions required to move between the two most ‘distant’
functions
* number of elementary operator-actions required to select the ‘deepest’ function from the opening
program-state
- Input data-fields are validated to the maximum possible extent given the context
- Elementary input-device mis-operations are trapped and signaled appropriately
- Interface recover gracefully form anticipated operator errors (e.g. (invalid inputs)
- Operator error-messages show the location and type of errors, and explain how to correct the error (this
information can be either on-line or located in the operator documentation)
- The system automatically proposes corrections to clearly correctable operator-errors
- Operator error-correction and roll-back functions are adequate (e.g. during an update, original data
should be recallable)
- The system warns the operator before implementing operator-actions that could have serious
consequences
- Where important, the system forces the operator to take data ‘backups’ to regularly change passwords
and to take other essential security measures.
- Instructions and functions are provided to restore the application after all but the most unlikely types of
system and program ‘crashes’.
- There is immediate feedback to show that the operator’s action is understood by the system
- The system keeps the operator informed on the progress of operations that require more than 5
consecutive seconds of internal processing (i.e. the operator is not left wondering if the system has ‘died’
during lengthy ‘silent’ functions)
- Advanced functions are ‘hidden’ or packaged so that beginners are not overwhelmed
- Operators are offered suitable default values and/or assistance in setting parameter values

VERSION: 1.0 DRAFT B - 2004-12-01 12 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

- ‘Fast-Track’ is available to experienced operators:
* command-language
* operator-definable macros
* operator-definable function-keys
- WYSIWYG by output editing/formatting functions is used
- Elementary operator-actions are processed quickly.
- The operator can suspend a current function, invoke other functions, and then resume the suspended
function
- The operator can choose his/her own names for persistent information-sets to which he/she makes
direct reference (data-files, directories, tables, etc.)
- The operator can change at least 90% of the following aspects of the operator-interface :
* The colors of displayed elements and objects
* The position of displayed elements and objects on the screen
* The size of displayed elements and objects
* The font size of alphanumeric characters
* The mapping of functions to key, buttons etc
* The name of operator-functions
* The arrangement of data in display-panels
* The arrangement of data in printed/plotted output
* The rate at which information is displayed
* The selection of I/O devices
- Technical support information is identical to that stated in documentation
- Detailed Help information is available
- Help system is on line and easy to use
- Hypertext links jump to proper subject
- Glossary and search capabilities work correctly
- No specific Hw set-up procedure shall be needed
- There shall be no need to re-boot the hardware after an error
- It shall be possible to execute all functions without any Hw constraint
Function execution shall not depend on the Hw
- Software outputs shall not be related to Hw configuration
- The software shall not require Hw related parameters
- Software shall not stop stop because of lack of resources (e.g.: memory, disk space)
- The software shall be easy to configure
- The man/machine interface software shall be in line with standards
- the usage of software shall be described in a user manual
- Error messages sent by the software shall be documented in a user manual
- Error messages shall not be related to Hw
- It shall be possible to identify easily which version of software is running
The user manual shall be « self sufficient »

2.5.4 PA checks

The check precedure shall ensure that
- All verification activities planned in the PA plan have been executed and documented in the progress
reports
- Verification activities take into account the criticality of the software
- Verification activities ensure that the product meets the quality, reliability, maintainability and safety
requirements (stated in the requirements)
- Walkthrough inspection are executed.
- Internal audits are executed before the release of the software
- Progress reports include statistics on:
* time spent on SPR corrections. An estimate of the number of hours spent for every 1000 lines of code
shall be provided.
* mean time to diagnose (MTTD) the cause of the failure in hours
* Number of problems introduced as a consequence of SPR correction

- The report warns if any of the following values have been exceeded:
VERSION: 1.0 DRAFT B - 2004-12-01 13 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

* 15 hours per 1000 lines of code
* 4 hours for MTTD
* more than 1 new problem for each solved SPR

2.5.5 Process checks

The check procedure shall ensure that:
- All the parties involved are ISO 9001 certified or present a S4S profile compliant with the following
values for the related processes (if the processes are relevant to their activities)
CUS.1.1-Acquisition preparation 3
CUS.1.2-Supplier selection 3
CUS.1.3-Supplier monitoring 3
CUS.1.4-Customer acceptance 4

- Coding standards are enforced and verified
- Reliability, maintainability and safety targets are defined (e.g. in requirements and checked)
- There are clear guidelines for configuration and change management and they are respected
- There is a software quality assurance plan that clearly establishes measurable quality objectives and
the methods to measure them
- There is a Software Development Plan that defines the objectives, standards and software life-cycle(s)
to be used in the software development process
- There is a Software Configuration Management Plan that establishes the methods to be used to
achieve the objectives of the software configuration management process throughout the software life
cycle.
- There is a Software Verification Plan specifying the verification procedures to satisfy the software
verification objectives (note: this may be presented as part of the software quality assurance plan).

- The Outputs of Software Requirements and architecture engineering Process are verified regarding:
* compliance of software requirements with system requirements
* accuracy and consistency of software requirements
* compatibility of software requirements with target computer
* verifiability of software requirements
* conformity of software requirements to standards
* traceability of software requirements to system requirements
* accuracy of algorithms
* software architecture compatibility with requirements
* software architecture compatibility with target computer
* software architecture verifiability
* software architecture conformity to standards
* confirmation of software integrity

- The Outputs of Software design and implementation engineering Processes are verified regarding
* source code compliance with requirements
* source code compliance with software architecture
* source code verifiability
* source code conformity to standards
* source code traceability to requirements
* source code accuracy and consistency
* The outputs of the software integration completeness and correctness

- The inputs of the software validation process are verified regarding
* Completeness of the testing specification
* Completeness of the validation activities (coverage of requirements)

- The outputs of the software validation process are verified regarding
* Completeness in the execution of the testing activities
* Completeness in the execution of the validation activities

VERSION: 1.0 DRAFT B - 2004-12-01 14 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

2.5.6 Reliability checks

The check procedure targets the operation of the system and shall ensure that:
- Illegal operations are always trapped and handled by the software
- Data corruption never occurs
- Mean Time To Failure (MTTF) is greater than 1000 hours
- No critical failure occurs
- Mean Time To Restart is defined in the requirements and tested successfully
- Mean Time To Recover is defined in the requirements and never exceeded
Design components and software modules are associated to specific reliability values and tested
successfully (MTTR and MTTF)
- A dependability analysis has been executed during software specification and the software
requirements have been enhanced in line with this analysis (the analysis should provide at least the list of
critical functionality)
- Test execution is run in accordance to the module criticality classes
- Possible fault patterns have been identified (during the dependability analysis) and failure avoidance
mechanisms have been implemented and successfully tested

2.5.7 Reusability checks

The check procedure targets the documentation and shall ensure that:
A) In case of software design for reuse
- There are requirements targeting the future reuse
- The organization and content of the user manuals is suitable for reuse of the software (in-line with
requirements)
- The definition of reusability limitation and criticality class reusability is stated
- Software units intended to maintain its correct behaviour in another environment are tested for that

B) In case of software reused from another mission/source
- Justification of re-use with respect to requirements baseline is provided

2.5.8 Safety checks

The check procedure shall ensure that:
- A safety analysis has been executed
- Criticality Classes are identified (often by using traces from critical requirements to architecture). The
architectural design documentation shall clarify at least which components are mission critical
- A Software Safety Plan is defined (if applicable), specifying activities to be carried out, the
implementation schedule and the resulting products.
- Hardware/software interactions for safety are identified and evaluated (if applicable)
- ISVV activities plan are provided (if applicable), to identify, taking into account the outcomes of the
software safety analysis, the ISVV activities to be performed. The ISVV activities include reviews,
inspections, testing and audits
- Software safety requirements are defined (involving analysis of system safety requirements, hardware,
software and user interfaces, and areas of system performance)

2.5.9 Static analysis

The analysis shall ensure that:
- There are no SPRs open in the system
- The ration SPR/lines of code is less than 0.001 (I.e. no more than 1 SPR every 1000 lines of code)
- The code complies with mandatory coding standards

This analysis can be supported by tools and SPR statistics. SPR refers to SPRs detected after delivery
VERSION: 1.0 DRAFT B - 2004-12-01 15 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

2.5.10 Traceability checks

The check precedure shall ensure that
- All software requirements are traced to system requirements
- All software requirements have been successfully tested
- All requirements are implemented and tested (this includes requirements on performance, resources,
etc)

VERSION: 1.0 DRAFT B - 2004-12-01 16 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

3. Definition of the static model

3.1 Introduction
In order to perform the verification of the software coding rules a mechanism was depicted to classify and
verify the compliance of delivered source code against the established coding standards, [RD-6] and
[RD-9].

In addition to this classification and in order to ease the conformance verification process the coding rules
text was analysed and two classes of verification were identified: automated verification and manual
verification. This is detailed in section 3.3.

3.2 Rule classification
An analysis of the rules defined in [RD-6] was performed and these were aggregated in three different
categories:

Category ID Description

Core rules
These rules are considered mandatory and shall be followed in the software
development projects.

Recommended
Rules These rules should be followed in the software development projects.

De-scoped rules
These rules are de-scoped due to their non-compliance with the existing code base
and should not be followed in software development cycles.

Table 16 - Static Rules Classification

The prioritisation of the rules is done in Table 17 - Core Static Rules, Table 18 - Recommended Static
Rules and Table 19 - De-Scoped Static Rules. For each rule a short description is also provided but the
user is deferred to [RD-6] for the rule complete text and examples.

3.2.1 Core Rules
Rule ID Rule title

Appendix 1 Header and implementation file outlines
GC.1.C++ Never break a rule without documenting it.

GC.10.C++
Provide meaningful, saying comments in the source code and make sure that they are kept
up to date.

GC.12.C++
Use appropriate tools to ensure that the code conforms to the rules and to catch potential
problems as early as possible.

GC.13.C++ Write the comments in the common language of the project.
GC.14.C++ avoid "fancy-layout" comments because they require time and effort to maintain.
GC.14.C++.A Comments must add to the code, not detract from it.
GC.15.C++ Comments should never be used for "commenting out" code

GC.2.C++
Maintain the source code and associated files under configuration control system and
document cm information in the files.

GC.3.C++ Use a "makefile" or its equivalent for building the application
GC.4.C++ Write the software to conform to the coding language international standards
GC.5.C++ Do not rely on compiler specific features.
GC.7.C++ Use independent tools to provide additional warnings and information about the code.
GC.8.C++ Always identify the source of warnings and correct the code to remove them.
GC.9.C++ Do not attempt to optimize the code until it is proved to be necessary.
GL.11.C++ Each file shall contain a standard comment header block.

GL.12.C++
Each file header block shall contain information on configuration management, tracking of
changes, spr numbers, name of author etc.

VERSION: 1.0 DRAFT B - 2004-12-01 17 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

GL.15.C++ The interface file shall contain declarations only.

GL.2.C++
Each nested block of code, including one-line blocks, shall be identifiable through the code
layout.

GL.2.C++.A All aspects of indentation and formatting shall be consistent within a project.

GL.4.C++
Each project shall define its own indentation rules (e.g. the contents of each nested block
shall be indented by 3 spaces compared to the token which delimit the block).

GL.5.C++ Tabs are not allowed.

GL.6.C++
Use separate folders for each of the subsystems and libraries defined during the design
phase.

GL.7.C++.A Never use goto, longjmp(), setjmp(), malloc(), free(), realloc()
GL.9.C++ Source code shall be separated into an interface and an implementation file

NC.5.C++
Names for system global entities shall contain a prefix, which denotes which subsystem or
library contains the definition of that entity.

NC.6.C++.B Variables with large scopes are not allowed to have generic names.
NC.7.C++ Each project shall define its own specific rules for naming conventions.

NC.7.C++.A
Any operation that matches one of the descriptions below should use the corresponding
term as the first part of its name.

NC.7.C++.B
Accessor functions for an attribute shall always be based on the attribute name without the
m_ prefix .

NC.8.C++
User defined type and class names consist of one or more words where each word is
capitalised plus an appropriate prefix or suffix.

PC.10.C++ All local variables shall be initialised in their declaration.
PC.10.C++.A Avoid global data if at all possible. static class data provides a much better alternative.
PC.10.C++.B No direct access to neither public nor private class variables are allowed.

PC.13.C++
Conditional expressions must always compare against an explicit value with boolean
expressions as an exception.

PC.13.C++.A The programmer must not override the comma, &&, || and ?: operators.

PC.14.C++
The programmer shall make sure that the order of evaluation of the expression is defined
by typing in the appropriate syntax, by using parenthesis.

PC.15.C++
The programmer must use parentheses to make intentions clear, when it is needed for
improving readability

PC.18.C++.A Allocation using shall use new/delete.
PC.18.C++.B If the call to new uses [] then the corresponding call to delete must also use [].
PC.18.C++.C After calling delete set the pointer to null (or 0)
PC.20.C++ The return values of functions should be checked for errors.

PC.22.C++.A
When fallible functions fail, they shall indicate that they have failed by returning an error
code or an out-of-bound value

PC.22.C++.B
Fallible functions should never return a reference when fallible functions fail, they shall
indicate that they have failed by returning an error code or an out-of-bound value

PC.22.C++.C
When fallible functions fail in ways that are fully described by their return value, they should
not raise an msg error or warning.

PC.22.C++.D When infallible functions fail, they should raise a fatal error.
PC.22.C++.E Whenever a fallible function is called, the return code shall always be checked.
PC.22.C++.G C++ exceptions shall never be used without an appropriate design concept
PC.23.C++ the programmer should use "problem domain" types rather than implementation types.
PC.24.C++ Use non-portable code shall be minimized.

PC.24.C++.A
The programmer may only assume range(char) < range(short) <= range(int) <=
range(long).

PC.24.C++.B
The programmer may only assume that range(float) <= range(double) <= range(long
double)

PC.24.C++.C
The programmer may not assume knowledge of the representation of data types in
memory, which implies that the use of memory dumps are forbidden.

PC.24.C++.D The programmer may not assume that different data types have equivalent representations
VERSION: 1.0 DRAFT B - 2004-12-01 18 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

in memory.

PC.24.C++.E
The programmer may not assume knowledge of how different data types are aligned in
memory.

PC.24.C++.F The programmer may not assume that pointers to different data types are equivalent.
PC.24.C++.G The programmer may not mix pointer and integer arithmetic.
PC.24.C++.H It is not allow to use void pointers.

PC.24.C++.I
The programmer must use a wider type or unsigned values when testing for underflow or
overflow.

PC.24.C++.J the programmer must be careful when assigning "long" data values to "short" ones.

PC.25.C++.A
each case within a switch statement must contain a break statement or a "fall-through"
comment.

PC.25.C++.B All switch statements shall have a default clause.

PC.26.C++
In class declarations shall the declaration of public, protected and private data and
functions be clearly separated and only one section for each type.

PC.26.C++.B
Classes for which it is not intended to instantiate any objects should be abstract - i.e. they
should contain at least one pure virtual function.

PC.26.C++.D Diamond-shaped inheritance hierarchies are not allowed.
PC.27.C++ class member variables must not be declared "public".
PC.27.C++.E Inline functions should be defined within the class definition.
PC.28.C++ It shall be ensured that an object of a class is created in a controlled manner
PC.29.C++ It shall be ensured that an object of a class is deleted in a controlled manner.
PC.3.C++ Global entities must be declared in the interface file for the module.

PC.30.C++.A
Base classes (capable of being derived) should have virtual destructors. but there is no
need to have virtual destructor when the class may not be derived from

PC.31.C++ It shall be ensured that an object of a class is copied in a controlled manner.
PC.31.C++.B Any non-member, non-global function shall be explicitly declared static

PC.31.C++.C

In a function declaration, the names of formal arguments shall be specified and should be
meaningful. if the function definition uses the parameters, the names should match the
declaration.

PC.32.C++ Member functions shall have a standard layout.

PC.33.C++
Constructor functions which explicitly initialize any base class or member variable should
not rely on a particular order of evaluation.

PC.34.C++
Objects should be constructed and initialized immediately if possible rather than be
assigned after construction.

PC.35.C++ The class should always declare an assignment operator
PC.36.C++ The assignment operator(s) must check for assigning an object to itself.

PC.37.C++.A

When possible, always use initialisation and initialisation list instead of assignment. this
means the copy constructor is called, rather than the default constructor followed by an
assignment operator.

PC.4.C++ Declarations of "extern" variables and functions may only appear in interface files.

PC.47.C++
A full function prototype shall be declared in the interface file(s) for each globally available
function.

PC.48.C++ Each function shall have an explanatory header comment

PC.48.C++.A
Each function shall have an explicit return type. a function, which returns no value, shall be
declared as returning "void".

PC.5.C++.A Declarations of static or variables and functions may only appear in classes.
PC.5.C++.B All non-global variables and constants shall be explicitly declared static.
PC.51.C++ A function may not return a reference or pointer to one of its own local automatic variables.

PC.7.C++
Symbolic constants shall be used in the code. "magic" numbers and strings are expressly
forbidden.

PC.7.C++.A

Never use numbers in code, nor any 'hardcoded' string, except when the use of these
numbers is obvious - for instance in mathematical expressions, loop counter initialisation
and limit checking.

VERSION: 1.0 DRAFT B - 2004-12-01 19 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

PC.8.C++
All symbolic constants shall be declared using an enumeration technique or the const
keyword if the actual language provides such a facility.

PC.9.C++ Each variable shall have its own declaration, on its own line.

PM.1.C++
Each filename shall provide indication of modular relationship as well as functionality
implemented.

PM.1.C++.A

For each class the implementation shall be distributed in two files, one for the interface
specification and one for the actual implementation respectively with the .h and .c
extensions.

PM.1.C++.B The first 3-5 letters of the filename shall indicate to which module the code belongs.

PM.2.C++.A
The programmer shall consciously use the namespace facilities to organize his name
scopes.

Table 17 - Core Static Rules

3.2.2 Recommended Rules
Rule ID Rule title

GC.11.C++ Minimize any debugging code.

GL.1.C++
Each project shall define the maximum length in characters of the source code lines (e.g.
each line of source code shall be no more than 80 characters in length).

GL.10.C++ The interface file must be the first included in its own corresponding implementation file.
GL.13.C++ The public interface file shall be self-contained and self-consistent.

GL.8.C++
Use a utility or proforma to provide the starting point for all files within each particular
subsystem, library or module.

NC.1.C++ Names shall in general not start with an underscore character (_).
NC.11.C++ Each enumeration within an enumerated type shall have a consistent prefix.
NC.2.C++ Names shall be meaningful and consistent.
NC.3.C++ Names containing abbreviations should be considered carefully to avoid ambiguity.
NC.4.C++ Avoid using similar names, which may be easily confused or mistyped.

NC.6.C++.A
Names, which have wide scope and long lifetimes, should be longer than names with
narrow scope and short lifetimes.

PC.11.C++.B

Every c++ program using exceptions must use the function set_unexpected() to specify
which user defined function must be called in case a function throws an exception not listed
in its exception specification.

PC.16.C++ The programmer must always use parentheses around bitwise operators.
PC.17.C++.B Other operators should be surrounded by white space.
PC.19.C++ The programmer should validate function parameters where possible.

PC.2.C++
Entities should be declared to have the shortest lifetime or most limited scope that is
reasonable.

PC.21.C++ Diagnostic code should be added to all areas of code, which "should never be executed".

PC.22.C++
Error messages are not allowed to be hard coded, but shall be handled through some sort
of central error message definition.

PC.26.C++.A
Any collection of data that does not warrant the work of writing a full class (e.g. defining
accessor functions) should be defined as a struct.

PC.26.C++.C Use of inheritance from non-abstract classes shall be minimised.

PC.28.C++.A
Avoid the use of global objects with constructors. the order in which global objects are
initialised is not defined and can lead to 'chicken and egg' problems.

PC.31.C++.A Stick to established conventions for overloaded operators.
PC.37.C++ The assignment operator(s) must also assign base class member data.
PC.38.C++ The assignment operator(s) should return a reference to the object.

PC.39.C++

Symmetric operators, with the exception of assignment operator, should be defined as
friend functions. All asymmetric operators (i.e. (), [], unary * and unary ->) must be defined
as member functions.

PC.40.C++ Member functions, which do not alter the state of an object, shall be declared ""const""."
VERSION: 1.0 DRAFT B - 2004-12-01 20 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

PC.41.C++
Public member functions must not return non-const references or pointers to member
variables of an object.

PC.43.C++
Member functions shall only be declared as ""inline"" if the need for optimization has been
identified”

PC.44.C++ A function shall not be declared as ""inline"" within the class definition itself."
PC.45.C++ Generic units should be encouraged as a convenient way of reusing code.

PC.45.C++.A
Templates should only be used if all instantiations of the template will use the same
algorithms.

PC.45.C++.B
There should be no functions in a template that do not depend on the type the template is
instantiated for.

PC.45.C++.E If templates are used then auto_ptr pointers should be preferred to normal pointers

PC.45.C++.F
All generic code shall work without modification when passed a valid subclass of a class it
is expecting as an argument.

PC.45.C++.G All functions should use references or pointers to base classes wherever possible.

PC.46.C++
The use of type conversion shall as widely as possible be avoided in order to maintain
compiler specific type checking.

PC.46.C++.A Do not write code that force people to use explicit casts.
PC.49.C++ A parameter, which is not changed by the function, should be declared ""const""."
PC.50.C++ The layout of a function shall be well defined and used throughout the project.
PC.51.C++.A In order to pass an object of type t as a function argument, use type:
PC.52.C++ Records/structs should be converted to explicit tagged types/classes where possible.
PC.53.C++ The use of design patterns shall be done as much as possible

PC.6.C++
Declarations should appear in predefined order (e.g. constants and macros; types, structs
and classes; variables; and functions).

Table 18 - Recommended Static Rules

3.2.3 De-scoped Rules
Rule ID Rule title

NC.10.C++ Class names shall begin with "c" or end with "_c" or "_class"."
NC.9.C++ User defined type names shall begin with "t" or end with "_t" or "_type"."
PC.22.C++.F Calls to new should be assumed to succeed.

Table 19 - De-Scoped Static Rules

3.3 Compliance methodology
To verify the standards compliance each rule was analyzed to identify a method for checking
compliance, being two major categories depicted:

• Automated check:
This will make use of automated testing tools, in our case the Logiscope suite from Tau

Telelogic.
• Manual inspections:

This comprises the manual inspection of build outputs, log files, documents and source code.

3.3.1 Automated checks
The table below presents the mapping between the rules from [RD-6] to the Tau Telelogic tool Logiscope
set of checks. As can be observed, there are several cases where one single Logiscope check, e.g. ansi,
verifies more than one coding convention rule and where one rule is verified in more than one logiscope
check. The reader is deferred to [RD-8] for the detailed description of the Logiscope checks.

In the cases where the mapping to the C++ Naming and Coding Conventions [RD-6] is not possible it is
attempted to map against the BSSC C and C++ Coding Standards [RD-9] rules. This mapping is
presented in the comment column.

VERSION: 1.0 DRAFT B - 2004-12-01 21 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

Logiscope check Rule Ids Comment
ansi PC.33.C++, PC.32.C++
ansi PC.31.C++.C
asscon PC.13.C++
boolean PC.13.C++
cast EMPTY Not in C++ coding conventions but Rule 91 of the BSSC
cmclass PC.26.C++
cmdef GL.9.C++, GL.15.C++

const
PC.7.C++.A, PC.7.C++,
PC.8.C++

constrcpy PC.31.C++
constrdef PC.28.C++

constrinit
PC.34.C++, PC.37.C++.A,
PC.28.C++

ctrlblock Gl.3.C++
delarray PC.18.C++.B
destr PC.29.C++

dmaccess
PC.10.C++, PC.27.C++,
PC.10.C++.B

exprparenth PC.14.C++, PC.15.C++
fntype EMPTY Not in C++ coding conventions but Rule 61 of the BSSC
funcres GL.7.C++.A
headercom GL.11.C++
hmclass GL.9.C++, PC.6.C++

hmdef
PM.1.C++.A, PC.6.C++,
GL.9.C++

hmstruct GL.11.C++
identfmt NC.1.C++
imptype PC.32.C++, PC.33.C++
inldef PC.27.C++.E, GL.15.C++
mname PM.1.C++
multiass EMPTY
multinher PC.26.C++
nonleafabs PC.26.C++, PC.26.C++.B
nostruct PC.52.C++
operass PC.35.C++
overload PC.13.C++.A
ptrinit PC.34.C++
refclass PC.38.C++
returnthis PC.36.C++
sectord Appendix 1
sgdecl PC.10.C++, PC.9.C++
slcom EMPTY Not in C++ coding conventions but Rule 14 of the BSSC

swdef
PC.25.C++.B,
PC.25.C++.A

swend PC.25.C++.A
varinit PC.37.C++, PC.10.C++
virtdestr PC.30.C++.A
voidptr PC.24.C++.H

VERSION: 1.0 DRAFT B - 2004-12-01 22 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

Table 20 - Automated Static Checks

3.3.2 Manual Inspections
There are rules that, due to their nature, cannot be verified by means of automated tools such as Tau
Telelogic’s Logiscope Rulechecker [RD-8] and where the manual intervention is required. These rules,
as defined in [RD-6], are presented in Table 21 - Manual Static Checks.

Rule ID Inspection methodology
GC.1.C++ Manual Inspection (Visual Observation)
GC.10.C++ Logiscope Auditing + Manual Inspection (Visual Observation)
GC.13.C++ Manual Inspection (Visual Observation)
GC.14.C++ Manual Inspection (Visual Observation)
GC.14.C++.A Manual Inspection (Visual Observation)
GC.15.C++ Manual Inspection (Visual Observation)
GL.11.C++ Logiscope Rulechecker + Manual Inspection (Visual Observation)
GL.12.C++ Manual Inspection (Visual Observation)
GL.6.C++ Documentation + Manual Inspection (Visual Observation)
NC.5.C++ Manual Inspection (Visual Observation)
NC.6.C++.B Manual Inspection (Visual Observation)
NC.7.C++.A Manual Inspection (Visual Observation)
NC.7.C++.B Manual Inspection (Visual Observation)
NC.8.C++ Manual Inspection (Visual Observation)
PC.18.C++.C Manual Inspection (Visual Observation)
PC.20.C++ Manual Inspection (Visual Observation)
PC.22.C++.A Manual Inspection (Visual Observation)
PC.22.C++.B Manual Inspection (Visual Observation)
PC.22.C++.C Manual Inspection (Visual Observation)
PC.22.C++.D Manual Inspection (Visual Observation)
PC.22.C++.E Manual Inspection (Visual Observation)
PC.23.C++ Manual Inspection (Visual Observation)
PC.24.C++ Manual Inspection (Visual Observation)
PC.24.C++.C Manual Inspection (Visual Observation)
PC.24.C++.D Manual Inspection (Visual Observation)
PC.24.C++.E Manual Inspection (Visual Observation)
PC.24.C++.F Manual Inspection (Visual Observation)
PC.24.C++.G Manual Inspection (Visual Observation)
PC.24.C++.I Manual Inspection (Visual Observation)
PC.24.C++.J Manual Inspection (Visual Observation)
PC.3.C++ Manual Inspection (Visual Observation) + Logiscope Audit
PC.4.C++ Manual Inspection (Visual Observation) (grep tool)
PC.5.C++.A Manual Inspection (Visual Observation) (grep static)
PC.5.C++.B Manual Inspection (Visual Observation) + Logiscope Audit
PC.51.C++ Manual Inspection (Visual Observation)
PM.1.C++ Manual Inspection (Visual Observation)
PM.1.C++.B Manual Inspection (Visual Observation)

Table 21 - Manual Static Checks

VERSION: 1.0 DRAFT B - 2004-12-01 23 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

DETAILED MAPPING TO SPEC

A.1 SPEC metrics mapped to checks
Goal property Property SPEC metric Check

Documentation Quality Development & maintenance
documentation quality

DOQ.AD.M2 Documentation
Checks

Documentation Quality Development & maintenance
documentation quality

DOQ.AD.M3 Documentation
Checks

Documentation Quality Operation- related documentation
quality

DOQ.OD.M1 Documentation
Checks

Documentation Quality Operation- related documentation
quality

DOQ.OD.M2 Documentation
Checks

Documentation Quality Requirements quality DOQ.RQ.M1 Documentation
Checks

Documentation Quality Requirements quality DOQ.RQ.M2 Documentation
Checks

Documentation Quality Requirements quality DOQ.RQ.M3 Documentation
Checks

Documentation Quality Requirements quality DOQ.RQ.M4 N/A
Documentation Quality Requirements quality DOQ.RQ.M5 Documentation

Checks
Functionality Completeness FUN.CM.M1 Traceability checks
Functionality Completeness FUN.CM.M2 Traceability checks
Functionality Completeness FUN.CM.M3 Traceability checks
Functionality Completeness FUN.CM.M4 PA checks
Functionality Completeness FUN.CM.M5 Documentation

checks
Functionality Correctness FUN.CR.M1 EMPTY
Functionality Correctness FUN.CR.M10 Traceability checks
Functionality Correctness FUN.CR.M11 EMPTY
Functionality Correctness FUN.CR.M2 EMPTY
Functionality Correctness FUN.CR.M3 EMPTY
Functionality Correctness FUN.CR.M4 EMPTY
Functionality Correctness FUN.CR.M5 EMPTY
Functionality Correctness FUN.CR.M6
Functionality Correctness FUN.CR.M7 Static analysis
Functionality Correctness FUN.CR.M8 N/A
Functionality Correctness FUN.CR.M9 Traceability checks
Functionality Efficiency FUN.EF.M1 Traceability checks
Functionality Efficiency FUN.EF.M2 Traceability checks
Functionality Efficiency FUN.EF.M3 Traceability checks
Functionality Efficiency FUN.EF.M4 Traceability checks
Maintainability Analysability MAIN.AN.M1 Static analysis
Maintainability Analysability MAIN.AN.M3 Documentation

checks
Maintainability Analysability MAIN.AN.M5 Static analysis
Maintainability Analysability MAIN.AN.M8 Documentation

VERSION: 1.0 DRAFT B - 2004-12-01 24 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

Goal property Property SPEC metric Check
checks

Maintainability Changeability MAIN.CH.M1 PA checks
Maintainability Changeability MAIN.CH.M2 PA checks
Maintainability Changeability MAIN.CH.M3 PA checks
Maintainability Changeability MAIN.CH.M4 PA checks
Maintainability Portability MAIN.PO.M3 N/A
Maintainability Verifiability MAIN.VE.M1 N/A
Maintainability Verifiability MAIN.VE.M3 N/A
Operability Usability OPE.US.M1 Documentation

checks
Operability Usability OPE.US.M2 Documentation

checks
Operability Usability OPE.US.M3 N/A
Operability Usability OPE.US.M4 Operability checks
Operability Virtuality OPE.VI.M1 Operability checks
Reliability Integrity REL.IN.M1 reliability checks
Reliability Integrity REL.IN.M2 reliability checks
Reliability Maturity REL.MA.M1 reliability checks
Reliability Maturity REL.MA.M2 reliability checks
Reliability Maturity REL.MA.M3 N/A
Reliability Recoverability REL.RC.M1 reliability checks
Reliability Recoverability REL.RC.M2 Reliability checks
Reliability Reliability Evidence REL.RE.M1 Reliability checks
Reliability Robustness REL.RO.M1 Reliability checks
Reliability Robustness REL.RO.M2 Reliability checks
Re-usability Portability REU.PO.M3 N/A
Re-usability Re-usability Documentation REU.RD.M1 Reusability checks
Re-usability Self-contained functionality REU.SF.M1 Reusability checks
Suitability for safety Safety Evidence SAF.SE.M1 Safety checks
Suitability for safety Safety Evidence SAF.SE.M2 N/A
Suitability for safety Safety Evidence SAF.SE.M3 N/A
Suitability for safety Safety Evidence SAF.SE.M4 N/A
Software Development
Effectiveness

Software development process level SDE.DL.M1 Process checks

Software Development
Effectiveness

Software development process
evidence

SDE.PE.M1 Process checks

Software Development
Effectiveness

Software development process
evidence

SDE.PE.M2 Process checks

System Engineering
Effectiveness

Interfaces management SEE.IN.M1 effectiveness
checks

System Engineering
Effectiveness

Requirements propagation SEE.RQ.M1 N/A

System Engineering
Effectiveness

System engineering process evidence SEE.SE.M1 N/A

System Engineering
Effectiveness

System engineering process evidence SEE.SE.M2 N/A

System Engineering
Effectiveness

System engineering process evidence SEE.SE.M3 N/A

System Engineering System engineering process evidence SEE.SE.M4 N/A

VERSION: 1.0 DRAFT B - 2004-12-01 25 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

Goal property Property SPEC metric Check
Effectiveness

Table 22 - Mapping between SPEC metrics and checks in this model

A.2 SPEC metrics mapped to metrics

Goal property Property SPEC metric Metric name Logiscope
reference

Documentation
Quality

Development & maintenance
documentation quality

DOQ.AD.M1 Comments
frequency

COMF

Maintainability Analysability MAIN.AN.M2 Cyclomatic number
(VG)

ct_vg

Maintainability Analysability MAIN.AN.M4 Number of nestings LEVL
Maintainability Analysability MAIN.AN.M6 Average size of

statements
AVGS

Maintainability Analysability MAIN.AN.M7 Number of
statements

lc_stat

Maintainability Modularity MAIN.MO.M1 Number of direct
used classes

cu_cdused

Maintainability Modularity MAIN.MO.M2 Number of
statements

lc_stat

Maintainability Modularity MAIN.MO.M3 Coupling between
objects

ap_cbo

Maintainability Modularity MAIN.MO.M4 Lack of cohesion of
methods

cl_locm

Maintainability Portability MAIN.PO.M1 Number of
application classes

ap_clas

Maintainability Portability MAIN.PO.M2 Number of
application classes

ap_clas

Maintainability Verifiability MAIN.VE.M2 Cyclomatic number
(VG)

ct_vg

Re-usability Portability REU.PO.M1 Number of
application classes

ap_clas

Re-usability Portability REU.PO.M2 Number of
application classes

ap_clas

Table 23 - Mapping between SPEC metrics and metrics measured in this model

A.3 Additional metrics (not in SPEC)
Metric name Logiscope reference

Ratio of repeated inheritances in the application URI_Ratio
Percentage of non-member functions NMM_Ratio
Average coupling between objects AVG_CBO
Average of the VG of the application's functions AVG_VG
Ratio of recursive edges on the call graph RECU_Ratio
Method hiding factor (MOOD) ap_mhf
Attribute hiding factor (MOOD) ap_ahf
Method inheritance factor (MOOD) ap_mif
Attribute inheritance factor (MOOD) ap_aif
VERSION: 1.0 DRAFT B - 2004-12-01 26 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

Metric name Logiscope reference
Polymorphism factor (MOOD) ap_pof
Coupling factor (MOOD) ap_cof
Number of Levels in the Inheritance Graph ap_inhg_levl
Hierarchical Complexity of the Inheritance Graph ap_inhg_cpx
Number of Levels in the Call Graph ap_cg_levl
Fan in of a class FAN_Inclass
Fan out value of a class FAN_OUTclass
Class Comments Frequency COMFclass
Encapsulation rules ENCAP
Usability USABLE
Specializability SPECIAL
Rate of class autonomy AUTONOM
Testability TESTAB
Weighted Methods per Class cl_wmc
Number of base classes in_bases
Number of dependent methods cl_dep_meth
Number of children in_noc
Coupling between classes cl_cobc
Number of direct users classes cu_cdusers
Vocabulary frequency VOCF
Number of levels LEVL
Fan In FAN_IN
Fan Out FAN_OUT
Number of distinct uses of external attributes ic_varpe
Number of destructuring statements ct_bran
Number of parameters passed by value ic_parval
Number of parameters passed by reference ic_paradd
Number of out statements ct_exit
Number of paths ct_path
Number of direct calls dc_calls
Number of callers dc_calling
Number of local variables dc_lvars
Number of function parameters ic_param
Number of relative call graph levels cg_levels
Relative call graph Hierarchical complexity cg_hiercpx
Relative call graph Structural complexity cg_strucpx
Number of relative call graph call-paths IND_CALLS
Relative call graph System testability cg_testab

Table 24 - List of metrics that cannot be found in SPEC

Annex A QUALITY MODEL TREE
The table below provides the complete quality model as defined in [RD-3].

Goal property Property Metric Code

Code Comment frequency. DOQ.AD.M1 Documentation
Quality

Development &
maintenance Documentation clarity DOQ.AD.M2

VERSION: 1.0 DRAFT B - 2004-12-01 27 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

Goal property Property Metric Code
documentation quality

Documentation suitability DOQ.AD.M3

Documentation clarity DOQ.OD.M1 Operation- related
documentation quality

Documentation suitability DOQ.OD.M2

Number of conflicting requirements DOQ.RQ.M1
Requirements clarity DOQ.RQ.M2
Requirements completeness DOQ.RQ.M3
Requirements volatility rate DOQ.RQ.M4

Requirements quality

Requirements duplication DOQ.RQ.M5
Technical specification/ software requirements
mapping rate

FUN.CM.M1

Functional implementation coverage FUN.CM.M2
Requirements/program units mapping rate FUN.CM.M3
Verification activities mapping rate FUN.CM.M4

Completeness

Functional requirements/ user manual items
mapping rate

FUN.CM.M5

Statement coverage FUN.CR.M1
Interface testing completeness FUN.CR.M10
Run-time error verification FUN.CR.M11
Module branch coverage FUN.CR.M2
Condition coverage FUN.CR.M3
Test completeness FUN.CR.M4
Verification coverage FUN.CR.M5
Faults removed FUN.CR.M6
Fault density FUN.CR.M7
Computational Accuracy (dynamic) FUN.CR.M8

Correctness

Successful interface testing rate FUN.CR.M9
Timing margin FUN.EF.M1
Memory margin FUN.EF.M2
Throughput FUN.EF.M3

Functionality

Efficiency

Ressources utilisation FUN.EF.M4
Problem cause understandability MAIN.AN.M1
Cyclomatic complexity or Module complexity MAIN.AN.M2
Staff hours to inspect the code MAIN.AN.M3
Nesting level MAIN.AN.M4
Code understandability MAIN.AN.M5
Average Size of statements. N/lc_stat MAIN.AN.M6
LOC (lines of Code) MAIN.AN.M7

Analysability

MTTD (Mean Time To Diagnose) MAIN.AN.M8
Regression rate MAIN.CH.M1
MTTR (mean time to repair) MAIN.CH.M2
MTTC (Mean Time to Change) MAIN.CH.M3

Changeability

Complexity of changes MAIN.CH.M4
Modular span of control. Average of
cu_cdused

MAIN.MO.M1

Modularity size profile. Average of lc_stat MAIN.MO.M2

Maintainability

Modularity

Modular coupling. MAIN.MO.M3

VERSION: 1.0 DRAFT B - 2004-12-01 28 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

Goal property Property Metric Code
Modular cohesion MAIN.MO.M4
Environmental software independence.
Identify units with conditional compilation
clauses that depend on the operating system
(#ifdef SOLARIS) and divide by total number
of units (total number of units provided by
ap_clas)

MAIN.PO.M1

System hardware independence. Identify units
with conditional compilation clauses that
depend on the hardware (#ifdef SOLARIS)
and divide by total number of units (total
number of units provided by ap_clas)

MAIN.PO.M2

Portability

Installability MAIN.PO.M3
Complexity of changes MAIN.VE.M1
Cyclomatic complexity MAIN.VE.M2

Verifiability

Verification Facilities MAIN.VE.M3
Off line Tutorial Readiness OPE.US.M1
On line Tutorial Readiness OPE.US.M2
Operator’s Error Frequency OPE.US.M3

Usability

Operator’s Judgement OPE.US.M4

Operability

Virtuality User operation virtuality OPE.VI.M1
Access controllabil ity; REL.IN.M1 Integrity
Data corruption indicator REL.IN.M2
MTTF REL.MA.M1
Cumulative critical failure profile REL.MA.M2

Maturity

Functional implementation stability REL.MA.M3
MTTRestart (Mean Time To Restart) REL.RC.M1 Recoverability
MTTRecover (Mean Time To Recover) REL.RC.M2

Reliability Evidence Process Reliability activities adequacy REL.RE.M1
Failure avoidance REL.RO.M1

Reliability

Robustness
Failures tolerance REL.RO.M2
Environmental software independence.
Identify units with conditional compilation
clauses that depend on the operating system
(#ifdef SOLARIS) and divide by total number
of units (total number of units provided by
ap_clas)

REU.PO.M1

System hardware independence. Identify units
with conditional compilation clauses that
depend on the hardware (#ifdef SOLARIS)
and divide by total number of units (total
number of units provided by ap_clas)

REU.PO.M2

Portability

Installability REU.PO.M3
Re-usability
Documentation

Reuse Documentation REU.RD.M1

Re-usability

Self-contained
functionality

Functional independence REU.SF.M1

Safety Planning adequacy SAF.SE.M1
Safety Analysis adequacy SAF.SE.M2
Safety Tecnique adequacy SAF.SE.M3

Suitability for
safety

Safety Evidence

ISVV activities adequacy SAF.SE.M4

VERSION: 1.0 DRAFT B - 2004-12-01 29 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

EGOS-QA-XX-TN-9007 SOFTWARE QUALITY AND CODING RULES

Goal property Property Metric Code
Process Maturity SDE.DL.M1
Software development activities adequacy SDE.PE.M1

Software
Development
Effectiveness

Software development
process level
 Software verification activities adequacy SDE.PE.M2

Interfaces
management

Interface management SEE.IN.M1

Requirements
propagation

Derivation of software product requirements
from system requirements

SEE.RQ.M1

Analysis and Planning activities quality SEE.SE.M1
System engineering activi ties quality SEE.SE.M2
Organisation and Management activities
quality

SEE.SE.M3

System
Engineering
Effectiveness

System engineering
process evidence

System-software requirements traceability rate SEE.SE.M4
Table 25 - The full SPEC model (goal properties, properties and metrics)

VERSION: 1.0 DRAFT B - 2004-12-01 30 / 30 © COPYRIGHT EUROPEAN SPACE AGENCY 2004

	Introduction
	Purpose
	Scope
	Glossary
	Quality model (software)
	Static model (software)
	Metric
	Reusability
	Portability (a quality characteristic)
	Check
	Acronyms
	Definition of Terms

	References
	Applicable documents
	Reference documents

	Document Overview

	Definition of the quality model
	Introduction
	The metrics
	The quality models
	The “logiscope” quality model for maintainability
	Logiscope model for applications
	Logiscope for classes
	Logiscope foir methods and functions

	The “SPEC” model for maintainability
	Logiscope metrics used in SPEC
	SPEC for applications
	SPEC for classes
	SPEC for methods and functions

	Mapping to SPEC
	Checklists
	Documentation Checks
	effectiveness checks
	Operability checks
	PA checks
	Process checks
	Reliability checks
	Reusability checks
	Safety checks
	Static analysis
	Traceability checks

	Definition of the static model
	Introduction
	Rule classification
	Core Rules
	Recommended Rules
	De-scoped Rules

	Compliance methodology
	Automated checks
	Manual Inspections

