

GE Fanuc Automation

Programmable Control Products

PCI GENIUS Card
OEM Windows Drivers

User's Manual

GFK-2343 January 2005

GFL-002

Warnings, Cautions, and Notes
as Used in this Publication

Warning
Warning notices are used in this publication to emphasize that
hazardous voltages, currents, temperatures, or other conditions
that could cause personal injury exist in this equipment or may be
associated with its use.

In situations where inattention could cause either personal injury or
damage to equipment, a Warning notice is used.

Caution
Caution notices are used where equipment might be damaged if
care is not taken.

Note
Notes merely call attention to information that is especially significant to
understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts
have been made to be accurate, the information contained herein does not purport to cover
all details or variations in hardware or software, nor to provide for every possible contingency
in connection with installation, operation, or maintenance. Features may be described herein
which are not present in all hardware and software systems. GE Fanuc Automation assumes
no obligation of notice to holders of this document with respect to changes subsequently
made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory
with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or
usefulness of the information contained herein. No warranties of merchantability or fitness for
purpose shall apply.

The following are trademarks of GE Fanuc Automation North America, Inc.

Alarm Master Genius PowerTRAC Series Six
CIMPLICITY Helpmate Proficy Series Three
CIMSTAR Logicmaster ProLoop VersaMax
Field Control Modelmaster PROMACRO VersaPro
FrameworX Motion Mate Series Five VuMaster
GEnet PACSystems Series 90 Workmaster
 PowerMotion Series One

©Copyright 2005 GE Fanuc Automation North America, Inc.

All Rights Reserved

Contents

GFK-2343 iii

Introduction... 1-1
Other Genius Manuals ... 1-1
Genius PC Interface Products Background ... 1-2
Upgrading from ISA PC Genius Cards... 1-3

Installation... 2-1
Section 1 – Windows NT 4.0 .. 2-2
Section 2 – Windows 2000 and Windows XP .. 2-3

Programming .. 3-1
Opening the Device.. 3-2
Closing the Device ... 3-3
Device I/O Request Packets (IRPs) ... 3-4

Examples ... 4-1
Datagrams.. 4-2
Global Data Read... 4-4
Global Data Write ... 4-6
Reading Fault Information .. 4-8

Diagnostics ... 5-1
Checking Status and Operation with the Control Panel Applets.................. 5-1
Checking the LEDs at Runtime .. 5-1
Closing all Resources... 5-2

Glossary ..A-1

GFK-2343 1-1

Introduction

This manual describes installation and usage of the PCI Genius OEM
Windows Drivers. This manual has the following layout:
Chapter 1: Introduction
Chapter 2: Installation procedures
Chapter 3: Programming API
Chapter 4: Examples
Chapter 5: Troubleshooting

The PCI Genius card provides an intelligent interface between a PCI slot in
a PC compatible computer and a single channel general purpose controller
interface to the Genius serial bus. The primary function of this card is to
provide a means for third parties to interface their CPU, PLC, or Genius I/O
Blocks on the Genius bus.

The PCI Genius OEM Windows® Drivers serve as a pass-through service to
allow a user-mode program to access the three Functional Registers and
the Shared RAM region. On the PCI Genius card, they do not perform any
higher-level functions. The interface uses the standard Windows API calls,
such as CreateFile, CloseHandle, GetLastError, and DeviceIoControl, so it
is not limited to any particular programming language or version.

The OEM Windows drivers support only the PCI Genius card
(IC660ELB931). They do not support ISA version cards. They run on
Microsoft Windows 2000, XP, and NT4.0. Windows 95, 98, and ME are not
supported.

Other Genius Manuals
PCI Genius Card Quick Install Guide,
GFK-2342

Describes the hardware of the IC660ELB931 PCI
Genius card and the Functional Registers.

Genius I/O µGENI Board User’s
Manual, GFK-0845

Describes the organization and operation of the
Genius Shared RAM interface.

Genius I/O System and
Communications User’s Guide,
GEK-90486F-1

Describes the high-level concepts of Genius
communications and bus design.

Chapter

1

1-2 PCI GENIUS Card OEM Windows Drivers User's Manual – January 2005 GFK-2343

1

Genius PC Interface Products Background
In working with the PCI Genius card, it is helpful to understand some of the
history of the Genius PC interfaces. The core of the Genius PC interface
products is a shared memory module called a GENI or µGENI, which is
described in GFK-0845A. This has a 16Kbyte memory mapped interface
which allows a host processor to communicate on the Genius network. The
other input and output signals to a µGENI module are the four Genius bus
lines, two LED signals, and eight initialization signals that specify the card's
SBA, network baud rate, and output enabled status.

Previous ISA PC Genius cards either implemented the µGENI circuitry as a
single circuit board or had a carrier ISA circuit board that allowed one or two
µGENI daughter modules to attach to the carrier ISA circuit board. The eight
initialization signal values and the address information as to where the
µGENI mapped into the ISA space were programmed into non-volatile
memory on the carrier board. This configuration information resided at one
range of I/O registers and control of the reset and watchdog lines going into
the µGENI hardware were controlled at a second set of I/O registers.

The PCI Genius card continues to use this format. The µGENI module has
been integrated onto the single circuit board and the setup signals and
control of the reset and watchdog functions have been mapped to I/O
registers. There is no non-volatile memory on the PCI card, so the card
does not retain its SBA address, bus baud rate, or output enable state in
non-volatile storage.

GFK-2343 Chapter 1 Introduction 1-3

1

Upgrading from ISA PC Genius Cards
OEM users of the ISA PC Genius cards should note a few significant
differences in the PCI version.

1. The SBA and network settings are not stored in the card. There are
no DIP switches or non-volatile memory on the PCI Genius card to
maintain the Genius settings of the card. These settings must be
maintained by the application program and set into the PCI card
Functional Registers on each startup.

2. The hardware location of the card in I/O and memory space are
defined at startup by PCI enumeration. The concept of setting the
card at I/O address 0x3E0 and host memory address 0xD0000 is
not the ideal PCI implementation. When using these OEM drivers,
Windows will place the card in a valid available address. The
Functional Registers, similar to what was available at the I/O
addresses of an ISA card, are available through the Read and Write
Register commands of the driver. The base address, equivalent to
the host memory address, is obtained through the Map memory call
of the driver. For details, see “Map Shared RAM” in chapter 3.

3. The definition of the Shared memory interface is unchanged from
ISA versions. If an application was programmed to be based off of a
specific host memory address such as 0xC8000 or 0xD0000. All
that is required is to obtain that new host memory address from the
driver after the interface has been initialized in the application.

4. The definitions of Functional Registers (PCIM status and PCIM
control on the ISA cards) have changed very slightly and a new
Configuration register has been added which contains information
that was present in non-volatile storage. ISA users must add code to
setup the Configuration register and review the Status and Control
registers in their application.

5. The TestGENI and dpcimcfg utilities are no longer needed. These
utilities provided the ability to program the nonvolatile memory on
ISA cards and to test their connectivity on the Genius network.
There is no non-volatile memory on the PCI Genius card, and the
control panel applets support enabling the card and verifying its
general operation.

6. The physical orientation of the connector has changed. It is the
same as newer Genius hardware such as the VersaMax Genius
NIU.

7. The PCI Genius card is available only in a single channel version.

GFK-2343 2-1

Installation

This chapter provides instructions for installing the drivers. It is divided into
two sections:

These drivers support only the PCI Genius card (IC660ELB931). They
do not support other Genius ISA cards.

Section 1 – Windows NT 4.0
Discusses installation on Windows NT 4.0 machines using the provided
batch files.

Section 2 – Windows 2000 and Windows XP
Discusses installation on Windows 2000 and XP machines.

Chapter

2

2-2 PCI GENIUS Card OEM Windows Drivers User's Manual – January 2005 GFK-2343

2

Section 1 – Windows NT 4.0
Windows NT does not support Plug and Play (PnP) PCI, so the driver must
be installed as a service.
1. Install the PCI Genius card hardware (see the PCI Genius Card Quick

Install Guide, GFK-2342).
2. Power up the computer and log on to Windows.

Note: The login user must have administrator privileges on the machine.

3. Open a command window (DOS box) and change the directory to the
compact disk drive with the driver files. (For example, type e: if the
compact disk drive is the e: drive.)

4. Change to the winnt directory of the compact disk. (For example, type
cd e:\winnt.) (Note that this is not the Windows system directory.)

5. Run the install program by typing install.
6. The install program will copy the files gegenius.sys and gegenius.cpl

into the Windows directory and start the driver service. It will display:

CreateService SUCCESS
StartService SUCCESS
Press any key to exit.

7. Press any key to return to the command prompt. The driver is now
installed.

8. To verify the hardware is operational, open the Windows Control Panel

and click the GE Fanuc Genius control panel. The control panel displays
the name of each PCI card (up to four). The Details button opens a
dialog box that can turn on the card and show the LED status as the
card is powered on.

GFK-2343 Chapter 2 Installation 2-3

2

Section 2 – Windows 2000 and Windows XP
1. Install the PCI Genius card hardware (see the PCI Genius® Card

Quick Install Guide, GFK-2342).
2. Power up the computer and log in to Windows.

Note: The login user must have administrator privileges on the machine.

3. Windows should detect the new device and display the Found New
Hardware Wizard. Click Next.

2-4 PCI GENIUS Card OEM Windows Drivers User's Manual – January 2005 GFK-2343

2

4. Windows then displays the wizard to search for new drivers. Select
“Search for a suitable driver for my device”. Click Next.

5. Windows then asks where to search. Select "Specify a location" and

click Next.

GFK-2343 Chapter 2 Installation 2-5

2

6. Enter the location of the gegenius.inf file from the compact disk and
click OK.

7. When Windows verifies the driver matches the hardware, it shows

the results dialog. Click Next.

2-6 PCI GENIUS Card OEM Windows Drivers User's Manual – January 2005 GFK-2343

2

8. Windows executes the install script and shows the following dialog
when it is done. Click Finish.

9. The card will be in the Device Manager under Genius Devices.

GFK-2343 Chapter 2 Installation 2-7

2

10. The properties of the card in the Device Manager has four tabs.
Three are standard Windows device tabs: General, Driver, and
Resources. The fourth tab, Test, allows the user to turn on the card
as SBA 0 at 153.6Kbaud Std to verify the card is working and is in
the physical slot expected. The user is prompted before going
online since a connected GENIUS bus may be disrupted by the
fixed SBA and baud rate.

GFK-2343 3-1

Programming

This chapter details the calls exported from the driver. It explains each call
and its parameters and return values. Users are expected to be familiar with
Win32 API programming and to have access to Win32 API documentation
such as Microsoft Developer's Network (MSDN).

Note that the driver serves as a pass-through service to allow a user-mode
program to gain access to the three Functional Registers and the Shared
RAM region. It does not perform any higher-level functions.

This chapter describes:

� Opening and Closing the device

Returns and frees a Window's handle to the card device.

� Reading the card's physical location

Returns the bus and slot of the card.

� Reading and writing Functional Registers

Allows access to the three Functional Registers.

� Mapping and Unmapping Shared RAM

Allows User-mode access to the Shared RAM interface common
to the GENIUS® PC interface cards.

Chapter

3

3-2 PCI GENIUS OEM Windows Drivers User's Manual – January 2005 GFK-2343

3

Opening the Device
The driver exposes the PCI GENIUS card as a device using the name
GEGENIUSx where x is the card number from zero to three indicating the
specific card. Users can connect to the driver by calling the Windows API
function CreateFile() as follows:

HANDLE hCardDevice;

hCardDevice = CreateFile("\\\\.\\GEGENIUS0", GENERIC_READ |

GENERIC_WRITE, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

The characters "\\.\" identify the name as a device name. Double slashes
are required for each slash to prevent interpretation as an escape
sequence.

Return Values:

The return values from CreateFile() are specified in the Win32
documentation. In general, CreateFile() returns either a handle to the device
or:

• INVALID_HANDLE_VALUE:
GetLastError() will return a system error code specified by the
Win32 SDK. The most likely error returned from GetLastError()
would be ERROR_FILE_NOT_FOUND when the card is not
present.

 Programming

GFK-2343 Chapter 3 Programming 3-3

3

Closing the Device
Handles opened with CreateFile should be closed after any resources
mapped (see Map Shared RAM below) have been released. This is done
with the Win32 CloseHandle() function.

CloseHandle(hCardDevice);

Return Values:

CloseHandle does not return any values.

3-4 PCI GENIUS OEM Windows Drivers User's Manual – January 2005 GFK-2343

3

Device I/O Request Packets (IRPs)
The driver supports five I/O requests. Each of these requests is
accomplished by calling the Windows API function DeviceIoControl() using
the HANDLE opened with CreateFile().

Read Card Location
Returns the physical PCI bus and slot of the card represent by the current
handle. This is useful to determine that a card has not been enumerated to
a different logical address during PCI enumeration. The order of
enumeration of cards in Windows is not guaranteed, therefore multiple cards
could move in their Geniusx assignment. In practice, cards are enumerated
by the electrical organization of the PC. If you have multiple cards installed
in a PC, this will return the physical location of the card assigned to the
GENIUSx device used in the CreateFile() call. Users with a single PCI
GENIUS card do not have a significant reason to ever need this function.

Definition:

#define IOCTL_GEGENIUS_READ_LOC \

CTL_CODE(FILE_DEVICE_UNKNOWN, 0x900, METHOD_BUFFERED, FILE_READ_ACCESS)

Or numerically:

#define IOCTL_GEGENIUS_READ_LOC 0x00226400

Input Parameter: None.

Output Parameter: 16-bit word. Upper byte - bus number.
 Lower byte - slot number.

Return Value: DeviceIoControl returns zero if there is a failure.
GetLastError() will then return a Win32 system error code. Most likely errors
are:

- hCardDevice handle invalid. Either not opened or corrupted.

- Output parameter not valid or too small.

- The bytes_returned parameter not given. DeviceIoControl() requires a
32-bit variable address for the number of bytes it returns even if not
used by the program code. NULL is not allowed.

Example:

USHORT address;

ULONG ulret;

DeviceIoControl(hCardDevice, IOCTL_GEGENIUS_READ_LOC, NULL, 0, &address,

sizeof(USHORT), &ulret, NULL);

 Programming

GFK-2343 Chapter 3 Programming 3-5

3

Read Register
Reads the control, configuration, or status register.

Definition:

#define IOCTL_GEGENIUS_READ_PORT \

CTL_CODE(FILE_DEVICE_UNKNOWN, 0x910, METHOD_BUFFERED, FILE_READ_ACCESS)

Or Numerically:

#define IOCTL_GEGENIUS_READ_PORT 0x00226440

Input Parameter: The input is a 32-bit register number:

0: Configuration Register
1: Status Register
2: Control Register

Output Parameter: 8-bit value of the requested register.

Return Value: DeviceIoControl returns zero if there is a failure.
GetLastError() will then return a Win32 system error code. Most likely errors
are:

- hCardDevice handle invalid. Either not opened or corrupted.

- Input parameter not a 32-bit value.

- Input parameter not 0, 1, or 2.

- Output parameter invalid or less than one byte in size.

- Bytes_return parameter NULL.

Example:

ULONG ulret;

ULONG RegisterNumber;

UCHAR RegisterValue;

RegisterNumber = 0; // Configuration Register

DeviceIoControl(hCardDevice, IOCTL_GEGENIUS_READ_PORT, &RegisterNumber,

sizeof(RegisterNumber), &RegisterValue, sizeof(RegisterValue), &ulret,

NULL);

3-6 PCI GENIUS OEM Windows Drivers User's Manual – January 2005 GFK-2343

3

Write Register
Writes the control or configuration register.

Definition:

#define IOCTL_GEGENIUS_WRITE_PORT \

CTL_CODE(FILE_DEVICE_UNKNOWN, 0x911, METHOD_BUFFERED, FILE_WRITE_ACCESS)

Or Numerically:

#define IOCTL_GEGENIUS_WRITE_PORT 0x0022A444

Input Parameter: 32-bit register number followed by 8-bit value.
Register numbers: 0: Configuration Register,
 1: Status Register,
 2: Control Register

Output Parameter: None.

Return Value: DeviceIoControl returns zero if there is a failure.
GetLastError() will then return a Win32 system error code. Most likely errors
are:

- hCardDevice handle invalid. Either not opened or corrupted.

- Input parameter not at least 5 bytes.

- Input parameter not 0, 1, or 2.

- Bytes_return parameter NULL.

 Programming

GFK-2343 Chapter 3 Programming 3-7

3

Example:

typedef struct _GENPORT_WRITE_INPUT

{

ULONG PortNumber; // Port # to write to

union

{ // Data to be output to port

ULONG LongData;

USHORT ShortData;

UCHAR CharData;

};

} GENPORT_WRITE_INPUT;

ULONG ulret;

GENPORT_WRITE_INPUT sWriteData;

sWriteData.PortNumber = 0; // Configuration Register

sWriteData.CharData = 0x7F; // Set Baud Rate, SBA, and enable outputs

DeviceIoControl(hCardDevice, IOCTL_GEGENIUS_WRITE_PORT, &sWriteData,

sizeof(sWriteData), NULL, 0, &ulret, NULL);

3-8 PCI GENIUS OEM Windows Drivers User's Manual – January 2005 GFK-2343

3

Map Shared RAM
Requests a pointer to the start of Shared RAM on the card. This should only
be called once per card for a process. Only one process should be
accessing the Shared RAM of a card at any given time.

Definition:

#define IOCTL_GEGENIUS_MAP_MEMORY \

CTL_CODE(FILE_DEVICE_UNKNOWN, 0x912, METHOD_BUFFERED, FILE_ANY_ACCESS)

Or Numerically:

#define IOCTL_GEGENIUS_MAP_MEMORY 0x00222448

Input Parameter: None.

Output Parameter: 32-bit pointer to first address of Shared RAM mapped to
calling process.

Return Value: DeviceIoControl returns zero if there is a failure.
GetLastError() will then return a Win32 system error code. Most likely errors
are:

- hCardDevice handle invalid. Either not opened or corrupted.

- Output Parameter not exactly 32-bits.

- Bytes_return parameter NULL.

Example:

ULONG dwret;

PVOID pSharedRAM;

DeviceIoControl(hCardDevice, IOCTL_GEGENIUS_MAP_MEMORY, NULL, 0,

&pSharedRAM, sizeof(pSharedRAM), &dwret, NULL);

 Programming

GFK-2343 Chapter 3 Programming 3-9

3

UnMap Shared RAM
Frees memory mapping of Shared RAM.

Definition:

#define IOCTL_GEGENIUS_UNMAP_MEMORY \

CTL_CODE(FILE_DEVICE_UNKNOWN, 0x913, METHOD_BUFFERED, FILE_ANY_ACCESS)

Or Numerically:

#define IOCTL_GEGENIUS_UNMAP_MEMORY 0x0022244C

Input Parameter: 32-bit pointer to first address of Shared RAM mapped to
calling process returned from Map Shared RAM call.

Output Parameter: None.

Return Value: DeviceIoControl returns zero if there is a failure.
GetLastError() will then return a Win32 system error code. Most likely errors
are:

- hCardDevice handle invalid. Either not opened or corrupted.

- Input Parameter not exactly 32-bits.

- Bytes_return parameter NULL.

Example:

ULONG ulret;

PVOID pSharedRAM;

{ IOCTL_GEGENIUS_MAP_MEMORY call }

DeviceIoControl(hCardDevice, IOCTL_GEGENIUS_UNMAP_MEMORY, &pSharedRAM,

sizeof(pSharedRAM), NULL, 0, &ulret, NULL);

GFK-2343 4-1

Examples

This section provides a few programming examples for using the PCI GENIUS®
card drivers. These examples are console applications for simplicity and are
coded for Microsoft Visual C++, but the concepts are valid for any Win32 API
programming (which includes VisualBasic).

� Datagrams

� Global Data Read

� Global Data Write

� Reading Fault Information

Chapter

4

4-2 PCI GENIUS OEM Windows Drivers User's Manual – January 2005 GFK-2343

4

Datagrams
Below is a simple example of how one might use Genius datagrams to read the
number of configured data points in a VersaMax Genius NIU on the network at
SBA5. For more documentation about datagrams see Chapter 10 of the Genius
I/O µGENI Board User’s Manual, GFK-0845 and for more details about the
VersaMmax Genius NIU see GFK-1535.
#define CONFIG_REG 0
#define STATUS_REG 1
#define CONTROL_REG 2

#define IOCTL_GEGENIUS_READ_PORT \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x910, METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_GEGENIUS_WRITE_PORT \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x911, METHOD_BUFFERED, FILE_WRITE_ACCESS)
#define IOCTL_GEGENIUS_MAP_MEMORY \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x912, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_GEGENIUS_UNMAP_MEMORY \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x913, METHOD_BUFFERED, FILE_ANY_ACCESS)

typedef struct _GENPORT_WRITE_INPUT
{
ULONG PortNumber; // Port # to write to
union { // Data to be output to port

ULONG LongData;
USHORT ShortData;
UCHAR CharData;};

} GENPORT_WRITE_INPUT;

HANDLE hWin32Device;
PVOID MemoryBaseAddress;
DWORD dwret;
GENPORT_WRITE_INPUT mydata;
UCHAR DeviceType;

/* Get Windows handle to Device */
hWin32Device = CreateFile("\\\\.\\GEGENIUS0", GENERIC_READ | GENERIC_WRITE,

0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

/* Map Shared RAM into local process */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_MAP_MEMORY, NULL, 0,

&MemoryBaseAddress, sizeof(PVOID), &dwret, NULL);

/* Set Baud rate, Serial Bus Address and make output enable */
mydata.PortNumber = CONFIG_REG;
mydata.CharData = 0x7F; /* 153.6 STD, SBA 31, Outputs enabled */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_WRITE_PORT, &mydata,

sizeof(mydata), NULL, 0, &dwret, NULL);

/* Bring board out of reset and disable watchdog timer */
/* If watchdog were enabled here, need to do a read from Share RAM */
/* to reset watchdog before enabling it */
mydata.PortNumber = CONTROL_REG;
mydata.CharData = 0x60; /* Disable Watchdog, bring out of reset */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_WRITE_PORT, &mydata,

sizeof(mydata), NULL, 0, &dwret, NULL);

/* Wait for 4 seconds to get board up from reset state */
/* If the Watchdog is enabled, need to be reading from Shared RAM */
/* during a startup delay to service Watchdog */
Sleep(4000);

/* Do a Read Map Datagram to a Versamax GNIU at SBA 5 */
/* This is a Transmit Datagram with Reply */

 Examples

GFK-2343 Chapter 4 Examples 4-3

4

/* Check that Command Block is free or complete */
if ((((volatile UCHAR *)MemoryBaseAddress)[0x8C2] == 0) ||

(((volatile UCHAR *)MemoryBaseAddress)[0x8C2] == 4))
{

/* Set Command Byte */
((UCHAR *)MemoryBaseAddress)[0x8C3] = 3; /* Transmit with Reply */
/* Set Destination SBA */
((UCHAR *)MemoryBaseAddress)[0x8C4] = 5;
/* Set Function Code */
((UCHAR *)MemoryBaseAddress)[0x8C5] = 0x20;
/* Set SubFunction Code */
((UCHAR *)MemoryBaseAddress)[0x8C6] = 0x2A;
/* Set Return SubFunction Code */
((UCHAR *)MemoryBaseAddress)[0x8C7] = 0x2B;
/* Set Priority to Normal */
((UCHAR *)MemoryBaseAddress)[0x8C8] = 0;
/* Set Transmit buffer size to zero */
((UCHAR *)MemoryBaseAddress)[0x8C9] = 0;

/* Issue Transmit */
((volatile UCHAR *)MemoryBaseAddress)[0x8C2] = 1;

/* Wait up to 10 seconds for the response */
for (int i = 0; i < 20; i++)
{

Sleep(500);
if (((volatile UCHAR *)MemoryBaseAddress)[0x8C2] == 4)

break;
}

/* Dump results if status is complete */
if (((volatile UCHAR *)MemoryBaseAddress)[0x8C2] == 4)
{

/* The expected length is 19 bytes */
if (((UCHAR *)MemoryBaseAddress)[0x8CA] == 19)
{

UCHAR ReadDatagramBuffer;

ReadDatagramBuffer = &((UCHAR *) MemoryBaseAddress)[0x9C2]);
printf("SBA 5 has\r\n");
printf("%d bytes of %I data\r\n", ReadDatagramBuffer[3]);
printf("%d bytes of %AI data\r\n", ReadDatagramBuffer[6]);
printf("%d bytes of %Q data\r\n", ReadDatagramBuffer[9]);
printf("%d bytes of %AQ data\r\n", ReadDatagramBuffer[12];

}
}
else

printf("Command timed out\r\n");
}
else

printf("Command Block not available.\r\n");

/* Turn off card */
mydata.PortNumber = CONTROL_REG;
mydata.CharData = 0;

DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_WRITE_PORT, &mydata,
sizeof(mydata), NULL, 0, &dwret, NULL);

/* Free Shared Memory range */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_UNMAP_MEMORY,

&MemoryBaseAddress, sizeof(PVOID), NULL, 0, &dwret, NULL);

/* Close windows handle */
CloseHandle(hWin32Device);

4-4 PCI GENIUS OEM Windows Drivers User's Manual – January 2005 GFK-2343

4

Global Data Read
Below is a simple example of how one might read data from a Versamax Genius
NIU which is sent over the network as Global Data. It is necessary to lockout the
data tables with which data is read in order to guarantee coherency when the input
data is larger than one byte.
#define CONFIG_REG 0
#define STATUS_REG 1
#define CONTROL_REG 2

#define IOCTL_GEGENIUS_READ_PORT \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x910, METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_GEGENIUS_WRITE_PORT \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x911, METHOD_BUFFERED, FILE_WRITE_ACCESS)
#define IOCTL_GEGENIUS_MAP_MEMORY \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x912, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_GEGENIUS_UNMAP_MEMORY \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x913, METHOD_BUFFERED, FILE_ANY_ACCESS)

typedef struct _GENPORT_WRITE_INPUT
{
ULONG PortNumber; // Port # to write to
union { // Data to be output to port

ULONG LongData;
USHORT ShortData;
UCHAR CharData;};

} GENPORT_WRITE_INPUT;

HANDLE hWin32Device;
PVOID MemoryBaseAddress;
DWORD dwret;
GENPORT_WRITE_INPUT mydata;
UCHAR DeviceType;

/* Get Windows handle to Device */
hWin32Device = CreateFile("\\\\.\\GEGENIUS0", GENERIC_READ | GENERIC_WRITE,

0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

/* Map Shared RAM into local process */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_MAP_MEMORY, NULL, 0,

&MemoryBaseAddress, sizeof(PVOID), &dwret, NULL);

/* Set Baud rate, Serial Bus Address and make output enable */
mydata.PortNumber = CONFIG_REG;
mydata.CharData = 0x7F; /* 153.6 STD, SBA 31, Outputs enabled */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_WRITE_PORT, &mydata,

sizeof(mydata), NULL, 0, &dwret, NULL);

/* Bring board out of reset and disable watchdog timer */
/* If watchdog were enabled here, need to do a read from Share RAM */
/* to reset watchdog before enabling it */
mydata.PortNumber = CONTROL_REG;
mydata.CharData = 0x60; /* Disable Watchdog, bring out of reset */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_WRITE_PORT, &mydata,

sizeof(mydata), NULL, 0, &dwret, NULL);

/* Wait for 4 seconds to get board up from reset state */
/* If the Watchdog is enabled, need to be reading from Shared RAM */
/* during a startup delay to service Watchdog */
Sleep(4000);

 Examples

GFK-2343 Chapter 4 Examples 4-5

4

/* Request Lockout */
/* Check if table already locked out */
if (((UCHAR *)MemoryBaseAddress)[0xA49] == 0)
{

/* Check if request already outstanding */
if (((UCHAR *)MemoryBaseAddress)[0xA48] == 0)
{

/* Request lockout */
((UCHAR *)MemoryBaseAddress)[0xA48] = 1;

}
}

/* Wait for lockout to suceed. */
while (((volatile UCHAR *)MemoryBaseAddress)[0xA49] == 0)

Sleep(500);

/* Read Data */
printf("Inputs from SBA5 %x %x\r\n",

((UCHAR *)MemoryBaseAddress)[0x2000 + 5*128],
((UCHAR *)MemoryBaseAddress)[0x2000 + 5*128 + 1]);

/* Remove Lockout */
((UCHAR *)MemoryBaseAddress)[0xA48] = 0;

/* Wait for lockout to release. */
while (((volatile UCHAR *)MemoryBaseAddress)[0xA49] == 1)

Sleep(500);

/* Turn off card */
mydata.PortNumber = CONTROL_REG;
mydata.CharData = 0;

DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_WRITE_PORT, &mydata,
sizeof(mydata), NULL, 0, &dwret, NULL);

/* Free Shared Memory range */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_UNMAP_MEMORY,

&MemoryBaseAddress, sizeof(PVOID), NULL, 0, &dwret, NULL);

/* Close windows handle */
CloseHandle(hWin32Device);

4-6 PCI GENIUS OEM Windows Drivers User's Manual – January 2005 GFK-2343

4

Global Data Write
Below is a simple example of how one might write data to a Versamax Genius NIU
which is sent over the network as Global Data. It is necessary to lockout the data
tables with which data is written in order to guarantee coherency when the output
data is larger than one byte.
#define CONFIG_REG 0
#define STATUS_REG 1
#define CONTROL_REG 2

#define IOCTL_GEGENIUS_READ_PORT \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x910, METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_GEGENIUS_WRITE_PORT \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x911, METHOD_BUFFERED, FILE_WRITE_ACCESS)
#define IOCTL_GEGENIUS_MAP_MEMORY \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x912, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_GEGENIUS_UNMAP_MEMORY \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x913, METHOD_BUFFERED, FILE_ANY_ACCESS)

typedef struct _GENPORT_WRITE_INPUT
{
ULONG PortNumber; // Port # to write to
union { // Data to be output to port

ULONG LongData;
USHORT ShortData;
UCHAR CharData;};

} GENPORT_WRITE_INPUT;

HANDLE hWin32Device;
PVOID MemoryBaseAddress;
DWORD dwret;
GENPORT_WRITE_INPUT mydata;
UCHAR DeviceType;

/* Get Windows handle to Device */
hWin32Device = CreateFile("\\\\.\\GEGENIUS0", GENERIC_READ | GENERIC_WRITE,

0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

/* Map Shared RAM into local process */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_MAP_MEMORY, NULL, 0,

&MemoryBaseAddress, sizeof(PVOID), &dwret, NULL);

/* Set Baud rate, Serial Bus Address and make output enable */
mydata.PortNumber = CONFIG_REG;
mydata.CharData = 0x7F; /* 153.6 STD, SBA 31, Outputs enabled */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_WRITE_PORT, &mydata,

sizeof(mydata), NULL, 0, &dwret, NULL);

/* Bring board out of reset and disable watchdog timer */
/* If watchdog were enabled here, need to do a read from Share RAM */
/* to reset watchdog before enabling it */
mydata.PortNumber = CONTROL_REG;
mydata.CharData = 0x60; /* Disable Watchdog, bring out of reset */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_WRITE_PORT, &mydata,

sizeof(mydata), NULL, 0, &dwret, NULL);

/* Wait for 4 seconds to get board up from reset state */
/* If the Watchdog is enabled, need to be reading from Shared RAM */
/* during a startup delay to service Watchdog */
Sleep(4000);

 Examples

GFK-2343 Chapter 4 Examples 4-7

4

/* Request Lockout */
/* Check if table already locked out */
if (((UCHAR *)MemoryBaseAddress)[0xA49] == 0)
{

/* Check if request already outstanding */
if (((UCHAR *)MemoryBaseAddress)[0xA48] == 0)
{

/* Request lockout */
((UCHAR *)MemoryBaseAddress)[0xA48] = 1;

}
}

/* Wait for lockout to suceed. */
while (((volatile UCHAR *)MemoryBaseAddress)[0xA49] == 0)

Sleep(500);

/* Write Data */
((UCHAR *)MemoryBaseAddress)[0x3000 + 5*128] = 0x55;
((UCHAR *)MemoryBaseAddress)[0x3000 + 5*128 + 1] = 0xAA;

/* Remove Lockout */
((UCHAR *)MemoryBaseAddress)[0xA48] = 0;

/* Wait for lockout to release. */
while (((volatile UCHAR *)MemoryBaseAddress)[0xA49] == 1)

Sleep(500);

/* Turn off card */
mydata.PortNumber = CONTROL_REG;
mydata.CharData = 0;
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_WRITE_PORT, &mydata,

sizeof(mydata), NULL, 0, &dwret, NULL);

/* Free Shared Memory range */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_UNMAP_MEMORY,

&MemoryBaseAddress, sizeof(PVOID), NULL, 0, &dwret, NULL);

/* Close windows handle */
CloseHandle(hWin32Device);

4-8 PCI GENIUS OEM Windows Drivers User's Manual – January 2005 GFK-2343

4

Reading Fault Information
Below is a simple example of how one might poll to see faults come in from a
Versamax Genius NIU.
#define CONFIG_REG 0
#define STATUS_REG 1
#define CONTROL_REG 2

#define IOCTL_GEGENIUS_READ_PORT \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x910, METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_GEGENIUS_WRITE_PORT \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x911, METHOD_BUFFERED, FILE_WRITE_ACCESS)
#define IOCTL_GEGENIUS_MAP_MEMORY \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x912, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_GEGENIUS_UNMAP_MEMORY \
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x913, METHOD_BUFFERED, FILE_ANY_ACCESS)

typedef struct _GENPORT_WRITE_INPUT
{
ULONG PortNumber; // Port # to write to
union { // Data to be output to port

ULONG LongData;
USHORT ShortData;
UCHAR CharData;};

} GENPORT_WRITE_INPUT;

HANDLE hWin32Device;
PVOID MemoryBaseAddress;
DWORD dwret;
GENPORT_WRITE_INPUT mydata;
UCHAR DeviceType;

/* Get Windows handle to Device */
hWin32Device = CreateFile("\\\\.\\GEGENIUS0", GENERIC_READ | GENERIC_WRITE,

0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

/* Map Shared RAM into local process */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_MAP_MEMORY, NULL, 0,

&MemoryBaseAddress, sizeof(PVOID), &dwret, NULL);

/* Set Baud rate, Serial Bus Address and make output enable */
mydata.PortNumber = CONFIG_REG;
mydata.CharData = 0x7F; /* 153.6 STD, SBA 31, Outputs enabled */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_WRITE_PORT, &mydata,

sizeof(mydata), NULL, 0, &dwret, NULL);

/* Bring board out of reset and disable watchdog timer */
/* If watchdog were enabled here, need to do a read from Share RAM */
/* to reset watchdog before enabling it */
mydata.PortNumber = CONTROL_REG;
mydata.CharData = 0x60; /* Disable Watchdog, bring out of reset */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_WRITE_PORT, &mydata,

sizeof(mydata), NULL, 0, &dwret, NULL);

/* Wait for 4 seconds to get board up from reset state */
/* If the Watchdog is enabled, need to be reading from Shared RAM */
/* during a startup delay to service Watchdog */
Sleep(4000);

/* The fault data from the Versamax ENIU is sent as fault reporting and */
/* as mail. See if there are any mail messages of type subfunction 0x30 */
/* in the queue from SBA 5 */

DWORD tickCount = GetTickCount();

 Examples

GFK-2343 Chapter 4 Examples 4-9

4

/* Try to read an unsolicited datagram from the card */
while(GetTickCount() - tickCount < 10000)
{

/* Set Command to read datagram */
((UCHAR *)MemoryBaseAddress)[0x8C3] = 1;

/* Set Status to incoming */
((UCHAR *)MemoryBaseAddress)[0x8C2] = 1;

/* Wait while status is still incoming or in progress */
while((((volatile UCHAR *)MemoryBaseAddress)[0x8C2] == 1) ||

(((volatile UCHAR *)MemoryBaseAddress)[0x8C2] == 2))
Sleep(500);

/* If status is complete, go look at datagram */
if (((volatile UCHAR *)MemoryBaseAddress)[0x8C2] == 4)
{

/* Look at datagram */
printf("Datagram from SBA %d\r\n",

((volatile UCHAR *)MemoryBaseAddress)[0x8C4]);
printf("Datagram Subfunction %x\r\n",

((volatile UCHAR *)MemoryBaseAddress)[0x8C6]);
printf("Datagram Data Length %d\r\n",

((volatile UCHAR *)MemoryBaseAddress)[0x8C8]);

/* If subfunction is mail, decode a bit more */
if (((volatile UCHAR *)MemoryBaseAddress)[0x8C6] == 0x30)
{

/* Decode Mail Transport to get I/O or PLC Fault */
}
printf("\r\n");

}
else if (((volatile UCHAR *)MemoryBaseAddress)[0x8C2] == 8)
{

/* Read Queue empty */
}
else
{

printf("Read Queue error %x.\r\n",
((volatile UCHAR *)MemoryBaseAddress)[0x8C2]);

}
}

/* Turn off card */
mydata.PortNumber = CONTROL_REG;
mydata.CharData = 0;

DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_WRITE_PORT, &mydata,
sizeof(mydata), NULL, 0, &dwret, NULL);

/* Free Shared Memory range */
DeviceIoControl(hWin32Device, IOCTL_GEGENIUS_UNMAP_MEMORY,

&MemoryBaseAddress, sizeof(PVOID), NULL, 0, &dwret, NULL);

/* Close windows handle */
CloseHandle(hWin32Device);

GFK-2343 5-1

Diagnostics

This chapter provides some suggestions to help resolve startup problems and
common operational issues.

Checking Status and Operation using the Control Panel Applets
After the card is installed, a control panel applet called "GE Fanuc Genius" is
available on Windows NT 4.0. On Windows 2000/XP, the card should show up in
the Device Manager of the System control panel under Genius Devices.

Using the test button or test tab, one can turn on each card and see the LEDs
light. This will show that the card turns on and help determine which card is which
when multiple cards are installed.

If the card will not power up with this utility, either the driver is not installed
properly or there is a hardware problem. Driver errors should be reported on the
General Tab of the Device Manager in Windows 2000/XP or in the Windows
Event Log.

Warning: Turning on the PCI Genius card with the
control panel applet will bring the card online at
SBA 0, 153.6Kbaud (STD). This may disrupt a
working network.

Checking the LEDs at Runtime
A healthy operating network should have both the GENI OK and COMM OK LEDs
on solid. If the COMM OK LED is going off occasionally and there are delays in
the network operations, review the following items:

- Cabling order throughout the entire network. Crossing X1 and X2 on a single
node in the network can cause intermittent problems.

- Cable termination. The Genius network should be terminated on both ends.
The value of the termination depends on the cable type. Some nodes,
including the PCI Genius card may include optional termination resistance
internal to the node based on DIP switch settings, jumpers, or configuration.

Chapter

5

5-2 PCI GENIUS OEM Windows Drivers User's Manual – January 2005 GFK-2343

5

Closing all Resources
Be sure to call CloseHandle() on the device handle on all exits from the
application. Also, unmap the Shared RAM pointer before closing, but after all
accesses to the Shared RAM are complete.

Allowing a user-mode application direct access to the hardware is helpful to
previous ISA card users, but runs the risk of memory access problems if the
application is not closed correctly. Users may also find using try/catch handling on
the Shared RAM helpful if their application is not stable.

GFK-2343 A-1

Glossary

API Application programming interface. A set of routines used by an
application program to direct the performance of procedures by the
computer’s operating system.

ISA Industry Standard Architecture bus. The bus architecture used in the IBM
PC/XT and PC/AT. The AT version of the bus is called the AT bus and
became a de facto industry standard.

MSDN The Microsoft Developer Network is a set of online and offline services
designed to help developers write applications using Microsoft products
and technologies. See http://msdn.microsoft.com/

PCI Peripheral Component Interconnect, a local bus standard developed by
Intel Corporation. Most modern PCs include a PCI bus in addition to a
more general ISA expansion bus.

PCIM PC Interface Module.

SBA Serial Bus Address. A node identifier on the Genius network. Typically
ranges from 0-31.

Win32 The Windows API for developing 32-bit applications. Win32 is built into
Windows 95 and Windows NT so applications that rely on the API (Win32
applications) should run equally well in both environments.

WDM Windows Driver Model. A driver technology developed by Microsoft to
create drivers that are source-code compatible for Windows 98, 2000, Me
and XP

Appendix

A

Index

GFK-2343 Index-1

B
Background, 1-2

C
Closing the device, 3-3

D
Datagrams, 4-2
Device I/O request packets, 3-4

Map Shared RAM, 3-8
Read Card Location, 3-4
Read Register, 3-5
UnMap Shared RAM, 3-9
Write Register, 3-6

E
Examples, 4-1

F
Fault information

reading, 4-8

G
Genius references, 1-1
Global Data Read, 4-4
Global Data Write, 4-6
Glossary, A-1

I
Installation, 2-1
IRPs. See Device I/O request packets
ISA cards, upgrading from, 1-3

M
Map Shared RAM, 3-8

O
Opening the device, 3-2

P
Programming, 3-1

R
Read Card Location, 3-4
Read Register, 3-5
Reading fault information, 4-8

U
UnMap Shared RAM, 3-9
Upgrading from ISA cards, 1-3

W
Write Register, 3-6

	PCI Genius Card OEM Windows Drivers
	Contents
	1. Introduction
	Other Genius Manuals
	Genius PC Interface Products Background
	Upgrading from ISA PC Genius Cards

	2. Installation
	Section 1 – Windows NT 4.0
	Section 2 – Windows 2000 and Windows XP

	3. Programming
	Opening the Device
	Closing the Device
	Device I/O Request Packets (IRPs)
	Read Card Location
	Read Register
	Write Register
	Map Shared RAM
	UnMap Shared RAM

	4. Examples
	Datagrams
	Global Data Read
	Global Data Write
	Reading Fault Information

	5. Diagnostics
	Checking Status and Operation using the Control Panel Applets
	Checking the LEDs at Runtime
	Closing all Resources

	A. Glossary
	Index

