GeneralCommands Manual mxli(1)

mxli - Marc’s exquisite LPC ISP programmerersion 3.x

SYNOPSIS

mxli [-?] [-adestAddress]..[-b baud [-c crystal/H7 [-d serialDevicé [-e sectord [-f flashSizg[—q]
[-i] [-] startAddresE[—k] [-| desiredLockLevé]-m ramSizé[—n] [-o outputFild [—p]
[-r byteCoun} [-sflashBank[-t bootupTimeMB[-u ucNamé[-v] [-w] [-X] [~y flashBank
[-A flashBankAddress],.[-B blockSize,]. [-E] [-F sectorSizexcounf,.[-] ID,..]
[-L allowLockLevel[-M size@baseAddres$,[.—N ucNamé[-P protocol] [-R size@address]..
[-Scount@indek[-T serialTimeoutM§[——crpAddress addres$ [——deviceDefinition
[-—deviceLisf [-—uid] [-—version] [imagebin [image2.bin..]]

DESCRIPTION

mxli is a GPLv3 licensed ISP FLASH programmer for NXPPC line of ARM microcontrollers mxli

uses the BRT communication channel of the LPXI0ot-ROM ISP handler mxli is designed to use STD-

OUT for output of a FLASH images OR explicit command outpug &kmcrocontrollers serial number

That way, the output can easily be processed by other programs (scripting). STDERR is used for error
reporting or progress/info/debug output. mxli version 3 pays special attention to multiple FLASH banks
present at families lik (as example) LPC1800 and LPC4300. mxli handles code read protection (CRP),
and as default it takes care that CRP isTN@plied (accidentally) to your controllers FLASH. mxli &st,
probably muchdster that other open sourcARIT ISP flash programs. Maver, (this) version 3 is slightly

slower than mxli-2.x . mxli-3 is a re-write of mxli-2 with focus on comprehensipport for all NXP LPC
microcontrollers and a more detailed database.

TERMS AND DEFINITIONS

In this manual, we use the tetrC as a nickname for the NXP LPC microcontroller used as a target for
mxli.

mxli builds on top of thaJART ISP boot loaderavailable to all LPCs. This boot loader is the program
running from boot ROM when the microcontroller id8P mode

The devices typically ke aFLASH memory for storing the firmwre. The=LASH memory is aganized

in 1 or 2FLASH banks (may be more in the future) denoted by capital letteBs... The special symbol

Z is used for a ypothetical bank (&lays) at address 0. For most single FLASH bank LRG¢y. When

booting from FLASH, one of the banks is typically mapped to address 0 of the ARM core. This means, that
the addresses may befdient when writing FLASH data from the addresses used uysnuteon of the

FLASH image. FLASH bank is the typical gecution viev of addresses, whild andB are the typical
FLASH programming views of addresses. If you depécify a FLASH bank, theA is used.

Each of the FLASH banks consists of one or ns@&or groups with each group consisting of a number

of sectorsof the same size. So a FLASH bank is made up of nl sectors of size s1 (group 1) followed by n2
sectors of size s2 (group 2) and so omxli assumes, that all FLASH banks share the same grouping of
sectors.

All LPC devices includ®n-chip RAM. Because the on-chip RAM is typically not contiguous, we call the
contiguous sections thereBAM r egions Quite a fav devices hae nultiple on-chip RAM regions, ut

some of these RAM gions might not be ready for use in ISP mode. RAM regions not ready for use in ISP
mode must be considered non-existent from dint of view. From this aailable RAM regions, the
RAM requirements of the ART ISP boot loader must be subtracted to get the Radilable for mxli's

use.

An image (the eecutable file to flash into the LPC) provided to mxli will typically be one contiguous block
(image segmerjtof instructions and data. In more compéeenarios, haever, the image might be split up

into several contiguous blocksriage segmentsat neccessarily different destination addresses. i@ne

file can contain multiple ggnents. bin-files cannot, but you can prale multiple bin-files on the com-
mand-line along with multiple destination addresses (option -a). An image consists of one or more bin-files

mxli(1) GeneralCommands Manual mxli(1)

and/or one or more hex-files.

CONCEPTS
There are a fg basic concepts that need to be understood for using mxli successfully.

Number formats
mxli accepts - in most places - multiple number formatal ¥an write numbers a decimal (examples: 1,
-20), as hexadicimal (0x20, -0x10) or decimal plus ISO prefixes (examples: 1ki, 3k, 416Mi).

Structured parameters and lists
Many options of this program accept a single numeric parameter or a comma-separated list of numeric
parameters (Example FLASH bank addresses). Other optiomgaak with special syntax, forxample
"64@0x100" is in &ct the tuple (64,0x100), only with a special syntax. And finally there are options that
allow lists of tuples. In this manual page, the parameters that hfits are followed by a comma and 2
dots, like this: adress... These lists consist of one or more elementsewie, lists of tuples are are writ-
ten as one tuple followed by a comma and 2 dots,thils: count@address.. . In the rare case where an
empty list is allowed, a single commalenotes the empty list.

Multiple FLASH segments
mxli supports scattering multiple FLASH segments within the FLASH.

Multiple input/output files.
To support multiple FLASH segments and binary files, mxli supports multiple input/output files.
STDIN/STDOUT redirection is limited to single segments.

OPTIONS
mxli has roughtly 5 different kinds of options: (a) actions, (b) communication parametergr(ies, (d)
microcontroller device definitions and (e) CRP options.

Actions
mxli defaults to imoking the deice’s ISP handler by applying a RESET/BD®equence, querying the
device ID(s) and exit. @ the userthis appears to be nothingythin fact it was already checking the serial
communication and knowing the microcontrallEne &it code of mxli is 0 only if these actions succeeded.
Otherwise it prints an error message to STDOUT.

-n prints to STDOUT the name of the microcontroller and some information about its memory sizes.

-r count
Readscount bytes from FLASH and outputs to STDOUThe read is performed in the deft
FLASH bank, offset from option -a.

-w Reads STDIN and writes these bytes to FLASHTNMPLEMENTED, YET.

—e bank

—e sector

—e sectorffom..sectorTo
Erases the specified sectors. Specifyingxgligt FLASH bankbankerases that FLASH bank as
a whole. Theother \ersions of the erase command wallerasure of a single sectsectoror a
consecutiie range of sectorsectorffom, sectorffom+1,.. sector®-1, sectorTo. sector, sector-
From, sectorTomay be prefixed by bankto explicitely specify the FLASH bank of the sector
FLASH bank A is used by dafilt. Theerase command is somewhat special from other com-
mands in that it doesntonsider ay addresses provided by an image file. That means, erase does
not select a FLASH bank from the address provided by the image file -@ralgiments. This is,
because you donhaveto specify an erase command for writing an image - mxkgatare to
erase the affected sectors in aglee. Asan example, if you want to erase sectors 3 to 5 of
FLASH bank B, you hae t ecify -e B3..B5 .

-sbank
Sets the acte H.ASH bank tobank This is supported for multi-FLASH-bank controllers only
The ISP command used for such controllers (e.q. LPC4300) clashes with the checksum command

mxli(1)

GeneralCommands Manual mxli(1)

available on other controllers (e.g. LPC800), so tlosé it if it's not needed.

-p Probes baud rates for communication and outputs successful tries to STDi@Udutput can be
used as command-line parameters for mxli, itee output is one set of communication parameter
command-line options per line of output with the first line being the highest baud rate.

=i Prints detailed human-readable member info to STDOUT.
-k Prints the boot code version number (like: 13.4) to STDOUT.
—X Executes the code in FLASH by applying a RESET sequence as a final action of the program.

-Q mxli does not perform 10U quits before performing communication. This switch is included for
querying mxlis database quickly andven without an LPC controller connected. Commands
requiring 1O are ignored without errdflease note, that 'mxli -iQ’ is not a&ewy intelligent ivoka-
tion of mxli, but maybe 'mxli --deviceList -iQ’ or 'mxli -iQu LPC4357’ are.

——deviceList
Prints out all compiled in devices’ names.

——deviceDefinition
Prints the selected diee’s cmmmand-line definition. This is useful if you want to deryour ovn
device definition (for an unsupported device) and you want to start from an existing amne tano
mxli.

——uid Prints out the unique device serial numlifesupported by the device.

Communication parameters

—b baud
Sets the communication baud ratd&ud

—c frequency
The ISP boot loader needs to tnwhat crystal frequerncis used. frequencyis measured in Hz
here.

—d device
This option changes the communication devicegevice The default igdev/ttyUSBO.

-t bootupTimeMs
This option sets the time mxliaits after de-asserting RESET before it starts to communicate with
the LPC. This time depends on your target board. The default is 300 (ms).

-E This option enables echoing of requests by the LPC. This reduces transmission speed but can
improve teliability of communication for some devices, because this implements a simple flo
control mechanism. The default is OFF.

-T timeoutMs
This option sets the maximum time mxli waits for aperted character/byte to ami After that
time, mxli considers the communication line broken and terminates with anordtr set this to
small values without a real need. Some operations of IRTUSP handler are delayed by design
(like flash erase) and the LPC does not respond until completion of the operation. diie def
value is 500 (ms).

Overrides

Override parameters are used to change existing microcontroller configurationsMasily-PC micro-
controller family members are quite similar and differ mainly in FLASH memory and SRAM size(s). This

mxli(1) GeneralCommands Manual mxli(1)

is, where werride parameters come in handyverride parameters are supposed to be used in conjuction
with wildcard microcontroller names. Override parameters are lowercase single character options.

—f flashSize
This option changes the size of one FLASH memory bafilkgbSize

-m ramSize..
Changes the size(s) of the RAM regiomailable in the microcontroller.

—-u name
Forces the use of the microcontroller definition of theicke namednameinstead of the probed
device. namemay be quoted on the command line for those device hames containing spaces.

-y flashBank
Changes the FLASH bank to use as destination. This has the effect of adding the base address of
FLASH bank flashBanko all addresses provided by the image file. Speciffimg FLASH bank
treats your addresses as absolute addresses. If unspecified, this option defaults to

Microcontroller device definitions
The possibility to define a memicrocontroller deice’s programming parameters on-the-fly has been
present from the very firstevsion of mxli. Since NXRB LPC families keep growing fast you almost
inevitably end up with a dace on your table that is not yet supported by mxdimpiled-in device table.
You may have a rew member of a known family orven a member of an entirely meLPC family. In the
first case, you most probably will be able to flash that device by forcing some known membeawiilthe f
and using werride options for FLASH size and/or RAM size. In the second case, you probafelyibha
define the déce’s memories and IDs from scratch. Provided you're not after the very last bit of-perfor
mance while flashing the dee, you dort need to specify the most accurate description of thedesice.
It is suficient to specify a minimum description suitable to perform flashing at reasonable spdied. T
more precise: it will most probably do the job to specify the first RA§lore of the device and the first
FLASH bank and its sector layout, the checksum location and the ISP protoedaaiY easily put the we
device definition into the variable MXLI_PARAMETERS or write a wrapper (shell-)script for mxli that
puts the definition on mxk’ command line.

—-A flashBankAddress
The LPC families LPC1800 and LPC4300 (at leasyehaultiple FLASH banks, numbered
A,B,C.. . All FLASH banks share the same sector layout - which is defined by the -F option. Each
element of the list provided to this option defines the base adilissb8ankAddressf one of the
awailable FLASH banks. The number of the elements and their position in the list define the num-
ber of aallable FLASH banks as well as their numbering. As aangple, LPC4357 FLASH
banks A and B are defined as follows: -A 0x1A000000,0x1B000000 . Another interestingle
might be the LPC4370 (FLASH-less part) definition: -A, with the single comma indicating the
zero-elements list. If omitted, this option defaults to -A 0 (one bank at address 0).

-B blockSize.
Defines the allowed 'CgpRAM to FLASH’ transfer size(s). This size defines the granularity of
FLASH write operations. Typically 4 different sizes are allowed fovendiPC family, most fre-
quently -B 256,512,1024,4096. If unspecified, this option defaults to -B 1024.

—-F sectorSizecount,..
The LPC FLASHSs consist of multiple groups of sectors. All sectors ofea gioup of countsec-
tors share the same sector sieetorSize Different groups use different sector sizes. Each group
of sectors is defined by one element of the lisvipied to this option. The tuple operator is the

mxli(1)

-1 ID,..

GeneralCommands Manual mxli(1)

letter "X’ with the meaning oftimes’. Asan example (LPC17xx Family FLASH definition): -F
4096x16,32kix14 means: 16 sectors of 4kiB followed by 14 sectors of 32kiB.

Every LPC controller can be identified by itsviee IDs. Unfortunatelyone or two device IDs are
used, depending on tharhily. mxli uses its compiled-in database to (try to) determine from the
first ID whether or not a second ID is supposed to be read. Of course, the evittggpwaith this
option is considered byxli, too. Each ID is defined by one element of the list of IDs provided to
this options. Haever, theres more to IDs than exact matcheSome parts of the IDs ta o be
disrggaded. So in fact, the values provided to this option alees and bit masks. The values can
be written in hexadecimal 0x... or binary Ob.... amehyeuppercase "X’ means dohcare (nibble

or bit respectiely). Furthermore leading Xes may be omitted, butTN®ading zeros. Decimal
values are permitted, too, but these do notvallion't care bits. As an example the LPC4353 ID
definition looks lile this: -IOXA001C830,0xXXXXXX44 . Or else: -I0XA001C830,0x44

-M siza@baseAddress

LPC microcontrollers can ka y to 6 m-chip RAM regions (at least). Novey RAM region is
powered up at ISP handler time. Please provide only those R4idng that are functional at that
time. Every RAM rgion has a base addrdsaseAddressind a sizesize Each RAM region is
defined by one element of the list provided to this option. The tuple operator is the @-sign with the
meaning of 'at base address’. As an example (LPC810 RAM definition) -M 1024@0x10000000,
means: one RAM region starting at 0x10000000 with a total size of 1kiB. The trailing comma is
not a typo, nor is it required -stas @tional as commas are in 'C’ initializer lists.

-N name

This option specifies the name of the LPC controlleeres no imitation on characters used.

—-P UUENCODE
—P BINARY

This option selects the data transmission protocol used by the ISP h&adter knowledge this
is always UUENCODE with the single exceptions of the LPC800 family that use BthiARY
transmission protocol. Default: UUENCODE .

-R size@address..

The ISP handler needs some RAM regions fonits purposes. This RAM - of course - cannot be
used bymxli for temporary storage. Every such RAM region has a sizeand a base address
address For a positve value of size the area used by the ISP handler is
addressaddress+1.address+size-1 If sizeis neyaive, then addressmust match one of the

RAM regions defined by the -M option and the area used by the ISP handler is counted from the
top of the RAM rgion davnwards (like a $ack usage, coincidently ;) . Each RAM region used by
the ISP handler is defined by one element of the list provided to this og{®m@an eample,
LPC213x ISP handlers required the fallng definition -R
OXEO@0x40000120,-0x120@0x40000000, meaning: ISP handler uses RAM from 0x40000120
(including) up to 0x40000200 Xeluding) and the top 32+256 bytes of the same RAWlore

which depends on the total RAMaiable. If unspecified, this option daflts to 1kiB from bot-

tom of first RAM region and 1kiB from top of it.

—-S count@dstindex

This option defines that the firsbunt entries of the gctor table within a FLASH bank are used

for calculating a checksum and that the destination place for storing glaedehecksum is
dstindex The sum is calculated from 32-bit accesses to the addressdsdunt1)*4 (includ-

ing). Howvever, if dstindexlies inside the checked range, then itxsleded from the calculation.

The ISP boot loader uses such a checksum as critereon for valid code in the FLASH. Typically the

mxli(1) GeneralCommands Manual mxli(1)
ISP boot loader checks the first 8 vectors. On ARM7 LPCs tlgatéth checksum is put into the
unused vector entry inge5. On ortex-M processors, vector entry ind€ is wsed for the
(negated) checksum, typicallyAs an &le the LPC800 checksum calculation is defined by
-S8@7 while LPC2100 checksum calculation -S8@5 is used.

CRP options

CRP (code read protection) is a feature of LPC controllers to restrict read access to the FLASH memory in
order to protect the intellectual property of the firangvcreator or to change the possible use of some ISP-
related controller pins. While it it unilty, that someone accidentally ends up in an unwanted GRFtle

is pretty likely that someone using CRP ends up in an unwamntebdlodECRP. mxli tries to minimize the
chance of locking up an LPC controller unintentionallyerefore mxli supports downgrading of CRRP-le

els, which can be used to verify the firmware to work properly before enabling the finaeRPUeher
more, mxlis default maximum CRP iel is 0 - NO CRP - and mxli verifies\wery image for that. If you
intend to use CRP you reallyvei consult the LPG user manual about that. CRP is controlled by a sin-
gle 4-byte veord at (typically) address Ox2FC inside the FLASH bank. mxli checks for CRReig e
FLASH bank it writes. Therefore, gsmmage containing that address contains at least one image @RP le
(most probably CRP el 0). The user may wish to use thatdeor the user may wish to set arébdiffer-

ent from this. CRP kel 3 and NO_ISP mode (CRPVd 4 in mxli’s rumbering) efectively disable ISP
entry by actiating the /BOQ pin at reset. & enable these CRP s, you need both options, -l and -L
and the arguments pridled must match each other and the image CiR#Pde mxli will refuse to apply the
CRP level. An LPC put into CRP Ml 3 or 4 can only be re-programmed if the program inside the FLASH
invokes the ISP handler or erases the FLASH.

—-L allowLevel
This sets the maximum allowed CRRdeo allowLevel The default is 0 - CRP disabled.

WARNING: Do not provide amllowLevelgreater than 2inless yu are asolutely sure about
what you're doing.

-| setLevel
This requests to use CRR/ék setLeveinstead of the CRP Vel of the image. The el must be
allowed before. This option defaults to -1 (unset) and this translates into: if the imagevaR® le
0 or withing the allowed range of CRPvis and CRP lesl <=2 then keep the CRP word.

——crpAddress=crpAddress
This changes the address of the CRP word veldti the FLASH bank origin. This option is an
override option and its purpose is mainly for testing nsx@RP mechanisms. Default: Ox2FC.
Beware: changing this value effeedly disables mxli$ CRP handling.

Other options

-? Prints a short help.

—a address.
This changes the FLASH-bank reletiarget address of the FLASH imagaddress. may be
one address for one image segment or a list of addresses for multiple imag&Higesption
applies to both bin-files and hex-files. For hex-files, one address applies to one hex-file, not one
address to one gment of a hefile. If unspecified, the address defaults to O for all image files
and hence image segments.

-g Enables maximum debugging output.

-V Verbose: print progress to stderr.

-G level
Sets the debug Vel to values between -1 (silent), 0 (normal), 1 (progress: -v), 2 (info: -V) 3
(debug: -g).

mxli(1)

GeneralCommands Manual mxli(1)

—=version
Prints mxli's version number as mxli-m.n with m an n as natural numbers (of 1 or 2 digiés), lik
for example: mxli-3.0 .

USING mxli

mxli can only communicate with the LPC controller if that one is in ISP mode. In order to enter ISP mode
the current program in FLASH musvike the IAP call feinvokelSP’ or you must handver control to the

ISP code at boot-up. The ISP mode becomeseaifteither no valid FLASH image is present or ifvite
specific pins are pulledvo For example a LPC812 with PIO0_12 (called /BOOT) pulledVii@t RESET

enters ISP mode. Msirdevdopment boards alle control of the signals /RESET and /BO©ver the serial

port and probably you ka o st jumpers for this to ark. mxli works best with serial port control of
/RESET and /BOU. It uses DTR as /RESET signal and RTS as /BO®me deelopment boards dot’
provide control @er these signal or provide one of them oflgese boards typically t1@ tuttons to enable
/RESET or /BO@. To enter ISP mode press and hold /BDen press and release /RESET and finally
release /RESET.

It should be noted, that that code read protection carergrentering ISP mode through /RESET and
/BOOT.

ENVIRONMENT

FILES

mxli puts the contents of the environmeatigbleMXLl_PARAMETERS in front of the command line
parameters as if it was typed on the command line. Thiwalputting the uses’favaurite options into

login script. Typical examples are: the option -v (verbose), changing the baud rate (-b 230400) or communi-
cation device (-d /dev/ttyUSB1).

mxli does not use grconfiguration file(s) so far.

EXAMPLES

The first irvokation of mxli | would suggest is:

$ mxli -n

This identifies the microcontroller connected, Vergthing works fine. If that doesnwork then your
RESET/BSL logic/settings danwvork or you hae o choose a communicationvlee other than the dadlt
/dev/ttyUSBO. Look at your board’sshematic or manual oto put the correct jumper settings or what

button to press for entering ISP mode.

Once you got basic communication running, you can flasharkdevice lile this (assuming, you ke ©
use /dev/ttyUSB1):

$ mxli -d/dev/ttyUSB1 yourProgram.hex

Once this works, you mightamt to get better performance. Use the switghand raise the baud rate, if
possible:

$ mxli -q -b 230400 -d /dev/ttyUSB1

OK. Now let’s read back the image. Youveat gecify the amount of data to read, $etssume 4kiB. And
let's sssume the communication device is the default one.

$ mxli -r 4ki > image.bin
Oh, yes, mxli writes binary images onRhat could be impneed...

How does a command line look &k that defines a rather complaicrocontroller let's say LPC4357, and
puts an image into flash bank selected by theimages (first) destination address and enables that flash

mxli(1)

GeneralCommands Manual mxli(1)

bank ?

$ mxli -N LPC4357 -F8kix8,64kix7 -B1024,4096 -A0x1A000000,0x1B000000
-M32ki@0x10000000,40ki@0x10080000 -10xA001C830,0xXXXXXX00 \
-R0Ox200@0x1008000,-288@0x10000000 -S8@7 -yZ yourProgram.hex

Translation: Name of the device is LPC4357. Every FLASH bank consists of 8 sectors of 8kiizddip

7 sctors of size 64kiB. FLASH may be accessed in 1024byte or 4096byte units. There BASH

banks, the first at address 0x1A000000, the second at address Ox1B000000. LPC4357 has 32kiB RAM at
address 0x10000000 and 40kiB RAM at address 0x10080000. The ISP handler uses the RAM area
0x10080000..0x100801FF and the top 256+32 bytes of this 40kiB RAM area. The device ID of LPC4357 is
two IDs in reality namely 0xA001C830 and the lower 8 bits of the second ID must be 0. LPC4B&7 v

code critereon is: sum of the first 8 vector table entries is zardi. uses table entry 7 for adjusting the
checksum. Selection of (virtual) FLASH bank Z causes thefiteds addresses to be treated as absolute
values, rather than FLASH-bank (A as default) reatalues.

SUPPORTED DEVICES

BUGS

mxli supports (by compiled-in tables) the following families of Nportfolio: LPC800, LPC1100,
LPC1200, LPC1300, LPC1500, LPC1700, LPC2100, LPC2300, LPC4300. @thiies should be sup-
ported by mxlis ommand-line device definition feature.

The source code of mxli can easily be ported to closed source operating systev$&\likdows or McO$.

AVAILABILITY

mxli is currently &ailable for Linux / *nix Platforms for compilation with GNU C Compiler (gcc). mxli is
written in gnu99 dialect (-std=gnu99) and compilation tested with gcc-4n18-3 can be ported to free-
standing environments to implement hand-helRU ISP FLASH programmers. The latest version of
mxli can be downloaded from www.windscooting.com/softy/mxli.html .

AUTHORS

Copyright Marc Prager (marc @ windscooting.com), 2011-2014

SEE ALSO

Ipcprog of Ipctools, Ipc2lisp

