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1  Introduction 
 

1.1 Project justification and development's environ ment 
 

The idea of doing this project began back at 2010, in Spain, I have a friend who is an 
architect and in a casually chat we were having he commented me of how, at the moment, 
there was no significant application to help architect's like him when they were working in the 
streets, analyzing, reviewing and studying the buildings. 

 
In this particular case, his job consisted of visiting flats and buildings in order to find 

pathologies, circumstances that appear on buildings that diminish their security, value and 
comfort. They need all this information for several purposes, sometimes because the client 
requested a check of the security of the building and if it is needed to do some fixings, other 
times they need it in order to issue the certificate of occupancy, other times it might be just 
simple as to document the state of a building during time. 

 
Usually all this information is gathered by hand making notes and taking photos so as 

to late introduce them in computer and use their main popular architect program like 
AutoCad. He told me that would be really useful to have some sort of application that could 
be launched though a mobile device, like an smartphone or a tablet pc and could assist them 
in this work. 

 
I thought it was an interesting concept to further develop so when finally I got my 

change to develop it I proposed it here in Wrocław. And I am happy that the tutor find it 
interesting too.  

 
It is no secret that an application like this, though small, merges several areas of 

informatics, like graphical design, graphical interface, user interaction and databases. And 
finally it is based from a real necessity which encourages to do its development 

 
As up today there is no other free application like this (nor a paid one that I have 

knowledge) I finally decided to try to do it by myself and this is the result. 
 
After some deliberation, I intended for this application to be for Android systems, the 

reason is quite simple, first I really like the Open Source environment that surrounds Android 
Operative System, and second, I had an Android smartphone, and could not afford to buy 
another smartphone, being said that I am not closing the possibility to develop it for other 
devices and OS (Operative System's) in the future if it is needed. But for the moment and for 
starters like me in this Android world, this would be good enough.  
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1.2 Project goals 
 

Good, we have a necessity to fulfil and motivation to develop but now the first problem I 
encountered was that I did not have previous knowledge of Android, so taking into 
consideration that here are the goals of this project. 

 
 
1) Learn Android language and be proficient developing for it 
2) Develop a useful tool for architects that allow them to at least represent maps and 

introduce information. 
3) Start a prototype which may be expanded in the future 

 
 

In order to fulfil this the minimum application's requirements in order to be useful should 
be as follows: 
 

1. Ability to represent maps 
2. Ability to annex photos into sections of these maps 
3. Ability to save and load these maps 
4. Ability to write descriptions of the pathologies encountered 
5. Ability to check a list of requirements of these maps 
6. Ability to use this application on smartphone or tablet pc through touch screen 

 
 

These have been the goals that I manage to accomplish to a certain degree, but this 
project has so much potential that it can be improved much further. See the section of 7. 
Possible improvements and upgrades for further reference. 
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1.3 Scope and used methodology 
 

As to develop this project it has been required to do a planning of the several tasks to 
be performed into independent entities (Gantt diagram). This project is based on the 
learning and investigation  required to acquire the appropriate knowledge , alongside with 
the competences learned through the career, have to made it viable. Once the sufficient 
knowledge is learned and a necessity study has been made (functional and non functional 
prerequisites) is when shall begin the specification and design  phase of the system. This 
system will have several components that will interact between them (like the camera of the 
smartphone or the SQLite Database). Finally we will begin the implementation  phase which 
will end into the testing  phase. During the development through all these phases the 
documentation of the project  will be performed. 

 
So we can join all these tasks of work into each one of the phases that we already 

commented resulting into the following 5 main phases: 
 

1. Investigation and Learning 
2. Specification and Design 
3. Implementation 
4. Testing 
5. Documentation of the project 

 
The project follows a chronologic time-lapse trying to adapt itself into the classic design 

progress but with backward jumps to input new information (prototype methodology) to any 
of he previous four phases. (The documentation phase is being developed through these 
four phases). 

 

1.3.1 Project planning 
 
Following we show the estimated planning of the project with the 5 phases early stated 

clearly differentiated and divided into individual and indivisible work tasks. 
 
In red we highlight the starting and finishing date of the projected project and also the 

dates of completion of the goals of the Specification and Design.
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TASK NAME  START END  
    
1) Investigation and Documentation  1/03/12 30/04/12  
 Determining architect requirements 1/03/12 12/03/12  
 Investigating architect terminology 13/03/12 14/03/12  
 Preliminary analysis 15/03/12 19/03/12  
 Learning Android environment 20/03/12 22/04/12  
 Preparing framework 
 

23/04/12 30/04/12  

2) Specification and Design  1/05/12 31/05/12  
 Analysis requirement 1/05/12 7/05/12  
 Designing components 8/05/12 15/05/12  
 Draw module strategy 16/05/12  19/05/12  
 Interface module strategy 20/05/12 22/05/12  
 Task planning 23/05/12 30/05/12  
 Approved design 31/05/12 31/05/12 

  
3) Implementation  1/06/12 5/08/12  
 Main screens and basic navigation 1/06/12 3/06/12  
 Draw Core 4/06/12 14/06/12  
  Connect points Core 11/06/12 14/06/12  
 Menu Option Interface 15/06/12 16/06/12  
 Menu Option Select 17/06/12 30/06/12  
  Popup Screen 17/06/12 19/06/12  
  Length module 20/06/12 26/06/12  
  Angle module 27/06/12 30/06/12  

 
 
 
 

 
 
 
 

 
 
 
 

 

TASK NAME  START END 
 
 Menu Option Erase 

 
1/07/12 

 
2/07/12 

 

 Menu Option Scroll 3/07/12 6/07/12  
 Menu Option Save 7/07/12 10/07/12  
 Menu Option Load 11/07/12 15/07/12  
 Menu Option New 16/07/12 17/07/12  
 Improvement Connect points Core 18/07/12 19/07/12  
 Camera Interaction 20/07/12 22/07/12  
 Gallery Module 23/07/12 28/07/12  
 Menu Option Door 29/07/12 30/07/12  
 Pathology Module 31/07/12 2/08/12  
 Checklist Module 3/08/12 4/08/12  
 End of Implementation 1/06/12 5/08/12  
 
4) Testing 

 
1/09/12 

 
16/09/12 

 

  Fixing code 1/09/12 16/09/12  
Prelimin ary documentation  1/03/12 24/09/12  
 
5) Final Thesis Memory 

 
24/03/12 

 
28/09/12 
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1.4 Environment description 
 

The environment in which this project has been developed is as follows: 
 

• Eclipse 
• Sony Ericsson Xperia X10 Mini 
• Android 2.1 Framework 

 
 In the following sections we are going to comment why we used each of these 
technologies and which relation they have with the project. 
 

1.4.1 Eclipse 
 
 There are several software development environment, and there is no particular 
reason to choose Eclipse over another one, just that it is perhaps one of the most used for 
programming Android, so that's why we choose it too, in order to follow the general trend. So 
if sometimes one have to look for information on Internet, it will be more easy to find as being 
more popular. The time in this project it has been critical factor so there were not time to lose 
trying to figure out which version would be best for developing this application. 
 

1.4.2 Sony Ericsson Xperia X10 Mini 
 
 This smartphone is the one that was mainly used to develop this application, the 
reason is no other that was the one that I hold as my own, so in order to develop it I tested it 
on it. In order to use other smartphone I was using the emulator coming with the Android 
framework. 
 
 Though I have to comment there is some advantages to develop in this particular 
smartphone as it is one of the smallest that exist on the market, so, managing to develop a 
drawing application in such an small screen reinforces the confidence that the application will 
be working much better on higher screen size devices and it will perform as intended on 
smaller devices. 
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1.4.3 Android 2.1 framework 
 
The decision to develop this application for Android is because: 
  
 First, the main goal is to develop it for smartphones or tablet pc's, we finally chose 
smartphones because there are more devices than tablet pc's, so it may be more useful for 
more people. 
 
 Second, as we did not have in our reach other devices with different OS we decided 
to do it for Android. 
 
 Third, I have a preference to certain degree for Android platform as how Open Source 
is involved, but discussing that here is beyond the scope of this project. Just for starting we 
chose to develop it for Android because was the faster and feasible way to us in order to 
generate fast results but in the future it may be coded too for other environments. 
 
 Finally, version 2.1 is old, but it is still a quite distributed version between android 
users1, as there were no problems to make this application for that version it was a good idea 
to do it in order to maintain as much as possible the compatibility of older devices. 

                                                
1 1 Android version 2.1 is the third most used version as of today as of 
http://developer.android.com/about/dashboards/index.html 
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1.5 Description of the actual situation 
 
 First thing to notice in the world of architects is that there are several roles in their 
work, for example: 
 

• Valuer: One who is responsible to evaluate properties and give an approximate price. 
• Issuer of occupancy: One who is responsible to evaluate properties and issue the 

certificate of occupancy. 
• Inspector: One who is responsible to evaluate the legal conditions of the property. 
• Interior designer: One who tries to maximize or rearrange or decorate the available 

space inside of a property to meet the expectations of the customer. 
 
 All of them, in order to do their job needs the representation of the property into a 2D 
representation (sometimes in 3D), usually called a map. The most basic thing is to be able to 
have a map of the property from a point of view from above to bottom. 
 
 They usually perform this making photographs, drawing in papers, and sometimes 
using notebooks (or netbooks) with AutoCad (the main architect's software). 
 
 But the process is quite "manual", and later they need to put all this information 
together in order to use it. 
 

1.6 Disadvantages. Room for improvement. 
 
 Architects are forced to carry notebook or netbooks if they want to fully take 
advantage of the informatics in their job at the "streets", which lots of them do not bring them. 
In some countries to have a notebook may be a normal thing, but not for this case.  
 
 AutoCad is a heavy application that usually needs a pretty powerful computer, 
depending of the severity of the property that one wants to represent. Usually architects have 
desktop computers which are powerful to do that job. There is also the explanation that not 
everywhere in the world they can afford for a notebook or netbook, and finally, when they 
need to work almost all day in the streets usually the battery autonomy of the notebooks 
restrict them. 
 
 So in the end, they usually take photos, and put all the information in physical format 
like the always reliable pencil/pen and paper. 
 
 But that can be improved if they could be able to gather all this information in one 
place, also this tool could support them in order to check further information readily available 
from Databases. 
 
 And so, here is the scope, and the main goal of this project. For the moment, this tool 
is not pretending to substitute any previous methodology, it is still far from it. But as a first 
prototype that can be fully expanded and test it is a good beginning. 
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2 Description of the actual requirements 
  
 After introducing the scope of this project, speaking about which tools we are going to 
use and for which purpose, now we are going to show in this chapter the complete study of 
requirements that our solution will have to accomplish. 
 

2.1 Requirement analysis 
 
 Any solution, regardless of its kind, has to discover and describe before starting to 
specify nothing, which needs should be fulfilled. These needs are what is called project's 
requirements, and is the previous step before specifying in order to have a clear idea of what 
we want to do. We will find requirements of 2 types: 
 

• Functional requirements: They are the inherent functionalities that the system will 
have to offer to the user; for example, show a map. 

• Non functional requirements: they are the requirements not related with user 
functionalities. 

 

2.1.1 Functional requirements 
 
 The desired solution should be helpful and useful for architects, being its strong point 
the availability to use it whenever it is needed without restrictions of hardware. 
  
The bare minimum objectives to be useful for an architect are the followings: (already 
mentioned them on introduction chapter) 
 

• Ability to use this application wherever as possible 
• Ability to represent maps 
• Ability to take and include photos 
• Ability to save and load the data 
• Ability to write descriptions 
• Ability to check a list of elements for occupancy 
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2.1.1.1 Ability to use this application wherever as  possible 
 
 One of the main goals is to help as many architects as we can, so the solution has to 
be intended for as many devices as possible. Also, these devices have to be as popular 
enough as possible.  
 
 With these premises, the most extended portable device would be the regular cell 
phone, but it is instantly discarded because there are not cell phones with touch screen 
capability. One critical point needed for interaction with this application. So, the next popular 
devices are smartphones.  
 
 In this category we have two major OS in the market, Android from Google and iOS 
from Apple, the best solution would be for both of them but as we do not have time nor 
resourced to do development for both devices at the same time we will focus on Android 
devices. 
 
 Alternative:  Instead we could use tablet pc's, this would be an interesting alternative 
because tablet pc's have higher screen size and are portable, only problem, they are not as 
common as smartphones, so that's why we chose to use smartphone. Anyway this is not a 
problem at this stage because the application can be easily ported to table pc in the future if 
needed. 
 

2.1.1.2 Ability to represent maps 
 
 As we stated on the chapter 1.5 Description of the actual situation, all architects 
regardless of its role, need to represent the property that they are analyzing into a 2D surface, 
at least. 
 
 Our solution gives the user the ability to draw into the screen in order to recreate a 
map of the flat that he is watching. That's why we needed a touch screen and so a 
smartphone instead of a cell phone. 
 

2.1.1.3 Ability to include and take photos 
 
 Architects works taking photos, in the interest of documenting pathologies the best 
way is to take a photo of the pathology itself. 
 
 Our solution gives the user the ability to take photos and includes them into the drawn 
map at the particular place where this pathology was, so he can look at it later in the future. 
 

2.1.1.4 Ability to save and load the data 
 
 This point almost does not need justification, if architects wouldn't be able to save or 
load previous works the entire application would be useless because sooner or later the 
architect will exit the application and so it is needed to save all the progress and retrieve later 
if needed. 
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2.1.1.5 Ability to write descriptions 
 
 As architects made notes of the pathologies that they encounter, our solution will give 
the ability to write descriptions and explanations of the pathology that have been found, and 
it will offer too to add the affected element into the system, both information would be related 
to the photo taken before (the pathology itself), which was already related into the map. 
 

2.1.1.6 Ability to check a list of elements of occu pancy 
 
 Architects need to verify several characteristics of the property they are visiting in 
order to issue a certificate of occupancy. Our solution will give a checklist for each map in 
order to revise if the flat fulfils those requirements or not. 
 
 

2.1.2 Non functional requirements 
 
 The non functional requirements that we want our application to comply are: 
 

2.1.2.1 User interface and Human factor 
 

 As the intended application is for architects we have to realize that they are not 
informatics specialists, so the user interface has to be simple and easy to understand in 
order to be easy for use. 
 
It will contain few screens, and almost everything will be performed using the same 
combination of buttons, option's menu. As for screen, there will be few of them just the 
required ones. 

2.1.2.2 Efficiency 
 

 The application will be small enough to be fast, and all the data structures generated 
have been created thinking about it's global performance. As this will be used for deviced 
that have small power of CPU (smartphones) and with low memory, this step is critical. 
 

2.1.2.3 Extensibility 
 
 As this is a prototype its modular code has to be easy enough in order to extend its 
possibilities. This is after all, a first attempt of this type of application and so it can be much 
much extended in order to add new functionalities and extend those that are already working. 
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2.1.2.4 Maintenance 
 
 The solution has to be maintainable as it will be extended, so far this is fulfilled 
because it's not that big enough for the moment so it has been coded using a Facade pattern. 
 

2.1.2.5 Others 
 
 We did not speak about security  and stability , and that's because as it is a prototype 
unfortunately these two characteristics have been left a unattended. If the user wants to put 
input that it is not expected, the application more than probably will crash. This needs further 
refinement, but it was the least of the worries because we are dealing with architects which 
will try to use this application accordingly and as intended, and not trying to do some weird 
behaviours like a regular user would do. And as for the security, there is non... because there 
is no possible data corruption for the user, or possible leakage of data as far as maps is 
concerned. So the security level is predetermined of the Android device for which will work 
on, if it is infected by a virus we cannot do nothing against it. 
 

2.1.2.6 Environment development and platform 
 
 The solution will work on Android systems from version 2.1 up until the newest one, 
this is intended for trying to please the maximum number of users. As for today android 2.1 is 
the third most popular android version, being 4.03 the second and 2.3 the first. 
 
 The environment development is effective as simple, Eclipse framework with the 
option to run the Android emulator for several phones. 
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2.1.3 Typical course of events from use cases 
 
 These are the main use cases that our application has to achieve after our analysis of 
requirements. 
 

2.1.3.1 Draw Core 
 
 This is the main feature of our application; it allows the user to represent a property 
into a 2D surface through a touch screen. The user will be required to draw on it and the 
application needs to detect this movement and represent it. This functionality will offer 
various tools for the user in order to help him to draw as easy as possible. 
 
Use case: Draw a wall 
Actors: Simple user (starter) 
Description: Represent a wall into the system through the movement of the finger. 
 
Typical dialog between actors and system and result ed produced changes: 
 

User actions System's answer 
1. User wants to draw a wall.  
2. He touches the screen.  
 3. The system catches the touch point 

and begins to draw a line following the 
movement of the user's finger. 

4. User can see how his wall is being 
represented; eventually he stops touching 
the screen finishing its drawing. 

 

 5. The system detects the release of the 
touch screen from the user and makes 
persistent the representation of the wall 
through a line.  

 
Possible errors and alternative courses of the use case. 
There is no other course as for this use case; If the user does not like the represented wall, 
or wants to change it he can use another use case to change its representation or delete it 
 
 
Use case: Delete a wall 
Actors: Simple user (starter) 
Description: Delete the selected wall from an existing map. 
 
Typical dialog between actors and system and result ed produced changes: 
 

User actions System's answer 
1. User wants to delete a wall.  
2. User touches the "Erase" option.  
 3. The system activates the erase mode. 
4. User touches the wall to be erased.  
 5. The system detects which wall has to 

be deleted and remove its existence from 
the system.  
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Possible errors and alternative courses of the use case. 
There is no other alternative course for this use case; if the user made a mistake he will need 
to draw again that wall using the previous use case. 
 
 
Use case: Create a new map 
Actors: Simple user (starter) 
Description: Create a new blank map with no walls painted on it 
 
Typical dialog between actors and system and result ed produced changes: 
 

User actions System's answer 
1. User wants to create a new map.  
2. User touches the "New" option.  
 3. The system deletes everything 

previously shown on the screen and 
creates a new empty map. 

 
Possible errors and alternative courses of the use case. 
There is no other alternative course for this use case; if the user made a mistake he will lose 
all non saved information from previous map. 
 
 
Use case: Draw a door 
Actors: Simple user (starter) 
Description: Represent a door into the map. 
 
Typical dialog between actors and system and result ed produced changes: 
 

User actions System's answer 
1. User wants to represent a door.  
2. User touches the "Door" option.  
 3. The system activates the door mode. 
4. User touches the point of the particular 
wall where he wants to put a door. 

 

 5. The system catches the touch point 
and begin to delete any drawing behind it. 

6. User can move its finger through the 
screen in order to increase or decrease 
the size of the door. 

 

 7. The system catches this finger's 
movement and represents it into the map. 

8. User stops touching the screen.  
 9. The system stops deleting the drawing 

behind he finger's user and makes 
persistent the new resulted map. 

 
Possible errors and alternative courses of the use case. 
There is no other alternative course for this use case; if the user made a mistake he will need 
to draw again that wall or load the map again.  
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Image 2.1: Use case diagram of the Draw Core 

 
 

2.1.3.2 Pathology Core 
 
 This feature will be responsible to allow the user to input and retrieve pathologies that 
he may encounter during his analysis of the property. Its main goal is to launch the camera 
application of the smartphone, take a picture and insert it into the map and the desired point 
where the pathology exists and write relevant information regarding it. 
 
. 
Use case: Input a pathology 
Actors: Simple user (starter) 
Description: Introduce a new pathology into the map 
 
Typical dialog between actors and system and result ed produced changes: 
 

User actions System's answer 
1. User detects a pathology and wants to 
introduce it into the system 

 

2. User touches the "Select" option.  
 3. The system activates the select mode. 
4. User touches the wall in which the 
pathology will be related. 

 

 5. The system detects the wall and launch 
a pop up window with information of the 
wall 

6. User touches the camera icon.  
 7. The system launches the external 

camera application. 
8. User takes a picture.  
 9. The system retrieves and save the 

picture into the system linking it into the 
selected wall. It repaints that wall with 
diffrent colour to represent that wall has a 
pathology attached to it 

 
Possible errors and alternative courses of the use case. 
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If something goes wrong like no camera application is detected there will be no picture 
attached to this pathology; It can be retried again later. 
 
 
Use case: Input description of a pathology 
Actors: Simple user (starter) 
Description: A pathology description is inserted into the system 
 
Typical dialog between actors and system and result ed produced changes: 
 

User actions System's answer 
1. User wants to input a description  
2. User touches the "Select" option.  
 3. The system activates the select mode. 
4. User touches the wall in which the 
pathology will be related. Black walls 
have already a pathology inserted so, will 
touch one of these. 

 

 5. The system detects the wall and launch 
a pop up window with information of the 
wall. 

6. User touches the gallery icon.  
 7. The system launches the gallery 

window where the user can see all 
pictures of this pathology. 

8. User selects the text field in order to 
insert the new description 

 

 9. The system opens up the virtual 
keyboard if there is no physical keyboard 
in this smartphone. 

10. User types the new relevant 
information. And press Ok. 

 

 9. The system save this new information 
and close the gallery window, going back 
to the previous pop up window. 

 
Possible errors and alternative courses of the use case. 
User does not want to save the new description; then he only needs to push the back button 
and not the "Ok" button in order to not make any change. 
 
 
 
Use case: View pictures of a pathology 
Actors: Simple user (starter) 
Description: Viewing all photos taken for a particular pathology 
 
Typical dialog between actors and system and result ed produced changes: 
 

User actions System's answer 
1. User wants to view pictures of a 
pathology. 

 

2. User touches the "Select" option.  
 3. The system activates the select mode. 
4. User touches the wall in which the  
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pathology will be related. Black walls 
have already a pathology inserted so, will 
touch one of these. 
 5. The system detects the wall and 

launches a pop up window with 
information of the wall. 

6. User touches the gallery icon.  
 7. The system launches the gallery 

window where the user can see all 
pictures of this pathology. 

8. User touches the pictures to right or left 
to see more pictures. 

 

 9. The system shows the new pictures as 
requested. 

 
Possible errors and alternative courses of the use case. 
There is not possible error during this action. 
 
 

 

 
Image 2.2: Use case diagram of the Pathology Core 
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2.1.3.3 Checklist Core 
 
 This feature will be responsible to allow the user to input and retrieve a list of checked 
elements that the property accomplish (or not) to have. Its main purpose is to aid architects 
of elements to be checked. 
 
 
Use case: Check the list of elements 
Actors: Simple user (starter) 
Description: Checklist of the elements to be revised from the property 
 
Typical dialog between actors and system and result ed produced changes: 
 

User actions System's answer 
1. User wants to check the elements of 
the property. 

 

2. User touches the "Checklist" option.  
 3. The system launches the checklist 

window related to this map. 
4. User can see, check or uncheck the 
desired elements. And press Ok. 

 

 5. The system saves these data and 
makes it persistent into the system. 

 
Possible errors and alternative courses of the use case. 
If the user does not want to make any changes it only needs to push the back button instead 
of "Ok" button. 
 

 
Image 2.3: Use case diagram of the Checklist Core 
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2.1.3.4 Persistent Core 
 
 This feature will be responsible to allow the user to save or retrieve the data from the 
system. Mainly the maps that have been created. 
 
 
Use case: Save current map 
Actors: Simple user (starter); system 
Description: Save all relevant data of the current map 
 
Typical dialog between actors and system and result ed produced changes: 
 

User actions System's answer 
1. User wants to save the current map.  
2. User touches the "Save" option.  
 3. The system saves all data related to 

this current map. If it already existed 
before will replace it for this new one, if it 
didn't exist before it will create all the data 
structure to make it possible. 

 
Possible errors and alternative courses of the use case. 
No enough space storage or no SD card inserted will throw exceptions; user will be expected 
to solve these problems, at this prototype stage. 
 
 
 
Use case: Retrieve a previously saved map 
Actors: Simple user (starter); system 
Description: Load the selected map previously saved  
 
Typical dialog between actors and system and result ed produced changes: 
 

User actions System's answer 
1. User wants to load a previous map.  
2. User touches the "Load" option.  
 3. The system launches a Load window 

with a list of all the current saved maps. 
4. User touches the selected map.  
 5. The system close this window, and 

loads the selected map as it was the last 
time was saved. 

 
 
Possible errors and alternative courses of the use case. 
No possible errors with this use case, if there is not previous saved maps the user will not be 
able to load a map. 
 
 
 
Use case: Clear database 
Actors: Simple user (starter) 
Description: Deletes all the data from the application  
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Typical dialog between actors and system and result ed produced changes: 
 

User actions System's answer 
1. User wants to delete all data  
2. User touches the "Clear Data" option.  
 3. The system deletes and removes all 

data from the application. 
 
 
Possible errors and alternative courses of the use case. 
If the user mistakenly chose this option, there will be no recovery. This should be extended in 
the next step of the proptotype.  
 
 

 
Image 2.4: Use case diagram of the Persistent Core  
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2.2 Problem specification 
 
 In this section we are going to detail which are going to be entities that will intervene 
and what they will have to exactly do. To make the specification we have to chose a 
methodology in order to guide us through all the construction process.  
 
The architectonic pattern that we chose is the N-layer architectonic pattern  and oriented 
model objects  
 
 First one is because is one of the most extended methodology and is quite natural to 
develop into it, second one, even I support for it in order to make more modular codes, it's a 
thing that we cannot change because Android is based on Java language and de facto this is 
oriented object language. 
 

 
Image 2.5: 3-layer architectonic pattern 

 
Our application will be based on the design of the standard 3-layer pattern that we can 
observe on the above image. But with some considerations::  
 

1) The presentation layer will be just the design of the screens of the Android 
application. 

2) The persistence layer will be just something simple and small in order to save the 
data. 
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2.2.1 Conceptual data model diagram 
 The solution will be formed as a set of modules implemented independently who they 
will interact with each other in order to accomplish the desired goal. Presentation layer 
 

2.2.1.1 Presentation layer 
 
 The presentation layer is the one responsible to interact with the user. In our solution 
it is something granted because we will be using an smartphone screen to interact with the 
user through its touch capabilities. Besides this layer is quite simple, we are going to show 
the different windows needed to have to achieve our goals.  
 

 
Image 2.6: UML conceptual data model of Layer Prese ntation 

 
 
 After the main screen, which will be a transitional screen we will reach the menu 
screen, from there the user can chose if wants to draw or load a previous map. 
 
 In Draw screen we can navigate to Load screen, or to the Entity screen, the screen 
that shows information of the walls painted in the map, in the future will be considered to be a 
popup window in the Design phase. Then from this window the user can navigate to the 
Gallery window where the Pathology Core is located. 
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2.2.1.2 Domain layer 
 
 The domain layer contains the logic of the application. The classes that we find here 
are responsible to maintain the control of the application and its necessary data structure in 
order to maintain the data in execution memory. 
 

2.2.1.2.1 Draw Core 
 

 
Image 2.7: UML conceptual data model of Draw Core D omain Layer 

 
 

 Draw class is the responsible to have the maps represented into the screen, the user 
will be almost all the time interacting with this class.  
Options class will be executed each time the user pushes the option button, and it will offer 
several options: 
 

• New: Responsible to create a new "Draw" class. 
• Select: Responsible to detect the entities drawn (walls). 
• Vector: A helpful mode for the user to draw maps which only allows the user to draw 

straight lines. 
• Erase: Responsible for deleting the entity selected. 
• Door: Responsible for drawing doors in the map. 
• Scroll: Responsible to change the current view of the map. 
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2.2.1.2.2 Pathology Core 
 

 
Image 2.8: UML conceptual data model of Pathology C ore Domain Layer 

 
 We already explained about the Draw class before, it is here to note where the 
Pathology Core begins. In Draw class the user selects and entity, so the class itself 
communicates with the Entity class. Here is the description of the new classes: 
 

• Entity: Responsible to show all the important data from the selected entity. 
• Camera: This one is not a class of our application, is external, but needed in order to 

take a picture. 
• Picture: The photo itself. 
• Gallery: Class responsible to show all the pictures related to this entity and to show 

the description and elements affected by this pathology. 
 

2.2.1.2.3 Checklist Core 
 

 
Image 2.9: UML conceptual data model of Checklist C ore Domain Layer 

 
 This core is quite simple as it is now, but in the future could be much more complex, 
we will explain on that on the chapter Possible Improvement. All maps will have a Checklist 
linked to them, so the Draw Class will communicate to the Checklist class responsible to 
show all the current elements that the flat complies (or not complies). 
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2.2.1.3 Persistence layer 
 
 The persistence layer are composed of all the classes responsible to make persistent 
the data of the application when this one it is not being executed and so retrieve it later. 
 

 
Image 2.10: UML conceptual data model of Persistenc e Layer 

 
 For tracking purposes we represent the Draw, Options and Menu Classes for 
clarification of how the classes interact with the persistence layer.  
 
 As one may guess the Save class is responsible to save all the data structure into an 
SQLite database for data structures, and into SD Card for bitmaps representing the maps 
being drawn.  
 The Load class is responsible to load all this data either from SQLite DB or SD Card, 
and finally we have the Camera Class, which is not a class of our application, but an external 
one who also saves the picture into the SD Card. 
 

2.3 Other solutions description (commercial ones) 
 
 There are few applications regarding to help architects for small devices, but the most 
similar to the concept we are searching is OrthoGraph, only problem with this application is 
that its intended for iPad and costs 74€  (around 290PLN). 
 
In reality as we explained in the introductory chapter there are not many applications as this. 
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3 Design and Implementation 
 

3.1 Proposed design 
 
 As this is a first prototype we decided to be it as useful as possible, so there are not 
so many special features that made this application beautiful but rather practical and simple. 
A few windows that share the same design are been implemented and we are going to 
present them in the following sections. 
 

3.2 Architect Support Tool 
 
 This is the name of the application and we are going to describe how it works. 
 
 

3.2.1 Main and Menu screen 
 
 This is the first screen presented to the user, where he can choose to Draw a map, 
Load a previous saved map, or Clear all the data of the application. 
 

  
Image 3.1: Menu screen of AST 

 
In this occasion the user has touched the Draw button. 
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Sequence diagram involved: 
 
 

 
Image 3.2: SD of Draw Button  

 
Image 3.3: SD of Draw Button  

3.2.2 Drawing screen 
 
 This is the drawing screen, in this example we are already seeing a drawing map, 
that's because the system will load the last previous map, if there is no previously saved map 
in the system then there will be no map drawn in the screen. 
 

  

 
Image 3.4: Drawing screen 

 
Image 3.5: Option menu 

 
 

 We can see here how the user push the "home" button of the smartphone causing 
this option menu to appear from the bottom of the screen. 
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Image 3.6: Option menu "more"  

 
Image 3.7: Option extended menu 

  
 
 If the screen is too small to show all the options, it will give the option to touch an 
special button called "More" (depending on the Android native language, in this picture is 
Spanish language, "Más") which will result into an extended list of options that couldn't be 
displayed before. 
 
Sequence diagram involved: 
 

 
Image 3.8: SD of Option menu 
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3.2.3 Entity screen 
 
 Let's going to describe this screen with a practical example, let's say that the user 
have found a pathology in this encircled wall. 
 

 
Image 3.9: Practical select example 

 
Image 3.10: Practical select example 

 
 
All he has to do is to select the "select" option from the option menu, now he is on "select 
mode" so he touches that particular wall, and so the Entity screen (or also called "select 
screen") appears. 
 

 
Image 3.11: Popup entity window 
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 The entity window is a popup window, it has been decided as this because it's good 
to remember the user that this is just one of many windows (as many as entities there are on 
the current map) and he will not lose focus of the current map. We take notice on that 
camera icon (a red arrow is pointing into it), the user will touch it in order to launch the 
internal camera and make a picture of the pathology and so save it into this current entity. 
 
We can also see that this window has some information: 

• Start Point: The (x,y) coordinates in which the wall begins. 
• End Point: The (x,y) coordinates in which the wall ends. 
• Length: The actual length of the wall expressed in decametres (1 meter = 10 

decametres), the reason is because for the moment there were not enough time for 
translating floating points meters into the system. Instead of saying 9,5 meters the 
user will be required to put 95 decametres. 

• Angle: The relative angle of the wall. 
 
The parameters Length , and Angle , can be modified  by the user to meet new criteria, and 
the system will redraw the new wall as the desired result. This ensures more flexibility of the 
drawing capabilities of the application. 
 
After the user has made a picture the resulting map will be displayed like this, note the 
change of colour of the wall, red  means no pathology inserted, black  means that wall has 
pathology. 
 

 
Image 3.12: Black wall after inserting pathology 

 
 

And so now we can appreciate just by looking that this flat at least has two pathologies 
encountered at the black walls. 
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Sequence diagram involved: 
 

 
Image 3.13: SD of Option menu 

 
 

3.2.4 Gallery screen 
 
 Now let's make the assumption that the user wishes to see the pictures taken with the 
camera of a pathology and (or) wants to put relevant information into it, in order to do so, he 
needs to do the same steps in the previous section. That is, open the Entity window of a wall 
that is painted in black (which means it has an inserted pathology). 
 
 

 
Image 3.14: Gallery icon in entity window 



Master Thesis             Development of a software tool to support architects 

 - 35 -

 The user then will touch the gallery icon on the top and right corner (a red cross is 
pointing into it), in order to open the Gallery window. 
 

 
Image 3.15: Gallery window                  

 
Image 3.16: Navigating between photos 

 
  

 
Image 3.17: Navigating between photos 

 
 
 The user then can see the pictures and in order to see more of them (if they exists) 
the only thing he needs to do is to touch the picture and move it into the right or left, as an 
standard gallery motion. In this example, we can see a wall with humidity problems. 
 
Now he wants to input relevant information of this pathology, such a description and the 
elements that are affected. If he scrolls down the window (with the movement of the finger) 
he will find all the possible text fields to fill. 
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Image 3.18: Gallery text fields 

 
Image 3.19: Gallery input method 

  
 
 So, when he touches one of the fields, the virtual keyboard will appear (if there is no 
physical keyboard in the smartphone) allowing the user to write a description of the detected 
pathology. 
 

 
Image 3.20: Gallery filling info 

 
Image 3.21: Gallery accepting changes 

 
  

 When the user inserted all the desired information, he only needs to push the "Ok" 
button to save it. If he does not want to save it then he needs to push the back button. 
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Sequence diagram involved: 
 
 

 
Image 3.22: SD of Gallery Window 
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3.2.5 Scrolling 
 
 This feature wasn't described on the initial Analysis of requirements but soon it was 
clear that it would be needed in order to see the entire map. 
 

 
Image 3.23: Option menu "Scroll"                   

 
Image 3.24: Scrolling map 

 
 
 After when the user selects the Scroll button of he option menu, he will be on "Scroll 
Mode", now he can touch the screen and move his finger in order to move the map with its 
movement at the desired place. When he will finish he will need to push the scroll button 
option again to leave from the "Scroll Mode". 
 
Sequence diagram involved: 
 

 
Image 3.25: SD of Scrolling 
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3.2.6 Saving 
 
 A must needed functionality for any application, in this prototype is easy as simple it is, 
the only thing that the user needs to do is to push the button Save from the Options menu. 
 
 

 
Image 3.26: Option menu "Save"        

 
            The save option will save the current map in the SQLite Database for data and into 
SD card for the current map (treated as a bitmap). Originally was thought to save everything 
on the SQLite database after converting the bitmap map into a serialize byte[] object, but it 
consumed too much memory and was slow. 
 
Every time that the user will push the save button, the system will try to find this current map 
in the database, if exists, it will replace it for the new one, if not, it will create a saved new 
map. 
 
 In this prototype the user is not asked for a name, all maps will be saved with the 
notation of "House ID" followed by the ID number of the map assigned from the beginning as 
being unique. 
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Sequence diagram involved: 
 

 
Image 3.27: SD of Saving 

 
 

3.2.7 Loading 
 
 It would not make any sense if after saving the data we couldn't retrieve it so here is 
the load functionality of the application. We have to note that the Load screen can be 
reached either by touching the Load button from the Menu screen or from the Option Menu 
of the Draw screen. 
 
 

 
Image 3.28: Load button Menu Screen        

 
Image 3.29: Load button Option menu 

 
 
When the user touches one of these buttons the Load screen will appear. 



Master Thesis             Development of a software tool to support architects 

 - 41 -

 
Image 3.30: Load screen        

 
Image 3.31: Selecting from Load screen      

 
 

 
Image 3.32: After loading the selected map      

 
 In the load screen it will appear all the saved maps that exist in the current system, if 
there is none then this screen will be just empty expecting the user to go back pressing the 
back button. The user then can select any of the maps shown to be saved and load it. 
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Sequence diagrams involved: 
 
 

 
Image 3.33: SD of Loading from Menu screen 

 
 
 

 
Image 3.34: SD of Loading from Draw screen 
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3.2.8 Create a new map 
 
 The user has the option to whenever he wants to create a new map disposing of all 
the current data displayed on the screen. 
 

 
Image 3.35: Option menu "New" 

 
Image 3.36: New blank map 

 
 

  
 Now he is able to begin a new drawing with new structures. This process is the only 
way to create new maps and increase the ID identifier of each map. 
 
 
Sequence diagram involved: 
 

 
Image 3.37: SD of Loading from Draw screen 
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3.2.9 Erase a wall 
 
 Let's say that the user begins to draw quite a strange room, but he fails to connect the 
last wall to close the room.  
 

 
Image 3.38 Mistakenly placed wall 

 
 So he can select the erase option from the menu and select that wall to remove it.  
 

 
Image 3.39: Option menu "Erase" 

 
Image 3.40: Wall being removed out 

          
 When the user touches the Erase option he enters into the "Delete Mode", in this 
mode any entity that he will touch will be removed it. After removing the desired wall, now he 
can try again to draw the wall as he desires. The user needs to touch the Erase option again 
in order to leave the "Delete mode". 
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Sequence diagram involved: 
 

 
Image 3.41: SD of Erase a wall 

 

3.2.10 Connecting Points Core 
 
 Taking the same example as before, as we stated, we cannot expect a human person 
to be as precise to select exactly the point where he wants to draw, that's why the Draw Core 
has a Connect Point Core in order to facilitate that task. It catches the point where the user 
touched the screen (or stopped touching the screen) and begins to search from all the 
entities that already exist in the system, if there is one point near to connect them. 
 
This tolerance distance is set up as 20 pixels radius away.  
 

 
Image 3.42: Area of tolerance to connect 

points 

 
Image 3.43: Line after connecting point 

 For the moment, the system works out with the opposite points of the wall, but it is not 
capable to detect the points between them. So drawing a wall intersecting another wall will 
cause that wall to trespass the second one. 
 
There is no sequence diagram for this, because it's an internal process, transparent to the 
user. 
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3.2.11 Vector mode 
 
 This is another feature in order to help the user to draw maps, until now we have 
seen that the user can draw straight lines with free angle (they can be 15 degrees, 25 
degrees, whatever, as long the finger is moving through the screen). Sometimes this is 
impractical if one wants to draw rooms and flats in a faster way.  
 
The Vector mode enables the user to only draw straight lines at 0º, 90º, 180º and 270º, as 
this application is not intended (for the moment, at this current prototype stage) to be a 
realistic representation of the world, but instead, a support tool, we think the vector mode will 
cover the needs of drawing rooms and flats, most of time. 
 

 
Image 3.44: Activating Vector Mode 

 
As usual, this option is enabled through the option menu, and in order to deactivate it one 
has to touch it again.  
 

 
Image 3.45: Wall at 270º 

 
Image 3.46: Wall at 0º 
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Image 3.47: Wall at 90º 

 
Image 3.48: Wall at 180º 

 
 We have here what is represented on the screen when the user touches the screen, 
but maintains the touching and moves his finger around the screen, all the time the wall is 
represented into one of x or y axis. When the user will release the touching of the screen the 
last motion of wall will be finally drawn. 
 
Sequence diagram involved: 
 

 
Image 3.49: SD of Vector mode 

    

3.2.12 Practical example 
 
 We almost explained all the features expect the Door option and Checklist option, that 
we will explain after this example. 
 
As we already explained with this features one can draw maps quite effectively and we are 
going to make a real case example. 
 
We are again with an user who is an architect an is an inspector, trying to insert pathologies 
in a new flat, so, with that premise he will begin to draw the map, using the vector mode to be 
fast and at the same time accurate. 
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Image 3.50: Wrong drawn wall 

 
 

 After drawing the map, it is expected that it will not be perfect and there will be some 
sections that need to be improved, fortunately the application gives tools in order to fix this 
situations. Let's say that our user wants to correct that wall because it is not straight enough. 
 

 
Image 3.51: Angle is 355 

 
Image 3.52: Input new angle 

  
 
 Through the use of the Select option we can open the Entity Window with the related 
information of this wall, and we can see that the angle is 355º so in order to have it straight 
we have to input 0º. 
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Image 3.53: Angle at 0º 

 
Image 3.54: New corrected wall 

  
 
 Ok, we manage to correct the wall to be oriented at 0º angle, but we are still not 
satisfied of the result. We realized that the wall was being painted from left to right, so what 
we need is to redraw the wall from right to left to effectively use the angle option. 
 
 

 
Image 3.55: Erasing wall                               

 
Image 3.56: Repainting wall 

 
  

 We have deleted the wall, and redraw it from right to left, and now we will change its 
angle. The explanation as to why this wall is being inclined it's because, even though we are 
on vector mode, and this shouldn't happen, the connect points core is always active and is 
detecting that there is some near point around there, preventing us to actually draw an 
straight line at 270º degrees. It's not a problem because we can fix it. 
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Image 3.57: Fixing angle                        

 
Image 3.58: New angle at 180º        

           
 
 

 We could see that it had 175º so we will change it for 180º and accept the changes, 
and so this is the result that we desired. 
 
 

 
Image 3.59: New wall        

 
 Now let's say that our architect has realized that he actually didn't want to make one 
wall, but two walls, dividing that room in two rooms. There are several ways to accomplish 
this, but we are going to explain how to do it manually through the "Length" parameter of the 
entity window. 
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Image 3.60: Entity window        

 
Image 3.61: Changing length        

           
 
 We see that the wall has 7.7 meters of length (77 decametres), in order to divide this 
room we have to shorten it into a half. So 3.5 meters will be good enough. 
 
 

 
Image 3.62: Accepting changes              

 
Image 3.63: Shortened wall to 3.5m                   

 
  

 Ok, now we are going to draw another wall to prepare this first room, we will do it by 
finger, and we will not care so much about trespassing other walls because we will correct it 
through the Length parameter. 
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Image 3.64: New painted wall              

 
Image 3.65: Length of the wall (10.1m)       

  
 

 Either by trial and error or checking the length of the parallel wall or just because we 
already know, we correct the length size to 8.4 meters, and so we accept the changes. 
 

 
Image 3.66: New length size 8.4m                 

 
Image 3.67: New repainted wall       

 
  

 Now we can see how we manage to do a room inside the first one, let's go to finish 
this process, drawing the last wall. 
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Image 3.68: New repainted wall 

 
 Again it happened the same thing as before, there is a point around there where the 
Connecting Points Core redraws our line into it. But, now we know how to fix that really 
quickly: 
 

 
Image 3.69: Correcting angle to 180º               

 
Image 3.70: New repainted wall       

  
  
 And finally we have our room divided in two smaller rooms. Following the same 
principles one can fix the entire map as much as he wants: 
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Image 3.71: Corrected map 

 
 Now as to following the same scenario, we need to put doors into this map, that 
guides us into the next section. 
 

3.2.13 Door Input  
 
 The ability to put doors is important to see where the entrances of the respective 
rooms are, as this is a prototype there were no time to drag and drop a door icon, so we 
used the ability to "remove" partially smaller sections of the walls. 
 

 
Image 3.72: Option menu "Door"              

 
Image 3.73: Flat with doors 

 
  

 When the user checks the Door option menu, he enters into the Door Mode. In this 
mode he can draw "white" lines, effectively removing the small sections where he crosses 
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with the movement of his finger. These white lines does not generate any type of data, they 
only modify the bitmap, nothing else. 
 
 Using it in an smart way, one can give the illusion of drawing entrances into each 
room or he flat itself. As the picture 3.73 is shown.  
 
The user is requested to touch again the Door option menu in order to leave out from this 
mode. 
 
Sequence diagram involved: 
 

 
Image 3.74: SD of Vector mode 

 
 

3.2.14 Checklist 
 
 This feature allows the user to check a list of elements that the flat should have. The 
user can check  those elements for information purposes, or try to fill in the new information. 
It consists of a list of elements, where the user can check or uncheck what he feels is being 
complied with the quality standards or not. 
 
As basic as this list is, for this prototype stage, they are probably the most important to check, 
the current elements to check is as follows: 
 

• Dimensions: If checked means that the flat has a proportionate size and addeuqate 
for its purpose (it's not the same a flat for  a living than an study flat). 

• Ventilation: If checked means that the flat has enough exhaust ventilations. 
• Windows: If checked means that the flat has all its windows in good condition, 

and are sufficient for the flat. 
• Smoke Pipe: If checked the smoke pipes do not have any problem, and they do exist. 
• Gas Pipe: If checked the gas pipes do not have any problem, and they do exist. 
• Lights: If checked, the flat has enough lights to make it a comfortable place through 

all the room. 
• Plugs: If checked, the flat has enough plugs connections through all the rooms. 
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Image 3.75: Option menu "CheckList"        

       
 

 
Image 3.76: Checklist screen                    

 
Image 3.77: Accepting changes 

          
 

 When the user selects the Checklist Option menu, the Checklist screen will appear 
with all the elements to be checked. If the user does not want to make any modification or 
just to read it, he will need to touch the back button, instead of the Ok button. 
 
All maps has one checklist associated to them. 
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Sequence diagram involved: 
 

 
Image 3.78: SD of Checklist screen 

 
 

3.2.15 Clear data 
 
 This button allows the user to delete all the information of the system, pictures, and 
databases (related to the application of course).  

 

 
Image 3.79: Clear Data button 

 
 Unfortunately this is the only way to delete all the generated information in this 
prototype as we didn't have time to create individual delete operations for each map and 
pictures. 
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3.3 Design of the Data Base 
 
 The Data Base will be made using SQLite, in particular there will be 4 Tables in which 
one of them is stored a particular relevant data. 
 
Before entering into explaining those tables, we need to remember when and what we need 
to store. 
 

3.3.1 Save drawing scenario 
 
When the user selects Save, from the application, he wants the current map to be saved. 
 
The relevant information of a current map is: 
 

• Current drawn Bitmap  
• The Data array mapCoordinates , responsible to divide the map in sections 

and label them depending if on these sections there is an entity or not. 
• The Data array aEntities , responsible to save all entities in the map. 
• The ID of the current map 
• The pictures captured from pathologies. 

 
For the last point, as they are already saved into the SD card as per the Camera application 
works, we only need the name of the picture, so an string will be enough. 
 
The first point the Bitmap, is stored in the SD using the ID of the current map for later locate 
it. The rest of this information is stored into an object class called "saveObject". 
 
 
public class saveObject implements Serializable { 

 

 private static final long serialVersionUID = 1L; 

  

 public byte mapCoordinates[][]; 

 public ArrayList<DrawEntity> aEntities = new ArrayList<DrawEntity>(); 

 public int Id; 

 public String bitmapFlnm; 

} 
Code 3-I: saveObject class 

  
This saveObject is serialized and then inserted into the SQLite in the first "newtable". 
 
 

 private void save() { 

  if (Id == 0) { 

   List<byte[]> states = null; 

   dh = new DataManipulator(this); 

   states = dh.selectAll(); 

   dh.close(); 

   dh = null; 

   Id = states.size() + 1; 

  } 

 

  saveObject so = new saveObject(); 
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  so.aEntities = this.aEntities; 

  so.mapCoordinates = this.mapCoordinates; 

  so.Id = Id; 

  so.bitmapFlnm = "HOUSE_ID_" + Id; 

 

  // save bitmap to sd 

  ByteArrayOutputStream bytes = new ByteArrayOutputStream(); 

  mBitmap.compress(Bitmap.CompressFormat.PNG, 100, bytes); 

 

  try { 

   File folder = new 

File(Environment.getExternalStorageDirectory() + BASE + "HOUSE_" + so.Id + 

File.separator); 

   if (!folder.exists()) { 

    folder.mkdir(); 

   } 

   File f = new File(Environment.getExternalStorageDirectory() + 

BASE + "HOUSE_" + so.Id + File.separator + so.bitmapFlnm + ".png"); 

   f.createNewFile(); 

   // write the bytes in file 

   FileOutputStream fo = new FileOutputStream(f); 

   fo.write(bytes.toByteArray()); 

   fo.close(); 

 

  } catch (Exception e) { 

   e.printStackTrace(); 

  } 

 

  byte[] object = SerializerClass.serializeObject(so); 

 

  dh = new DataManipulator(this); 

  long temp; 

  temp = dh.update(so.Id, object); 

  if (temp < 0) 

   dh.insert(object); 

  dh.close(); 

 } 
Code 3-II: Saving a map 

 
 
We are using the DataManipulator class, in order to communicate with the Database, the 
DataManipulator class has all the function calls, insert, update and select needed for the 
application. 
 

3.3.2 Save pathology scenario 
 
This is when the user inserts a new pathology (or modifies one). The relevant information to 
save is: 
 

• ID of the current map 
• ID of the entity selected 
• String Description: Where the description of the pathology will be captured. 
• String Damage: Where the elements affected will be captured. 
• Pictures already taken 
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For the last parameter, we do not need nothing special because they are already saved in 
the SD card using the ID of the current map and the ID of the entity ID to identify them. 
 
It's clear that in order to identify a Pathology we need the current ID map, and the ID of the 
selected entity, the combination of both fields will identify univocally the pathology and so 
save the description, damage and pictures of the pathology). 
 
In this case, there is no serialized object, an SQL query of insert or update will be called, 
using the Data Manipulator class. 
 
 

 public long insertPathology(int houseid, byte entityid, String 

description, String damage) { 

  String INSERT_pathology = "insert into " + TABLE_NAME2 + " 

(houseid,entityid,description,damage) values (" + houseid + "," + entityid + 

",\"" + description + "\",\"" + damage + "\")"; 

  this.insertStmt = 

DataManipulator.db.compileStatement(INSERT_pathology); 

  return this.insertStmt.executeInsert(); 

 } 
 

Code 3-III: Saving a pathology 
 
This data is stored into the second table of the database, called "newtable2". 
 

3.3.3 Save temporary scenario 
 
 When we were in the implementation phase, we encountered some problems as the 
when the application itself was being pushed out of the memory, or in the background in 
order to let pass another application in Android systems. 
 
Everytime that happened (specially when launching the camera), when the application 
returned back in front, there were some data lost. In order to circumvent this issue we 
implemented a save temporal option, that is called when the application lose its focus, when 
that happens, all Android applications has a lifecycle and it's enough to know that the 
onDestroy callback it's used. 
 
We override that callback in order to save a temporary file, so when it gets back, it will load 
the temporary file if exists. 
 
Here is the simple code from Draw.java 
 
 
 

 @Override 

 public void onDestroy() { 

  super.onDestroy(); 

  saveTmp(); 

 } 

Code 3-IV: Saving temporary map 
 
The function saveTmp() is almost identical as save, just with minor tweaks, also it calls from 
the DataManipulator class another simple version of Insert (or update) call to the SQLite 
database. 
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This information is stored in the third table of the database called "newtable3". 
 
Thanks to this implementation it allows the user to recover the last working map even if he 
exited from the program. 
 

3.3.4 Save checklist scenario 
 
 All maps have a checklist, if this does not exist the checklist will appear with all its 
elements unchecked, but at the first time that the user saves any changes (as pushing the 
button Ok, on the checklist screen) then it will save the relevant information into the database. 
 
The relevant information to store is just the boolean values of all the fields (if they are 
checked or not). For SQLite limitation which does not allow to store booleans, we just store 
integer values, being 0 false, and 1 true. 
 
This is how, from the CheckList class, is called and passed the arguments to the 
DataManipulator class: 
 
 

btnCheckOk.setOnClickListener(new Button.OnClickListener() { 

 public void onClick(View v) { 

  List<Integer> list = new ArrayList<Integer>(); 

        byte val1 = (byte)(dimensions.isChecked()? 1 : 0); 

        byte val2 = (byte)(ventilation.isChecked()? 1 : 0); 

        byte val3 = (byte)(windows.isChecked()? 1 : 0); 

        byte val4 = (byte)(smokepipe.isChecked()? 1 : 0); 

        byte val5 = (byte)(gaspipe.isChecked()? 1 : 0); 

        byte val6 = (byte)(lights.isChecked()? 1 : 0); 

        byte val7 = (byte)(plugs.isChecked()? 1 : 0); 

         

  DataManipulator dh = new DataManipulator(getBaseContext()); 

  list = dh.selectCheckList(houseID); 

  if (list.size() != 0) { 

   dh.updateCheckList(houseID, val1, val2, val3, val4, val5, 

val6, val7); 

  } else  { 

   dh.insertCheckList(houseID, val1, val2, val3, val4, val5, 

val6, val7); 

  } 

  dh.close(); 

  finish(); 

 } 

}); 

Code 3-V: Saving checklist of current map 
 
 
 And this is the InserCheckList of the DataManipulator class, quite similar as the insert from 
the case of save of draw. 
 
 

public long insertCheckList(int houseid, byte dimensions, byte ventilation, byte 

windows, byte smokepipe, byte gaspipe, byte lights, byte plugs) { 

 String sql = "insert into " + TABLE_NAME4 + " 

(houseid,dimensions,ventilation,windows,smokepipe,gaspipe,lights,plugs) values 

(" + houseid + ",\"" + dimensions + "\",\"" + ventilation + "\",\"" + windows + 

"\",\"" + smokepipe + "\",\"" + gaspipe + "\",\"" + lights + "\",\"" + plugs + 
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"\")"; 

 this.insertStmt = DataManipulator.db.compileStatement(sql); 

 return this.insertStmt.executeInsert(); 

} 

Code 3-V: InsertCheckList from DataManipulator clas s 
 
The checklist data is stored into the fourth and last table of the database called "newtable4" 

3.3.5 Creation and purpose of each table 
 
So finally, we have 4 tables in our SQLite database: 
 

• newtable: Responsible to store the data structure of a map, it stores serialized 
objects. 

• newtable2: Responsible to store the pathologies, it stores ID of the map, ID of the 
entity, description and damage. 

• newtable3: Responsible to store the save temporal file, (just one entry) 
• newtable4: Responsible to store the checklist information (1 ID field for current 

map, and the other 7 extra fields representing the elements to be checked). 
 
We are sorry for having these names, as we didn't have time to change them and test it 
properly, so we prefer not to touch them. Obviously in future stages they would be changed 
into something more describing of what is their purpose. 
 
 
This is the code used to ceate this tables in the DataManipulator class 
 
 
 

public void onCreate(SQLiteDatabase db) { 

 db.execSQL("CREATE TABLE " + TABLE_NAME + " (id INTEGER PRIMARY KEY, data 

BLOB)"); 

 db.execSQL("CREATE TABLE " + TABLE_NAME2 + " (id INTEGER PRIMARY KEY, 

houseid INTEGER, entityID TINYINT UNSIGNED, description VARCHAR, damage 

VARCHAR)"); 

 db.execSQL("CREATE TABLE " + TABLE_NAME3 + " (id INTEGER PRIMARY KEY, data 

BLOB)"); 

 db.execSQL("CREATE TABLE " + TABLE_NAME4 + " (id INTEGER PRIMARY KEY, 

houseid INTEGER, dimensions TINYINT UNSIGNED, ventilation TINYINT UNSIGNED, 

windows TINYINT UNSIGNED, smokepipe TINYINT UNSIGNED, gaspipe TINYINT UNSIGNED, 

lights TINYINT UNSIGNED, plugs TINYINT UNSIGNED)"); 

} 

Code 3-VI: Table stuctures of our SQLite database 
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4 Testing and performance 
 
 Unfortunately we didn't have time to test this application extensively outside of its 
development process, but we can say that at least we improved from the ever first version. 
 
The early version, as we commented at some point before had 2 big problems regarding 
usage of memory and performance. 
 
 
First problem - Saving Data structures into SQL 
 
 The early version used a Connecting Points Core who consumed lots of resources, in 
order to detect if the finger of the user when it touches the screen were near of another point, 
the first implemented solution was to have 2 arrays of points, the size of each array was 
equal to all pixels that a screen could have. In our particular case 240*320 pixels (as per our 
android smartphone X10 Mini). Each position of this array represented a pixel of the screen. 
 
When an user touched the screen, we saved into the position of the array the new id entity 
that was being created, and also the next 40*40 pixels near to it (20 pixels of radius 
tolerances was equal as an square of 40*40 pixels being the touched one its centre), so 
when later the user were about to touch the screen around that particular position, we just 
had to check into the array if it was filled with an entity id, if it was we knew that it had a near 
point to be connected. 
 
And we were using 2 arrays, one for integer positions, and the other for float positions. 
Obviously when we begin to implement the save function and the database, this proved to be 
too much memory consuming, actually was calculated that by an average flat size, it was 
required 0.5 Mega Bytes. With just 2 flats we were exceeding the virtual memory of java, and 
also it was slow. 
 
 
Solution:  
 
 The solution was simple and we were surprised to not think about it before. We just 
do not create any structure at all, just when an entity is created we save its starting point and 
ending point, in the same entity object, and that's all, and the most interesting thing is that we 
were already doing this, so no big modifications were needed to do. 
 
Then, when the user touches the screen we call a function to search from the array structure 
containing all entities, in order to find a point that it is inside the 20 pixels radius. As the array 
of entities usually will contains few elements (from the order of the 10th or 20s as much), the 
search is instantly, and we manage to resolve all the memory problems. 
 
With this and other tweaks we passed from using 0.5MB as average for each flat into 
something no more bigger than 10KB, the amount of flats that the system can store, at least 
into its SQL database has been increased by fifty. 
 
 
Second problem - Saving photos for pathologies 
 
 At the beginning the default option for a camera when it takes a photo is to take it at 
full resolution as much the camera of the smartphone can handle. This was a problem, 
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because when we tried to load these photos internally inside the application, after only two 
pictures we were running out of virtual memory. 
 
Solution:  
 
There is an option when calling the internal camera application to take a low resolution 
picture and store it into a bitmap, that saved all the virtual memory.  
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5 Planning 
 
 Finally the original planning has suffered some changes of redistribution and 
dedicated tasks. 
 

TASK START END HOURS SPENT 
  
Investigation and Documentation  1/03/12 30/04/12 140 
 Determining architect requirements 1/03/12 12/03/12  
 Investigating architect terminology 13/03/1214/03/12  
 Preliminary analysis 15/03/1219/03/12  
 Learning Android environment 20/03/1222/04/12  
 Preparing framework 
 

23/04/1230/04/12  

Specification and Design  1/05/12 31/05/12 110 
 Analysis requirement 1/05/12 7/05/12  
 Designing components 8/05/12 15/05/12  
 Draw module strategy 16/05/12 19/05/12  
 Interface module strategy 20/05/1222/05/12  
 Task planning 
 

23/05/1230/05/12  

Implementation  10/06/1228/08/12 340 
 Main screens and basic navigation 1/06/12 13/06/12  
 Draw Core 14/06/1224/06/12  
  Connect points Core 21/06/1224/06/12  
 Menu Option Interface 25/06/1226/06/12  
 Menu Option Select 27/06/1211/07/12  
  Popup Screen 27/06/1229/06/12  
  Length module 30/06/127/07/12  
  Angle module 8/07/12 11/07/12  
 Menu Option Erase 12/07/1214/07/12  
 Menu Option Scroll 15/07/1219/07/12  
 Menu Option Save 20/07/1224/07/12  
 Menu Option Load 6/08/12 10/08/12  
 Menu Option New 11/08/1212/08/12  
 Improvement Connect points Core 13/08/1214/08/12  
 Camera Interaction 15/08/1220/08/12  
 Gallery Module 21/08/1224/08/12  
 Improvement Draw Core 25/08/1227/08/12  
  Vector Mode 26/08/1227/08/12  
 Menu Option Door 28/08/1229/08/12  
 Pathology Module 30/08/125/09/12  
 Checklist Module 6/09/12 10/09/12  
 End of Implementation 10/06/1210/09/12  
 
Testing 

 
11/09/12

 
16/09/12 

 
20 

  Fixing code 11/09/1216/09/12  
Preliminary documentation  1/03/12 24/09/12  
 
Final Thesis Memory 

 
24/03/12

 
28/09/12 

 
 67 

  
Total hours :  677 
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 About the first 2 phases, there were no changes because at the moment of doing the 
original plan we were at 1/6/12, but the implementation have been much longer than 
expected. Originally the plan was not to use August month, but was there in order I was 
being late. And that was the case, all the implementation process has taken much longer 
than what I though, and it  was because I am new on Android environment, as every task 
that I needed I have to document myself in order to know how to do it, and that was an 
investing time that's not directly represented. It has to be noted that the period from 25/7/12 
to 5/8/12 I was at my home country, on holidays, so I was not working on the project on 
those days. 
 
 Second, sometimes I need feedback from my architect colleague and I couldn't locate 
him fast, and after locating him I had to revise and modify some functionality. (That's why is a 
project based on the prototype lifecycle). 
 
 But I wanted to maintain as far as I could the original tasks without dropping any one, 
so in the end the process that suffered from it was the Testing phase, reduced just 20 hours 
and probably inside these hours 15 are from fixing code, so it has been only 5 hours for 
testing. 
 
 I preferred to have a prototype with much functions possible be done, and working 
reasonable than to have a solid proof stable prototype but less functionalities. If this works 
and it is good, the stabilization of this prototype will be the next step. 
 
 Also in the beginning at the Investigation and documentation, and also at the 
specification and design, I was setting up myself here at Wroclaw with this new experience 
being erasmus student, so I need some time in order to properly focus on thesis. 
 
So far this summer has been great in order to advance a lot of work on this project. 
 

6 Budget 
  
 As all projects there have to be a section speaking about the budget or overall cost 
that would represent this application if it was about to put on commercial status. In this 
particular case, perhaps in the future may be a commercial application, but obviously not as 
it is like now, it needs more improvements yet to be on commercial level, but anyway for the 
moment is not so difficult to compute the cost. 
 
First there are no proprietary licenses in this code; the advantage for programming for 
android is that there are no additional costs on licenses. 
 
Second, the smartphone cost it cannot be counted as the cost of the application, because 
that's outside of our control. 
 
Third, the only costs here is the number of hours developing on this application, which as the 
present case it have been only one person (me), and one can just multiply the total number 
of hours by an average price per hour of programming. 
 
In Spain would be like 677 * 8 = 5.416€ here at Wroclaw would be less, I am not educated 
enough to know the average income for an IT specialist but I suppose around 677 * 19 = 
12.863PLN. If our most directly competitor charges like 80€ for a similar application, if we 
charge let's say just 40€, after 136 downloads we will recover the costs.  
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But to think in those terms is unreal, as stated, the application as it is now cannot be sold 
(even is not usable enough for a free release, unfortunately), so this case of study should be 
done in the future when the prototype would cease to be a mere prototype. 
 
But as this is only personal costs, I sincerely do not treat that as important as long the 
application is popular and successful, in the future.  Sincerely, I am just thinking to make it as 
free as possible. 
 

7 Possible improvements and upgrades 
 
 This is the first usable prototype to see how helpful an application like this can be for 
architects, but obviously it needs to be improved. These are all the elements that need 
improvement: 
 

• The Length measure of the entity window should be changed in order to reflect 
Meters and not Decametres, this should be fairly easy to accomplish. 

• Delete option for Pathologies, or saved maps. This should be easy to accomplish too. 
• Every time that the user wants to save the application should ask if he wants to 

rewrite an over existing save or create a new one (and ask also the name of this save 
state). This may need a bit of work but shouldn't be any problems in doing so. 

• Zoom option, for zooming out or in the entire bitmap. This is difficult to implement 
because it touches a lots of areas, but should be done too. 

• Icon doors, instead of the actual system of deleting pieces of a line, it should be like 
dragging and dropping a door icon into the wall. This is difficult because it needs logic 
in order to intersect the wall and put the corrected orientation of the door. 

• Ability to draw circles or ellipses, for columns. A bit difficult it needs some thinking 
process, but at least the entity class is already created to store it. 

• Upgrade the checklist window with much more detail, perhaps even flexible for the 
architect to desire. In the future there should be like an overall checklist of the flat and 
then another independent checklist for each room. This is difficult to do, it needs a 
designing process. 

• A third option on the menu screen to read some local laws as what a property should 
accomplish. Not difficult but tedious, it needs investigation of the current laws of the 
selected country. 

• Improve the drawing method, for example, the connecting points core should be also 
to detect when a line is crossing another line and so cut it and connect them, 
challenging but reasonable to implement with some time. There may be a major 
problem; depending on the solution the performance could be severely affected, as to 
try to guess all the points of the current lines. 

• An Undo option, to undo whatever have been drawn previously. (it will improve the 
usability of the application). 

• Export option to Cad, this would be really useful for architects but it is also the most 
difficult to do in my opinion. One needs to know how Cad works internally and as far 
as I know it's a proprietary system... so a lot of investigation should be required to 
make it compatible. 

• Improve the databases and stability of the system. 
 
As one can see, there are a lot of room for improvement, some of this can be difficult but 
almost all of them can be achieved with reasonable time, improving the application much 
more. 
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8 Conclusions 
 
 This project is quite ambitious, from the beginning it's clear that there is an empty 
space in the market to cover this necessity from architects, but to develop this application 
has been really challenging for me, as it was my first time developing for an smartphone, in 
this case for Android systems, and also living outside my country. 
 
That caused serious problems during the implementation phase, as I didn't have enough 
knowledge (and still I don't think that I am good enough on it) but so far the knowledge that I 
have learnt regarding that is invaluable and indisputable. A kind of knowledge that will be 
useful for my future, and probably for the future of the informatics, as the trending is to have 
more embedded systems in small devices. 
 
Being said that, this application is not trying to substitute any previous routine that architects 
has, for lack of time it couldn't be finished as I think it should be in order be completely 
usable. But, as a prototype and to test it it's a good beginning. After this I will see how much I 
can improve this solution, and I am eager to show it to my friend in Spain Jaume Casadevall 
Puig, the actual architect who gave me the idea and supported me giving me all the required 
information from an architect point of view. 
 
As for my personal learning and enjoyment, I already loved to do this thesis in such a beatiful 
country as Poland, and especially in such a multicultural city like Wrocław. People were 
surprised when I asked to stay here for more time in order to work, they were thinking that I 
could do that back at my home town, but, it wouldn't be the same. I am really grateful to my 
home unirvesity, Universitat Politècnica de Catalunya and my hosting university, Politechnika 
Wrocławska to allow me to stay here more time in order to finish this thesis and being so 
comprehensible to me. 
 
Finally thanks to my tutor Krzysztof Waśko, who even always busy and having to cope with 
Erasmus people that sometimes do not even know how to speak proper English (I hope I am 
not the case!), never let me out and supported me. 
 



Master Thesis             Development of a software tool to support architects 

 - 69 -

9 Annex A: Images index 
 
IMAGE 2.1: USE CASE DIAGRAM OF THE DRAW CORE ........................................................................................ - 18 - 
IMAGE 2.2: USE CASE DIAGRAM OF THE PATHOLOGY CORE .............................................................................. - 20 - 
IMAGE 2.3: USE CASE DIAGRAM OF THE CHECKLIST CORE ................................................................................ - 21 - 
IMAGE 2.4: USE CASE DIAGRAM OF THE PERSISTENT CORE ............................................................................... - 23 - 
IMAGE 2.5: 3-LAYER ARCHITECTONIC PATTERN ................................................................................................. - 24 - 
IMAGE 2.6: UML  CONCEPTUAL DATA MODEL OF LAYER PRESENTATION .......................................................... - 25 - 
IMAGE 2.7: UML  CONCEPTUAL DATA MODEL OF DRAW CORE DOMAIN LAYER ................................................ - 26 - 
IMAGE 2.8: UML  CONCEPTUAL DATA MODEL OF PATHOLOGY CORE DOMAIN LAYER ...................................... - 27 - 
IMAGE 2.9: UML  CONCEPTUAL DATA MODEL OF CHECKLIST CORE DOMAIN LAYER ........................................ - 27 - 
IMAGE 2.10: UML  CONCEPTUAL DATA MODEL OF PERSISTENCE LAYER ........................................................... - 28 - 
IMAGE 3.1: MENU SCREEN OF AST .................................................................................................................... - 29 - 
IMAGE 3.2: SD OF DRAW BUTTON ..................................................................................................................... - 30 - 
IMAGE 3.3: SD OF DRAW BUTTON ..................................................................................................................... - 30 - 
IMAGE 3.4: DRAWING SCREEN ........................................................................................................................... - 30 - 
IMAGE 3.5: OPTION MENU .................................................................................................................................. - 30 - 
IMAGE 3.6: OPTION MENU "MORE"..................................................................................................................... - 31 - 
IMAGE 3.7: OPTION EXTENDED MENU ................................................................................................................ - 31 - 
IMAGE 3.8: SD OF OPTION MENU ....................................................................................................................... - 31 - 
IMAGE 3.9: PRACTICAL SELECT EXAMPLE .......................................................................................................... - 32 - 
IMAGE 3.10: PRACTICAL SELECT EXAMPLE ........................................................................................................ - 32 - 
IMAGE 3.11: POPUP ENTITY WINDOW ................................................................................................................. - 32 - 
IMAGE 3.12: BLACK WALL AFTER INSERTING PATHOLOGY ................................................................................ - 33 - 
IMAGE 3.13: SD OF OPTION MENU ..................................................................................................................... - 34 - 
IMAGE 3.14: GALLERY ICON IN ENTITY WINDOW ............................................................................................... - 34 - 
IMAGE 3.15: GALLERY WINDOW ........................................................................................................................ - 35 - 
IMAGE 3.16: NAVIGATING BETWEEN PHOTOS .................................................................................................... - 35 - 
IMAGE 3.17: NAVIGATING BETWEEN PHOTOS .................................................................................................... - 35 - 
IMAGE 3.18: GALLERY TEXT FIELDS .................................................................................................................. - 36 - 
IMAGE 3.19: GALLERY INPUT METHOD .............................................................................................................. - 36 - 
IMAGE 3.20: GALLERY FILLING INFO  ................................................................................................................. - 36 - 
IMAGE 3.21: GALLERY ACCEPTING CHANGES .................................................................................................... - 36 - 
IMAGE 3.22: SD OF GALLERY WINDOW............................................................................................................. - 37 - 
IMAGE 3.23: OPTION MENU "SCROLL" ............................................................................................................... - 38 - 
IMAGE 3.24: SCROLLING MAP ............................................................................................................................ - 38 - 
IMAGE 3.25: SD OF SCROLLING ......................................................................................................................... - 38 - 
IMAGE 3.26: OPTION MENU "SAVE" ................................................................................................................... - 39 - 
IMAGE 3.27: SD OF SAVING  ............................................................................................................................... - 40 - 
IMAGE 3.28: LOAD BUTTON MENU SCREEN ....................................................................................................... - 40 - 
IMAGE 3.29: LOAD BUTTON OPTION MENU ........................................................................................................ - 40 - 
IMAGE 3.30: LOAD SCREEN ................................................................................................................................ - 41 - 
IMAGE 3.31: SELECTING FROM LOAD SCREEN ................................................................................................... - 41 - 
IMAGE 3.32: AFTER LOADING THE SELECTED MAP ............................................................................................. - 41 - 
IMAGE 3.33: SD OF LOADING FROM MENU SCREEN ........................................................................................... - 42 - 
IMAGE 3.34: SD OF LOADING FROM DRAW SCREEN ........................................................................................... - 42 - 
IMAGE 3.35: OPTION MENU "NEW" .................................................................................................................... - 43 - 
IMAGE 3.36: NEW BLANK MAP ........................................................................................................................... - 43 - 
IMAGE 3.37: SD OF LOADING FROM DRAW SCREEN ........................................................................................... - 43 - 
IMAGE 3.38 M ISTAKENLY PLACED WALL  ........................................................................................................... - 44 - 
IMAGE 3.39: OPTION MENU "ERASE" ................................................................................................................. - 44 - 
IMAGE 3.40: WALL BEING REMOVED OUT .......................................................................................................... - 44 - 
IMAGE 3.41: SD OF ERASE A WALL .................................................................................................................... - 45 - 
IMAGE 3.42: AREA OF TOLERANCE TO CONNECT POINTS .................................................................................... - 45 - 
IMAGE 3.43: LINE AFTER CONNECTING POINT .................................................................................................... - 45 - 
IMAGE 3.44: ACTIVATING VECTOR MODE ......................................................................................................... - 46 - 
IMAGE 3.45: WALL AT 270º ............................................................................................................................... - 46 - 
IMAGE 3.46: WALL AT 0º ................................................................................................................................... - 46 - 



Master Thesis             Development of a software tool to support architects 

 - 70 -

IMAGE 3.47: WALL AT 90º ................................................................................................................................. - 47 - 
IMAGE 3.48: WALL AT 180º ............................................................................................................................... - 47 - 
IMAGE 3.49: SD OF VECTOR MODE .................................................................................................................... - 47 - 
IMAGE 3.50: WRONG DRAWN WALL ................................................................................................................... - 48 - 
IMAGE 3.51: ANGLE IS 355 ................................................................................................................................ - 48 - 
IMAGE 3.52: INPUT NEW ANGLE ......................................................................................................................... - 48 - 
IMAGE 3.53: ANGLE AT 0º .................................................................................................................................. - 49 - 
IMAGE 3.54: NEW CORRECTED WALL ................................................................................................................. - 49 - 
IMAGE 3.55: ERASING WALL .............................................................................................................................. - 49 - 
IMAGE 3.56: REPAINTING WALL......................................................................................................................... - 49 - 
IMAGE 3.57: FIXING ANGLE ............................................................................................................................... - 50 - 
IMAGE 3.58: NEW ANGLE AT 180º ...................................................................................................................... - 50 - 
IMAGE 3.59: NEW WALL .................................................................................................................................... - 50 - 
IMAGE 3.60: ENTITY WINDOW ........................................................................................................................... - 51 - 
IMAGE 3.61: CHANGING LENGTH ....................................................................................................................... - 51 - 
IMAGE 3.62: ACCEPTING CHANGES .................................................................................................................... - 51 - 
IMAGE 3.63: SHORTENED WALL TO 3.5M ........................................................................................................... - 51 - 
IMAGE 3.64: NEW PAINTED WALL ...................................................................................................................... - 52 - 
IMAGE 3.65: LENGTH OF THE WALL (10.1M) ...................................................................................................... - 52 - 
IMAGE 3.66: NEW LENGTH SIZE 8.4M ................................................................................................................. - 52 - 
IMAGE 3.67: NEW REPAINTED WALL .................................................................................................................. - 52 - 
IMAGE 3.68: NEW REPAINTED WALL .................................................................................................................. - 53 - 
IMAGE 3.69: CORRECTING ANGLE TO 180º ......................................................................................................... - 53 - 
IMAGE 3.70: NEW REPAINTED WALL .................................................................................................................. - 53 - 
IMAGE 3.71: CORRECTED MAP ........................................................................................................................... - 54 - 
IMAGE 3.72: OPTION MENU "DOOR" .................................................................................................................. - 54 - 
IMAGE 3.73: FLAT WITH DOORS ......................................................................................................................... - 54 - 
IMAGE 3.74: SD OF VECTOR MODE .................................................................................................................... - 55 - 
IMAGE 3.75: OPTION MENU "CHECKL IST" ......................................................................................................... - 56 - 
IMAGE 3.76: CHECKLIST SCREEN ....................................................................................................................... - 56 - 
IMAGE 3.77: ACCEPTING CHANGES .................................................................................................................... - 56 - 
IMAGE 3.78: SD OF CHECKLIST SCREEN ............................................................................................................ - 57 - 
IMAGE 3.79: CLEAR DATA BUTTON ................................................................................................................... - 57 - 
 

10 Annex B: Code index 
 

CODE 3-I: SAVEOBJECT CLASS ........................................................................................................................... - 58 - 
CODE 3-II: SAVING A MAP  ................................................................................................................................. - 59 - 
CODE 3-III:  SAVING A PATHOLOGY .................................................................................................................... - 60 - 
CODE 3-IV: SAVING TEMPORARY MAP............................................................................................................... - 60 - 
CODE 3-V: SAVING CHECKLIST OF CURRENT MAP.............................................................................................. - 61 - 
CODE 3-V: INSERTCHECKLIST FROM DATAMANIPULATOR CLASS .................................................................... - 62 - 
CODE 3-VI: TABLE STUCTURES OF OUR SQLITE DATABASE .............................................................................. - 62 - 
 



Master Thesis             Development of a software tool to support architects 

 - 71 -

11 Bibliography and references 
 
Official Android developer page: 
http://developer.android.com/index.html 
 
Stack Overflow: 
http://stackoverflow.com/ 
 
Android Forums: 
http://androidforums.com/ 
 
Android & Eclipse tutorials on youtube: 
http://www.youtube.com/  
 
AutoCad - Wikipedia Foundations 
http://en.wikipedia.org/wiki/AutoCAD 
 
OrthoGraph for iPad 
http://www.orthograph.net/orthograph-architect-ipad.html 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Architect Support Tool Resume 

Alexandre Uroz Làzaro 

2012 



 
 

Title:  Development of a software tool to support 
architects 
Volume:  1/1 
Student:  Alexandre Uroz Làzaro  
 
Tutor:  Dr. Krzysztof Waśko 
Department:   Systemy multimedialne i mobilne 
Date:  24 of September 2012 



 
 

1 PREPARATION .......................................................................................................................... - 1 - 

1.1 PROJECT GOALS ................................................................................................................... - 2 - 
1.2 ENVIRONMENT DESCRIPTION ................................................................................................. - 3 - 

2 PROGRAMMING ........................................................................................................................ - 4 - 

2.1 MAIN AND MENU CLASS ........................................................................................................ - 4 - 
2.2 DRAW CLASS ....................................................................................................................... - 5 - 
2.3 DRAWENTITY  CLASS ............................................................................................................ - 8 - 
2.4 SAVEOBJECT CLASS ............................................................................................................. - 9 - 
2.5 DATAMANIPULATOR CLASS ................................................................................................... - 9 - 
2.6 INSERTING PATHOLOGIES ................................................................................................... - 10 - 

3 DESCRIPTION ......................................................................................................................... - 13 - 

3.1 DRAWING SCREEN .............................................................................................................. - 13 - 
3.2 ENTITY SCREEN .................................................................................................................. - 14 - 
3.3 GALLERY SCREEN ............................................................................................................... - 15 - 
3.4 SCROLLING ........................................................................................................................ - 16 - 
3.5 SAVING .............................................................................................................................. - 16 - 
3.6 LOADING ............................................................................................................................ - 16 - 
3.7 CREATE A NEW MAP ............................................................................................................ - 17 - 
3.8 ERASE A WALL .................................................................................................................... - 17 - 
3.9 CONNECTING POINTS CORE ................................................................................................ - 18 - 
3.10 VECTOR MODE ................................................................................................................... - 18 - 
3.11 DOOR INPUT....................................................................................................................... - 19 - 
3.12 CHECKLIST ......................................................................................................................... - 19 - 
3.13 CLEAR DATA ....................................................................................................................... - 20 - 

 



Master Thesis             Development of a software tool to support architects 

 - 1 -

1  Preparation 
 

The idea of doing this project began back at 2010, in Spain, I have a friend who is an 
architect and in a casually chat we were having he commented me of how, at the moment, 
there was no significant application to help architects like him when they were working in the 
streets, analyzing, reviewing and studying the buildings. 

 
In this particular case, his job consisted of visiting flats and buildings in order to find 

pathologies, circumstances that appear on buildings that diminish their security, value and/or 
comfort. They need all this information for several purposes, sometimes because the client 
requested a check of the security of the building and if it is needed to do some fixings, other 
times they need it in order to issue the certificate of occupancy, other times it might be just 
simple as to document the state of a building during its lifetime. 

 
Usually all this information is gathered by hand making notes and taking photos so as 

later introduce them in a computer using their main popular architect program like AutoCad. 
He told me it would be really useful to have some sort of application that could be launched 
through a mobile device, like a smartphone or a tablet pc and could assist them in this work. 

 
I thought it was an interesting concept to further develop so when finally I got my 

change to do it I proposed it here in Wrocław. And I am happy that my tutor found it 
interesting too.  

 
It is no secret that an application like this, though small, merges several areas of 

informatics, like graphical design, graphical interface, user interaction and databases. And 
finally it is based from a real necessity which encourages doing its development. 

 
As up today there are no significant applications on the market I decided to try to do it 

by myself and this is the result. 
 
After some deliberation, I intended for this application to be for Android systems, the 

reason is quite simple, first I really like the Open Source environment that surrounds Android 
Operative System, and second, I had an Android smartphone, and could not afford to buy 
another smartphone, being said that I am not closing the possibility to develop it for other 
devices and OS (Operative System's) in the future if it is needed. But for the moment and for 
starters like me in this Android world, this would be good enough.  

 
 First thing to notice in the world of architects is that there are several roles in their 
work, for example: 
 

• Valuer: One who is responsible to evaluate properties and give an approximate price. 
• Issuer of occupancy: One who is responsible to evaluate properties and issue the 

certificate of occupancy. 
• Inspector: One who is responsible to evaluate the legal conditions of the property. 
• Interior designer: One who tries to maximize or rearrange or decorate the available 

space inside of a property to meet the expectations of the customer. 
 
 All of them, in order to do their job needs the representation of the property into a 2D 
representation (sometimes in 3D), usually called a map. The most basic thing is to be able to 
have a map of the property from a point of view from above to bottom. 
 
 They usually achieve this taking pictures, drawing in papers, and sometimes using 
notebooks (or netbooks) with AutoCad (the main architect's software). 
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 But the process is quite "manual", and later they need to put all this information 
together in order to use it. 
 
 So, architects are forced to carry notebooks or netbooks if they want to fully take 
advantage of the informatics in their job at the "streets", which lots of them do not bring them. 
In some countries to have a notebook may be a normal thing, but for another countries isn't.  
 
 AutoCad is a heavy application that usually needs a quite powerful computer, 
depending on the severity of the property that one wants to represent. Usually architects 
have desktop computers which are powerful to do that job. There is also the explanation that 
not everywhere in the world they can afford for a notebook or netbook, and finally, when they 
need to work almost all day in the streets usually the battery autonomy of the notebooks 
restricts them. 
 
 So in the end, they usually take pictures and use pencil/pen on paper. 
 
 But that can be improved if they would be able to gather all this information in one 
place.  This tool could support them in order to check further information readily available 
from Databases. 
 
 And so, here is the scope, and the main goal of this project. For the moment, this tool 
is not pretending to substitute any previous methodology; it is still far from it. But as a first 
prototype that can be fully expanded it's a good beginning.  
 

1.1 Project goals 
 

Good, we have a necessity to fulfil and motivation to develop but now the first problem I 
encountered was that I did not have previous knowledge of Android, so taking into 
consideration that, here are the goals of this project. 

 
1) Learn Android language and be proficient developing for it 
2) Develop a useful tool for architects that allow them to at least represent maps and 

introduce information. 
3) Start a prototype which may be expanded in the future 

 
In order to fulfil these goals the minimum application's requirements in order to be useful 

should be as follows: 
 

1. Ability to represent maps 
2. Ability to annex photos into sections of these maps 
3. Ability to save and load these maps 
4. Ability to write descriptions of the pathologies encountered 
5. Ability to check a list of requirements of these maps 
6. Ability to use this application on smartphone or tablet pc through touch screen 

 
These have been the goals that I manage to accomplish to a certain degree, but this 

project has so much potential that it can be improved much further.  
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1.2 Environment description 
 

The environment in which this project has been developed is as follows: 
 

• Eclipse 
• Sony Ericsson Xperia X10 Mini with Android version 2.3 
• Android 2.1 Framework 

 
 First, there is no particular reason to choose Eclipse over another development 
software, just that it is perhaps one of the most used for programming Android, so that's why 
we choose it too in order to follow the general trend. So if sometimes one have to look for 
information on Internet, it will be easier to find as being more popular. The time in this project 
has been a critical factor so there was no time to lose trying to figure out which software 
would be the best but just to be practical. 
 
 Second, the reasons for using the smartphone Sony Ericsson Xperia X10 Mini are 
two, first, it was the system I usually have at my disposal to test everything, and second, this 
is one of the smallest smartphone on the market, so if my application can work in this small 
smartphone its guaranteed it will work much better on a bigger resolution screen of a bigger 
smartphone. Just to be sure we used emulators for testing this application on other devices. 
 
 Finally, Android version 2.1 is old, but it is still a quite distributed version between 
android users1, as there were no problems to make this application for that version it was a 
good idea to do it in order to maintain as much as possible the compatibility of older devices. 

                                                
1 1 Android version 2.1 is the third most used version as of the day this thesis was written according to 
http://developer.android.com/about/dashboards/index.html 
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2 Programming 
  
 The programming was done using prototype methodology, which consisted in try to 
acquire a readily testing application to receive feedback and going back in previous steps to 
upgrade and modify the relevant parts. 
 
Following this principle, we have applied a facade software pattern because it's still small 
enough to contain almost all the logic in few files. 
 
Our first step was to create the interface and the navigation between windows, so our Main 
and Menu class were created. 
 

2.1 Main and Menu Class 
 
 Main.java is the first class to be called by the program and it's only a bypass step, this 
class just waits 0.1 seconds and then invokes the Menu activity, which will be the one 
responsible to show the buttons. 
 
public void run(){ 
 try{ 
  sleep(100); 
  Intent menuIntent = new Intent("com.pwroc.ArchTool.MENU"); 
  startActivity(menuIntent); 
 } catch (InterruptedException e) { 
  // TODO Auto-generated catch block 
  e.printStackTrace(); 
 } 
  
 finally{ 
  finish(); 
} 

Code 2-1: Main class invoking Menu class 
 
 Menu.java is just a graphical layout with three buttons that allows the user to choose 
what to do. 
 
 We will focus on the important button that invokes the Draw.java activity and it's 
where almost all our application is written on. 
 
Button tut1 = (Button) findViewById(R.id.Draw); 
Button tut2 = (Button) findViewById(R.id.load); 
Button tut4 = (Button) findViewById(R.id.cleardata); 
 
tut1.setOnClickListener(new View.OnClickListener() { 
  
 public void onClick(View v) { 
  //buttonSound.start(); 
  startActivity(new Intent("com.pwroc.ArchTool.DRAW")); 
 } 
}); 

Code 2-2: Menu class declaration of buttons and call to Draw class 
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2.2 Draw Class 
 
After we have done the basic screen navigation then we begin to create the Draw class 
which is the most important class of the program. 
 
We need first to create the ability to draw objects with the user's finger on the screen; this is 
done creating a View class called MyView where we are overriding its onDraw method. This 
method is called all the time the screen needs to refresh its contents. 
 
In order to paint, we need a Canvas, and a Bitmap, the Bitmap is the image that is being 
generated after drawing in the Canvas (the canvas is no more than the screen of the 
smartphone). 
 
@Override 
protected void onDraw(Canvas canvas) { 
 canvas.drawColor(Color.WHITE); 
(...) 
 canvas.drawBitmap(mBitmap, src, dst, mBitmapPaint); 
} 
 

Code 2-3: OnDraw method responsible to update the content of the screen 
 
We are drawing into the current canvas the generated Bitmap that the user has drawn 
previously, the arguments src, dst are used for the scrolling and mBItmapPaint is just the 
color configuration of our canvas. We omitted all the previous logic needed to calculate src 
and dst. 
 
And also we need to capture various events, when the user touches the screen, when the 
user is drawing on the screen and when the user stops touching the screen. Each one of 
them is linked to a specified function responsible to capture these events and act accordingly 
called touch_start, touch_move and touch_up. 
 
 
@Override 
public boolean onTouchEvent(MotionEvent event) { 
(...) 
 switch (event.getAction()) { 
  case MotionEvent.ACTION_DOWN: 
   if (scrollMode) { 
    fEndX = fStartX = touchX; 
    fEndY = fStartY = touchY; 
   } else { 
    offsetX = 0; 
    offsetY = 0; 
    touch_start(touchX, touchY); 
   } 
   invalidate(); 
   break; 
 
  case MotionEvent.ACTION_MOVE: 
   touch_move(touchX, touchY); 
   invalidate(); 
   break; 
 
  case MotionEvent.ACTION_UP: 
   if (!scrollMode && !deleteMode && !selectMode) { 
    if(doorMode) { 
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     touch_up_door(); 
    } else { 
     touch_up(); 
    } 
    invalidate(); 
   } 
   break; 
 } 
 return true; 
} 

Code 2-4: Managing the input events of the user when drawing 
 
As one can see, there are some variables that its purpose is to control in which mode we are, 
those were implemented later, those modes gives the user the option to scroll the map, to 
delete a wall, to select a wall and to insert a door. 
 
The touch_start function responsible to draw is as follows: 
 
fEndX = fStartX = x; 
fEndY = fStartY = y; 
 
Point pI = new Point(iStartX, iStartY); 
 
// Tolerance to connect points between lines 
PointF newPointF = computeTolerance(pI); 
if (newPointF != null) { 
 fStartX = x = newPointF.x; 
 fStartY = y = newPointF.y; 
} 
 
mPath.reset(); 
mPath.moveTo(x, y); 
 
mBitmap2 = mBitmap.copy(mBitmap.getConfig(), true); 

Code 2-5: Touch_start function wen drawing 
 
Its main purpose is to save that touching point into the global variables fEndX, fStartX (idem 
for Y axis), that later will be used. 
 
Also it needs to make a copy of the current bitmap. 
 
We can see a new function called computeTolerance() , it is responsible to detect if there is 
another point near of the one that the user touched, and if it exists use that point instead. 
 
The touch_move function responsible to show how the user is drawing a line in the screen is 
as follows: 
 
float dx = Math.abs(x - fEndX); 
float dy = Math.abs(y - fEndY); 
// If the movement is too small ignore it 
if (dx >= TOUCH_TOLERANCE || dy >= TOUCH_TOLERANCE) { 
      // Retrieve original bitmap 
 mBitmap = mBitmap2.copy(mBitmap2.getConfig(), true); 
 mCanvas.setBitmap(mBitmap); 
      // Draw the line 
 mCanvas.drawLine(fStartX, fStartY, x, y, mPaint); 
      // Update global variables 
 fEndX = x; 
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 fEndY = y; 
 iEndX = (int) x; 
 iEndY = (int) y; 
} 

Code 2-6: Touch_move function when drawing a line 
 
It is reading the new point where the user is touching and draws a line into that point, but 
every time it destroys that line through the use of the bitmap copy. The original one that we 
copied in the Touch_start function, so creating the illusion that the user is just drawing a 
shadow of a line.  
 
The final line will be drawn when the user will stop touching the screen, in the touch_up 
function as follows: 
 
PointF fEndP = new PointF(fEndX, fEndY); 
Point iEndP = new Point(iEndX, iEndY); 
 
// Delete any action from move event 
mBitmap = mBitmap2.copy(mBitmap2.getConfig(), true); 
mCanvas.setBitmap(mBitmap); 
 
float distx = Math.abs(fEndP.x - fStartX); 
float disty = Math.abs(fEndP.y - fStartY); 
double dist = Math.sqrt(distx * distx + disty * disty); 
 
// Do not draw too small lines 
if ((dist < 20) ) { 
 mPath.reset(); 
 return; 
} 
 
// Connect end Point with current existing points if possible 
PointF newPointF = computeTolerance(iEndP); 
if (newPointF != null) { 
 fEndX = newPointF.x; 
 fEndY = newPointF.y; 
 fEndP = new PointF(fEndX, fEndY); 
} 
 
// Mark all the coordinates of the points of the entity being 
// drawn 
byte entityId = findAvailableEntityID(); 
byte[][] entityCoordinates = new byte[MAP_RESOLUTION][MAP_RESOLUTION]; 
entityCoordinates = calcMapCoordinates((int) fStartX, (int) fStartY, iEndX, 
iEndY, entityId); 
updateMapCoordinates(entityCoordinates, entityId); 
 
// Create entity object 
DrawEntity oDrawn = new DrawEntity(entityId); 
PointF fStartP = new PointF(fStartX, fStartY); 
int length = computeDistance(fStartP, fEndP); 
 
oDrawn.SetStartPoint(fStartP.x, fStartP.y); 
oDrawn.SetEndPoint(fEndX, fEndY); 
oDrawn.SetLength(length); 
 
int angle = computeAngle(fStartP, fEndP); 
oDrawn.SetAngle(angle); 
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// Add entity object to the list of entities 
aEntities.add(oDrawn); 
 
mPath.lineTo(fEndX, fEndY); 
 
// commit the path to our canvas 
mCanvas.drawPath(mPath, mPaint); 
mPath.reset(); 

Code 2-7: Touch_up function finally drawing a wall 
 
We put comments on the code to explain what it does, but at this point we have to explain 
our data structure that we are using to keep all the drawings and are mentioned in this code 
snippet. We want to comment that what we call an Entity is a line being drawn into the map 
(or a wall in the current state of the prototype, in the future it could be a column, or a door, 
etc) 
 
For that we created the DrawEntity Class. 
 

2.3 DrawEntity  Class 
 
 Is just a class that holds all the relevant information of a wall. 
 
public class DrawEntity implements Serializable { 
(...) 
 public byte id; 
 private float fStartX, fStartY, fEndX, fEndY; 
 private short length = 0; 
 private short angle = 0; 
 boolean pictures = false; 
(...) 
} 

Code 2-8: DrawEntity Class definition 
 
We omitted all the getters and setters. 
 
And so finally we are ready to speak what is the relevant information that defines a map: 
 

• Current drawn mBitmap (holds the drawn map) 
• The Data array mapCoordinates, responsible to divide the map in sections 

and label them depending if on these sections there is an entity or not. 
• The Data array aEntities, responsible to store all entities in the map. 
• The ID of the current map 
• The pictures captured from camera application and linked to entities. 

 
mapCoordinates is used to know if the user selects a wall or deletes it. 
 
For the pictures, as they are already saved into the SD card as per the Camera application 
works, we only need the name of the picture so a string will be enough. 
 
The first point, the Bitmap, is stored in the SD aswell, using the ID of the current map for later 
locate it. The rest of this information is stored into an object class called "saveObject". 
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2.4 saveObject Class 
  
 This class holds the relevant data to be saved into our SQLite database. 
 
public class saveObject implements Serializable { 
 public byte mapCoordinates[][]; 
 public ArrayList<DrawEntity> aEntities = new ArrayList<DrawEntity>(); 
 public int Id; 
 public String bitmapFlnm; 
} 

Code 2-9: saveObject Class definition 
 
This saveObject is serialized and then inserted into a SQL database when the user triggers 
the save option. 
 

2.5 DataManipulator Class 
 
This is the Database class that holds all the calls to communicate with the SQL database, 
called DataManipulator.class 
 
public class DataManipulator { 
(...) 
static final String TABLE_NAME = "newtable"; 
(...) 
private static Context context; 
static SQLiteDatabase db; 
 
private SQLiteStatement insertStmt, updateStmt; 
 
private static final String INSERT = "insert into " + TABLE_NAME + " (data) 
values (?)"; 
 
private static final String UPDATE = "UPDATE " + TABLE_NAME + " SET data = (?) 
WHERE id = (?) "; 
 
public DataManipulator(Context context) { 
 DataManipulator.context = context; 
 OpenHelper openHelper = new OpenHelper(DataManipulator.context); 
 DataManipulator.db = openHelper.getWritableDatabase(); 
} 
public long insert(byte[] object) { 
 this.insertStmt = DataManipulator.db.compileStatement(INSERT); 
 this.insertStmt.bindBlob(1, object); 
 return this.insertStmt.executeInsert(); 
} 
(...) 
public long update(int id, byte[] object) { 
 this.updateStmt = DataManipulator.db.compileStatement(UPDATE); 
 this.updateStmt.bindDouble(2, id); 
 this.updateStmt.bindBlob(1, object); 
 return this.updateStmt.executeInsert(); 
} 
(...) 
public List<String> selectPathology(int houseid, byte entityid) { 
  
 String sql = "SELECT * FROM " + TABLE_NAME2 + " WHERE houseid = ? AND 
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entityid = ?";   
  
 List<String> list = new ArrayList<String>(); 
 Cursor cursor = db.rawQuery(sql, new String[] { Integer.toString(houseid), 
Integer.toString(entityid)  }); 
  
 if (cursor.moveToFirst()) { 
  do { 
   String description = cursor.getString(3); 
   String damage = cursor.getString(4); 
   list.add(description); 
   list.add(damage); 
  } while (cursor.moveToNext()); 
 
 } 
 
 return list; 
} 
(...) 
public void close() { 
 db.close(); 
} 
 
private static class OpenHelper extends SQLiteOpenHelper { 
 OpenHelper(Context context) { 
  super(context, DATABASE_NAME, null, DATABASE_VERSION); 
 } 
 
 @Override 
 public void onCreate(SQLiteDatabase db) { 
  db.execSQL("CREATE TABLE " + TABLE_NAME + " (id INTEGER PRIMARY                                                                                    
KEY, data BLOB)"); 
            (...) 
 } 
(...) 
} 

Code 2-10: DataManipulator Class responsible to communicate with the SQLite Database 
 
With this we can save and load, for the load we just need to create a screen with the list of 
the saved maps. 
 

2.6 Inserting Pathologies 
 
At this point the next step was to take pictures and link them to the walls, in order to do that 
we created a mode called "select mode", this logic is in the touch_start function and what it 
does is to check if the user has touched an entity (thanks to mapCoordinates we know about 
that). And then create a popup window with the information of that wall. 
 
 
} else if (selectMode) { 
if (mapCoordinates[cellx][celly] > 0) { 
 final PointF pStart, pEnd; 
 int length, angle; 
 byte id = mapCoordinates[cellx][celly]; 
 
      // Gather entity information 
 final DrawEntity oDrawn = getEntity(id); 
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 pStart = oDrawn.GetStartPoint(); 
 pEnd = oDrawn.GetEndPoint(); 
 length = oDrawn.GetLength(); 
 angle = oDrawn.GetAngle(); 
 
      // Create popup window 
 LayoutInflater layoutInflater = (LayoutInflater) 
getBaseContext().getSystemService(LAYOUT_INFLATER_SERVICE); 
 View popupView = layoutInflater.inflate(R.layout.popup, null); 
 final PopupWindow popupWindow = new PopupWindow(popupView, 
LayoutParams.WRAP_CONTENT, LayoutParams.WRAP_CONTENT, true); 
 
(... declaration of buttons and its listeners ...) 
 
// This launches the camera application 
camButton.setOnClickListener(new Button.OnClickListener() { 
 public void onClick(View v) { 
  dispatchTakePictureIntent(ACTION_TAKE_PHOTO, oDrawn.id); 
  oDrawn.SetPictures(true); 
  repaint(oDrawn, oDrawn.GetLength(), "Length"); 
 } 
}); 
 
// This opens the Gallery Window 
galButton.setOnClickListener(new Button.OnClickListener() { 
 public void onClick(View v) { 
  Intent loadGallery = new 
Intent("com.pwroc.ArchTool.BROWSERGALLERY"); 
  loadGallery.putExtra("houseID", Id); 
  loadGallery.putExtra("entityID", oDrawn.id); 
  startActivity(loadGallery); 
 } 
}); 
 
// This is the Ok button to save changes 
Button btnOk = (Button) popupView.findViewById(R.id.btnOk); 
btnOk.setOnClickListener(new Button.OnClickListener() { 
 public void onClick(View v) { 
  if (saveLength || saveAngle) { 
   int iLength = 0; 
   int iAngle = 0; 
                   // The user has modified the angle 
   if (saveAngle) { 
    try { 
     iAngle = 
Integer.parseInt(editAngle.getText().toString()); 
    } catch (NumberFormatException nfe) { 
     System.out.println("Could not parse " + nfe); 
    } 
    repaint(oDrawn, iAngle, "Angle"); 
    oDrawn.SetAngle(iAngle); 
    saveAngle = false; 
   } 
                   // The user has modified the length 
   if (saveLength) { 
    try { 
     iLength = 
Integer.parseInt(editLength.getText().toString()); 
    } catch (NumberFormatException nfe) { 
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     System.out.println("Could not parse " + nfe); 
    } 
    repaint(oDrawn, iLength, "Length"); 
    oDrawn.SetLength(iLength); 
    saveLength = false; 
   } 
 
   // Update MapCoordinates with the new changes 
   byte entityCoordinates[][]; 
   PointF pStartTmp = oDrawn.GetStartPoint(); 
   PointF newpEnd = oDrawn.GetEndPoint(); 
   entityCoordinates = calcMapCoordinates((int) pStartTmp.x, 
(int) pStartTmp.y, (int) newpEnd.x, (int) newpEnd.y, oDrawn.id); 
   updateMapCoordinates(entityCoordinates, oDrawn.id); 
 
  } 
 

Code 2-11: Logic of selecting a wall and changing its attributes 
 
We have lots of thins happening in this window, for one side the user can change the length 
and angle of the wall, so it needs to be repainted again with the new attributes. That's the 
purpose of repaint function on this code snippet. 
 
Later, camButton launches the camera application to take a picture, and galButton launches 
another window called BrowserGallery, where the pictures of the wall has been stored and 
also it contains its description. The class responsible of the BrowserGallery is called 
PicSelectActivity.java 
 
At this point, the basic things of the application were done, but then we developed other 
functionalities as to help the user as: 
 

• EraseMode: Allows the user to delete a wall, reusing the select logic we explained 
before. 

• ScrollMode: Allows the user to scroll the map if it's too big to hold in the screen. 
• VectorMode: It helps the user to draw maps, restricting the drawing walls to be 

oriented into one axis's coordinates. 
• DoorMode: Allows the user to draw a sort of entrance for each room. 
• CheckList: Allows the user to input from a checklist the minimum requirements 

that the flat should comply. 
 
And then we began with the testing phase, during this process we manage to make really 
good improvements on memory efficiency by 500% because at the beginning we were using 
data structures that were consuming too much resources. (Related of what things to store in 
the SQL database and the logic to detect and connect points when the user is drawing). 
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3 Description 
 
 We called our application "Architect Support Tool" (AST) and this is the main screen 
presented to the user, where he can choose to Draw a map, Load a previous saved map, or 
Clear all the data of the application. 
 

 
Image 3.1: Menu screen of AST 

 

3.1 Drawing screen 
 
 This is the drawing screen and the option menu to select all the options of the 
application. 

 

 
Image 3.2: Drawing screen 

 
Image 3.3: Option menu 
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3.2 Entity screen 
 
 The entity window is a popup window that appears after selecting a wall (through the 
option menu "Select"). Let's say that the user have found a pathology in this encircled wall. 
 

 
Image 3.4: Wall that the user selects 

 
Image 3.5: Popup entity window 

 
 

 We take notice of the camera icon; it will allow the user to take a picture of the 
pathology using the internal camera and save it into this wall. 
 
The parameters Length, and Angle, can be modified by the user to meet new criteria, and 
the system will redraw the new wall as the desired result.  
 
After the user has made a picture the resulting map will be displayed like this, note the 
change of colour of the wall, red means no pathology inserted, black means that wall has a 
pathology. 

 
Image 3.6: Black wall after inserting pathology 
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3.3 Gallery screen 
 
 This screen is accessed through the folder icon in the Entity screen. The user can 
navigate through all the pictures (pathologies) that the selected wall has. And he can write a 
description to it. 
 

 
Image 3.7: Gallery window                   

 
Image 3.8: Navigating between photos 

 
 

 
Image 3.9: Gallery introducing info 

 
When the user inserted all the desired information, he only needs to push the "Ok" button to 
save it. If he does not want to save it then he needs to push the back button. 
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3.4 Scrolling 
 
 After when the user selects the Scroll button in the option menu, he will be on "Scroll 
Mode", now he can touch the screen and move his finger in order to move the map with its 
movement at the desired place. When he will finish he will need to push the scroll button 
option again to leave from the "Scroll Mode". 
 

 
Image 3.10: Option menu "Scroll"                   

                 

 
Image 3.11: Scrolling map 

 

3.5 Saving 
 
            The save option is accessed through the Options menu 
and will save the current map and all its relevant information. It 
will rewrite the existing file if it exists, and if not, it will create a 
new entry.  
 

 
 
 

3.6 Loading 
 
 Accessed through the Option Menu this window will show 
us all the current saved maps in order to load them. 
 
 

 
  

Image 3.12: Save Option 

Image 3.13: Load Option 
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3.7 Create a new map 
 
 This option does nothing more than to create a new blank map. 
 

 
Image 3.14: Option menu "New" 

 
Image 3.15: New blank map 

 

3.8 Erase a wall 
 
 This option allows the user to touch a wall and remove it, to activate it the user has to 
touch the "Delete" option menu. 
 

 
Image 3.16: Mistakenly placed wall 

 
Image 3.17: Wall being removed out 
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3.9  Connecting Points Core 
 
 We cannot expect a human person to be as precise to select exactly the point where 
he wants to draw, that's why this system catches the point where the user touched the 
screen (or stopped touching the screen) and begins to search if there is a nearby wall to 
connect it. 
 
The tolerance distance for connection is set up to 20 pixels radius away.  
 

 
Image 3.18: Area of tolerance to connect 

points 

 
Image 3.19: Line after automatically 

connecting the walls 
 

3.10  Vector mode 
 
 This is another feature in order to help the 
user to draw maps, until now we have seen that the 
user can draw straight lines with free angle (they 
can be 18 degrees, 173 degrees, whatever, as long 
the finger is moving through the screen). 
Sometimes this is impractical if one wants to draw 
rooms and flats in a faster way.  
 
The Vector mode enables the user to only draw 
straight lines at 0º, 90º, 180º and 270º, as this 
application is not intended (for the moment, at this 
current prototype stage) to be an exact 
representation of the world, but instead, a support 
tool, we think the vector mode will cover the needs 
of drawing rooms and flats most of the time. 
 
As usual, this option is enabled through the option 
menu, and in order to deactivate it one has to touch 
it again.  

Image 3.20: Activating Vector Mode 
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3.11  Door Input  
 
 The ability to put doors is important in order to see where the entrances of the 
respective rooms are, as this is a prototype there were no time to drag and drop a door icon, 
so we used the ability to "remove" partially smaller sections of the walls. 
 

 
Image 3.21: Option menu "Door"              

 
Image 3.22: Flat with doors 

 
  

 When the user checks the Door option menu, he enters into the Door Mode. In this 
mode he can draw "white" lines, effectively removing the small sections where he touches 
with the movement of his finger. These white lines does not generate any type of data, they 
only modify the bitmap, nothing else. 
 
 Using it in a smart way, one can give the illusion of drawing entrances into each room 
or the flat itself, as shown in the picture 3.22.  
 
The user is requested to touch again the Door option menu in order to leave out from this 
mode. 

 

3.12  Checklist 
 
 This feature allows the user to check a list of elements that the flat should have. The 
user can check those elements for information purposes, or try to fill in the new information. It 
consists of a list of elements, where the user can check or uncheck what he feels is being 
complied with the quality standards of the flat or not. 
 
As basic as this list is, for this prototype stage, they are probably the most important to check, 
the current elements to check is as follows: 
 

• Dimensions: If checked means that the flat has a proportionate and adequate size  
for its purpose (it's not the same a flat for  a living than an study flat). 

• Ventilation: If checked means that the flat has enough exhaust ventilations. 
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• Windows: If checked means that the flat has all its windows in good condition, 
and are sufficient for the flat. 

• Smoke Pipe: If checked the smoke pipes do not have any problem and they do exist. 
• Gas Pipe: If checked the gas pipes do not have any problem and they do exist. 
• Lights: If checked, the flat has enough lights to make it a comfortable place through 

all the room. 
• Plugs: If checked, the flat has enough plugs connections through all the rooms. 

 
 

 
Image 3.23: Option menu "CheckList"        

 
Image 3.24: Accepting changes 

          
 

 When the user selects the Checklist Option menu, the Checklist screen will appear 
with all the elements to be checked. If the user does not want to make any modification or 
just to read it, he will need to touch the back button, instead of the Ok button. 
 
All maps have one checklist associated to them. 
 

3.13  Clear data 
 
 This button allows the user to delete all the 
information of the system, pictures, and databases 
(related to the application of course).  

 
 

And with all of this, the general description of the 
Application is done. 

Image 3.25: Clear Data button 
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Minimum Requeriments 
 
 Smartphone with android version 2.1 system with integrated camera and sd card. 
 

Installation 
 
 For now, just copy the ArchTool.apk in your smartphone and execute it to install it, in 
the future it will be published on Play Store. 
 

AST User Manual 
 

 Architect Support Tool user manual for architects. 
 

 
 
All information in this manual is based on a prototype, so the appearance of errors, 

bugs, or instability is, as undesirable it is, expected. We ask for the user reading this manual 
to understand these limitations, and try to use it as best as his possibilities while it is being 
improved. 
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Welcome 
 
The Architect Support Tool (from now on refereed simply as AST) is an application to 

support and help architects in his daily duties. We hope that this prototype is being focused 
on the right path and it will be useful for you. 

 
Being said that we are glad that you have deposited your trust in us and we are going 

to fully explain how AST can help you. 
 
As an architect involved with building maintenance it is usual to enter in buildings to do 

inspections and then create reports about their status. The way this is being done is using a 
scientific method; to do a visual inspection and take notes and photos and fast drawings of 
the building and its problems. 
 
 So in the end, the architect ends up being some kind of Christmas tree with the camera 
on one hand, the notebook (yes one of those made of paper), few pencils and pens at hands 
and pockets, a torch, a tape measure and a laser meter. So this application for a cellphone, 
with a good camera capable of doing everything an architect do with pencils and paper, will 
be of a great help in many ways. It will be a simplification of the working time because with a 
couple of tools the architect will be capable to do his work. Moreover it will be a way to win 
time, because the information is clearly clean and in order. 
 
 And we hope AST will manage to accomplish this goal, though for the moment is just a 
prototype. 
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1 Drawing screen 
 
 This is the drawing screen and the option menu to select all the options of the 
application. To draw you only need to paint lines using your finger on the screen. 

 

 
Image 1.1: Drawing screen 

 
Image 1.2: Option menu 

 

1.1 Options Menu 
 

1.1.1 Selecting 
 
 Press the Select button and touch the wall 
that you want to see all the information related to it. 
You will see in this screen:  
 

• Starting Point 
• Ending Point  
• Angle (Degrees) 
• Length (In Decametres) 

 
You will be able to modify the Angle and Length 
parameter, to redraw the wall as you wish. 
 
Through this screen you will be able to take 
pictures of pathologies through the Camera icon 
aaaaa and view and insert descriptions to them 

through the Folder icon . 
  

 

Image 1.3: Selection window 
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When you will take a picture the wall will change its 
colour from red (means no pathology inserted) to 
black (means that wall has a pathology). 
 

 
 
 
 
 
 
 
 

1.1.2 Scrolling 
 
 Press the Scroll button to enter into the scroll Mode, now you can touch the screen 
and scroll the map to see all of its contents. Press again the Scroll button to leave from this 
mode. 
 

 
Image 1.5: Option menu "Scroll"                   

                 

 
Image 1.6: Scrolling map 

 

Image 1.4: Black wall after 
inserting pathology 
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1.1.3 Saving 
 
            Press the Save button to save your current map.  
 

1.1.4 Loading 
 

 
Press the Load button to load 
any previously saved map. 
  
 
 

1.1.5 Create new map 
 
 Press the New button to create a new blank map. 
 

  

 

1.1.6 Erasing walls 
 
 Press the Erase button to enter into the erase Mode, in this mode any wall you touch 
will be deleted. Press the Erase button again to leave from this mode. 
 

 
Image 1.9: Mistakenly placed wall 

 
Image 1.10: Wall being erased 

 
 
 

Image 1.8: Load Option 

Image 1.7: Save Option 
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1.1.7  Vector mode 
 
 Press the Vector button to enter into vector Mode drawing. In this mode you can only 
draw walls at 0º, 90º, 180º and 270º degrees. Use it in order to draw faster precisely maps. 
Press the Vector button again to leave from this mode.  
 
 

1.1.8  Door Input  
 
 Press the Door button to draw doors in the map. 
This will allow you to remove small portions of walls like if 
you were using an eraser.  
 
 
 
 
 
 
 
 

1.1.9 Checklist 
 
 Press the Checklist button to see the list of elements this flat complies with. You can 
verify all this qualities: 

 
• Dimensions: If checked means the flat has 

a proportionate and adequate size  for its 
purpose. 

• Ventilation: If checked means that the flat 
has enough exhaust ventilations. 

• Windows: If checked means that the flat 
has all its windows in good condition, and 
are sufficient for the flat.  

• Smoke Pipe: If checked the smoke pipes do 
not have any problem and they do exist. 

• Gas Pipe: If checked the gas pipes do 
not have any problem and they do exist. 

• Lights: If checked, the flat has enough lights 
to make it a comfortable place through all the 
room. 

• Plugs: If checked, the flat has enough plugs 
connections through all the rooms. 

 

 

Image 1.11: Flat with doors 

Image 1.12: Checklist window 
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1.2 Pathology screen 
 
 Through the select screen (point 1.1.1) press the folder icon  to see the 
pathologies this wall has and insert, modify or read its description and elements affected 
 

 
Image 1.13: Gallery window                  

 
Image 1.14: Description of the pathology 

 
 

2  Clear data 
 
 Press the Clear Data button from the main 
screen to delete all the application data from your 
mobile device. Be sure to do that! 

Image 2.1: Clear Data button 
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3  Real case scenarios 
 
These are real examples of use of this application from an architect point of view, Jaume 
Casadevall Puig from Catalonia let him to speak directly to you of how to use AST from his 
experience. 
 

3.1 Evaluating living conditions 
 
Here at Catalonia and surely on other countries, there is a specific law about the living 
conditions for houses. There are some requirements I have to check. Some are the 
dimensions of the pieces and others are about installations (how many plugs are on the 
house, lights on all the pieces, etc.) 
 
I’ve made a test. I’ve made a fast drawing of the flat and also used the app checklist to check 
everything is all right.  
 

      
Here we can see the fast sketch drawing and also the checklist 

 
The conclusion is that it was a good way to speed up all the process and simplify the way I 
do field work. 
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3.2 Pathology inspection 
 
Another one of my jobs is to perform inspections on old buildings searching for problems. In 
that case I have to do fast drawings too and create notes about the pathologies I found. 
 

     
Here you can see the fast notes the app is capable to produce 

 

3.3 Conclusion 
 
This app sure is a prototype but at the actual point it is already a powerful app that in many 
ways earns me time on my daily work. It’s a fast way to do things I already do and few more 
that I don’t, and moreover it is a way to do it all in a better way. 
 
 

4 Epilogue 
 
And so this concludes the purpose of this manual, explaining all the options that the 
application offers, and how to use them even from an architect's point of view. We hope you 
will be glad to use it. And we cannot end this manual without giving special thanks to Jaume 
Casadevall Puig who, kindly, offered himself to help us in order to write this manual. 
 


