
(12) United States Patent

US008855971B2

US 8,855,971 B2
*Oct. 7, 2014

(10) Patent N0.:
(45) Date of Patent:

(54)

(75)

(73)

(21)

(22)

(65)

(63)

(51)

(52)

(58)

TOOLS FOR SYSTEM-LEVEL DESIGN
ENVIRONMENTS

Inventors: Donald Paul Oro?no, II, Sudbury, MA
(US); Ramamurthy Mani, Needham,
MA (US); Howard Taitel, Sudbury, MA
(US); John Ciol?, Wellesley, MA (US)

Assignee: The MathWorks, Inc., Natick, MA
(Us)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 457 days.

This patent is subject to a terminal dis
claimer.

Appl. No.: 11/841,986

Filed: Aug. 20, 2007

Prior Publication Data

US 2009/0012757 A1 Jan. 8, 2009

Related US. Application Data

Continuation of application No. 11/011,298, ?led on
Dec. 13, 2004.

Int. Cl.
G06F 17/50 (2006.01)
G06F 3/00 (2006.01)
G06F 9/44 (2006.01)
US. Cl.
CPC G06F 8/34 (2013.01); G06F 3/00 (2013.01)
USPC 703/1; 703/6; 714/E11.212; 719/328

Field of Classi?cation Search
USPC 703/13;717/104,105,109,125,127

See application ?le for complete search history.

ll Virtual
Auxiliary Tool Is
An Observation
Tool, Observe!
Collect Data

1
If So

Con?guredv
Register Date
Collected

i
If So

Con?gured,
Initiate An

Action Separate
From The Model

541

551

Place Vinual Auxiliary
Tool in Graphical Model

Operate Virtual Auxiliary
Tool ln Graphical Model

(56) References Cited

U.S. PATENT DOCUMENTS

5,061,245 A * 10/1991 Waldvogel 604/17001

5,331,111 A 7/1994 O’Connell
5,946,485 A 8/1999 Weeren et a1.
6,064,409 A 5/2000 Thomsen et a1.
6,226,787 B1 5/2001 Serra et a1.
6,282,699 B1 8/2001 Zhang et a1.
6,330,356 B1 12/2001 Sundareswaran et a1.
6,335,741 B1 1/2002 Nock
6,412,106 B1 6/2002 Leask et a1.
6,715,139 B1 3/2004 Kodosky et a1.
6,748,583 B2 6/2004 Aizenbud-Reshef et a1.
6,817,010 B2 11/2004 Aizenbud-Reshef et a1.

(Continued)

FOREIGN PATENT DOCUMENTS

WO WO-99/09473 A1 2/1999

OTHER PUBLICATIONS

LabVIEW User Manual, National Instruments Cooperation, 1996.
RedHaWk NightStar Tools, Version 1.1 Release Notes, Sep. 2002.

(Continued)

Primary Examiner * Omar Fernandez Rivas

Assistant Examiner * Kibrom Gebresilassie

(74) Attorney, Agent, or Firm * Harrity & Harrity, LLP

(57) ABSTRACT

A remote auxiliary tool is created in a graphical model having
at least one of a signal or a block. The remote auxiliary tool is
non-intrusively attached to one of the signal or the block. The
graphical model and the remote auxiliary tool are executed
synchronously. At least one of an execution result or a remote
auxiliary tool result is output to at least one of a display
device, a storage device or a destination device.

20 Claims, 12 Drawing Sheets

ll Virtual I 6"
Auxiliary Tool
Is A Sink Tool.
Collect Data

1
ll 80

Coriligured.
Modlly Arid
Return Data
Collected

It So
Con?gured,
Initiate An

Actlon In The
Model

154

Remove Virtual Auxiliary
Tool from Graphical Model,

il Desired

US 8,855,971 B2
Page 2

(56) References Cited 2004/0045009 A1* 3/2004 Bryant 719/316
2004/0064750 A1 4/2004 Conway

U_g_ PATENT DOCUMENTS 2004/0093197 A1 * 5/2004 Billemaz et al. 703/13
2004/0153997 A1 8/2004 Anderson et al.

6,839,894 B1 1/2005 Joshi et al‘ 2004/0205726 A1 10/2004 Chedgey et al.
6,971,065 B2 11/2005 Austin 2004/0210426 A1* 10/2004 Wood 703/2
6,988,262 B1 100% Mallory et 31‘ 2004/0210798 A1 10/2004 Higashi
7,051,322 B2 5/2006 Rioux 2004/0255269 A1 12/2004 Santori et al.
7,058,950 B2 6/2006 Jeyamman 2005/0144587 A1* 6/2005 Bryant 717/111
7,062,779 B1 600% Courtney et 31‘ 2005/0183098 A1 8/2005 1110 et al.
7,072,801 B2 * 7/2006 James “““““““““““““ n 702/188 2006/0041859 A1 2/2006 Vrancic et al.
7,072,813 B2 7/2006 Billemaz et al‘ 2006/0053211 A1 3/2006 Kornerup et al.
7,076,740 B2 7/2006 Santori et al‘ 2006/0064670 A1 3/2006 Linebarger et al.
7,134,090 B2 11/2006 Kodosky et al‘ 2006/0111074 A1 5/2006 Petilli et al.
7,171,653 B2 1/2007 Albrecht 2006/0129371 A1 6/2006 Oro?no et al.
7,185,315 B2 2/2007 Sharp et al‘ 2006/0184410 A1* 8/2006 Ramamurthy et al. 705/8
7,200,838 B2 4/2007 Kodosky et 31‘ 2006/0259870 A1 * 11/2006 Hewitt et al. 715/762
7,210,105 B2 4/2007 Melamed et al‘ 2007/0143455 A1* 6/2007 Gorman et al. 709/223
7,210,117 B2 4/2007 Kudukoli et al. Zoos/0007332 A1 1/2008 Dubowsky
7,215,270 B1 5/2007 Kozak et 31‘ 2008/0028196 A1 1/2008 Kailas
7,302,675 B2 11/2007 Rogers et al‘ 2008/0098349 A1 4/2008 Lin et al.
7,302,676 B2 11/2007 Schmitt et al‘ 2008/0222620 A1 9/2008 Little et al.
7,315,791 B2 1/2008 Hie et 31‘ 2009/0012757 A1 1/2009 Oro?no et al.
7,325,210 B2 1/2008 Rao et 31‘ 2009/0132993 A1 5/2009 Mani et al.
7,439,891 B2 10/2008 Kozak et al‘ 2009/0216546 A1 8/2009 Huang et al.
7,480,906 B2 * 1/2009 Joffrain et 31‘ “““““““ n 717/171 2010/0223564 A1* 9/2010 Hsu et al. 715/763
7,490,029 B2 2/2009 Wasynczuk et 31‘ 2011/0023019 A1 * 1/2011 Aniszczyk et al. .. 717/128
7512931 132* 3/2009 Schmit ““““““““““““ n 717/105 2011/0214044 A1* 9/2011 Davis et al. 715/201
7,568,017 B2 7/2009 Shah et al‘ 2012/0066762 A1* 3/2012 Todorovic .. 726/22
7,813,825 B2 10/2010 Dubowsky 2013/0198527 A1 * 8/2013 Lu et al. 713/189
7,827,068 B2 11/2010 Shah et al‘ 2014/0053090 A1* 2/2014 Lu et al. 715/761
7,835,895 B1 11/2010 Oro?no et al‘ 2014/0059525 A1* 2/2014 Jawa et al. 717/162
7,966,562 B1 6/2011 Brewton et 31‘ 2014/0059573 A1 * 2/2014 Jawa et al. 719/331

7,996,513 B2 * 8/2011 Gorman et al. 709/224
8,046,708 B1 * 10/2011 Aldrich 715/771 OTHER PUBLICATIONS

200;?0339’352 $322251; al‘ International Search Report for PCT/US2005/045493, datedApr. 25,
2002/0052725 A1 5/2002 Wasynczuk et al. 200?
2002/0054101 A1 5/2002 Beatty Summons to Attend Oral Proceedings for Application No. 05854256.
2002/0070968 A1 6/2002 Austin et al. 4, 14 pages, dated Nov. 28, 2012.
2002/0143857 A1 10/2002 Bidarahalli et al. The MathWorks, “Simulink, Model-Based and System-Based
2003/0005180 A1 * 1/2003 Schmit et al~ ~~~~~~~~~~~~~~~ ~~ 709/328 Design,” Using Simulink, Version 5, 2002, 476 pages.
2003/0016206 A1 * 1/2003 Taltel ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ 345/103 Concurrent Computer Corporation, “NightSim User’s Guide,” 2002,
2003/0037322 A1 2/2003 Kodosky etal. 136 pages,
2003/0046663 A1 300% ROgels 8t al' Concurrent Computer Corporation, “RedHaWk Linux, Real-Time

SUdhl-mja et al' Software Environment,” 2002, 2 pages.
chm1t “ . .

2003/0107595 A1 * 6/2003 Ciol? ““““““““““““““ H 345/762 Mansor et al., Software Methodology for Remote Mon1tor1ng and
2003/0200076 A1 10/2003 Kodosky et al‘ Control System,” Proceedings of TENCON, vol. 3, 2000, pp. 509
2004/0031019 A1 2/2004 Lamanna et al. 511'
2004/0032429 A1* 2/2004 Shah et al. 345/771

2004/0034696 A1 2/2004 Joffrain et a1. * cited by examiner

US. Patent Oct. 7, 2014 Sheet 1 0f 12 US 8,855,971 B2

CPU Display Device

5_02 5_04

Keyboard Mouse

5_06 if?

Electronic Device
M

Primary Storage Secondary Storage
1&0 5_12

Network Interface

5_1i1

Modeling/Simulation Application (Simulink®)
M5

Fig. I

US 8,855,971 B2 Sheet 2 0f 12 Oct. 7, 2014 US. Patent

.me msawaasngm 52 >32;
2 m 06

839=§> 2. Chi v m N

o

> “ rm “ m M 8

85 § 25m 85 was” H

.2

I w>>o€_>> 2

5:5 wmzmé ..m5w<_>_=

E - 8% 2685 26 E was :2 a 82.5% cow5>3 _ < u .>> _ O mmEQEwém NI: NEE ? z 525 A" “.2 A“ < Anm A" € A?sdééma 8:296 -5233 mm”; 53; 58; :sa :5 _

_ cm was“ mEEEm: 25¢ 29% EE “5 295

- \ E \\

Z

2 C

Aim 2%

28H

85% 5 2m

US. Patent 0a. 7, 2014 Sheet 3 0f 12 US 8,855,971 B2

[— 105
StaleFlow (chart) SFcontrol/Controller ‘ Eli! 8

file Edit ?imulalion yiew Iools Add ?elp

|<==>0|E~7§|>< @12 2| > n - |§Q§IQ®M @l?
‘ \1 ,5

Hi off_switch
'é . .

E en.speed = 2, 17

II II
II" [temp < [temp >= 120] on_switch

V“ L0 on
: d = O; off_switch en spee

v

4 | | r

Ready

Fig. ZB

US. Patent 0a. 7, 2014 Sheet 4 of 12 US 8,855,971 B2

Place Virtual Auxiliary I50
Tool in Graphical Model

‘

Operate Virtual Auxiliary I52
Tool In Graphical Model

ls Virtual
Auxiliary Tool For

Observation
v or Sink? ‘

54 If Virtual - 60
1 Auxiliary Tool ls “gig/{$20, I

An Observation |S A Sink T00|
Tool, Observe/ ’
Collect Data Collect Data

V

56 If So 62
1 ".80 Configured, f

Configured, Modify And
Register Data Return Data
Collected CoHeCted

58 ‘ 64 If So If So
1 Configured, Configured, I

Initiate An Initiate An
Action Separate Action In The
From The Model Model

V

V

Remove Virtual Auxiliary J— 66

if Desired
Tool from Graphical Model,

Fig. 3

US. Patent 0a. 7, 2014 Sheet 5 0f 12 US 8,855,971 B2

dsplpc1/Coeffs BE]
file Edit yiew Window ?elp

,2 [HH \ - w?nmam 21151

5

3

Running | | |N: 12 um H:100 W5] |

F lg. 4A

14

L dsplpc1/Coeffs BE]
Eile Edit _\[iew Window _l-_|elp

L16
Fig. 4B

US. Patent 0a. 7, 2014 Sheet 6 0f 12 US 8,855,971 B2

18 24 26

File Edit View Insert Tools Window Help

File Edit View Window Help

Stoppe N:128U:1H:100

20 40 30
Samples

Fig. 5

US 8,855,971 B2 Sheet 7 0f 12 Oct. 7, 2014 US. Patent

@ ME

v 2 v

mmasmw @@ meg

8 8 9. on 8 9 o o

555: C
_ B? E 82.. 532 _E%=Ev8%_w

P

Q 9:. 5559“. m.

m S

$53.22; $5528.? cmaoo hwzmomm 5:360 323cm 568m @ $88 @955;

,E m 2

858336 2% m
588 $2 @ E

9% SE; 5S :3 ME

.mwce?EwngE

swm aQEBEwum: £82823“.

5285 E52

US. Patent 0a. 7, 2014 Sheet 8 of 12 US 8,855,971 B2

Provide I80
Graphical Model

V

Place Virtual Auxiliary I82
Tool ln Graphical Model

Observation
or Sink?

V

841 If Virtual lf Virtual f9”
Auxiliary Tool ls Auxmary Too|
An Observation |s A Sink Tool
Tool, Observe/ '
Collect Data Collect Data

v w

86 If SO 92
1 "$0 Configured, I

Configured, Modify And
Register Data Return Data
Collected Collected

v '

88 If So " 5° 94
\ Configured, (I39?fi?u§d' I

Initiate An n' 'a e n
Action Separate ACtion In The
From The Model MOdB'

V

Repeat As Necessary f 96
to Debug

Fig. 7

US 8,855,971 B2 Sheet 9 0f 12 Oct. 7, 2014 US. Patent

2

was» & bunimm

Wx WWW ?WWx \.. MMMMMMM

\ i mmmmmmmmmmmw

FIG. 8

US. Patent 0a. 7, 2014 Sheet 10 0f 12 US 8,855,971 B2

320 .. 134

124 - 130

{'28

""132

'I

122 '

1 36

1 26 '

FIG. 9

US. Patent 0a. 7, 2014 Sheet 11 0112 US 8,855,971 B2

ammunitaiimes

$1ng "

142

_ 2.41m; P'me-ssing

51$; 1 ?ex: and image? P;

5“ wawfzu'aing
?nish ngamim

mil»:- timing

FIG. 10 144

US. Patent Oct. 7, 2014 Sheet 12 0f 12 US 8,855,971 B2

uttle ?ng

ledge1su

Engine Séeed, N

FIG. 11

Engine

US 8,855,971 B2
1

TOOLS FOR SYSTEM-LEVEL DESIGN
ENVIRONMENTS

CROSS-REFERENCE TO RELATED PATENT
APPLICATION

This application is a continuation of US. patent applica
tion Ser. No. 11/011,298, ?led Dec. 13, 2004, entitled
“TOOLS FOR SYSTEM-LEVEL DESIGN ENVIRON
MENTS,” by Oro?no et al., the subject matter of which appli
cation is incorporated herein by reference in its entirety.

BACKGROUND

The present invention relates to a system and method suit
able for non-intrusively observing, modifying, and/ or gener
ating data synchronous with events in an executing block
diagram or graphical model.

Historically, engineers and scientists have utilized graphi
cal models in numerous scienti?c areas such as Feedback
Control Theory and Signal Processing to study, design,
debug, and re?ne dynamic systems. Dynamic systems, which
are characterized by the fact that their behaviors change over
time, are representative of many real-world systems. Graphi
cal modeling has become particularly attractive over the last
few years with the advent of software packages, such as
SIMULINK®, made by The MathWorks, Inc. of Natick
Mass., LabVIEW®, made by National Instruments Corpora
tion of Austin, Tex., and the like. SIMULINK® provides
sophisticated software platforms with a rich suite of support
tools that makes the analysis and design of dynamic systems
ef?cient, methodical, and cost-effective.
A dynamic system (either natural or man-made) is a system

whose response at any given time is a function of its input
stimuli, its current state, and the current time. Such systems
range from simple to highly complex systems. Physical
dynamic systems include a falling body, the rotation of the
earth, bio-mechanical systems (muscles, joints, etc.), bio
chemical systems (gene expression, protein pathways),
weather and climate pattern systems, etc. Examples of man
made or engineered dynamic systems include: a bouncing
ball, a spring with a mass tied on an end, automobiles, air
planes, control systems in major appliances, communication
networks, audio signal processing, nuclear reactors, a stock
market, etc.

Professionals from diverse areas such as engineering, sci
ence, education, and economics build mathematical models
of dynamic systems in order to better understand system
behavior as it changes with the progression of time. The
mathematical models aid in building “better” systems, where
“better” may be de?ned in terms of a variety of performance
measures such as quality, time-to-market, cost, speed, size,
power consumption, robustness, etc. The mathematical mod
els also aid in analyzing, debugging and repairing existing
systems (be it the human body or the anti-lock braking system
in a car). The models may also serve an educational purpose
of educating others on the basic principles governing physical
systems. The models and results are often used as a scienti?c
communication medium between humans. The term “model
based design” is used to refer to the use of graphical models
in the development, analysis, and validation of dynamic sys
tems.

Dynamic systems are typically modeled in model environ
ments as sets of differential, difference, and/or algebraic
equations. At any given instant of time, these equations may
be viewed as relationships between the system’s output
response (“outputs”), the system’s input stimuli (“inputs”) at

20

25

30

35

40

45

50

55

60

65

2
that time, the current state of the system, the system param
eters, and time. The state of the system may be thought of as
a numerical representation of the dynamically changing con
?guration of the system. For instance, in a physical system
modeling a simple pendulum, the state may be viewed as the
current position and velocity of the pendulum. Similarly, a
signal-processing system that ?lters a signal would maintain
a set of previous inputs as the state. The system parameters are
the numerical representation of the static (unchanging) con
?guration of the system and may be viewed as constant coef
?cients in the system’ s equations. For the pendulum example,
a parameter is the length of pendulum and for the ?lter
example; a parameter is the values of the ?lter taps.

Generally, graphical analysis and modeling methods, such
as the block diagram method, are used in modeling for design,
analysis, and synthesis of engineered systems. The visual
representation allows for a convenient interpretation of model
components and structure and provides a quick intuitive
notion of system behavior.

During the course of modeling and simulation, it is often
desirable to be able to observe particular data values at certain
locations of the model, or to observe how data is transformed
through the model. Examples of such data values include
signal values, states, work areas, and parameters. Signal dis
plays used in conjunction with a system-level design environ
ment, such as SIMULINK®, often require multiple display
mechanisms to be associated simultaneously with multiple
signals to monitor the progress of a model at various points of
interest. Currently, block diagram environments offer
“scope” blocks to be used in such situations, with each scope
connected to a signal of interest in the model. Alternatively,
environments such as Real-Time Workshop® (manufactured
by The MathWorks, Inc. of Natick Mass.) offer interfaces to
various data values of the model, such that an individual can
non-intrusively observe the data values.

However, conventional non-intrusive approaches to
observing the various data elements do not allow users to
observe the data synchronously with the various execution
events in the block-diagram or other operating model. Such
synchrony is critical in many scenarios because data values
may be not be in a deterministic observable state at all times
during model execution. An example of such a scenario is
when a signal memory location is reused by multiple blocks
for ef?ciency reasons. Furthermore, allowing synchronous
observation of the data also ensures that observers of the data
are operating optimally, for example when the data values are
refreshed.

During the course of modeling, it is also often desirable to
bypass or generate data values to aid in re?ning or debugging
a design. For example, one could generate various inputs at a
particular point in the block-diagram model based on various
test scenarios. In another example, one could bypass the
signal values written by a block to remove the transformation
performed by a block during a debugging task. In conven
tional applications, such as SIMULINK®, one needs to intru
sively insert blocks and/or lines into the graphical model to
achieve bypass or signal generation. It should be noted that
these intrusive means of bypass or generation result in the
operations being synchronous with the execution of the
block-diagram. However, conventional graphical modeling
design environments do not offer mechanisms for non-intru
sive, yet synchronous bypass or generation of data values.

SUMMARY

In one exemplary embodiment, a remote auxiliary tool is
created in a graphical model having at least one of a signal or

US 8,855,971 B2
3

a block. The remote auxiliary tool is non-intrusively attached
to one of the signal or the block. The graphical model and the
remote auxiliary tool are executed synchronously. At least
one of an execution result or a remote auxiliary tool result is

output to at least one of a display device, a storage device or
a destination device.

In another exemplary embodiment, a device for modeling
includes a remote auxiliary tool for non-intrusive use as at
least one of an observer tool, a bypass tool, or a generator tool
in a block diagram. A graphical user interface (GUI) man
ages: creating the remote auxiliary tool, attaching the remote
auxiliary tool to at least one of a signal or a block in the block
diagram, detaching the remote auxiliary tool from the signal
or block, and outputting from the remote auxiliary tool to at
least one of a destination device or a display.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become better understood with
reference to the following description and accompanying
drawings, wherein:

FIG. 1 is a is a diagrammatic illustration of an electronic
device that can be utilized to execute a method performed in
an embodiment of the present invention;

FIG. 2A is a screen depiction of an example model that can
make use of the tool and method according to one aspect of
the present invention;

FIG. 2B is a screen depiction of an example model that can
make use of the tool and method according to one aspect of
the present invention;

FIG. 3 is a diagrammatic illustration of a method of use of
the tool, in accordance with embodiments of the present
invention;

FIG. 4A is a screen depiction of an example tool, according
to one aspect of the present invention;

FIG. 4B is a screen depiction of the toolbar of the example
tool of FIG. 3A;

FIG. 5 is a screen depiction of multiple tools, according to
one aspect of the present invention;

FIG. 6 is a screen depiction of multiple tools, according to
one aspect of the present invention;

FIG. 7 is a ?owchart illustrating an example method of use
of the tool, in accordance with embodiments of the present
invention;

FIG. 8 is a screen depiction of two generator tools and two
observer (viewer) tools connected to a model;

FIG. 9 is a screen depiction of a signal and scope manager
used to manage remote generator and ob server (viewer) tools;

FIG. 10 is a screen depiction of a signal selector that is used
to connect remote generator and observer (viewer) tools to a
model; and

FIG. 11 is a screen depiction of context sensitive menus
used to connect remote generator and observer (view) tools to
a model.

DETAILED DESCRIPTION

An illustrative embodiment of the present invention relates
to a remote auxiliary tool and corresponding method of use.
The remote auxiliary tool is formed of at least one of an
observation tool, a bypass tool, and a generator tool. The
remote auxiliary tool is non-intrusively and synchronously
connected to a graphical modeling environment prior to
execution, during execution, or after execution of a model.
The remote auxiliary tool is detachable from the model dur
ing execution of the model in the graphical modeling envi
ronment.

20

25

30

35

40

45

50

55

60

65

4
The remote auxiliary tool is non-intrusive to the graphical

model, such that the remote auxiliary tool is not embedded in
the model in the same way that other elements of the model
are interconnected and embedded. In the case of a graphical
model using blocks and signals, the user does not add blocks
or signals to the model diagram when attaching a remote
auxiliary tool in accordance with the present invention to the
model. Rather, the remote auxiliary tool registers interest
with the model, and during execution the model informs the
remote auxiliary tool of events of which the tool has requested
to receive noti?cation. The process of sending an event can be
achieved through, but not limited to, an event-listener appli
cation programming interface (API), a callback based inter
face, and/or model and remote auxiliary tool aggregation for
execution. The remote auxiliary tool can work with execution
modes that include but are not limited to interpretive, accel
erated, or generated code model execution modes.

FIGS. 1 through 11, wherein like parts are designated by
like reference numerals throughout, illustrate example
embodiments of a remote auxiliary tool, and corresponding
method of use, according to the present invention. Although
the present invention will be described with reference to the
example embodiments illustrated in the ?gures, it should be
understood that many alternative forms can embody the
present invention. One of ordinary skill in the art will addi
tionally appreciate different ways to alter the parameters of
the embodiments disclosed in a manner still in keeping with
the spirit and scope of the present invention.

FIG. 1 illustrates one example embodiment of an electronic
device 500 suitable for practicing the illustrative embodi
ments of the present invention. The electronic device 500 is
representative of a number of different technologies, such as
personal computers (PCs), laptop computers, workstations,
personal digital assistants (PDAs), Internet appliances, cellu
lar telephones, and the like. In the illustrated embodiment, the
electronic device 500 includes a central processing unit
(CPU) 502 and a display device 504. The display device 504
enables the electronic device 500 to communicate directly
with a user through a visual display. The electronic device 500
further includes a keyboard 506 and a mouse 508. Other
potential input devices not depicted include a stylus, track
ball, joystick, touch pad, touch screen, and the like. The
electronic device 500 includes primary storage 510 and sec
ondary storage 512 for storing data and instructions. The
storage devices 510 and 512 can include such technologies as
a ?oppy drive, hard drive, tape drive, optical drive, read only
memory (ROM), random access memory (RAM), and the
like. Applications such as browsers, JAVA virtual machines,
and other utilities and applications can be resident on one or
both of the storage devices 510 and 512. The electronic device
500 can also include a network interface 514 for communi
cating with one or more electronic devices external to the
electronic device 500 depicted. A modem is one form of
network interface 514 for establishing a connection with an
external electronic device or network. The CPU 502 has
either internally, or externally, attached thereto one or more of
the aforementioned components. In addition to applications
previously mentioned, modeling applications, such as SIM
ULINK® 5 l 6, can be installed and operated on the electronic
device 500.

It should be noted that the electronic device 500 is merely
representative of a structure for implementing the present
invention. However, one of ordinary skill in the art will appre
ciate that the present invention is not limited to implementa
tion on only the device 500 as described herein. Other imple
mentations can be utilized, including an implementation
based partially or entirely in embedded code, where no user

US 8,855,971 B2
5

inputs or display devices are necessary. Rather, a processor
can communicate directly with another processor or other
device.

Turning now to example embodiments of the present
invention, the method and system of the present invention
operate in a block diagram modeling environment, such as
that of SIMULINK®. The block diagram modeling environ
ment is otherwise referred to herein as the graphical model.
One of ordinary skill in the art will appreciate that there are a
number of different graphical modeling and simulation appli
cations that make general use of blocks or other graphical
representations to model or simulate conditions, events,
designs, operations, and the like, or to model and control
events implemented on hardware devices, and the like.
Accordingly, the present invention is intended for use on all
such modeling applications.
The present invention is generally directed to a system and

method for interacting non-intrusively, yet synchronously,
with a graphical model. FIGS. 2A and 2B are screen depic
tions of a graphical model 10 simulating a dynamic process.
FIG. 2A shows a version of a time-based or event-based block
diagram graphical model 10A, while FIG. 2B shows a version
of a state-based or event-based ?ow diagram graphical model
10B. As referred to herein, graphical model 10 is intended to
encompass multiple variations of graphical model, including
those shown in FIGS. 2A and 2B. Accordingly, graphical
model 10 as utilized herein includes graphical model 10A and
graphical model 10B, as well as other graphical models of
dynamic systems. Graphical model 10A is formed generally
of a plurality of blocks 11 that pass signals 13 to represent a
dynamic system. Graphical model 10B is formed of a plural
ity of states 15 that communicate though blocks in the form of
transitions 17. The particular use or purpose of the graphical
model 10 can vary to include anything that can be modeled
using a graphical modeling environment. Thus, the present
invention is not limited to the speci?c example embodiments
discussed herein, as understood by one of ordinary skill in the
art.

In the example embodiment, time-based graphical models
10A have blocks connected by signals. Blocks are respon
sible for computing the values of signals as time progresses.
The arrows denote the computational direction of the signal.
Input ports read signals and output ports write signals. The
user of the present invention may wish to obtain a reading of
a value of one of the signals 13 in the graphical model 10, or
of one of the processes in one of the blocks 11. However, in
the graphical model 10 illustrated, there is no instance of a
scope shown with the model. Accordingly, if the graphical
model 10 is running a model execution at the time illustrated
in the ?gure, conventional modeling applications in the situ
ation illustrated have no mechanism for a user to be able to
take readings of signal or internal block/model states syn
chronously.

However, with the remote auxiliary tool of the present
invention in accordance with one embodiment, an event
listener API or equivalent tool is provided associating a tool
with the graphical model 10 without being embedded in the
graphical model 10. For example, if the user wishes to know
the value of the signal at pointA in the graphical model 10, the
user implements the remote auxiliary tool of the present
invention to initiate an observation event, or equivalent ob ser
vation tool. The user registers with the model, using the
event-listenerAPI, a request to invoke an ob server when point
A in the graphical model 10 is computed by the source block
of the signal of point A. As the model is executing, when the
signal at point A is re-computed by the source block of the
signal, an event is sent to the listener. The listener in this

20

25

30

35

40

45

50

55

60

65

6
illustrative example is an observer that reads the value of the
signal at point A and displays the value appropriately in a
device, such as a graphical display scope. It should be noted
that throughout this description the example embodiments
make use of an API form of tool to connect the remote aux

iliary tool to the model. However, one of ordinary skill in the
art will appreciate that the remote auxiliary tool does not need
to be implemented in the form of an API, but rather, can be
implemented using a number of different tools, including
library based modules, and other tools. As such, references to
anAPI in the present description are intended to include APIs
as well as such other equivalent tools noted above. In addi
tion, an alternative example embodiment of the present inven
tion makes use of an aggregation programming paradigm to
achieve the non-intrusive and synchronized behavior of the
remote auxiliary tool.
The remote auxiliary tool itself does not need to be repre

sented graphically in the graphical model 10. However,
because the remote auxiliary tool registers listeners with the
model, the model can insert a graphical symbol or text, such
as symbol 19, or other representation in the graphical model
10 showing the existence of the listener for the remote aux
iliary tool. Such graphical representation can be, for example,
shown in the block 11, similar to those illustrated in FIGS. 2A
and 2B, indicating the remote auxiliary tool is connected to
the internal state of the block 11 and not the signal 13. More
speci?cally, in the illustrative example showing the symbol
19, connections made by the remote auxiliary tool can be
described by selection of one or more signals 13 from a list of
all available signals 13 in the graphical model 10. The remote
auxiliary tool can also be described by the direct entry of an
identi?cation of one or more signals 13 in the graphical model
10. The connections can be highlighted at some point in time,
to associate a symbol 19 with one or more selected signals 13.
For example, this can be accomplished by pressing a button in
the display interface, with the corresponding signal 13 in the
model highlighted by color, blinking, or other temporary or
persistent graphical indication, in addition to textual or other
representations. The connection can also be highlighted by a
graphical affordance in the graphical model 10, such as a “test
point” symbol (small ‘lollipop’ icon) connected to a signal
line for as long as the virtual connection remains. For con
nections to internal block state as in the illustrative block 11,
the connections can be created in similar fashion to signal
selection, except that a block 11 is selected.
The remote auxiliary tool can be connected to the model 10

using an event-listener API. More speci?cally and in accor
dance with an example embodiment of the present invention,
the API that enables the practice of the remote auxiliary tool
in accordance with the present invention, includes the pres
ence of user-de?nable pre-execution and/or post-execution
callbacks or events associated with any of the methods of the
computational blocks in the graphical model 1 0, such that the
callback or event enforces proper synchronization for data
transfer to and from the tool. Such an API can likewise be
provided where the de?nitions refer to data nodes in a physi
cal hardware device, such as memory locations in a processor,
a physical I/O protocol for a processor or an FPGA or ASIC,
or some other de?ned method for data delivery, as understood
by one of ordinary skill in the art. A unique identi?er can be
provided for each signal in the graphical model 10 or hard
ware, such that the tool can be associated with any signal or
group of signals. Methods to read, and optionally write, signal
data via the unique identi?er, which can be synchronized by
the pre-execution and/or post-execution callback or event,
can be provided. Furthermore, textual, graphical, audio,
visual, tactile, or other data rendering techniques and capa

US 8,855,971 B2
7

bilities supported by, or interfaced to, the modeling environ
ment can be provided, such that the signal data is presented to
user in a discernable manner.

The remote auxiliary tool can include different types of
observer tools, such as display scopes, strip chart recorder, an
oscilloscope, a spectrum analyzer, a 2-port network analyzer,
a logic signal display, a waterfall plot, a communications
constellation plot, an audio output device, and a video display
device. The observer tool can also be a non-graphical tool,
such as a tool that reads the model data (such as the signal at
point A of the illustrative model 10) and sends the data to
another system for processing. The remote auxiliary tool can
include different bypass tools such as a non-graphical tool
that reads data from the model 10 and, if the data exceeds a
speci?ed limit, the data is set to that limit. The modi?ed data
is then returned to the model. This makes the bypass tool
useful for providing fault tolerant actions when the model is
executing in real-time. Another use of the bypass tool is in the
area of debugging a simulation, when incorrect values are
seen they can be altered enabling the simulation to continue
without having to shut down. The remote auxiliary tool can
include different types of generator tools such as, sine wave,
square wave, pulse, or any arbitrary user created functions
that produce data for the model. One of ordinary skill in the art
will appreciate that the present invention is not limited to
using the event-listener API to non-intrusively and synchro
nously connect the remote auxiliary tool(s) to the model.

In addition, the displays of the remote auxiliary tool, if
required, are provided separate from the graphical model 10,
thus keeping with the non-intrusive feature of this invention.
Likewise, a GUI can be provided with a multiple-document
interface type of layout in which a master GUI contains one or
more visual display device windows with additional inter
faces for managing the connections to the model correspond
ing to each remote tool.

Several example embodiments of implementations of the
remote auxiliary tool in accordance with the present invention
are described herein. In addition, FIG. 3 is a diagrammatic
illustration of a method of using the remote auxiliary tool
realized using the event-listener API. In accordance with one
example embodiment of the present invention, a user can
attach a remote auxiliary tool to a model to listen to speci?c
events before, during, or after model execution (step 50). The
user can detach a remote auxiliary tool before, during, or after
graphical model (10) execution (step 52). Connections to the
model (10) by the remote auxiliary tool are maintained while
the model is not running (step 60). When the model is not
running (step 60), the user can edit the model and possibly
change it structure. If the act of editing the model deletes an
object such as a block (11) or line (13) that is connected to a
remote auxiliary tool, the tool becomes disconnected from the
model.

The user can start the model execution (step 62). During
model execution model and block methods are invoked. With
in SIMULINK® this consists of a simulation loop. Each
computational block in SIMULINK® consists of multiple
run-time methods that are executed within the simulation
loop. SIMULINK® decomposes block methods by type and
executes them in a prede?ned manner from model models
that are invoked by the simulation loop. During execution of
a model or block method (step 64), if a block with registered
listeners is encountered (step 66), the model sends an event
(step 68) causing the respective listener (steps 54, 56, and 58)
of the remote auxiliary tool to execute. The listener of the
remote auxiliary tool can be an observer tool reading and
displaying data (step 54), a bypass tool reading data and
returning modi?ed data (step 56), or a generator tool provid

20

25

30

35

40

45

50

55

60

65

8
ing data (step 58). When execution completes (step 70), the
model returns to the not running state (step 60).
One of ordinary skill in the art will appreciate that, as

mentioned previously, the distinction between observation or
observer tool, bypass tool, and generator tool as outlined
above is done merely to convey different aspects of the inven
tion clearly. However, the present invention does not require
that the tool fall completely within one or the other of the
observation or observer tool, bypass tool, or generator tool
categories. Rather, the tool can be a hybrid mixture of the
three forms or varieties of tool. Furthermore, it should be
noted that the remote auxiliary tool is formed of at least one
tool, such that the speci?c con?guration of each tool forming
the remote auxiliary tool becomes less relevant to the opera
tion of the remote auxiliary tool, because the same function
ality of the remote auxiliary tool can be implemented with
numerous variations of ob servation, bypass, or generator, and
number of tools forming the remote auxiliary tool. Accord
ingly, the present invention is not limited to the speci?c
example embodiments of tools described herein. Rather, the
remote auxiliary tool of the present invention is formed of a
combination or mixture of the different variations possible
with the tool operational characteristics, in addition to a com
bination of multiple tools having the same or different opera
tional characteristics.
One example implementation of the remote auxiliary tool

of the present invention is shown in FIG. 4A and FIG. 4B.
FIG. 4A is a screen depiction of a tool resulting from a user
implementing the remote auxiliary tool. The remote auxiliary
tool is implemented as a waterfall plot 12. The waterfall plot
12 is a visual display of data virtually connected to the graphi
cal model 10 at pointA. The remote auxiliary tool can include
a number of different interfacing options, some of which can
be implemented in a toolbar con?guration. For example, FIG.
4B shows a toolbar 14 having a number of standard buttons.
One of ordinary skill in the art will recognize several of the
symbols representing the functions of the buttons. One
example button that can be utilized in conjunction with the
present invention is a highlight button 16, which when clicked
on will highlight the signal in the graphical model 10 being
displayed by the remote auxiliary tool, such as the waterfall
plot 12. One of ordinary skill in the art will appreciate that a
number of different functions can be implemented in the
remote auxiliary tool of the present invention in accordance
with particular function or operation of the remote auxiliary
tool.

In addition, the remote auxiliary tool interface in a particu
lar embodiment can vary. For example, in FIG. 5, the remote
auxiliary tool is implemented as a multiple document inter
face (MDI) style GUI design, incorporating multiple display
devices in a single master window 18. In this example, there
are connections established for each display corresponding to
signals originating from multiple graphical models 10. A ?rst
display 20 reports data from a ?rst graphical model. A second
display 22 reports data from a second graphical model. A
third display 24, a fourth display 26, and a ?fth display 28 all
report data from a third graphical model. The remote auxil
iary tool is formed of the collection of the displays 20, 22, 24,
26, and 28. Each of the displays operates independently and
pulls data from different model locations. The displays can
pull data from the same model location if desired. Further
more, as mentioned previously, each of the collection of the
displays 20, 22, 24, 26, and 28 forming the remote auxiliary
tool can be individually or collectively attached or detached
from the graphical models before, during, or after the graphi
cal models are implemented.

US 8,855,971 B2
9

FIG. 6 is another screen depiction of an MDI GUI 30 with
a pre-loaded collection of displays forming the remote aux
iliary tool, such as those illustrated in FIG. 5. In addition, the
remote auxiliary tool in this example embodiment includes a
remote connection manager 32. The remote connection man
ager 32 provides an organized GUI that enables a user to track
and select different elements making up the remote auxiliary
tool. One of ordinary skill in the art will appreciate that the
example remote connection manager 32 is shown as a tree
structure. However, any number of ?le organization tech
niques and con?gurations can be utilized to generate the
remote connection manager 32, such that the manager 32 is
not limited to the speci?c embodiment illustrated.
As described, the remote auxiliary tool includes at least one

tool. The remote auxiliary tool is attached to the model in the
graphical modeling environment prior to execution, during
execution, and/ or after execution of a model. The remote
auxiliary tool is detachable from the model during execution
of the model in the graphical modeling environment.

The illustrative embodiments have been primarily
described with regard to their observation functionality. The
observation tool non-invasively collects data after attachment
to the model 10. The observation tool likewise can non
invasively register interest in data or some event of the graphi
cal model 10. The registration of the data or event can be
displayed in accordance with the examples illustrated herein.
In addition, the remote auxiliary tool can initiate an action
upon registration of a predetermined characteristic of the data
or event ob served. For example, if a predetermined data point,
such as a maximum or a minimum, is achieved in a graphical
model as it is running, the remote auxiliary tool can register
the occurrence and forward instructions or implement other
actions to address the occurrence. Such actions may include
pausing the model execution, forwarding data relating to
other points in the model at the time of the occurrence, send
ing a message to the user, implementing a change in the
operation of a separate model and/ or hardware device, and the
like.

The implementation of the remote auxiliary tool can be in
the form of a non-blocking tool if its primary purpose is one
of registration, recordation, or observation. In this mode, the
model that is executing does not wait for the attached remote
auxiliary tool to ?nish responding to a particular execution
event. The remote auxiliary tool can likewise be implemented
in the form of a blocking tool if its purpose is to in?uence
model execution. In this mode, the model to which the remote
auxiliary tool is attached waits until the tool has generated an
action in response to receipt an execution event. Such actions
could include pausing the model execution, or other actions
that affect the model or the execution or operation of the
model or devices connected with the model and operated by
the model, occur based on observations made by the remote
auxiliary tool.

The display or GUI for a bypass tool forming part or all of
the remote auxiliary tool can be substantially the same or
similar to that of the GUIs shown herein in FIGS. 4A, 4B, 5,
and 6. The bypass type of tool has the ability to read data from
the graphic model 10 as it is running and halt the model, or
modify the data and return a different value to the model or
other locations, in accordance with predetermined con?gu
rations. Thus, the bypass tool accesses and modi?es data
and/ or event of the model, and can return a modi?ed form of
the data and/or event. In addition, it should be noted that the
bypass tool can modify a data and/or event of the model using
block diagram primitives and/ or textual language primitives.
The data pulled from the graphical model 10 can also be

20

25

30

35

40

45

50

55

60

65

10
forwarded to a location separate from the running model, for
example, a separate model, database, or hardware or software
device.

It should further be noted that the observation tool, the
bypass tool, and the generator tool described herein as
example tools that can form the remote auxiliary tool can
individually or in combination form the remote auxiliary tool.
Thus, a single remote auxiliary tool can have all three func
tionalities as well as invasively modify or effect the operation
of the graphical model 10.
The remote auxiliary tool con?gurations can be saved in

the graphical model, or canbe saved separate from the graphi
cal model. In addition, one of ordinary skill in the art will
appreciate that a reference or other identi?er to a speci?c
remote auxiliary tool can likewise be stored within the graphi
cal model or separate from the graphical model being viewed
or manipulated by the remote auxiliary tool. Furthermore, the
selection of blocks, signals, or ports to be interfaced with the
remote auxiliary tool can be performed using any available
interface mechanism, including graphically, textually, data,
and can be implemented through in-direct or direct connec
tion to other software or hardware, and the like, in addition to
user interface.

In the embodiments presented herein, the remote auxiliary
tool con?gurations consist of the various attributes of the
observer tool, bypass tool, and/ or generator tools the user has
created. Each of these tools can be connected to the model
using an object selector. The object selector is one component
of the remote auxiliary tool that associates each tool the user
has created with objects (e.g. blocks, signals, or ports) in the
model. For example, the selection of model objects (blocks,
signals, or ports) to be connected to a remote auxiliary tool
can be done using a signal selector that displays the model
hierarchy in a textual fashion. The user navigates to the
desired object in the textual hierarchy and connects the tool
the object. Alternatively, the user can select an object in the
model and then click a button in the signal selector to attach
the remote auxiliary tool to the selected object.

It should be noted that one useful implementation of the
remote auxiliary tool of the present invention is in the perfor
mance of debugging of a system being modeled using the
graphical model 10, as shown in FIG. 7. To debug an operat
ing model, the model is ?rst provided (step 80). The user
implements an instance of the remote auxiliary tool (step 82).
At this point, the particular type of remote auxiliary tool can
in?uence the next steps. If the remote auxiliary tool is an
observation type of tool, the user attaches the remote auxil
iary tool at a point in the model at which access to data is
desired to observer or collect data (step 84). If desired, the
data collected can be registered (step 86). If con?gured
accordingly, the remote auxiliary tool can initiate an action
separate or removed from the graphical model (step 88),
while still maintaining its non-invasive characteristics in the
graphical model.

If, on the other hand, the remote auxiliary tool is of a bypass
type, data can be collected, and/ or modi?ed, and/or overrid
den, in accordance with the con?guration of the remote aux
iliary tool. The remote auxiliary tool collects the data (step
90). The user can take information or data learned by use of
the remote auxiliary tool and implement actions to affect how
the model is operating in an effort to debug the simulation or
the model of the dynamic system (step 92). These actions can
include using the bypass type of remote auxiliary tool to
change signal values at different locations in the model. In
addition, different actions can be initiated in the graphical
model in an effort to debug the model (step 94). The steps can
be repeated as necessary to debug the model (step 96).

US 8,855,971 B2
11

The remote auxiliary tool can also be a generator tool. The
generator tool provides data to a model, such as a running
model 100 in FIG. 8. This can be in the form ofa signal 102
without a source block icon. In FIG. 8, the “speed set point”
104 and “Load” represent text indicating two injectionpoints.
Without a signal provided by a remote auxiliary tool, the
model would treat these two signals as unconnected and
provide a value of 0 to the ?rst input port of the Controller 106
block. It should be noted, that the notion of an unconnected
signal identi?ed by an injection point in model 1 00 is text, but
it could be a generic graphical symbol such as a circle with a
dot in the center. In this example, a generator tool is supplying
a set point that has trajectory 108 for the Load injection point.
FIG. 8, also includes two observer tools, 110 a scope that is
connected to the second output 112 of the Engine 114 block
and 116 a scope that is connected to the Mux 118 block output
in the Engine Subsystem 115 corresponding to the Engine
114 block.

FIG. 8 further illustrates the non-intrusive, but synchro
nized aspect of the present invention, where the user does not
have to explicitly select blocks or other graphical objects
from a library and add them to the model, then make the
connections using signals. The signal and scope manager
120, is shown in FIG. 9, which is responsible for managing
the observer tools 122 (here they are all display tools and thus
are referred to as viewers) and generator tools 124. To use the
signal and scope manager to attach generators to signals, one
selects a generator from the generators tree view 124 and
clicks an “Attach to model >>” button 126, which enables
after the generator has been selected. After the generator is
attached, one can use a signal selector 140 of FIG. 10, which
can be activated by selector button 128 to complete the attach
ment by connecting the generator to an injection point which
is an unconnected input port or signal of the model. Similarly,
to connect an observer tool 122 to the model, one selects the
desired viewer display to use and then clicks “Attach to model
>>” button 126 to attach the generator to the model. For either
the observer tool 122 or generator tool 124, one can detach
either by selecting the tool in a generator/viewer panel 134
and then remove the tool can be removed using a delete button
132 or its properties such as the X andY limits of a display or
the amplitude of a sine wave generator using a properties
button 130. When an observer (viewer) or generator is
selected in the generator/viewer panel 134, its connections
are shown in a connection panel 136.

FIG. 10 illustrates a signal selector 140 that is used to
?nalize the connection of an observer (viewer) or generator to
the model 100. In FIG. 10, a scope has been selected for a
“Load and ThrottleAngle” viewer observer tool 142 and then
the signal selector 140 was used to navigate the model hier
archy using a tree view 144 to the engine subsystem. Within
the engine subsystem, the scope has then been connected to a
Mux output signal 146. Alternatively, one could use a latch
button 148 to connect the tool to the signal selected at that
time. In particular, if the signal connected to the Mux 118
block output port is selected, and one clicks the latch button
148, then the signal selector 140 automatically navigates to
the Mux block 118 output port signal 146 and establishes the
signal connection.
One skilled in the art will recognize that there are several

ways to attach observer tools, bypass tools, and generator
tools to a model 10, 100. Revisiting model 100, shown again
in FIG. 11 as model 150, an alternative embodiment of the
present invention can be used to connect or disconnect remote
auxiliary tools from the model 150. In particular in the
example embodiment, the user can use a context sensitive
menu 152 of FIG. 11 to attach and remove generators to

20

25

30

35

40

45

50

55

60

65

12
unconnected input ports or signal injection points 151. The
context sensitive menu 152 can be brought up by right-click
ing on an injection point 151. Within the context sensitive
menu 152, one can disconnect from a generator source using
a disconnect selection 154, and reconnect to another genera
tor source using a switch connection selection 156, or create
and connect a new generator source using a create source

selection 158. Similarly, one can bring up the context sensi
tive menu for a signal 160 by right-clicking on a signal, such
as signal 161, which is the engine speed, the second output of
the engine block. Within the context sensitive menu one can

open a viewer that is connected to the signal using an open
viewer selection 162 (note multiple viewers can be connected
to one signal), disconnect one or all of the viewers connected
to the signal using a disconnect selection 164, or create and
connect a new viewer using a create view selection 166.
When executing the model using an interpretive engine, the

event-listener paradigm provides a straight forward means by
which to support the remote auxiliary tool. However, one
skilled in the art recognizes that a model can be translated to
generated code, where the generated code can be a high-level
programming language such as C, Java, or C++ or assembly
code. To support the adding and removing of remote auxiliary
tools during execution, the generated code can be instru
mented before and after each block method. Alternatively, a
run-time engine can be created which, using the executable
created after compiling and linking the code, can instrument
the executable with entry points before and after the code for
each model and block method, thus enabling one to imple
ment the event-listener architecture enabling the removal and
addition of remote auxiliary tools during model execution.
An alternative to the event-listener paradigm for synchro

nously connecting the remote auxiliary tool to the model is to
aggregate the model objects and the remote auxiliary tool(s)
into one execution engine. This can be done when the con
nections to the model are made prior to model execution and
are not altered during execution. In this scenario, one can use
model primitives, e. g. a sine wave signal generator or a scope
display block to de?ne a generator or observer tool respec
tively. The remote auxiliary tool is not added to the graphical
de?nition of the model; rather, an internal aggregated repre
sentation of the model is formed consisting of both the model
objects plus the remote auxiliary tools. After this is done, an
internal execution structure can be created by translating the
model into executable operations or generated code. If the
connections are altered during execution, it is necessary to
know a priori the full range of alterations that may be per
formed. Otherwise, dynamic alteration of the execution struc
ture needs to occur and dynamic alteration of the execution
structure is very similar to the event-listener paradigm.
The remote auxiliary tool provides freedom to tap into an

existing and executing model at any time and collect data,
modify data, start and stop the model execution, return
desired constants or other forms of modi?ed data to the model
execution, in?uence the operation of separate models or
devices, and the like. Accordingly, a user attempting to diag
nose or debug a model of a dynamic system can use the
remote auxiliary tool of the present invention to both take
contemporaneous or real time readings of signal values
within the graphical model and/or communicatively associ
ated devices, and if desired, make changes or modi?cations to
the data to effect a desired outcome for diagnostic and/or
control purposes. One of ordinary skill in the art will appre
ciate that debugging is an iterative process that can be imple
mented in a number of different ways, such that the present
invention is not limited to the speci?c example of debugging

