Applic

AN2320/D
Rev. 0.1, 8/2002

Freescale Semiconductor, Inc.

Interfacing the MCF5272 to a
Standalone CAN Controller

Lynne Kelly
TECD Applications

© Freescale Semiconductor, Inc., 2004. All rights reserved.

The Controller Area Network (CAN) protocol isaserial communications protocol devel oped
in the early 1980's by Robert Bosch GmbH for the automotive sector and is currently the in
vehicle Local Area Network (LAN) standard in Europe. The main CAN attributes are low
cost, real-time capability, and the ability to function in harsh electrical environments with a
high degree of reliability and safety (making it suitable not only for automotive applications
but other cost sensitive, safety critical, real-time applications such as industrial control,
building control, building automation, embedded networks, and medical equipment).

The ColdFire® microprocessor is an established cost-sensitive solution for industrial and
embedded network applications today. Interfacing the MCF5272 ColdFire processor to a
standalone CAN controller, with the intention of integrating CAN on a later ColdFire
derivative with embedded Ethernet, will provide a solution for an increasing number of
industrial applications requiring not only field bus communication peripherals but Ethernet
connectivity also. These applications use afield busto carry time-critical routine data between
acentral system controller and remote units such as motion controllers and sensorsand require
an Ethernet link to transfer data which is processed in larger blocks on an irregular basis.

The Ethernet link facilitates the communication with standard PCs, typically running email,
database applications, and web browsers. At the extreme, internet capability would potentially
allow plants to be monitored from anywhere on the globe. For the real-time requirements at
thefield buslayer, CAN would berequired. Ethernet isprobabilisticinthat it is often uncertain
when a device on the network will be able to communicate as there is typically no guarantee
of message transfer and no prioritisation. CAN is more deterministic and hence more reliable
for the cyclical and routine transfer of data at the interface to units that require reliable and
timely control (such as motors, robotics, and PLCs).

This application note details the hardware design and software development of a reference
design which interfaces the MCF5272 microprocessor to the Infineon 82C900 standalone
CAN controller. It is recognised that an integrated solution would undoubtedly be more cost
effective, would make the design of PCBssimpler, would result in smaller space requirements,
and could reduce the CPU loading by half. However, the mgjority of today’s 32-bit integrated
products are focussed on automotive markets and none offer both embedded Ethernet and
CAN. This two-chip ColdFire solution is intended to provide a migration path to the first
ColdFire product with on-chip CAN and the first 32-bit microprocessor with both on-chip
CAN and on-chip Ethernet. Standalone CAN controllers still tend to ship in large numbers
which helps drive the cost of the device down. This, coupled with the low cost/performance
ratio of ColdFire microprocessors in general, makes the two-chip solution aviable alternative
in the interim.

&

Z “freescale*

For More Information On This semiconductor
Go to: www.freescale

Freescale Semiconductor, Inc.
MCF5272 Microprocessor

The reference design is based on the M5272C3 development board using a daughter card to provide the
standalone CAN controller circuitry. This application note details the design process, starting with an
overview of the MCF5272 processor and the 82C900 CAN controller, and the reasons for choosing them.
It is followed by a more detailed look at both the hardware design and software development. Full
schematics and basic example application software can be downloaded from the M5272C3 CAN webpage
on Freescale’'s ColdFire website.Freescale websites referred to in this document can be accessed from

www.Freescal e.com/semi conductors.

1.0 Design Overview

The object of this section is to outline the principles of the MCF5272 CAN reference design, to give an
overview of the MCF5272 microprocessor and the 82C900 CAN controller, and to explain the reasons for
choosing them for this design. For additional and more detailed information on the MCF5272 and the
82C900 themselves, please refer to the MCF5272 webpage, and the 82C900 user’s manual,
http://www.infineon.com/cgi/ecrm.dll/ecrm/scripts/public_download.jsp?0id=16123& parent 0id=16899.

Figure 1 shows the basics of the reference design. The MCF5272 microprocessor is interfaced to the
Infineon 82C900 CAN controller using a Queued Serial Peripheral Interface (QSPI). The CAN controller
implements the CAN protocol while an externa CAN transceiver, the Philips PCA82C250, provides
physical connection to the CAN bus. Two transceivers are shown here, asthe Infineon CAN controllerisa
twin CAN device with dual CAN nodes allowing connection to two independent CAN buses. Thereis no
need for a second transceiver if only one node is required.

ColdFire Infineon
MCF5272 CAN Controller
82C900
QSPI_Clk p| SCLK
QSPI_CSn p| SLS
QSPI_Din ¢ > MRST
QSPI_Dout | > MTSR Tx Rx Tx Rx

T

Philips Philips
CAN CAN
Transceiver Transceiver

PCA82C250 PCA82C250

v

CAN Bus A CAN Bus B
Figure 1. MCF5272 CAN Reference Design Overview

1.1 MCF5272 Microprocessor

The MCF5272 is a 32-bit embedded processor based on a V2 ColdFire core. This is the most
application-specific ColdFire processor to date, targeted at the low-end communications market. On-chip
peripherals include a Fast Ethernet Controller, a USB 1.1 slave device, a Physica Layer Interface Channel

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
CAN Controller

with four TDM ports, a software HDLC module, a QSPI module, and support for a 3 channel PWM. In
addition, it retains the System Integration Module, the Chip-Select Module, the MAC and hardware divide
unit, the General Purpose Timers, and the real-time BDM interface standard on al ColdFire devices.

The decision to use the MCF5272 ColdFire microprocessor was based on the peripheral set, ease of
interface, and the overall system cost. There is an increasing demand for Ethernet and CAN integrated on
chip; while no ColdFire product will offer both until 2003, the M CF5272 does have on-chip Ethernet, which
reduces the additional peripherals required. There are also other M CF5272-specific peripherals, including
USB and QSPI, which may be required in industrial markets.

Also, the mgjority of available standalone controllers offer a multiplexed bus interface and a seria
peripheral interface (SPI); they rarely offer a non-multiplexed paralel bus interface that can be gluelessly
interfaced to a ColdFire processor. Using the MCF5272 with on-chip SPI increases the choices of suitable
CAN controllers on the market and avoids increasing the complexity and cost of the design using bus
interface glue logic.

Lastly, CAN applications, both industrial and automotive, are often cost critical; therefore, it isimperative
that overall system cost is kept to a minimum. For applications requiring both CAN and Ethernet, this
solution will till be competitively priced because of the aggressive price/performance ratio of MCF5272.
A standalone CAN solution may cost more than some 32-bit integrated solutions, but these solutions are
typically targeted at different markets and offer no Ethernet connectivity.

1.2 CAN Controller

The Infineon 82C900 TwinCAN controller is a standalone CAN controller with dual CAN nodes allowing
connection to two independent buses. It can be interfaced to ahost controller using either amultiplexed bus
interface or an SPI interface, or it can be interfaced to an EEPROM viathe SPI interface for initialisation
when no external host is required. The 82C900 supports up to 32 message objects which can be assigned to
both CAN nodes or one CAN node. It has a built-in, scalable FIFO mechanism for message reception and
transmission and a built-in gateway functionality for transferring messages between the nodes. Thereisalso
atimestamp/frame counter to indicate when a message was last transmitted or received (or to indicate how
many times amessage has been transmitted or received) and a CAN Analyser for monitoring activity onthe
CAN bus.

There are a number of standalone CAN controller modules on the market that adhere to different
specifications, support variable data rates, and require different levels of CPU intervention. The Infineon
82C900 standalone controller was chosen because it supports the CAN 2.0B protocol, because it provides
an SPI interface for glueless connection to the MCF5272, because it will support data rates up to 1IMbit/s,
and because of the level of message transmission and acceptance filtering it supports.

There are currently three CAN protocols, CAN 2.0A, CAN 2.0B, and CAN 2.0B passive. The Infineon
device supports CAN 2.0B. The difference between these protocols lies in the length of message identifier
they can transmit and receive in a message frame. A CAN 2.0A controller can handle standard frames with
an 11-bit identifier while a CAN 2.0B controller can transmit standard frames and extended frames with
29-bit identifiers. Finally, CAN 2.0B passive controllers can transmit only standard frames but can receive
both standard and extended frames. For the mgjority of today's applications CAN 2.0B is considered
standard, with system designers often requiring the extended 29-bit identifier to relieve them from
compromises with respect to defining well-structured naming schemes. The mgority, if not all, of the
integrated CAN solutions on the market support CAN 2.0B. The backward-compatible nature of the CAN
protocol ensures the Infineon device can also handle messages with the standard frame format.

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
CAN Transceiver

Regarding the interface, this has been touched on before. Few standalone CAN controllers on the market
today have non-multiplexed businterfaces and none offer agluelessinterface to the MCF5272 external bus.
Design complexity and additional cost in using a paralel interface resulted in SPI being the preferred
choice.

In terms of data rate support, CAN data rates can vary between 10kbit/s and 1Mbit/s, depending on the
length of the bus line and on the degree of fault tolerance required. A bus length of less than 40m makes
1Mbit/s achievable. CAN controllers vary in the data rates they support; most support up to 0.5Mbit/s or
1Mbit/s. The Infineon controller can handle 1Mbit/s which is desirable for many of today’s rea-time
industrial applications.

Finally, standalone CAN controllers vary in the extent to which the CPU is required to take over message
transmission. The simplest controller, known formerly as BasicCAN, has hardware logic dedicated to
creating and verifying the bitstream according to protocol. Administration of data sets to be sent and
received and comprehensive acceptance filtering is carried out by the CPU, placing increased overhead on
the processor. Full CAN controllers, like the Infineon 82C900, include extralogic to provide object storage,
support additional prioritisation capabilities, and implement comprehensive acceptance filtering. This,
along with the additional on-chip FIFO and gateway mechanisms, ensures CPU overhead is kept to a
minimum. In the end, this means real-time performance is optimised, which is often the most important
criteriain the types of industrial-control and automation applications for which thisis intended.

1.3 CAN Transceiver

The Philips PCA82C250 high-speed transceiver was chosen as the interface between the CAN controller
and the CAN physical bus because it supports data rates up to amaximum of 1Mbps. Alternate transceivers
such as fault-tolerant and single-wire transceivers limit the maximum data rate to 125 kbit/s and 33.33
kbit/s, respectively. High-speed transceivers typically support data rates in excess of 500 kbit/s.

2.0 Hardware Design

The MCF5272 CAN reference design is devel oped around the M5272C3 eval uation board using adaughter
card for the CAN circuitry. The daughter card connects to the evaluation board using expansion connectors
aready provided.

The M5272C3 board provides the 10/100 Ethernet interface, RS232 interface, BDM interface, 4MB
SDRAM, and 2MB Flash ROM for system development. For additional detailed information on the
evaluation board, including full schematics, refer to the M5272C3 user’s manual on the M5272C3 CAN
webpage.

Figure 2 outlines the hardware design of the CAN daughtercard. The main features and key issues
(interface, reset, clocking, power supply, and more) are explained in the remainder of this section. Full
schematics and schematic summary can be downloaded from the ColdFire website.

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
SPI Interface

5
® 5 o 2z
o U\ O\ D\ D\
= o o o o s i
8 338 8 8% =z =
+3.3V GND
Yy VY \4
+5V 1
MAX682 ACT1100
Charge Pump 24MHz Clock
82C900
CAN Controller
y y :t
A A
P[0..7]
PCA82C250 PCA82C250
CAN Transceiver CAN Transceiver

CANH

CANL

Figure 2. CAN Daughter-Card Circuitry

2.1 SPlInterface

The MCF5272 QSPI module provides a glueless SPI interface to the 82C900's synchronous serial channel
(SSC). The QSPI and SSC hardware interfaces are detailed here.

2.1.1 MCF5272 QSPI Module

The QSPI module on the MCF5272 provides a serial peripheral interface with queued transfer capability,
which allows up to 16 data transfers with no CPU intervention. The QSPI interface will support data
transfers, msb first, of anywhere between 8 and 16 bits. It will support baud rates from 129.4Kbps up to 16
MBps and can be interfaced to a maximum of 15 devices using the four peripheral chip-select lines.

The module has atotal of seven signals. QSPI_Dout, which isthe serial data output from the QSPI module,
QSPI_Din, which isthe seria datainput to the QSPI module, QSPI_CLK, which isthe QSPI clock output,
and QSPI_C9g[0:3], which are the four peripheral chip-select output signals. Four signals are used to
interface to the 82C900: QSPI_Dout, QSPI_Din, QSPI_CLK and QSPI_CS0.

The clock phase, clock polarity, chip select active logic level, and delays before and after transfer
highlighted in Figure 3 are al programmable via the QSPI registers. This flexibility in clocking and data
transfer eliminates the need for additional glue logic to meet the 82C900 timing requirements or to
accommodate the polarity and phase of its clock, which are internally configured. The data transfer baud
rateis also programmable; thisis explained in more detail in Section 2.2, “Clocking.”

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
SPI Interface

msm_n:u-:ffj” JEIERRRERERERERERE) f|f|. :
=]

1
|
1
QsPILDout [5| | a{z] 1] w|

1 meb

1

1

Q5PI1_Cin

1 KN N R R

! 1
L ! 1
—-.-I-— |.|
L (A) . (B) |

asP_cs ! — e,
] [L

A = QSPI clock delay. Determines the length of delay from the assertion of the chip-select to a valid
QSPI_CLK delay. Programmed in the QSPI delay register (QDLYR).

B = Delay after transfer. Determines the length of delay after a serial transfer. Programmed in the QSPI
delay register (QDLYR).

Clock polarity is set to 0 making the inactive state of QSPI_CLK to be logic level 0.
Clock phase is set to 1 to have data changed on the leading edge and captured on the following edge.

Figure 3. QSPI Clocking and Data Transfer Parameters

2.1.2 82C900 Synchronous Serial Channel

The 82C900 Synchronous Serial Channel (SSC) is an SPI-compatible serial interface, which can be used to
connect the CAN controller to an external host. Transfers can be single-read or single -write accesses
although the channel itself is optimised for multiple transfers to consecutive addresses. An example of a
consecutive read access and a consecutive write access is shown in Figure 4. When the chip select is
activated, the first byte transferred should always be an address byte. The address itself is 7 bits wide with
the 81 bit, A7, used to indicate whether the accessis aread or awrite. If a consecutive access s requested,
then all transfers following the address are data transfers. The SSC internally increments the register
addresses during the transfer. The chip-select signal must remain active for the duration.

The 82C900 SSC is configured internally for 8-bit data transfers with msb first. Clock polarity is set to
inactive high; clock phaseis configured for data shift on the leading edge and data capture on the following
edge of the SPI clock. The MCF5272 isalso fixed for msb-first transfer whilethe datatransfer size, the clock
polarity, and clock phase are programmable as detailed in Section 2.1.1, “MCF5272 QSPI Module.”

Mode pins on the 82C900 are used to configure the interface, to choose between an 8-bit multiplexed bus
and the SSC, and to select master when no external host is used or slave when it is. In this design, the
MCF5272 is the external host acting as master in the system, and the mode input pins are set for the SSC
interface and slave operation.

The MCF5272 QSPI signals are connected to four control pins on the 82C900, the functions of which are
multiplexed by the mode inputs. When the SSC interfaceis used in slave mode, control pin O (the 82C900
chip-select) is configured as an input, control pin 1 is configured as a serial clock input, control pin 2 is
configured asa serial datainput (Master Transmit Slave Receive), and control pin 3 isconfigured asa seria
dataoutput (Master Receive Slave Transmit).

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
SPI Interface

Infineon has added an optional fifth signal, aready signal (RDY), to the standard SPI interface. Thisisa
handshake signal, which can be used to indicate when the serial interface can be accessed by the host.
However thisRDY signal is not required provided the SSC timings detailed in Section 2.1.3, “Timing” are
adhered to. While it would be a ssimple case of connecting the ready input signal to a GPIO pin on the
MCF5272 and reading the level before accessing the CAN controller, the MCF5272 QSPI programmable
delays before and after transfer means the timing specifications can be met without using the RDY signal.

2.1.3 Timing

Figure 4 gives the 82C900 SSC timing requirements that must be met in the absence of aready signal that
indicates to the host when atransfer isallowed. A consecutive-read access and a consecutive-write access
are shown. The first byte transferred is the address and any subsequent transfers are data bytes which are
read or written to consecutive addresses starting at the address defined. In this mode, the chip-select signa
must remain active until the transfer of all datafor that accessis complete.

All timing requirements, except minimum delay after reset (see Section 2.3, “Reset”), are met by
programming the QSPI clock delay and the QSPI delay after transfer on the MCF5272. The QSPI clock
delay determines the delay between chip-select assertion and the first valid serial clock transition, and the
QSPI delay after transfer determines the delay after each serial transfer. In Figure 4, the clock delay is
programmed to meet specification (A), whilethe delay after transfer is programmed to meet al other timing
requirements. The delay after transfer is inserted not only on the negation of the chip-select signal (E) but
a so between datatransfers (B, C, F and G) and following the final datatransfer (D) of consecutive reads or
writes.

The QSPI clock delay (SCLK pg ay) and the delay after transfer (TXRxpg_ay) are defined by thefollowing
equations:

_ QCD
SCI‘KDELAY - CLKIN

_ 32xDTL
TXRXDELAY - CLKIN

QCD hasarange of 1-127, DTL has arange of 1-255 and CLKIN isthe system clock frequency.

For a66MHz system clock, the QSPI clock delay is programmable between 15ns and 1.9us, and the delay
after transfer is programmable between 485ns and 124pus (with the option of using a standard delay of
258ns). A QCD of 6 (90nsdelay) and aDTL of 2 (970ns) were chosen to meet the worst case specifications
shown in Figure 4.

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Clocking
READ ACCESS | WRITE ACCESS
Serial Clk 1 T 1 T 1 1 T 1 T
------- 8 cLKs —{8 cLksl—s ciks} - - -[8 cLks] 8 cLks—18 cLksl—8 cLks} -
Data |
=222 2 Adar { — F-- | Addr | pata — Dpata |-
LDataOut | Data Data]‘ - 'I Data I- -
&8
A B c o p| E F G)
<) P 4P 4 PP <P <P
Name Parameter Min Time, fcan = 24 MHz
A CS active to SerialClk active 84ns
B Address transfer to data byte transfer, read access 584ns
C Data byte transfer to data byte transfer, read access 584ns
D Last data byte transfer to CS inactive 459ns
E CS inactive to CS active 167ns
F Address transfer to data byte transfer, write access 209ns
G Data byte transfer to data byte transfer, write access 209ns

Figure 4. 82C900 SSC Timing Specification

2.2 Clocking

2.2.1 CAN Controller Clock Input

A 24-MHz externa oscillator is used to clock the CAN controller. This ensures that the CAN protocol can
be handled on both nodes at IMbps when the CAN controller is interfaced to an external host using the
maximum access rate. This assumes the built-in gateway and FIFO functions are not being used. For
systems that require these additional data handling capabilities, a higher frequency may be required unless
the external host-access rate is reduced. In the worst case, the data handling capability would be reduced to
500kbps for each node when both the FIFO and the gateway functions are running with a 24-MHz clock
input. Using a 24-MHz clock input also means the oscillator chip can be replaced directly by the USB clock
and clock divider with no software modification or interface timing implicationsif preferred. Theintegrated
USB controller on the MCF5272 requires a48-Mhz oscillator which is provided externally on the M5272C3
board.

2.2.2 SPIlBaud Rate f

The 82C900 CAN controller serial interface baud rate is limited to ~ 4 where f.,, is the input clock
frequency. At 24 MHz this gives a maximum possible baud rate of 6 Mbps. The MCF5272 QSPI is
programmable and is set by the baud field in the QSPI mode register (QMR) as follows:

_ CLKIN

SPlgaUDRATE = Sx B~
Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Reset

where CLKIN isthe system clock frequency (66 MHz here) and B represents the value in the baud field of
the QMR register and lies between 1 and 255. Asabaud rate of 6M Bpswould require B = 5.5 the maximum
achievable baud rate will be 5.5 MBps, with B = 6.

2.3 Reset

Thereset output signal from the M CF5272 processor (-RSTO) isused to drive the reset of the 82C900 CAN
controller. Asthereset signal to the CAN controller need only be asserted for 5 CAN clock cycles which at
24 MHz equates to 14 MCF5272 CPU clocks when running at 66 MHz, any MCF5272 reset will reset the
CAN controller.

The four MCF5272 resets are master reset, normal reset, soft reset, and software watchdog timer reset.
Master reset will reset the entire processor including SDRAM, normal reset will terminate all bus activity
except SDRAM refresh cycles ensuring data stored in SDRAM isnot lost during areset, soft reset will reset
al externa devices and al internal peripherals excluding the SIM, the chip-select controller, the interrupt
controller, the GPIO module and the SDRAM controller, and the software watchdog timer will generate a
reset if it isnot periodically accessed by software as programmed. -RSTO isdriven low for 128 CPU clocks
during soft reset and for 32K CPU clocks when alow input level is applied to -RSTI during a master and
normal reset or when the software watchdog timer times out.

It should be noted that there must be a delay of 1100 CAN clock cycles following the negation of -RSTO
and before accessing the CAN controller. Reset exception processing which follows the negation of -RSTO
will not provide the required delay but the system initialisation process should.

2.4 Power

The M5272C3 board which the CAN daughter card is connected to supplies 3.3V power only. The 5V input
required by the CAN controller, the CAN transceivers, and the 24 MHz oscillator chip is provided by a
Maxim charge pump on the daughter card itself. The MAX682 was chosen because it is capable of
delivering the 250mA required to meet the maximum possible combined load from the 82C900, the
PCA82C250, and the ACT 1100 oscillator chips.

2.5 Interrupts

The 82C900 has 72 interrupt request sourcesin total. These 72 sources are assigned to 1 of 8 CAN interrupt
nodes which can then be driven on the output pins OUTO and OUT1.

The 72 interrupt sources are divided up as follows. Each of the 32 message objects have 2 interrupt request
sources indicating when a message has been received or when a message has been transmitted. Each CAN
node also has four global interrupt requests which include
* TxRx OK—Indicates when a message, assigned to that node, has been transmitted or received
okay
» Last Error Code—Indicates the last error to occur (stuff/format/CRC/bus arbitration)
» Error—Indicates when the number of CAN bus errors exceeds a predefined limit
» Frame Counter—Indicates transfer sequence of message objects and the time instant a frame was
last transmitted or received.

Each message object assigned to the CAN node can be a source for these errors. Mask registers are used to
determine which interrupts within each message should be recognised or ignored for the generation of the
CAN node global interrupt request.

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
82C900 Extended I/O

Both the message-specific and the CAN node specific global interrupts are distributed among eight interrupt
nodes, CAN interrupt nodes 0 — 7, via Message Configuration and Global Interrupt Node Pointer registers.
Each node can then be assigned to one of the two interrupt request outputs, OUTO and OUT1. Requests
received from interrupt node 1 only or from interrupt nodes 1, 3, 5 and 7 combined can be output on OUT1,
and requests from interrupt node 0 only or from nodes 0, 2, 4, 6 again combined, can be output on OUTO.

It should be noted that OUTO has dual functionality. The 82C900 has an on-chip oscillator that can be used
to generate a system clock. With an on-chip clock divider, OUTO can be used to provide a reduced-clock
output for external devices which may need a slower clock. OUTO is configurable via the Global Device
Control Register.

2.6 82C900 Extended I/0O

When using the SSC on the 82C900, the /O pins of the parallel bus (P0:P7) can be configured as 1/0 with
extended functionality. The logic state of each pin is recorded in registers on the CAN device which can be
accessed by the CAN bus. They can be used

» Toinitiate a message transfer
* AsGPIO wherethe pin state is written to or read from the CAN device registers

» AsaCAN status monitor to monitor the internal status of the CAN controller during message
transfer including which part of a datalremote/error frameis currently being transferred and which
value has been read by a CAN node (A,B) on the associated bus. There are also output clock lines
which are asserted high once during each bit time.

These 1/0 pins are taken out to a header on the daughtercard.

3.0 Software Development

This section outlines the software for a basic application example that sets up the 82C900 CAN controller
to transmit amessage, receive amessage, and interrupt the M CF5272 when amessage isreceived. It begins
with an overview of the code required to send and receive a byte over the MCF5272 QSPI, illustrating how
dataiswritten to and read from the 82C900 registers. It isfollowed by a description of the 82C900 register
set and details on how the registers are addressed when using the 82C900 SSC interface. The initialisation
of both CAN nodesis then covered and finally, in Section 3.4, “CAN Transmit and Receive,” two message
objects are set up, one assigned to CAN node A for transmit and one assigned to CAN node B for receive.

The software was verified initially by connecting the CAN transceivers on the daughtercard externaly. The
transmit and receive message obj ects assigned to each node were given the same I D so node B would receive
the message transmitted by node A and generate an interrupt. The M5272C3 board and CAN daughter card
were then connected viaa CAN busto an MPC555 development board to test the MCF5272 CAN reference
design fully.

The code has been developed using Wind River’s Diab compiler and visionClick debugger and can be
downloaded from the MCF5272C3CAN webpage for modification for another tool chain or to be used asa
template for further development.

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Transmitting and Receiving over the MCF5272 QSPI Interface

3.1 Transmitting and Receiving over the MCF5272
QSPI Interface

The QSPI module is a standard SPI interface with queuing capabilities. Using an 80-byte block of static
RAM, the QSPI module can queue up to 16 transfers without CPU intervention. The RAM is divided into
areceive data RAM which is the initial destination for al received data, a transmit data RAM whichisa
buffer for all out-bound data, and a command RAM which holds command data for each QSPI command to
be executed (including which chip-select to activate, whether to enable delays, how many bits to transfer
etc.).

The RAM is organised as 16 entries where 1 byte of command data, 1 word of transmit data, and 1 word of
receive data comprise 1 queue entry. It cannot be accessed directly but must be accessed via the QSPI
addressregister (QAR) and the QSPI dataregister (QDR). A write to the QDR results in data being written
to the RAM entry specified by the address in the QAR and aread from the QDR results in the data stored
at the address specified by the QAR being written to the QDR. The address stored in the QAR automatically
increments after aread from or awrite to the QDR.

QSPI operation isinitiated by writing a queue of commands to the command RAM, writing transmit data
into transmit RAM, and then enabling the QSPI to begin transfer. The QSPI begins execution at the
command in the queue entry pointed to by a queue pointer and the transmit data at the same entry is
transmitted. Data that is simultaneously received is stored in this entry before the queue pointer is
incremented. When al commands are executed the QSPI finished flag is set and an interrupt can be
generated. Queue pointers can be used to begin or end transfer at any entry in the queue and to determine
which command was last completed.

The flowchart in Figure 5 outlines the process of sending a byte of data to and reading a byte of data from
the 82C900 CAN controller. This explains theinitialisation and mechanics of the MCF5272 QSPI interface
only. Accessing the registers on the Infineon device, in particular the addressing, is described in detail in
Section 3.2, “Accessing the 82C900 Register.” The initialisation, the send byte, and the receive byte
software routines are also given. Refer to the MCF5272 user’s manual on the MCF5272 webpage for the
QSPI module register set and bit level detail.

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Transmitting and Receiving over the MCF5272 QSPI Interface

Set QSPI Mode Register
5.5 Mbit/s baud rate, 8 bit data transfer
Data change on leading, capture on following
Clock idle high

Set QSPI Delay Register
Delay after transfer = 2 = 970ns
QSPI clock delay = 6 = 91ns

v

Clear QSPI Interrupt Register
Clear QSPI finish, abort and write collision flags
Clear interrupts

Point to Command RAM
Set QAR to 0x20 to point to first queue entry in command

RAM

Write to Command RAM via QDR
8 bit data transfer
Use /CSO0, assert between transfers
Enable programmable clock and transfer delays

+ RD or WR? +
Point to Transmit RAM Point to Transmit RAM
Set QAR to 0x00 to point to first queue entry in command Set QAR to 0x00 to point to first queue entry in Tx RAM
RAM
Load Transmit RAM via QDR Load Transmit RAM via QDR
Write QDR with address of 82C900 register Write QDR with address of 82C900 register
Write QDR with data byte for 82C900 register Write QDR with dummy addr for 82C900 register
Set QSPI Wrap Register Set QSPI Wrap Register
Set start queue pointer to the top of transmit RAM. Set start queue pointer to the top of transmit RAM.
Set end queue pointer to 1 for Tx of 2 bytes Set end queue pointer to 1 for Tx of 2 bytes
Set chip select inactive level to 1 Set chip select inactive level to 1
Enable Transfer Enable Transfer
Set SPE field in the QSPI delay register to enable Set SPE field in the QSPI delay register to enable
Poll for Completion Poll for Completion
Poll the SPI finish flag in the QIR. Poll the SPI finish flag in the QIR.
Point to Receive RAM
Set QAR to 0x10 to point to first entry in Rx RAM.
Read Receive RAM via QDR
Read dummy byte.
Read byte from 82C900 register access. _

Figure 5. MCF5272 QSPI: Reading and Writing to the 82C900

The QSPI initialisation software in the example code is used to set up the baud rate, clock phase, clock
polarity, clock delay, and delay after transfer. It is also used here to set up the command RAM. All entries
in the command RAM have the programmable delays enabled. As the timing specifications of the 82C900

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Transmitting and Receiving over the MCF5272 QSPI Interface

vary between the different accesses (for example, the minimum time for aread access can be threetimes as
much as awrite access), it may be desirable to change the command RAM entries when switching between
aread transfer and a write transfer. QSPI initialisation code:

voi d ncf5272_qgspi _init()
{

MCF5272_1 MM *i nm = ncf5272_get _i mp();

/*Set QSPI node register, 5.5Mit/s, 8 bit, data change on | eading, clock idle high*/
MCOF5272_WR_QSPI_QVR(i nm MCF5272_QSPI_QVR CAN) ;
/*Set delay after transfer and cl ock del ay*/
MCF5272_WR_QSPI _QDLYR(i nm MCF5272_QSPI_QDLYR CAN) ;
/*Clear flags and interrupts*/

MCOF5272_WR_QSPI_Q R(i nm MCF5272_QSPI_Q R CAN);
/*Point to top of command RAM‘/
MCOF5272_WR_QSPI_QAR(i mm MCF5272_QSPI_QAR Cormm) ;
/*Set each entry for continuous transfer, 8 bit transfer, to use /CSO and del ays*/
MCF5272_WR_QSPI _QDR(i nm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_WR_QSPI _QDR(i nm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_WR_QSPI _QDR(i nm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_WR_QSPI _QDR(i nm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_WR_QSPI _QDR(i nm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_WR_QSPI _QDR(i nm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_WR_QSPI _QDR(i nm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_WR_QSPI _QDR(i nm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_WR_QSPI _QDR(i nm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_ WR_QSPI _QDR(i nm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_WR_QSPI _QDR(i nm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_WR_QSPI _QDR(i nm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_ WR_QSPI _QDR(i nm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_WR_QSPI _QDR(i mm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_WR_QSPI _QDR(i mm MCF5272_QSPI _QDR_CR_CONT) ;
MCF5272_WR_QSPI _QDR(i mm MCF5272_QSPI _QDR_CR_CONT) ;
}

Writing to the 82C900 register:

/*The address of 82C900 register and data to be witten to it are passed*/
voi d QSPI _SendByt e(ui nt 16 CanRegAddr, uint8 Data)
{

MCF5272_1 MM *i nm = ncf 5272_get _i mmp();

/*Determ ne 82C900 regi ster address*/

CAN_Set PageReg((ui nt 8) (CanRegAddr >>7)) ;

/*Point to top of Tx RAM/

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Transmitting and Receiving over the MCF5272 QSPI Interface

MCF5272_WR_QSPI _QAR(i nm MCF5272_QSPI _QAR TX) ;
/*Wite 82C900 regi ster address into Tx RAMvia QDR indicating a wite*/
MCF5272_WR_QSPI _QDR(i mm (ui nt 8) (CanRegAddr | CanW it eMask));
/*Wite data for 82C900 register into Transmt RAMvia QDR*/
MCF5272_WR_QSPI _QDR(i nm Dat a) ;
/*Set Wap register for byte transfer (2 bytes), starting at top of Tx RAM/
MCF5272_WR_QSPI _QAR(i nm MCF5272_QSPI _QAR_SendByt e) ;
/*Set SPE flag in Delay register to enable transfer*/
MCF5272_WR_QSPI _QDLYR(i nm MCF5272_QSPI _QDLYR CanEnabl e) ;
/*Poll the @PI finish flag for conpletion*/
while (!'(MCF5272_RD @SPI_Q R(inm & MCF5272_QSPI _Q R_QSPI Fi ni sh))
}
Reading an 82C900 register:
/*The address of 82C900 register to be read is passed*/
ui nt 8 QSPI _ReadByt e(ui nt 16 CanRegAddr)
{
MCF5272_1I MM *i mm = ntf5272_get _i mp();
/*Determ ne 82C900 regi ster address*/
CAN_Set PageReg((ui nt 8) (CanRegAddr >>7)) ;
/*Point to top of Tx RAM/
MCF5272_WR_QSPI_QAR(i mm MCF5272_QSPI_ QAR TX) ;
/*Wite 82C900 register address to be read into Tx RAM via QDR*/
MCF5272_WR_QSPI _QDR(i mm (ui nt 8) (CanRegAddr &CanReadMask)) ;
/*Dummy transmi ssion to ensure QSPI cl ock enable for receiving byte*/
MCF5272_WR_QSPI _QDR(i mm (ui nt 8) (CanRegAddr &CanReadMask)) ;
/*Set Wap register for byte read transfer (2 bytes) starting at top of Tx RAM/
MCF5272_WR_QSPI_QAR(i nm MCF5272_QSPI_ QAR ReadByt e) ;
/*Set SPE flag in Delay register to enable transfer*/
MCF5272_WR_QSPI_QDLYR(i nm MCF5272_QSPI_QDLYR_CanEnabl e) ;
/*Poll the QSPI finish flag for conpletion*/
while (! (MCF5272_RD Q8PI_Q R(imm) & MCF5272_QSPI_Q R QSPI Fi ni sh))
/*Point to top of Rx RAM/
MCF5272_WR_QSPI _QAR(i mm MCF5272_QSPI_ QAR RX) ;
/*Read dummy byte received as address being transnitted*/
dunmy = (uint8)MCF5272_RD QSPI _QDR(i nm) ;
/*Read data received fromthe 82C900 register*/
RxByte = (ui nt8) MCF5272_RD QSPI _QDR(i nm);
}

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Accessing the 82C900 Register

3.2 Accessing the 82C900 Register

The 82C900 register set is divided between the global control shell and the message buffer unit. The global
control shell registers are known as the standalone shell registers, and they control the initialisation process
after power-on or reset, provide status information to the CPU on message transfers or on any pending
transfer interrupts, and are responsible for condensing the 72 interrupt sources to 8 to be distributed among
the 8 available CAN interrupt nodes. The registers assigned to the message buffer unit are known as the
TwinCAN registers. These registers are used as buffers for the 32 message objects and also as managers of
the FIFO, to transfer messages between the nodes internaly if the in-built gateway logic is being used, and
to provide interrupt requests for transmission or on reception of a message object. An overview of the
memory map is given below in Figure 6. For register-specific information refer to the Infineon 82C900
user’'s manual,

http://www.infineon.com/cgi/ecrm.dll/ecrm/scripts/public_download.jsp?0id=16123& parent_0id=16899.

+0000y Standalone Registers

+00804 Reserved

+02004 TwinCAN Registers (CAN node & Control)
+02C0y Reserved

+03004 TwinCAN Registers (Message Object 0)
+03204 TwinCAN Registers (Message Object 1)

+06E0y TwinCAN Registers (Message Object 31)
Figure 6. 82C900 Register Map

Accessing al registers on the memory map requires 11-bit addressing. Referring to Figure 4, the first byte
transmitted by the host during an access contains address information. All other transfers during the same
access are datatransfers. Of thefirst bytetransferred, only thelower seven bitsare used to define the register
address. The eighth bit, A7, is used to indicate whether the access is a read or a write transfer. The upper
four bits of the register address are provided by the PAGE register in the standalone shell register set. The
PAGE register itself can be accessed at addresses xx7Cy or xxFCp and hence independently of the value
stored in the register.

The 82C900 register address is therefore split in two as illustrated by the code below. This highlights the
setting of the register address for awrite access. The upper four bits of the address are written to the PAGE
register and the lower 7 bits are concatenated with the read or write command and transmitted over the SPI.

voi d QSPI _SendByt e(uint16 CanRegAddr, uint8 Data)

{
MCF5272_1I MM *i mm = ncf 5272_get _i mp();

/*Pass upper 4 bits of 82C900 register address to be accessed */
CAN_Set PageReg((ui nt 8) (CanRegAddr >>7)) ;
MCF5272_WR_@SPI _QAR(i mm MCF5272_QSPI _QAR Tx);

/*First byte to Tx over Q@SPI. Use lower 7 bits of address and force the 8N pit to 1to
indicate a wite operation*/

MCF5272_WR_QSPI _QDR(i mm (ui nt 8) (CanRegAddr | CanW i t eMask)) ;

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
82C900 Initialisation

MCF5272_WWR_QSPI _QDR(i mm Dat a) ;

MCF5272_ VR _QSPI _QWR(i mm MOF5272_QSPI_ QWR SendByt e) ;
MCF5272_ VR QSPI_QDLYR(i nm MCF5272_QSPI_QDLYR CanEnabl e) ;

while (! (MCF5272_RD QSPI_Q R(i mm) & MCF5272_QSPI_Q R QSPI Fi ni sh))

}

/*The upper 4 bits of the register address are passed.*/
voi d CAN_Set PageReg(ui nt 8 PageNumnber)

{
MCF5272_1I MM *i mm = ntf5272_get _i mp();

MCF5272_WR_QSPI_QAR(i mm MCF5272_QSPI_ QAR TX) ;

/ *Page regi ster address. Can be accessed regardl ess of its contents*/
MCF5272_WR_QSPI _QDR(i mm CAN_PAGE| CanW i t eMask) ;

/*Wite upper four bits to PACE register and enable auto increnment*/
MCF5272_WR_QSPI _QDR(i nm PageNumber | CanAut ol nc) ;

MCF5272_WR_QSPI _QAR(i mm MCF5272_QSPI _QAR_Set PageReg) ;
MCF5272_WR_QSPI _QDLYR(i nm MCF5272_QSPI _QDLYR_CanEnabl e) ;
while (!(MCF5272_RD @SPI_Q R(imm & MCF5272_QSPI _Q R _QSPI Fi ni sh))

}

To optimise data transfer between the host and the 82C900, the SSC can transfer a data stream upon the
transmission of asingle address. Thisisillustrated in Figure 4. The control bit for incrementing the address
during these consecutive-read and consecutive-write accesses is contained in the PAGE register. When set,
the contents of the address register are automatically incremented by one after each data-byte transfer.
Incrementing is stopped at the boundaries between CAN message objects to prevent unintended corruption
of CAN messages. Accidentally overwriting the PAGE register is also prevented.

3.3 82C900 Initialisation

The 82C900 initialisation software logically connects CAN nodes A and B to a CAN bus and allows them
to participate in message transfer. Initialisation is required after the controller is reset by the MCF5272
processor and after the occurrence of a‘bus off’ event, both of which will logically disconnect a node from
its associated bus.

The code used to configure the CAN nodes is given below. During initialisation the CAN node must be
disconnected from the bus; any interrupts must be reset and the baud rate must be defined. This involves
updating the node control registers (ACR/BCR) and bit timing registers (ABTR, BBTR) for both CAN
nodes and configuring the interrupt mask register for CAN node B to generate an interrupt when a message
isreceived.

The node control registers control the initialisation process, control node-specific interrupts, and define the
operating mode. The bit field descriptions of the lower 16 bits of the register are given in Figure 7 below.

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
82C900 Initialisation

15 8 7 6 5 4 3 2 1 0
0 | cA [cceE| o [LECE | BE | SE | 0 | INIT |
Figure 7. Node A/B Control Registers (ACR/BCR)—Lower 16-bits

Table 1. Node A/B Control Registers (ACR/BCR)—Lower 16-bits Field Descriptions

Bits | Name Description
15-8 — |Reserved

7 CA |Node used for CAN communication over the bus or as a CAN analyser to monitor bus

activity

6 CCE |Bit timing register and error counter access enable

5 — |Reserved

4 LECIE |Last error code interrupt enable.

3 EIE |Error interrupt enable.

2 SIE |Status change interrupt enable.

1 — |Reserved

0 INIT |Connect or disconnect CAN node from bus.

The bit timing register controls the data transfer rate on the CAN bus. The bit field descriptions are given
below and are followed by an explanation on how the values in these fields define the baud rate.

15 14 12 11 8 7 6 5 0
| DIV8 | TSEG2 TSEG1 ’ SIW ’ BRP

Figure 8. Node A/B Bit Timing Registers (ABTR, BBTR)

Table 2. Node A/B Control Registers (ACR/BCR)—Lower 16-bits Field Descriptions

Bits Name Description

15 DIV8 |Baud rate prescaler clock source (CAN clock or CAN clock/8)

14-12 | TSEG2|Time segment after sample point.

11-8 |TSEG1 |Time segment before sample point.

7-6 SJW |Resynchronisation jump width

5-0 BRP |Baud rate prescaler.

CAN bit timeis divided into different segments (according to 1SO-DIS 11898 standard) and each segment
is a multiple of a time quantum. The segments are shown below. The synchronisation segment (Tsync)
allows phase synchronisation between receiver and transmitter; the propagation time segment (Tprop)
alows for physical propagation delay in the transceiver circuit; the buffer segments (Tbuff1 and Tbuff2)
provide a delay before and after the data sample point to compensate for the phase difference between the
receiver and transmitter detected during synchronisation.

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
CAN Transmit and Receive

CAN bit time
< >

Tsync Tprop Tbuffl Tbuff2

! !

Sample Transmit

Figure 9. CAN Bit Time Segments

The CAN bit time, therefore, equates to (T, + Tprop + Thutt1 + Thuif 2) X tquanum ~ Where tyyanm iS the
period of the bit time quantum.

The TSEGL, SIW, and TSEG2 fieldsin the bit timing register are used to define the different segments and
BRP and DIV 8 set the time quantum period as follows:

Tone=SIW +1

Tprop + Tbuff =TSEG1+1

Tbuff2 =TSEG2+1

_BRP+1

quantum

t
fCAN

For the register settingsin the example code below, TSEG1 =6, TSEG2 = 7, SIW =0, BRP = 2. Thisresults
in a CAN bit time of 2us or a baud rate of 0.5Mbit/s. No baud rate prescaler is used; therefore, DIV8 is
ignored in these calculations.

Initialisation code for both nodesis almost identical, the only difference being the initiaisation of the CAN
node B interrupt mask register to generate an interrupt when a message is received. Message object 0 is
assigned to CAN node A and message object 1 isassigned to CAN node B. The initialisation codeis shown
for CAN node B.

/ * Node control register : reset interrupts, stop CAN to initialise*/
QSPI _SendByt e(CAN_BCR, 0x41);

/*Bit timng register : set for 500 kbit/s : ((0+1)+(6+1)+(7+1))* 0.125us)*/
QSPI _SendByt e(CAN_BBTR, 0x02);

QSPI _SendByt e(CAN_BBTR+1, 0x67);

/*Enabl e nsg obj 1 to be considered as interrupt source*/

QSPI _SendByt e(CAN_BI MRO, 0x02);

/*synchroni se CAN node to bus and enabl e*/

@QSPI _SendByt e(CAN_BCR, 0x00);

3.4 CAN Transmit and Receive

Inthe CAN application example code, CAN node A isused to transmit data on the CAN busand CAN node
B isused to receive data. When dataisreceived, an interrupt is generated, the datais retrieved, and new data
is transmitted.

To receive and transmit data, each node must be assigned a message object. This message object must be
configured using the message object control, configuration, arbitration, and data registers. The message
object control register is used to enable interrupts on transmitting or receiving a message, to tag a message

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
CAN Transmit and Receive

valid or invalid, and to signal the update of a message. The configuration register determines which CAN
node the message object is assigned to, defines the message identifier length and number of data bytesto be
transmitted or received, sets the object for transmit or receive, and selects the interrupt node to use if the
message object is configured to generate an interrupt on transmitting or receivng a message. The data
register is used to store data for transmission or to store any data received. There can be up to 8 data bytes
per CAN message; therefore, each CAN message object hastwo 32-bit dataregisters. Finally, the arbitration
register holds the message identifier. For bit-level specific information, refer to the 82C900 user manual,
www.infineon.com/cgi/ecrm.dll/ecrm/scripts/public_download.jsp?0id=16123& parent_0id=16899.

In the example code the message objects areinitialised in function main(), following the initialisation of the
QSPI module and the intiaisation of the 82C900 CAN controller as detailed above. The function main() is
listed below. Message object 0 is assigned to CAN node A and configured to transmit 8 bytes of data, and
message object 1 isassigned to CAN node B and configured to receive 8 bytes of data. Both message objects
are assigned the same I D so that, when both nodes are connected externally viathe transceivers, CAN node
B will receive any datatransmitted by CAN node A. In the interrupt service routine, also listed below, the
data received isretrieved and output over the terminal UART on the M5272C3 board. The interrupt is then
reset and new datais transmitted.

void main ()

{
ncf5272_w _sr (MCF5200_SR I PL_0);

/[*Initialise the QSPI nodul e*/
nmcf 5272_qgspi _init();

/*CAN node A and B initialisation*/
CAN_Node_Init();

/*Assign Msg0 to CAN node A, to transnmit 8 bytes of data, wth standard |ID of 2*/
CAN_MsgObj _Init (A Mg0, Tx, 8, Stand, 2);

/*Assign Msgl to CAN node B, to receive 8 bytes of data, with standard |ID of 2*/
CAN_MsgObj _Init(B, Msgl, Rx, 8, Stand, 2);

/*Load MsgO transmit data*/

CAN_MsgCbj TxData(Msg0, 8, OXxAAS55AA55, 0x55AA55AA) ;

/*Enabl e Msgl receive interrupt, assign to interrupt node 1 and /QUT1*/
CAN_MsgObj _I nt Enabl e(Msgl, Rx, 1);

/*Enabl e Msgl to receive*/

CAN_MsgObj Rx_Enabl e(Msgl) ;

/*Enabl e Msg0 to begin transmtting*/

CAN_MsgObj Tx_St art (MsgO) ;

while (1)

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
CAN Transmit and Receive

__interrupt__
voi d ext_irqgl_handl er (void)
{
MCF5272_1I MM *i mm = ntf 5272_get _i mp();
printf("ext_irql_handl er\n");
/*Read received data and out put over M272C3 terminal uart*/
CAN_MsgOhj _RxDat a(Msgl, 8);
/*Set Intl IPL =6, for /Qutl*/
MCF5272_WR_SI M | CR1(i mm OxE8888888) ;
/*Msg obj interrupt pending flag reset*/
CAN_MsgObj _I nt Reset (Msgl);
/*Reset transm ssion nessage object, inhibit transm ssion*/
CAN_MsgQOhj Tx_Reset (MsgO0) ;
/*Al ternate nessage object 0 Tx data*/
if (toggle)
{
CAN_MsgOhj _TxDat a(Msg0, 8, Ox55AA55AA, 0x11001100);
toggle = O;
}
el se
{
CAN_MsgQbj _TxDat a(Msg0, 8, 0x11001100, Ox55AA55AA);
toggle = 1;
}
/*Set message object to start transm ssion*/
CAN_MsgQbj Tx_St art (MsgO) ;
}

The functions called by main and by the interrupt service routine have been made as generic as possible
allowing any message object to be assigned to any node, allowing any message object to be configured as
atransmit object or areceive abject, allowing any number of bytes for transmission or reception, allowing
the ID of any message to be changed easily, and ensuring interrupts can be enabled or disabled easily.

CAN_MsgQbj _I ni t assigns amessage object to a node, defines the number of bytesfor transfer, and sets the
message | D. During initialisation and update, the message object must be set to invalid to prevent the CAN
controller from using it. All request flags must be reset, the new data flag must be reset to show no update
of data has occurred yet, and in the case of a transmit message object, automatic transmission must be
disabled. Once the flags are reset, the message object is inoperable and automatic transmission is disabled.
When the message object is configured to receive then the datalost flag must be reset.

void CAN _MsgQbj _Init(uint8 Node, uint8 Msg, uint8 TxRx, uint8 NoBytes, uint8 ID, uint32
I Dnun)

{
/*Msg obj tagged invalid to allow update*/
QSPI _SendByt e(CAN_MSG CTRL + (Msg*0x20), Ox7F);

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
CAN Transmit and Receive

/*Msg obj interrupt pending flag reset*/
QSPI _SendByt e(CAN_MSG CTRL + (Msg*0x20), OxFD);
/*Msg obj renote request flag reset*/
QSPI _SendByt e(CAN_MSG_CTRL+ (Msg*0x20), OX7F) ;
/*Msg obj transm ssion request flag reset*/
@SPI _SendByt e(CAN_MSG CTRL+1 + (Msg*0x20), OxDF);
/*Inhibit transm ssion for Tx or reset data lost flag for Rx */
if (TXRx == Tx)
QSPI _SendByt e(CAN_MSG CTRL+1 + (Msg*0x20), OxFD);
else if (TxRx == Rx)
QSPI _SendByt e(CAN_MSG CTRL+1 + (Msg*0x20), OxF7);
/ *Reset nsg obj new data flag */
SPI _SendByt e(CAN_MSG _CTRL+1 + (Msg*0x20), OxFB);
/*Assign Msg obj Node, ID, no bytes*/
@SPI _SendByt e(CAN_MSG _CONFI G + (Msg*0x20), (uint8)(NoBytes<<4| Node| I D| TxRx));
/*Set Msg obj I|D*/
if (ID == Stand)
| Dnum = | Dnum << 18;
QSPI _SendByt e(CAN_MSG ARB + (Msg*0x20), (uint8)(IDnum);
QSPI _SendByt e(CAN_MSG_ARB+1 + (Msg*0x20), (uint8)(IDnunm>>8));
QSPI _SendByt e(CAN_MSG_ARB+2 + (Msg*0x20), (uint8)(IDnune>16));
@SPI _SendByt e(CAN_MSG_ARB+3 + (Msg*0x20), (uint8)(IDnunk>24));
}

CAN_MsgQbj _TxDat a |oads the message data register with data to be transmitted. Each message object has
two 32-bit data registers which may be loaded with up to 8 bytes of data for transmission or may store up
to 8 bytes of data when configured as a receive object.

voi d CAN_MsgObj _TxData(uint8 Msg, uint8 NoBytes, uint32 datal, uint32 data2)

{
ui nt16 n;

/*Split data into bytes and load into the 2x32 bit data register*/
for (n=0; n < NoBytes; n++)
{
if ((NoBytes>4)&&(n>=4))
Q@SPI _SendByt e(CAN_MSG DAT + n + (Msg*0x20), (uint8)(data2>>(n-4)*8));
el se
QSPI _SendByt e(CAN_MSG DAT + n + (Msg*0x20), (uint8)(datal>>n*8));

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
CAN Transmit and Receive

CAN_MsgQbj _I nt Enabl e enables a message object to generate an interrupt on successful transmission or
reception of data. It selects the interrupt node pointer to be used which can then be routed to the external
interrupt request signals, OUT1 or OUTO, using the 82C900 global control register.

voi d CAN_MsgObj _I nt Enabl e(ui nt8 Msg, uint8 TxRx, uint8 IntNode)
{
if (TXRx == Rx)
{
/*Set neg obj receive interrupt node pointer*/
QSPI _SendByt e(CAN_MSG_CONFI G+2 + (Msg*0x20), | nt Node);

/*Msg obj Rx interrupt enabl e*/

QSPI _SendByt e(CAN_MSG CTRL + (Msg*0x20), OxXFB);

}

el se

{

/*Set msg obj transmit interrupt node pointer*/

QSPI _SendByt e(CAN_MSG_CONFI G+2 + (Msg*0x20), (uint8)(IntNode<<4));
/*Msg obj Tx interrupt enable*/

QSPI _SendByt e(CAN_MSG CTRL + (Msg*0x20), OXEF);

}

}

CAN_MsgObj Rx_Enabl e enables a receive message object to receive data on the CAN bus.
voi d CAN_MsgQhj Rx_Enabl e(ui nt 8 Msg)

{

/*Msg obj valid */

QSPI _SendByt e(CAN_MSG CTRL + (Msg*0x20), OxBF);

}

CAN_MsgQbj Tx_Start sets up a message object to begin transmission. In addition to validating the
message object (as for receive above), the new data flag must be set, the CPU update flag must signa
completion, and the transmit request flag must be set.

voi d CAN_MsgObj Tx_Start (uint8 Mg)

{

/*Msg obj CPU update conplete, can Tx nsg automatically*/
QSPI _SendByt e(CAN_MSG CTRL+1 + (Msg*0x20), OxF7);
/*Msg obj has new dat a*/

SPI _SendByt e(CAN_MSG CTRL+1 + (Msg*0x20), OxFE);
/*Msg obj valid*/

QSPI _SendByt e(CAN_MSG CTRL + (Msg*0x20), OxBF);
/*Msg obj Tx request flag set*/

QSPI _SendByt e(CAN_MSG CTRL+1 + (Msg*0x20), OXEF);
}

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Revision History

CAN_Msg(Obj Tx_Reset resetsamessage object after transmission and must be called anytime transmit
dataisto be updated.

voi d CAN_MsgObj Tx_Reset (ui nt 8 MsQ)

{

/*Msg obj tagged invalid to allow update*/

QSPI _SendByt e(CAN_MSG_CTRL + (Msg*0x20), Ox7F);
/*Msg obj no new data*/

QSPI _SendByt e(CAN_MSG CTRL+1 + (Msg*0x20), OxFD);
/*Msg obj 0 CPU Update, Tx inhibited*/

SPI _SendByt e(CAN_MSG _CTRL+1 + (Msg*0x20), OxFB);
}

CAN_MsgQbj _I nt Reset resets amessage object interrupt.

voi d CAN_MsgObj _I nt Reset (uint8 MsQ)
{
/*Reset a interrupt pending flag*/
QSPI _SendByt e(CAN_MSG CTRL + (Msg*0x20), OxFD);
}

4.0 Summary

This application note has detailed the hardware design and software development of the MCF5272 CAN
reference design, a ColdFire CAN solution that provides amigration path to the first ColdFire product with
on-chip CAN and the first 32-bit microprocessor with both on-chip CAN and on-chip Ethernet. Design
schematics, application example software, and additiona reference material can be downloaded from the
M5272C3 CAN webpage.

4.1 Revision History

Table 3 describes the revision history of this document.
Table 3. Revision History

Revision Level Description
0 Original.
0.1 Updated Freescale URLs and minor
changes in language.

Interfacing the MCF5272 to a Standalone CAN Controller

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

z “ freescale”

semiconductor

AN2320/D

For More Information On This Product,

Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Figure�1. MCF5272 CAN Reference Design Overview
	1.1 MCF5272 Microprocessor
	1.2 CAN Controller
	1.3 CAN Transceiver
	Figure�2. CAN Daughter-Card Circuitry

	2.1 SPI Interface
	2.1.1 MCF5272 QSPI Module
	Figure�3. QSPI Clocking and Data Transfer Parameters

	2.1.2 82C900 Synchronous Serial Channel
	2.1.3 Timing
	Figure�4. 82C900 SSC Timing Specification

	2.2 Clocking
	2.2.1 CAN Controller Clock Input
	2.2.2 SPI Baud Rate

	2.3 Reset
	2.4 Power
	2.5 Interrupts
	2.6 82C900 Extended I/O
	3.1 Transmitting and Receiving over the MCF5272 QSPI Interface
	Figure�5. MCF5272 QSPI: Reading and Writing to the 82C900

	3.2 Accessing the 82C900 Register
	Figure�6. 82C900 Register Map

	3.3 82C900 Initialisation
	Figure�7. Node A/B Control Registers (ACR/BCR)—Lower 16-bits
	Table�1. Node A/B Control Registers (ACR/BCR)—Lower 16-bits Field Descriptions
	Figure�8. Node A/B Bit Timing Registers (ABTR, BBTR)
	Table�2. Node A/B Control Registers (ACR/BCR)—Lower 16-bits Field Descriptions
	Figure�9. CAN Bit Time Segments

	3.4 CAN Transmit and Receive
	4.1 Revision History
	Table�3. Revision History

	Interfacing the MCF5272 to a Standalone CAN Controller

