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Abstract

This document provides an introduction to the Answer Set Programming (ASP)
tools gringo, clasp, clingo, and iclingo, developed at the University of
Potsdam. The first tool, gringo, is a grounder capable of translating logic pro-
grams provided by users into equivalent propositional logic programs. The answer
sets of such programs can be computed by clasp, which is a solver. The third
tool, clingo, integrates the functionalities of gringo and clasp, thus, acting
as a monolithic solver for user programs. Finally, iclingo extends clingo
by an incremental mode that incorporates both grounding and solving. For one,
this document aims at enabling ASP novices to make use of the aforementioned
tools. For another, it provides a reference of their features that ASP adepts might
be tempted to exploit.

∗Tools gringo, clasp, clingo, and iclingo are available at [61].
∗∗{gebser,kaminski,kaufmann,ostrowsk,torsten,sthiele}@cs.uni-potsdam.de
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1 Introduction
The “Potsdam Answer Set Solving Collection” (Potassco) [61] by now gathers a variety
of tools for Answer Set Programming. Among them, we find grounder gringo, solver
clasp, and combinations thereof within integrated systems clingo and iclingo.
All these tools are written in C++ and published under GNU General Public Li-
cense(s) [39]. Source packages as well as precompiled binaries for Linux and Windows
are available at [61]. Note that there currently are two source packages: one containing
clasp, and another one grouping gringo, clingo, and iclingo. For building
one of the tools from sources, please download the most recent source package and
consult the included README or INSTALL text file, respectively. Please make sure
that the platform to build on has the required software installed. If you nonetheless en-
counter problems in the building process, please do not hesitate to contact the authors
of this guide.

After downloading (and possibly building) a tool, one can check whether every-
thing works fine by invoking the tool with flag --version (to get version informa-
tion) or with flag --help (to see the available command line options). For instance,
assuming that a binary called gringo is in the path (similarly, with the other tools),
the following command line calls should be responded by gringo:

gringo --version
gringo --help

If grounder gringo, solver clasp, as well as integrated systems clingo and
iclingo are all available, one usually provides the filenames of input text files to ei-
ther gringo, clingo, or iclingo, while the output of gringo is typically piped
into clasp. Thus, the standard invocation schemes are as follows:

gringo [ options | filenames ] | clasp [ options | number ]
clingo [ options | filenames | number ]
iclingo [ options | filenames | number ]

Note that a numerical argument provided to either clasp, clingo, or iclingo
determines the maximum number of answer sets to be computed, where 0 stands for
“compute all answer sets.” By default, only one answer set is computed (if it exists).

This guide introduces the fundamentals of using gringo, clasp, clingo, and
iclingo. In particular, it tries to enable the reader to benefit from them by signifi-
cantly reducing the “time to solution” on difficult problems. The outline is as follows.
In Section 2, we describe the basics of Answer Set Programming, and we formally
introduce the syntax and semantics of logic programs. Section 3 details restrictedness
notions, important when dealing with logic programs containing first-order variables.
The probably most important part for a user, Section 4, is dedicated to the input lan-
guages of our tools, where the joint input language of gringo and clingo claims
the main share (later on, it is extended by iclingo). For illustrating the application
of our tools, three well-known example problems are solved in Section 5. Practical as-
pects are also in the focus of Section 6 and 7, where we elaborate and give some hints
on the available command line options as well as input-related errors and warnings that
may be reported. Finally, we conclude with some remarks on future work in Section 8.

For readers familiar with lparse [68] (a grounder that constitutes the traditional
front end of solver smodels [66]), Appendix A lists the most prominent differences
to our tools. Otherwise, gringo, clingo, and iclingo should accept most inputs
recognized by lparse, while the input of solver clasp can also be generated by
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Figure 1: Declarative Problem Solving in ASP.

lparse instead of gringo. Throughout this guide, we will provide quite a number
of examples. Many of them can actually be run, and instructions how to accomplish
this (or sometimes meta-remarks) are provided in margin boxes, where an occurrence
of “\” usually means that a text line broken for space reasons is actually continuous.
After all these preliminaries, it is time to start our guided tour through Potassco [61].
We sincerely hope that you will find it enjoyable and helpful!

2 Background
In Section 2.1, we give a brief introduction to Answer Set Programming, which con-
stitutes the basic framework for the tools we describe here. This framework deals with
logic programs, whose syntax and semantics are formally introduced in Section 2.2
and 2.3, respectively. We invite the reader to merely skim or even skip these two sec-
tions upon the first reading, and to rather look them up later on if formal details are
requested. However, we want to stress that the syntax we use for logic programs ad-
mits (uninterpreted) function symbols with non-zero arity, whose full support by our
tools is rather exceptional and thus innovative.

2.1 Answer Set Programming
Answer Set Programming (ASP) [2, 5, 34, 45, 50, 56] emerged in the late 1990s as a
declarative paradigm for modeling and solving search problems. As illustrated in Fig-
ure 1, the basic approach of ASP is to represent a problem as a logic program Π such
that particular Herbrand models of Π, called answer sets, correspond to problem solu-
tions. In contrast to traditional logic programming languages, e.g., Prolog [58], ASP
programs are sets (not lists) of rules, and computations are oriented towards models
(not proofs). Let us illustrate this on an example.

Example 2.1. Consider a logic program comprising the following facts:

1 bird(tux). penguin(tux).
2 bird(tweety). chicken(tweety).

These facts express that constants tux and tweety stand for birds. Furthermore,
tux is a penguin, and tweety is a chicken. Note that the unique names assumption
applies, that is, tux 6= tweety holds. Besides the two constants, the language of the
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Figure 2: Basic Architecture of ASP Systems.

above facts contains predicates bird/1, penguin/1, and chicken/1 (each having
arity 1). We next augment the above facts with the following rules: Instead of neg flies(X),

one could write -flies(X)
to make explicit that instances
(obtained for X) amount to the
classical (or strong) negation of
flies(X).

3 flies(X) :- bird(X), not neg_flies(X).
4 neg_flies(X) :- bird(X), not flies(X).
5 neg_flies(X) :- penguin(X).

Informally, such rules correspond to implications where the left hand side of connective
“:-” (called head) is derived if all premises on the right hand side (their conjunction
called body) hold. Connective “not” stands for default negation, and uppercase let-
ter X is the name of a first-order variable. Variables are local to rules, that is, a variable
name refers to different variables in distinct rules. Finally, every variable is universally
quantified and thus applies to all terms in the language of a logic program.

The rule in Line 3 formalizes that any instance of X that is a bird flies, as long
as neg flies does not hold. The converse relationship between neg flies and
flies is expressed in Line 4. At this point, observe that, though syntactically correct,
the above program “makes no sense” in Prolog because a query

?- flies(tweety).

can be answered neither positively nor negatively. In ASP, however, the rules in Line 3
and 4 admit multiple belief states, depending on whether flies or neg flies is
assumed for a bird. In addition, the rule in Line 5 requires neg flies to hold for
every penguin. Combining this knowledge with the facts in Line 1 and 2 makes us
derive neg flies(tux), and it provides us with two alternatives for tweety: ei-
ther flies(tweety) or neg flies(tweety) holds. These alternatives cannot
jointly hold because, under such an assumption, neither of them is derived, thus, vio-
lating the justification principle of ASP (cf. Section 2.3). Without already going into
formal details, we conclude that the above program has two answer sets: one according
to which tweety flies and one where tweety does not fly. �

The computation of answer sets usually consists of two phases. First, a grounder
substitutes the variables in a logic program Π by variable-free terms, resulting in a
propositional program Π. Second, the answer sets of Π are computed by a solver. This
prototypical architecture is visualized in Figure 2. Of course, a ground program Π must
be finite and equivalent to input program Π. To this end, grounders like lparse [68],
the one embedded into dlv [43], and gringo1 [33] impose certain restrictions on Π
(cf. Section 3.1). An obtained ground program Π can be piped into a solver, such
as assat [47], clasp1 [29], cmodels [37], nomore++ [1], smodels [66], or
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smodelscc [71], in order to compute answer sets of Π, matching the ones of Π. All
of the aforementioned solvers deal with lparse’s output format, a numerical repre-
sentation of Π, while dlv couples its grounding and its solving component directly via
an internal interface, an approach also realized by clingo1. Finally, iclingo1 [28]
integrates and interleaves grounding and solving within incremental computations.

The next example illustrates the computation of answer sets for the logic program
given in Example 2.1.

Example 2.2. Reconsidering the facts in Line 1 and 2 of Example 2.1, we identify two
constants: tux and tweety. They can be substituted for variables X in the rules in
Line 3–5. In fact, Line 1–5 of Example 2.1 are a shorthand for the ground instantiation:

1 bird(tux). penguin(tux).
2 bird(tweety). chicken(tweety).

3 flies(tux) :- bird(tux), not neg_flies(tux).
4 flies(tweety) :- bird(tweety), not neg_flies(tweety).
5 neg_flies(tux) :- bird(tux), not flies(tux).
6 neg_flies(tweety) :- bird(tweety), not flies(tweety).
7 neg_flies(tux) :- penguin(tux).
8 neg_flies(tweety) :- penguin(tweety).

Note that the facts in Line 1 and 2 are unaltered from Example 2.1, while the ground
rules in Line 3–8 are obtained by instantiating variables X. We have that the answer sets
of the above ground program match those of the original input program in Example 2.1.

In practice, grounders try to avoid producing the full ground instantiation of an in-
put program by applying answer-set preserving simplifications. In particular, facts can
(recursively) be eliminated. Thus, gringo computes the following ground program: The ground program in text for-

mat is obtained via call:
gringo -t \
examples/bird.lp \
examples/fly.lp

1 bird(tux). penguin(tux).
2 bird(tweety). chicken(tweety).

flies(tweety) :- not neg_flies(tweety).
neg_flies(tweety) :- not flies(tweety).
neg_flies(tux).

Observe that neg flies(tux) has become a fact because penguin(tux) is
known. Similarly, bird(tux) and bird(tweety) have been removed from bod-
ies of rules, making use of the fact that “true & something” is equivalent to “some-
thing.” Applying the complementary principle that “false & something” evaluates to
“false,” the rule with not neg flies(tux) in the body (Line 3) has been dropped
completely. After performing these simplifications, the ground program computed by
gringo is still equivalent to the input program in Example 2.1, viz., there is one an-
swer set such that tweety flies and one where tweety does not fly. In fact, running
clasp yields: The two answer sets are com-

puted by piping the output of
gringo into clasp:
gringo \
examples/bird.lp \
examples/fly.lp | \
clasp -n 0

Note that gringo is called
without option -t, while op-
tion -n 0 makes clasp com-
pute all answer sets (rather than
just one, as done by default).
Alternatively, one may use
clingo to compute the an-
swer sets. To this end, invoke:
clingo -n 0 \
examples/bird.lp \
examples/fly.lp

Answer: 1
bird(tux) penguin(tux) bird(tweety) chicken(tweety) \
neg_flies(tux) flies(tweety)
Answer: 2
bird(tux) penguin(tux) bird(tweety) chicken(tweety) \
neg_flies(tux) neg_flies(tweety)

1Described in this guide.
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Note that the order of the answer sets is incidental and not obliged to the order of rules
and bodies in the input, as the semantics of ASP programs is purely declarative. �

We have seen how an ASP system computes answer sets of a search problem rep-
resented by a set of facts (Line 1 and 2 in Example 2.1) and a set of schematic rules
with first-order variables (Line 3–5 in Example 2.1). This separation of a problem into
a knowledge part, called encoding, and a data part, called instance, is not a coincidence
but a common methodology in ASP [50, 56, 65], sometimes called uniform definition.
In fact, the possibility to describe problems in a uniform way is a major advantage of
ASP, as it promotes simplicity and flexibility in knowledge representation. Together
with the availability of efficient reasoning engines, this makes ASP an attractive and
powerful paradigm for declarative problem solving. By explaining and illustrating the
functionalities of grounder gringo, solver clasp, and their bondings in clingo
and iclingo, this guide aims at enabling the reader to make (better) use of ASP.

2.2 Syntax of Logic Programs
This section gives a brief account of the formal syntax of logic programs, needed for
defining their semantics. Consult, e.g., [48] for a detailed introduction. The language
of a logic program is composed from sets

• P = {p1/i1, . . . , pm/im} of predicates (with arities i1, . . . , im),

• F = {f1/j1, . . . , fn/jn} of functions (with arities j1, . . . , jn), and

• V = {V1, V2, V3, . . . } of variables

along with connectives (“:-,” “,,” “not,” etc.) and punctuation symbols (“(,” “),”
“.,” etc.). A function f/j is called a constant if j = 0, that is, if f has no arguments.
The set T of terms is the smallest set containing V and all expressions f(t1, . . . , tk)
such that f/k is a function from F and t1, . . . , tk are terms in T . Note that every
variable and every constant is an elementary term, while functions with non-zero arity
induce compound terms. By ground(T ), we denote the set of all variable-free terms
in T . Note that ground(T ) is infinite as soon as F contains at least one constant and
one function with non-zero arity. The setA of atoms consists of> (“true”),⊥ (“false”),
and all expressions p(t1, . . . , tk) such that p/k is a predicate from P and t1, . . . , tk are
terms in T . As with terms, ground(A) denotes the set of all variable-free atoms in A.

A rule r is an expression of the form Head :- Body., where Head and Body are
composed from atoms in A (other than ⊥ and >), punctuation symbols, and connec-
tives other than “:-.” The intuitive reading of a rule is that Head follows from Body ,
and either Body or Head may be omitted, in which case the rule is called a fact or an in-
tegrity constraint, respectively. A fact is written in the form Head. and understood as
Head :->., and an integrity constraint :- Body. is a shorthand for⊥ :- Body. By
var(r), we denote the set of all variables in rule r, and r is called ground if var(r) = ∅.
A ground substitution is a mapping σ : var(r) → ground(T ), and rσ is the ground
rule obtained by replacing every occurrence of a variable V ∈ var(r) with σ(V ).
By ground(r), we denote the set of ground rules rσ obtained from r by applying all
possible ground substitutions σ. A logic program Π is a set of rules, and the ground in-
stantiation of Π is ground(Π) =

⋃
r∈Π ground(r). By convention, we assume that P

and F are the sets of all predicates and functions, respectively, that occur in Π. Note
that ground(Π) is infinite if there is at least one rule r ∈ Π such that var(r) 6= ∅ and
if F contains at least one constant and one function with non-zero arity.
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For a well-known class of logic programs, called normal, rules are of the form:

A0 :- A1, . . .,Am,not Am+1, . . .,not An. (1)

For 0 ≤ k ≤ n, every Ak is an atom, that is, the head is an atom and the body is a
(possibly empty) conjunction of atoms that may be preceded by “not.” As mentioned
in Section 2.1, the order of elements in the body is not essential, so that they can be
regrouped to match the form in (1). For a rule r as in (1), we define head(r) = A0,
body+(r) = {A1, . . . , Am}, and body−(r) = {Am+1, . . . , An}. If r = A0. is a fact,
then body+(r) = body−(r) = ∅. The particular structure of normal programs admits
a rather intuitive characterization of their semantics in the next section.

Example 2.3. The language of the normal program in Example 2.1 includes pred-
icates P = {bird/1,penguin/1,chicken/1,flies/1,neg flies/1} and
functions F = {tux/0,tweety/0}. As the arity of the latter is 0, terms tux and
tweety are constants. By substituting them for variables, we obtain the ground in-
stantiation given in Example 2.2. For instance, the ground rules

3 flies(tux) :- bird(tux), not neg_flies(tux).
4 flies(tweety) :- bird(tweety), not neg_flies(tweety).

are obtained from:

flies(X) :- bird(X), not neg_flies(X).

Observe that the three occurrences of variable name X stand for a single variable, so
that substitutions {X 7→ tux} and {X 7→ tweety} induce the above ground rules.
Notably, sets P and F of predicates and functions need not be disjoint because atoms
and terms are also distinguished by the context they occur in, and a predicate or func-
tion symbol may be used with different arities. For instance, we could add a rule

flies :- flies(X).

over predicates flies/0 and flies/1. In fact, such rules are not unusual to express
that there is some object with certain properties, while it does not matter which object
it is. Finally, note that an infinite ground instantiation would result from adding rule

bird(parent(X)) :- bird(X).

in view of function parent/1 with non-zero arity. �

2.3 Semantics of Logic Programs
The semantics of logic programs is given by answer sets [36], also called stable mod-
els [35]. In view of the rich input language of gringo (cf. Section 4.1), we below
recall a definition of answer sets for propositional theories [24] and explain the seman-
tics of logic programs by translation into propositional logic. We will also provide an
alternative direct definition of answer sets for the class of normal programs.

We consider propositional formulas composed from atoms, ⊥, and connectives ∧,
∨, and→. Furthermore,> and ¬F are used as shorthands for (⊥ → ⊥) and (F → ⊥),
respectively. The reduct FX of a propositional formula F relative to a set X of atoms
is defined recursively as follows:

• FX = ⊥ if X 6|= F ,
• FX = F if F ∈ X , and
• FX = (GX ◦HX) if X |= F and F = (G ◦H) for ◦ ∈ {∧,∨,→}.2

2|= is the standard satisfaction relation of propositional logic between interpretationsX and formulas F .
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Essentially, the reduct relative to X is obtained by replacing all maximal unsatisfied
subformulas of F with ⊥. As a matter fact, this implies that any maximal negative
subformula of the form (G→ ⊥) is replaced by either⊥ (ifX |= G) or (⊥ → ⊥) = >
(if X 6|= G). Furthermore, any atom occurring in FX belongs to X .

A propositional theory Φ is a set of propositional formulas, and the reduct of Φ
relative to a set X of atoms is ΦX = {FX | F ∈ Φ}. Furthermore, X is a model of Φ
ifX |= F for every F ∈ Φ. Finally,X is an answer set of Φ ifX is a⊆-minimal model
of ΦX , that is, if X is a model of Φ such that no Y ⊂ X is a model of ΦX . The latter
condition uses the fact that X is a model of ΦX iff X is a model of Φ.3 Also note that,
if X is an answer set of Φ, it is the unique ⊆-minimal model of ΦX because all atoms
occurring in ΦX belong to X (which excludes incomparable⊆-minimal models). This
must not be confused with uniqueness of an answer set of Φ. In fact, Φ may have zero,
one, or multiple answer sets X (being ⊆-minimal models of distinct reducts ΦX ). In
a sense, the ⊆-minimality of an answer set X as a model of ΦX stipulates the atoms
in X to be justified by Φ (or necessarily true) under the assumption of X .

For a logic program Π, answer sets of Π can now be explained by translation to a
propositional theory Φ[Π]. To this end, let

• Φ[Π] =
⋃

r∈ground(Π) φ[r],

• φ[Head :- Body.] = (φ[Body ]→ ψ[Head ]),

• φ[A] = ψ[A] = A if A ∈ A,

• φ[>] = >,4

• φ[not F ] = ¬φ[F ], and

• φ[G,H] = (φ[G] ∧ φ[H]).

The translation φ of a rule primarily consists of straightforward syntactic conversions
by replacing “:-,” “,,” and “not” with →, ∧, and ¬, respectively. However, it also
contains a separate translation ψ for heads of rules, which coincides with φ on atoms
by simply keeping them unchanged. In Section 4.1.10, we will customize ψ in order
to reflect the “choice semantics” for aggregates in heads of rules [25, 66]. By virtue of
the above translation, we can simply define the answer sets of a logic program Π to be
the answer sets of Φ[Π]. We have thus specified answer sets for normal programs.

In order to provide more intuitions, we now reproduce a direct definition of answer
sets for normal programs. This definition builds on the fact that the reduct for a normal
program is a set of Horn clauses, for which the ⊆-minimal model (if it exists) can
be constructed systematically in a bottom-up manner [14]. To this end, for a normal
program Π and a set X ⊆ ground(A), we define:

• T 0
Π,X = ∅ and

• T i+1
Π,X = {head(r) | r ∈ ground(Π), body+(r) ⊆ T i

Π,X , body
−(r) ∩X = ∅}.

It is not hard to check that operator TΠ,X is monotonic, as it adds head atoms of ground
rules to its previous result if the positive body atoms have been derived, while negative
bodies are merely evaluated w.r.t. X . Using this operator, we can equivalently define
X ⊆ ground(A) as an answer set of a normal program Π if X =

⋃
0≤i T

i
Π,X . This

equilibrium requirement exhibits two fundamental aspects of answer set semantics:
3If X is not a model of Φ, then there is some F ∈ Φ such that X 6|= F , which in turn implies⊥ ∈ ΦX .
4Recall that a fact Head. is a shorthand for Head :- >.
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1. Negative conditions are first evaluated w.r.t. an answer set candidate.

2. The candidate must be justified by the result of the preceding evaluation.

Provided that X is a model of Π (that is, of Φ[Π]), the second item can be understood
in the sense that all atoms of X must have a proof from normal program Π w.r.t. X .

Example 2.4. The normal program in Example 2.1 (or its ground instantiation given
in Example 2.2) translates into the following propositional theory:

1 bird(tux) penguin(tux)
2 bird(tweety) chicken(tweety)

3 bird(tux) ∧¬neg_flies(tux) → flies(tux)
4 bird(tweety)∧¬neg_flies(tweety)→ flies(tweety)
5 bird(tux) ∧¬flies(tux) → neg_flies(tux)
6 bird(tweety)∧¬flies(tweety) → neg_flies(tweety)
7 penguin(tux) → neg_flies(tux)
8 penguin(tweety)→ neg_flies(tweety)

LetX = {bird(tux),penguin(tux),bird(tweety),chicken(tweety),
neg flies(tux),flies(tweety)}. Relative to X , we obtain the reduct:

1 bird(tux) penguin(tux)
2 bird(tweety) chicken(tweety)

3 ⊥ → ⊥
4 bird(tweety)∧> → flies(tweety)
5 bird(tux) ∧> → neg_flies(tux)
6 ⊥ → ⊥
7 penguin(tux)→ neg_flies(tux)
8 ⊥ → ⊥

We have that X is a model of the reduct (and the original program) because the reduct
does not contain formula ⊥ as an element. In addition, observe that no proper subset
of X is a model of the reduct. From this, we conclude that X is an answer set.

The latter can also be verified by determining
⋃

0≤i T
i
Π,X (for Π as in Example 2.1):

i T i
Π,X

0 —
1 bird(tux),penguin(tux),bird(tweety),chicken(tweety)

2
bird(tux),penguin(tux),bird(tweety),chicken(tweety),
neg flies(tux),flies(tweety)

> 2 do.

For i = 1, we simply derive the head atoms of facts. They allow us to derive the re-
maining atoms of X , viz., neg flies(tux) and flies(tweety), in step i = 2.
In fact, two rules produce neg flies(tux), while

flies(tweety) :- bird(tweety), not neg_flies(tweety).

is the unique rule with head flies(tweety) that “fires.” No further rules apply in
step i = 3, so that the set of atoms derived for i = 2 equals

⋃
0≤i T

i
Π,X . We have thus

reproduced X by bottom-up derivation, which again shows that X is an answer set. �
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We have above seen two definitions of answer sets that start from an answer set
candidate X ⊆ ground(A), which is then verified in some way. Such definitions must
not be confused with the computation of answer sets, as (explicitly) enumerating all
subsets of ground(A) is infeasible in practice. Rather, the computational schemes
of solvers are similar to the “Davis-Putnam-Logemann-Loveland” procedure (DPLL)
[11, 12] or to “Conflict-Driven Clause Learning” (CDCL) [51, 54, 55].

3 Restrictedness Notions
In view of function symbols with non-zero arity, we may be confronted with logic
programs over an infinite Herbrand base. In order to maintain decidability of reasoning
tasks, it is thus important to identify language fragments for which finite equivalent
ground programs are guaranteed to exist. Level-restricted logic programs constitute
such a fragment, where finiteness is manifested in the requirement that any variable
in a rule must be bound to a finite set of ground terms via a predicate not subject to
positive recursion through that rule. The notion of level-restrictedness is complemented
by stratification, which by disallowing negative recursion among predicates describes
a class of logic programs having unique answer sets. The formal definition of level-
restricted programs, which can be grounded by gringo (stand-alone or embedded in
clingo and iclingo), is provided in Section 3.1. Section 3.2 introduces stratified
programs and the related concept of domain predicates, which can serve particular
purposes during grounding. Both sections may be skimmed or even skipped upon the
first reading, and rather be looked up later on to find out details.

3.1 Level-Restricted Logic Programs
The main task of a grounder is to substitute the variables in a logic program Π by terms
such that the result is a finite equivalent ground program Π.5 Of course, a necessary
condition for this is that Π possesses only finitely many finite answer sets. Unfortu-
nately, such a property is undecidable in general [10]. Instead of semantic properties,
grounders do thus impose rather simple syntactic conditions to guarantee the existence
of finite equivalent ground programs (which are then also computed). For instance, the
dlv system [43] requires programs to be safe for establishing finiteness in the absence
of functions with non-zero arity and under limited arithmetic. Grounder lparse [68]
deals with ω-restricted programs [69], which are more restrictive than safe programs
but guarantee finiteness also in the presence of functions with non-zero arity. Finally,
gringo [33] requires programs to be λ-restricted, a property more general than ω-
restrictedness but likewise applicable to programs over the same languages. We below
reproduce the concept of λ-restrictedness, called level-restrictedness here.

The idea underlying level-restrictedness is that the structure of a logic program Π
must be such that, for each rule r ∈ Π, the set of potentially applicable ground instances
of r is known in advance. This is the case if, for each variable V ∈ var(r), we find an
atom A in the body of r with V ∈ var(A) (where var(A) is that set of variables oc-
curring in A) such that the potentially derivable ground instances of A are limited (see
below). In fact, with such an atom A at hand, the set of ground terms to which V needs
to be instantiated is known a priori, and no further ground terms need to be considered.
The sketched approach is justified by the ⊆-minimality of answer sets in the sense of

5Π and Π are equivalent if they have the same answer sets.

12



Section 2.3, as it allows us to restrict the attention to rules whose bodies are derivable
w.r.t. some answer set. Beyond outputting only “relevant rules,” grounders can apply
answer-set preserving simplifications, some of which are discussed in Section 3.2.

We next provide a more precise account of level-restrictedness, where we start by
considering normal programs Π. For a rule r ∈ Π and V ∈ var(r), we let bind(V )
contain all elements of body+(r) that may be used to limit V to a certain subset
of ground(T ). Although some exceptions will be explained later on, it is convenient
to assume that bind(V ) consists of all atoms A ∈ body+(r) such that V ∈ var(A).
We then define Π as level-restricted if there is some level mapping λ : P → N such
that,6 for every rule r ∈ Π and each V ∈ var(r), there is some A ∈ bind(V ) such
that λ(p/i) > λ(q/j) for predicate p/i of head(r) and predicate q/j of A. Note that
an appropriate λ (if it exists) is easy to determine, and gringo exploits it to schedule
the order in which rules will be instantiated. In fact, if rules are processed in the order
of levels of their head predicates, ground terms to be substituted for variables can be
restricted on the basis of atoms identified as (un)derivable before.

Example 3.1. Consider the following logic program:

1 zig(0) :- not zag(0). zig(1) :- not zag(1).
2 zag(0) :- not zig(0). zag(1) :- not zig(1).
3 zigzag(X,Y) :- zig(X), zag(Y).
4 zagzig(Y,X) :- zigzag(X,Y).

The set P of predicates contains zig/1, zag/1, zigzag/2, and zagzig/2. The
rules r with head predicates zig/1 or zag/1 in Line 1 and 2 are ground (var(r) = ∅).
Hence, the level-restrictedness condition is trivially satisfied for these rules, and we
may map their head predicates by λ as follows: zig/1 7→ 0 and zag/1 7→ 0. For the
rule in Line 3, we have to respect that λ(zigzag/2) > λ(zig/1) = λ(zag/1) = 0.
We can thus choose zigzag/2 7→ 1. Also note that zig(X) and zag(Y) are the
only atoms in bind(X) and bind(Y), respectively. Finally, we let zagzig/2 7→ 2 in
view of the rule in Line 4, where zigzag(X,Y) belongs to bind(X) and bind(Y). The
total mapping λ = {zig/1 7→ 0,zag/1 7→ 0,zigzag/2 7→ 1,zagzig/2 7→ 2}
witnesses that the above program is level-restricted.

Note that the given mapping λ would no longer be appropriate if we add rule

5 zigzag(X,Y) :- zagzig(Y,X).

In fact, the program consisting of all rules in Line 1–5 is not level-restricted be-
cause Line 4 and 5 require λ(zagzig/2) > λ(zigzag/2) and λ(zigzag/2) >
λ(zagzig/2), respectively. Clearly, there cannot be any level mapping λ jointly sat-
isfying these two conditions. However, replacing Line 4 with

4 zagzig(Y,X) :- zigzag(X,Y), zig(X), zag(Y).

would restore level-restrictedness because zig(X) and zag(Y) belong to bind(X)
and bind(Y), respectively. Instead of the previous λ, the following level mapping
could then be used: {zig/1 7→ 0,zag/1 7→ 0,zagzig/2 7→ 1,zigzag/2 7→ 2}.�

The fundamental property of a level-restricted program is that it admits a finite
equivalent ground program, not to be confused with the (full) ground instantiation
because ground(T ) may still be infinite. Furthermore, level-restrictedness provides
a syntactic criterion that is not difficult to check. In fact, gringo performs such a

6Recall that P is the set of all predicates that occur in Π.
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check and accepts an input program if it is level-restricted. Generalizations of level-
restrictedness to the rich input language of gringo will be discussed in Section 4.

3.2 Stratified Logic Programs
Another relevant restriction is stratification (cf. [53]), as every stratified (normal) pro-
gram has a unique answer. Grounder gringo exploits stratification in two respects:
first, it fully evaluates stratified (sub)programs during grounding, and second, predi-
cates that are subject to stratification can serve as domain predicates (see below). As
with level-restrictedness, stratification can be characterized in terms of level mappings,
here, witnessing the absence of recursion through “not.” We start by introducing strat-
ification on normal programs, and in a second step, we consider stratified subprograms.

A normal program Π is stratified if there is some level mapping ξ : P → N such
that, for every rule r ∈ Π and predicate p/i of head(r), we have

• ξ(p/i) ≥ max{ξ(q/j) | q(t1, . . . , tj) ∈ body+(r)} and

• ξ(p/i) > max{ξ(q/j) | q(t1, . . . , tj) ∈ body−(r)}.

Observe that the levels of predicates in the positive body of a rule can be equal to the
level of the head predicate, while the levels of predicates in the negative body must be
strictly less. That is, positive recursion is allowed among predicates of the same level,
but negative dependencies must obey a strict order.

Example 3.2. We construct a level mapping ξ for the predicates in the logic program:

1 fruit(apple). fruit(peach). foul(peach).
2 natural(X) :- fruit(X).
3 healthy(X) :- natural(X), not foul(X).
4 tasty(X) :- healthy(X), not bitter(X).

Observe that predicate bitter/1 does not occur in the head on any rule, thus,
we may map bitter/1 7→ 0. Furthermore, the facts in Line 1 and the rule
in Line 2 do not have a negative body, so that their head predicates can also be
mapped to the lowest level: fruit/1 7→ 0, foul/1 7→ 0, and natural/1 7→ 0.
We still have to map predicates healthy/1 and tasty/1. As foul/1 oc-
curs in the negative body of the rule in Line 3, we require ξ(healthy/1) >
ξ(foul/1) = 0. We can thus choose healthy/1 7→ 1. Finally, the oc-
currence of healthy/1 in the positive body of the rule in Line 4 necessitates
ξ(tasty/1) ≥ ξ(healthy/1) = 1, realized by tasty/1 7→ 1. In this way,
we also satisfy ξ(tasty/1) > ξ(bitter/1) = 0. The obtained total map-
ping ξ = {bitter/1 7→ 0,fruit/1 7→ 0,foul/1 7→ 0,natural/1 7→ 0,
healthy/1 7→ 1,tasty/1 7→ 1} witnesses that the above program is strati-
fied. As mentioned before, every stratified normal program has a unique answer
set X . Here, we get X = {fruit(apple),fruit(peach),foul(peach), By invoking

gringo -t \
examples/strat.lp

the reader can observe that
gringo computes this unique
answer set X and represents it
in terms of facts.

natural(apple),natural(peach),healthy(apple),tasty(apple)}.
The program would no longer be stratified if we add rule

5 bitter(X) :- healthy(X), not tasty(X).

In fact, the conditions ξ(tasty/1) > ξ(bitter/1) (because of Line 4) and
ξ(bitter/1) > ξ(tasty/1) (because of Line 5) cannot jointly be satisfied by any
level mapping ξ. Note that the non-stratified program containing all rules in Line 1–5
has two answer sets: X and (X \ {tasty(apple)}) ∪ {bitter(apple)}. �
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After dealing with stratified programs, we consider subprograms. For a given logic
program Π, some π ⊆ Π is a stratified subprogram of Π if π is stratified and if no
predicate p/i occurring in π belongs to the head of any rule in Π \ π. As a matter of
fact, a stratified normal subprogram π of Π has a unique answer set Y such that Y ⊆ X
for any answer set X of Π [46]. A stratified subprogram π of Π is maximal if every
stratified subprogram of Π is contained in π. Note that every logic program has a max-
imal stratified subprogram, which is also easy to determine. In fact, gringo identifies
the maximal stratified subprogram π of a logic program Π, and it fully evaluates the
predicates p/i not belonging to the head of any rule in Π \ π, which we call domain
predicates. In Section 4.1.8, we will see that domain predicates can serve particular
purposes during grounding.

Example 3.3. As the program in Line 1–4 of Example 3.2 is stratified, the maximal
stratified subprogram consists of all rules. After adding the rule in Line 5, only the rules
in Line 1–3 belong to the maximal stratified subprogram. The corresponding domain
predicates are fruit/1, foul/1, natural/1, and healthy/1, and the unique
answer set for them is Y = {fruit(apple),fruit(peach),foul(peach),
natural(apple),natural(peach),healthy(apple)}. �

One can check that the program consisting of Line 1–5 in Example 3.2 is level-
restricted, but not stratified. Conversely, program

nat(0). nat(s(X)) :- nat(X).

is stratified (take ξ = {nat/1 7→ 0}), but not level-restricted (λ(nat/1) > λ(nat/1)
needed because of the second rule is impossible). In fact, the program has a unique but
infinite answer set. Thus, the program cannot be translated to a finite equivalent ground
program, which is why gringo does not accept it. Rather, in the first place, a program
must be level-restricted in order to ground it with gringo. If level-restrictedness is
granted, the maximal stratified subprogram is exploited in a second stage to optimize
grounding and to make use of domain predicates.

4 Input Languages
This section provides an overview of the input languages of grounder gringo, com-
bined grounder and solver clingo, incremental grounder and solver iclingo, and
of solver clasp. The joint input language of gringo and clingo is detailed in
Section 4.1. It is extended by iclingo with a few directives described in Section 4.2.
Finally, Section 4.3 is dedicated to the inputs handled by clasp.

4.1 Input Language of gringo and clingo
The tool gringo [33] is a grounder capable of translating logic programs provided
by users into equivalent ground programs. The output of gringo can be piped into
solver clasp [29], which then computes answer sets. System clingo internally
couples gringo and clasp, thus, it takes care of both grounding and solving. In
contrast to gringo outputting ground programs, clingo returns answer sets. Both
gringo and clingo can handle level-restricted input programs (cf. Section 3.1),
usually specified in one or more text files whose names are passed via the command
line in an invocation of either gringo or clingo. We below provide a description
of constructs belonging to the input language of gringo and clingo.
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4.1.1 Normal Programs and Integrity Constraints

In the previous sections, we have already seen a number of normal programs. Now also
considering integrity constraints, we get the following basic rule types:

Fact: A0.
Rule: A0:- L1, . . .,Ln.

Integrity Constraint: :- L1, . . .,Ln.

The head A0 of a fact or a rule is an atom of the form p(t1, . . .,tm), where p is the
name of some predicate, that is, a sequence of letters and digits starting with a lower-
case letter, and any ti is a term.7 A term t starting with an uppercase letter followed
by a sequence of letters and digits (e.g., X08x15) is a variable name, and integers are
written as sequences of digits possibly preceded by “-.” In addition, a term can have
the same syntactic structure as an atom (e.g., p(a,1,f(X)) can be either an atom or
a term, depending on where it occurs in a rule), and functions can be nested within a
term. There are also built-in constructs (cf. Section 4.1.4 and 4.1.5) having particular
representations. Finally, any Lj is a literal of the form A or not A for an atom A.

In Section 2.3, we have already provided a translation ψ from the head of a rule to
a propositional formula. By viewing an integrity constraint :- Body. as a shorthand
for ⊥ :- Body., we can now explain the semantics of integrity constraints by adding
the following case:

• ψ[⊥] = ⊥.

Note the role of integrity constraints is to eliminate answer set candidates. In fact, given
an integrity constraint :- Body., any answer set X is such that X 6|= φ[Body ], or in
other words, some literal L in Body must be unsatisfied w.r.t. X . Elaborate examples
on the usage of facts, rules, and integrity constraints will be provided in Section 5.

4.1.2 Classical Negation

In logic programs, connective not expresses default negation, that is, a literal not A
is assumed to hold unless A is derived. In contrast, the classical (or strong) negation of
some proposition holds if the complement of the proposition is objectively derived [36].
Classical negation, indicated by symbol “-,” is permitted in front of atoms. That is,
if A is an atom, then -A is the complement of A. Semantically, -A is simply a new
atom, with the additional condition that A and -A must not jointly hold. A logic
program Π containing complementary atoms is thus translated to propositional theory
Φ[Π ∪ {:- A,-A | A ∈ ground(A)}].8 Observe that classical negation is merely a
syntactic feature that can be implemented via integrity constraints whose effect is to
eliminate any answer set candidate containing complementary atoms.

Example 4.1. The following logic program reformulates the one in Example 2.1:

1 bird(tux). penguin(tux).
2 bird(tweety). chicken(tweety).

3 flies(X) :- bird(X), not -flies(X).
4 -flies(X) :- bird(X), not flies(X).
5 -flies(X) :- penguin(X).

7An atom p without arguments is simply a sequence of letters and digits (starting with a lowercase letter).
For such an atom p, parentheses after the name are skipped, e.g., p42X could be an atom without arguments.
Also note that lowercase letters include “ ,” which can thus be used at any position within a predicate name.

8Recall that ground(A) consists of all variable-free atoms built from predicates and functions in Π.

16



Logically, classical negation is reflected by (implicit) integrity constraints as follows: By invoking
gringo -t \
examples/bird.lp \
examples/flycn.lp

the reader can observe that
gringo indeed produces the
integrity constraint in Line 7.

6 :- flies(tux), -flies(tux).
7 :- flies(tweety), -flies(tweety).

The additional integrity constraints do not yet change the semantics of the program,
which still has the answer sets already provided in Example 2.2 (of course, identi-
fying neg flies(tux) with -flies(tux) and neg flies(tweety) with
-flies(tweety)). This situation changes if we add the following fact:

8 flies(tux).

While the program from Example 2.1 still admits two answer sets, both containing
flies(tux) and neg flies(tux), there no longer is any answer set for our
new program using classical negation. In fact, answer set candidates that contain both
flies(tux) and -flies(tux) violate the integrity constraint in Line 6. �

4.1.3 Disjunction

Disjunctive logic programs permit connective “|” between atoms in rule heads. An
additional case of translation ψ from Section 2.3 reflects the semantics of disjunction:

• ψ[G|H] = ψ[G] ∨ ψ[H].

The concept of level-restrictedness (cf. Section 3.1) is extended to disjunctive programs
by, for a disjunctive rule r, every predicate p/i of some atom in the head of r, and each
V ∈ var(r), requiring that there is some A ∈ bind(V ) such that λ(p/i) > λ(q/j) for
predicate q/j of A. Furthermore, a (maximal) stratified subprogram (cf. Section 3.2)
must not contain any rule with a (non-trivial) disjunctive head.

The following rule combines the ones in Line 3 and 4 from Example 4.1:

flies(X) | -flies(X) :- bird(X).

In general, the use of disjunction however increases computational complexity [19].
This is why clingo9 and solvers like assat [47], clasp [29], nomore++ [1],
smodels [66], and smodelscc [71] do not work on disjunctive programs. Rather,
claspD [15], cmodels [37, 44], or gnt [42] needs to be used for solving a dis-
junctive program.10 We thus suggest to use “choice constructs” (cf. Section 4.1.10)
instead of disjunction, unless the latter is required for complexity reasons (see [20] for
an implementation methodology in disjunctive ASP).

4.1.4 Built-In Arithmetic Functions

gringo and clingo support a number of arithmetic functions that are evaluated
during grounding. The following symbols are used for these functions: + (addition), -
(subtraction), * (multiplication), / or div (integer division), mod (modulo function),
abs (absolute value), ˜ (bitwise complement), & (bitwise AND), ? (bitwise OR), and
ˆ (bitwise exclusive OR).

Example 4.2. The usage of arithmetic functions is illustrated by the logic program: The unique answer set of the
program, obtained after evalu-
ating all arithmetic functions,
can be inspected by invoking:
gringo -t \
examples/arithf.lp

9Run as a monolithic system performing both grounding and solving.
10System dlv [43] also deals with disjunctive programs, but it uses a different syntax than presented here.
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1 left (7).
2 right (2).
3 plus (L + R) :- left(L), right(R).
4 minus (L - R) :- left(L), right(R).
5 times (L * R) :- left(L), right(R).
6 divide (L / R) :- left(L), right(R).
7 divide (R div L) :- left(L), right(R).
8 modulo (L mod R) :- left(L), right(R).
9 absolute (abs(- R)) :- right(R).

10 complement (˜ R) :- right(R).
11 and (L & R) :- left(L), right(R).
12 or (L ? R) :- left(L), right(R).
13 xor (L ˆ R) :- left(L), right(R).

Note that variables L and R are instantiated to 7 and 2, respectively, before arith-
metic evaluations. Consecutive and non-separative (e.g., before “(”) spaces can also
be dropped, while spaces around tokens div and mod are mandatory. Furthermore,
the argument of function abs must be enclosed in parentheses. In Line 9, observe that
there is a unary version of -, “- R” standing for “0 - R.” The four bitwise functions
apply to signed integers, using the complement on two of a negative integer. �

It is important to note that variables in the scope of an arithmetic function are
not necessarily bound (in the sense of Section 3.1) by a corresponding atom. For in-
stance, atom p(X+1,X) belongs to bind(X), while atom p(X+1,Y) does not belong
to bind(X) because it contains X only in the scope of an arithmetic function.

4.1.5 Built-In Comparison Predicates

The following built-in predicates permit term comparisons within the bodies of rules
and on the right-hand side of conditions (cf. Section 4.1.8): == (equal), != (not equal),
< (less than), <= (less than or equal), > (greater than), >= (greater than or equal).

Example 4.3. The usage of comparison predicates is illustrated by the logic program: The unique answer set of the
program is obtained via call:
gringo -t \
examples/arithc.lp

1 num(1). num(2).
2 eq (X,Y) :- X == Y, num(X), num(Y).
3 neq(X,Y) :- X != Y, num(X), num(Y).
4 lt (X,Y) :- X < Y, num(X), num(Y).
5 leq(X,Y) :- X <= Y, num(X), num(Y).
6 gt (X,Y) :- X > Y, num(X), num(Y).
7 geq(X,Y) :- X >= Y, num(X), num(Y).
8 all(X,Y) :- X-1 < X+Y, num(X), num(Y).
9 non(X,Y) :- X/X > Y*Y, num(X), num(Y).

The last two lines hint at the fact that arithmetic functions are evaluated before com-
parison predicates, so that the latter actually compare integers.

All comparison predicates can also be used with constants, as in the next program: As above, invoking:
gringo -t \
examples/symbc.lp

yields the unique answer set of
the program in terms of facts.

1 sym(a). sym(b).
2 eq (X,Y) :- X == Y, sym(X), sym(Y).
3 neq(X,Y) :- X != Y, sym(X), sym(Y).
4 lt (X,Y) :- X < Y, sym(X), sym(Y).
5 leq(X,Y) :- X <= Y, sym(X), sym(Y).
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6 gt (X,Y) :- X > Y, sym(X), sym(Y).
7 geq(X,Y) :- X >= Y, sym(X), sym(Y).

Finally, note that == and != also apply to compound terms over functions with non-
zero arity as well as to mixed integer and non-integer arguments.11 �

Importantly, a built-in comparison predicate cannot bind variables, that is, it does
not belong to bind(X) for any variable X. Also note that built-in predicates are not
considered by level mappings ξ in the context of stratification (cf. Section 3.2), or
equivalently, one may assume that built-in predicates are mapped to level 0 and all
other predicates to levels greater than 0.

4.1.6 Assignments

Built-in predicate = can be used in the body of a rule (or on right-hand sides of condi-
tions introduced in Section 4.1.8) to assign a term on its right-hand side to a variable on
its left-hand side. Note that “X = t” belongs to bind(X), provided that t is variable-free
or that its variables are bound by atoms other than assignments with X on the right-hand
side. Cyclic assignments over otherwise unbound variables are thus excluded.

Example 4.4. The next program demonstrates how terms can be assigned to variables: The unique answer set of the
program is obtained via call:
gringo -t \
examples/assign.lp

1 num(1). num(2). num(3). num(4). num(5).
2 squares(XX,YY,Z) :-
3 XX = X*X, YY = Y*Y, Z = XX+YY, Y1 = Y+1,
4 Y1*Y1 == Z, num(X), num(Y), X < Y.

Line 3 contains four assignments, where the right-hand sides directly or indirectly de-
pend on X and Y. These two variables are bound in Line 4 via atoms of predicate num/1.
Also observe the different usage and role of built-in comparison predicate ==. �

4.1.7 Intervals

In Line 1 of Example 4.4, there are five facts num(k) over consecutive integers k. For
a more compact representation, gringo and clingo support integer intervals of the
form i..j, where i and j are integers. Such an interval represents each integer k such
that i ≤ k ≤ j, and intervals are expanded during grounding.

Example 4.5. The next program makes use of integer intervals:

1 num(1..5).
2 top5(5..9).
3 top(9).
4 top5num(1..X-4,5..X) :- num(X-4..X), top5(1..5), top(X).

The facts in Line 1 and 2 are expanded as follows:

num(1). num(2). num(3). num(4). num(5).
top5(5). top5(6). top5(7). top5(8). top5(9).

By instantiating X to 9, the rule in Line 4 becomes:

top5num(1..5,5..9) :- num(5..9), top5(1..5), top(9).

11Such functionalities are currently not supported for the other four comparison predicates, where (after
instantiation and arithmetic evaluation) both arguments must be either integers or (symbolic) constants.
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It is expanded to the cross product (1..5)× (5..9)× (5..9)× (1..5) of intervals:

top5num(1,5) :- num(5), top5(1), top(9).
top5num(2,5) :- num(5), top5(1), top(9).

...
top5num(5,5) :- num(5), top5(1), top(9).
top5num(1,6) :- num(5), top5(1), top(9).
top5num(2,6) :- num(5), top5(1), top(9).

...
...

top5num(5,9) :- num(5), top5(1), top(9).
top5num(1,5) :- num(6), top5(1), top(9).
top5num(2,5) :- num(6), top5(1), top(9).

...
...

...
top5num(5,9) :- num(9), top5(1), top(9).
top5num(1,5) :- num(5), top5(2), top(9).
top5num(2,5) :- num(5), top5(2), top(9).

...
...

...
...

top5num(5,9) :- num(9), top5(4), top(9).
top5num(1,5) :- num(5), top5(5), top(9).
top5num(2,5) :- num(5), top5(5), top(9).

...
...

top5num(5,9) :- num(5), top5(5), top(9).
top5num(1,5) :- num(6), top5(5), top(9).
top5num(2,5) :- num(6), top5(5), top(9).

...
...

...
top5num(5,9) :- num(9), top5(5), top(9).

Note that only the rules with num(5) and top5(5) in the body actually contribute to Again the unique answer set is
obtained via call:
gringo -t \
examples/int.lp

the unique answer set of the above program by deriving all atoms top5num(m,n)
for 1 ≤ m ≤ 5 and 5 ≤ n ≤ 9. �

As with built-in arithmetic functions, an integer interval mentioning some variable
(like X in Line 4 of Example 4.5) cannot be used to bind the variable.

4.1.8 Conditions

Conditions allow for instantiating variables to collections of terms within a single rule.
This is particularly useful for encoding conjunctions or disjunctions over arbitrarily
many ground atoms as well as for the compact representation of aggregates (cf. Sec-
tion 4.1.10). The symbol “:” is used to formulate conditions.

Example 4.6. The following program uses conditions in a rule body and in a rule head:

1 person(jane). person(john).
2 day(mon). day(tues). day(wed). day(thurs). day(fri).
3 available(jane) :- not on(fri).
4 available(john) :- not on(mon), not on(wed).
5 meet :- available(X) : person(X).
6 on(X) : day(X) :- meet.
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We are particularly interested in the rules in Line 5 and 6, instantiated as follows:

5 meet :- available(jane), available(john).
6 on(mon) | on(tues) | on(wed) | on(thurs) | on(fri) :- meet.

The conjunction in Line 5 is obtained by replacing X in available(X) with all The reader can reproduce these
ground rules by invoking:
gringo -t \
examples/cond.lp

ground terms t such that person(t) holds, namely, t = jane and t = john.
Furthermore, the condition in the head of the rule in Line 6 turns into a disjunction
over all ground instances of on(X) where X is substituted by some term t such that
day(t) holds. That is, conditions in the body and in the head of a rule are expanded
to different basic language constructs.

Composite conditions can also be constructed via “:,” as in the additional rules:

7 weekend(sat). weekend(sun).
8 weekdays :- day(X) : day(X) : not weekend(X).

Observe that we may use the same atom, viz., day(X), both on the left-hand and on
the right-hand side of “:.” Furthermore, negative literals like not weekend(X) can
occur on both sides of a condition. Note that literals on the right-hand side of a condi-
tion are connected conjunctively, that is, all of them must hold for ground instances of
an atom in front of the condition. Thus, the instantiated rule in Line 8 looks as follows:

8 weekdays :- day(mon), day(tues), day(wed), day(thurs), day(fri).

The atoms in the body of this rule follow from facts, so that the rule can be simplified
to a fact weekdays. (as done by gringo). �

There are three important issues about the correct usage of conditions. First, all
predicates of atoms on the right-hand side of a condition must be either domain predi-
cates (cf. Section 3.2) or built-in, which is due to the fact that conditions are evaluated
during grounding.12 Second, any variable occurring within a condition is considered
as local, that is, a condition cannot be used to bind variables outside itself. In turn,
variables outside conditions are global, and each variable within an atom in front of a
condition must occur on the right-hand side or be global. Third, global variables take
priority over local ones, that is, they are instantiated first. As a consequence, a local
variable that also occurs globally is substituted by a term before the ground instances
of a condition are determined. Hence, the names of local variables must be chosen with
care, making sure that they do not accidentally match the names of global variables.

4.1.9 Pooling

Symbol “;” allows for pooling alternative terms to be used as argument within an atom,
thus, specifying rules more compactly. An atom written in the form p(. . .,X;Y,. . .)
abbreviates two options: p(. . .,X,. . .) and p(. . .,Y,. . .). Pooled arguments in
an atom of a rule body (or on the right-hand side of a condition) are expanded to
a conjunction of the options within the same body (or within the same condition),
while they are expanded to multiple rules (or multiple literals connected via “,”) when
occurring in the head (or in front of a condition).

Example 4.7. The following logic program makes use of pooling:

12The bodies of rules in a stratified subprogram (cf. Section 3.2) may contain conditions. For a rule r and
L0:L1: . . .:Ln in the body of r, let A0 ∈ body−(r) if L0 = not A0 and L0 ∈ body+(r) otherwise,
and for 1 ≤ i ≤ n, assumeAi ∈ body−(r) for atomAi such that Li = Ai or Li = notAi, respectively.
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1 sym(a). sym(b).
2 num(1). num(2).
3 mix(A;B,M;N) :- sym(A;B), num(M;N), not -mix(M;N,A;B).
4 -mix(M;N,A;B) :- sym(A;B), num(M;N), not mix(A;B,M;N).

Let us consider instantiations of the rule in Line 3 obtained with substitution {A 7→ a,
B 7→ b,M 7→ 1,N 7→ 2}. Note that mix/2 and -mix/2 each admit four options, corre-
sponding to the cross product of {a,b} substituted for A and B, respectively, together
with {1,2} substituted for M and N. While the instances obtained for mix/2 give rise
to four rules, the instances for -mix/2 jointly belong to the body. The (repeated) body
also contains two instances each of sym/1 and of num/1. We thus get the rules: Simplified versions of these

rules are produced via call:
gringo -t \
examples/pool.lp

mix(a,1) :- sym(a),sym(b), num(1),num(2), not -mix(1,a),
not -mix(1,b), not -mix(2,a), not -mix(2,b).

mix(a,2) :- sym(a),sym(b), num(1),num(2), not -mix(1,a),
not -mix(1,b), not -mix(2,a), not -mix(2,b).

mix(b,1) :- sym(a),sym(b), num(1),num(2), not -mix(1,a),
not -mix(1,b), not -mix(2,a), not -mix(2,b).

mix(b,2) :- sym(a),sym(b), num(1),num(2), not -mix(1,a),
not -mix(1,b), not -mix(2,a), not -mix(2,b).

Finally, we note that pooling is also possible with arguments of built-in predicates. �

4.1.10 Aggregates

An aggregate is an operation on a multiset of weighted literals that evaluates to an
integer. In combination with arithmetic comparisons, we can extract a truth value from
an aggregate’s evaluation, thus, obtaining an aggregate atom. Customizing the notation
in [24], we consider ground aggregate atoms of the form:

l op[L1=w1, . . .,Ln=wn]u (2)

where l and u are integers each of which can possibly be omitted, op is a function from
multisets of integers to an integer, each Li is a literal of the form A or not A for some
atom A ∈ ground(A), and each wi is an integer. The intuitive reading of an aggregate
atom is that the value returned by op applied to all weightswi such that Li holds should
be in-between lower bound l and upper bound u (inclusively). If l or u is omitted, it
means that the aggregate’s value is not constrained from below or above, respectively.

For an aggregate atom Agg as in (2), we let atom(Agg) = {Li ∈ ground(A) |
1 ≤ i ≤ n} denote the set of atoms occurring positively in Agg . Currently, gringo
and clingo support aggregate operations sum, max, and min.13 We can now extend
translations φ and ψ from Section 2.3 to aggregate atoms, using the approach in [24]
but applying the “choice semantics” for aggregates in heads of rules [25, 66]:14

1. φ[op[L1=w1, . . .,Ln=wn]] = >,

2. φ[l op[L1=w1, . . .,Ln=wn]u] =
φ[l op[L1=w1, . . .,Ln=wn]] ∧ φ[op[L1=w1, . . .,Ln=wn]u],

13The additional operation count is a shorthand for a sum aggregate in which all weights are 1.
14The translation φ we provide for sum aggregates assumes that there are no negative weights for literals,

while the more sophisticated translation in [24] also captures negative weights. All current solvers work
with positive weights only, and thus gringo and lparse use a compilation technique [66] to eliminate
negative weights, which are not permitted in lparse’s output format [68]. As this technique may lead to
counterintuitive results [24], we strongly recommend not to use negative weights within sum aggregates.
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3. φ[l sum[L1=w1, . . .,Ln=wn]] =(∨
{i1,...,ij}⊆{1,...,n},l≤wi1+···+wij

(φ[Li1 ] ∧ · · · ∧ φ[Lij
])
)
,

4. φ[sum[L1=w1, . . .,Ln=wn]u] =
¬
(∨
{i1,...,ij}⊆{1,...,n},u<wi1+···+wij

(φ[Li1 ] ∧ · · · ∧ φ[Lij ])
)
,

5. φ[l max[L1=w1, . . .,Ln=wn]] =
(∨

i∈{1,...,n},l≤wi
φ[Li]

)
,

6. φ[max[L1=w1, . . .,Ln=wn]u] = ¬
(∨

i∈{1,...,n},u<wi
φ[Li]

)
,

7. φ[l min[L1=w1, . . .,Ln=wn]] = ¬
(∨

i∈{1,...,n},wi<l φ[Li]
)
,

8. φ[min[L1=w1, . . .,Ln=wn]u] =
(∨

i∈{1,...,n},wi≤u φ[Li]
)
, and

9. ψ[C op[L1=w1, . . .,Ln=wn]B] = φ[C op[L1=w1, . . .,Ln=wn]B] ∧(∧
A∈atom(C op[L1=w1,...,Ln=wn]B)(A ∨ ¬A)

)
.

The first item reflects that an unconstrained aggregate atom always holds, while ag-
gregate atoms with a lower and an upper bound are split up into two conjunctively
connected parts (Item 2). Item 3–8 specify these parts individually for sum, max,
and min aggregates, respectively. Provided that only non-negative weights are used
within sums, all three aggregates are subject to one comparison that is monotone,
meaning that by default it evaluates to false so that truth must be established. For
sum and max aggregates, these monotone comparisons are related to lower bounds
(Item 3 and 5), while an upper bound behaves monotonically for min (Item 8). In turn,
the opposite comparison is antimonotone, that is, by default it evaluates to true unless
too many or improper literals hold. This is the case for comparisons to upper bounds
with aggregates sum and max (Item 4 and 6), while it concerns the lower bound for
min (Item 7). Finally, translation ψ of an aggregate atom in the head of a rule consists
of two parts: first, φ is used like in the body of a rule (in Item 9, C and B are used
as “wildcards” for provided or omitted lower and upper bounds), second, a disjunction
(A ∨ ¬A) is added for each atom A occurring positively. Even though such disjunc-
tions are tautological, they are important under answer set semantics (cf. Section 2.3),
as they permit deriving an arbitrary subset of atoms from an aggregate in the head
(which explains the name “choice semantics”). Beyond this special treatment in rule
heads, the truth values of aggregate atoms result from their literals as may be intuitively
expected, and Item 1–8 basically do nothing but formalizing the standard meanings of
aggregate operations. Note that the above translations merely define the semantics of
aggregates, which does not imply that solvers unfold them in this way. In fact, clasp
natively supports aggregates without translating them.

As regards syntactic representation, weight 1 is considered a default, so that Li=1
can simply be written as Li. For instance, the following (multi)sets of (weighted)
literals are the same when combined with any kind of aggregate operation and bounds:

[a=1, not b=1, c=2] and
[a, not b, c=2].

Furthermore, keyword sum may be omitted, which in a sense makes sum the default
aggregate operation. In fact, the following aggregate atoms are synonyms:

2 sum [a, not b, c=2] 3 and
2 [a, not b, c=2] 3.
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By omitting keyword sum, we obtain the same notation as the one of so-called “weight
constraints” [66, 68], which are actually aggregate atoms whose operation is addition.

It is important to note that the (weighted) literals within an aggregate belong to a
multiset. In particular, if there are multiple occurrencesL=w1, . . . , L=wk of a literalL,
in combination with min and max, it is not the same like having L=w1 + · · ·+wk. To
see this, note that the program consisting of the facts:

2 max [a=2]. 2 min [a=2].

has {a} as its unique answer set, while there is no answer set for:

2 max [a,a]. 2 min [a,a].

If literals ought not to be repeated, we can use count instead of sum. Syntac-
tically, count requires curly instead of square brackets, and there must not be any
weights within a count aggregate. Regarding semantics, (l count{L1, . . .,Ln}u)
reduces to (l sum[L1=1, . . .,Lm=1]u), where {L1, . . . , Lm} = {Li | 1 ≤ i ≤ n}
is obtained by dropping repeated literals. Of course, the use of l and u is optional also
with count. As an example, note that the next aggregate atoms express the same:

1 sum [a=1, not b=1] 1 and
1 count {a,a, not b,not b} 1.

Keyword count can be omitted (like sum), so that the following are synonyms:

1 count {a, not b} 1 and
1 {a, not b} 1.

The last notation is similar to the one of so-called “cardinality constraints” [66, 68],
which are aggregate atoms using counting as their operation.

After considering the syntax and semantics of ground aggregate atoms, we now
turn our attention to non-ground aggregates. Regarding contained variables, an atom
occurring in an aggregate behaves similar to an atom on the left-hand side of a con-
dition (cf. Section 4.1.8). That is, any variable occurring within an aggregate is a
priori local, and it must be bound via a variable of the same name that is global or
that occurs on the right-hand side of a condition (with the atom containing the variable
in front). As with local variables of conditions, global variables take priority during
grounding, so that the names of local variables must be chosen with care to avoid acci-
dental clashes. Beyond conditions (which are more or less the natural construct to use
for instantiating variables within an aggregate), classical negation (cf. Section 4.1.2),
built-in arithmetic functions (cf. Section 4.1.4), intervals (cf. Section 4.1.7), and pool-
ing (cf. Section 4.1.9) can be incorporated as usual within aggregates, where intervals
and pooling are expanded locally.15 That is, an interval gives rise to multiple literals
connected via “,” within the same aggregate. The same applies to pooling in front of
a condition, while it turns into a composite condition chained by “:” on the right-hand
side. The notions of level-restrictedness and stratification (cf. Section 3.1 and 3.2) are
extended to programs with aggregates by considering the predicates of all atoms (ex-
cept for those on the right-hand side of a condition) in an aggregate atom occurring as
the head of a rule r,16 and by assuming A ∈ body−(r) for all atoms A of an aggregate
in the body of r. Finally, note that aggregates without bounds are also permitted on the

15Assignments (cf. Section 4.1.6) and (currently) also built-in comparison predicates (cf. Section 4.1.5)
are permitted on the right-hand sides of conditions only.

16The rules in a (maximal) stratified subprogram (cf. Section 3.2) cannot have aggregate atoms in the head.
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right-hand sides of assignments, but using this feature is only recommended for aggre-
gates whose atoms belong to domain predicates because space blow-up can become a
bottleneck otherwise. The following example, making exhaustive use of aggregates,
nonetheless demonstrates this and other features.

Example 4.8. Consider a situation where an informatics student wants to enroll for
a number of courses at the beginning of a new term. In the university calendar, eight
courses are found eligible, and they are represented by the following facts:

1 course(1,1,5). course(1,2,5).
2 course(2,1,4). course(2,2,4).
3 course(3,1,6). course(3,3,6).
4 course(4,1,3). course(4,3,3). course(4,4,3).
5 course(5,1,4). course(5,4,4).
6 course(6,2,2). course(6,3,2).
7 course(7,2,4). course(7,3,4). course(7,4,4).
8 course(8,3,5). course(8,4,5).

In an instance of course/3, the first argument is a number identifying one of the eight
courses, and the third argument provides the course’s contact hours per week. The sec-
ond argument stands for a subject area: 1 corresponding to “theoretical informatics,”
2 to “practical informatics,” 3 to “technical informatics,” and 4 to “applied informat-
ics.” For instance, atom course(1,2,5) expresses that course 1 accounts for 5
contact hours per week that may be credited to subject area 2 (“practical informatics”).
Observe that a single course is usually eligible for multiple subject areas.

After specifying the above facts, the student starts to provide personal constraints
on the courses to enroll. The first condition is that 3 to 6 courses should be enrolled:

9 3 { enroll(C) : course(C,S,H) } 6.

Instantiating the above count aggregate yields the following ground rule: The full ground program is ob-
tained by invoking:
gringo -t \
examples/aggr.lp

9 3 { enroll(1), enroll(2), enroll(3), enroll(4),
enroll(5), enroll(6), enroll(7), enroll(8) } 6.

Observe that an instance of atom enroll(C) is included for each instantiation of C
such that course(C,S,H) holds for some values of S and H. Duplicates resulting
from distinct values for S are removed, thus, obtaining the above set of ground atoms.

The next constraints of the student regard the subject areas of enrolled courses:

10 :- [ enroll(C) : course(C,S,H) ] 10.
11 :- 2 [ not enroll(C) : course(C,2,H) ].
12 :- 6 [ enroll(C) : course(C,3,H), enroll(C) : course(C,4,H) ].

Each of the three integrity constraints above contains a sum aggregate, using default
weight 1 for literals. Recalling that sum aggregates operate on multisets, duplicates
are not removed. Thus, the integrity constraint in Line 10 is instantiated as follows:

10 :- [ enroll(1) = 1, enroll(1) = 1,
enroll(2) = 1, enroll(2) = 1,
enroll(3) = 1, enroll(3) = 1,
enroll(4) = 1, enroll(4) = 1, enroll(4) = 1,
enroll(5) = 1, enroll(5) = 1,
enroll(6) = 1, enroll(6) = 1,
enroll(7) = 1, enroll(7) = 1, enroll(7) = 1,
enroll(8) = 1, enroll(8) = 1 ] 10.
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Note that courses 4 and 7 count three times because they are eligible for three sub-
ject areas, viz., there are three distinct instantiations for S in course(4,S,3) and
course(7,S,4), respectively. Comparing the above ground instance, the meaning
of the integrity constraint in Line 10 is that the number of eligible subject areas over all
enrolled courses must be more than 10. Similarly, the integrity constraint in Line 11
expresses the requirement that at most one course of subject area 2 (“practical infor-
matics”) is not enrolled, while Line 12 stipulates that the enrolled courses amount to
less than six nominations of subject area 3 (“technical informatics”) or 4 (“applied
informatics”). Also note that, given the facts in Line 1–8, we could equivalently have
used count rather than sum in Line 11, but not in Line 10 and 12.

The remaining constraints of the student deal with contact hours. To express them,
we first introduce an auxiliary rule and a fact:

13 hours(C,H) :- course(C,S,H).
14 max_hours(20).

The rule in Line 13 projects instances of course/3 to hours/2, thereby, dropping
courses’ subject areas. This is used to not consider the same course multiple times
within the following integrity constraints:

15 :- not M-2 [ enroll(C) : hours(C,H) = H ] M, max_hours(M).
16 :- min [ enroll(C) : hours(C,H) = H ] 2.
17 :- 6 max [ enroll(C) : hours(C,H) = H ].

As Line 15 shows, we may use default negation via “not” in front of aggregate atoms,
and bounds may be specified in terms of variables. In fact, by instantiating M to 20, we
obtain the following ground instance of the integrity constraint in Line 15:

15 :- not 18 [ enroll(1) = 5, enroll(2) = 4,
enroll(3) = 6, enroll(4) = 3,
enroll(5) = 4, enroll(6) = 2,
enroll(7) = 4, enroll(8) = 5 ] 20.

The above integrity constraint states that the sum of contact hours per week must lie
in-between 18 and 20. Note that the min and max aggregates in Line 16 and 17,
respectively, work on the same (multi)set of weighted literals as in Line 15. While the
integrity constraint in Line 16 stipulates that any course to enroll must include more
than 2 contact hours, the one in Line 17 prohibits enrolling for courses of 6 or more
contact hours. Of course, the last two requirements could also be formulated as follows:

16 :- enroll(C), hours(C,H), H <= 2.
17 :- enroll(C), hours(C,H), H >= 6.

Finally, the following rules illustrate the use of aggregates within assignments:

18 courses(N) :- N = count { enroll(C) : course(C,S,H) }.
19 hours(N) :- N = sum [ enroll(C) : hours(C,H) = H ].

Note that the above aggregates have already been used in Line 9 and 15, respectively,
where keywords count and sum have been omitted for convenience. These keywords
can be dropped here too, and we merely include them to show the more verbose nota-
tions of count and sum aggregates. However, the usage of aggregates in the last two
lines is different from before, as they now serve to assign an integer to a variable N.
In this context, bounds are not permitted, and so none are provided in Line 18 and 19.
The effect of these two lines is that the student can read off the number of courses to
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enroll and the amount of contact hours per week from instances of courses/1 and
hours/1 belonging to an answer set. In fact, running clasp shows the student that a To compute the unique answer

set of the program, invoke:
gringo \
examples/aggr.lp | \
clasp -n 0

or alternatively:
clingo -n 0 \
examples/aggr.lp

unique collection of 5 courses to enroll satisfies all requirements: the courses 1, 2, 4,
5, and 7, amounting to 20 contact hours per week.

Although the above program does not reflect this possibility, it should be noted that
(as has been mentioned in Section 4.1.8) multiple literals may be connected via “:” in
order to construct composite conditions within an aggregate. As before, the predicates
of atoms on the right-hand side of such conditions must be either domain predicates
or built-in. Furthermore, the usage of non-domain predicates within an aggregate on
the right-hand side of an assignment (like enroll/1 in Line 18 and 19 above) is not
recommended in general because the space blow-up may be significant. �

4.1.11 Optimization

Optimization statements extend the basic question of whether a set of atoms is an
answer set to whether it is an optimal answer set. To support this reasoning mode,
gringo and clingo adopt the optimization statements of lparse [68], indicated
via keywords maximize and minimize. Syntactically, a maximize or minimize
statement is similar to a fact whose head is a count or a sum aggregate (without
bounds), viz., “opt{ . . .}.” or “opt[ . . .].” where opt ∈ {maximize,minimize}.
As an optimization statement does not admit a body, any (local) variable in it must also
occur in an atom (over a domain or built-in predicate) on the right-hand side of a condi-
tion (cf. Section 4.1.8) within the optimization statement. In multiset notation (square
brackets), weights may be provided as with sum aggregates. In set notation (curly
brackets), duplicates of literals are removed as with count aggregates.

The semantics of an optimization statement is intuitive: an answer set is optimal
if the sum of weights (using 1 for unsupplied weights) of literals that hold is maximal
or minimal, as required by the statement, among all answer sets of the given program.
This definition is sufficient if a single optimization statement is specified along with a
logic program. Unfortunately, the syntax used by lparse and adopted by gringo
and clingo does not provide any means to explicitly declare priorities among multi-
ple optimization statements. A technique how to compile multiple optimization state-
ments into a single one is discussed in [66], but it can lead to large integers (probably
rather unnatural for a user to assign). Thus, rather than restricting to a single optimiza-
tion statement, a sequence of them is permitted, where a statement provided later on
takes priority over previous ones. That is, the last optimization statement in program
is the most significant one, and previous ones are only considered if answer sets agree
on the sum of weights of its literals. In this way, multiple optimization statements are
arranged into a total order, which is the inverse order of occurrence. In contrast to
the declarative answer set semantics, the semantics of optimization statements is thus
order-dependent, requiring special care when providing more than one of them.

Example 4.9. To illustrate optimization, we consider a hotel booking situation where
we want to choose one among five available hotels. The hotels are identified via num-
bers assigned in descending order of stars. Of course, the more stars a hotel has the
more it costs per night. As an ancillary information, we know that hotel 4 is located
on a main street, which is why we expect its rooms to be noisy. This knowledge is
specified in Line 1–5 of the following program:

1 1 { hotel(1..5) } 1.
2 star(1,5). star(2,4). star(3,3). star(4,3). star(5,2).
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3 cost(1,170). cost(2,140). cost(3,90). cost(4,75). cost(5,60).
4 main_street(4).
5 noisy :- hotel(X), main_street(X).
6 maximize [ hotel(X) : star(X,Y) = Y ].
7 minimize [ hotel(X) : cost(X,Y) : star(X,Z) = Y/Z ].
8 minimize { noisy }.

Line 6–8 contribute optimization statements in inverse order of significance, according
to which we want to choose the best hotel to book. The most significant optimization
statement in Line 8 states that avoiding noise is our main priority. The secondary
optimization criterion in Line 7 consists of minimizing the cost per star. Finally, the
third optimization statement in Line 6 specifies that we want to maximize the number
of stars among hotels that are otherwise indistinguishable. The optimization statements
in Line 6–8 are instantiated as follows: The full ground program is ob-

tained by invoking:
gringo -t \
examples/opt.lp

6 maximize [ hotel(1) = 5, hotel(2) = 4, hotel(3) = 3,
hotel(4) = 3, hotel(5) = 2 ].

7 minimize [ hotel(1) = 34, hotel(2) = 35, hotel(3) = 30,
hotel(4) = 25, hotel(5) = 30 ].

8 minimize [ noisy = 1 ].

If we now use clasp to compute an optimal answer set, we find that hotel 4 is not To compute the unique optimal
answer set, invoke:
gringo \
examples/opt.lp | \
clasp -n 0

or alternatively:
clingo -n 0 \
examples/opt.lp

eligible because it implies noisy. Thus, hotel 3 and 5 remain as optimal w.r.t. the
second most significant optimization statement in Line 7. This tie is broken via the
least significant optimization statement in Line 6 because hotel 3 has one star more
than hotel 5. We thus decide to book hotel 3 offering 3 stars to cost 90 per night. �

4.1.12 Meta-Statements

After considering the language of logic programs, we now introduce features going
beyond the contents of a program.

Comments. To keep records of the contents of a logic program, a logic program file
may include comments. A comment until the end of a line is initiated by symbol “%,”
and a comment within one or over multiple lines is enclosed by “%*” and “*%.” As an
abstract example, consider:

logic program %* enclosed comment *% logic program
logic program % comment till end of line
logic program
%*
comment over multiple lines

*%
logic program

Hiding Predicates. Sometimes, one may be interested only in a subset of the atoms
belonging to an answer set. In order to suppress the atoms of “irrelevant” predicates
from the output, the #hide declarative (in which # is optional) can be used. The
meanings of the following statements are indicated via accompanying comments:

#hide. % Suppress all atoms in output
hide. % Same as "#hide."
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#hide p/3. % Suppress all atoms of predicate p/3 in output
hide p/3. % Same as "#hide p/3."

#hide p(X,Y,Z). % Same as "#hide p/3."
hide p(X,Y,Z). % Same as "#hide p/3."

In order to selectively include the atoms of a certain predicate in the output, one may
use the #show declarative (in which # is again optional). Here are some examples:

#show p/3. % Include all atoms of predicate p/3 in output
show p/3. % Same as "#show p/3."

#show p(X,Y,Z). % Same as "#show p/3."
show p(X,Y,Z). % Same as "#show p/3."

A typical usage of #hide and #show is to hide all predicates via “#hide.” and to
selectively re-add atoms of certain predicates p/n to the output via “#show p/n.”

Constant Replacement. Constants appearing in a logic program may actually be
placeholders for concrete values to be provided by a user. An example of this will be
given in Section 5.1. Via the #const declarative (# is optional), one may define a
default value to be inserted for a constant. Such a default value can still be overridden
via command line option --const (cf. Section 6.1). Syntactically, #const must be
followed by an assignment having a (symbolic) constant on the left-hand side and a
term on the right-hand side. Some exemplary #const declarations are:

#const x = 42.
const y = f(g,h).

Domain Declarations. Usually, variable names are local to a rule, where they must
be bound via appropriate atoms (cf. Section 3.1). This locality can be undermined by
using #domain declarations (# is optional) that globally associate variable names to
atoms. An associated atom is then simply added to the body of a rule in which such a
predefined variable name occurs in. The following is a made-up example:

p(1,1). p(1,2).
#domain p(X,Y).
domain p(Y,Z).

q(Z,X) :- not p(Z,X).

The above program is a priori not level-restricted because variables X and Z are un-
bound in the last rule. However, as they belong to #domain declarations, gringo
and clingo expand the last rule to:

q(Z,X) :- p(X,Y), p(Y,Z), not p(Z,X).

Observe that the resulting program is level-restricted (and stratified).

Compute Statements. These statements are artefacts supported for backward com-
patibility. Although we strongly recommend to avoid compute statements, we now de-
scribe their syntax. A compute statement is of the form “#compute n{ . . .}.” (# and
non-negative integer n are optional), where the “{ . . .}” part is similar to a count ag-
gregate. The meaning is that all literals contained in “{ . . .}” must hold w.r.t. answer
sets that are to be computed, while n specifies a number of answer sets to compute. As
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clasp, clingo, and iclingo provide command line option --number (cf. Sec-
tion 6.4) to specify how many answer sets are to be computed, they simply ignore n.
Furthermore, the “{ . . .}” part can equivalently be expressed in terms of integrity con-
straints, as indicated in the comments provided along with the following example:

q(1;2).
{ p(1..5) }.
#compute 0 { p(X) : q(X) }. % :- 1 { not p(X) : q(X) }.
compute { not p(X) : X=4..5 }. % :- 1 { p(X) : X=4..5 }.

4.2 Input Language of iclingo
System iclingo [28] extends clingo by an incremental computation mode that
incorporates both grounding and solving. Hence, its input language includes all con-
structs described in Section 4.1.17 In addition, iclingo deals with statements of the
following form:

#base.
#cumulative constant.
#volatile constant.

Via “#base.,” the subsequent part of a logic program is declared as static, that is, it
is processed only once at the beginning of an incremental computation. In contrast,
“#cumulative constant.” and “#volatile constant.” are used to de-
clare a (symbolic) constant as a placeholder for incremental step numbers. In the
parts of a logic program below a #cumulative statement, constant is in each
step replaced with the current step number, and the resulting rules, facts, and integrity
constraints are accumulated over a whole incremental computation. While the replace-
ment of constant is similar, a logic program part below a #volatile statement is
local to steps, that is, all rules, facts, and integrity constraints computed in one step are
dismissed before the next incremental step. Note that the type of a logic program part
(static, cumulative, or volatile) is determined by the last #base, #cumulative, or
#volatile statement preceding it.

During an incremental computation, all static program parts are grounded first,
while cumulative and volatile parts are grounded step-wise, replacing constants
with successive step numbers starting from 1. After a grounding step, clasp is usu-
ally invoked via an internal interface (like with clingo), and the incremental com-
putation stops after a step in which at least one answer set has been found by clasp.
This default behavior can be readapted via command line options (cf. Section 6.3). For
obtaining a well-defined incremental computation result, it is important that (ground)
head atoms within static, cumulative, and volatile program parts are distinct from each
other, and they must also be different from step to step (see [28] for details). In Sec-
tion 5.3, we will provide a typical example in which these conditions naturally hold.

4.3 Input Language of clasp
Solver clasp [29] works on logic programs in lparse’s output format [68]. This
numerical format, which is not supposed to be human-readable, is output by gringo
and can be piped into clasp. Such an invocation of clasp looks as follows:

17In its current version, iclingo has no built-in support for classical negation (cf. Section 4.1.2). That is,
complementary atoms may jointly belong to answer sets, unless explicitly prohibited by integrity constraints.
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gringo [ options | filenames ] | clasp [ number | options ]

Note that number may be provided to specify a maximum number of answer sets to
be computed, where 0 makes clasp compute all answer sets. This maximum number
can also be set via option --number or its abbreviation -n (cf. Section 6.4). By
default, clasp computes one answer set (if it exists). If a logic program in lparse’s
output format has been stored in a file, it can be redirected into clasp as follows:18

clasp [ number | options ] < file

Via option --dimacs, clasp can also be instructed to compute models of a proposi-
tional formula in DIMACS/CNF format [13]. If such a formula is contained in file,
then clasp can be invoked in the following way:

clasp [ number | options ] --dimacs < file

Finally, clasp may be used as a library, as done within clingo and iclingo.

5 Examples
We exemplarily solve the following problems in ASP: N -Coloring (Section 5.1), Trav-
eling Salesperson (Section 5.2), and Blocks-World Planning (Section 5.3). While the
first problem could likewise be solved within neighboring paradigms, the second one
requires checking reachability, something that is rather hard to encode in either Boolean
Satisfiability [9] or Constraint Programming [62]. The third problem coming from the
area of planning illustrates incremental solving with iclingo.

5.1 N -Coloring
As already mentioned in Section 2.1, it is custom in ASP to provide a uniform problem
definition [50, 56, 65]. We follow this methodology and separate the encoding from
an instance of the following problem: given a (directed) graph, decide whether each
node can be assigned one of N colors such that any pair of adjacent nodes is colored
differently. Note that this problem is NP-complete for N ≥ 3 (see, e.g., [59]), and
thus it seems unlikely that a worst-case polynomial algorithm can be found. In view of
this, it is convenient to reduce the particular problem to a declarative problem solving
paradigm like ASP, where efficient off-the-shelf tools like gringo and clasp are
ready to solve the problem reasonably well. Such a reduction is now exemplified.

5.1.1 Problem Instance

We consider directed graphs specified via facts over predicates node/1 and edge/2.19

The graph shown in Figure 3 is represented by the following set of facts:

1 % Nodes
2 node(1..6).
3 % (Directed) Edges
4 edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).
5 edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

Recall from Section 4.1 that “..” and “;” in the head expand to multiple rules, which
are facts here. Thus, the instance contains six nodes and 17 directed edges.

18The same is achieved by using option --file or its short form -f (cf. Section 6.4).
19Directedness is not an issue inN -Coloring, but we will reuse our directed example graph in Section 5.2.
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Figure 3: A Directed Graph with Six Nodes and 17 Edges.

5.1.2 Problem Encoding

We now proceed by encoding N -coloring via non-ground rules that are independent of
particular instances. Typically, an encoding consists of a Generate, a Define, and a Test
part [45]. As N -Coloring has a rather simple pattern, the following encoding does not
contain any Define part:

1 % Default
2 #const n = 3.
3 % Generate
4 1 { color(X,1..n) } 1 :- node(X).
5 % Test
6 :- edge(X,Y), color(X,C), color(Y,C).

In Line 2, we use the #const declarative, described in Section 4.1.12, to install 3 as
default value for constant n that is to be replaced with the number N of colors. (The
default value can be overridden by invoking gringo with option --const n=N .)
The Generate rule in Line 4 makes use of the count aggregate (cf. Section 4.1.10).
For our example graph and 1 substituted for X, we obtain the following ground rule: The full ground program is ob-

tained by invoking:
gringo -t \
examples/color.lp \
examples/graph.lp

1 { color(1,1), color(1,2), color(1,3) } 1.

Note that node(1) has been removed from the body, as it is derived via a correspond-
ing fact, and similar ground instances are obtained for the other nodes 2 to 6. Fur-
thermore, for each instance of edge/2, we obtain n ground instances of the integrity
constraint in Line 6, prohibiting that the same color C is assigned to the adjacent nodes.
Given n=3, we get the following ground instances due to edge(1,2):

:- color(1,1), color(2,1).
:- color(1,2), color(2,2).
:- color(1,3), color(2,3).

Again note that edge(1,2), derived via a fact, has been removed from the body.

5.1.3 Problem Solution

Provided that a given graph is colorable with n colors, a solution can be read off an
answer set of the program consisting of the instance and the encoding. For the graph
in Figure 3, the following answer set can be computed: To find an answer set, invoke:

gringo \
examples/color.lp \
examples/graph.lp | \
clasp

or alternatively:
clingo \
examples/color.lp \
examples/graph.lp
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Figure 4: A 3-Coloring for the Graph in Figure 3.

Answer: 1
... color(1,2) color(2,1) color(3,1) color(4,3) color(5,2) color(6,3)

Note that we have omitted the six instances of node/1 and the 17 instances of edge/2
in order to emphasize the actual solution, which is depicted in Figure 4. Such output
projection can also be specified within a logic program file by using the declaratives
#hide and #show, described in Section 4.1.12.

5.2 Traveling Salesperson
We now consider the well-known Traveling Salesperson Problem (TSP), where the task
is to decide whether there is a round trip that visits each node in a graph exactly once
(viz., a Hamiltonian cycle) and whose accumulated edge costs must not exceed some
budget B. We tackle a slightly more general variant of the problem by not a priori
fixing B to any integer. Rather, we want to compute a minimum budget B along with
a round trip of cost B. This problem is FPNP-complete (cf. [59]), that is, it can be
solved with a polynomial number of queries to an NP-oracle. As with N -Coloring, we
provide a uniform problem definition by separating the encoding from instances.

5.2.1 Problem Instance

We reuse graph specifications in terms of predicates node/1 and edge/2 as in Sec-
tion 5.1.1. In addition, facts over predicate cost/3 are used to define edge costs:

1 % Edge Costs
2 cost(1,2,2). cost(1,3,3). cost(1,4,1).
3 cost(2,4,2). cost(2,5,2). cost(2,6,4).
4 cost(3,1,3). cost(3,4,2). cost(3,5,2).
5 cost(4,1,1). cost(4,2,2).
6 cost(5,3,2). cost(5,4,2). cost(5,6,1).
7 cost(6,2,4). cost(6,3,3). cost(6,5,1).

Figure 5 shows the (directed) graph from Figure 3 along with the associated edge costs.
Symmetric edges have the same costs here, but differing costs would also be possible.
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Figure 5: The Graph from Figure 3 along with Edge Costs.

5.2.2 Problem Encoding

The first subproblem consists of describing a Hamiltonian cycle, constituting a candi-
date for a minimum-cost round trip. Using the Generate-Define-Test pattern [45], we
encode this subproblem via the following non-ground rules:

1 % Generate
2 1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
3 1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).
4 % Define
5 reached(Y) :- cycle(1,Y).
6 reached(Y) :- cycle(X,Y), reached(X).
7 % Test
8 :- node(Y), not reached(Y).
9 % Display

10 #hide.
11 #show cycle/2.

The Generate rules in Line 2 and 3 assert that every node must have exactly one outgo-
ing and exactly one incoming edge, respectively, belonging to the cycle. By inserting
the available edges, for node 1, Line 2 and 3 are grounded as follows: The full ground program is ob-

tained by invoking:
gringo -t \
examples/ham.lp \
examples/min.lp \
examples/costs.lp \
examples/graph.lp

1 { cycle(1,2), cycle(1,3), cycle(1,4) } 1.
1 { cycle(3,1), cycle(4,1) } 1.

Observe that the first rule groups all outgoing edges of node 1, while the second one
does the same for incoming edges. We proceed by considering the Define rules in
Line 5 and 6, which recursively check whether nodes are reached by a cycle candidate
produced via the Generate part. Note that the rule in Line 5 builds on the assumption
that the cycle “starts” at node 1, that is, any successor Y of 1 is reached by the cycle.
The second rule in Line 6 states that, from a reached node X, an adjacent node Y can
be reached via a further edge in the cycle. Note that this definition admits positive
recursion among the ground instances of reached/1, in which case a ground program
is called non-tight [22, 23]. The “correct” treatment of (positive) recursion due to
the justification requirement w.r.t. the reduct (cf. Section 2.3) is a particular feature of
answer set semantics, which is hard to mimic in either Boolean Satisfiability [9] or
Constraint Programming [62]. In our present problem, this feature makes sure that all
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Figure 6: A Minimum-Cost Round Trip.

nodes are reached by a global cycle from node 1, thus, excluding isolated subcycles. In
fact, the Test in Line 8 stipulates that every node in the given graph is reached, that is,
the instances of cycle/2 in an answer set must be the edges of a Hamiltonian cycle. To compute the six Hamilto-

nian cycles for the graph in Fig-
ure 3, invoke:
gringo \
examples/ham.lp \
examples/graph.lp | \
clasp -n 0

or alternatively:
clingo -n 0 \
examples/ham.lp \
examples/graph.lp

Finally, the additional Display part in Line 10 and 11 states that answer sets should be
projected to instances of cycle/2, as only they describe a solution. We have so far not
considered edge costs, and answer sets for the above part of the encoding correspond
to Hamiltonian cycles, that is, candidates for a minimum-cost round trip.

In order to minimize costs, we add the following optimization statement:

13 % Optimize
14 minimize [ cycle(X,Y) : cost(X,Y,C) = C ].

Here, edges belonging to the cycle are weighted according to their costs. After ground-
ing, the minimization in Line 14 ranges over 17 instances of cycle/2, one for each
weighted edge in Figure 5.

5.2.3 Problem Solution

Finally, we explain how the unique minimum-cost round trip (depicted in Figure 6)
can be computed. The catch is that we are now interested in optimal answer sets, rather
than in arbitrary ones. In order to determine the optimum, we can start by gradually
decreasing the costs associated to answer sets until we cannot find a strictly better
one anymore. To this end, it is important to invoke clasp (or clingo) with option
“-n 0” (cf. Section 6.4), making it enumerate successively better answer sets w.r.t.
the provided optimization statements (cf. Section 4.1.11). Any answer set is printed as
soon as it has been computed, and the last one is optimal. If there are multiple optimal
answer sets, an arbitrary one among them is computed. For the graph in Figure 5, the
optimal answer set (cf. Figure 6) is unique, and its computation can proceed as follows: To compute the minimum-cost

round trip for the graph in Fig-
ure 5, invoke:
gringo \
examples/ham.lp \
examples/min.lp \
examples/costs.lp \
examples/graph.lp | \
clasp -n 0

or alternatively:
clingo -n 0 \
examples/ham.lp \
examples/min.lp \
examples/costs.lp \
examples/graph.lp

Answer: 1
cycle(1,3) cycle(2,4) cycle(3,5) \
cycle(4,1) cycle(5,6) cycle(6,2)
Optimization: 13
Answer: 2
cycle(1,2) cycle(2,5) cycle(3,4) \
cycle(4,1) cycle(5,6) cycle(6,3)
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Optimization: 11

Given that no answer is obtained after the second one, we know that 11 is the opti-
mum value, but there might be more optimal answer sets that have not been computed
yet. In order to find them too, we can use the following command line options of
clasp (cf. Section 6.4): “--opt-value=11” in order to initialize the optimum
and “--opt-all” to compute also equitable (rather than only strictly better) an-
swer sets. After obtaining only the second answer given above, we are sure that this The full invocation is:

gringo \
examples/ham.lp \
examples/min.lp \
examples/costs.lp \
examples/graph.lp | \
clasp -n 0 \
--opt-value=11 \
--opt-all

or alternatively:
clingo -n 0 \
--opt-value=11 \
--opt-all \
examples/ham.lp \
examples/min.lp \
examples/costs.lp \
examples/graph.lp

is the unique optimal answer set, whose associated edge costs (cf. Figure 6) corre-
spond to the reported optimization value 11. Note that, with maximize statements
in the input, this correlation might be less straightforward because they are compiled
into minimize statements in the process of generating lparse’s output format [68].
Furthermore, if there are multiple optimization statements, clasp (or clingo) will
report separate optimization values ordered by significance. Finally, the two-stage in-
vocation scheme exercised above, first determining the optimum and afterwards all
(and only) optimal answer sets, is recommended for general use. Otherwise, if using
option “--opt-all” right away without knowing the optimum, one risks the enumer-
ation of plenty suboptimal answer sets. We also invite everyone to explore command
line option “--opt-restart” (cf. Section 6.4) in order to see whether it improves
search efficiency on optimization problems.

5.3 Blocks-World Planning
The Blocks-World is a well-known planning domain, where finding shortest plans has
received particular attention [41]. In an eventually propositional formalism like ASP,
a bound on the plan length must be fixed before search can proceed. This is usually
accomplished by including some constant t in an encoding, which is then replaced
with the actual bound during grounding. Of course, if the length of a shortest plan is
unknown, an ASP system must repeatedly be queried while varying the bound. With a
traditional ASP system, processing the same planning problem with a different bound
involves grounding and solving from scratch. In order to reduce such redundancies, the
incremental ASP system iclingo [28] can gradually increase a bound, doing only the
necessary additions in each step. Note that planning is a natural application domain for
iclingo, but other problems including some mutable bound can be addressed too,
thus, iclingo is not a specialized planning system. However, we use Blocks-World
Planning to illustrate the exploitation of iclingo’s incremental computation mode.

5.3.1 Problem Instance

As with the other two problems above, an instance is given by a set of facts, here, over
predicates block/1 (declaring blocks), init/1 (defining the initial state), and goal/1
(specifying the goal state). A well-known Blocks-World instance is described by:20

1 % Sussman Anomaly
2 %
3 block(b0).
4 block(b1).
5 block(b2).
6 %

20Blocks-World instances “examples/worldi.lp” for i ∈ {0,1,2,3,4} are adaptations of the in-
stances provided at [21].
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7 % initial state:
8 %
9 % 2

10 % 0 1
11 % -------
12 %
13 init(on(b1,table)).
14 init(on(b2,b0)).
15 init(on(b0,table)).
16 %
17 % goal state:
18 %
19 % 2
20 % 1
21 % 0
22 % -------
23 %
24 goal(on(b1,b0)).
25 goal(on(b2,b1)).
26 goal(on(b0,table)).

Note that the facts in Line 13–15 and 24–26 specify the initial and the goal state de-
picted in Line 9-11 and 19–22, respectively. We here use (uninterpreted) function on/2
to illustrate another important feature available in gringo, clingo, and iclingo,
namely, the possibility of instantiating variables to compound terms.

5.3.2 Problem Encoding

Our Blocks-World Planning encoding for iclingomakes use of declaratives #base,
#cumulative, and #volatile, separating the encoding into a static, a cumulative,
and a volatile (query) part. Each of them can be further refined into Generate, Define,
Test, and Display constituents, as indicated in the comments below:

1 #base.
2 % Define
3 location(table).
4 location(X) :- block(X).
5 holds(F,0) :- init(F).
6 %
7 #cumulative t.
8 % Generate
9 1 { move(X,Y,t) : block(X) : location(Y) : X != Y } 1.

10 % Test
11 :- move(X,Y,t),
12 1 { holds(on(A,X),t-1) : block(A) : A != X,
13 holds(on(B,Y),t-1) : block(B) : B != X : B != Y : Y != table }.
14 % Define
15 holds(on(X,Y),t) :- move(X,Y,t).
16 holds(on(X,Z),t) :- holds(on(X,Z),t-1), block(X), location(Z), X != Z,
17 { move(X,Y,t) : location(Y) : Y != X : Y != Z } 0.
18 %
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19 #volatile t.
20 % Test
21 :- goal(F), not holds(F,t).
22 %
23 #base.
24 % Display
25 #hide.
26 #show move/3.

In the initial #base part (Line 1–5), we define blocks and constant table as instances
of predicate location/1. Moreover, we use instances of init/1 to initialize predi-
cate holds/2 for step 0, thus, defining the conditions before the first incremental step.
Note that variable F is instantiated to compound terms over function on/2.

The #cumulative statement in Line 7 declares constant t as a placeholder for
step numbers in the cumulative encoding part below. Here, the Generate rule in Line 9
states that exactly one block X must be moved to a location Y (different from X) at each
step t. The integrity constraint in Line 11–13 is used to test whether moving block X
to location Y is possible at step t by denying move(X,Y,t) to hold if there is either
some block A on X or some block B distinct from X on Y (this condition is only checked
if Y is a block, viz., different from constant table) at step t-1. Finally, the Define
rule in Line 15 propagates a move to the state at step t, while the rule in Line 16–17
states that a block X stays on a location Z if it is not moved to any other location Y.
Note that we require atoms block(X) and location(Z) to bind variables X and Z
in the body of the latter rule, as recursive predicate holds/2 cannot be used for this
purpose (cf. the definition of level-restrictedness in Section 3.1).

The #volatile statement in Line 19 declares the next part as a query depending
on step number t, but not accumulated over successive steps. In fact, the integrity
constraint in Line 21 tests whether goal conditions are satisfied at step t.

Our incremental encoding concludes with a second #base part, as specified in
Line 23. Note that, for the meta-statements with Display functionality (Line 25–26), it
is actually unimportant whether they belong to a static, cumulative, or volatile program
part, as answer sets are projected (to instances of move/3) in either case. However, by
ending the encoding file with a #base statement, we make sure that the contents of a
concatenated instance file is included in the static program part. This is also the default
of iclingo (as well as of gringo and clingo that can be used for non-incremental
computations), but applying this default behavior triggers a warning (cf. Section 7.2). To observe the ground program

dealt with internally iclingo
at a step n, invoke:
gringo -t \
--ifixed=n \
examples/blocks.lp \
examples/worldi.lp

where i ∈ {0,1,2,3,4}.

Finally, let us stress important prerequisites for obtaining a well-defined incremen-
tal computation result from iclingo. First, the ground instances of head atoms of
rules in the static, cumulative, and volatile program part must be pairwisely disjoint.
Furthermore, ground instances of head atoms in the volatile part must not occur in
the static and cumulative parts, and those of the cumulative part must not be used in
the static part. Finally, ground instances of head atoms in either the cumulative or the
volatile part must be different for each pair of distinct steps. This is the case for our
encoding because both atoms over move/3 and those over holds/2 include t as an
argument in the heads of the rules in Line 9, 15, and 16–17. As the smallest step num-
ber to replace t with is 1, there also is no clash with the ground atoms over holds/2
obtained from the head of the static rule in Line 5. Further details on the sketched
requirements and their formal background can be found in [28]. Arguably, many prob-
lems including some mutable bound can be encoded such that the prerequisites apply.
Some attention should of course be spent on putting rules into the right program parts.
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5.3.3 Problem Solution

We can now use iclingo to incrementally compute the shortest sequence of moves
that brings us from the initial to the goal state depicted in the instance in Section 5.3.1: To this end, invoke:

iclingo -n 0 \
examples/blocks.lp \
examples/world0.lp

Answer: 1
move(b2,table,1) move(b1,b0,2) move(b2,b1,3)

This unique answer set tells us that the given problem instance can be solved by moving
block b2 to the table in order to then put b1 on top of b0 and finally b2 on top
of b1. This solution is computed by iclingo in three grounding and solving steps,
where, starting from the #base program, constant t is successively replaced with
step numbers 1, 2, and 3 in the #cumulative and in the #volatile part. While
the query postulated in the #volatile part cannot be fulfilled in steps 1 and 2,
iclingo stops its incremental computation after finding an answer set in step 3. The
scheme of iterating steps until finding at least one answer set is the default behavior
of iclingo, which can be customized via command line options (cf. Section 6.3).

Finally, let us describe how solutions obtained via an incremental computation can
be computed in the standard way, that is, in a single pass. To this end, the step num-
ber can be fixed to some n via option “--ifixed=n” (cf. Section 6.1), enabling For non-incremental solving,

invoke:
gringo --ifixed=n \
examples/blocks.lp \
examples/worldi.lp |\
clasp -n 0

or alternatively:
clingo -n 0 \
--ifixed=n \
examples/blocks.lp \
examples/worldi.lp

where i ∈ {0,1,2,3,4}.

gringo or clingo to generate the ground program present inside iclingo at
step n. Note that #volatile parts are here only instantiated for the final step n,
while #cumulative rules are added for all steps 1, . . . , n. Option “--ifixed=n”
can be useful for investigating the contents of a ground program dealt with at step n or
for using an external solver (other than clasp). In the latter case, repeated invocations
with varying n are required if the bound of an optimal solution is a priori unknown.

6 Command Line Options
In this section, we briefly describe the meanings of command line options supported by
gringo (Section 6.1), clingo (Section 6.2), iclingo (Section 6.3), and clasp
(Section 6.4). Each of these tools displays its available options when invoked with flag
--help or -h, respectively.21 The approach of distinguishing long options, starting
with “--,” and short ones of the form “-l,” where l is a letter, follows the GNU Cod-
ing Standards [38]. For obvious reasons, short forms are made available only for the
most common (long) options. Some options, also called flags, do not take any argu-
ment, while others require arguments. An argument arg is provided to a (long) option
opt by writing “--opt=arg” or “--opt arg,” while only “-l arg” is accepted
for a short option l. For each command line option, we below indicate whether it
requires an argument, and if so, we also describe its meaning.

6.1 gringo Options
An abstract invocation of gringo looks as follows:

gringo [ options | filenames ]

21Note that our description of command line options is based on Version 2.0.2 of gringo, clingo,
and iclingo as well as Version 1.1.2 of clasp. While it is rather unlikely that command line options
will disappear in future versions, additional ones might be introduced. We will try to keep this document
up-to-date, but checking the help information shipped with a new version is always a good idea.
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Note that options and filenames do not need to be passed to gringo in any particular
order. If neither a filename nor an option that makes gringo exit (see below) is
provided, gringo reads from the standard input. In the following, we list and describe
the options accepted by gringo along with their particular arguments (if required):

--help,-h
Print help information and exit.

--version,-v
Print version information and exit.

--syntax
Print syntax information (about the input language) and exit.

--stats
Print (extended) statistic information before termination.

--verbose,-V
Print additional (progress) information during computation.

--debug
Print internal representations of rules during grounding. (This may be used to
identify either semantic errors in an input program or performance bottlenecks.)

--const,-c c=t
Replace occurrences (in the input program) of a constant c with a term t.

--text,-t
Output ground program in (human-readable) text format.

--lparse,-l
Output ground program in lparse’s numerical format [68].

--aspils,-a 1|2|3|4|5|6|7
Output ground program in ASPils format [27], where the argument specifies one
of the seven normal forms defined in [27].

--ground,-g
Enable lightweight mode for processing a ground input program. (This option
is recommended to omit unnecessary overhead if the input program is already
ground, but it leads to a syntax error (cf. Section 7.1) otherwise.)

--bindersplit yes|no
Enable or disable binder-splitting [33] in the instantiation of rules. (This option
is included mainly for comparison purposes, and generally, it is recommended to
keep the default argument value yes.)

--ifixed n
Use n as fix step number if the input program contains #cumulative or
#volatile statements. (This option permits the handling of programs writ-
ten for iclingo in a traditional single pass computation.)

--ibase
Process only the static part (that can be initiated by a #base statement) of an
input program. (This option may be used to investigate the basic setting of a
problem including some mutable bound.)
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The default command line when invoking gringo is as follows:

gringo --lparse --bindersplit=yes

That is, gringo usually outputs a ground program in lparse’s numerical format,
dealt with by various solvers (cf. Section 2.1), and it performs binder-splitting in rule
instantiation.

6.2 clingo Options
ASP system clingo combines grounder gringo and solver clasp via an internal
interface. An abstract invocation of clingo looks as follows:

clingo [ number | options | filenames ]

A numerical argument is permitted for backward compatibility to the usage of solver
smodels [66], where it specifies the maximum number of answer sets to be computed
(0 standing for all answer sets). As with gringo, a number, options, and filenames do
not need to be passed to clingo in any particular order. Given that clingo combines
gringo and clasp, it accepts all options described in the previous section and in
Section 6.4. In particular, (long) options --help, --version, and --syntax
make clingo print the desired information and exit, while --text, --lparse, and
--aspils instruct clingo to output a ground program (rather than solving it) like
gringo. If neither a filename nor an option that makes clingo exit (see Section 6.1)
is provided, clingo reads from the standard input. Beyond the options described in
Section 6.1 and 6.4, clingo has a single additional option:

--clasp
Run clingo as a plain solver (using embedded clasp).

Finally, the default command line when invoking clingo consists of all clasp de-
faults (cf. Section 6.4) and option --bindersplit=yes of gringo.

6.3 iclingo Options
Incremental ASP system iclingo extends clingo by interleaving grounding and
solving for problems including a mutable bound, and an abstract invocation of
iclingo is as with clingo:

iclingo [ number | options | filenames ]

The external behavior of iclingo is similar to clingo, described in the previous
section, except for the fact that option --ifixed is ignored by iclingo if not run as
a grounder (via one of (long) options --text, --lparse, or --aspils). However,
option --clingo (see below) may be used to let iclingo work like clingo. The
additional options of iclingo focus on customizing incremental computations:

--istats
Print statistic information for each incremental solving step.

--imin n
Perform at least n incremental solving steps before termination. (This may be
used to force steps regardless of the termination condition set via --istop.)
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--imax n
Perform at most n incremental solving steps before termination. (This may be
used to limit steps regardless of the termination condition set via --istop.)

--istop SAT|UNSAT
Terminate after an incremental solving step in which some (SAT) or no (UNSAT)
answer set has been found.

--iquery n
Start with incremental solving at step number n. (This may be used to skip some
solving steps, still accumulating static and cumulative rules for these steps.)

--ilearnt keep|forget
Maintain (keep) or delete (forget) learnt constraints in-between incremental
solving steps. (This option configures the behavior of embedded clasp.)

--iheuristic keep|forget
Maintain (keep) or delete (forget) heuristic information in-between incre-
mental solving steps. (This option configures the behavior of embedded clasp.)

--clingo
Run iclingo as a non-incremental ASP system (like clingo).

As with clingo, the default command line when invoking iclingo consists of
all clasp defaults, explained in the next section, option --bindersplit=yes
of gringo (cf. Section 6.1), along with --istop=SAT, --iquery=1,
--ilearnt=keep, and --iheuristic=forget. That is, incremental solving
starts at step number 1 and stops after a step in which some answer set has been found.
In-between incremental solving steps, embedded clasp maintains learnt constraints
but deletes heuristic information.

6.4 clasp Options
Stand-alone clasp [29] is a solver for ground programs in lparse’s numerical for-
mat [68]. An abstract invocation of clasp looks as follows:

clasp [ number | options ]

As with clingo and iclingo, a numerical argument specifies the maximum num-
ber of answer sets to be computed, where 0 stands for all answer sets. (The number
of requested answer sets can likewise be set via long option --number or its short
form -n.) If neither a filename (via long option --file or its short form -f) nor an
option that makes clasp exit (see below) is provided, clasp reads from the standard
input. In fact, it is typical to use clasp in a pipe with gringo in the following way:

gringo [ ... ] | clasp [ ... ]

In such a pipe, gringo instantiates an input program and outputs the ground rules
in lparse’s numerical format, which is then consumed by clasp that computes and
outputs answer sets. Note that clasp offers plenty of options to configure its behavior.
We thus categorize them according to their functionalities in the following description.
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6.4.1 General Options

We below group general options of clasp, used to configure its global behavior.

--help,-h
Print help information and exit.

--version,-v
Print version information and exit.

--stats
Print (extended) statistic information before termination.

--file,-f filename
Read from file filename (rather than from the standard input).

--number,-n n
Compute at most n answer sets, n = 0 standing for compute all answer sets.

--quiet,-q
Do not print computed answer sets. (This is useful for benchmarking.)

--seed n
Use seed n (rather than 1) for random number generator.

--brave
Compute the brave consequences (union of all answer sets) of a logic program.

--cautious
Compute the cautious consequences (intersection of all answer sets) of a logic
program.

--opt-all
Compute all optimal answer sets (cf. Section 4.1.11). (This is implemented by
enumerating [30] answer sets that are not worse than the best one found so far.)

--opt-restart
Restart the search from scratch (rather than doing enumeration [30]) after finding
a provisionally optimal answer set. (This may speed up finding the optimum.)

--opt-value n1[,n2,n3...]
Initialize objective function(s) to minimize with n1[,n2,n3...]. Depending
on the reasoning mode, only equitable or strictly better answer sets are computed.

--supp-models
Compute supported models [3] (rather than answer sets).

--dimacs
Compute models of a propositional formula in DIMACS/CNF format [13].

--trans-ext all|choice|weight|no
Compile extended rules [66] into normal rules of form (1). Arguments choice
and weight state that all “choice rules” or all “weight rules,” respectively, are
to be compiled into normal rules, while all means that both and no that none
of them are subject to compilation.
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--eq n
Run equivalence reasoning [32] for n iterations, n = -1 and n = 0 standing for
run to fixpoint or do not run equivalence reasoning, respectively.

--sat-prepro yes|no|n1[,n2,n3]
Run SatElite-like preprocessing [17] for at most n1 iterations (n1 = -1 standing
for run to fixpoint), using cutoff n2 for variable elimination (n2 = -1 standing
for no cutoff), and for no longer than n3 seconds (n3 = -1 standing for no time
limit). Arguments yes and no mean n1 = n2 = n3 = -1 (that is, run to
fixpoint) or that SatElite-like preprocessing is not to be run at all, respectively.

--rand-watches yes|no
Initially choose watched literals randomly (with argument yes) or systemati-
cally (with argument no).

Having introduced the general options of clasp, let us note that the options below
--dimacs in the above list are quite low-level and more or less an issue of fine-
tuning. More important is the fact that virtually all optimization functionalities are
only provided by clasp if the maximum number of answer sets to be computed is set
to 0 (standing for all answer sets), as it is likely to stop search too early otherwise. The
same applies to computing either brave or cautious consequences (via one of the flags
--brave and --cautious).

6.4.2 Search Options

The options listed below can be used to configure the main search strategies of clasp.

--lookback yes|no
Enable or disable lookback techniques (cf. Section 6.4.3). (This option is in-
cluded mainly for comparison purposes, and generally, it is recommended to
keep the default argument value yes.)

--lookahead atom|body|hybrid|auto|no
Apply failed-literal detection [26] to atoms (with argument atom), to rule bodies
(with argument body), to atoms and rule bodies like in nomore++ [1] (with
argument hybrid), or let clasp pick one of the previous three possibilities
based on program properties (with argument auto). Failed-literal detection is
switched off via argument no.

--initial-lookahead
Apply failed-literal detection (to atoms) in preprocessing, but not (necessarily)
during search.

--heuristic Berkmin|Vmtf|Vsids|Unit|None
Use BerkMin-like decision heuristic [40] (with argument Berkmin), Siege-
like decision heuristic [63] (with argument Vmtf), Chaff -like decision heuris-
tic [55] (with argument Vsids), Smodels-like decision heuristic [66] (with ar-
gument Unit), or (arbitrary) static variable ordering (with argument None).

--rand-freq p
Perform random (rather than heuristic) decisions with probability 0 ≤ p ≤ 1.
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--rand-prob yes|no|n1,n2
Run Satzoo-like random probing [16], initially performing n1 passes of up to n2
conflicts making random decisions. Arguments yes and no mean n1 = 50,
n2 = 20 or that random probing is not to be run at all, respectively.

Let us note that switching the above options can have dramatic effects (both positively
and negatively) on the search performance of clasp. Sticking to the default argument
values yes for --lookback and no for --lookahead is generally recommended.
If nonetheless performance bottlenecks are observed, it is worthwhile to give Vmtf and
Vsids for --heuristic a try, in particular, when the program under consideration
is huge but scarcely yields conflicts during search.

6.4.3 Lookback Options

The following options have an effect only if --lookback is turned on, that is, its
argument value must be yes.

--restarts,-r n1[,n2,n3]|no
Choose and parameterize a restart policy. If a single argument n1 is provided,
clasp restarts search from scratch after a number of conflicts determined by a
universal sequence [49], where n1 constitutes the base unit. If two arguments
n1,n2 are specified, clasp runs a geometric sequence [18], restarting every
n1 ∗ n2i conflicts, where i is the number of restarts performed so far. Given
three arguments n1,n2,n3, clasp repeats geometric restart sequence n1∗n2i

when it reaches an outer limit n1 ∗ n3j [8], where j counts how often the outer
limit has been hit so far. Finally, restarts are disabled via argument no.

--local-restarts
Count conflicts locally [64] (rather than globally) for deciding when to restart.

--bounded-restarts
Perform bounded restarts in answer set enumeration [30].

--save-progress
Use cached (rather than heuristic) decisions [60] if available.

--shuffle,-s n1,n2
Shuffle internal data structures after n1 restarts (n1 = 0 standing for no shuf-
fling) and then reshuffle every n2 restarts (n2 = 0 standing for no reshuffling).

--deletion,-d n1[,n2,n3]
Limit the number of learnt constraints to min{(c/n1) ∗ n2i, c ∗ n3}, where c is
the initial number of constraints and i is the number of restarts performed so far.

--reduce-on-restart
Delete a portion of learnt constraints after every restart.

--strengthen bin|tern|all|no
Check binary (with argument bin), binary and ternary (with argument tern),
or all (with argument all) antecedents for self-subsumption [17] in order to
strengthen a constraint to learn. Strengthening is disabled via argument no.

--recursive-str
Recursively apply strengthening, as proposed in [67].
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--loops common|distinct|shared|no
Learn loop nogood [31] per atom in an unfounded set [70] (with argument
common), shrink unfounded set before learning another loop nogood (with argu-
ment distinct), learn loop formula [47] for atoms in an unfounded set (with
argument shared), or do not record unfounded sets at all (with argument no).

--contraction n
Temporarily truncate learnt constraints over more than n variables [63].

As with search options described in the previous section, switching lookback options
may have a significant impact on the performance of clasp. In particular, we suggest
trying the universal restart sequence [49] with different base units n1 or even disabling
restarts (both via (long) option --restarts or its short form -r) in case that perfor-
mance needs to be improved.

Finally, let us consider the default command line of clasp:

clasp 1 --seed=1 --trans-ext=no --eq=5 --sat-prepro=no
--rand-watches=yes --lookback=yes --lookahead=no
--heuristic=Berkmin --rand-freq=0.0 --rand-prob=no
--restarts=100,1.5 --shuffle=0,0 --deletion=3.0,1.1,3.0
--strengthen=all --loops=common --contraction=250

Considering only the most significant defaults, numeric argument 1 instructs clasp
to terminate immediately after finding an answer set, and with --lookback=yes,
--restarts=100,1.5 lets clasp apply a geometric restart policy.

7 Errors and Warnings
This section explains the most frequent errors and warnings related to inappropriate
inputs or command line options that, if they occur, lead to messages sent to the standard
error stream. The difference between errors and warnings is that the former involve
immediate termination, while the latter are hints pointing at possibly corrupt input that
can still be processed further. In the below description of errors (Section 7.1) and
warnings (Section 7.2), we refrain from attributing them to a particular one among the
tools gringo, clasp, clingo, and iclingo, in view of the fact that they share a
number of functionalities.

7.1 Errors
We start our description with errors that may be encountered during grounding, where
the following one indicates a syntax error in the input:

syntax error on line L column C unexpected token: T

To correct this error, please investigate the line L and check whether something looks
strange there (like a missing period, an unmatched parenthesis, etc.).

The next error occurs if an input program is not level-restricted (cf. Section 3.1):

the following rule cannot be grounded, \
weakly restricted variables: { V, ... }

rule
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Along with the error message, the rule and the name V of at least one variable causing
the problem are reported. The first action to take usually consists of checking whether
variable V is actually in the scope of any atom (in the positive body of rule) that can
bind it.22 If V is a local variable belonging to an atom A on the left-hand side of a
condition (cf. Section 4.1.8) or to an aggregate (cf. Section 4.1.10), an atom over some
domain predicate might be included in a condition to bind V . In particular, if A itself
is over a domain predicate, the problem is often easily fixed by writing “A:A.” If the
problem is not as simple, then the predicates of all atoms that in principle may be used
to bind V are involved in positive recursion through the predicate of some atom in the
head of rule. In this case, the positive bodies of some of the rules subject to recursion
must be augmented with additional atoms over non-recursive predicates that can bind
variables, in order to eventually establish level-restrictedness. As breaking recursion is
a rather global matter, the reported rule is not necessarily the best place to tackle it.

The following error is related to conditions (cf. Section 4.1.8):

the following rule cannot be grounded, \
non domain predicates : { p(...), ... }

rule

The problem is that an atom p(...) such that its predicate p/i is not a domain
predicate (cf. Section 3.2) is used on the right-hand side of a condition within rule.
The error is corrected by either removing the atom or by replacing it with another atom
over a domain predicate.

The next errors may occur within an arithmetic evaluation (cf. Section 4.1.4):

trying to convert string to int
trying to convert functionsymbol to int

It means that either a (symbolic) constant or a compound term (over an uninterpreted
function with non-zero arity) has occurred in the scope of some built-in arithmetic
function. Unfortunately, no context information is provided yet, which is left as an
issue to future work (cf. Section 8).

The below errors are related to built-in comparison predicates (cf. Section 4.1.5):

comparing different types
comparing function symbols

The first error indicates that one of the built-in comparison predicates <, <=, >, and >=
has been applied to an integer or a (symbolic) constant and a term of a different sort,
while the second error means that compound terms have occurred in such a compari-
son. The mere reason for these errors is that the required functionalities have not been
implemented yet, so that the errors are likely to disappear in the future (cf. Section 8).

An error occurs if a constant c ought to be replaced with a term t containing c:

cyclic constant definition

To resolve such an error, check the occurrences of #const in the input as well as
--const or -c options in the command line, and change them in a way such that a
constant that is to be replaced does not (transitively) occur in a term to be inserted.

The next error may occur if a statement from the input language of iclingo
(cf. Section 4.2) is used in the input of gringo, clingo, or iclingo run non-
incrementally (via one of options --text, --lparse, --aspils, or --clingo):

22Recall from Section 4.1.4 and 4.1.5 that a variable in the scope of a built-in arithmetic function may not
be bound by a corresponding atom and that built-in comparison predicates do not bind any variable.
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A fixed number of incremental steps is needed to ground the program.

This problem is solved by providing a step number via option --ifixed.
The following error may be reported by iclingo:

The following statement cant be used with the incremental interface:
rule

The rule contains a #maximize, #minimize, or #compute statement, which are
currently not supported within incremental computations. Their support by iclingo
is an issue to future work (cf. Section 8).

The next error may occur if ASPils [27] output is requested via option --aspils:

e not allowed in this normal form, \
please choose normal form n.

The chosen normal form (in-between 1 and 7) does not cover the input language ex-
pression e, and one among the normal forms n suggested in the error message ought
to be provided as an argument instead.

The following error message is issued by (embedded) clasp:

Input Error at line L: Symbol table expected!

This error means that the input does not comply with lparse’s numerical format [68].
It is not unlikely that the input can be processed by gringo, clingo, or iclingo.

The next error indicates that input in lparse’s numerical format [68] is corrupt:

Input Error at line L: Atom out of bounds

There is no way to resolve this problem. If the input has been generated by gringo,
clingo, or iclingo, please report the problem to the authors of this guide.

The following error message is issued by (embedded) clasp:

Input Error at line L: Unsupported rule type!

It means that some rule type in lparse’s numerical format [68] is not supported. Most
likely, the program under consideration contains rules with disjunction in the head.

A similar error may occur with clingo or iclingo:

sorry clasp cannot handle disjunctive rules!

The program under consideration contains rules with disjunction in the head, which are
currently not supported by clasp, but by claspD [15]. The integration of clasp
and claspD is a subject to future work (cf. Section 8).

All of the tools gringo, clasp, clingo, and iclingo try to expand incom-
plete (long) options to recognized ones. Parsing command line options may nonethe-
less fail due to the following three reasons:

unknown option: o
ambiguous option: ’o’ could be:

o1
o2
...

’a’: invalid value for Option ’o’

The first error means that a provided option o could not be expanded to one that is rec-
ognized, while the second error expresses that the result of expanding o is ambiguous.
Finally, the third error occurs if a provided argument a is invalid for option o. In either
case, option --help can be used to see the recognized options and their arguments.
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7.2 Warnings
The following warnings may be raised by gringo, clingo, or iclingo:

Warning: p/i is never defined.
Warning: sum with negative bounds in the body of a rule
Warning: multiple definitions of #const c

The first one, stating that a predicate p/i has occurred in some rule body, but not in
the head of any rule, might point at a mistyped predicate. The second warning means
that negative weights within a sum aggregate (cf. Section 4.1.10) have been compiled
away [66], which is semantically delicate [24]. Thus, we strongly recommend to avoid
negative weights within a sum aggregate in the positive body of a rule. Finally, the
third warning recognizes that multiple #const statements over the same constant c
are contained in the input, but only the first of them will be considered.

The next four warnings may be issued by iclingo:

Warning: There are no #base, #cumulative or #volatile sections.
Warning: Option ifixed will be ignored!
Warning: There are statements not within a #base, \

#cumulative or #volatile section.
These Statements are put into the #base section.

Warning: Classical negation is not handled correctly \
in combination with the incremental output.
You have to add rules like: :- a, -a. on your own! \
(at least for now)

For omitting the first warning, one may use option --clingo, as the input program
contains no statements particular to iclingo (cf. Section 4.2). Similarly, option
--clingo may be used to suppress the second warning, stating that a provided op-
tion --ifixed is ignored in incremental mode (if iclingo is not run as a grounder
via one of options --text, --lparse, or --aspils). The third warning states
that rules have been inserted into the static program part without a preceding #base
statement. This warning can be avoided by ending an encoding with #base. and by
supplying an instance file afterwards, as illustrated in Section 5.3. The fourth warning
refers to the fact that there currently is no built-in support for classical negation (cf.
Section 4.1.2) by iclingo. Hence, integrity constraints of the form “:- A,-A.”
have to be added explicitly by a user.

8 Future Work
We conclude this guide with a brief outlook on the future development of gringo,
clasp, clingo, and iclingo. An important goal of future releases will be improv-
ing usability by adding functionalities that make some errors and warnings obsolete or,
otherwise, by providing helpful context information along with the remaining ones. In
particular, we consider adding support for yet missing traditional features in incremen-
tal computations of iclingo and also the integration of clasp and claspD [15],
which would enable clasp, clingo, and iclingo to deal with disjunctive pro-
grams (cf. [19]) or, more generally, logic programs such that standard reasoning tasks
are complete for the second level of the polynomial hierarchy (cf. [59]). Moreover, we
are investigating less demanding restrictedness notions (cf. Section 3) that can broaden
the class of acceptable input programs. For the representation of ground programs,
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ASPils format [27] has been suggested to overcome limitations of lparse’s output
format [68], and we work on ASPils support in clasp. In the long term, limitations
inherent to present ASP systems, such as space explosion sometimes faced when repre-
senting multi-valued variables in a propositional formalism, might be extinguished by
systems combining ASP with neighboring paradigms like, e.g., Constraint Program-
ming [62]. Prototypical approaches in such directions already exist today [52, 57].
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A Differences to the Language of lparse
We below provide a (most likely incomplete) list of differences between the input lan-
guages of gringo [33] and lparse [68]. First of all, it is important to note that
the language of gringo significantly extends the one of lparse. For instance, min
and max aggregates (cf. Section 4.1.10) are not supported by lparse. Furthermore,
gringo provides full support for variables within compound terms (over uninterpreted
functions with non-zero arity). That is, an atom like p(f(X)) in the positive body of
a rule can potentially be used to bind X (cf. Section 3.1), while lparse would treat
f(X) like an arithmetic function (cf. Section 4.1.4) whose variables cannot be bound.
Finally, gringo deals with level-restricted programs (cf. Section 3.1), while lparse
requires programs to be ω-restricted [69]. As the latter are more restrictive, programs
for lparse tend to be more verbose than the ones for gringo. Thus, we do not sug-
gest writing programs in the input language of gringo for compatibility to lparse.

However, a bulk of existing encodings are written for lparse (see, e.g., [4]), and
gringo (likewise, clingo and iclingo) should actually be able to deal with most
of them. If this is not case, one of the following might be the reason:

• The input contains primed atoms like p’, which are (currently) not supported by
gringo.

• Symbolic names are used for built-in constructs, e.g., plus or eq for built-in
arithmetic function + or predicate ==, respectively. With a few exceptions (e.g.,
abs introduced in Section 4.1.4), such names are not associated to built-in con-
structs by gringo, as they may accidentally clash with users’ names otherwise.

• The input contains (or is instantiated to) a count aggregate (or a cardinality
constraints, respectively) containing duplicates of literals. Such duplicates are
not removed by lparse, e.g., it treats 2{p(c),p(c)} as a synonym for
2[p(c)=1,p(c)=1]. In contrast, gringo associates curly brackets to a
set (and square brackets to a multiset), as described in Section 4.1.10, so that
2{p(c),p(c)} is the same as 2{p(c)}, where the latter can clearly not hold.

• Pooling is expanded differently, e.g., lparse interprets p(X,Y;X,Z) as a
shorthand for p(X,Y),p(X,Z), while gringo expands it to p(X,Y,Z),
p(X,X,Z), as explained in Section 4.1.9.

• The input contains some (rather unusual) meta-statement, e.g., #external, not
supported by gringo.

As indicated above, the provided list is probably incomplete. If you would like some
difference(s) to be added, please contact the authors of this guide.
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