
_ V9.12.225

 Technical Notes

ARM7/ARM9 Family On-Chip Emulation

 iSYSTEM, May 2015 1/54

This document is intended to be used together with the CPU reference manual provided by
the silicon vendor. This document assumes knowledge of the CPU functionality and the
terminology and concepts defined and explained in the CPU reference manual. Basic
knowledge of winIDEA is also necessary. This document deals with specifics and advanced
details and it is not meant as a basic or introductory text.

Contents

Contents 1

1 Introduction 3

2 Emulation Options 5
2.1 Hardware Options 5
2.2 Initialization Sequence 6
2.3 JTAG Scan Speed 6

3 CPU Options 9
3.1 General Options 9
3.2 Debugging Options 10
3.3 Reset 12
3.4 NXP LPC 13
3.5 Advanced Options 14
3.6 STR9 15
3.7 Exceptions 17

4 Access Breakpoints 18

5 Hot Attach 19

6 Semihosting 20

7 Real-Time Memory Access 20
7.1 Introduction 20
7.2 Implementation 20
7.3 Samples 21

8 Internal FLASH Programming 22
8.1 NXP LPC2xxx Family 22
8.2 ST STR7 Family 28
8.3 ST STR9 Family 30
8.4 Atmel AT91SAM7S, AT91SAM7X and AT91SAM7A Series 32

9 NXP LPC32x0 ETB 35

10 JTAG Scan 37

11 Multi-Core Debugging 38
11.1 Multi-Core Debugging Background 38
11.2 Multi-Core Debugging Settings 38
11.2.1 Single Device Debugging in a Multi-device JTAG chain 39

12 Trace 41
12.1 ETM Trace 42
12.2 RTR Execution Trace 42

 iSYSTEM, May 2015 2/54

13 Coverage 43

14 Profiler 44

15 Getting Started 45

16 Troubleshooting 51

17 Emulation Notes 54

 iSYSTEM, May 2015 3/54

1 Introduction

The JTAG interface offers all basic debug functions, based on which a debugger is
implemented in winIDEA: Read and Write Memory, Read and Write Registers, Run and Stop.
Single step is not supported and must be implemented by the debugger on a higher level.
Two hardware breakpoints are available with ARM7, from which one is usually reserved for
source debugging; the other one is available to the user. If the code is loaded into RAM, an
unlimited number of software breakpoints can be set. Flash software breakpoints are also
supported on some microcontroller families (Atmel SAM7, ST STR7 & STR9, NXP
LPC2000). If software breakpoints are not used, the second hardware breakpoint can be
freed in the Debug/Debug Options/Debugging menu by unchecking the 'Reserve one
breakpoint for high level debugging' option.

The ARM7TDMI core-based MCUs include the Debug Communications Channel (DCC). This
is a communication channel implemented into the debug part of the MCU and enables the
communication between the debugger and the MCU. The debugger communicates through
the Terminal Window using JTAG, the MCU on the other side communicates through
coprocessor instructions. The communication is alive when the CPU is in running mode, in
stop mode there is no communication.

For more information about the Terminal Window and DCC use please refer to the Software
User's Guide, section 'Debug Session/Terminal Window'.

Debug features:

 Two hardware breakpoints

 Unlimited software breakpoints

 Fast internal/external FLASH programming

 Software flash breakpoints (MCU Family dependant)

 THUMB support

 Hot Attach

 Real-time memory access through monitor

 Little and big endian support

 On-Chip Trace

ARM THUMB

The Thumb instruction set is a subset of the most commonly used 32-bit ARM instructions.
Thumb instructions are each 16-bit long and have corresponding 32-bit ARM instruction that
has the same effect on the processor model. Thumb instructions operate with standard ARM
register configuration, allowing excellent interoperability between ARM and Thumb states.

On execution, 16-bit Thumb instructions are transparently decompressed to full 32-bit ARM
instructions in real-time, without performance loss.

Thumb code is typically 65% of the size of ARM code and provides 160% of the performance
of ARM code when running on a processor connected to a 16-bit memory system. Thumb
therefore is an advantage in applications with restricted bandwidth, where code density is
important. The availability of both 16-bit Thumb and 32-bit ARM instruction sets gives
designers the flexibility to emphasize performance or code size on a subroutine level,
according to the requirements of their applications. Note also that not all core registers are
available in Thumb mode.

 iSYSTEM, May 2015 4/54

Switching from native ARM 32-bit instruction set to 16-bit Thumb and back represents some
overhead for the application from the aspect of the overall performance. In the real
application, the executed Thumb code should be big enough that the increase in
performance due to Thumb instruction set use overcomes the loss in performance due to
necessary switch from 32-bit instruction set to Thumb instruction set and switch back to
native 32-bit instruction set at the end of the Thumb code.

Refer to ARM Core manual for more details on Thumb mode.

THUMB Code Debugging

The debugging can be performed as normal. When the THUMB code is being stepped, the
Data in the Code window is 16-bit long; otherwise it is 32-bit long. Not all CPU registers are
available in THUMB mode, although they can be seen in the SFR window. See the THUMB
section of the ARM7 manual for more information.

Supported CPUs

winIDEA supports all CPUs based on the ARM7DI, ARM7TDMI, ARM720T, ARM920T,
ARM922T, ARM925, ARM926EJS, ARM940T, ARM946ES, ARM966ES, ARM9E and
ARM9TDMI cores. Several microcontrollers have already been implemented, also with
special function register (SFR) information. If a specific microcontroller is not in the CPU list,
the core can be selected (i.e. ARM7TDMI, ARM7DI, etc.), the only backdraw is that the
special function registers will not appear. The special function registers can be implemented
for any microcontroller by request, only the SFR specification must be presented. Also
custom SFR definitions can be added, see the Hardware User’s Manual for more information.

Check with iSYSTEM for the latest list of supported CPUs.

 iSYSTEM, May 2015 5/54

2 Emulation Options

2.1 Hardware Options

Debug I/O levels

The development system can be configured in a way that the debug JTAG signals are driven
by the emulator or by the target voltage (Vref).

When 'Vref' Debug I/O level is selected, a voltage applied to the belonging reference voltage
pin on the target debug connector is used as a reference voltage for voltage follower, which
powers buffers, driving the debug
JTAG signals. The user must ensure that the target power supply is connected to the Vref pin
on the target JTAG connector and that it is switched on before the debug session is started.
If these two conditions are not meet, it is highly probably that the initial debug connection will
fail already. However in some cases it may succeed but then the system will behave
abnormal.

Sampling threshold levels (iTRACE PRO/GT only)

Voltage levels of the debug input and output signals are adjusted depending on the setting.

Hot Attach

The JTAG module supports the Hot Attach function. This is a function, which enables the
emulator to be connected to a working target device and have all debug functions available.

The procedure for Hot Attach:

1. The target application should be running.

2. Hot Attach should be selected in the software.

3. A download should be performed, but without the JTAG cable connected. The emulator
will be initialized and the ATTACH status will be shown.

4. Connect the JTAG cable.

 iSYSTEM, May 2015 6/54

5. Select the Attach option in the Debug menu. When this option is selected, the emulator
tries to communicate through JTAG. If it is successful, it shows the STOP or RUNNING
status. At this point, all debug functions are available.

6. When the debugging is finished, the CPU should be set to running and Detach selected
from the Debug menu. The status shown is ATTACH. Now the JTAG cable can be safely
removed.

If Hot attach is used, please refer to Hot Attach chapter for more details.

Note: Hot Attach function cannot be used for any flash programming or code download!

2.2 Initialization Sequence

The user must properly configure the CPU before the debug download (including the flash
programming) can take place to the memory area, which is not accessible upon the CPU
reset. This is essential for the applications using memory resources, for instance external
RAM or external flash, which are not accessible after the CPU reset. In such case, the
debugger executes a so-called initialization sequence immediately after the CPU reset, which
writes to the CPU registers configuring the CPU memory interface to the physical memory
and then the debug download is executed. Note that the initialization sequence must be set
up specific to the application. Besides enabling a disabled memory access upon reset, the
initialization sequence can also be used for instance to disable the CPU internal watchdog
being active after reset or to modify any other CPU registers, when it’s preferred to run the
application with the modified CPU reset state. Detailed information may be found in the
Initialization Sequence help topic.

2.3 JTAG Scan Speed

JTAG Scan Speed definition

Scan speed

The JTAG chain scanning speed can be set to:

 Slow - long delays are introduced in the JTAG scanning to support the slowest devices.
JTAG clock frequency varying from 1 kHz to 2000 kHz can be set.

InitializationSequence.html

 iSYSTEM, May 2015 7/54

 Fast – the JTAG chain is scanned with no delays.

 Burst – provides the ability to set the JTAG clock frequency varying from 4 MHz to 100
MHz.

 Burst+ - provides the ability to set the JTAG clock frequency varying from 4 MHz to 100
MHz

 RTCK - Adaptive RTCK clocking for ARM

 Free – this mode is not supported for ARM JTAG debug interface

Slow and Fast JTAG scanning is implemented by means of software toggling the necessary
JTAG signals. Burst mode is a mixture of software and hardware based scanning and should
normally work except when the JTAG scan frequency is an issue that is when the JTAG scan
frequency used by the hardware accelerator is too high for the CPU. In general, selecting an
appropriate scan frequency usually depends on scan speed limitations of the CPU. In Burst+
mode, complete scan is controlled by the hardware accelerator, which poses some
preconditions, which are not met with all CPUs. Consequentially, Burst+ mode doesn’t work
for all CPUs. Burst and Burst+ are not supported on iONE debug tool.

RTCK speed mode is available for ARM family only and is intended for targets which use
widely varying system clock during a debug session. For example, if the CPU switches to
different power modes and changes system clocks, the debugger will be able to maintain
synchronization with on-chip debug interface even at much slower clock. The target CPU
needs to provide RTCK synchronization signal, which must be available on pin 11 on
standard 20-pin ARM JTAG debug connector. RTCK clock option is available for all
development systems except for older iC3000 ARMx iCARD based development system.
Due to extra synchronization, top speed using "RTCK" mode is about half as fast as "Fast"
mode.

In general, Fast mode should be used as a default setting. If the debugger works stable with
this setting, try Burst or Burst+ mode to increase the download speed. If Fast mode already
fails, try Slow mode at different scan frequencies until you find a working setting.

Use – Scan Speed during Initialization

On some systems, slower scan speed must be used during initialization, during which the
CPU clock is raised (PLL engaged) and then higher scan speeds can be used in operation.
In such case, this option and the appropriate scan speed must be selected.

Configuring JTAG Scan speed for the first time

Sometimes, the default JTAG scan speed needs to be changed. A default ‘Fast’ JTAG scan
speed may not work for all ARM CPUs. WinIDEA may report a message “Error 175: JTAG
chain error. Check target VCC and Emulation Options/JTAG Position” when the debug
connection cannot be established due to too high debug JTAG scan speed.

Select ‘Slow’ JTAG scan speed and try different possible JTAG frequencies when initial
debug connection cannot be established.

NXP LPC2xxx family usually requires ‘Slow’ JTAG scan speed. In general, it is
recommended to use the highest working JTAG scan speed for the optimal debug
performance.

ST STR91xF Family

The two dies inside the STR91xF (CPU die and Flash memory die) are internally daisy-
chained on the JTAG bus. The CPU die has two JTAG Test Access Ports (TAPs), one for
boundary scan functions and one for ARM CPU debug. The Flash memory die has one TAP
for program/erase of non-volatile memory. Because these three TAPs are daisy-chained,

 iSYSTEM, May 2015 8/54

only one TAP will converse on the JTAG bus at any given time while the other two TAPs are
in BYPASS mode. The TAP positioning order within this JTAG chain is the boundary scan
TAP first, followed by the ARM debug TAP, followed by the Flash TAP. TAP controllers have
following JTAG instruction register length:
- Flash TAP: 8 bits

- Boundary scan TAP: 5 bits
- ARM CPU debug TAP: 4 bits

In order to debug ARM core, the user must set 8 for IR prefix and 5 for IR Postfix in winIDEA
'Hardware/Emulation Options/JTAG' dialog.

 iSYSTEM, May 2015 9/54

3 CPU Options

3.1 General Options

Hard Interrupt Disable When Stopped

When this option is checked interrupts will be enabled immediately after program execution
resumes.
Otherwise, the CPU must execute a couple of instructions before returning to the program to
determine whether interrupts were enabled when the CPU was stopped. These extra
instruction executions can prevent task preemption when an interrupt is already pending.

Cache downloaded code only (do not load to target)

When this option is checked, the download files will not propagate to the target using
standard debug download but the Target download files will.

In cases, where the application is previously programmed in the target or it's programmed
through the flash programming dialog, the user may uncheck 'Load code' in the 'Properties'
dialog when specifying the debug download file(s). By doing so, the debugger loads only the
necessary debug information for high level debugging while it doesn't load any code.
However, debug functionalities like ETM and Nexus trace will not work then since an exact
code image of the executed code is required as a prerequisite for the correct trace program
flow reconstruction. This applies also for the call stack on some CPU platforms. In such
applications, 'Load code' option should remain checked and 'Cache downloaded code only
(do not load to target)' option checked instead. This will yield in debug information and code
image loaded to the debugger but no memory writes will propagate to the target, which
otherwise normally load the code to the target.

 iSYSTEM, May 2015 10/54

3.2 Debugging Options

Execution Breakpoints

Hardware Breakpoints

Hardware breakpoints are breakpoints that are already provided by the CPU. The number of
hardware breakpoints is limited to two. The advantage is that they function anywhere in the
CPU space, which is not the case for software breakpoints, which normally cannot be used in
the FLASH memory, non-writeable memory (ROM) or self-modifying code. If the option 'Use
hardware breakpoints' is selected, only hardware breakpoints are used for execution
breakpoints.

Note that the debugger, when executing source step debug command, uses one breakpoint.
Hence, when all available hardware breakpoints are used as execution breakpoints, the
debugger may fail to execute debug step. The debugger offers 'Reserve one breakpoint for
high-level debugging' option in the Debug/Debug Options/Debugging' tab to circumvent this.
By default this option is checked and the user can uncheck it anytime.

Software Breakpoints

ARM7 and ARM9 cores provide two hardware breakpoints, which often prove insufficient.
The debugger can use unlimited software breakpoints to work around this limitation.

Note: ARM has no dedicated breakpoint instruction. Instead an invalid op-code is used and
one hardware breakpoint is configured to trigger when this instruction is fetched. Thus only
one hardware breakpoint remains available for hardware execution breakpoints, access
breakpoints and trace trigger. If breakpoints are expected to be set only in areas, where
software breakpoints cannot be used, it is advised to turn software breakpoints off, since this
will enable the usage of the hardware breakpoint that is normally reserved.

When a software breakpoint is being used, the program first attempts to modify the source
code by placing a break instruction into the code. If setting software breakpoint fails, a
hardware breakpoint is used instead.

 iSYSTEM, May 2015 11/54

Note that the debugger additionally features unlimited software breakpoints in the internal
CPU flash for following families: NXP LPC2000, ST STR7, Atmel AT91SAM7S, Atmel
AT91SAM7A and Atmel AT91SAM7X. Time to set or clear the breakpoint depends on the
debug JTAG scan speed, CPU clock and flash sector size.

Set/clear SW BPs before Run

When the option is checked, then a software breakpoint is not set/cleared immediately, but is
just remembered. Only when the CPU is set to running are the breakpoints committed. This
way several breakpoints can be changed but only one re-FLASH operation takes place. This
is especially noticeable in testIDEA operation with many stubs and also during a regular
debugging session when several breakpoints are set/cleared within the same flash erase
block.

Simulate instr. step

‘Never’ is selected per default. When run or source step debug command is executed from a
BP location, the debugger first clears BP, executes single step, sets back the original BP and
then resumes the application. All this is done in background hidden from the user. Since
setting and clearing software flash breakpoint is time consuming, a new approach was
introduced, which simulates the first instruction at breakpoint address without requiring
clearing and setting the software flash breakpoint. Thereby, the user can select ‘FLASH SW
BP’ in order to speed up the debugging. If the option yields erroneous behavior, set back to
the default setting.

Ext. Oscillator clk

Before performing first debug download, which also programs the code into the flash, the
user must enter frequency of the external oscillator connected to the target CPU. Based on
this value, flash programming procedure will calculate CPU frequency whenever it’s
necessary and feed it to the NXP API functions which are used for programming the flash
and are part of the CPU firmware already.

Note: This setting is available only for NXP devices and at the same time obligatory for these
devices.

Boost CPU clock after RESET

Flash programming can be speed up by raising CPU frequency via CPU PLL module before
flash programming takes place. This is done by checking the ‘Boost CPU clock after RESET’
option The debugger enables and configures CPU PLL before the flash programming is
started. Note that the CPU PLL remains configured after the debug download and the debug
reset. Therefore it cannot be assumed that the PLL is disabled when the user opens a debug
session to debug the application code. The user startup code must follow the steps
described in the CPU User Manual to disconnect the PLL and reconfigure it.

Note: This option is available for NXP devices only.

Ignore Access errors

When checked, the debugger identifies memory access errors for individual memory
location(s). When the option is unchecked, the debugger would declare access error for
remaining memory locations once one access error is detected within a memory read block,
which is used in the disassembly window or memory window.

 iSYSTEM, May 2015 12/54

3.3 Reset

Latch target RESET

When the option is checked (default), the debugger latches active target reset until it gets
processed. This yields a delay between the target reset and restart of the application from
reset. If this delay is not acceptable for a specific application, the option should be
unchecked. An example is an application where the CPU is periodically set into a power save
mode and then waken up e.g. every 6ms by an external reset circuit. In such case, a delay
introduced by the debugger would yield application not operating properly.

When the option is unchecked, it may happen that the debugger does not detect the target
reset although the CPU gets reset. The debugger polls the CPU status ~3 times per second
while the target reset can occur in between.

RESET Duration

The width of the RESET pulse is specified here.

Post RESET Delay

Typically, the on-chip debug module is reset concurrently with the CPU. After the debugger
releases the CPU reset line from the active state, the on-chip debug module can require
some time (delay) to become operational. This time can also depend on any additional reset
circuitry on the target system. The default delay value normally allows the debugger to gain
the control over the CPU. If a debug connection fails, try different delay values to try and
establish the debug connection.

RESET Method

Typically an ARM CPU has two reset signals connected to the standard ARM debug
connector. ARM debug connector defines NTRST and NSRST lines. NTRST reset line
controls on-chip debug module, a so-called EmbeddedICE. Whenever a low level is asserted
on this line, the on-chip debug logic is reset. An external debugger controlling the application
drives this line. NSRST is a system reset and connected to the CPU reset line. An external
debugger and/or other target reset sources drive this CPU reset line. How the debugger

 iSYSTEM, May 2015 13/54

gains the control over the application? First, the debugger asserts both reset lines to reset
both, the CPU and on-chip debug module. Then it releases the NTRST line which yields in
initialized on-chip debug module. Next, it sets an execution breakpoint at address 0x0, which
is a CPU start address out of the reset. Finally, NSRST line is released and the CPU stops at
breakpoint (address 0x0). At this moment the debugger has complete control over the
application. Now, an initialization sequence can be executed (if required) and debug
download carried out. In such applications 'Regular' reset method should be selected. Some
CPUs (NXP LPC2000, Atmel AT91) don't provide NTRST pin externally. In such cases, it's
typically connected to the NSRST internally. Such applications behave differently from the
one just being described. Major difference is that the debugger cannot gain the control over
the CPU immediately after it starts to run out of the reset. After the CPU reset (NSRST) is
released, the on-chip debug module needs some time to become initialized and operational.
The application cannot be controlled (stopped) as long as the debug module is not
operational. With some delay the debugger takes the control over the CPU by forcing stop
command over the debug JTAG interface and presetting program counter to the reset value.
Such system exhibits short program execution out of the reset and it may not be in its reset
state any longer. Note that this undesired program execution might impact on CPU registers
and their reset values, CPU memory mapping, etc. In worst case, the CPU may even hang
due to no valid code. This applies for any application where the program starts in a memory,
which doesn't contain any code on power up, e.g. empty flash or RAM.

In such applications it's recommended to use 'Stop and Preset' reset method. Then the
debugger presets only program counter (PC/R15) on 'debug reset' or 'debug download'
command once it gains the control over the CPU. Try different 'reset delay' values if it looks
like that the CPU hangs while the debugger tries to gain the control over the CPU.

3.4 NXP LPC

NXP LPC tab becomes available when NXP LPC21/22/23/24xx family is selected in the
‘Hardware/Emulation Options’ dialog.

Preset MEMMAP / SYSMEMREMAP

When the option is checked the debugger presets the CPU MEMMAP register.

 iSYSTEM, May 2015 14/54

Note: This option is available for NXP LPC2xxx devices only.

3.5 Advanced Options

ARM Family Advanced options

Override startup register values

This option overrides the default Program Counter reset value with the value set.

Force Supervisor mode while stopped

If this option is checked, Supervisor mode is forced while the application is stopped.

Allow real-time memory access via DCC

If this option is checked, the DCC channel is used for real-time memory access.

Use Handshaking

When this option is checked, execution of every command is handshaked. This is required by
CPUs for which the JTAG clock is too high.

 iSYSTEM, May 2015 15/54

3.6 STR9

STR9 tab becomes available when ST STR9 family is selected in the ‘Hardware/Emulation
Options’ dialog.

Mass erase before download

Both flash banks are erased before the download when the option is checked.

CSx Mapping

Depending on the selection, CSx bit is programmed before every debug reset and debug
download. Don’t forget that boot bank respectively mapping of the flash Bank 0 and Bank 1 is
defined by CSx bit, non-volatile Flash based configuration bit. The firmware cannot change
this configuration bit, only the JTAG interface has access.

Note: Cortex debug iCARD does not support programming the ‘CSx Mapping’ bit.

winIDEA complies with the following STR9 memory mapping:

 iSYSTEM, May 2015 16/54

STR91xFAxx2 Flash module organization

 CSx=0

Bank Sector Address Range

Bank 0
256kB

64kB Sectors 0-
3

0x0000.0000-
0x0003.FFFF

Bank 1 32kB 8kB Sectors 0-3 0x0004.0000-
0x0004.7FFF

 CSx=1

Bank Sector Address Range

Bank 1 32kB 8kB Sectors 0-3 0x0000.0000-
0x0000.7FFF

Bank 0
256kB

64kB Sectors 0-
3

0x0004.0000-
0x0007.FFFF

STR91xFAxx4 Flash module organization

 CSx=0

Bank Sector Address Range

Bank 0
512kB

64kB Sectors 0-
7

0x0000.0000-
0x0007.FFFF

Bank 1 32kB 8kB Sectors 0-3 0x0008.0000-
0x0008.7FFF

 CSx=1

Bank Sector Address Range

Bank 1 32kB 8kB Sectors 0-3 0x0000.0000-
0x0000.7FFF

Bank 0
512kB

64kB Sectors 0-
7

0x0008.0000-
0x000F.FFFF

STR91xFAxx6 Flash module organization

 CSx=0

Bank Sector Address Range

Bank 0
1024kB

64kB Sectors 0-
15

0x0000.0000-
0x000F.FFFF

Bank 1
128kB

16kB Sectors 0-
7

0x0010.0000-
0x0011.FFFF

 CSx=1

Bank Sector Address Range

Bank 1
128kB

16kB Sectors 0-
7

0x0000.0000-
0x0001.FFFF

Bank 0
1024kB

64kB Sectors 0-
15

0x0010.0000-
0x001F.FFFF

 iSYSTEM, May 2015 17/54

STR91xFAxx7 Flash module organization

 CSx=0

Bank Sector Address Range

Bank 0
2048kB

64kB Sectors 0-
31

0x0000.0000-
0x001F.FFFF

Bank 1
128kB

16kB Sectors 0-
7

0x0020.0000-
0x0021.FFFF

 CSx=1

Bank Sector Address Range

Bank 1
128kB

16kB Sectors 0-
7

0x0000.0000-
0x0001.FFFF

Bank 0
2048kB

64kB Sectors 0-
31

0x0020.0000-
0x003F.FFFF

Note: When performing download into the STR9 flash, only above memory regions are valid.

3.7 Exceptions

With the ARM9 family of products exceptions can be defined.

CPU setup, Exceptions menu

The debug mode will be entered (that is, the application will be stopped) on any exception
selected.

 iSYSTEM, May 2015 18/54

4 Access Breakpoints

ARM Hardware Breakpoints menu

Condition

Both internal ARM7 watchpoints can be used. Select the watchpoint combination that
triggers the breakpoint.

Note: Refer to the ARM CPU manual for explanation of the RANGE mode.

WP0 and WP1

Specify the address and data bus states to monitor for the watchpoints.

Address

The address of the access breakpoint is entered here.

The mask can be also set. The mask 0 ignores all bits of the address; the mask FFFFFFFF
uses all bits of the address.

Data Value

The data, which triggers the breakpoint, is entered here.

The mask can be also set. The mask 0 ignores all bits of the value; the mask FFFFFFFF
uses all bits of the value.

Access, Bus Cycle, Access Width, Mode, External Input

The masks to be monitored.

 iSYSTEM, May 2015 19/54

When Breakpoints Occur

A beep can be issued and/or a message displayed indicating that an access breakpoint has
occurred.

Wizard…

Use Wizard in case of problems understanding and configuring the access breakpoints
dialog. It helps setting a simple a breakpoint on data access or code execution.

5 Hot Attach

The Hot Attach function can be enabled for troubleshooting purposes. The full hot attach is
not supported, which means that the target must be first connected to the emulator and then
turned on. The target must be functional, which means that it must contain a FLASH with a
working code.

First, make sure the Hot Attach to Target function in the Hardware/Emulation
Options/Hardware dialog is turned on (checked).

Typical usage, with the emulator turned on:

 turn the init sequence off

 erase the download file

 turn on the target

 invoke Reset

 now the emulator must be able to read the status – typically Running or Reset will be
shown in the status. If the target is running, it can now be stopped with the Stop
command. If the stop has succeeded, the debugging is operational (including
breakpoints, stepping, etc.).

With this function, the debugger does not set breakpoints to Reset or in any other way
manipulates with the internal debug logic. This function is limited to polling the status of the
internal CPU logic (Embedded ICE). This is especially useful for initializing and
troubleshooting, on the other hand for normal debugging this option should be turned off.

Note: Hot Attach function cannot be used for any flash programming or code download!

 iSYSTEM, May 2015 20/54

6 Semihosting

ARM semihosting is feature that can be used with ARM 1.2 compiler tools and enables the
user to use standard C functions (printf, fopen …) in embedded target. Calls from these
functions are routed from program running on the target through CPU JTAG port and
emulator to winIDEA that will actually execute them. Terminal window is used as standard
input/output in this case. Refer also to ARM toolset manual for detailed description of the
semihosting concept and implementation.

The options for the Terminal are configured in the Terminal Options page.

Semihosting terminal configuration

7 Real-Time Memory Access

7.1 Introduction

Standard JTAG debug hardware on ARM based CPUs does not implement support for real-
time memory access in hardware. Therefore a software based approach has to be used to
provide this feature. This means is that with this approach, winIDEA debugger can also
perform memory read and write accesses while the target system CPU is running, not just
when the CPU is stopped. This feature allows for additional ways of debugging and
controlling the target application. For example, target application parameters can be changed
while the application is running. Or external client applications using iSYSTEM's iCONNECT
interface can constantly gather data from a running application as well as change
application's operating parameters.

7.2 Implementation

winIDEA host debugger uses a small debug monitor program that must be included in the
target system software to provide run-time services for the debugger. winIDEA and debug
monitor communicate using debug communications channel (DCC) present in standard ARM

 iSYSTEM, May 2015 21/54

EmbeddedICE debug hardware. This of course means that when real-time feature is used,
DCC cannot be used for any other purpose (i.e. terminal window in winIDEA).

The debug monitor code is provided by iSYSTEM to customers who wish to use this feature
in their systems. A set of distributable files is provided for inclusion in customer projects:

 dbgmon_arm.c, dbgmon_arm.h - for use as C/C++ source.

 dbgmon_armgnu.asm - for use as assembly language source (provided file is
in GNU assembly format, but simple to tailor to other assembly formats)

Simply include the appropriate files in your project and setup calls to monitor init function and
the periodic service procedure.

Debug monitor code itself is provided in these sources in binary format as an array of 32-bit
words. Debug monitor also requires a small data area (256 bytes) for operation. This data
area is also allocated in the provided source files.

Debug monitor provides two entry points: first one is the initialization and the second one is
the periodic service procedure. The initialization procedure must be called only once and
before the service procedure is called for the first time. After that, service procedure should
be invoked periodically to allow the monitor to service requests from host debugger winIDEA.
Further detailed implementation notes are provided in each source file.

The rate at which the periodic service procedure should be called depends on the required
real-time responsiveness, throughput and allowed overhead for the target application. The
more often the service procedure is called the higher the rate of memory transfers can be.
On the other hand, this also means more overhead for the target application in terms of
cycles stolen to service real-time access requests. Every time the service procedure is
invoked it uses approximately 25 cycles even if no operation is requested by host debugger.
If host debugger does request an operation, the number of consumed cycles depends on the
kind of operation. The highest number of cycles consumed in one invocation of service
procedure is about 50.

7.3 Samples

Two sample projects are provided with winIDEA to demonstrate the real-time access feature
itself and to provide an example of how the debug monitor can be integrated into the target
system application. One sample uses the C source version of debug monitor files; the other
sample uses the assembly language version of debug monitor files. Both samples were
developed on ARM920T-based Samsung S3C2410X platform. They both use a timer to
generate an IRQ interrupt to periodically invoke the debug monitor service procedure which
handles requests from the host debugger - winIDEA while the target is running. Timer
configuration is performed from the ini script and is setup to trigger an interrupt approximately
once every millisecond.

 iSYSTEM, May 2015 22/54

8 Internal FLASH Programming

8.1 NXP LPC2xxx Family

The target application may not run from the internal flash due to various factors. The
following text might be very helpful when troubleshooting the CPU startup problems. Refer to
the CPU User Manual for more details on the CPU startup.

The flash boot loader code is executed every time the CPU is powered or reset. The loader
can execute the ISP (In-System Programming) command handler or the user application
code. P0.14 is sensed on a rising edge on the RST (CPU reset) pin. If a low level is
detected, ISP command handler starts and takes over control of the CPU after reset. If there
is no request for the ISP command handler execution (a high-level detected), a search is
made for a valid user program. If a valid user program is found then the execution control is
transferred to it.

Criterion for valid user code: The reserved ARM interrupt vector location (0x14) should
contain the 2’s complement of the check-sum of the remaining interrupt vectors. This causes
the checksum of all of the vectors together to be 0. The boot loader code disables the
overlaying of the interrupt vectors from the boot block, then checksums the interrupt vectors
in sector 0 of the flash. If the signatures match then the execution control is transferred to the
user code by loading the program counter with 0x0000 0000. Hence the user flash reset
vector should contain a jump instruction to the entry point of the user application code.

If the signature is not valid, the auto-baud routine synchronizes with the host via serial port 0.

The debugger programs the code directly into the internal flash memory through the standard
debug download. Based on the selected CPU, the debugger identifies which code from the
download file fits into the internal flash, and loads it to the flash through the flash
programming procedure hidden to the user. The flash programming procedure is
implemented using NXP IAP (In-Application Programming) interface being already part of the
CPU Flash Boot Loader firmware. All other code, allocated outside of the flash boundaries, is
downloaded to the target through standard the memory writes.

Note: Proper target CPU must be selected in the ‘Hardware/Emulation Options’ dialog since
corresponding flash programming procedure is selected based on the selected CPU.

Due to the CPU requirements, winIDEA extracts the necessary interrupt vectors from the
download file before programming a 32-bit value to the 0x14 address, makes the 2’s
complement of the check-sum of these vectors and programs the calculated value to the
0x14 address. This yields the CPU starting from the user code after the reset.
Consequentially, if ‘Verify download’ is executed after the debug download, the user normally
gets error for 4 bytes at address 0x14 since the programmed value doesn’t match with the
one in the download file. The user can ignore the error or adjust his download file in a way
that a 32-bit value at the address 0x14 contains proper value, which results in the CPU start
executing the user code after the reset. The alternative is also to skip verifying 4 bytes at
address 0x14. Next picture shows the necessary setting in the Download dialog.

 iSYSTEM, May 2015 23/54

In practice, there is no need for ‘Verify download’ after the debug download since winIDEA
flash programming procedure verifies programmed code within the procedure itself and
reports any errors in the Progress dialog during the download.

Code Read Protection

Code Read Protection is enabled by programming the flash address location 0x1FC with
value 0x87654321. Address 0x1FC is used to allow some room for the fiq exception handler.
When the code read protection is enabled the JTAG debug port, external memory boot and
few ISP commands are disabled. The ISP erase command only allows erasure of all user
sectors when the code read protection is enabled. This limitation does not exist if the code
read protection is not enabled. IAP commands are not affected by the code read protection.

Note: Be precautious not to accidentally write 0x87654321 at 0x1FC as this disables the
JTAG debug port. The backdoor is to erase the flash through the ISP interface (serial port 0).

Setting Up Flash Programming

Note: Necessary settings related to the LPC2xxx flash programming have changed as of
winIDEA build 9.10.83.

Select the NXP LPC21/22/23/24xx family in the CPU list and select specific target CPU in the
‘Custom CPU variant’ combo box.

 iSYSTEM, May 2015 24/54

Before performing first debug download, which also programs the code into the flash, the
user must enter frequency of the external oscillator connected to the target CPU. Based on
this value, flash programming procedure will calculate CPU frequency whenever it’s
necessary and feed it to the NXP API functions which are used for programming the flash
and are part of the CPU firmware already.

After reset the LPC2xxx CPU operates at relatively slow frequency comparing to the
maximum CPU frequency. For this reason, debugger must use relatively slow JTAG scan
speed to communicate with the CPU over the debug interface.

 iSYSTEM, May 2015 25/54

Flash programming can be speed up by raising CPU frequency via CPU PLL module before
flash programming takes place. This is done by checking the ‘Boost CPU clock after RESET’
option in the ‘Debugging’ tab. The debugger enables and configures CPU PLL before the
flash programming is started. Note that CPU PLL remains configured after the debug
download and the debug reset. Therefore it cannot be assumed that the PLL is disabled
when the user opens a debug session to debug the application code. The user startup code
must follow the steps described in the CPU User Manual to disconnect the PLL and
reconfigure it when used by the target application too.

With ‘Boost CPU clock after RESET’ option checked, the user may try to increase JTAG scan
speed of the debug interface. This should work if target application uses PLL too.

 iSYSTEM, May 2015 26/54

With above settings, the debugger uses slow JTAG scan speed only for the initial debug
connection and initialization, while for debug download including flash programming and later
CPU control use Fast JTAG scan speed.

Note: For the internal flash programming requirements, the user doesn’t need to setup any
debug initialization sequence (.ini).

There is additional flash programming related setting, which affects the target CPU. It
concerns the MEMMAP register. The MEMMAP register controls the mapping of the bottom
memory including default reset and interrupt vectors. If the option is checked, the debugger
presets the MEMMAP register after the CPU reset before any other debug action takes
place.

 iSYSTEM, May 2015 27/54

If ‘Preset MEMMAP / SYSMEMREMAP’ option is not checked, flash programming procedure
sets MEMMAP value to 1 (flash visible at 0x0), programs the flash and then restores the
original MEMMAP register value. Such setting would yield verify errors, if debug verify is
performed after the debug download, when programming an empty flash on LPC213x device
or regular programming on LPC2294 despite the fact that the flash was programmed
properly. It’s because the flash programming procedure restores original reset MEMMAP
register before the debug verify is performed and in these two cases this yields flash memory
no longer visible at the time of the debug verify. Note that after reset, erased LPC213x
device boots with MEMMAP=0 and LPC229x device boots with MEMMAP = 0x3. In such
case it might be more predictable behavior when the ‘Preset MEMMAP / SYSMEMREMAP’
option is checked and CPU keeps this value after the debug download too.

Based on the selected CPU, belonging flash device occurs in the ‘FLASH Setup…’ dialog
(Hardware menu).

Press Edit in order to open the configuration dialog. As an alternative to the ‘Verify
Download‘ debug command, it is recommended to check the ‘Verify‘ and the ‘On the fly’
options, which yield reading back the programmed content and comparing it with the input
data during the write process. This operation is performed by the flash programming monitor
and is thereby much faster comparing to the ‘Verify Download‘ debug command, which reads
back the memory through a relatively slow debug JTAG interface and then compares it with
the download file.

Note: ‘Verify on the fly’ performed by the flash programming monitor will not report errors
when debug download file contains the code residing outside of the flash (e.g. code
exceeding the physical flash). It verifies only the code that gets written into the flash. For that
purpose, the 'Debug/Verify' is the foolproof tool to use.

 iSYSTEM, May 2015 28/54

When ‘Mass erase before download’ option is checked, the debugger first erases complete
flash and then programs it. If the option is unchecked, only necessary flash sectors are
erased before the programming.

Troubleshooting

 If flash cannot be programmed, first perform debug reset only, then open memory
window at address 0x4000_0000 and try to modify the content. If there are problems
already, try to decrease JTAG scan speed and try different reset duration and post reset
delay.

 In case of problems with the flash programming, double check that the application does
not enable the internal watchdog. This would conflict with the flash programming
especially if that is performed shortly after the CPU reset. The debugger cannot take
control over the microcontroller immediately after the CPU reset but takes some time,
which means some application code is executed before the microcontroller takes the
control over. If that code enables the watchdog, flash programming will fail. If the
watchdog is enabled later on in the application this will also conflict with the debugger,
which must have complete control over microcontroller all the time. Therefore, when
debugging the application, the internal watchdog must not be enabled (after reset it’s
disabled).

 It has been noticed that flash programming on LPC2103 fails at default CPU reset
frequency. The solution is to check the ‘Boost CPU clock after RESET’ option.

8.2 ST STR7 Family

The debugger loads the code directly into the internal flash memory through the standard
debug download. Based on the selected CPU, the debugger identifies which code from the
download file fits into the internal flash, and loads it to the flash through the flash
programming procedure hidden to the user. The flash programming procedure is
implemented through the CPU Flash registers (FLASH_CR0, FLASH_DR0, etc.). All other

 iSYSTEM, May 2015 29/54

code, allocated outside of the flash boundaries, is downloaded to the target through the
standard memory writes.

When a new project is started, flash programming must be configured first. Based on the
selected CPU, belonging flash device occurs in the ‘FLASH Setup…’ dialog (Hardware
menu).

Press Edit in order to open the Device configuration dialog. As an alternative to the ‘Verify
Download‘ debug command, it is recommended to check the ‘Verify‘ and the ‘On the fly’
options, which yield reading back the programmed data after the write command ends and
comparing it with the data, which is still kept in the flash programming data buffer. This
operation is performed by the flash programming monitor and is thereby much faster
comparing to the ‘Verify Download‘ debug command, which reads back the memory through
a relatively slow debug JTAG interface and then compares it with the download file.

Note: ‘Verify on the fly’ performed by the flash programming monitor will not report errors
when debug download file contains the code residing outside of the flash (e.g. code

 iSYSTEM, May 2015 30/54

exceeding the physical flash). It verifies only the stuff that gets written into the flash. For that
purpose, the 'Debug/Verify' is the foolproof tool to use.

When ‘Mass erase before download’ option is checked, the debugger first erases complete
flash and then programs it. If the option is unchecked, only necessary flash sectors are
erased before the programming.

The STR7 internal flash starts at an absolute address 0x4000 0000 and there is a mirrored
image at address 0x0. Per default, the debugger expects the code to be linked and loaded at
0x4000 0000. When the code is linked to the mirrored address range (0x0), the user should
set 0 for the ‘Address in CPU space’ in the Device configuration dialog.

8.3 ST STR9 Family

The debugger loads the code directly into the internal flash memory through the standard
debug download. Based on the selected CPU, the debugger identifies which code from the
download file fits into the internal flash, and loads it to the flash through the flash
programming procedure hidden to the user. The flash programming procedure is
implemented using flash programming libraries provided by ST. All other code, allocated
outside of the flash boundaries, is downloaded to the target through the standard memory
writes.

STR9 family must be selected in the CPU list and target CPU must be selected in the
‘Custom CPU variant’ combo box. Make sure that correct target CPU is selected because
complete flash programming relies on this selection.

STR9 microcontroller has three JTAG TAPs connected in the JTAG chain.

 iSYSTEM, May 2015 31/54

To access ARM debug module, IR Prefix must be set to 8, DR Prefix to 1, IR Postfix to 5 and
DR Postfix to 1 in the ‘Hardware/Emulation Options/JTAG’ tab.

CSx Mapping

Depending on the selection in the ‘Hardware/Emulations Options/CPU Setup/STR9’ tab, CSx
bit is programmed before every debug reset and debug download. Don’t forget that boot
bank respectively mapping of the flash Bank 0 and Bank 1 is defined by CSx bit, non-volatile
Flash based configuration bit. The firmware cannot change this configuration bit, only the
JTAG debug interface has access.

Mass Erase

Mass Erase can be issued on request at any time via ‘Hardware/STR9 FLASH -> Mass
Erase’ button.

 iSYSTEM, May 2015 32/54

Unsecure

Unsecure operation, which can be issued on request via ‘Hardware/STR9 FLASH ->
Unsecure’ button, performs mass erase of the MCU flash over the JTAG interface.

Unsecure operation should be performed as part of the troubleshooting procedure, when
there are problems with flash programming or initial debug connection. There are security
related registers, which could be accidentally put into the state, which protects the flash from
being programmed. These registers get erased only by mass erase performed over the
JTAG interface.

Note: Cortex debug iCARD does not support Unsecure operation.

8.4 Atmel AT91SAM7S, AT91SAM7X and AT91SAM7A Series

First of all, the internal watchdog needs to be disabled to be able to debug these CPUs and
program the internal flash..

Next, CPU needs to be configured before the flash can be programmed. Proper FMCN value
must be set in the Flash Mode Register (MC_FMR) depending on the CPU clock otherwise
the flash programming fails. Refer to the CPU datasheet for more details on MC_FMR
configuration and the FMCN value.

Since the CPU starts at slow clock it’s recommend to speed up the CPU before the flash
programming takes place. Otherwise the flash programming can take place quite a while.

Excerpt from the initialization file (AT91SAM7S64.ini) from the AT91SAM7S64 sample
project:

WDT_MR L 0x8000 // disable watchdog

A MC_FMR L 0x100000 // flash mode register - set FMCN properly !!

A CKGR_MOR L 0x00000601 // oscillator enable, 48 (6x8) cycles start-up time

A PMC_MCKR L 0x5 // main oscillator selected and main clock divided by 2

The debugger loads the code directly into the internal flash memory through the standard
debug download. Based on the selected CPU, the debugger identifies which code from the
download file fits into the internal flash, and loads it to the flash through the flash
programming procedure hidden to the user. The flash programming procedure is
implemented through the CPU Flash registers (FLASH_CR0, FLASH_DR0, etc.). All other
code, allocated outside of the flash boundaries, is downloaded to the target through the
standard memory writes.

When a new project is started, flash programming must be configured first. Based on the
selected CPU, belonging flash device occurs in the ‘FLASH Setup…’ dialog (Hardware
menu).

 iSYSTEM, May 2015 33/54

Press Edit in order to open the configuration dialog. As an alternative to the ‘Verify
Download‘ debug command, it is recommended to check the ‘Verify‘ and the ‘On the fly’
options, which yield reading back the programmed content and comparing it with the input
data. This operation is performed by the flash programming monitor and is thereby much
faster comparing to the ‘Verify Download‘ debug command, which reads back the memory
through a relatively slow debug JTAG interface and then compares it with the download file.

Note: ‘Verify on the fly’ performed by the flash programming monitor will not report errors
when debug download file contains the code residing outside of the flash (e.g. code
exceeding the physical flash). It verifies only the stuff that gets written into the flash. For that
purpose, the 'Debug/Verify' is the foolproof tool to use.

When ‘Mass erase before download’ option is checked, the debugger first erases complete
flash and then programs it. If the option is unchecked, only necessary flash pages are erased
before programming. The CPU flash programming interface doesn’t have a command which

 iSYSTEM, May 2015 34/54

would only erase individual flash pages. A page can be erased only in combination with the
flash program command.

Troubleshooting

Flash programming can fail due to:

1) Incorrect FMCN value in the MC_FMR register

2) Improper JTAG scan speed (try different JTAG scan speeds to see if it makes any
difference!)

3) Locked flash regions

For instance, the AT91SAMS256 flash is divided into 16 flash lock regions and each can
be protected in order to protect the pages within the region from being erased or
programmed. Note that after the production, the device may have some embedded Flash
lock regions locked. These locked regions are reserved for a default application. Locked
sectors can be unlocked to be erased and then programmed.

Note: The ‘Mass erase’ command is canceled when at least one page is locked. The
debugger cannot detect when ‘Mass erase’ is canceled due to the locked region.
Consequentially, when the Mass Erase command is used while one or more regions are
locked, the debugger reports successful erasing although the flash was not erased. The user
should have this in mind.

Devices with 512 kB of flash expect the code to be linked at address 0x100000, where the
flash is physically located. However, the flash has also a mirror image at 0x0 and some users
might link the target application to 0x0. In such case, the debugger must be adjusted
accordingly. Change the flash address offset from default 0x100000 to 0x0 (‘Address in CPU
space’ field) and then also a download file linked to the address 0x0 will be successfully
programmed into the flash.

 iSYSTEM, May 2015 35/54

9 NXP LPC32x0 ETB

As process speeds increase it is increasingly difficult to obtain trace information off a chip
from an Embedded Trace Macrocell (ETM). This causes difficulties in maintaining acceptable
signal quality or the signals need to be demultiplexed on to what can become a very large
number of trace port pins. The solution is to provide a buffer area on-chip where the trace
information is stored, and read from the chip later, at a slower rate. The ETB (Embedded
Trace Buffer) stores data produced by the ETM. The buffered data can then be accessed
by the debugging tools using a JTAG debug interface.
Providing an on-chip buffer enables the trace data generated by the ETM (at the system
clock rate) to be read by the debugger (e.g. iC3000 & ARM iCARD or iC5000 development
system) at a reduced clock rate. This removes the requirement for high-speed pads for the
trace data.

The NXP LPC32x0 ETB has a 2048 × 24 bit RAM for instruction/data history storage

With winIDEA 2010 a dedicated CPU selection for NXP LPC32x0 devices is introduced.
Make sure that ‘LPC32x0’ is selected in the ‘CPU’ list when debugging LPC32x0 devices.
Note that older workspaces saved with winIDEA 2009 or older have to be adjusted
(ARM926EJS core was selected instead). Specific target CPU is selected under ‘Custom
CPU variant’.

Valid settings in the CPU tab for LPC32x0

Keep default ‘This is the single device in the JTAG chain’ option in the JTAG tab checked
when LPC32x0 CPU only is in the JTAG chain in the target.

 iSYSTEM, May 2015 36/54

To enable trace output recording to the ETB, check the “Use Embedded Trace Buffer” option
in the ETM tab in the ‘CPU Setup/ETM’ dialog.

Only following ETM settings are valid for NXP LPC23x0 devices:

Width: 4-bit

Mode: Normal

Clocking: Full rate

 iSYSTEM, May 2015 37/54

10 JTAG Scan

This functionality allows the user to have access to the JTAG chain to which the debugger is
connected in order to control the debugged CPU. Primarily it was designed for
troubleshooting.

Operation:

Scan IR and return to Run-Test-Idle: starts instruction scanning in current state and returns
to Run-Test-Idle state.

Scan DR and return to Run-Test-Idle: starts data scanning in current state and returns to
Run-Test-Idle state.

Scan IR and return to Select-DR-State: starts instruction scanning in current state and
returns to Select-DR-State state.

Scan DR and return to Select-DR-State: starts data scanning in current state and returns to
Select-DR-State state.

Invert scan order

The data under “TDI” (DR scan only) can be scanned in both orders. If this option is not
checked, then bit 0 (LSB bit) of first byte is scanned first. If this option is checked, then the bit
pointed by “Scan length (bits)-1” is scanned first.

Example: TDI: 12345, Invert scan order [], Scan length = 16 bits… Bit stream scanned (bit
on the left side scanned first): 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0

Example: TDI: 12345, Invert scan order [x] , Scan length = 16 bits … Bit stream scanned (bit
on the left side scanned first): 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

Scan length (bits)

The number of bits scanned at DR or IR scan.

ARM scan chain

Prior every DR scan the scan chain is set to this value.

TDI

DR/IR scan input bits

TDO

DR/IR scan output bits

 iSYSTEM, May 2015 38/54

Reserve JTAG chain access

When this button is pressed, only the scans through this dialog will be allowed (debugger will
be “quiet”).

11 Multi-Core Debugging

11.1 Multi-Core Debugging Background

Completely new demands sprung-up after introducing first CPUs using JTAG protocol to
interface with the on-chip debugging firmware.

All ARM core based CPUs use JTAG protocol to communicate between the debugger and
the on-chip debug firmware (EmbeddedICE). The debugger connects to the CPU via
standard JTAG port requiring minimum 4 signals: TMS, TCK, TDI and TDO. Driving all 4
signals, the debugger can control and configure on-chip debug firmware and read back all
the necessary information.

The ARM CPU can be just one among other devices in the target, all supporting the JTAG
BST and connected in the JTAG chain. (Note that the target can consist of more ARM CPUs
as well.) In such environments, the user must configure the software properly, to be able to
debug the particular CPU. The next section describes how to configure the software to be
able to control the necessary CPU via JTAG chain.

Note that a single physical device can have more CPU cores. For instance, a single device
can have three ARM cores integrated. All of them are connected in the JTAG chain and
therefore, each can be accessed and debugged separately as a standalone device. The
process is called Multi-Core Debugging or the Multi-Device JTAG Chain. Currently, only
debugging of a single device (either standalone or in a multi-device JTAG chain) is
supported.

11.2 Multi-Core Debugging Settings

By default, the multicore debugging is turned off, which means that there is only one core in
the JTAG chain.

Multi-Core Debugging Configuration

For information on scan speed setup, please see chapter 2.3.

 iSYSTEM, May 2015 39/54

11.2.1 Single Device Debugging in a Multi-device JTAG chain

winIDEA fully supports debugging of a single CPU or core in a multi-device JTAG chain. All
the debug information that the software displays, holds for the currently debugged CPU or
core.

Note: The ARM core itself is not fully JTAG compliant and does not support JTAG BST. It
depends on the CPU vendor whether he implements the JTAG BST in the CPU or not. In any
case, it is strongly recommended that JTAG BST chain used for testing purposes is
separated from the debug JTAG chain due to the problems, which may result from devices
not fully JTAG compliant.

Single device debugging in a multi-device JTAG chain is primarily meant for the debugging a
single CPU in a multi-CPU target or debugging a single core in a multi-core target. The target
should have the debug JTAG chain separated from the JTAG BST chain.

Additionally, note that the length of instruction (IR) and data (DR) registers may vary among
CPUs and devices. Typically, while debugging a single device in the JTAG chain, all others
are placed in bypass mode. When in bypass mode, devices pass data from the TDI pin to the
TDO pin through a single bypass register without being affected internally.

Example 1:

This example describes the necessary configuration for single device debugging in a multi-
device JTAG chain, based on the target application containing four ARM CPUs connected in
the JTAG chain. Note that each ARM CPU has a 4-bit long instruction register (IR). The goal
is to debug Device 3.

It is presumed that all the necessary settings for debugging a single CPU target were
configured already.

When addressing and debugging Device 3, it is assumed that others are placed in bypass
mode. To configure all four devices properly, the debugger must shift data to all instruction
(IR) and data (DR) registers accordingly via TDI.

IR Scan

First, the debugger must shift 4 bits for the Device 4 (IR Prefix) since Device 4 contains 4-bit
long IR. Then, the debugger shifts necessary bits for Device 3, being debugged. Next,
additionally, 8 (4+4) bits must be shifted for Device 2 and Device 1 (IR Postfix).

A value 4 must be entered in the ‘IR Scan – Prefix’ field and 8 in the ‘IR Scan – Postfix’ field.

 iSYSTEM, May 2015 40/54

Configuration dialog - Debugging a single device in a multi-device chain

DR Scan

Note that when in bypass mode, devices pass data from the TDI pin to the TDO pin through
a single bypass register. Therefore, the debugger must first shift 1 bit for the Device 4 (DR
Prefix). Then, the debugger shifts necessary data for Device 3, being debugged. Next, 2
(1+1) bits must be shifted for Device 2 and Device 1 (DR Postfix).

A value 1 must be entered in the ‘DR Scan – Prefix’ field and 2 in the ‘DR Scan – Postfix’
field.

These are the necessary additional settings when debugging a single device in a multi-
device JTAG chain target. The debugger should be operational now.

For a better explanation let’s focus on two more examples.

Example 2:

The target consists of an FPGA device (Device 2) being fully JTAG compliant and a custom
CPU (Device 1) containing three ARM cores. We’d like to debug ARM core 1. All ARM cores
are connected in the JTAG chain. Device 2 has a 5-bit long IR.

 iSYSTEM, May 2015 41/54

IR Scan

A value 13 (5+4+4) must be entered in the ‘IR Scan – Prefix’ field and 0 in the ‘IR Scan –
Postfix’ field.

DR Scan

A value 3 (1+1+1) must be entered in the ‘DR Scan – Prefix’ field and 0 in the ‘DR Scan –
Postfix’ field.

Example 3:

The target consists of an ARM CPU (Device 2) that we would like to debug and three ASICs
being fully JTAG compliant. Device 1 has a 6-bit long IR, Device 3 has a 2-bit long IR and
Device 4 has a 3-bit long IR.

IR Scan

A value 5 (3+2) must be entered in the ‘IR Scan – Prefix’ field and 6 in the ‘IR Scan – Postfix’
field.

DR Scan

A value 2 (1+1) must be entered in the ‘DR Scan – Prefix’ field and 1 in the ‘DR Scan –
Postfix’ field.

12 Trace

The microcontroller does not deliver the CPU buses externally to the emulator. The trace is
based on the on-chip trace (OCT) concept and is called ARM ETM. The on-chip trace is
based on messages and has its limitations comparing to the in-circuit emulator where the
complete CPU address, data and control bus is available to the emulator in order to
implement exact and advanced trace features.

Due to the absence of certain trace features on ARM ETM, iSYSTEM proprietary trace Real-
Time Reconstruction (RTR) has been implemented for the ARM7 architecture (iTRACE
PRO/GT). The RTR restores the original CPU execution bus otherwise deeply embedded in
the CPU silicon and allows implementing functionalities, which are otherwise found only on
development systems featuring bus trace, like advanced trace functions, long profiler session
times and infinite execution coverage.

Refer to winIDEA Contents Help, Analyzer Window section (or alternatively to the standalone
Analyzer.pdf document) for general information on Trace user interface and use.

AnalyzerWindow.html

 iSYSTEM, May 2015 42/54

12.1 ETM Trace

For more information on ETM trace specific configuration and use refer to winIDEA Contents
Help (or alternatively to the belonging standalone pdf document) describing ARM ETM On-
Chip trace in details.

‘iTRACE’ must be selected in the ‘Hardware/Analyzer Setup’ dialog to use this Analyzer
operation mode.

12.2 RTR Execution Trace

The development system offers advanced trace features, which are based on iSYSTEM RTR
technology and restricted to the instruction execution bus:

 3-Level Trigger

 Qualifier

 Watchdog Trigger

 Duration Tracker

 ‘RTR Execution’ must be selected in the ‘Hardware/Analyzer Setup’ dialog to use these
extra features.

For more information on these trace functionalities and use refer to winIDEA Contents Help
describing Bus Trace in details.

Note: This analyzer operation mode is not available on iC5000.

BusTrace.html
BusTrace.html
BusTrace.html

 iSYSTEM, May 2015 43/54

13 Coverage

Refer to winIDEA Contents Help, Coverage Concepts section for Coverage theory and
background.

Refer to winIDEA Contents Help, Analyzer Window section (or alternatively to the standalone
Analyzer.pdf document) for information on Coverage user interface and use.

Hardware Configuration

Two types, real-time coverage and off-line coverage are available. Configuration is done in
the Analyzer Setup dialog available through the Hardware/Analyzer Setup… menu.

Select the ‘iTRACE’ selection for off-line execution coverage operation, when the decision
coverage metrics is a major requirement. Set the ‘RTR Execution’ selection for real-time
execution coverage operation when an unlimited session time is a major requirement and the
decision coverage metrics is not required.

Analyzer Setup dialog

Note: Real-time coverage is not available on iC5000.

CoverageConcepts.html
AnalyzerWindow.html

 iSYSTEM, May 2015 44/54

14 Profiler

Refer to winIDEA Contents Help, Profiler Concepts section for Profiler theory and
background.

Refer to winIDEA Contents Help, Analyzer Window section (or alternatively to the standalone
Analyzer.pdf document) for information on Profiler user interface and use.

Hardware Configuration

Two types, real-time profiler and off-line profiler are available. Configuration is done in the
Analyzer Setup dialog available through the Hardware/Analyzer Setup… menu.

Select the ‘iTRACE’ selection for off-line profiler operation, when profiling optimized
applications (complete program flow is recorded which allows quality profiler analysis) or
when profiling data events (8 data ranges can be profiled). This operation mode can be also
used for co-verification when questioning ‘real-time profiler’ results.

Select the ‘RTR Execution’ selection for real-time profiler operation when profiling a larger set
of functions and long session time is required. No individual data events can be profiled in
this configuration except for single OS task switch in case of an embedded operating system.

Analyzer Setup dialog

Note: Real-time profiler is not available on iC5000.

ProfilerConcepts.html
AnalyzerWindow.html

 iSYSTEM, May 2015 45/54

15 Getting Started

Debug Connection

Normally, the minimum settings required by the emulator to be able to connect to the target
CPU are the emulator type, communication type, CPU type, required JTAG speed and
Debug I/O Levels.

 Next, verify if the JTAG connector in the target matches with the pinout defined by the
CPU vendor. The required connector pinout can be also found in the hardware reference
document delivered beside the debug iCARD.

 Connect the emulator to the target.

 First power on the emulator and then the target! When switching off the system, switch
off the target before the emulator!

 Close all debug windows in winIDEA except for the disassembly window.

 Execute debug CPU Reset command.

WinIDEA should display STOP status and disassembly window should display the code
around the address where the program counter points to.

Next step is to download the code. As long as the code is loaded in the CPU internal flash or
RAM, the user typically does not need to pre-configure the CPU. However, to load the code
to an external RAM or a flash device, the user must ensure that a memory to be loaded is
accessible before the download. In that case, the debugger must execute after the CPU
reset a so called initialization sequence, which configures necessary CPU resources (chip
selects, clocks) and then the download or flash programming can actually take place. The
user must set up the initialization sequence based on his application and the target CPU.
Refer to chapter 2.2 for more details on setting up initialization sequence.

Debug Download

Debug download is used to load the debug info to the debugger, to load the code into the
target RAM memory and on some CPUs also to load the code in the CPU internal flash (e.g.
STM32 family from ST). In case of an external flash device, the ‘FLASH Programming Setup’
dialog needs to be invoked to program the flash.

 Specify file(s) to be downloaded in the ‘Debug/Files for download/Download Files’ tab.

 iSYSTEM, May 2015 46/54

 Make sure that ‘Initialize CPU’ before download is configured in the ‘Options’ tab. This
yields in the initialization sequence (explained earlier) being executed before the actual
download.

 iSYSTEM, May 2015 47/54

 It’s recommended to check the ‘Verify’ option in the ‘Options’ tab. Then WinIDEA pops up
a warning in case of download error(s).

When debugging the application with the code in the target ROM, it is only necessary to
download the debug info for that memory area. Code can be excluded (click on the file and
press ‘Properties’ button). However, if the file specified here is used for flash programming as
well, then keep the code included and check ‘Cache downloaded code only (do not load to
target)’ option. When this option is checked, memory writes don’t propagate to the target
during debug download. There is also no need for that if the target contains a Flash, which
requires special programming algorithm. In worst case, debug session may even misbehave
if memory writes propagate to the target flash memory during debug download.

External Flash Programming

Refer to chapter 6 in order to program the internal CPU flash. To program the external flash
you need to invoke the ‘FLASH Programming Setup’ dialog (FLASH/Setup…). Let’s program
AMD 29LV160DB flash located at 0xFFE00000 address as an example.

 First, it’s necessary to select (‘Target’ field) whether the CPU’s internal or external flash is
programmed.

 iSYSTEM, May 2015 48/54

When the CPU internal flash is programmed, winIDEA takes care of most of the necessary
settings. For the external flash, flash device has to be selected and start address set when
programming the external flash device.

 Define the device to be programmed and its start address.

 Next, select flash programming type. WinIDEA supports flash programming through the
debug JTAG port and fast FLASH monitor. Press ‘Hardware Setup…’ button in the
‘Target’ tab in the ‘FLASH Programming Setup’ dialog for the selection.

 iSYSTEM, May 2015 49/54

Normally, the user should go straight for fast FLASH monitor use. Programming through the
JTAG port is much slower and recommended to be used when troubleshooting flash
programming. Flash programming through FLASH monitor requires up to 3kB of target RAM,
where flash programming monitor is loaded and then the flash programming algorithm
executed. The user needs to enter the target RAM address and make sure that the target
RAM is accessible before flash programming starts. Use the initialisation sequence to enable
access to the RAM if it’s not accessible after the CPU reset.

Flash programming through JTAG port is not supported for some flashes where custom
FLASH monitors are written. WinIDEA pops up a warning when programming through JTAG
port is not supported,

 Finally, the file to be programmed needs to be defined. It can be added in the ‘Download
files’ tab within the ‘FLASH Programming Setup’ dialog.

The recommended alternative is to specify file(s) in the ‘Debug/Files for
Download/Download files’ tab, where normally files for debug download are specified.
Then make sure that ‘Use Debug download files’ option (‘Target’ tab in the ‘FLASH
Programming Setup’ dialog) is checked. In first case, the option must be unchecked.

 ‘FLASH Program’ dialog should be invoked from the ‘FLASH’ menu after the flash
programming is configured.

 iSYSTEM, May 2015 50/54

Check boxes beside Load Files, Erase, Program and Verify buttons should be checked and
flash programming started by pressing ‘Start’ button. During the flash programming, a status
and eventual errors are displayed in the dialog.

The debugger can program the flash automatically before the download. Then ‘before
download’ in the ‘Auto program FLASH’ combo box must be selected.

 iSYSTEM, May 2015 51/54

Refer to hardware user’s guide for more details on flash programming.

The debugger should be now operational assuming that the code is loaded in the target RAM
or programmed in the target flash and the debug info loaded to the debugger. The user
should be able to reset, run, stop the application, carry out instruction and source single step,
set BPs, etc.

16 Troubleshooting

If the debugger cannot connect to the CPU:

 Double check that the correct ARM core is selected in winIDEA

 Use Debug Reset command instead of Debug Download to establish the initial debug
connection first

 Make sure that the power supply is applied to the target JTAG connector when ‘Vref’ is
selected for the ‘Debug I/O levels’ in the ‘Hardware/Emulation Options/Hardware’ tab,
otherwise emulation fails or may behave unpredictably.

 Try ‘Slow’ JTAG Scan speed if the debugger cannot connect to the CPU.

 Check if there a more JTAG complaint devices/cores connected in the same JTAG chain
with the CPU. Then appropriate prefix and postfix for the JTAG scanning must be entered
after the default option ‘This is the single device in the JTAG chain’ is unchecked in the
‘Hardware/Emulation Options/JTAG’ tab (chapter 2.3).

 Check that all the necessary JTAG pins are connected correctly to the target debug
connector

 Check the logical levels of JTAG signals and signal integrity of the JTAG TCK (clock)
signal

When performing any kind of checksum, remove all software breakpoints since they may
impact the checksum result.

In case of problems with the NXP LPC2xxx flash programming, double check that the
application does not enable the internal watchdog. This would conflict with the flash
programming especially if that is performed shortly after the CPU reset. The debugger cannot
take control over the microcontroller immediately after the CPU reset but takes some time,
which means some application code is executed before the microcontroller takes the control
over. If that code enables the watchdog, flash programming will fail. If the watchdog is
enabled later on in the application this will also conflict with the debugger, which must have
complete control over microcontroller all the time. Therefore, when debugging the
application, the internal watchdog must not be enabled (after reset it’s disabled).

Atmel ARM7 AT91SAM devices with 512 kBytes of flash expect the code to be linked at
address 0x100000, where the flash is physically located. However, the flash has also a mirror
image at 0x0 and some users might link the target application to 0x0. In such case, the
debugger must be adjusted accordingly. Change the flash address offset from default
0x100000 to 0x0 (Address in CPU space field) and then also a download file linked to the
address 0x0 will be successfully programmed into the flash.

 iSYSTEM, May 2015 52/54

Q: I have an old project, which I can recompile with GCC 4.0.2 compiler. When I use
winIDEA, which has GCC 4.2.2 compiler integrated, the project fails to build. What’s
the problem?
A: The problem is in old CRT0.s startup file. Recompiling the project with GCC 4.2.2, yields
an empty DATA segment, which leads to an endless loop in the CRT0.s. A simple
workaround is to add a dummy global variable, for example:
int dummy = 0;

Q: I download the file, which is in Elf/dwarf format. I don’t get any verify errors.
However, the code doesn’t run. It seems like not all code was really loaded. What
could be the problem?
A: In your particular case, 'Load Code from' in the winIDEA Elf/Dwarf Options dialog (click
Properties after specifying the download file) is set to Program Header / Virtual.

As usual, the choice between virtual and physical addresses is compiler and linker
configuration dependant. If 'not all code is loaded', the following procedure is advisable:
1. generate map file
2. in winIDEA, Elf properties, select 'Dump Elf header'
3. Compare map file to the PROGRAM HEADERS entries for VIRTADDR and PHYADDR
and see which is suitable

In this particular case the PROGRAM HEADERS part looks like this:

 iSYSTEM, May 2015 53/54

===============
PROGRAM HEADERS

================

 NUM TYPE OFFSET SIZE VIRTADDR PHYADDR MEMSIZE FLAGS ALIGNMNT

 0 LOAD 174 300 0 0 300 5 4

 1 LOAD 474 18 400 400 18 5 4

 2 LOAD 174 0 500 500 0 5 4

 3 LOAD 48C 724 500 500 724 5 4

 4 LOAD 174 0 20000000 20000000 0 7 4

 5 LOAD 174 0 20000400 20000400 0 7 4

 6 LOAD BB0 4 20000400 C24 4 7 4

 7 LOAD BB4 0 20000404 20000404 11C 7 4

 8 LOAD BB4 0 20000520 20000520 0 7 4

 9 LOAD BB4 18 20000520 C28 18 7 4

As you (should) know, a C/C++ application must initialize global data before entering main.
The initialized data segment is copied from ROM to RAM, uninitialized (.bss) is simply
zeroed.

On your specific CPU, ROM/FLASH resides on address 0, while RAM resides on address
20000000h. The program headers layout shows a few entries where PHYADDR is different
to VIRTADDR. It is obvious that in this configuration the PHYADDR denotes the FLASH load
location and VIRTADDR the link location (the address of RAM where variables will be
accessed). Since apparently the application is PROMable (i.e. startup code will copy .initdata
to .data), we must ensure that the FLASH is loaded with initialized data image and the
correct choice is to select "Program Header / Physical"

 Note that on average in 70%of cases Program Header / Virtual is the right choice, so
winIDEA uses this setting per default.

 iSYSTEM, May 2015 54/54

17 Emulation Notes

 On-chip interrupt logic is not active while the user's program is stopped during the debug
session.

 The microcontroller can also feature ETM trace port to which a development system
supporting the ETM can be connected. Note that ARM7/ARM9 Debug iCARD doesn’t
support ETM trace port. Contact iSYSTEM for tool solutions supporting ETM. There are
also devices (e.g. LPC3180), where ETM is not broadcasted to the external development
system through a dedicated ETM port, but rather an internal Embedded Trace Buffer
(ETB) captures the trace information. In this case, the ETM information can also be
extracted from the microcontroller by the ARM7/ARM9 Debug iCARD.

 NXP LPC2xxx family features Small ETM type, which consists of 1 pair of address
comparators, no data comparators, 4 memory map decodes, 1 counter, no sequencer
and FIFO depth 10 bytes. There is also no data trace. Since ETM trigger dialog is
universal for all ETM implementations, the user gets warned about missing debugging
resource as late as after pressing the begin trace. To use trace, profiler and coverage,
which are based on ETM trace port, a dedicated

 ST STR91xF family

The two die inside the STR91xF (CPU die and Flash memory die) are internally daisy-
chained on the JTAG bus. The CPU die has two JTAG Test Access Ports (TAPs), one for
boundary scan functions and one for ARM CPU debug. The Flash memory die has one
TAP for program/erase of non-volatile memory. Because these three TAPs are daisy-
chained, only one TAP will converse on the JTAG bus at any given time while the other
two TAPs are in BYPASS mode. The TAP positioning order within this JTAG chain is the
boundary scan TAP first, followed by the ARM debug TAP, followed by the Flash TAP.
TAP controllers have following JTAG instruction register length:
- Flash TAP: 8 bits

- Boundary scan TAP: 5 bits
- ARM CPU debug TAP: 4 bits

In order to debug ARM core, the user must set 8 for IR prefix and 5 for IR Postfix
in winIDEA 'Hardware/Emulation Options/JTAG' dialog.

Disclaimer: iSYSTEM assumes no responsibility for any errors which may appear in this
document, reserves the right to change devices or specifications detailed herein at any time
without notice, and does not make any commitment to update the information herein.

 iSYSTEM. All rights reserved.

