

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 I

1. I2C Software Implementation

1.1 Introduction

The implementation is to use SGPIO as master and PCA9673PW together with push buttons, joystick and

LEDs as slave.PCA9673PW is a remote 16-bit I/O expander for I2C-bus. The desired result should be that

LED0 is on when the user presses button SW3, and LED0 is off when the user releases button SW3. Similarly

button SW5, SW6, JOY1 control the states (on or off) of LED1, LED2, LED3 respectively. In a result, SGPIO

should continually read the state of buttons then send the desired LEDs state to slave. In this example, the

LPC1850EVA-A4 evaluation board with the debugger is the only device used to implement the code. The

main instrument to do the testing is a 4-chennel 500 MHz digital storage oscilloscope (DSO6054A) from

Agilent Technologies. The block diagram of hardware construction in this demo is in Figure 1-1.

LPC4300

SGPIO SCL

SDA

IP

(PCA9673PW)

LEDs

Buttons

Figure 1-1: I2C hardware connection

At the initial state of project, the LPC1850EVA-A2 board with engineering version core is the device to use.

Before software implementation, the work has been done to check whether the LPC1850EVA-A2 board could

be working, which means if there is SGPIO feature in the board. It proves that this LPC1850EVA-A2 board

meets the requirement.

1.2 I2C Protocol

Overview

I²C (Inter-Integrated Circuit) is a multi-master serial single-ended computer bus invented by Philips that is used

to attach low-speed peripherals to a motherboard, embedded system, cell phone, or other electronic device.

Here are some features of the I2C-bus:

 Two wires, serial data (SDA) and serial clock (SCL), carry information between the devices connected
to the bus.

 Each device connected to the bus is software addressable by a unique address and simple
master/slave relationships exist at all times. A master is the device which initiates a data transfer on
the bus and generates the clock signals to permit that transfer. At that time, any device addressed is
considered a slave. Each device can work as either a transmitter or receiver.

 Serial, 8-bit oriented, bidirectional data transfers can be made at up to 100 kbit/s in the Standard-
mode, up to 400 kbit/s in the Fast-mode, up to 1 Mbit/s in Fast-mode Plus, or up to 3.4 Mbit/s in the
High-speed mode.

Data validity

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 II

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the
data line can only change when the clock signal on the SCL line is LOW (see Figure 1-2). One clock pulse is
generated for each data bit transferred.

Figure 1-2: Data validity on the I2C bus

START and STOP conditions

All transactions begin with a START (S) and can be terminated by a STOP (P) (see Figure 1-3). A HIGH to

LOW transition on the SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on

the SDA line while SCL is HIGH defines a STOP condition.

START and STOP conditions are always generated by the master. The bus stays busy if a repeated START

(Sr) is generated instead of a STOP condition. In this respect, the START (S) and repeated START (Sr)

conditions are functionally identical.

Figure 1-3: I2C Start and Stop condition

Byte format
Every byte put on the SDA line must be 8 bits long. The number of bytes that can be transmitted per transfer is
unrestricted. Each byte has to be followed by an Acknowledge bit. Data is transferred with the Most Significant
Bit (MSB) first (see Figure 1-4). If a slave cannot receive or transmit another complete byte of data until it has
performed some other function, for example servicing an internal interrupt, it can hold the clock line SCL LOW
to force the master into a wait state. Data transfer then continues when the slave is ready for another byte of
data and releases clock line SCL. Sr represents repeated Start.

Figure 1-4: Data transfer on I2C bus

ACK and NACK

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 III

The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the
transmitter that the byte was successfully received and another byte may be sent. All clock pulses including
the acknowledge 9th clock pulse are generated by the master.

The ACK (Acknowledge signal) is defined as follows: the transmitter releases the SDA line during the
acknowledge clock pulse so the receiver can pull the SDA line LOW and it remains stable LOW during the
HIGH period of this clock pulse. When SDA remains HIGH during this 9th clock pulse, this is defined as the
NACK (Not Acknowledge signal).

Slave address and R/𝐖 bit
Data transfers follow the format shown in Figure 1-5. After the START condition (S), a slave address is sent.

This address is 7 bits long followed by an eighth bit which is a data direction bit (R/W)—a ‘zero’ indicates a
transmission (WRITE), a ‘one’ indicates a request for data (READ) (refer to Figure 1-6). A data transfer is
always terminated by a STOP condition (P) generated by the master. However, if a master still wishes to
communicate on the bus, it can generate a repeated START condition (Sr) and address another slave without
first generating a STOP condition. (11)

Figure 1-5: A complete I2C data transfer

Figure 1-6: The first byte after the START procedure

1.3 I²C SGPIO Configuration

SGPIO is a hardware feature of LPC4300 series. There are 16 SGPIO pins called from SGPIO 0 to SGPIO 15.

SGPIO is one of the functions of LPC 4300 pins which can be chosen. SGPIO could work as standard GPIO

pins, or do stream processing. So it provides a number of possibilities for interface implementation.

Each pin of SGPIO has a configuration as shown in Figure 1-7 . The pin function has been chosen by SCU

(System Control Unit) as SGPIO function. What left should be configured with SGPIO pin is set by bits of

OUT_MUX_CFG Register. OUT_MUX_CFG consists of two parts, P_out_cfg and P_oe_cfg. P_out_cfg

decides whether a slice or GPIO_REG generates the output signal (dout). P_oe_cfg selects whether slice or

GPIO_OEREG to be output enable (doe). All the relevant SGPIO registers information is in Appendix B.

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 IV

doe

Slice i

GPIO_REG

P_out_cfg

P_oe_cfg

Slice j

GPIO_OEREG

0100

100

dout

Pin

SCU

Figure 1-7: Pin configuration for SGPIO

Slice is an enhanced feature of SGPIO to accelerate serial streaming. The construction of one slice is in
Figure 1-8. REG register is a shift register to generate output or get input for one slice. REG_SS is the slice
data shadow register. POS register is a down counter. The first 8 bits (POS_COUNTER) of POS register
indicates the current number of shifts left before the exchange between REG and REG_SS. The last 8 bits
(POS_PRESET) of POS register sets the reload value of POS_COUNTER. REG and REG_SS will exchange
the content when the down counter POS_COUNTER reaches 0x0. This feature can be used to change new
output value of on slice. PRESET register sets the reload value of the counter, in other words, it controls the
rate of shift clock. COUNT register reflects the slice clock counter value. When COUNT equals 0x0,
POS_COUNTER counts down, and REG shifts once. All the details about setting of one slice are in section
5.4.

Figure 1-8: Slice basic operation and construction

To configure LPC4350 pins to be I2C signal pins, two SGPIO pins should be chosen first. In this demo, SGPIO

1 and SGPIO 13 are defined as SDA and SCL respectively. With looking up the table in section 6.2 (Pin

description) of LPC4350 datasheet (6), the available pins to be SGPIO 1 and SGPIO 13 could be found.

Possible pins for SGPIO 1 are P0_1, P9_1, and PF_2. Possible pins for SGPIO 13 are P1_20, P2_4, P4_8,

PC_14, and PD_9.

Not all the pins in the list above are available to use on the real board. In order to choose the proper pins from

them, the schematics of the evaluation board has been consulted. The requirements to define free pins on the

board are as follows,

 It should have a jumper between the pin of LPC4350 and a certain chip or circuit.

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 V

 The signal of SDA or SCL will not affect the previous function of the pin.

According to these requirements, the choices left for SGPIO 1 are P0_1, P9_1, and PF_2. For SGPIO 13, the

pins meet the requirements are P1_20, P2_4, P4_8. Finally, P9_1 and P1_20 are picked. The overall

information of selected LPC4350 pins is in Table 1-1.

Table 1-1: I2C function and SGPIO number of selected LPC4350 pins

SGPIO i LPC4350 Pin number I2C signal

1 P9_1 SDA

13 P1_20 SCL

The System Control Unit (SCU)/ IO configuration should be set for each pin. The pin configuration registers bit

description is in page 227 of LPC4350 user manual, which is also in Appendix C Table C-1. What should be

set in pin configuration register are pin function, pull-up enable, pull-down enable, slew rate, input buffer

enable and input glitch filter. As for pin function, both of P9_1 and P1_20 work in SGPIO mode numbered as

function 6. For I2C Standard-mode, the signal rates are below 30 MHz, so the pins should be set as slow rate

and input glitch filter enable. The pins are set as pull-up enable due to the construction of I2C masters and

slaves (see next paragraph). Input buffer is enabled to make SGPIO streaming possible.

As to create a suitable SGPIO configuration for I2C protocol, first should look into the construction both master
side and slave side (see Figure 1-10). The SDA line is originally high with the pull up, so SGPIO could not
always drive it high. An example can explain this in Figure 1-9. If master 2 is always driving SDA line, assume
the voltage on master 2 is 5 V and master 1 now wants to transfer data and drive SDA line low. In this
situation, the final voltage on SDA line is 2.5V. In conclusion, what should be done is to drive SDA low when
there’s a need. The condition is exactly the same for SCL line.

Master 1

Master 2

Slave

Vcc

SDA

SCL

5V

0V 2.5V

 Figure 1-9: always driving condition

The setting of SGPIO pin configuration is in Figure 1-11. For SGPIO 1, the SDA line, GPIO mode is to

generate output, and output value is set by GPIO_OUTREG register. Slice M is output enable as a driver.

Slice M is in a self-loop. Slice I gets the input from SGPIO 1 during I2C data receiving. The way to choose

Slice I as input is according to Table 1-5 in section 5.4.

In terms of SGPIO 13, GPIO mode is to generate output. Slice K is self-looped and set to be output enable.

Slice D is the clock source for Slice I, M, and K. To find the way to select clock source for each slice, please

refer to Table 1-5 in section 5.4.The selection of slices that are related to output mode is according to the

Table 1-2 and Table 1-3. The blue blocks represent slices mapping of SGPIO 1. The green blocks indicate

slices mapping of SGPIO 13.

Figure 1-10: Internal circuit in Slave and Master

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 VI

The output mode and output enable are set by the register called OUT_MUX_CFG as shown in Table 1-4.

Table 1-2: OUT_MUX_CFG register (P_out_cfg)

pin
nr.

Output mode - OUT_MUX_CFG P_out_cfg

1011 1010 1001 0111 0110 0101 0011 0010 0001 0000 1000 0100

8b 8b 8b 4b 4b 4b 2b 2b 2b 1b clk gpio

0 L0 J0 A0 J0 I0 A0 J0 I0 A0 A0 Bck 0

1 L1 J1 A1 J1 I1 A1 J1 I1 A1 I0 Dck 1

2 L2 J2 A2 J2 I2 A2 I0 J0 E0 E0 Eck 2

3 L3 J3 A3 J3 I3 A3 I1 J1 E1 J0 Hck 3

4 L4 J4 A4 L0 K0 C0 L0 K0 C0 C0 Cck 4

5 L5 J5 A5 L1 K1 C1 L1 K1 C1 K0 Fck 5

6 L6 J6 A6 L2 K2 C2 K0 L0 F0 F0 Ock 6

7 L7 J7 A7 L3 K3 C3 K1 L1 F1 L0 Pck 7

8 N0 M0 B0 N0 M0 B0 N0 M0 B0 B0 Ack 8

9 N1 M1 B1 N1 M1 B1 N1 M1 B1 M0 Mck 9

10 N2 M2 B2 N2 M2 B2 M0 N0 G0 G0 Gck 10

11 N3 M3 B3 N3 M3 B3 M1 N1 G1 N0 Nck 11

12 N4 M4 B4 P0 O0 D0 P0 O0 D0 D0 Ick 12

13 N5 M5 B5 P1 O1 D1 P1 O1 D1 O0 Jck 13

14 N6 M6 B6 P2 O2 D2 O0 P0 H0 H0 Kck 14

15 N7 M7 B7 P3 O3 D3 O1 P1 H1 P0 Lck 15

Table 1-3: OUT_MUX_CFG register (P_oe_cfg)

 OE control - OUT_MUX_CFG P_oe_cfg

pin
nr.

111 110 101 100 000

 8b 4b 2b 1b gpio

0 H0 H0 H0 B0 0

1 H1 H1 H1 M0 1

2 H1 H1 D0 G0 2

3 H1 H1 D1 N0 3

4 H1 O0 G0 D0 4

5 H1 O1 G1 O0 5

6 H1 O1 O0 H0 6

7 H1 O1 O1 P0 7

8 P0 P0 P0 A0 8

9 P1 P1 P1 I0 9

10 P1 P1 B0 E0 10

11 P1 P1 B1 J0 11

12 P1 N0 N0 C0 12

13 P1 N1 N1 K0 13

14 P1 N1 M0 F0 14

15 P1 N1 M1 L0 15

Table 1-4: SGPIO output pin configuration registers setting for I2C

OUT_MUX_CFGi SGPIO 1 (i = 1) SGPIO 13 (i = 13)

P_out _cfg 0x4: gpio_out 0x4: gpio_out

P_oe_cfg 0x4: dout_oem1 0x4: dout_oem1

Figure 1-11: SGPIO output pin mapped to slices for I2C

GPIO 1 dout

Slice D

GPIO 13 dout

din

clk

clk

SGPIO 1
(SDA)

SGPIO 13
(SCL)

Slice M

Slice K

Slice I

clk

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 VII

In this demo, the value of bit 1 in GPIO_OUTREG is set to be always 0 in I2C implementation. So, during I2C

data sending, the output of SGPIO 1 is 1 when slice M generates 0. The output of SGPIO 1 is 0 when slice M

generates 1. The method above is applied to SGPIO 13 as well. In this way, SGPIO could work well with I2C

slave/master hardware construction (refer to Figure 1-10).

1.4 I2C Slice Configuration

SGPIO 1, the SDA signal pin, needs to get the state of buttons by receiving data. So, one slice should be

chosen to get the external data input from SGPIO 1. According to Table 1-5 (see blue blocks), it is Slice I that

is mapped as input to SGPIO 1. As to get external data pin input for Slice I, set 0 in concat_enable bit in

SGPIO_MUX_CFG register (refer to Table 1-6).

Table 1-5: Slices selection for Input or clock source (SGPIO_MUX_CFG register)

S
lic

e

Slice Din

s
lic

e
 Clock

Slice Din

concat_enable

clk_source_ slice_mode

 0 1

 concat_order

 00 01 10 11 00 01 10 11

A Pin0 A I J L A D H O P

I Pin1 I A A A I D H O P

E Pin2 E J I I E D H O P

J Pin3 J E E E J D H O P

C Pin4 C K L J C D H O P

K Pin5 K C C C K D H O P

F Pin6 F L K K F D H O P

L Pin7 L F F F L D H O P

B Pin8 B M N P B D H O P

M Pin9 M B B B M D H O P

G Pin10 G N M M G D H O P

N Pin11 N G G G N D H O P

D Pin12 D O P N D - - - -

O Pin13 O D D D O - - - -

H Pin14 H P O O H - - - -

P Pin15 P H H H P - - - -

Another important part to configure slices is the shift rate setting. In order to keep all the slices work at the

same shift rate, 4 registers (SGPIO_MUX_CFG, PRESET, COUNT, and POS) should be set:

 SGPIO_MUX_CFG: slice I, M, K are set to use slice D as their clock source. (refer to orange blocks in

Table 1-5)

 PRESET: controls the shift clock frequency by formula below. So set same value to slice I, M, D, K.

frequencyshift_clock = frequencySGPIO_CLOCK / (PRESET+1)

 COUNT: controls the phase of shift clock. Set 0 to slice I, M, D, K in this situation.

 POS: contains POS_COUNTER and POS_PRESET. In this demo, slice exchange content between

REG and REG_SS every 32 bits. So values in POS_COUNTER and POS_PRESET should be 32 - 1

= 0x1F.

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 VIII

Table 1-6: Slices configuration registers setting

SGPIO_MUX_CFGi Slice I (i = 8) Slice M (i = 12) Slice D (i = 3) Slice K(i = 10)

ext_clk_enable 0: internal clock signal 0: internal clock signal x 0: internal clock signal

clk_source_slice_mode 00: Slice D 00: Slice D x 00: Slice D

qualifier_mode 00: enable 00: enable x 00: enable

concat_enable 0: external data pin x[1] x 1: concatenated data

concat_order x[1] x[1] x 00: self loop

[1] set to be 0 in demo

Table 1-7: Frequency-related registers setting of slices

 Slice I (i = 8) Slice M (i = 12) Slice D (i = 3) Slice K(i = 10)

PRESETi 0xFF 0xFF 0xFF 0xFF

COUNTi 0 0 0 0

POSi 0x1F1F 0x1F1F x 0x1F1F

1.5 Board Connection

To turn on the board, the USB interface is used to provide power. The USB cable connects from the

evaluation board to PC. A JTAG connector is used to connect the board and PC via J-link debugger.

As for connection from SGPIO to slave (PCA9673PW), it needs two wires, SDA and SCL. The wires are

connected between SGPIO pins and I2C signal jumpers on the board. The board position of selected SGPIO 1

pin is SV6 Pin7. Since SGPIO 1 is the output pin for SDA signal, it should be connected into SDA line which

has been already on the board. There is a jumper between SDA line, and the position is SV10 Pin 1.

Therefore, one wire is needed between SV6 Pin7 and SV10 Pin 1. Similarly, there should be one wire

between SV3 Pin9 and SV10 Pin 3 for SCL. Details of I2C signal connections are in Table 1-8. All the

connections on board are shown in Figure 1-12.

Table 1-8: I2C signal connection on the evaluation board

SGPIO i I2C signal LPC4350 Pin number Board pin position I2C board pin position

1 SDA P9_1 SV6 Pin7 SV10 Pin 1

13 SCL P1_20 SV3 Pin9 SV10 Pin 3

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 IX

Figure 1-12: Board connection for I2C example

1.6 I2C Programming

1.6.1 Demo Level
The desired result of this demo is that LED is on when the user presses button. The demo is designed to be in

a while loop, continually check the button state and compare it with last read value, transfer it into LED state if

the button state changes. It’s the responsibility of SGPIO to read the states of touch buttons and transfer

corresponding LED states. Below is the flow chart on demo level.

Start

Read

button state

button state

≠ last button state

last button state =

button state

Set LED

state

End

Y

N

Figure 1-13: Flow chart of I2C demo-level programming

Power

SDA

Debugger

SCL

SV6 Pin7

SV3 Pin9

SV10 Pin1 (red wire)
SV10 Pin3 (black wire)

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 X

1.6.2 SGPIO level

A basic I2C write transfer consists of a START condition, followed by 7 address bits, a one to indicate that it’s

a write, an ACK (send by the slave), 8 data bits and another ACK, finalized with a stop condition. The transfer

is not an upfront fixed sequence as it depends on two conditions. One is that what the acknowledge responses

from the slave is. The other is how many bytes of data would be sent. Due to this, it makes sense to split the

pattern to make it possible to respond to the feedback from the slave. It’s also easier to perform a read

transfer by separating protocol format into parts. The I2C protocol is such that it is possible to stall the transfer.

The SGPIO is using 32 bit registers. So the implementation is simpler if the transfer is split into parts which fit

in 32 bit words. This approach results in 8 parts: Start, Send Data, Receive ACK/NACK, Repeated Start,

Receive Data, Send ACK, Send NACK, and Stop. These eight parts could group into several different

combinations. Three typical combinations are as follows:

1. Write to slave: Start, Send slave address (𝐖), Receive ACK, Send data, Send NACK, Stop

2. Read from slave: Start, Send slave address (R), Receive ACK, Receive data, Send NACK, Stop

3. Write and read: Start, Send slave address (𝐖), Receive ACK, Send data, Receive ACK, Repeated Start,

Send slave address (R), Receive ACK, Receive Data, Send NACK, Stop (see Figure 1-14).

The data transmission is programmed to be a function named I2C_TransferData. Eight parts mentioned above

are programmed as eight functions and could be called in function I2C_TransferData.

The aim of function I2C_TransferData is to combine all possibilities of transfer formats. It can choose whether

to read or write and when. Moreover, the function can react to acknowledge signal sent by slave. It’s also

possible to judge the validity of data sent by slave and response to it.

The input of I2C_TransferData function is a structure which contains slave address, data length (means how

many bytes of data) to send or receive, value of data to send or receive, counter of transferred bytes. The data

received is transferred back by this structure as well. The output of the function is state of transmission, error

or success.

Below are the flow charts of the I2C_TransferData function. The gray block (Receive) in the left chart points to

the gray block (Start Receive) in the right chart. The Stop Receive block in the chart on the right points back to

end of chart on the left. The function has Start and Stop at the beginning and the end respectively, and in

between is data streaming. Followed by START condition, it’s the decision whether to send data or not. If

sending data is needed, it starts to send 7-bit slave address with 8th bit low (𝐖), and then send data. Followed

by every byte sent, there are acknowledge receiving and judging if all the data has been sent. The

transmission could stop and send error information if the received acknowledge bit is high (NACK).

Figure 1-14: One I2C data transmission consists of read and write transfer

Receive
ACK

Repeated
Start

Receive
ACK

Start Send Data (W̅) Send Data (R) Receive
Data

Stop

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 XI

Start

Reset variables

Start frame

Send data

Send address

tx_count <

tx_length

Send data

Receive ACK

ACK

tx_count + 1

Y

Y

Send data

before

N

Send address

rx_count <

rx_length

Receive data

rx_count + 1

Data valid

rx_count <

rx_length

Send ACK

Send NACK

Send NACK

Stop frame

ERROR

Y

Y

Y

ERROR

Stop Frame

N

N

SUCESS

Stop Recieve

N

Y

N

Stop

Stop frame

Receive

Receive data

N

Y

N

Start Receive

N

Repeated Start

frame
Y

Figure 1-15: Flow chart for SGPIO-level I2C programming

If there’s no need to send any data, or all data bytes have been sent successfully, the code will go to next

decision. This decision is to decide whether to read or not. If reading is required, the routine will go to the flow

chart on the right, and decide whether to send a Repeated START condition or not. If the transmission has

sent data before receiving, a Repeated START condition is needed. Otherwise, the data transfer directly goes

to address sending part. Next, it sends 7-bit slave address with 8th bit high (R), receives 8-bit data, and checks

the data validity to decide to send ACK or NACK. If data is not stable on SDA when SCL is high, the

transmission would generate a NACK and STOP condition. Error information will be returned as well. After

receiving every data byte and sending ACK, the code will check if it reaches the amount of byte desired to

receive.

If the decision is no data to receive, or all data bytes have been received successfully, the transmission will

end with a STOP condition. An important point to notice is that the last acknowledge bit sent before STOP

condition should be NACK. Otherwise, the slave would not recognize it’s the STOP condition to come.

Due to the 32-bit shift register and 8-bit data format, extending 8-bit data into 32 bits is used in Send Data part,

and shortening 32 bits into 8 bits is used in Receive Data.

In this project, there are two boards used. At the beginning of the project, an old board was used, which

contains the touch buttons, LED, and PCA9502 as the slave. The new board that was delivered later has push

buttons, LED, joystick and PCA9673PW. PCA9502 is an 8-bit I/O expander with I2C-bus or SPI interface. It

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 XII

requires writing a register address of PCA9502 before read or write data. Therefore, some sequences with

using the old board contain read and write transfer, and appear like what is in Figure 1-14. Since the working

way of the new chip in the new board is different, data transmissions is either a read transfer or a write transfer.

So, not all the eight parts are actually working in the latest demo.

The structure of six functions above is very similar. The basic idea is to change the values in REGi (i

represents the slice number) and REG_SSi of output enable slices to generate different patterns. Changing

the values at the right time is the main difficulty. For example, if a new value is written into REGi without any

condition, the former pattern is changed to new one before it totally shifts out. In a result, the pattern

generated in this way is mixed with the previous value and the new value. So a feature of SGPIO is used in

this case. The shift register REGi can shift out 32 bits and stop after exchanging with REG_SSi. In other words,

POSi could countdown once in one cycle of 32 bits if it is desired. Detail steps are included in the example

with Slice A (0) below.

CTRL_ENABLED = 0 (clear enable of all slices)

CTRL_DISABLED = 0 (clear disable of all slices)

REG[0] = 0xFFFF0000 (give a initial value of output)

CTRL_ENABLED = 1 (enable slice A which is now shifting sixteen 0s and sixteen 1s)

CTRL_DISABLED = 1 (slice A will shift one more old pattern and stop)

Wait (until POS_COUNTER reloads its value)

REG[0] = 0xFFFFFFFF (change a new value to output)

CTRL_DISABLED = 0; (slice A generates all high continually as new pattern)

In terms of right time to change value, the delay part above is made of two while loops in the demo, here is

one example for slice K:
while (LPC_SGPIO->POS[10]==0x1F1F);

while (LPC_SGPIO->POS[10]!=0x1F1F);

The second while-loop is to wait until POS reloads its value. The reason to have the first while-loop is that, in

the program, the delay sections (while loop) are often used. When POS equals 0x1F1F and it costs some time

counting down to 0x1F1E, 0X1F1D and so on. The code would run very fast and skip some while loops if

there’s only the second while. So the first while is to avoid skipping steps in transmission. Another important

thing is that value in while-loop condition should be 0x1F1F rather than 0x0. It’s because the shifting disabled

function is designed to pause the sequence at the moment POS has reloaded the new value.

The flow chart of Start function is in Figure 1-16. For Send Data, Receive ACK/NACK, Repeated Start,

Receive Data, Send ACK, Send NACK, and Stop, only one thing should be changed. That is the desired value

to be written in REG and REG_SS of slice K and slice M.

Start

Change REG and REG_SS values

CTRL_DISABLED = 0

CTRL_DISABLED = 0xFFFF

Wait if POS = 0x1F1F

Wait if POS ≠ 0x1F1F

Stop

Figure 1-16: Start function flow chart

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 XIII

1.7 Testing

Test Setup

At the beginning of implementation, the first part finished is generating a clock signal. At that time, a LED on

the board was used in testing to see whether it could be on, off, or flashing. With the code developing into

more complex state, a scope is to test the sequence. The setup for testing is as shown in Figure 1-17. The

whole setup consists of PC, a LPC1850EVA-A4 evaluation board, J-link debugger digital and a storage

oscilloscope. Use the edge trigged mode of scope so that the sequence could be immediately captured on the

screen by the rising or falling edge.

Figure 1-17: Testing Setup

Typical Mistakes and Tips
1. Testing equipment

 Before testing, it’s better to set the oscilloscope back to default setting. It is to prevent the setting of
the scale or delay between channels to give an illusion of testing result. One example is that an
unexpected phase appears because there is delay between two channels on scope.

2. Documentation

 To do SCU setting for pins, Table 3 in section 6.2 (Pin description) of LPC4350 datasheet (6) is
referred. Reserved functions should be counted when deciding SGPIO function number.

 When looking up document about SGPIO, pin number is corresponding to SGPIO number rather than
Slice number.

3. SGPIO programming

 POS register should be set to be 0x1F1F instead of 0x1F.

 SCL and SDA lines should not be always driving. (explained in section 5.3)

 To change the value in REGi should be at the right point. (explained in section 5.6.2)
4. I2C programming

 When it’s master’s responsibility to send A/�̅�and before stop, the acknowledge bit should be NACK
instead of ACK.

Testing result
SGPIO clock frequency is 12 MHz. The fastest rate of the final demo is 11.76 kbit/s. As shown in Figure 1-18,
the shortest time to transfer one bit is 85 µs which is measure by scope. So the highest transfer rate of I2C is

𝑓𝑚𝑎𝑥 =
1

85 × 10−6
= 11764.7 𝑏𝑖𝑡/𝑠 = 11.76 𝑘𝑏𝑖𝑡/𝑠

This transfer speed comes from the implementation, it’s not a limitation of i2C itself. One typical sequence is in
Figure 1-18 which is saved from scope. It comprises one complete transfer, the line above (green line) is SCL
signal, and below (purple line) is SDA signal.

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 XIV

As shown in the figure, it’s a complete read transfer. The master first generates START condition, sends slave
address with 8th bit high, and then keep SDA high on 9th clock to wait for the slave to send the acknowledge
bit. At this time the slave keeps driving SDA line low during 9th clock, it means the slave has received the
address. The master receives data in the next 8 clocks and then sends an ACK signal. During next 8 clocks,
the master receives another byte of data. Then it's the master’s responsibility to send NACK to stop. The
master keeps SDA high to inform the slave to stop. The whole transmission is terminated by a STOP condition.

Figure 1-18: One complete read transfer of I2C on scope

1.8 Conclusion

I2C protocol could be implemented into SGPIO interface by software programming. The demo proves it’s

possible for SGPIO to work in rule of communication protocols. Error detecting is also realizable. There are

still some problems left to be improved with I2C protocol:

1. The output of function I2C_TransferData is ERROR or SUCCESS. It can be detected if there is any error

during executing I2C_TransferData. However, two conditions could lead to error state. One is receiving

NACK from slave when it sends address or data. The other is the data received from slave couldn’t meet

data validity. When the routine get an error state of I2C_TransferData, it couldn’t define which part of the

transfer generates error. So it’s better to have overall information about where and what the error is.

2. The wait part in Figure 1-16 is made of a while loop. To wait until the exact moment, It’s better to have a

smarter and safer solution instead of while loop.

3. Now the code is working on ARM M4 core. The desired core to deal with peripherals is ARM M0.

4. Between M4/M0 core and SGPIO, there is a bridge. The data stream should get over the bridge to reach

SGPIO. So it might cause latency when the sequence is complex and long. A test of long data

transmission is recommended to see the performance.

5. I2C protocol contains Standard-mode, Fast-mode, Fast-mode Plus, and the High-speed mode. The

protocol achieved now is under Standard-mode. More work is left to realize other modes.

START Address(R) RxACK RxData TxACK RxData TxNACK STOP

85µs

 NXP Semiconductors
Fontys University of Applied Sciences Thesis
 Version 1.0

 XV

	1. I2C Software Implementation
	1.1 Introduction
	1.2 I2C Protocol
	1.3 I²C SGPIO Configuration
	1.4 I2C Slice Configuration
	1.5 Board Connection
	1.6 I2C Programming
	1.6.1 Demo Level
	1.6.2 SGPIO level

	1.7 Testing
	1.8 Conclusion

