
CHAPTER

1Introduction

Fools ignore complexity. Pragmatists suffer it. Some can avoid it.

Geniuses remove it.
—Alan Perlis, Epigrams on Programming, 1982

In just a few years, electronic systems have become significantly more complex.

Now, even comparatively simple designs include multiple processors, a mixture

of CPU types, digital signal processing (DSP), application-specific integrated

circuits (ASICs), field-programmable gate arrays (FPGAs), and other devices.

Complementing the diverse combinations of hardware, today’s systems employ a

variety of operating systems and application stacks that until recently would not

have been combined within a single product or solution.

Unfortunately, however, as these systems have grown in complexity, the devel-

opment tools and processes that were refined when single processors and basic

client�server architectures were the rule have not kept pace. As a result, today’s

system developers are challenged to find new ways to define system architectures,

develop and integrate millions of lines of code, and deploy such complex systems.

They must do this in ways that reduce risk and shorten the schedule while simulta-

neously resulting in a higher-quality product that is easier to support and maintain.

In addition to the growing complexity, the market also expects new systems to

be delivered at a much higher pace. The product development lifecycle of most

electronic systems has been significantly shortened over the last decade. Thus,

today’s system developers are faced with two significant challenges: deliver new

solutions faster, and develop, debug, and maintain ever more complex systems.

Virtual platforms can help in addressing these two challenges.

The goal of this book is to inspire and educate the reader to find new ways to

leverage the power of virtual platforms and full system simulation to improve

their systems’ design and development activities. With this book we seek to share

our experience, gathered over more than a decade, from working with our custo-

mers to help them realize the advantages of working in a simulation environment.

This book is focused on virtual platforms created in Wind River Simics†, and

although Simics offers many unique features, many of the techniques and chal-

lenges discussed apply to other virtual platform solutions as well.

1Full-System Simulation with Simics. DOI: http://dx.doi.org/10.1016/B978-0-12-800725-9.00001-9

© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-800725-9.00001-9


At one level the book will address how to use Simics simulations to achieve

your development goals as a leader of an organization. At another level, the book

will discuss how to use Simics simulations to get actual tasks done. The book

offers best practices along with real-life examples to help you understand how to

get the most out of your Simics implementation. Design patterns and architectures

that have been proven to work when building complex simulation systems involv-

ing many separate components are described. While the book is not intended to

be a user manual, it is a comprehensive book on simulation using Simics, and we

have tried to provide enough details for the book to be useful for someone trying

to implement the concepts described.

This chapter introduces the reader to why virtual platforms and full-system

simulation like Simics is a critical tool for developing today’s complex computer-

based systems. The chapter defines the basic terminology and provides a high-

level overview of why and where Simics is being applied to solve problems for

software and system developers. The chapter concludes with an outline of the

remaining chapters of the book.

VIRTUAL PLATFORMS
A virtual platform is a model of a hardware system that can run the same soft-

ware as the hardware it models. The virtual platform is simulated on a host com-

puter that may be different from the hardware modeled by the virtual platform.

For example, a big-endian Power Architecture system with a controller area net-

work (CAN) bus and other peripherals running VxWorks† can be simulated on a

typical little-endian Intel® Architecture PC running a Linux† or Windows† operat-

ing system. A virtual platform is not limited to modeling a single processor or

board, but can represent anything from a basic board with only a processor and

memory to a complete system made up of network-connected boards, chassis,

racks, and models of physical systems.

The key property of a virtual platform is its ability to run unmodified binaries

of the software that will finally run on the real system, and run it fast enough to be

useful for software developers. Such software includes low-level firmware and

boot loaders, hypervisors, operating systems, drivers, middleware, and applications.

Therefore, the virtual platform accurately models the aspects of the real system that

are relevant for software, such as CPU instruction sets, device registers, memory

maps, interrupts, and the functionality of the different devices. On the other hand,

the virtual platform is typically not concerned with modeling the detailed implemen-

tation of the hardware, such as internal buses, clocks, pipelines, and caches.

By focusing the model on the hardware�software interface and functionality

it is possible to achieve good performance and produce a virtual platform very

early in the product lifecycle—two critical features required to address the afore-

mentioned challenges.

2 CHAPTER 1 Introduction



TERMINOLOGY

There are many terms in use for the kind of technology that Simics represents.

This section defines some of the terminology the reader may come in contact with.

Simulation is a very broad term, used in many different fields. At its core, it

means that you use computer software to build a model of some phenomenon you

want to study and then run this simulator to understand the behavior of the modeled

system. A simulation provides more flexibility than the real system, allows para-

meters to be set freely, provides better insight into the internal workings, and allows

for the replay and repetition of scenarios. It also fundamentally avoids the need to

build physical prototypes or experiments, which speeds up development. Simulation

is used in every field of science and engineering. Simulations are used to predict

weather, crash-test cars, design aircraft, understand economic mechanisms, and find

new medicines. This book is primarily concerned with the simulation of a digital

computer system (the target) using another digital computer system (the host).

Full-system simulation (FSS) is a term commonly used to describe Simics, and it

captures the fact that the simulation targets an entire target system. Originally, the

point of a full system was that the digital computer hardware model was sufficiently

complete to run a real operating system (Magnusson et al., 1998). Over time, it has

grown in scope, and today a full system often includes factors external to the digital

computer hardware, such as models of the surrounding world and inputs and outputs

from the outside. It also includes the use of the simulator to model collections of dig-

ital computer systems, such as multiple machines in a network or multiple boards in

a rack. A simulation that cannot simulate more than a single system-on-chip (SoC)

or board is not really a FSS today.

Virtual platform is the established term in the world of electronic design auto-

mation (EDA) for a piece of software that works like a piece of hardware and is

capable of running software in lieu of the real hardware. Virtual platforms are used

at many levels of abstraction, from cycle-accurate models that correctly emulate

all pins and signals on buses and inside devices, to programmer’s view (PV) and

transaction-level models (TLMs) that essentially work like Simics does. Virtual

platforms are considered to be development tools.

Emulation is a term commonly used to indicate a software layer that lets a piece

of software run on a platform it was not initially targeted to run on. Well-known

examples are the Mac† 68k emulator that Apple† used in the migration from the

68k-family of processors to the PowerPC† family, and the Rosetta emulator that

allowed PowerPC binaries to run on Intel® Architecture in Apple’s next architec-

tural transition. Simulators for old videogame platforms, such as the Nintendo†

Entertainment System (NES), are also known as emulators to the public. We thus

consider emulation in the software realm to mean something that runs software by

translating binaries and operating system calls, where the primary use is to run

software, not to develop it.

Virtualization in the IT world means the use of virtual machines to run multiple

software loads on a single host. Virtualization as a principle traces its beginnings

3Virtual Platforms



back to the IBM System/360 line in the 1970s, and today there is a wealth of vir-

tualization solutions available on standard Intel hardware such as KVM, VMware†,

Xen, Hyper-V, Virtualbox, and many others. A virtual machine runs a real operat-

ing system, but often employs special drivers and input/output (I/O) mechanisms

to optimize performance for disks and networking. The goal is to provide an iso-

lated and manageable container for a particular workload. A key property of virtua-

lization is that it provides virtual clones of the underlying host machine—a

virtualization system cannot provide a target system that is fundamentally different

from the host.

In EDA some of these terms have specific meanings. An emulator is a custom

hardware system that runs the register-transfer level (RTL) of a new design with-

out having to actually manufacture a chip. Emulators are optimized for execution

speed, even if they also typically support some development. A simulator is a

software program that simulates the RTL. This is very slow, but it also does not

require any special hardware, and it provides very detailed insight into the execu-

tion of the system. For understanding and debugging a hardware design, a simula-

tor is the gold standard. A field-programmable gate array prototype synthesizes

the hardware design to run on an FPGA, rather than for ASIC production. The

functionality is the same, but the detailed timing behavior is not. Still, it is much

cheaper than using an emulator and runs much faster than a simulator. If seen in

software terms, this is the equivalent of using the same source code, but compil-

ing it for a different architecture and operating system.

SIMULATION AND THE SYSTEM DEVELOPMENT LIFECYCLE
Full-system simulation can be applied during the complete system development

lifecycle as shown in Figure 1.1. It helps in designing and defining systems by pro-

viding an executable model of the hardware interface and hardware setup. FSS

supports hardware and software architecture work, and it validates that the hard-

ware can be efficiently used from the software stack. Full-system simulation is

Design
Platform

development

Application

development

Test and

integration

Deploy and

maintain

Lifecycle timeline 
(for one product generation)

FIGURE 1.1

System development lifecycle.

4 CHAPTER 1 Introduction



used to develop low-level firmware, system software, and application-level soft-

ware. Testing and integration can be performed on the simulator as well as on

hardware, providing increased hardware flexibility and developer agility. The soft-

ware development schedule can be decoupled from the availability of hardware.

Using a simulator improves software development productivity by providing a bet-

ter environment than hardware, especially for reproducing issues, debugging, and

automated testing and execution.

The following sections describe various ways in which virtual platforms are

being used to make developers more efficient throughout the product lifecycle.

HARDWARE DEVELOPMENT AND DESIGN

A virtual platform is a common tool in the design of new computer systems and

new SoC designs. Early hardware design models tend to focus on performance

modeling without much care for the actual functionality and what is being com-

puted, which is not really a good match for the Simics-style fast functional simu-

lation. Still, Simics-style virtual platforms are very useful during the hardware

design, because Simics provides a means to define and test the functional design

of the hardware system. It feeds into pre-silicon software development, as dis-

cussed in the next section.

It is also quite common to use fast virtual platforms with a few components

swapped out for detailed cycle-accurate and bit-accurate models to perform

component-level tests with real workloads and component-level verification and

validation work. Chapter 9 discusses how such mixed-level simulations can be

built by combining elements from multiple different simulation systems.

PRE-SILICON

When developing a new chip, FSSs like Simics are used to develop software long

before the first silicon appears. This allows the entire project to have its schedule

“shift left,” effectively reducing the time to market and time to revenue for a new

product. In the traditional product development flow, hardware development, soft-

ware development, and integration and testing more or less take place serially.

Typically, software developers try to start as early as possible by using different

techniques such as cross-compilation to the host machine, working with old revi-

sions of a board, or using previous-generation hardware. These techniques offer

significant challenges, especially for low-level code such as firmware and drivers.

Using virtual platforms, the software and hardware can be developed more or less

in parallel, significantly reducing the time to a releasable product. Additionally,

because the schedule pressure is reduced by increased parallelism, there is the

option to get more testing done before release, increasing product quality. These

benefits from a “shift left” are illustrated in Figure 1.2.

It has been shown many times that by using virtual platforms the time to create

a board support package (BSP) for a new design can be pulled in from several

5Simulation and the System Development Lifecycle



months to only days after the first hardware is available. In the ideal case, the hard-

ware and software teams work closely together, allowing the software team to pro-

vide feedback to the hardware designers already before the design is frozen. This

can help to avoid costly mistakes in terms of overly complex programming models

and performance bottlenecks that appear because of a lack of system optimization.

The software most commonly developed on the pre-silicon virtual platform are

boot loaders and basic input/output systems (BIOSs) (Carbonari, 2013), silicon ver-

ification and test software (Veseliy and Ayers, 2013), drivers, firmware, and oper-

ating system support. Even though the Simics abstraction level hides the detailed

timing and implementation of a system, developing software on a functional virtual

platform has been proven to work very well. Compared to not using a virtual plat-

form, system developers save weeks and months of time (Koerner et al., 2009).

A variant of pre-silicon development that might not be obvious is the develop-

ment of software for a new board. Even if a new board is based on a familiar

SoC and existing network chips, memory, and other functions, a Simics model

can still be provided ahead of the arrival of the board and offer the same benefits

as for a new silicon chip. Just like a new chip, a new board needs custom boot

code and drivers to enable software to use the capabilities of the board.

PLATFORM DEVELOPMENT

Platform development refers to the development of the fundamental software that

makes hardware work and that provides a platform for application development.

As discussed before, this includes the development of firmware, boot loaders, and

BIOS, as well as operating system kernels and BSPs. In addition to such

hardware-interface code, it also usually involves integrating various forms of mid-

dleware software on top of the operating system. The middleware provides the

crucial domain-specific specialization of the generic operating system platform,

such as distributed communications systems, fault-tolerance mechanisms, load

balancing, databases, and virtual machines for Java, C#, and other languages. The

complete software stack can be developed and run on Simics.

Product development with simicsTraditional product development

Reduced time-to-market
increased revenue

Product
Quality

Resources
Costs
Risks

Hardware Integration 
and test Hardware

Software

Integration
and test

E
ng

in
ee

rin
g 

ef
fo

rt

E
ng

in
ee

rin
g 

ef
fo

rt

Time and risksTime and risks

Software

FIGURE 1.2

Product “shift left”.

6 CHAPTER 1 Introduction



Debugging low-level code in Simics is a much nicer experience than using

hardware, especially compared to early unstable prototype hardware. As discussed

in depth in Chapter 3, Simics enables the debugging of firmware and boot code

from the first instruction after power on, and makes it easy to debug device dri-

vers and interrupt handlers. When drivers and the operating system are up, Simics

can be used to integrate middleware and services on top of the operating system,

taking the setup all the way to a complete running platform, ready for application

developers (Tian, 2013).

In larger organizations, there is usually a dedicated platform team who is

responsible for developing and delivering ready-to-use integrated platforms for

application developers. Virtual platforms can be used to efficiently deliver the

platform to application developers, containing both hardware and software, booted,

configured, and ready to go. With a virtual platform, a nightly build can become a

nightly boot, using checkpoints as discussed in Chapter 3 to deliver a ready-to-use

platform to the application development teams.

APPLICATION DEVELOPMENT

Applications provide the software that makes a system useful for its end users. An

application can be a single standalone process like a traditional desktop applica-

tion. More often, an application actually consists of multiple cooperating pro-

cesses, running on the same machine or spread out across machines to form a

distributed application. In the embedded world, there is often an element of hard-

ware involved, interfacing to the world outside of the computer. Fault-tolerant

applications containing multiple redundant software and hardware systems are also

commonly seen in the embedded world.

Application development with Simics means giving application developers access

to virtual hardware, which lets them test their code on the same platform the code will

run on in the end. Often, application software development is performed using devel-

opment boards that only partially match the target system, or by using some form of

emulation layer compiled to the host. With Simics, target hardware availability is not

an issue, and application developers can work on their standard PCs while still com-

piling their code for the actual target and running it as part of the real software stack.

Simics can simulate networks of machines and the interface between computers and

their environment to provide a realistic system for application developers.

As the time available for development gets shorter and continuous integration

and continuous deployment are being applied even to traditionally slow-moving

embedded systems, the value of working with the actual target hardware

increases. The goal is to have every build of the software ready to deploy to cus-

tomers, and this means that it has to be built with the actual release compilers and

get tested on the hardware that is used in the field. This is a very good match for

virtual platforms, because they can be built and configured to precisely match the

real-world platforms, enabling fast and agile software development while still

only using standard laptops, workstations, and servers.

7Simulation and the System Development Lifecycle



Application development can be supported by various simulation-powered

shortcuts to make the work more efficient, such as using back doors to load soft-

ware and scripts to automate a load-configure-run cycle.

For applications built on top of distributed, parallel, and virtualization-based

systems, Simics provides an ideal debug and test platform, because it offers the

ability to control and debug the entire system and all parts of the application

using a single debugger, regardless of whether the actual system has debug access

built into its hardware or software.

DEBUGGING

While not really a part of the product lifecycle, debugging is one of the most time-

consuming parts of software development. Even worse, a really bad bug can poten-

tially hold up a release, and cause customer pain, manufacturer embarrassment in

case they are discovered post-release, and even force a recall of a product.

Software debugging involves three fundamental activities: provoking the bug,

finding and isolating the bug, and fixing the bug. Traditionally, successful debug-

ging requires a high degree of developer skill and experience, often combined

with patience and luck. Simics removes luck from the equation by simplifying

efforts to repeat and isolate the bug. Several of Wind River’s customers previ-

ously struggled for months to repeat and isolate bugs on physical hardware only

to find them in hours with Simics.

Simics’s usage and value as a debugger applies to post-silicon as well as pre-

silicon use cases (Tian, 2013). When hardware is available, Simics complements

the use of hardware for debugging. Users who test-run their code on Simics can

easily debug it using Simics, and Simics can also be used to replicate and debug

issues from the field and tricky hard-to-find bugs.

To repeat a bug on physical hardware, developers may have to restart the sys-

tem or application hundreds or thousands of times, using a new set of input para-

meters, data streams, or operator actions each time, or hoping for some random

fluctuation that will provoke the bug. Simics virtual platforms are different. They

operate in a virtual world where the entire system state and all inputs are control-

lable and recordable. As a result, any simulation can be trivially reproduced.

Once a bug is seen inside a Simics simulation, it can be reproduced any number

of times at any time or any place in the world. Thus, Simics makes it possible to

transport bugs with guaranteed replication.

Once a bug can be reliably repeated, the developer must find the source of the

bug. Traditional hardware-centric debug methods require an iterative approach

where breakpoints are set, the system is run, registers are reviewed, and the appli-

cation is restarted or execution is resumed to the next breakpoint. Using this tech-

nique, developers can eventually find the precise offending lines of source code.

However, attaching a debugger to a hardware system will affect the execution of

the system, leading to so-called Heisenbugs, whereby the act of debugging

changes the observed system and makes the bug disappear. In particular, stopping

8 CHAPTER 1 Introduction



individual threads or putting in breakpoints will often cause a complex software

system to break entirely. In contrast, a simulation-based debugger is nonintrusive,

and the system will run exactly the same regardless of whether it is under the

inspection of a debugger or not.

With Simics, developers can run the system in reverse, watching the sequence

of steps that led up to an issue. Simics will trigger breakpoints in reverse, making

it possible to stop at the previous change to a variable or memory location. Such

an approach does away with the need to start the debug session over and over

again and try to reproduce a bug and plant different sets of breakpoints. Instead,

Simics allows debuggers to continue from finding the bug directly to debugging

and unearthing the cause of it. Simics can observe all parts of the system state

and trace all interactions without disturbing the target execution, which means

that it is easy to understand just what the system is doing.

Once a bug has been repeated and isolated, the effort to resolve it may range

from trivial to extensive. With Simics, developers may apply standard features

such as checkpointing, reverse execution, run-to-run repeatability, and full-system

visibility and control while finding the precise bug fix. For complex systems,

Simics will make it easier to replicate the particular hardware�software setup

involved with a bug report to test fixed code in a relevant environment.

TESTING AND INTEGRATION

Testing and integration are crucial parts of any large-scale software development

project. Modules from many sources have to be built, integrated, and tested to make

sure they are working together. Hardware has to be integrated with software, and

networks and racks configured, brought up, and tested. Using a simulator like Simics

for this phase brings great benefits to the development workflow (Magnusson,

2005). As discussed in more detail in Chapter 5, Simics can scale up to truly large

systems, making system testing and integration work in simulation a realistic option.

When Simics is used to enable software development before silicon or boards

are available, it is natural to also perform system integration ahead of hardware.

Because Simics models cover the whole system, all the system software and hard-

ware can be integrated in the simulation before the hardware is available. A par-

ticularly interesting case is when the new hardware is part of a bigger system

containing older hardware, such as rack-based systems where new and old boards

coexist. In such cases, Simics makes it possible to virtually integrate the new

hardware with the old hardware, allowing system integration and testing to hap-

pen before the hardware becomes available.

Creating and managing multiple system and network configurations for testing

is often difficult in hardware. The number of hardware lab setups is limited by

hardware availability, and reconfiguring a hardware setup with different boards

and network connections is time consuming and error-prone. With Simics, it is

possible to write scripts and save setups as software, making configuration an

9Simulation and the System Development Lifecycle



instant process. Configurations can also be saved in version control systems, allow-

ing hardware and software configurations to be managed together.

Testing can naturally be performed in parallel, because virtual platform avail-

ability is only limited by the number of servers that can be used to run Simics.

This increases the amount of testing that can be performed within a given time,

compared to only using hardware setups. Using techniques like checkpointing, it is

possible to shorten test execution time by starting from booted setups rather than

rebooting the test system for each test.

Simics and simulation are enablers for continuous integration (Duvall et al.,

2007) and automated testing of embedded code. Using hardware is much more diffi-

cult than simulators, especially for quick short tests. As illustrated in Figure 1.3, a

typical continuous integration workflow starts with a developer submitting new code

to the build system. If the build fails, they have to fix it. Once the code actually

builds, quick unit tests and other smoke tests are typically run to make sure the code

is not totally broken. Such tests should run very fast—no more than a few minutes—

to quickly return a reply to the developer.

Once code passes unit testing, it can be subjected to larger-scale tests. First, some

form of subsystem test is run where the code is tested in a real context but typically

with quite small inputs. The goal is to get the subsystem-level tests done in hours.

Code that passes subsystem tests is finally used in system-level tests where it is run

along with all other code and functionality of the system, and subjected to long hard

tests under high load and lots of traffic.

Any failure loops back to the 
developer for fixing

Developer writes new code

Build system builds code

UnittestsUnit tests

Suite of programs integrated on platform and 
subsystem-level test

Run on virtual platform, as 
part of automatic 
continuous build and 
integration process

System-level throughput, full load,
and stability testing

Large-scale tests usually 
run on hardware

Deliver to customer

FIGURE 1.3

Continuous integration with Simics.

10 CHAPTER 1 Introduction



Simics is a suitable platform for unit tests and subsystem tests, but system-

level tests are usually run on hardware. At some point, it is necessary to test what

is actually going to be shipped. The maxim is always to “test what you ship and

ship what you test.” Thus, the physical hardware that will be shipped to the cus-

tomer must be used for final testing.

Still, using a virtual platform like Simics can drastically reduce the amount of

hardware labs needed. If most unit tests and subsystem tests are run on Simics,

most developers will be independent of hardware and can run the tests whenever

needed, regardless of hardware availability. It is very easy to integrate Simics as an

automated testing component in build automation systems like Jenkins. Integration

also covers the integration of a computer system with its physical environments.

By combining Simics with other simulators, as discussed in Chapter 9, simulation-

based testing can cover both a control computer and its environment.

DEPLOYMENT

The pre-silicon use case is easy to appreciate—when there is no hardware available

a simulator is a good solution and often the only solution. However, many Simics

users find that the benefits of virtual platforms carry on long into the deployment

and maintenance phases. For example, some customers embed Simics into their

complete virtual environment, allowing them to carry out system-level develop-

ment and testing in a flexible and powerful environment, at the point in time where

systems are actually available in the market and deployed to customers.

In the deployment phase Simics can be used to perform demos for customers.

It is easy to bring a fully configurable Simics model to a customer to showcase

an application that would otherwise require custom hardware or a large set of

hardware to be brought to the customer or maintained in a separate demo lab with

obvious resource limitations. A related topic is that of training, which is covered

in more detail later in this chapter.

Virtual platforms can also be used to simulate faults that have appeared in

deployed systems. For example, if the target system is flying through space some-

where, a virtual platform on Earth can be used to model various faults that have

appeared in the physical system during its service life. Software workarounds and

patches for hardware issues can then be tested on the ground, in the simulated

environment of the virtual platform, before being uploaded to the live system.

MAINTENANCE

Once development is complete and a product version is released, it goes into

maintenance. In maintenance the focus is typically on providing incremental

improvements and to resolve bugs that were not found during QA testing. The

test automation systems discussed previously for testing and integration should

still be used to make sure no new errors creep back into the system.

11Simulation and the System Development Lifecycle



When issues come back from the field, as they invariably will, virtual plat-

forms support the reproduction and analysis of the issues. With a virtual platform,

it is possible to reproduce a customer’s setup even if the precise hardware needed

is not available in physical form. Once a bug has been reproduced on the virtual

hardware, it can then be analyzed at leisure.

REAL-WORLD STORY: DEBUGGING A CORRUPTED FILE SYSTEM
One Simics customer had a system that handled large amounts of network data. Every once in a

while the system would crash with a corrupted file system. The crash happened in a catastrophic

way so the customer was not able to recover any useful information about the crash from the logs

on the hard drive. Because this system was deployed in a situation where downtime was very

costly, the customer was desperately looking for a solution.

After months of debugging the problem using real hardware, the customer decided to try a

different approach. There was already a Simics model available for the system that had been used

during development, so the customer cloned the setup of the system in Simics and began trying to

reproduce the bug. They realized that the bug was most often triggered when the hard drive was

close to full, so they replicated this scenario and started running traffic through the Simics model.

By varying timing parameters and traffic data they eventually managed to reproduce the bug in

Simics. Because Simics is deterministic they could now reproduce the bug at their leisure.

The next step was to write a script that checked the consistency of the file system

automatically. Using this script and checkpoints the customer bisected the workload to pinpoint

the time when the file system was corrupted. Attaching the debugger they found that a routine in

the operating system was corrupting the stack and overwriting the return address. This was a

commercial real-time operating system (RTOS) and the customer did not have access to source

code. However, they could go to the OS vendor and pinpoint exactly the routine that was causing

the issue. The problem was then identified and fixed by the OS vendor.

Another aspect of maintenance is generational change: once a system is deliv-

ered and deployed, it is often the basis for tweaks and upgrades. Components can

be upgraded to increase capacity or fix hardware issues, and the virtual platform

used to develop the original software can easily be updated to model the updated

hardware, enabling another round through the lifecycle.

A virtual platform for a deployed system is often also used as the basis for the

development of a next-generation system, especially for SoC, chip designs, and sys-

tem designs. A next-generation platform can be developed by starting with a model

of the current platform and then changing one component at a time from old to new

as they become available. The software is then updated to work with the new hard-

ware one component at a time, always maintaining a working hardware�software

system that is gradually changing from all-old to all-new. Such a gradual change

from one generation to another is very hard to do in hardware, because there is no

practical way to build a series of part-way designs (Magnusson et al., 2002).

TRAINING

Virtual platforms can be used for training on the system being simulated. The

main benefit of using a virtual platform is that training can be performed

12 CHAPTER 1 Introduction



without the need to access the real hardware system. Providing large classes

with sufficient hardware is often prohibitively expensive. The virtual platform

runs the actual software, which means that the behaviors seen are just like the

real thing.

For the case of certified software, such as avionics, using exactly the same

binary ensures that the training setup can be updated and kept in sync with the

real system. In the past, simulators for systems containing avionics systems

often relied on porting the software to run on a standard machine, or simply

building a behaviorally correct emulation of system components. With increasing

system complexity and reliance on software to implement system functionality,

these approaches tend to fail. Keeping software ports or behavioral emulators

up-to-date with the latest released real-world software is an extra cost and sched-

ule risk, which can be entirely avoided by running the real binary on a virtual

platform.

Virtual platforms can also be used in lieu of real systems to simplify training

in general concepts. Simics has been used to teach networking, multicore pro-

gramming, and operating systems at Wind River (Guenzel, 2013). In academia,

one particularly interesting area is teaching operating system concepts. With a

simulator at the base, it is much easier to debug and understand the behavior of

an operating system, enabling much more advanced labs than would be possible

on hardware. Once the operating system is up and running on the simulator, it

can be moved to real hardware and tested to show the students that what they did

actually works in the real world (Blum et al., 2013).

REAL-WORLD STORY:
TEACHING OPERATING SYSTEM WITHOUT SIMICS
In the mid-1990s, before Simics was available, one of the authors of this book was a teaching

assistant on a course in operating systems. The course was taught using a set of MIPS R3000-

based boards with a small amount of memory and standard serial port for output. Getting an

operating system up and running was not entirely easy, and most students ended up pulling a few

all-night hack sessions in the computer lab to get their software to work. In the end, most of

them did.

However, one very ambitious group of students decided that they would try to make use of

the memory management unit (MMU) of the MIPS processor. After all, a real operating system

should have memory protection. This turned out to be very hard indeed—setting up the translation

look-aside buffer (TLB) entries and moving to a protected memory model is nontrivial. Test run

after test run was made, with debug printouts scrolling by on the 24-line terminals in use, each

time ending in a complete freeze of the target system. With no hardware debugger available and

very limited scroll-back on the terminal, debugging was basically guesswork.

In the end, the students were forced to give up. Had they had Simics around, debugging would

probably have been trivial. Check the MMU state, trace the MMU setup operations, and check

where the code froze. Still, the students were given passing grades for the course and went on to

quite illustrious careers in programming. The lab assistant later worked as an associate professor

in the department and introduced Simics as the basis for the operating systems lab. It did make it

much easier to debug the students’ OS kernels.

13Simulation and the System Development Lifecycle



LONGEVITY SUPPORT

Full-system simulation has been proven to have tremendous value in the support

of really old hardware. Indeed, once a system gets old enough, the value of hav-

ing a simulator for it tends to go up, as the hardware starts getting scarce.

In telecom and other fields, hardware sold a decade ago is often still used in

field installations—customers do not upgrade their hardware unless they absolutely

have to, and hardware tends to last longer than expected (or planned). Such hard-

ware tends to be built from racks containing lots of boards, and there are usually a

large variety of boards with several generations of each board. With a virtual

model of the older boards in place, all developers can have their own immediately

accessible hardware to work on. In the physical world, these older boards are often

in very limited supply, limiting user productivity.

The practice of extending the life of older systems by software upgrades to old

hardware is common in the military, aerospace, and transportation fields. The devel-

opment of a software upgrade requires development hardware, but typically there

are very few or no physical units available. Development boards tend to go bad and

become unstable or useless over time. Even if a large supply of boards were pro-

cured at project start, their half-life tends to be only a few years, and after a decade

or two it is rare to have many development boards available at all. Taking electronics

units from systems in the field is not a realistic option due to hardware cost, the fact

that making systems unavailable is often unacceptable, and that the boards being

used in production are not exactly being designed for development tasks.

A virtual platform is thus a very nice solution that provides developers with

the rare luxury, in these fields, of ample hardware access. A virtual platform is

also stable and available virtually forever, as illustrated in Figure 1.4. The virtual

platform will be available as long as Simics continues to be ported to new genera-

tions of hosts. And as long as the virtual platform is available, there is the ability

to run the decades-old software stack and to test and integrate new software.

Application Application Application

RTOS

Application

RTOS

Application

RTOS

Application

The simulated target 
hardware stays the 
same, and the target 
software keeps 
running

Simics

Windows 32-bit

Simics

Linux 64-bit

Simics

80286 board

Future OS

32-bit PC 64-bit PC Future PC

Time

Simics is ported to 
each new generation 
of hosts

80286 board 80286 board

FIGURE 1.4

Virtually infinite platform life.

14 CHAPTER 1 Introduction



CERTIFIABLE AND SAFETY-CRITICAL SYSTEMS

Simics is commonly used to help develop certifiable and safety-critical systems.

While Simics is not a qualified tool, it can still add tremendous value to the

development of such systems, across all the lifecycle phases.

In the aerospace world, Simics is not usually used to actually test software for

certification credit directly, but instead it is used to debug and develop the certifi-

cation tests. By making sure that the certification tests are solid before they are

run on hardware, significant effort and schedule time can be saved.

Certified hardware is also usually both expensive and rare, and using Simics

to augment hardware availability can remove many hardware-dictated bottlenecks

from the development process. For example, with Simics, it is possible to run

automated tests in parallel on regular servers, rather than relying on particular

hardware. This can enable daily regression testing instead of weekly, reducing the

chance of bugs sneaking back into the code base. Certified hardware and software

stacks also tend to have poor debug support, because back doors are not a good

thing on a critical system. Using a Simics model along with the unintrusive

Simics debugger makes debugging much easier.

Safety-critical systems also tend to contain error-handling code. Testing error

handlers is about the hardest thing possible, because forcing errors on hardware is

very difficult. With a simulator like Simics, fault injection is much simpler,

allowing for testing, debugging, and validation of error handlers. In industrial sys-

tems, validating fault-handling code is a requirement, and using a simulator like

Simics makes it much easier to systematically inject particular states in the sys-

tem directly into the virtual hardware. The alternative method of using a debugger

to control the target system and overwrite values is much more intrusive.

REAL-WORLD STORY: NASA GO-SIM
The NASA IV&V Independent Test Capability (ITC) team joined forces with NASA Goddard

Space Flight Center (GSFC) to develop a software-only simulator for the Global Precipitation

Measurement (GPM) Operational Simulator (GO-SIM) project. The GPM mission is an

international network of satellites providing next-generation global observations of rain and snow.

GO-SIM includes the GPM ground system and database, flight software executables, and

spacecraft simulators.

GO-SIM was designed as a high-fidelity simulator with no hardware dependencies. Its

functions include loading and running unmodified flight software binaries, executing flight scripts,

performing single-step debugging, injecting errors via the ground system, stressing the system

under testing, and validating findings from other analyses.

Part of GO-SIM is a Simics model of the RAD750† processor, which enables the target

software to run on the virtual platform the same way it does on physical hardware. Along with

Simics’ capabilities of scripting, debugging, inspection, and fault injection, it enables users to

define, develop, and integrate their systems without the constraints of physical target hardware.

Simics allowed NASA’s ITC team to simulate their target hardware, ranging from a single

processor to large, complex, and connected electronic systems, and build its GO-SIM product

with all the desired features.

15Simulation and the System Development Lifecycle



MODEL-DRIVEN DEVELOPMENT
Model-driven development (MDD) is widely applied in the domain of control sys-

tems and is the standard development methodology for automotive, aerospace, avi-

onics, and defense systems. A key part of MDD is to generate code from the model,

as illustrated in Figure 1.5, rather than writing it manually. For Simics, whether code

is generated or handwritten does not matter—it will run the same on Simics.

PROCESSOR-IN-THE-LOOP TESTING

In a typical model-driven workflow, a model is first tested using model-in-the-loop

(MIL) testing within the modeling tool (e.g., Simulink, Labview, MATLAB, or

SCADE). In MIL testing, the model of the code to be generated is tested against a

model of the world it interacts with. Next, simulation-in-the-loop (SIL) testing is

performed, where code is generated to run on the development host, testing the

code part against the world model. This makes sure that code generation from the

model works. Once this is proven, processor-in-the-loop (PIL) testing is performed

Code gen 
to target

C/C++ code

Model

Compile 
and link

Loadable
module

Application

OS

Real hardware

OS

Simics

Host OS

Host hardware

Simulated hardware

Application

FIGURE 1.5

Simics and autogenerated code.

16 CHAPTER 1 Introduction



where the code is generated to the target system and tested using the actual proces-

sor it will run on in the final system. PIL testing makes sure that code generation

and compilation for the target system does not introduce any errors, such as those

involving word length, endianness, floating-point implementation details, or other

target properties. In PIL testing, the model of the world is still used as the counter-

part to the code.

PIL testing makes sense to do on Simics, because Simics provides a model of

the final target system and thus a model of the final target processor. With Simics

used as a PIL target, it is possible to automate the execution of tests from within

the model-driven tool (see Chapter 9 for more information on such integration

work) and to provide easy and widespread access to target hardware. The alterna-

tive to using Simics is to use a development board or even the final hardware,

which is always a logistical and practical issue.

HARDWARE-IN-THE-LOOP TESTING

After a control program is proven in PIL testing, it is time to test it for real. This

is done by generating code for the real target and running the code on the real tar-

get with the actual physical system being controlled instead of the world model

used for MIL, SIL, and PIL testing.

Simics can be used for hardware-in-the-loop (HIL) testing in the same way

that a physical board can. This requires that the Simics model is connected to the

outside world using some form of real-world connection from a connection on the

simulated board to a connection on the host machine. As discussed in Chapter 5,

Simics provides such connections for a variety of common buses and networks.

INTEGRATION TESTING

The classic MDD flow does not really touch on the issue of system integration.

The focus is on generating correct code for the core functionality of the system.

That code will need an operating system and a hardware platform to run in the

real world, and integration with that platform often happens quite late in the sys-

tem design cycle. Indeed, even HIL testing is often performed using development

hardware rather than the final system.

Simics can be used to move integration earlier and allow earlier testing of the

integration. As shown in Figure 1.6, with a Simics model of the target system, the

OS port to the target hardware and the integration of the operating system and

applications can be tested without hardware.

Something that Simics makes possible is to test that the application works

with the actual input and output as provided by the operating system and target

hardware platform, while still using a model of the world. Thus, it is possible to

create a fully virtual integration environment, where hardware, the operating sys-

tem, the applications containing control algorithms, and the world can all be run

together in simulation.

17Model-Driven Development



BOOK OUTLINE
Chapter 2 defines the basic terminology used throughout the book and introduces

the reader to the Simics architecture, design, interface, and execution model. It

describes how Simics works and why it works the way it does.

The core values of a fast virtual platform—developing, debugging, analyzing,

and testing software—are covered in Chapter 3. A virtual platform like Simics lets

users run software of all kinds, targeting all kinds of hardware, on a laptop or a

development or test server. With the software running on Simics, the benefits of

using simulation can be realized: determinism, checkpointing, reverse execution, full

control, and insight. Chapter 3 describes how Simics is used to develop and debug

software, including the features of the Simics system-level reversible debugger.

Simics structures a virtual platform into a hierarchical structure of reusable

components with typed connectors. The components mimic the physical or logical

breakdown of a system. The Simics system panel can be used to provide a visual-

ization of a system that makes sense to the end user. Chapter 4 presents the

Simics component system, the system panel, and script systems that are used to

build systems from individual device and processor models.

Network simulation is an integral part of Simics, and many Simics target systems

are networked in one way or another. Simics is used to simulate very large networks

of systems, scaling up to several thousand target processors spread across dozens or

even hundreds of networked boards. Chapter 5 shows how network simulation is

done in Simics and how simulation can be scaled up to very large systems.

World 
model

System model

OS

Application Get hardware

Simulate system model

Simics

Simulated hardware
World 
model

Build drivers & BSP

Generate target code

Build application task

Create platform

Application 

OS
Integrate with platform

Real hardware

Real world

FIGURE 1.6

Model integration testing with Simics.

18 CHAPTER 1 Introduction



Chapter 6 introduces the reader to how to best perform transaction-level

modeling of individual devices and how such models are built in Simics. It covers

the Device Modeling Language (DML), as well as device modeling in C, C++,

Python, and SystemC. Chapter 6 provides detailed step-by-step instructions for

how to create a simple device model in Simics.

Following the introduction to modeling, Chapter 7 provides a tutorial-style exam-

ple on how to develop a model of a direct memory access (DMA) controller, prop-

erly connect it to a virtual platform using PCI Express (PCIe), and to enable a device

driver to interact with it. The example covers a wide range of important modeling

concepts, such as handling, PCIe configuration and inbound/outbound accesses,

interrupts, parsing of data structures, and how to model the passing of time.

Simics is designed to be an extensible and programmable system, allowing

users to customize the tool to solve their particular problem in the best way possi-

ble. Over the years, Simics has been used for things and in situations that were

not intended or even imagined by its developers. Chapter 8 discusses how Simics

can be extended by its users, including aspects such as cache modeling and fault

injection.

Simics users often need to model the physical world or look deep into the

implementation of computer components. Rather than using Simics itself to create

such models, it sometimes makes more sense to integrate Simics with other simu-

lators, leaving each simulator to do what it does best. Chapter 9 addresses the rea-

sons for, and the main issues involved in, creating such simulator integrations.

The chapter provides a discussion on the general issues involved in integrating

simulators and proven design patterns for such integrations.

Chapter 10 describes how Intel has used Simics for improving the system

development workflow. At Intel, one of the major use cases of Simics is to help

software and hardware bring-up, starting from the early pre-silicon stages. With

the help of Simics, a functional model of future Intel hardware can be made

available to BIOS and driver developers a year or even more ahead of engineer-

ing samples. This approach allows development of low-level software, which is

very hardware-dependent, in parallel with the development of the hardware. In

addition to that, close collaboration with hardware developers allows the team

of Simics engineers to perform a certain amount of validation of early hardware

specifications, thus speeding up the hardware development process as well.

These practices lead to cost savings by reducing product time-to-market—that

is, the “shift left.”

TRADEMARK INFORMATION
Xeon, Core and the Intel logo are trademarks of Intel Corporation in the United

States and other countries.

†Other names and brands may be claimed as the property of others.

19Trademark Information








	1 Introduction
	Virtual Platforms
	Terminology

	Simulation and the System Development Lifecycle
	Hardware Development and Design
	Pre-Silicon
	Platform Development
	Application Development
	Debugging
	Testing and Integration
	Deployment
	Maintenance
	Training
	Longevity Support
	Certifiable and Safety-Critical Systems

	Model-Driven Development
	Processor-in-the-Loop Testing
	Hardware-in-the-Loop Testing
	Integration Testing

	Book Outline
	Trademark Information




