
Modelling Martial Arts Techniques

J.C.K. Wong

A Thesis submitted for the degree of Master Scientific Computing
Supervisor: Dr. Gerard L.G. Sleijpen

Department of Mathematics, University Utrecht

October 2007

Contents

1 Introduction 3
1.1 Martial arts . 3
1.2 Building a musculoskeletal model 3
1.3 Modelling dynamic systems . 5

1.3.1 Simulation . 5
1.3.2 Numerical solvers . 5

1.4 Modelling and simulation with Simulink 6
1.4.1 Modelling with Simulink 6
1.4.2 Simulation with Simulink 6

1.5 Optimization problems. 7

2 Building skeletal models 9
2.1 Introduction . 9
2.2 The skeletal model . 9
2.3 Simplifications . 9
2.4 Dynamics of a rigid body in 2D 10

2.4.1 Equations of motion . 12
2.5 Example: free-falling thigh . 13

2.5.1 Implementation with Matlab 15
2.5.2 Multi-body dynamics . 17

2.6 Modelling with SimMechanics . 19
2.6.1 What is SimMechanics and why 19

2.7 Free-falling thigh with SimMechanics 19
2.7.1 Building the model . 19
2.7.2 Simulation . 21

2.8 Skeletal data . 23
2.8.1 Free-falling thigh with realistic hip. 23

2.9 Conclusion . 24

3 Building skeletal-muscle models. 27
3.1 Structure of skeletal muscles . 27
3.2 Activation of the skeletal muscles 29

3.2.1 The cross-bridge theory 30
3.3 Brief overview of current models. 31
3.4 Muscle experiments . 31
3.5 Virtual Muscle . 33

3.5.1 Hill’s muscle model . 33
3.5.2 The Virtual Muscle model 35

1

3.5.3 The model’s variables . 36
3.6 Using Virtual Muscle 3.1.5 . 38

3.6.1 Building the fibers . 38
3.6.2 Building the muscles . 39

3.7 Coupling the skeleton and mtc-models 41
3.8 Experiments . 43
3.9 Project Mae-Geri . 44
3.10 Conclusion . 51

4 Optimizations with Evolutionary Algorithms 52
4.1 Optimizing our motions. 52
4.2 Evolutionary Algorithms(EAs) 52
4.3 Terminology . 53
4.4 The basic Evolutionary Algorithm 54
4.5 Extending the basic EA . 54

4.5.1 Multiple regions . 54
4.5.2 Different strategies. 55

4.6 Project Static Thigh . 56
4.6.1 Using EAs . 56

4.7 The experiments . 58
4.7.1 Experiment 1: f = 40 . 60
4.7.2 Experiment 2: f = 80 . 60
4.7.3 How reliable is our best solution? 65
4.7.4 Experiment 3: another type of activation function 68

4.8 Conclusion . 69

Appendices 74

A How does Virtual Muscle work? 74

B Grieve’s method 79
B.1 Calculating the mtc-length with Grieve constants. 79
B.2 Calculating the moment-arm with Grieve constants. 79

C The GA-operators 82
C.1 Population Parameters . 82

C.1.1 Region Parameters . 82
C.2 Initializing the population . 82

C.2.1 Terminal constraints . 83
C.2.2 Selection . 83
C.2.3 Recombination . 83
C.2.4 Mutation . 84

2

Chapter 1

Introduction

We want to let the computer find optimal movement as from martial art tech-
niques. We should model human motions and optimize these motions. It in-
volves mathematical modelling, programming and optimization. In this chapter
we look how we can formulate and solve these problems in the most general
sense.

1.1 Martial arts

Since the beginning of mankind, people have to protect themselves against
others or wild animals. Sometimes with weapons and sometimes barehanded.
Through centuries people have discovered that some movements give better re-
sults than other. Martial arts techniques can be seen as special movements,
meant to defend or attack. Martial arts are the arts of adapting these tech-
niques to ones self and using it creatively. Martials arts nowadays are mostly
practiced for better health, which is also a way to protect ourselves.

1.2 Building a musculoskeletal model

We are interested in the motion of a human body. The human body is a very
complex biological structure and consists of many systems. The system we are
interested in is the locomotor system. The locomotor system consists of a skele-
tal system and a muscular system that drives the skeletal system. Both are very
dynamic systems. The locomotor system is therefore known as musculoskeletal
system. To bring down complexity we will only model part of the total muscu-
loskeletal system, the leg with its skeletal muscles for example. In chapter 2 we
will see how we can build a skeletal model in Simulink with SimMechanics. In
chapter 3 we will use Virtual Muscle to build skeletal muscles and add them to
the skeletal model. The number of skeletal muscles depends on the complexity
of the skeletal model. After this we can start simulation and eventually extend
the model. The input is an activation signal for each skeletal muscle. These
signals stand for the neural activation of the muscles. Each simulation produces
a certain motion. A martial arts technique is a optimal motion for a given goal.
We thus have to optimize the model.

3

Figure 1.1: Schematic overview of how we try to find martial arts techniques.
We model the human locomotor system, that has neural activation as input
and will produce motion. A martial arts technique is an optimal motion with
respect to a certain goal. If we want to find an optimal motion we should
find the neural activation that produces this optimal motion. The locomotor
system consists of 2 very different subsystems: the muscular and skeletal system.
The muscular system is made up with a number of skeletal-muscles, which
are actually muscle-tendon complexes(mtcs). They are activated by the neural
activation. As result of the neural activation the skeletal-muscles will contract
and produce a pulling force. This will cause the skeletal system to change and
we get motion. We will model the skeletal muscles from a mechanical point of
view and these type of models are known as lumped models. The skeletal system
will be modelled with a system of rigid bodies that can only rotate with respect
to each other(articulated models). Because the skeletal model is a system of
multiple bodies, it can be considered as a multi-body system.

4

1.3 Modelling dynamic systems

With modelling we mean mathematical modelling. A mathematical model is
a simplification of a real world system. It uses a set of equations to describe
the system. The complexity of the equations depends on the system and how
real we want it. For dynamic systems we have 3 main types of time-dependent
variables:

Input variables ~U(t): User given input. The variables are known.

State variables ~X(t): The minimum number of variables that describe the
state of the system at a certain time.

Output variables ~Y (t): These are the variables we are interested in. They
depend on the input and state variables. We have ~Y (t) = g(~U(t), ~X(t))

The state of a dynamic system changes over time and the rate of change de-
pends on the input. In physical systems the current state typically depends
on ”previous” states. The type of equations that describe the relations are the
well-known ordinary differential equations:

d ~X

dt
= ~̇X(t) = f(~X(t), ~U(t)) (1.1)

1.3.1 Simulation

If we want to study the behavior of a dynamic system over a certain time T , we
should simulate the model. This is done by specifying the state at the beginning
~X(0) and solving equation 1.1. ~X(0) is also known as initial conditions vector.

~X(0) = ~X0∫ T

t=0

~̇X(t)dt = ~X(t)
(1.2)

1.3.2 Numerical solvers

Equation 1.2 can only be solved in some very simple cases. In general we should
use numerical methods to solve it. The easiest way to understand how this can
be done is with the Euler method. With Taylor series we know that:

~X(tn +4t) = ~Xn+1 = ~Xn + ~̇X(4t) +O(4t2) (1.3)

Euler method uses the first order Taylor series to approximate ~X(tn+1):

~Xn+1 ≈ ~Xn + ~̇X4t (1.4)

The error is thus of order O(4t2) and this method is not very accurate. A more
accurate method is the midpoint method or Euler −Heun and goes as follow

~k1 = f(~Xn, ~Un, tn) (1.5)

~k2 = f(~Xn +
1
2
~k14t, ~Un+ 1

2
, tn +

1
2
4t) (1.6)

~Xn+1 = ~Xn + ~k24t+O(4t3) (1.7)

5

With this we have an error term of O(4t3) and should be more accurate. Euler’s
method and the midpoint method belong to the family of Runge-Kutta methods.
They are also known as the first order Runge-Kutta and second order Runge-
Kutta methods respectively. Runge-Kutta methods use different approximations
for ~Xn and combine them in such a way that a higher order error term is
obtained. Higher order Runge-Kutta methods use more function evaluations
than lower order but should be more accurate. A common way to bring down
the computation costs is to use variable time-steps. Numerical integrators can
be categorized into two main methods, implicit and explicit. Explicit methods
use known state variables from the current state to calculate state variables
for the next state, while implicit methods do not. We will use Euler’s method
to show the difference. The explicit Euler method is known as Euler forward
method and calculates the next state as follows:

~Xn+1 = ~Xn + ~̇X4t (1.8)

The implicit form of Euler method is known as Euler Backward method and
goes as follows:

~Xn+1 = ~Xn + ~̇Xn+14t (1.9)

Implicit methods that are used in practice have better stability properties than
explicit ones per time step, but they usually are more expensive [1].

1.4 Modelling and simulation with Simulink

In order to get numerical results we should implement the mathematical model
on the computer and let the computer do the numerical integration. There are
several ways to do this. Simulink is a very popular and user friendly platform to
model and simulate multi-domain dynamic systems. For more information we
refer to www.mathworks.com/products/simulink. A Simulink model is a block-
diagram that represents the set of equations that describe the system. It also has
a wide variety of built-in numerical integrators to do the simulation. Throughout
this thesis we will use Simulink as the modelling environment for our muscu-
loskeletal models and the ease of simulation with Simulink will become very
clear.

1.4.1 Modelling with Simulink

In Simulink we use a block diagram to represent the equations of one model.
The block diagram is made up of blocks and signals. A block can be an operator,
constant, output etc. Signals send time-dependent values between the blocks.
The values can be of different data-type (double, integer) and multi-dimensional.
Relevant blocks can be grouped into a larger block that represents a subsystem
for example. It is very common to build subsystems in a way that they have an
one-on-one correspondence with real systems. By doing this we can get clear
and easy to understand models [2].

1.4.2 Simulation with Simulink

To simulate the Simulink model we should specify an integrator and its accu-
racy. Simulink has several ready to use built-in numerical integrators. The

6

Figure 1.2: The specifications of regions where the approximated state variable
will be accepted. Source: [2].

2 main types of solvers are fixed and variable time-step. In dynamic sys-
tems variable time-step methods are recommended. For real-time simulations,
Simulink restricts us to use only fixed step solvers. When no real-time results
are needed, the recommended choice is the ODE45 variable time-step solver
with relTol = 10−6. The ODE45 solver is based on the Runge-Kutta method
of order 4 and is an explicit method. It is a variable time-step solver and its
accuracy is set by specifying the relative tolerance relTol and absolute absTol.
The relTol specifies in which region xi is accepted and absTol specifies the
threshold when xi is near zero. State xi is only accepted if all errors ei satisfy

ei ≤ max(xi ∗ relTol, absTol) (1.10)

otherwise the solver will use a smaller time-step. In figure 1.2 we see the different
regions. If we set absTol to automatic, Simulink will start with an absTol =
10−6 and readjust it during simulation with relTol. At time n we have absToli =
relTol ∗max(xi(t)).

1.5 Optimization problems.

We build a musculoskeletal model with different types of questions in mind.
Most of these questions can be translated into optimization problems. These
questions contain keywords like best, most, less, worst etc. For example: the
best kick, the most economical kick. Optimization is a different field in mathe-
matics. One type of optimization is to find best or worst output for any kind of
input. We rate the output with an objective function F(Y). This function F
tells us how good the results are. We name the function that maps the input to
F h: h(~U) = F(see figure 1.3). Our problem is to find an optimal input (~U)opt
such that h(~Uopt) ≤ h(~U) or h(~Uopt) ≥ h(~U) ∀ ~U if we want to minimize or
maximize respectively. It is very likely that h(~U) has many local optima. 1 We
will implement an evolutionary algorithm that should be able to solve this type
of optimization problems.

1We can experience this in martial arts practice too. We always find a better way to
execute a technique.

7

Figure 1.3: Schematic view of a dynamic system. The output ~Y depends on
the state ~X and the input ~U and is rated with objective function F . To get
the state of the system we should use numerical integrators. Function h is very
complex and with each simulation we get to know one more point of h. Our
optimization problem is optimizing h.

8

Chapter 2

Building skeletal models

2.1 Introduction

In this chapter we will build skeletal models. First we take a look how we
model the skeletal system as a mechanical system. Then we will study the
dynamics of such a system. To get familiar with some basic mechanics we
derive the equations of motions for a simple thigh-model. After that we will use
SimMechanics to build skeletal models.

2.2 The skeletal model

The skeletal model is a sub-system of our musculoskeletal system. It will receive
input from the muscle-models and produce motion. Moving objects on earth
obey certain laws. These laws are known as Newton’s laws of motion and have
already been formulated in 1687 by Isaac Newton [3]. They are:

1. Every object continues in its state of rest, or of uniform motion in a
straight line, unless it is compelled to change that state by forces impressed
upon it.

2. The change of motion is proportional to the motive force impressed and
is made in the direction of the line in which that force is impressed.

3. To every action there is always imposed an equal reaction; or, the mutual
actions of two bodies upon each other are always equal and directed to
contrary parts.

Newton’s laws are only valid in an inertial frame. An inertial frame is a coordi-
nate frame that does not undergo acceleration nor rotation. Real inertial frames
do not exist but for many applications we can use a frame that is attached to
the ground as an inertial frame.

2.3 Simplifications

In modelling it is always a tradeoff between complexity and realism. The more
realistic we want the model, the more complex it will be. Below are the simpli-
fications for our skeletal models:

9

2D motions: Only planar motions are considered. A main reason for this is
the absence of data needed for 3D simulation.

Rigid bodies: We divide the human body into several segments and treat
them as rigid bodies. The segments are connected with each other via ro-
tational joints. Skeletal models are therefore known as articulated models.
Rigid bodies are idealized physical objects and their mechanics are well
understood.

Part of the body: we will only model and simulate parts of the body that
undergo motions. A limb for example. There reason is that we need to
build muscle models as well. The fewer bodies, the fewer muscle models
are needed.

Fixed base and loose end: Our skeletal model can now be seen as a chain
of rigid bodies. It has a base point and an end point. The base point is
closer to the whole body than the end point. We fix the base and let the
end loose. By doing this our skeletal models have only rotational degrees
of freedom.

Simplified joints: the modelled joints allow pure rotational motions within a
certain range. With real-life joints we have gliding and sliding [5].

With the above simplifications we can build a leg or arm model. A martial arts
technique which can be simulated with a 2D leg model is the front-kick. With
this technique we can kick a target in front of ourselves.

2.4 Dynamics of a rigid body in 2D

Before we start to build a skeletal model we will look at the dynamics of a rigid
body. Dynamics studies the relation between motions and forces. A rigid body
is an idealized physical object. It can be seen as a system of particles, where
their relative distances are fixed. Real rigid bodies do not exist, but one might
think of a brick or iron bar. The skeletal bones can be considered rigid as well1.
If we want to study the planar motion of a rigid body we need to know the
following properties of the rigid body first:

• mass m

• inertia moment IO with respect to a certain point O.

• length l of the body

• center of mass CM by specifying p or d where

– p length between the CM and the proximal end.

– d length between the CM and the distal end. We have p+ d = l

1The rigid bodies that models body segments includes the bone(s) and other organic ma-
terials around it such as muscles and skin.

10

Figure 2.1: The thigh in an inertial frame. Because the thigh is heavier on the
proximal side, p is smaller than d. The configuration of the thigh is determined
by θ.

In figure 2.1 we have a sketch of a rigid body in an inertial frame. The CM is a
very special point. The gravitational force Fz = mg is modelled to act on this
point[3]. The position of CM is denoted with ~rCM = (xCM , yCM) where:

xCM =
∫
xdm

dm

yCM =
∫
ydm

dm

The CM depends on the shape of the body. If we have a full symmetric
body and the body is made of uniform material, then its CM is located in the
geometric center; for example this happens for an iron ball. The inertia moment
I is usually determined with respect to the CM of the rigid body and is given
by:

ICM =
∫
r2dm (2.1)

Here r is the perpendicular distance between an element of mass and point CM.
ICM tells us about the amount of resistance against rotational motion around
CM. In many applications the rotation is around another point. If we name the
point O and the distance between O and CM equals r we can calculate IO with
Steiner’s parallel axis theorem:

IO = ICM +mr2 (2.2)

Note that Euler’s equation(see next section) is only valid if O is fixed. This
restriction does not hold for CM . Because of the quadratic contribution of r the
shape of the body plays a very important role. In practice we can experience
this. For example it is much easier to raise a chambered leg than a fully extended
leg.

11

2.4.1 Equations of motion

An unconstrained rigid body in 2D has 3 degrees of freedom: 2 translational and
1 rotational. General motions of the rigid body can be seen as combinations of
translational and rotational motions. The dynamics of the translational motions
can be written with Newton’s equation. Newton’s equation of motion along an
axis is: ∑

F = m
d2x

dt2
(2.3)

With
∑
F the sum of all forces that acts along that axis and x is de coordinate

of that axis.
Euler’s equation can be used to describe the rotational motion with respect to
CM: ∑

M = ICM
d2θ

dt2
(2.4)

Here
∑
M is the contribution of all force-moments and torques with respect to

CM. The force-moment is given with:

~M = ~r × ~F (2.5)

where ~r is the distance vector between CM and ~F ’s point of exertion. The
perpendicular component of ~r on ~F ’s line of action is also known as the moment-
arm of force ~F . The larger the moment-arm the larger the effect of ~F .
We speak of a torque ~T if two equally but opposite forces ~F1 and ~F2 act on the
body with distance. If ~d is the distance vector between both forces we have:

~T = ~d× ~F1 = −~d× ~F2 (2.6)

The perpendicular distance between those forces is known as the moment-arm.
The magnitude of ~T is given with T = moment− arm ∗ F . In musculoskeletal
models we should speak about torques rather than moments. When a muscle
that originates at body A exerts a force Fm on an adjoined body B, body B
will react with an equal but opposite force −Fm(Newton’s third law). The joint
rotation can be calculated with Euler’s equation. The knee-cap and the heel-
bone are thought to enhance the torque contribution. Figure 2.2 makes it more
clear.
The equations of motion for a free moving rigid in 2D can now be written as: ∑

Fx∑
Fy∑
M

 =

 m 0 0
0 m 0
0 0 ICM

 ẍ
ÿ

θ̈

 (2.7)

If we name the coordinate vector ~q = (x, y, θ), we can write 2.7 in a more
compact form we have:

~F = M~̈q (2.8)

~F and M are known as the generalized force vector and generalized mass matrix
respectively. In our case ~F is known and our problem becomes:

~̈q = M−1 ~F (2.9)

This type of problem is known as forward dynamics. We study the motion of a
system as a result of known forces acting on it. The other way around is known

12

Figure 2.2: A torque example. When force ~Fm acts on a body A that is con-
nected to another body via another body B, body B will react with equal but
opposite force −~Fm. We then speak about a torque. arm is the perpendicular
distance between those forces and is known as the moment-arm. The magnitude
of the torque is given with T = arm ∗ Fm. If the torque is not zero the joint
will rotate.

as inverse dynamics. The aim of inverse dynamics is to calculate the forces and
torques for known motions. In mechanical engineering, inverse dynamics is used
to solve control problems. The state of the rigid body is determined by ~q and ~̇q
and they are our state variables. Our state vector is ~X = (~q, ~̇q)T and we have:

~̇X =
(
~̇q

~̈q

)
=
(

q̇

M−1 ~F

)
(2.10)

2.5 Example: free-falling thigh

With the above knowledge we start to model and simulate simple cases. A
free-falling thigh for example. The goal is to get familiar with some terms as
center of mass, inertia moment etc. and use them. In this case we assume the
proximal end of the thigh to be connected with the hip and free at the distal
end. Our hip is fixed and only allows planar rotations.

Studying the system

The hip only allows rotation and thus our system has one degree of free-
dom(DoF). We choose an inertial frame such that its origin coincides with the
proximal end of the thigh. See figure 2.1. The body’s configuration is given by
θ. The other two DoF are constrained by the following equations:{

xCM = p cos θ
yCM = p sin θ

(2.11)

There are two forces acting on the thigh. One is the gravitational force ~Fg and
the other is the internal or joint reaction force ~Fr. ~Fr ensures the pure rotational

13

Figure 2.3: The forces that act on the thigh. Fg is known and acts on the CM ,
along the y-axis. a is the moment-arm of Fg with respect to the hip. Fr is the
internal reaction force from the trunk.

motion around the hip and is exerted by the fixed trunk. These forces are drawn
in figure 2.3. While ~Fg = m~g is known, ~Fr should be calculated. Because the
hip is fixed and we do not know Fr we write Euler’s equation with respect to
the proximal end of the thigh: ∑

M = Ihipθ̈

By doing this we do not need to know ~Fr explicitly, because its moment contri-
bution with respect to the hip is zero. We have

∑
T = ~p× ~Fg = mgp cos θ and

our equation of motion is thus:

mgp cos θ = Ihipθ̈

If we are interested in ~Fr = (Frx
, Fry

)T we can use Newton’s equations and
equation (2.11) to compute it. Newton’s equations are:

∑
Fx = mẍCM∑
Fy = mÿCM

(2.12)

With
∑
Fx = Frx

and
∑
Fy = Frx

+ Fg we have:{
Frx

= mẍCM

Fry
= mÿCM −mg

(2.13)

ẍCM and ÿCM can be expressed in known terms by differentiating equation
(2.11) twice: {

ẍCM = −p(cos θθ̇2 + sin θθ̈)

ÿCM = p(cos θθ̈ − sin θθ̇2)
(2.14)

14

Figure 2.4: A new angle definition. The thigh can be seen as a pendulum driven
by gravity. When the thigh is held and released at angle α it will swing back
and forth from α to −α.

Fr thus depends on θ, θ̇ and θ̈. Our system can be seen as a simple pendulum
driven by gravity. The behavior of the simple pendulum is well-known. Before
we describe the motion we use a different angle definition. We name a new
angle coordinate α and is defined to be the angle between the negative y-axis
and the thigh(see figure 2.4). When we release the thigh at angle α = αmax it
will swing back and forth towards the negative direction of the y-axis. Because
of conservation of energy the motion will take place between αmax and −αmax.
Special situations occur when we release from α = 0 degrees or α = 180 degrees.
The system is then in static equilibrium and will not move.

2.5.1 Implementation with Matlab

The free-falling thigh can be very easily implemented in Matlab. Our state
vector ~X = (θ, θ̇) and its time-derivative:

~̇X =
(
θ

θ̇

)′
=

(
θ̇

p cos(θ)fg

Ihip

)
(2.15)

To start simulation we should specify the simulation time T and the initial
conditions ~X0. Implementing the free-falling thigh with Matlab is fairly easy.
Below is the Matlab code:

options = odeset(’RelTol’,1e-6); % relative tolerance
[T, X] = ode45(@xprime,[0 10], [0, 0],options); % numerical integrator with

% simulation time and
% initial conditions

function dx = xprime(t,x)
g = -9.81; % gravitational constant [m/s^2]
m = 16.944; % mass [kg]

15

p = 0.2100; % proximal distance [m]
f = m*g; % gravitational force [N]
mom = f*p*cos(x(1)); % moment around hip [Nm], x(1) = theta
I_cm = 0.4180; % inertia moment wrt CM [k/m^2]
I_hip = I_cm + m*p*p; % Inertia wrt hip and not Hip_cm [k/m^2]

dx = [x(2); mom/I_hip]; % time derivative of state vector

In figure 2.5 we see the results of a simulation for ~X0 = (θ(0), θ̇(0)) = (0, 0)T

and T = 10 seconds. The results agree with our expectations.

16

2.5.2 Multi-body dynamics

We have successfully simulated the free-falling thigh with Matlab. For more
realistic motions we need more bodies however and we enter the field of multi-
body dynamics. Multi-body dynamics is well studied and can be divided into
two areas: forward and inverse dynamics. In inverse dynamics the motions
are known and we want to know the forces that cause these motions. In forward
dynamics the forces are known and we want to study the motions that are caused
by these forces. Our problem can thus be considered as a forward dynamics
problem. Currently there are several software packages specialized in solving
multi-body dynamics problems. There is even a chip, PhysX, that is specialized
in physical computations (www.ageia.com). This chip is mainly used to make
games look more realistic. In the next section we will use a multi-body software
package called SimMechanics to implement our skeletal models.

17

Figure 2.5: Top: hip angle θ as function of time. θ is the angle between the
positive x-axis and the thigh. Bottom: hip angular velocity θ̇ as function of
time. Initial state: (θ(0) = 0, θ̇(0) = 0). Because we have a free rotational case
and no loss of energy θ will go from 0 rad to −π rad back and forth.

18

2.6 Modelling with SimMechanics

In the previous section we have implemented the free-falling thigh with Matlab.
Although it only took a few lines of code, things become more complex if we
want to add more features and/or bodies. Another way to study the dynamics of
multi-body system is the use of dedicated software packages. Such a package is
SimMechanics. In [7] SimMechanics is chosen to be the best multi-body systems
software for integration with a muscle software package called MMS. More infor-
mation about SimMechanics can found at http://www.mathworks.com/products/simmechanics.

2.6.1 What is SimMechanics and why

The way of modelling with SimMechanics differs from the way we are used to.
SimMechanics uses blocks that represent idealized physical objects like rigid
bodies, revolute joints etc. With these blocks we can build fairly complex phys-
ical systems [6]. SimMechanics can automatically formulate the equations of
motions. SimMechanics requires Simulink and Matlab to be installed.

2.7 Free-falling thigh with SimMechanics

2.7.1 Building the model

In section 2.5.1 we have modelled a free falling thigh with the Matlab-code. We
will use SimMechanics to model the free-falling thigh again with same data.
The steps are explained one by one.

1. Specify the machine environment. With the environment block we model
the environment for our system. Gravity, the motion’s dimension(2D) and
analysis mode(forward dynamics) are specified here. Error-tolerances for
several cases can also be set. We use the default values.

2. Choose an inertial frame. The ground is the ever-present body in our
models. We attach a frame to the ground or some object that is fixed
to the ground. This frame is our inertial frame. We as observers are
particulary interested in the output(motion and configuration) expressed
in this frame. The origin of the frame is set to [0,0,0] and it coincides with
the hip. Because the hip is fixed to the trunk, we name our ground block
trunk.

3. Add a revolute joint. If we want to add another body to an existing body
we should use joints. If we add an airborne body in space, we can use a
joint with 6 DoF. We want the thigh to rotate in the XY-plane. This is
done via a revolute joint with axis of action [0 0 1]. The revolute joint
models the hip.

4. Add the thigh. We will model the thigh with a rigid body. SimMechanics’s
body block represents a rigid body. In the body block we should fill in
its mass and inertia-tensor 2 with respect to the center of mass. Then the

2The inertia tensor is a 3x3 matrix that specifies resistance of the body against rotation.
In 2D there is only rotation around one axis in de Z-direction. Therefore we only need to fill
in I33.

19

Figure 2.6: The thigh model in Simulink, built with SimMechanics. It is a
block diagram. A SimMechanics block models a physical object. The joint
sensor block for example can sense different quantities like joint angle, joint
angular velocity, joint reaction force etc.

20

configuration of the body should be specified. With 3 coordinate systems
we can specify the main points of the body. They are: the center of mass,
the proximal end and the distal end. The specifications can be done in
many ways. Once the position of the origins of the frames are set, we
should also specify their orientations. The output of our revolute joint
is the difference of the orientation of the ground frame and the proximal
frame. In our case, we can let the orientation of the CS-es to be default.
In the 3D case the orientation of the CS of the center of mass depends on
how the inertia tensor is given.

5. Add a joint sensor. The joint sensor can sense joint motions and joint
reaction forces.

2.7.2 Simulation

Now that our model is built we can start the simulation. First we need to specify
the initial condition for our joint. The zero state of the joint is determined in
the specification for the thigh’s CS’s. During simulation numerical integration
should be done. SimMechanics can be fully used with Simulink and we can
use its implemented numerical solvers directly. Output can be generated via
Simulink’s output blocks. With SimMechanics we can literally view our out-
put via animation. Animating the system’s motion can significantly slow down
the simulation however. Then we should fill in the simulation time. Simula-
tion is started by pressing the play button. All these are done via the GUI of
SimMechanics. For serious experiments it is easier to run the model program-
matically. With Matlab we can write scripts that simulates the model under
different circumstances.

Free-falling thigh

We named our model ushiro skel. The solver is set to ODE 45 with relative
tolerance reltol = 10−6. We have chosen θ to be a joint coordinate. The
initial condition is θ = 90 which means that the thigh is parallel to the ground.
The simulation time is set to 10 seconds. Simulating the model with Matlab’
command line goes with:

sim(’ushiro_skel’);

In figure 2.7 we see the output of the model. This time with joint reaction
forces. Assigning the model’s output to a variable y is done with:

[t,x,y] = sim(’ushiro_skel’)

Here t is the time vector, x the state matrix, and y the output matrix. The
dimension of y equals nt × n, where nt is the number of time-steps and n is
the number of output variables. So each column i of y contains the value of
variable i over time. When using variable time-step solvers the time-steps will
vary. Sometimes we want to have values at specific time-steps. We can specify
an output time-vector. The output values are interpolated.

T = [t_start:dt:t_end]
[t,x,y] = sim(’ushiro_skel’,T)

21

(a)

(b)

Figure 2.7: (a) The hip angle. It agrees with what we have already found, but
this time the angle definition is different. (b) The joint reaction forces that the
thigh will feel. The formulation is given in equation (2.13). These forces ensure
the rotational motion. Due to gravity that acts in the y-direction Fry is larger
than Frx . With mass mthigh = 16.944kg the gravity force equals 166.22N. The
y-component reaches peaks that are much larger than the gravity force. Joint
reaction forces are interesting for those who want to study injuries.

22

id Name Length l(m) p(m) Mass m(kg) Inertia ICM (kg*m*m)
1 Thigh 0.485 0.210 16.944 0.418
2 Shin 0.458 0.198 7.074 0.136
3 Foot 0.165 0.045 2.468 0.020

Table 2.1: Some realistic segment parameters.

id Name θmin(deg) θmax(deg) Stiffness Damping
1 Hip -5 110 100 40
2 Knee -150 0 1000 40
3 Ankle 5 45 1000 40

Table 2.2: Joint parameters. The extreme angles are given with respect to the
joint coordinates in a right-handed coordinate frame. The zero joint state is
defined as the state where both bodies are aligned.

We can also change the solver and its settings. The default solver is ODE45
with relative tolerance relTol = 10−3. Changing the solver with other relative
tolerance goes with:

myopt = simset(’Solver’, ’ode23’,’RelTol’,1e-3); %other solver + reltol
[t,x,y] = sim(’ushiro_skel’, T, myopt);

2.8 Skeletal data

To build a skeletal model we should use realistic data for the body segments
and joints. These data are obtained via special measuring techniques. With [8]
we can calculate some average skeletal parameters. This source only provide
skeletal data however. For our musculoskeletal model we need muscle data as
well. These muscle data should fit with the skeletal data and we thus have a
problem. Luckily, the faculty of Human Movement Sciences of de Vrij Univer-
siteit of Amsterdam has provided us some realistic musculoskeletal data. The
skeletal data are listed in 2.1 and table 2.2.

2.8.1 Free-falling thigh with realistic hip.

In real-life the body joints and thus also the hip allow a limited rotation range.
Ligaments and anatomical structure of the skeleton are responsible for this.
We model this by adding stiffness and damping to the joint if the joint angle
exceeds one of the two extreme angles. The damping and stiffness will produce
a counter-moment that is proportional to |θ−θextreme|. The proportion is given
with damping-constant k1 and stiffness-constant k2 respectively. We have:

damping =

{
−k1(θ − θmin) if θ < θmin

−k1(θ − θmax) if θ > θmax
(2.16)

stiffness =

{
−k2(θ − θmin) if θ < θmin

−k2(θ − θmax) if θ > θmax
(2.17)

For the hip we have:

23

Figure 2.8: The new free-falling thigh model. Here a realistic hip is added.

• θmin = - 5 deg

• θmax = 110 deg

• damping-constant = 100Nmdeg

• stiffness-constant = 40 Nm
deg

In figure 2.8 we see the block-diagram. Things become more interesting if
we open the hip block in figure 2.9. In figure 2.10 we see the motion of the our
free-falling thigh. With θ0 = 90 degrees, T = 10 seconds. This time the motion
does not go from 90 to −90 degrees.

2.9 Conclusion

With SimMechanics we can very easily build a skeletal model and study its
motion with known forces acting on it. This is known as forward dynamics.
With forces we mean both rotational(torques) and translational forces. We have
built a skeletal model that models the thigh with a realistic hip. Extending the
model with more bodies is very easy. The only forces that act on this model are
gravity and force produced by ligaments. In mechanical systems joint actuators
are placed at the joints to drive the systems. These actuators can produce any
force at certain time if it is within their limit. In the musculoskeletal system
skeletal muscles are the joint actuators. Their force-production depends on
many factors. Controlling the musculoskeletal system is therefore more complex
than controlling mechanical systems. Luckily we have a very powerful controller

24

Figure 2.9: The more realistic hip joint. The joint sensor senses the joint angle.
In the extra-moment block we calculate the contribution of the hip-ligaments.
With the joint actuator we can actuate the hip with this contribution.

25

Figure 2.10: The motion of the free-falling thigh with realistic hip, started from
a horizontal position. The minimum angle is set to -5. From the plot we can
see that it is not a hard limit. When the minimum angle is exceeded counter-
moment is added. This can be seen as an elastic collision.

in real life and that is the human mind. In the next chapter we will build
skeletal-muscles that produces torques for the skeletal model.

26

Chapter 3

Building skeletal-muscle
models.

The skeletal-muscle is a complex biological structure. Its main function is to
generate force through contraction. The force is transferred to the skeleton via
tendon and aponeurosis, that connect the muscle with the skeleton. This force
allows us to move but also protects our bones against impact forces. Bones
are relatively weak against bending forces compared with compressing forces.
By contracting the right muscles the bending force can be partly or mostly
neutralized. We are mainly interested in the force production behavior of the
muscle. In this chapter we first look at the structure of the skeletal muscle and
how it contracts. Then we look at how muscle are modelled mathematically.
After that we build a thigh muscle model and add this to our thigh-skeletal
model.

3.1 Structure of skeletal muscles

Skeletal muscles are connected to the skeletal bones via tendons on both ends.
The proximal attachment point and the distal attachment point are named
origin and insertion respectively. Different connective tissue sheaths having
their origins on both tendons run from end to end through the muscle, subdi-
viding the muscle in units, subunits till the muscle cell or fibers. These sheaths
are thus continuous and prevent the muscle from pulling out during contractions.
The largest unit is the skeletal muscle itself. It is surrounded by a fascia and
a connective tissue sheath called epimysium(epi = above and my = muscle).
Then the muscle is subdivided into muscle bundles or fascicles by a connective
tissue sheath called perimysium (peri= around). Within a fascicle we have the
muscle fibers or muscle cells, kept away from each other by endomysium (endo
= internal). Each muscle fiber is surrounded by a delicate membrane called
the sarcolemma. Unlike other cells, the muscle cell is shaped long. If we want
to zoom in, we have to use a light microscope that can reach a magnification
of 1000 times the objective. Under the microscope we will see that a muscle
fiber is made up of parallel myofibrils. In figure 3.1 we can see the structure of
a skeleton muscle. A remarkable observation is the striated pattern that can be
seen. A myofibril is made up with small contractile units in series called sarcom-

27

Figure 3.1: The structure of a skeletal muscle. The muscular part is grouped
into muscle bundles or fascicles. Each fascicle contains a number of muscle cells
or fibers. A muscle fiber is made up of parallel myofibrils. The myofibril in turn
is made up of sarcomeres in series. Image taken from [13].

28

Figure 3.2: Skeletal muscle fibers under a light-microscope. We can notice
a striated pattern. The white rings are formed by actine filaments, while the
myosin filaments form the darker rings. The nucleus is an organelle that contains
the fiber’s genetic information. Image taken from [13].

eres. Each sarcomere is built up with thick and thin filaments, called myosin
and actin filaments respectively. Myosin filament has a dark color, while actine
filament has a lighter color. Both filaments lie parallel to each other with partial
overlapping, resulting in a striated pattern(see figure 3.2). Skeletal muscles are
also called striated muscles. In other type of muscles the sarcomeres are not
aligned in series. These muscles are known as smooth muscles. Examples of
smooth muscles are heart and kidneys. Furthermore a sarcomere is bordered
with Z-lines. 1

3.2 Activation of the skeletal muscles

Skeletal muscles are voluntary muscles. We can activate them at will. The small-
est unit that we can activate individually is the fascicle. A fascicle contains only
one type of fiber. There are two main types of muscle fibers, slow-twitch and
fast-twitch. They differ in the way they perform their metabolism. Slow-twitch
fibers have relatively large endurance, whilst fast-twitch fibers are not. Each
fascicle is controlled by a α-motoneuron that is located in the spinal cord. A
fascicle with its motoneuron is called a motor unit. The motoneuron innervates
all the muscle fibers of its fascicle with an action potential. The larger the
fascicle the larger the action potential. 2 As a result each muscle fiber will
fire a new action potential that will travel along their length(see figure 3.3).
This will result into the release of Ca++ions. With the release of Ca++ ions,

1Muscle strain is something that we are all familiar with. It indicates broken Z-lines.
Muscle strain is usually the result of eccentric contraction. In eccentric contractions the muscle
force is overcome by a larger force and will lengthen instead of shorten. If the difference is
too big, microscopic tears will take place in de Z-lines.

2An action potential is a local voltage change that travels along the membrane of a cell.

29

Figure 3.3: The action-potential of a muscle fiber(top) and how it is propagated
through the fibers(bottom). Notice that the action potential starts from the
middle of the muscle fiber where the junction of the fiber and motoneuron is
formed. Image taken from [9].

cross-bridges can be formed and the fibers will contract. The force result from
an action potential is called the twitch force. Slow-twitch fibers produces slower
twitch force than fast-twitch fibers. The fire frequency is the number of action
potentials per second. The force production depends on the fire frequency. The
sum of electrical activation of the fascicle can be measured with electromyog-
raphy(EMG). The output is called a myogram and depends on the number of
activated fibers, fiber-type, motor-unit composition and many more. The am-
plitude of the signal corresponds with the activation level. A fascicle has an
activation threshold. It will only be activated if the activation level exceeds this
threshold. The threshold depends on the fiber type and is proportionate with
the size of the fascicle(=number of muscle fibers) 3. The process of how fasci-
cles get activated is called recruitment. Slow-twitch fibers have lower activation
thresholds and fascicles with slow-twitch fibers are usually smaller than those
with fast-twitch fibers. In slow movements like typing/walking the fast-twitch
fibers are not activated. They are only activated when explosive movements are
needed. This can be explained with the economic metabolism of the slow-twitch
fibers.

3.2.1 The cross-bridge theory

The basic theory behind muscle contraction is the cross-bridge theory(Huxley,
1957). For a basic explanation, we zoom in at sarcomere the level. There,

3This is known as the Henneman size principle

30

sarcomere is the basic contraction unit and has an optimal length of around
2.7µm. It is made up with actine and myosin filaments, named after the main
protein molecules they are build with, and titin filaments. Actine and myosin
filaments are also named as thing and thick filament respectively, according to
their diameter. A cross-bridge is a temporary bound between thick and thin
filaments. Once bound it will pull the thin filaments towards the center of
the sarcomere and let loose. The titin filaments keep the thick filaments in the
center of the molecule. The number of cross-bridges that can be formed depends
on several factors:

The length of the sarcomere: the cross-bridges can only be formed if there
is overlap between the thick and thin filaments. The cross-bridge theory
assumes that cross-bridges are uniformly distributed and therefore the
force scales linearly with the amount of overlap.

Change in length of the sarcomere: the rate of forming cross-bridges de-
pends on wether the sarcomere lengthens or shortens.

Active state of the sarcomere: binding sites for the cross-bridges are only
freed if the concentration [Ca++] exceeds a certain threshold. During
activation calcium-ions are released. When activation stops, the calcium
ions are actively pumped back.

3.3 Brief overview of current models.

Current muscle models can be divided into 3 categories. Namely:

Huxley: This model keeps track of the state of a finite number of cross-bridges.
Furthermore the transition of these states over time is described by a set
of equations. It needs lot of computation power and lots of equation
coefficients. Theoretically this type of modelling has the highest accuracy.

Distribution Model(DM): In order to decrease the computational effort, the
DM model groups the individual cross-bridges into several groups. The
behavior of the groups is described.

Lumped Element Model: These models are composed of force producing el-
ements from the world of engineering. The elements can be connected to
each other either parallel or serial. Hill’s muscle model is the most well-
known lumped element model. Most muscle models currently used are of
this category.

The muscle model that we will use falls in the category Lumped Element Model.

3.4 Muscle experiments

Unlike in mechanics we do not have theories that describes the complex muscle
behavior well. We have to rely on muscle experiments. Once these experiments
are done we can formulate equations and specify coefficients that describe the
muscle’s behavior. The most well-known muscle experiments are listed below:

31

isometric The length of the muscle is kept constant and the muscle is maxi-
mally activated. The maximal produced force is that length is called the
tetanic force.

isotonic A known constant force is put on the muscle and quantities of interest
are measured.

isokinetic The contraction speed is kept constant and relevant quantities are
measured.

To get accurate data from the muscle of interest, it should be isolated from
other muscles. Dependent on which state the experiment is done the muscle
is cut away from its neighboring muscles. The experimented muscle can be in
different states.

in vivo Latin for “(within)” in the living”. The experiment is done on the
living tissue of a whole, living organism.

ex vivo Latin for “ out of the living)”. The tissue is still alive but outside in
the organism.

in vitro Latin for “(with)in the glass”. These experiments are done in a con-
trolled environment, where the biological structure is separated from its
owner.

in situ Latin for “ in the place”. The experiment is done on the normal oper-
ation location of the tissue. The owner could be dead or alive.

It becomes clear that some types of experiments cannot be done on human mus-
cles. Therefore animals are used. When performing such experiments scientists
try to keep the number of animals used as low as possible.

32

3.5 Virtual Muscle

Virtual Muscle 3.1.5 is a program that builds muscle-tendon complexes and
describes their behavior. It is written in Matlab and the muscle models can
be exported as Simulink blocks. In the Simulink environment these block can
be fully integrated with other Simulink blocks. The equations that Virtual
Muscle uses to describe the behavior of skeletal muscles are determined by best-
fit procedures on data that come from many experiments. These experiments
studied the muscle behavior under a wide range of physiological conditions.
For people who are interested in how this is precisely done we refer to [16]4.
Hopefully the behavior can be extrapolated and we get realistic results.

3.5.1 Hill’s muscle model

The Virtual Muscle Model is a Hill’s based muscle model and is categorized as
a lumped muscle model. It treats the fascicle as a scaled version of a sarcom-
ere. It assumes that all sarcomeres behave uniformly within a muscle fiber and
that all fibers within a fascicle also behave the same. System of engineering
alike elements are then used to represent the muscle-tendon complex (mtc). To
understand how Virtual Muscle works it is better to look at the more simple
Hill muscle model first. In Hill’s muscle model the tendon is modelled with a
passive elastic force element, whilst the muscle group is modelled with a passive
and an active force element. The force of the active element CE depends on
its length LCE and neural activation act. The force of the passive elements PE
and SE depends on their lengths. Where lPE = lCE and lSE = lOI − lCE and
lOI

5 is the mtc-length. In figure 3.4 we see a scheme of the Hill’s model. The
characteristics of the force-producing elements are:

Passive element SE : FSE(lOI− lCE) = kSE(L−Lslack) if (L ≥ Lslack) (half
parabola). kSE is the stiffness constant of the tendon. Experiments have
shown that the tendon is very adaptive. We have lSE,slack ≈ 0.96LSE,opt,
where LSE,opt is the length of the tendon when maximal muscle force is
applied to the tendon.

Passive element PE : FPE(lCE) = kPE(L − Lslack) if (L ≥ Lslack) (half
parabola). kPE is the stiffness constant and is determined experimentally.

Active element CE : this the most challenging element and 3 relations are
used to model the behavior, we have

Isometric Force-length Fl(lCE): Fmax(1 − (LCE−LCE,opt

W)2). This is a
parabolic curve and W is a measure for the width of the parabola.
This relation agrees with the cross-bridge theory.

Isokinetic Force-velocity Fv(l̇CE: Fmaxb−av
b+v . This relation is noticed

by Hill in 1938, and the constants a and b are fiber-type dependent.
Active State af : ȧf = 1

τ (stim(t) The active state can be seen as the
concentration of bounded Ca++ ions. This equation models the re-
lation between the stimulation and active state in a very simplified

4People with a weak stomach are not recommended to read this. Many cats were sent to
heaven...

5O and I stand for origin-point and insertion-point of the mtc. The origin point is ”closer”
to the body than the insertion point.

33

Figure 3.4: Schematic view of the Hill’s muscle model. With Hill’s model we
want to predict the force behavior of the muscle-tendon complex(mtc), with
inputs neural activation and mtc-length(lOI). The muscular part is modelled
with two elements: a parallel elastic element PE and a contractile element CE.
The tendon part is modelled with a serial elastic element SE. The force of the
SE is the output of the muscle model.

way. The active state is very difficult to model, because it depends
on many factors(bio-chemical, bio-electrical etc). Hill based muscle
models differ the most in how they model af . Virtual Muscle for
example uses a set of coupled ODEs to model this relation.

34

The algorithm for Hill’s model

In algorithm 1 we see how we can simulate Hill’s muscle model.

Input: Neural activation function act(t) and mtc-length lOI(t)
Output: Tendon force FSE
for t=0:dt:T do

FSE = fSE(lOI − x) ;
FPE = fPE(x) ;
FCE = Fmax ∗ fl,CE(x) ∗ fv,CE(ẋ) ∗ af , where ;
ȧf = faf (act) ;
af = af + ȧf ;

ẍ = FSE−(FP E+FCE)
m ;

ẋ = ẋ+ dtẍ ;
x = x+ dtẋ ;

end
Algorithm 1: Algorithm for Hill’s muscle model. A stabilization mass m
is used to keep track of the length of CE. The position of the mass is given
with x and tells us what the length of CE is. In the algorithm fl,CE and
fv,CE functions are the normalized force-length and force-velocity relation-
ships with respect to Fmax. Furthermore faf is normalized to [0,1]. If we
want to know the real FCE we should scale fl,CE ∗ fv,CE ∗ af with Fmax.
We used Euler method to solve x, ẋ and af for easier understanding.

3.5.2 The Virtual Muscle model

Hill’s model only has good prediction for maximal activation. Most human
motions occur at sub-maximal activation levels. Virtual Muscle is developed
by the Alfred E. Mann Institute, California and its purpose is to provide an
accurate muscle model. Virtual muscle is a Hill’s based muscle model, where
the force-characteristics of the different elements are obtained through many
(animal) experiments. The results are different characteristics for the elements.
Especially the active state af has great differences with the af of Hill’s model.
Observed phenomena are(rise time, fall time, sag, yielding) used to describe af
rather than chemical reactions. Virtual muscle model is also supposed to give
good force prediction at sub-maximal activation levels. To do this the muscle
group is divided into multiple units. In algorithm 2 we see the algorithm for
Virtual Muscle. For a precise formulation of the various relations we refer to
[10].

35

Figure 3.5: Diagram of relations that Virtual Muscle uses to model a muscle
unit. Only the diagram of one unit is given. A muscle unit has multiple state
variables, that should be solved. The more units are modelled, the more state
variables are needed. The sum of the forces of all units forms the total contractile
force. This force will be transferred to the skeleton via the SE(tendon) element.
A mass is used to keep track of the length of the muscle group.

Input: Neural activation function act(t) and mtc-length lOI(t)
Output: Tendon force FSE
for t=0:dt:T do

FSE = fSE(lOI − x) ;
[stim] = frecuit(act(t)) ;
Fmuscle =

∑n
i=1 Funit,i(x, ẋ, stimi) where ;

Funit,i = fPE,i(x) + fCE,i(x, ẋ, stimi);
ẍ = FSE−(Fmuscle)

m ;
ẋ = ẋ+ dtẍ ;
x = x+ dtẋ ;

end
Algorithm 2: Algorithm that Virtual Muscle uses if more units are mod-
elled and sub-maximal activation is considered. During sub-maximal acti-
vation not all muscle-units or fascicles are recruited. The function frecruit
turns the activation into different stimulation frequencies for the different
units. fCE is a very complex function and a system of coupled ODEs
should be solved to obtain fCE . The more units we use the more time the
simulation will cost.

In figure 3.5 we see a schematic view of the relationships between the different
elements. In figure 3.6 we see the way Virtual Muscle models a mtc.

3.5.3 The model’s variables

Input variables: the model has 2 input variables.

36

Figure 3.6: Schematic overview of how muscle-tendon complexes are modelled
with Virtual Muscle. Here the muscular part is divided into multiple units. Each
unit is modelled with a CE and PE element. During sub-maximal activation
not all muscle units are active. Smaller units have lower activation thresholds
than bigger units.

37

• Neural activation act: it should have a values between 0 and 1. 0
means no activation, all the fibers are at rest. 1 means full activa-
tion, all the fibers fires action potentials at their maximum frequen-
cies. With this value the effective firing frequency for each fascicle
is calculated. This models the recruitment. The result is scaled to
f0.5. f0.5 is the firing frequency where half of the isometric force is
reached. Each fascicle has its own f0.5. Recorded data from EMG
could be used as input. The data should be scaled to the level of
maximal voluntary contraction. Another source is data from a simu-
lated α-motoneuron. act(t) is also the input for our musculoskeletal
model. In our optimization process we typically want to find act(t).

• Length loi: the length of mtc and depends on the skeletal configu-
ration. Because the skeletal model outputs joint coordinates q, the
loi(q) should be calculated.

The state variables: The state of the whole muscle model is determined by
the length of the fascicles lCE and a set of variables that determines the
active state of the fascicles. The model uses 4 variables to specify the state
of a fascicle.

The output variables: The output is the force of the tendon FSE in Newtons
and has a positive sign. If we want to couple the muscle models with the
skeletal model we should take this into account.

3.6 Using Virtual Muscle 3.1.5

Virtual Muscle 3.1.5 comes with two programs:

BuildFiberTypes: With BuildFiberTypes we can build fibers by specifying
their specific coefficients. The relations are normalized to maximal force
Fmax and optimal state variables. Because fibers can be scaled to fascicle
level, this program can be seen as BuildFascicles.

BuildMuscles: with BuildMuscles we can build mtc-models and export them
as Simulink blocks. Data for the mtc we want to model are needed.

3.6.1 Building the fibers

The muscle-fiber data we used came with Virtual Muscle 3.0. It contains co-
efficients for super-slow(SS), slow(S) and fast(F) human muscle fibers. The
coefficients are obtained after lots of real muscle experiments and should be
normalized to optimal state variables. Virtual Muscle treats the muscle fiber as
scaled sarcomere. Therefore it uses normalized force-state relation to describe
the fibers behavior. If we know the force-state properties of a muscle fiber, then
the force-state properties of the fascicle is the product of the number of muscle
fibers. A measure for the number of muscle fibers is the physical cross-sectional
area(PCSA). The PCSA is given with PCSAfasc = V olumefasc

lengthfasc
. When we know

the optimal length of a fascicle and its PCSA we can calculate its optimal force
with a constant called specific tension(N/cm2). The specific tension for human
muscle fibers is around 31.8 N

cm2 and is experimentally determined. For humans

38

Figure 3.7: With BuildFiberTypes program we can build muscle fibers by spec-
ifying different coefficients. The behavior of the muscle fibers are normalized in
optimal force and optimal state variables. A fascicle is treated as a scaled fiber.

the optimal fascicle length corresponds with its resting length. So in a relaxed
state the muscle has the greatest force production potential 6.

3.6.2 Building the muscles

With the BuildMuscles program we can build mtc-models by specifying a num-
ber of parameters. The parameters that scale the normalized force-state rela-
tions to real values are:

Muscle mass m(g): the mass of the muscle.

Optimal fascicle length Lo (cm): average length of the muscle belly to pro-
duce optimal isometric tetanic force.

Physical cross sectional area PCSA (cm2): can be seen as a measure for
the amount of muscle fibers. It is automatically calculated via PCSA =
Vmuscle

Lo
= mρmuscle

Lo
. ρmuscle is the muscle density and is assumed to be

1.06 g
cm3

6The starting positions of sprinters and weightlifters make use of this knowledge.

39

id Name Function L0(cm) l0,T (cm) Fo(N)
1 Biceps femoris hip extensor, knee flexor 10.4 37.0 4000
2 Gluteus maximus hip extensor 20.0 15.0 5000
3 Rectos femoris hip flexor, knee extensor 8.1 34 4500
4 Vastii knee extensor 9.3 16 13500
5 Gastrocnemius knee flexor, ankle extensor 5.5 37.6 4000
6 Soleus ankle extensor 5.5 23.56 8000

Table 3.1: Data for different leg muscles, taken from a cycling program from de
VU Amsterdam.

Optimal force Fo (N): the maximal isometric force. It is calculated as the
product of the PCSA and specific tension7. The specific tension for hu-
mans is about 31.8 N

cm2 .

Optimal tendon length Lo,T : the tendon length when optimal muscle force
acts on it. Tendon has a very adaptive behavior. When its resting length
L0,T is given we can approximate it with the optimal length 1.04L0,T .

Maximal muscle-tendon length Lmax,mtc(cm): the maximal length of the
whole mtc.

Activation threshold Ur: fractional activation level threshold. If the input
activation U exceeds this level all fascicles or units will be recruited and
fire action potentials. At U = 1 all fascicles will fire at the maximum fire
frequency.

Maximal fascicle length Lmax(L0): the maximal fascicle length is calculated
with Lmax,mtc−Lo

Lo
.

Gathering the muscle data is one of the most difficult steps we encountered. The
Yamaguchi table [12] is the most well used table. If we want to incorporate the
muscle models with the skeleton model, we should also know their length prop-
erties as function of the skeletons configuration. In brief, the skeleton model and
the mtc’s should fit together. This table however does not contain those needed
data. Therefore we used muscle data from a cycle program [Soest]. The data
for different mtc’s of the leg are listed in table 3.1. As we see we are missing
some parameters. Most of the missing parameters can be derived however. The
only parameters that we do not have are the Ur and Lmax. We choose Ur = 0.8
for all mtc-s and we guessed Lmax,mtc for each mtc such that Lmax ≈ 1.3.

Building units

Real skeletal muscles consist of many units. They can easily sum up to more
than 100. Each unit behaves differently within the muscles. The way they are
recruited depends on the size and fiber-type of their fibers. The complexity of
the model scales with the number of units we want to model. Remember that we
need 4 state variables for a unit. Is is very common to group similar units into
big units. BuildMuscles can automatically divide the whole muscles into units.

7In cartoons we associate thick muscles with lots of power.

40

Figure 3.8: With the program BuildMuscles we can build and export mtc-s as
Simulink block after we have filled in necessary data. Furthermore it can divide
the whole muscle into different units.

We should fill in the fiber distribution is the whole muscle and the number of
units we want. The higher the number of units the more computation intensive
the simulation will be. The fiber-type distribution are taken from the Yamaguchi
[12] table. Once the number of units are filled in we can export the mtc-models
as Simulink blocks. In these blocks the muscle equations are implemented. In A
we see how these equations are implemented. The equations are given in [10] and
we verified the Simulink block with them. During our verification we discovered
a small error in the Simulink blocks. Two force signals were switched(see figure
3.9). Although it was very easy to fix it manually, we fixed the source-code of
BuildMuscles. The reason is that we need to build more mtc models and fixing
them one by one costs time.

3.7 Coupling the skeleton and mtc-models

The skeleton model outputs joint-coordinates and needs net-joint moments as
input, whilst the mtc-models outputs muscle force and needs mtc-lengths as
input. If we want to couple both models we have to calculate the mtc-length
and the moment-arm of the mtc’s force 8. The mtc-lengths and moment-arm
both can be calculated with Grieve method(see appendix B). In figure 3.11 we
see our previous thigh model coupled with the rectus femoris model. The rectus
femoris is a bi-articular mtc(see figure 3.10). 9 It flexes the thigh and extends

8moment = a*F
9In mechanical systems torque-drivers are used to activate the joints. They only cover one

joint.

41

Figure 3.9: A small error that comes with Virtual Muscle 3.1.5. In this pic-
ture the error is already fixed. In the original blocks the force signals were
interchanged. These forces are used to calculate the length of the CE elements.

Figure 3.10: A lateral(side) view of rectus femoris. The rectus femoris flexes
the hip and extends the knee. Source:http://www.fotosearch.com.

42

Name Rectus Femoris
Mass(kg) 1.215
Fmax(N) 4500
loi,max (cm) 44
lce,opt (cm) 8.1
lse,opt cm 35.36
Grieve const.(hip) (A0, A1, A2) (0.110, 0.035, 0)
Grieve const.(knee) (A0, A1, A2) (0.308, 0.042, 0)
nr. units 1

Table 3.2: The data we used for our rectus femoris. The grieve constants are
needed to couple the rectus femoris with the thigh. We only use one unit to
model the whole muscle group.

the knee. Because we do not have a knee we assume the knee to be at zero
degrees for the rectus femoris. At this position the virtual shank is thus aligned
with the thigh. The rectus femoris flexes the hip. If it is activated and the
generated moment is larger than the gravitational moment the thigh will rise.
In table 3.2 we see the data we used to model and couple the rectus femoris.

Therefore we named the model raising thigh.

3.8 Experiments

Now that we have coupled the skeletal model with a mtc-model we can start
experimenting. In all the experiments the initial angle is set to zero, that is
trunk and thigh aligned. The solver is set to ODE45 with reltol = 10−6

Experiment 1: varying the activation.

In these experiments we use a constant activation act(t) = c as input and
simulate the model for 2 seconds. In figure 3.12 we see the result for c = 0.0, 0.8
and 0.9.

Experiment 2: varying mass and inertia

One of the greatest advantages of musculoskeletal models is the ability to do
practically impossible experiments. This time we vary the mass and thus inertia.
The activation function is set to u(t) = 1. In figure 3.13 we see the results for
the normal thigh, a thigh with twice the mass and a thigh with halve the mass.

Experiment 3: different activation functions

In reality the activation function is very complex with varying amplitudes and
frequencies. In this experiment we used some standard functions.

Constant u(t) = 1

Linear u(t) = 0.8 + .2
2 t

Sinusoid u(t) = 0.9 + 0.1 sin(πt)

43

Figure 3.11: The raising thigh model. Many blocks are masked to get a clear
view.

The results are given in figure 3.14.

Conclusion

After all these experiments we are wondering if we can control the thigh. Can
we keep it still for example. This can be seen as a control problem, but also as an
optimization problem. We want to minimize the difference between the output
angle and a reference angle. In the next chapter will will use a self-implemented
genetic algorithm to find an activation function that can do this.

3.9 Project Mae-Geri

It was very tempting to extend the thigh-model. Therefore we built a leg model
that can simulate the mae-geri or front-kick. It is a 3-segmented skeleton model
with 6 mtc models. The most difficult part was to couple the skeleton model
and the mtc models. Once this was done we can start simulation. A major
problem is that we did not know what activation we should feed the model,
besides zero and maximal activation. In figure 3.15, 3.16 and 3.17 we see some
details of our leg model. The most difficult part was to couple the skeleton
and the mtcs. During simulation with maximal activation for each mtc, we
encountered integration errors. The precise reason is unknown, but we suspect
a bad initial state to be the cause of this. In the initial state the system should
be in rest. Because there are 6 mtcs and 3 bodies, finding a proper initial state
is not easy. In this thesis we did not solve this problem.

44

Figure 3.12: We used different constant activation functions to activate the
rectus femoris. Top: the hip angle. Bottom: the generated moment. The
moment-arm is a constant(see table and Grieve constant). Therefore the mo-
ment graph can be seen as a scaled force-graph. When the activation is 0, the
thigh will not move and the angle is thus zero all the time. Our mtc models
consist of 1 fascicle with fast twitch fibers. The activation threshold is set to
ur = 0.8. At act = 0.8 the fascicle then becomes activated and starts to fire
action potentials at its lowest frequency. With act = 1.0 the stimulation is max-
imal and the fascicle will fire action potentials at its highest frequency. With
act = 0.8 and above we expect the thigh to raise. That it will fall afterwards and
raise again and so on we honestly did not expected. We might explain this with
the force-length and force-velocity relations of the fascicle. During the raising
period the length will decrease and the contraction velocity will increase. All
this will result in less force and gravity will take over. When falling however,
the fascicle length will increase and we also have eccentric contraction.

45

Figure 3.13: We changed the mass and thus the inertia of the thigh. The lighter
the thigh, the higher it will raise. This agrees with our expectations.

46

(a)

(b)

Figure 3.14: Different types of activation functions. (a) The activation func-
tions. (b) The joint angle θ. We can see some relations between activation and
joint angle.

47

(a)

(b)

Figure 3.15: The top level view of our leg model. (b) The skeletal sub-system,
which is an extended version of the thigh-skeletal model.

48

Figure 3.16: The musculo-system of the leg model. The mtc-lengths and the
moment-arms should be calculated to allow interactions with the skeletal model.

49

Figure 3.17: The participating mtcs for our leg model. There are 6 of them.

50

3.10 Conclusion

We have seen how we can build models for skeletal muscles or muscle-tendon
complexes(mtcs) with Virtual Muscle. The force-producing behavior is very
complex and currently there is no theory that describes the behavior. Virtual
Muscle models the mtcs empirically. We hope that the behavior can be extrap-
olated and thus get realistic results for our musculoskeletal system.
A very hard problem is to get realistic data for the mtcs. If we want to build
musculoskeletal models, the skeletal model and the mtcs should fit together. To
obtain these data lots of practical measuring experiments should be done. For
us this is almost impossible. Luckily we have data from a jumping program
supplied by the VU Amsterdam.
Virtual Muscle exports its mtc models as Simulink blocks and we can couple
them relatively easily with skeletal models that we build with SimMechanics the
Simulink environment. The simulation is then very easy. We have added a hip
flexor to our thigh model from the previous chapter and done some experiments
with it.
The outputs of our thigh model were very unexpected, except for the case where
we use act = 0 as input. Furthermore we do not know what activation function
we should feed the model. It is amazing how the human mind can do all kind of
amazing motions with these complex force producers. We should however not
forget that we needed years of training to do ”simple” movements like walking
for example.
From a mathematical point of view the behavior of our musculoskeletal system
is very nonlinear. Optimizing the output is therefore a real challenge. In the
next chapter we will see how we can use evolutionary algorithms to perform
optimizations.

51

Chapter 4

Optimizations with
Evolutionary Algorithms

4.1 Optimizing our motions.

We have built a musculoskeletal model and can perform all kinds of experiments
with it. The input is an activation function act for each mtc-model. The output
vector ~Y contains variables we are interested in. Many times we want to find
an optimal output. Examples: fastest kick, economic kick etc. To do this we
should first define an objective function F for ~Y . It is obvious that depending
on one’s interest many objective functions can be defined. Then we introduce
a function h that maps act to F(~Y). h is a very complex function and with
each simulation we can only know one point of h. Our optimization problems
become as follow: find act such that h is optimal. Figure 4.1 makes it all more
clear. In this chapter we will use Evolutionary Algorithms to find the optimal
act.

4.2 Evolutionary Algorithms(EAs)

Evolutionary Algorithms look at a number of possible solutions for a given
problem. The collection of these solutions is called a population. The population

Figure 4.1: Schematic overview of optimizing our system. For a given input ~U
(act in our case) we get an output ~Y which we will rate with F . Our optimization
problems can be seen as finding act such that h(act) is optimal.

52

will evolve over time until the problem is solved or the maximum processing
time is met. So at each time step we have a different generation, supposedly
to fit better to the problem than its predecessors. An evolution step is done
by applying several evolutionary operators on it. These operators mimic the
behavior of nature’s evolution processes. The main operators are:

Selection: Select the better solutions from the current generation. Whether
a given solution is better than another is determined by a user input
function. The objective function.

Recombination: Solutions are created by recombining the selected members
from previous generations.

Mutation: Complex problems tend to have many local optima. With mutation
we want to escape from a local optimum. Mutation is done be changing
some solutions slightly.

These operators make that evolutionary algorithms differ from a simple ran-
dom search. Good information are passed through next generations. For each
operator we have different choices. Furthermore they are parameterized. In ap-
pendix C we see an overview of the operators that we have implemented. These
operators are implemented from [14].

4.3 Terminology

We assume that our audience are familiar with EA. Below are some terminology
we used.

Population: A set of potential solutions for our problem. With EA we want to
evolve the population to a better one and so one, until termination. Mostly
we are only interested in the best solution when the search is terminated.
Sometimes we are also interested in other good solutions(local optima).
The size of the population is denoted with N .

Region: Several publications have shown that it is better to split the entire
population into a number of sub-populations or regions. More in ??

Solution: A solution is an array of variables that represents the real solution.
In biological terms we can compare a solution with a chromosome. 1

Variable: A solution is an array of variables. When we used the term chromosome
for a solution, then the term gene is the equivalent for variable. The three
most common types of variables are: binary-valued, multi-valued and real-
valued.

Objective function: a function that measures how good a solution is.
1EA and GA are inspired by processes in nature. Some EA specialists nowadays want to

break the link with biological terms.

53

4.4 The basic Evolutionary Algorithm

The basic EA algorithm is listed algorithm 3 and is quite powerful to solve var-
ious optimization problems. EA has some major drawbacks however. First we
do not have certainty that the search will converge to an optimal solution. This
because it is a stochastic search method. Second EA is very time consuming.
We easily speak in terms of thousands of fitness evaluations. In our case one
fitness evaluation means one simulation. Luckily they are very well suited for
trivial parallel implementations, where we can use multiple computer processors
simultaneously. Other methods and operators can be used to extend the basic
algorithm and improve its performance.

Input: Fitness function f
Output: Best solution found
population =Initialize(f , random) ;
while terminal constraint is not met do

parents = select(population, f) ;
children = recombine(parents) ;
children = mutate(children) ;
population = reinsert(parents, children) ;

end
return(Best solution(population))

Algorithm 3: The basic Evolutionary Algorithm(EA).

4.5 Extending the basic EA

The basic evolutionary algorithm is able to solve many complex problems. Their
performance can be improved by good choices for the GA-operators and their
parameters. When the fitness functions are cheap we can afford creating large
populations and allowing large evolution time. Sometimes we have very expen-
sive fitness functions and we have to use more sophisticated EA. A simulation
is then very costly and with better EA we hope to get better results with less
computation. Below are listed 2 extensions to the basic EA.

4.5.1 Multiple regions

With this method we divide the population into several sub-populations. Each
of them will evolve independently for some generations. The number of gener-
ations where the sub-populations evolve independently is called isolation time.
After each isolated evolution the subpopulation will exchange their best solu-
tion with each other. This is called migration and there are several ways to
do this. After migration the sub-populations will evolve independently and
so on. In algorithm 4 we see the algorithm for EA with different regions.

54

Input: Fitness function f
Output: Best solution found
regions = Initialize(f , random) ;
while terminal constraint is not met do

foreach region do
region = evolve(region,n,g);

end
regions = migrate(regions);

end
return(Best solution(population))

Algorithm 4: The different regions EA, which is an extension of the basic
EA.

4.5.2 Different strategies.

The EA with multiple regions can be seen as an extension of the basic EA. It
can be extended further. In 4.5 we have mentioned that we can improve the
basic EA by choosing the right operators and their parameters. A given set of
choices for EA operators and their parameters is called an evolution strategy. In
most cases we do not know which are the better ones. One solution to solve this
problem is to give each subpopulation a different evolution strategy. By doing
this we bet on more horses and thus hopefully have more chances for winning.
Furthermore we believe that with different strategies the subpopulation will help
each other. The most obvious example is the case where we use different muta-
tion strategies. In the beginning the strategy with large mutation will do better,
while after some time and migrations the strategy with small mutations will do
better. The algorithm for EA with different strategies is given in algorithm 5.

Input: Fitness function f , various evolution strategies: [EA strategy]
Output: Best solution found
regions = Initialize(f , random) ;
while terminal constraint is not met do

foreach regions do
region = evolve(region, EA strategy);

end
regions = migrate(regions);

end
return(Best solution(population))

Algorithm 5: The different strategies EA, which is an extension of the
differen regions EA.

55

4.6 Project Static Thigh

In the end of the previous chapter we wondered if we could keep the thigh still.
The reason for this is to find a so called operational point. In this point the
system should be in rest. We can save the state of this point and start other
experiments from this point. In project Static Thigh we want to raise the thigh
from an initial state and keep it still at 10 degrees for a short period of time.
The initial state was chosen to be the state where the thigh is at rest θ̇ = 0
and perpendicular to the ground(θ = 0). This can be seen as an optimization
problem where we want to minimize the difference of the hip angle θ with a
reference angle θref for a certain amount of time. Can the EA solve it?

4.6.1 Using EAs

If we want to use EAs to solve this problems we should do the following:

1. Formulate the objective function F : this function tells us how good the
simulation is. It is defined in terms of the model’s output.

2. Encode the solution: our solution is an activation function act. This
function should be encoded into an array of variables. The evolutionary
operators depend on what type of variables we use.

3. Choose Evolutionary Strategy(s): if we use the basic EA we only have to
choose one evolutionary strategy. If we use the different strategies EA we
should of course choose more evolutionary strategies.

4. Perform evolutionary search: we set some stopping criteria(goal reached,
maximal search time etc.) and start the search.

Formulating the objective function

The objective function tells us how good a solution is. The definition of objective
functions is problem dependent. The EA only gives solutions for what we asked
for and therefore a well defined fitness function is of paramount importance.
This time we want then the thigh to move up and stand stationary from t =
0.75s to t = 1.0s. We choose the objective function F to be the r2-norm of
(θ(t)− 10) for 0.75 ≤ t ≤ 1. We have:

F =

√∫ 1

t=0.75

(θ(t)− 10)2dt (4.1)

We can only approximate the objective function. We let the model produce
output at fixed time-points2, that are equally distributed along the time-axis
with distance dt. The objective function is then approximated with:

F ≈

√√√√dt ∗
N−1∑
i=0

(θ(ti)− 10)2 (4.2)

with t0 = 0.75 and tN = 1.
2With variable time-step solvers linear interpolation is used to produce results at specified

time-points. This will result in extra approximation errors!

56

Figure 4.2: A typical EMG signal, Voltage vs. time. The electrical activity in
the muscles. The amplitude tells us how active the muscle is and can be related
to the neural activity. If we want to use this signal we should clip the signal to
[0,1].

Encoding the activation function

Although the objective function is very important, formulating it was fairly easy.
The next step is encode the solution, which is the activation function. This is
a difficult step, because the activation function is a very complex function. It
stands for the normalized neural activation function. If we want to do it right we
should model the neural activation and parameterize this function. A solution
can then be seen as an array of the parameters that determine the activation
function. According to the manual of Virtual Muscle 3.1.5 [11], we can use
recorded electromyography(EMG) as activation. EMG measures the sum of all
synchronous currents in each muscle fiber. In figure 4.2 we see a typical recorded
EMG signal. Currently our knowledge of the neural activation function is too
low and therefore we will use a simplified function to model the activation
function. We have chosen our activation function to be made up with piecewise
constant functions, that we call pulses. A pulse can only be zero or one. All
pulses have the same width and that depends on the number of pulses that we
use. The frequency f is a quantity for the number of pulses and is defined as
the number of pulses per second. The width w of a pulse is then w = 1

f . Now a
solution is an array of binary valued variables. Because we want to simulate the
thigh for one second, the size of the array equals f . In figure 4.3 we see the case
for f = 4. Suppose we have an array of pulse of size f . Then we can calculate
act with:

act(t) =

f−1∑
i=0

p(i)αi(t) if 0 ≤ t < 1

p(f − 1) if t = 1

(4.3)

where

αi(t) =

{
1 iw ≤ t < (i+ 1)w

0 elsewhere

and p(i) is the i-th variable of the pulse-array..

57

Figure 4.3: A binary valued pulse function with frequency f = 4. Tmax = 1 will
get the value of the last pulse.

The extended raising-thigh model

The EA will find solutions in the form of pulse arrays. These pulse arrays should
be converted into activation functions. In the extended raising-thigh model we
let the thigh-model do the pulses to act conversion. Suppose we have solution p
which is an array of length f , then the activation function can be calculated with
equation 4.3. By doing this we guarantee ourselves that the activation function
will not be interpolated. In figure 4.4 we see a screen-shot of the extended model
that we named sim act.

Benchmarks

With the choice of EAs to solve the problem, a large number of simulations
should be done. Usually we speak in terms of 10 thousands. Therefore we did
a little benchmark with our computer(AMD 2600+, WindowsXP) for different
activation, solvers and relative tolerances. The results are given in table 4.1 and
4.2. We are not happy with these results. Each simulation takes around 1.8 sec-
onds. Because there are no very big time differences, we used the ODE45 solver
with RelTol 1e−6 for our simulations. In this way we hope to get simulations
with a relatively high accuracy.

4.7 The experiments

We let the model produce θ at specified time-points. The distance dt between
these time-points is fixed and equals 1/1000 = 10−3. The used solver is the
ODE45 variable time-step solver with relative tolerance 10−6 which is quite
accurate. The approximation of the objective is calculated with equation 4.2.
Output θ and thus interpolated values of θ are used. This will result in extra

58

Figure 4.4: The extended thigh-model that we named sim act. The input are
the found pulses(’solutions’) and the pulse2act block will calculate the activation
function at needed time-points.

With ODE23 time(s)
RelTol pulses =1 pulses = 0 pulses = rand
10−3 2.8224 1.7862 1.6384
10−4 1.7267 1.8196 1.6757
10−5 1.7357 1.7251 1.7108
10−6 1.7580 1.7340 1.7459

Table 4.1: The time it takes for our computer to evaluate a fitness function. The
frequency is set to f = 40. The pulse array is thus an array of length 40. pulses
= 1 means all variables are 1, pulses = 0 means all variable are 0, pulses = rand
means the variables are randomly chosen to be 0 or 1. Once the array of random
variables are generated it is used over and over again for the benchmarks. In
this table the ODE23 solver is used. The time is the average of 10 simulations.
There is not much time difference between different relTol. When we used our
EA, we should count on around 1.8 seconds for an objective-function evaluation.
This is a serious bottleneck.

59

With ODE45 time(s)
relTol pulses =1 pulses = 0 pulses = rand
10−3 1.8420 1.3410 1.7662
10−4 1.8205 1.4211 1.7656
10−5 1.8680 1.3953 1.8378
10−6 1.8874 1.3657 1.9026

Table 4.2: Same as 4.1, but with ode45. In most cases a smaller relTol needs
more time. But there are no big differences. Comparing with the ODE32 table
we see that sometimes ODE23 needs less time, but sometimes more. We are
more interested in pulses of type rand. There we see that ODE45 needs more
time, about 5%.

approximation errors and we should keep this in mind. We directly use the
different strategies EA, because we think that these will do better.

4.7.1 Experiment 1: f = 40

We used a pulse array with frequency f = 40. The values of the pulses are 0 or
1. Below are the basic settings for the EA.

• number of regions: 4

• region-size: 40 solutions

• migration-time: 5 generations

• a unique EA-strategy for each region.

The search is stopped if the the best solution did not improve after 3 migrations.
Results of the search are saved and the search restarted with random solutions
as initial solutions and so on. We let the search run for one night and in figures
4.5 and 4.6 we see the best result after 9 restarts.

The best found objective is 0.0224 which is quite small. Wether this is a local
or global optimum we do not know. We can know it of course if we evaluate
all possible solutions that equals 240. If we assume that it takes around 1.8
seconds for 1 evaluation for our computer, then we should wait around 6× 104

years. If we use lots of computers however we can have the answer within our
lifetime. Before we try to do this or think of trying to do this, we will do another
experiment first.

4.7.2 Experiment 2: f = 80

This experiment is the same as the previous one, except we changed the fre-
quency to f = 80. With f = 80 the search space is much larger than with
f = 40(around 1012 times) and maybe we can find a better solution. We also let
our computer do the search for one night and the result after 4 restarts(around
8.5 hours) is given in figures 4.7 and 4.8. The number of restarts is lower than
the case where f = 40. This can be explained with the increased search space
if we take f = 80.

The found objective is smaller than with f = 40 (0.0180 vs. 0.0224) and the
plot of the found θ vs. time looks better. If we look at the found activation

60

(a)

(b)

Figure 4.5: Best result of experiment 1. (a) The found solution(activation
function). We can not see a clear pattern in it. (b) The found θ vs. time. It is
close to what we want and it look quite good if we also take numerical errors in
mind.

61

(a)

(b)

Figure 4.6: Best result of experiment 1(continued). (a) The evolution of the
best solutions of each regions. Here the approximated objective vs. migration
is plotted. The migration method we used is the universal migration method.
With this method each region will choose another region at random and replace
the worst solution of the chosen region with its own best solution during migra-
tion. (b) The evolution of best objective of the whole population(all regions).
Because of elitism(best solutions are saved for next generations) we are guar-
anteed of a monotonous decrease for the objective. The best found objective is
around 0.0224

62

(a)

(b)

Figure 4.7: Best result of experiment 2. (a) The found activation function,
which is a bit mysterious. (b) The θ vs. time belonging to the best solution. It
looks good.

63

(a)

(b)

Figure 4.8: Best result of experiment 2 (continued). (a) The best-objective
evolutions of the 4 different regions during the best search. The time is given
in migrations. A migration counts for 5 generations. (b) Evolution of the best
objective of the whole populations. The best found objective = 0.0180.

64

relTol stepmin stepmax t0 F2

1e−2 4e−20 0.014 0.75 0.0196
1e−3 3e−19 0.012 0.75 0.0180
1e−6 7e−18 0.008 0.75 0.0176
1e−9 4e−18 0.008 0.75 0.0175

Table 4.3: The results of simulating with the best found solution for different
relative tolerances relTol. stepmin and stepmax is the minimal and the maximal
step-size respectively that the model used. t0 is the start time that is used to
calculate the objective. Surprisingly t0 = 0.75 for all relTol. This indicates
that very small time-steps are used around t = 0.75. F2 is the new objective
approximation where we also take the variable time-steps into account.

functions of both solutions we can not really tell the difference. An interesting
way to compare both solutions is by looking at the modelled tendon-force that
belongs to these solutions. In figure 4.9 we see the plots.

4.7.3 How reliable is our best solution?

With the 2 experiments we have found 2 solutions. Based on the objective
of these solutions we declare the found solution of experiment 2(f = 80) as
winner. Because we used numerical results there will always be numerical er-
rors(rounding off, numerical integration, interpolation etc) involved. Can we
trust our results? The simulations in the EA searches used the ODE45 variable
time-step solver with relative tolerance relTol = 10−6. The reason for choos-
ing a variable time-step solver is efficiency. The solver will only use smaller
time-steps when needed. For the calculation of the objective function however
we used interpolated θ. This will lead to numerical errors, and the question is
how bad it is. Therefore we examined the best found solution thoroughly. We
feed this solution to our model and simulate the motion a few times. Each time
the ODE45 solver is used, but with different relative tolerances. The calculated
θ instead of the interpolated θ is then studied. The objective function is now
approximated with:

F2 ≈

√√√√N−1∑
i=0

dti ∗ (θ(ti)− 10)2, with dti = ti+1 − ti (4.4)

where t0 ≈ 0.75 and tN = 1. Relevant quantities of these simulations are given
in table 4.3. In this table we see that F2 = 0.0176 (relTol = 1e−6) and does not
differ much from F = 0.0180 which is good news. It means that the interpolation
errors are quite limited3. In figure 4.10 we see a plot of the calculated θ vs. time,
where we zoomed in at t = 1. There we see that solving with a relTol = 1e−6

is accurate enough. Then there is the question: is the activation function really
used? The width of our pulses equals 1

80 = 12.5e−3. If we look at the maximal
time-step for relTol = 10−6 in table 4.3 we see that it equals 8e−3. This means
that every pulse is taken. Furthermore we are talking about the maximal time-
step and therefore we conclude that the activation function is really used by

3This is only true if the used step-sizes are very small compared with 0.001(the distance
of the output points).

65

(a)

(b)

Figure 4.9: The tendon force vs. time. (a) The force plot belonging to the best
found solution of experiment 1. Here we used pulses with f = 40. We honestly
did not expect this shape. We expected a less or more constant force at the end.
(b) The force plot that belongs to best found solution of experiment 2(f=80).
The produced force is more ”constant” at the end.

66

Figure 4.10: Plot of θ belonging to the best solution vs time t, solved with
different relative tolerances relTol = 1e−2, 1e−3, 1e−6, 1e−9)(ODE45 solver).
Here we plotted the calculated θ instead of the interpolated θ. We have zoomed
in at t ≈ 1 and the usage of variable time-steps is clearly visible. We assume
the higher the relative tolerance the higher the accuracy. From the plot we can
see that solving with a relative tolerance of 10−6 is pretty accurate. At the
endpoint, t = 1, the error between the found θ with relTol 1e − 6 and 1e − 9
equals 1.4e−005.

67

Figure 4.11: Triangular-shaped pulses instead of constant pulses. A triangular
pulse has less activation than a constant pulse.

the model. Things change if we use other type of activation function that are
’finer’. Solutions with higher frequencies or recorded EMG data for example.
If the taken time-steps are too large, pieces of the activation can be missed by
the model. By specifying the maximal time-step manually, we can prevent this.
The price for this is more computation time however.

4.7.4 Experiment 3: another type of activation function

For our activation functions we used piecewise constant functions that we call
pulses. What if the pulses are not constant but of triangular shape(see figure
4.11)? We use our best solution(from experiment 2) and calculate the activation
function with 4.5:

act(t) =
f−1∑
i=0

p(i)αi(t) (4.5)

where

αi(t) =

2(t− iw) iw ≤ t < (i+

1
2

)w

2− 2(t− iw) (i+
1
2

)w ≤ t ≤ (i+ 1)w

0 elsewhere

Then we used this activation function to simulate our thigh model. The solver
is the well-known ODE45 with relTol = 1e−6. The details of the simulation
are:

• stepmin = 6e−18

• stepmax = 2e−2 (very large)

68

• θmax ≈ 0.1 degree

• F = 3.8369 (interpolation)

• F2 = 4.9767 (real output values)

There is a big difference between F and F2. This could be the result of the
relative large stepmax 4. We can prevent this by specifying stepmax manually.
In figures 4.12 and 4.13 we have some interesting plots of the used activation
and the found θ. Here we see that specifying stepmax is very important. The
step-size used by the solver depends on the state of the system. The state of the
system in turn depends on the activation. When relatively big time-steps are
used parts of the activation will be missed. In this case the largest time-steps
stepmax = 0.02 were used. The width of a pulse is w = 0.0125 and some pulses
will be missed. The simulation is done with a different activation than what we
have in mind. This is a wise lesson for the future. We should specify stepmax
small enough, otherwise another activation is used for the simulation.

4.8 Conclusion

We have implemented an EA from scratch to solve optimization problems. If
we want to use the EA for our model we should formulate the goal in terms of
the output and encode the activation function into an array of variables.
We used the EA to solve a problem that can be seen as a control problem. The
goal was to hold the thigh static for a moment of time. For this goal we for-
mulated an objective function in terms of θ and used the EA to minimize this
objective function.
Encoding the activation function was a bigger problem. In the ideal situation
we can parameterize the activation, put these parameters into an array and use
EA to find the optimal array of parameters. Because we do not how we can
parameterize the activation function properly we used a simplified type of acti-
vation function. These functions are made up with piecewise constant functions
that we called pulses. Real neural activation functions do not look like these
functions.
With the simplified activation functions we get good results. The EA we imple-
mented can also be used to solve other optimization problems.
After the experiments we realized that the approximated objectives can con-
tain errors if the used step-sizes were too big. With very big step-size we not
only have large interpolation errors, but also risk that other activation is used
instead of the found activation. After a thorough examination with the best
found solution we concluded that our approximated objectives are reliable. In
another small experiment we used triangular pulses instead of constant pulses.
Here we see that big step-sizes will produce unreliable objective approximations.
We thus should not only focus on the relative tolerance but also pay attention
to the maximal step-size.

4We used the default stepmax, which is set to 1/50 of the simulation time. In our case it
equals 1/50=0.02, the default stepmax is thus used.

69

(a)

(b)

Figure 4.12: Result of experiment 3. (a) The activation function belonging to
the best solution where the pulses are constant. This is a reference for the case
that we use triangular instead of constant pulses. (b)The used activation vs
time(variable time-steps). Here triangular pulsus are used. We can see that
when large step sizes (t ≈ 0.3) were used pulses are missed. The simulation is
done with a ”different” activation.

70

(a)

Figure 4.13: (c) Results of experiment 3(continued). The found θ vs. time.
θmax ≈ 0.1 degree. With triangular pulses we have less maximal activation and
thus muscle force and we expected a smaller θmax, but not this small. When the
state of the model is less dynamic, larger time-steps are used. Non-zero pulses
that cause the muscle to produce force risk being missed by the model.

71

Conclusion

We wondered if we could use the computer to find martial arts techniques. Mar-
tial arts techniques are optimal motions for a certain goal. We therefore have to
model the locomotor or musculoskeletal system of the human body and perform
optimizations on the model. The musculoskeletal system is very complex and
can be split into the skeletal and the muscular system. Both are highly dynamic
systems. To get results on screen we should write software. We have chosen
Simulink, a platform for modelling and simulation of multi-domain dynamic
systems, to implement the musculoskeletal system. Throughout the thesis it
became very clear that using Simulink is about the easiest way to model a
musculoskeletal system. Especially with the help of SimMechanics and Virtual
Muscle 3.1.5.
Because of the complexity we modelled only parts of the musculoskeletal sys-
tem. We started with the skeletal system first. The skeletal system is divided
into several segments and rigid bodies were used to represent these segments.
This model is also known as an articulated model and is a multi-body system.
The complexity of our musculoskeletal system depends mainly on the size of the
skeletal system. The more bodies it contains, the more muscle models should
be added. We used SimMechanics to model the skeletal system. With SimMe-
chanics it was very easy to model and extend the skeletal-system.
With the choice of modelling the skeletal system as a system of rigid bodies, we
moved into the field of multi-body dynamics. Here the dynamics are well under-
stood. In the world of muscle modelling things are different. Scientists still do
no know how the muscle behaves precisely. We have chosen Virtual Muscle to
model the behavior of muscles. Virtual Muscle is an empirical skeletal muscle
model. It can predict the muscle’s behavior at sub-maximal activation relatively
well compared with other muscle models. Because the maximal voluntary ac-
tivation of human muscles is still sub-maximal, we believe that Virtual Muscle
is the right choice. Virtual Muscle treats the muscle as a scaled sarcomere and
we can easily build realistic muscle models if we have good macroscopic muscle
data. The if is a very big if, because the skeletal and muscle models should fit
together.
Finally it was time to perform optimizations. We had implemented an evolu-
tionary algorithm(EA) with a wide variety of operators from scratch. We used
our EA to solve a problem that can be considered as a control problem. In
that problem we have modelled a thigh that is driven by a skeletal muscle and
wondered if the thigh could be kept still at a certain degree. Wether this is
possible we did not know. The EA produced results that are close to what we
want. A major drawback of using EA is the large number of simulations that
is needed. A simulation is very costly, even for our simple thigh model. A way

72

to handle this problem is to implement the model more efficiently on another
platform. The Simulink model can then be used to verify the program. A more
rigorous way is to use more computers. The EA is well suited for trivial parallel
programming.
Although we did not find a martial arts technique we have made a first step at
how we can do that. During this thesis our respect for the human body and hu-
man mind has grown more and more. The human body as a piece of wonderful
engineering and the human mind as a great wonder. One should keep both of
them in good shape, by practicing martial arts for example.

73

Appendix A

How does Virtual Muscle
work?

The equations that Virtual Muscle uses to describe the behavior of a mtc is
given in chapter 3. While some are relatively easy to understand, others are
not. With BuildMuscles we can export mtc models as Simulink block diagrams.
From figure A.1 to figure A.6 we will explain how the output force of a mtc-block
is calculated. We have built a mtc model that models the rectus femoris. We
only used one unit to model the whole muscle group.

Figure A.1: The top-level view of a mtc-block. The input and output are clearly
given.

74

Figure A.2: View under the mtc-block. We have a recruitment block, a fascicle
block, a serial elastic block and a mass block. The recruitment block turns the
normalized activation into stimulation for each fascicle. The fascicle block cal-
culates the fascicle force. The serial elastic block calculates the pulling force on
the skeleton. The mass block keeps track of the fascicle length and contraction
speed.

Figure A.3: The recruitment block. It models the recruitment of the muscle
units. In this block the activation is turned into stimulation stim for each
fascicle or muscle-unit. The numbering of input is done from top to bottom.
The switch is set to recruitment threshold ur If input 1 is larger than the
recruitment threshold it will pass, else the value will be set to zero, so it will
not be recruited.

75

Figure A.4: The most complex block of the mtc-block. The PE1 block comes
into action when the fascicle exceeds a certain length. The PE2 block models
the thick filament compression. It comes into action when the fascicle decreases
to a certain length. The CE block is fairly complex and we will look at it later
on. The calculated force is first normalized to the optimal force F0.

76

Figure A.5: The CE block revealed. It has (shortening length, shortening
speed), Fpe2 and fenv(fire-frequency) as input and the normalized fascicle force
as output. The CE force is a product of the outcome of the force-length, force-
velocity and effective activation relation. The FL block models the force-length
relationship. The shortening and the lengthening block models the force-velocity
for concentric and eccentric contraction respectively. The effective activation re-
lation is fairly complex and it takes diverse phenomena into account. Some of
them are fiber-type dependent.

77

Figure A.6: The effective activation block. It outputs a value between 0 and 1,
that represent the effective activation. This block takes all complex observed
phenomena into account like yielding, sag, rise and fall times etc.

78

Appendix B

Grieve’s method

B.1 Calculating the mtc-length with Grieve con-
stants.

In order to compute the muscle-force we need to compute the length of the
muscle-tendon complex(mtc) loi1. loi depends on the joint angles of the joints
they cover. Mtcs that cover one joint are called mono-articular mtc and mtcs
that cover 2 joints are called bi-articular mtc. In figure B.1 we see a sketch of
how we can compute the loi of a mono-articular mtc. We call this the radian
approach and we have

loi(θ) = l0 + r ∗ θ (B.1)

where r is the radius of the joint and l0 is the length of the mtc for θ = 0.
The way we computed loi however is with Grieve’s method. Here the joint-loi
relationship is measured via experiments. Then a second order polynomial is
fitted. The found coefficients are called the Grieve constants.

loi =
j∑
i=0

Ai,0 +Ai,1 ∗ θi +Ai,2 ∗ θ2i (B.2)

For mono-articular muscles we have j = 0. For bi-articular muscles we have
j = 1. Grieve constants depend on the way θ is defined. Usually the null-state
(θ = 0) is when both segments are aligned. Notice that when A2 = 0, we have
a similar equation like with the radian approach.

B.2 Calculating the moment-arm with Grieve
constants.

Once the geometry of the joints and segments is known, we can determine the
moment-arm. This can be rather complex, because each muscle has its own
geometry. A more generic way to solve this problem is with virtual work. If we
rotate the joint over an infinitesimal angle δ an amount of virtual work is done.

1o stands for origin and is closer to the trunk. i for insertion and is more away from the
trunk

79

Figure B.1: An intuitive way to determine loi. Seg i and seg i+ 1 represent the
midline of 2 segments. The circle represent the covered joint. On top we have
the zero state, that is where θ is defined as zero. We assume that the MTC will
follow the joint closely which leads to a radian increase. This is however not
always the case. A clear example are the flexors of the knee. There we have a
straight line crossing.

80

The work done to cause the rotation is then δM = δa(θ)F . We also know that
loi will change by the muscle force. The work done is given with δloi ~F . They
should be equal to each other, thus δa(θ)F = δloi ~F . Rearrangement leads to:

a(θ) =
δloi
δθ

(B.3)

With infinitesimal small steps we have a(θ) ≈ dloi(θ)
dθ With B.2 we have an

equation for loi. Differentiation of this equation with respect to θ gives us the
equation for the moment-arm:

a(θ) = A1 +A2 ∗ θ (B.4)

If A2 is zero we have a constant moment-arm. Grieve constants are experimen-
tally determined. The length of the mtc is measured at various joint angles and
regression analysis is used to yield the Grieve constants(see B).

81

Appendix C

The GA-operators

For our EA we have implemented several operators and methods. We only
list their names and their parameters. For more details we refer to [1]. The
mutation and recombination operators depend on how we have encoded the
solutions. The implemented operators are suited for multi valued variables, not
for real valued variables.

C.1 Population Parameters

Population size N The number of solutions we look at every-time. If N is
too small we risk convergence to local optima. If N is too big, we need
too much computer resources.

Evolution time G Once a generation is created the evolution time increase
with one. If G is small we risk we risk premature termination.

Streak s If G is very large, but there is no improvement for a number of gen-
erations it is likely that our EA has found the optimal solution or got
stuck in a local optimum. Further searching can be a waste of computer
resources. By specifying s the search is stopped, if there is improvement
after s generations

C.1.1 Region Parameters

Region-size n the population is divided into regions. n is the number of solu-
tions per region.

Isolation time g the regions will evolve independently from each other for a
number of generations. This number is specified with g, the isolation time.

C.2 Initializing the population

The initialization is done with randomly generated solutions.

82

C.2.1 Terminal constraints

In our case the search space is enormous. Furthermore the costs for evaluating
our fitness function are very expensive. We can stop the search based on the
following criteria.

Goal When the goal is reached, the search can be stopped. This is an ideal
situation. We should remark that we can not always define a goal.

Time (s) When the searching time exceeds a user specified amount of time,
the search will be stopped.

Costs (fitness evals) A more objective stop criterion is the amount of fitness
evaluations.

Streak There is a chance that the EA is stuck in a local optimum. Streak is
the number of generations that the search does not improve.

C.2.2 Selection

For each generation we should select a number of members to produce offsprings.

Truncation(nmates): nmates is number of parents for the next generations.
The minimum is 2.

Tournament(nmates, sp): sp is selection pressure, needed for linear ranking.
The sp should be in the range of [1.0, 2.0].

Roulette(nmates, sp,size): size is the tournament size.

Linear ranking

With tournament and roulette selection fitter members have more chance to be
selected. These selection chances are proportional to their fitness evaluation.
Sometimes we have too dominant solutions. Their proportion is way bigger and
it is very likely that weaker members have practically no chances to be selected.
Think of 1 percent or less. Linear ranking gives weaker members relatively fair
chances to be chosen too. This will guarantee the diversity. The sp parameter
regulates the rate of diversity.

Elitism

With elitism we keep a number of best solutions of the current generation for
the next generation. These are called the elite members. By doing this best
solution of each generation will be better or equal to the best solution of the
previous generation. Typical numbers of elite members are 1 or 2.

C.2.3 Recombination

The implemented recombination operators are:

discrete : Two children are created from two parents with the use of 2 random
index-arrays.

83

uniform : Same as with discrete, but with one random index-array.

crossover(m): m is the number of cross-over points. If m is small (eg. 1 or
2), the children will inherit much of their parent’s “look”. This of course
depends on how the solution is encoded.

C.2.4 Mutation

We have only implemented one type of mutation and that is mutation with
binary valued variables. It has the following parameters:

Number of mutants: the number of children where mutation operator will
be applied to.

Mutation rate p: each variable of a solution will mutate with chance p. The
recommended value is 1/l, where l is the number of variables of a solution.

84

Bibliography

[1] L.F. Shampine. Numerical Solution of Ordinary Differential Equations.
Chapman & Hall. March 1, 1994

[2] Simulink c©6 Using Simulink c©. The MathWorks, Inc. 2006.
http://www.mathworks.com

[3] Grant R.Fowles, George L.Cassiday. Analytical Mechanics, 6th edition.
Saunders College Publishing. 1990.

[4] Forward Dynamics of Multibody Systems: A Recursice Hamiltonian ap-
proach. Vrije Universiteit Brussel, Brussel. September 2005.

[5] M.A.Mc Conaill, J.V.Basmajian. Muscles and Movements: a basis for
human kinesiology. Baltimore, Maryland 21202 USA. 1969.

[6] SimMechanics For Use with Simulink c©, User’s Guide Version 2. The
MathWorks, Inc. Natick, MA. 2006. http://www.mathworks.com

[7] P. Montazemi, R. Davoodi. Comparison of Dynamic Engines for Muscu-
loskeletal Modeling Software MSMS. A.M. Institute for Biomedical Engi-
neering, University of Southern California. 2005.

[8] David A. Winter. Biomechanics and motor control of human movement.
Hoboken, New Jersey. 2005.

[9] B.M. Nigg, W. Herzog. Biomechanics of the Musculo-skeletal System, 2nd
Edition. John Wiley & Sons Ltd, West Sussex PO19 iUD, England. 1999

[10] Ernest J. Cheng , Ian E. Brown, Gerald E. Loeb. Virtual muscle: a com-
putational approach to understanding the effects of muscle properties on
motor control. Department of Biomedical Engineering, Alfred E. Mann In-
stitute for Biomedical Engineering, Southern California, USA. June 2000.

[11] Ernest Cheng, Ian Brown, Jerry Loeb. Virtual Muscle 3.1.5 Muscle Model
for MATLAB User’s Manual. Feb 21, 2001.

[12] Jack M. Winters, Savio L-Y. Woo. Multiple Muscle Systems Biomechanics
and Movement Organization. Springer-Verslag, New York. 1990

[13] Stuart I Fox. Pierce College. Human Physiology, 8th edition. McGraw-Hill
Science/Engineering/Math. 2003.

85

[14] Hartmut Pohlheim. GEATbx Introduction Evolutionary Algo-
rithms: Overview, Methods and Operators version 3.7. 2005.
http://www.geatbx.com.

[15] Agamemnon Despopoulos, Stefan Silbernagl. Color Atlas of Physiology,
5th edition. Thieme Medical Publishers Georg Thieme Verlag, New York.
2003. http://www.thieme.com.

[16] Ian Edward Brown. Measured and Modeled Properties of Mammalian
Skeletal Muscle. Queen’s University.
Kingston, Ontario, Canada. 1999.

86

