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1 CR-IDENT Overview

This document describes CR-IDENT, a Matlab-based toolbox that implements a com-

prehensive framework for multivariable control-relevant system identification aimed pri-

marily at process system applications. CR-IDENT consists of a series of graphic user

interface (GUI) modules that accomplish (1) multivariable input signal design for multi-

sine and pseudo-random binary sequences (PRBS), (2) frequency response estimation, (3)

control-relevant frequency response curvefitting, and (4) robust loopshaping. The toolbox

is intended to generate efficient models whose end use is the design of high-performance

model-based control systems (Rivera et al., 2003; Lee, 2006). An important component

in the implementation of this design procedure is its reliance on a priori knowledge of

the system of interest to design input signals meeting both theoretical and practical user

requirements. Data from identification testing using these signals are the basis for the

subsequent steps of frequency-response estimation, and control-relevant parameter estima-

tion. A resultant representation is a discrete-time state-space model that can be used as the

nominal model for Model Predictive Control or other forms of multivariable control design.

Improving the link between system identification and control design has been a subject of

great interest in the control systems literature for nearly two decades (Hjalmarsson, 2005).

There is a continuing need for control-relevant identification methodologies focused on

multivariable problems that appeal to both academic and industrial practitioners. In princi-

ple, such methodologies should be comprehensive in nature, take full advantage of a priori

knowledge of a system to be identified, be as short and non-invasive as possible to the

process (i.e., “plant-friendly”), and not make substantial demands on user-skill levels in

its implementation (Rivera et al., 2003). Based on recent research activities in the Control

Systems Engineering Laboratory at Arizona State University, CR-IDENT has been devel-

oped with these goals in mind (Rivera et al., 2003; Lee, 2006).

The functionality implemented in the CR-IDENT is summarized in Figure 1. Although

aimed primarily at process system applications, the methodology is broadly-applicable and

can be useful in multiple application domains. These modules can be used independently

or as part of an integrated procedure, as shown in Figure 1. The functionality of each mod-

ule is accessed with a graphical user interface (GUI) to provide flexibility and convenience

to the user. The theoretical background behind CR-IDENT is described in various papers

by Lee et al. (2003a; 2003b), Lee and Rivera (2004; 2005a; 2005b), Rivera et al. (2007)

and the Ph.D. dissertation by Lee (2006).

4



Figure 1: Summary of the design procedure and functionality available in CR-IDENT, a

comprehensive framework for multivariable control-relevant system identification.

This document presents the general features of the CR-IDENT and helps the users get

started and acquire the experience of using this toolbox. In the following, we will intro-

duce the four main GUIs in the CR-IDENT with step-by-step guidelines for the user. More-

over, two illustrative example cases are provided based on the Shell Heavy-Oil Fractionator

Problem (Prett and Garcı́a, 1988) and Jacobsen-Skogestad high-purity distillation columns

(Jacobsen and Skogestad, 1994). These examples can be accessed directly from the GUI.

A variety of multisine input signal designs supported by the toolbox is demonstrated and

the data arising from these designs are used to obtain models which are evaluated through

the closed-loop Model Predictive Control application. This document is organized as fol-

lows: Section 2 describes the installation of the CR-IDENT release and Section 3 shows

how to get started with the CR-IDENT. Section 4 explains the Multivariable Input Signal

Design GUI and Section 5 introduces examples of Matlab Simulink for the open-loop ex-

periment simulation. Sections 6 and 7 present the Frequency Response Estimation GUI

and Control-Relevant Curvefitting GUI, respectively. Section 8 presents the Robust Loop-

shaping GUI that involves uncertainty estimation, performance weight specification, and

µ-analysis. The illustrative example cases are given with step-by-step procedures and dis-

cussed in Section 9. Section 9.3 presents an illustrative example that follows the identi-

fication test monitoring procedure taking advantage of interactive and iterative usage for

control-relevant modeling, targeted on Model Predictive Control application. Finally, Sec-

tion 10 presents remarks and conclusions.
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2 Installing CR-IDENT and System Requirements

The directory structure for the CR-IDENT toolbox is shown in Figure 2

Figure 2: Directory structure for CR-IDENT Toolbox

The toolbox is designed using Matlab R14 with Service Pack 3 (Version 7.1) and requires

the Signal Processing, Control System, System Identification, and Model Predictive Con-

trol Toolboxes as well as Simulink.

Installation of the CR-IDENT Toolbox is accomplished by the following steps:

1. Copy “CRIDENT Toolbox releasexx.zip” at a directory.

2. Uncompress “CRIDENT Toolbox releasexx.zip” from the current directory. If it is

properly uncompressed, the main directory contains the same sub-directories as Fig-

ure 2.

3. Start Matlab on your computer and open “Set Path” window from “File” menu on

the Matlab command window.

4. Click “Add with Subfolders” and select “CRIDENT Toolbox releasexx” directory.

Then, it will automatically include the sub-directories.

5. Hit the “Save” button and close the “Set Path” window.
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Although the CR-IDENT toolbox should work in all Matlab plaforms, its development has

been primarily done using PC-Windows.

3 Getting Started with the CR-IDENT Toolbox

Now, CR-IDENT is ready to be started by the user. Invoking the command

>> crident

calls a main menu (see Figure 3) with options corresponding to each of the four GUIs

that comprise CR-IDENT. The toolbox consists of modules for multi-channel input signal

design (multisine and PRBS), frequency-response estimation, control-relevant frequency-

response curvefitting, and robust loopshaping.

Figure 3: The main GUI for CR-IDENT, a toolbox for multivariable control-relevant iden-

tification.

To open each individual GUI, the user needs to hit the buttons on the CR-IDENT GUI,

which will then open the corresponding GUI window. Currently, it is not possible to run

multiple instances of the same GUI. Salient aspects for each GUI module are described in

the ensuing sections.
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4 Multivariable Input Signal Design GUI

4.1 Background in Multisine Input Signal Design

By enabling direct specification of the power spectrum, multisine signals represent a ver-

satile class of inputs for accomplishing system identification (see Figure 5). A multisine

input u j(k) for the j-th channel of a multivariable system with m inputs is defined as

u j(k) =
mδ

∑
i=1

δ̂ ji cos(ωikT +φ
δ
ji)+

m(δ+ns)

∑
i=mδ+1

√
2α ji cos(ωikT +φ ji)

+
m(δ+ns+na)

∑
i=m(δ+ns)+1

â ji cos(ωikT +φ
a
ji), j = 1, · · · ,m (1)

where m is the number of channels, δ , ns, na are the number of sinusoids per channel

(m(δ +ns +na) = Ns/2), φ δ
ji,φ ji,φ

a
ji are the phase angles, and δ̂ ji, α ji, & â ji represents the

Fourier coefficients defined by the user. δ̂ ji, â ji are the “snow effect” Fourier coefficients,

and ωi = 2πi/NsT is the frequency grid. The “snow effect” (Guillaume et al., 1991) refers

to sinusoids where both Fourier coefficients and phases are selected by the optimizer, which

can serve as an aid for achieving plant-friendliness (Lee et al., 2003b). The snow effect is

not implemented in the current version of CR-IDENT; instead the user can specify l f and

h f which are Fourier coefficients in the low and high frequency grids. Figure 4 shows a

general zippered input power spectrum for a three-channel MIMO case as implemented in

CR-IDENT.

For orthogonal input signals, the power spectrum of channels should not be excited at the

same frequencies; only a single input channel is excited at a specific frequency, while the

other channels are suppressed. To achieve a zippered spectrum, we define the Fourier

coefficients α ji for u j(k) as

α ji =

{
6= 0, i = mδ + j,m(δ +1)+ j, ...,m(δ +ns−1)+ j

= 0, for all other i up to m(δ +ns)
(2)

A frequency range of interest containing the bandwidth of the primary power spectrum

should fall within the range specified by the inequality of (3) (Braun et al., 2002; Rivera et

al., 2002).
1

β τH
dom

= ω∗ ≤ ω ≤ ω
∗ =

α

τL
dom

(3)

Within the primary bandwidth, sinusoidal harmonics perturb the dynamics of a system of
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Figure 4: Conceptual design of a standard “zippered” spectrum for a three-channel signal.

interest to produce informative datasets for system identification. Consequently,

2πm(1+δ )
NsT

≤ ω∗ ≤ ω ≤ ω
∗ ≤ 2πm(ns +δ )

NsT
≤ π

T
(4)

which in turn translates into the following inequalities for the number of sinusoids, the

sampling time, and the sequence length (ns, T, andNs, respectively)

ns +δ ≥ (1+δ )
ω∗

ω∗
(5)

T ≤min
(

π

ω∗
,

π

ω∗−ω∗

ns−1
ns +δ

)
(6)

max
(

2m(ns +δ ),
2πm(1+δ )

ω∗T

)
≤ Ns ≤

2πm(ns +δ )
ω∗T

(7)

The principal design guideline implemented in the CR-IDENT uses a priori knowledge of

dominant time constants of the system and speed of the response specifications to define a

primary bandwidth for excitation in the signal (Lee et al., 2003b; Lee and Rivera, 2005b).

For users not wishing to use these guidelines, the input GUI supports direct parameter spec-

ification with a verification routine to insure proper implementation.

The input design GUI (Figure 5) offers various options for multi-channel implementation

such as phase-shifted, orthogonal (“zippered”) spectrum, and modified zippered spectrum

designs (Lee and Rivera, 2004). The phase-shifted multisine input design adopts a tech-

nique well-known in the literature for pseudo-random signals in which multiple channels
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Figure 5: Multivariable Input Signal Design GUI in CR-IDENT.

are shifted relative to each other in order to reduce the interactions between channels. A

similar feature is available for PRBS signals. A zippered power spectrum design gives or-

thogonality to individual input channels so that only one input channel is excited at each

frequency grid. The result of this approach is longer signal lengths relative to shifted sig-

nals, but with lower levels of cross-correlation.

For the case of strongly interactive systems, CR-IDENT offers the multisine signal with

a modified zippered spectrum that contains both correlated and uncorrelated harmonics

over the frequency bandwidth. A modified zippered spectrum enables a directional adjust-

ment that can be used to emphasize specific gain directions, i.e., the low-gain direction.

This is a critical consideration in the identification of highly-interactive systems (Lee et

al., 2003b; Lee and Rivera, 2005b; Rivera et al., 2007). If users provide a gain matrix,

the GUI computes the system gain directions and adjusts the signal’s input directions and

power amplitudes to produce a more balanced distribution in the output state-space (Lee

and Rivera, 2005b).

For all multisine signal choices shown in Figure 5, the phases can be obtained through

either the closed-form formula by Schroeder (1970) or the iterative p-norm optimization
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approach that minimizes crest factor developed by Guillaume et al. (1991). Signals can be

validated in both time and frequency domains and be exported in “struct” format. A mod-

ified Shell Heavy Oil Fractionator (Prett and Garcı́a, 1988) and Jacobsen-Skogestad high

purity distillation column (Jacobsen and Skogestad, 1994) problems are provided as ex-

amples with the CR-IDENT. When the user selects the example buttons on the GUI, these

bring up default parameters that represent sensible choices of design variables for each of

the two example systems.

4.2 Generating Multi-Channel Input Signals

The detailed procedure of how to generate input signals using the Multivariable Input Sig-

nal Design GUI is given here.

4.2.1 Input Signal Type

Figure 6: Input signal type selection on the Input Design GUI

First, the user determines an input signal type between “Multisine” or “PRBS.” The GUI

will disable some components depending on the user selection.

Multisine Inputs:
“Phases” should be either Guillaume-Phasing (Guillaume et al., 1991) or Schroeder-Phasing

(Schroeder, 1970). The crest factor minimization algorithm using Guillaume-Phasing takes

more time to compute than Schroeder-Phasing.
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“Multisine Type” should be given among Shifted, Zippered, or Modified Zippered design

that specifies an input power spectrum for multiple input channels. If the number of input

channels is one, they are all identical.

“Low Frequency Interval (δ )” creates the given number of channel groups in the input

power spectrum at low frequency grids using “Low Frequency Ratio (lf)” (≤ 1). The coef-

ficients in the lower frequency grids in Figure 4 that correspond to l f .

“High Frequency Ratio (hf)” (≤ 1) defines Fourier coefficients at higher frequencies out-

side the primary bandwidth. The coefficients in the higher frequency grid in Figure 4 have

value h f .

“Harmonic Suppression (hs)” suppresses sinusoidal harmonics at the frequency grids of

the multiples of prime number (2,3,5,...) in the input power spectrum.

“Correlated Harmonics Design” is for a modified zippered spectrum that requires two

additional design factors.

• “gamma (γ)” applies its ratio to the correlated harmonics.

• “direction” specifies a particular input directional vector (in real or complex values)

of interest to the correlated harmonics.

This can be given directly by the user or can be computed from a steady-state gain by

hitting on the Gain Matrix button. Then, the following window will show up.

Figure 7: Entering a gain matrix for design a modified zippered spectrum

The user can directly enter a gain matrix or a variable name that exists in the Matlab

workspace. A general scheme of the modified zippered spectrum is illustrated in Figure 8.
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Figure 8: Conceptual design of a modified zippered power spectrum for 2-channel signal

PRBS Inputs:
PRBS inputs rely on the phase-shifting method for multiple input implementation.

“Inverse Repeat Sequence” results in an even frequency grid harmonic suppression effect.

4.2.2 General Signal Specs

Although the user can determine general signal specs, more often these parameters should

be based on the system’s physical characteristics.

Figure 9: General input signal specs on the Input Design GUI

“Sampling Time” is the minimum hold time of change for the input sequence, which should

13



agree with the measurement sampling time in the output.

“Number of Channels” corresponds to the number of input channels in a given system.

The user can select a value between 1 and 20 on the current GUI, or numerically specify a

number larger than 20.

“Number of Cycles” repeats one period of the input signal for the specified number of

cycles.

“Amplitude” is the input magnitude that can be given in several ways for multiple chan-

nels. For example when the user has two input channels, the amplitude can be given either

in string or number format,

• 1≡ [1 1]≡ 1∗ones(2,1)

• [1 0.5]

4.2.3 Parameter Selection for Signal Bandwidth

Figure 10: Design parameter selection on the Input Design GUI

Design Guideline:
a priori process information is utilized for this option, which specifies the primary excita-

tion bandwidth as described before from (3) to (7)

“T domL” and “T domH” indicate the low and high dominant time constants, i.e., τL
dom

and τH
dom.
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“Al pha” and “Beta” represent αs and βs for the speed of closed-loop response and set-

tling time requirement, respectively.

“No. of Sinusoids” is an optional parameter allows the user to specify the number of

sinusoids in the primary excitation bandwidth.

Direct Specification for Shifted Signals:
The options are changed based on Multisine and PRBS, respectively, such that

1. Multisine

• “Number of Sinusoids” directly specifies the number of sinusoids for the pri-

mary bandwidth.

• “Sequence Length” directly specifies the sequence length for multisine input

signals.

2. PRBS

• “Switching intervals (nsw)” indicates that the input magnitude will remain un-

changed for at least this time interval.

• “No. of shift registers” specifies for the number of registers for the pseudo-

random binary sequence generator.

Frequency Bandwidth Specification:
This is a simple specification relative to the previous selections. It allows the user to specify

a primary bandwidth (ω∗ - ω∗) for both multisine and PRBS inputs (see Equation (3)).

“Lower w” indicates ω∗ for the lower bound of a primary bandwidth.

“Upper w” indicates ω∗ for the upper bound of a primary bandwidth.

“No. of Sinusoids” is only available with the Multisine signal option, which generates

that amount of sinusoids within the specified bandwidth.

4.2.4 Plots

The GUI provides several plots for the input signal.
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• “Time Series” plots one cycle of the generated input signals.

• “Input Power Spectrum” draws the input power spectrum based on one cycle.

• “Auto/Cross Correlation” takes the correlation analysis for input signals. The user

can specify the lag size.

Figure 11: Plotting options on the Input Design GUI

4.2.5 Action Buttons

Figure 12: Action buttons on the Input Design GUI

The GUI provides a series of the action buttons for signal generation and data management.

“Analyze/Plot” generates input signals with selected user’s choices and plot options. A

small bar window shows up for the progress status.

“SAVE” opens a window to save the current signal data to a file.
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“LOAD” opens a window to load a signal data file to the current GUI.

“CLEAR ALL” clears all the data information on the GUI.

“Close Figures” closes all the open Matlab figures.

“toWorkspace” transfers the input signal data to the Matlab workspace with a variable

name on the text box given by the user.

4.3 Data Structure from Input Signal Design GUI

The data structure from the Input Signal Design GUI has a number of components that are

needed for the internal operation of the GUI. The essential components for executing an

identification testing experiment, as well as being useful for subsequent portions of CR-

IDENT, are as follows

Components Description

u Inputs

Ts Sampling time

Ns One cycle sequence length

ns Number of sinusoids in the primary bandwidth

Table 1: Essential components of the data in “struct” format from Multivariable Input

Signal Design GUI

4.4 Examples

The input design GUI provides two example cases based on the Shell Heavy Oil Fraction-

ator (Prett and Garcı́a, 1988) and the Jacobsen-Skogestad (Jacobsen and Skogestad, 1994)

high-purity distillation column problems. Preset values are loaded on the GUI when but-

tons for these examples are selected; the user can then analyze these examples within the

GUI as desired.
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Figure 13: Illustrative examples on the Input Signal Design GUI

5 Running Experiment from Input Design GUI

The user can use the designed input data in variety of ways for simulation or experiment for

identification testing. To use the input signal on the Matlab workspace, it can be available

directly from the GUI using “toWorkspace” or using a command “load filename” on the

Matlab command window. With a designed input signal, u, Ns, and Ts are used as essential

information for running the testing experiment. The user has to decide a number of cycles

for the total test duration. Ns should not be modified and will be the basis for calculating

the test cycles.

The simulation or experiment styles may depend on the user. However, the input and

output data should be collected properly for the further identification analysis. Figures 14

and 15 show typical examples of the simulation set using Matlab Simulink.

Figure 14: A Matlab Simulink simulation for Jacobsen-Skogestad Distillation Column
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Figure 15: A Matlab Simulink simulation for a modified Shell Heavy-Oil Fractionator

Problem

6 Frequency Response Estimation GUI

6.1 Background in Frequency Response Estimation

The Frequency-Response Estimation GUI (Figure 16) enables estimating frequency re-

sponses from multisine-generated data using both parametric and non-parametric approaches.

The Empirical Transfer Function Estimate (ETFE) and Spectral Analysis (SA) methods are

used for non-parametric estimation, while high-order ARX models are utilized for paramet-

ric frequency-response estimation. For noisy ETFE responses, a Model-on-Demand curve

smoothing algorithm by Stenman et al. (2000) is available. The specific requirements cre-

ated by zippered frequency grids are considered for orthogonal ETFE computation; this

also includes the treatment of signals that involve harmonic suppression. Since multisine

signals with the modified zippered spectrum contain correlated harmonics, ETFEs cannot

be computed; however, SA and ARX estimation options are available, instead.

6.2 Entry Data Format for Frequency Response Estimation GUI

Having completed experimental testing, the generated dataset can be used for further anal-

ysis in CR-IDENT. The first cycle of the data is usually not used for the identification

analysis in order to reduce the impact of transient effects.
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Figure 16: Frequency-Response Estimation GUI.

The GUI takes “iddata” or “struct” format as input data whose essential components

include the following: input and output time series, sampling time, the sequence length for

one cycle, and the number of sinusoids (only for “struct”; see Table 2). Once the input

data is loaded, the GUI analyzes an input signal type and blocks the choices that are not

available with the given input type.

Users can export the estimated responses in “idfrd” or “struct” format. These are used in

the ensuing modules in support of advanced control system design, e.g., control-relevant

parameter estimation and robust loopshaping, among other uses.
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Components Description

y Outputs

u Inputs

Ts Sampling Time

Ns One cycle sequency length

ns Number of sinusoids (in “struct”)

Table 2: Components of the experimental data, entry structure for Frequency Response

Estimation GUI

6.3 Start Estimating Frequency Reponses

6.3.1 Loading DATA

An experimental dataset is loaded using the block in Figure 17. The user can load the data

from the Matlab workspace or a *.mat file of either “struct” or “iddata” object.

From the workspace, the user enters a data name on the edit block and hit the “LOAD

DATA” button. If the entered data is not available on the workspace, an error message will

appear.

From a *.mat file, the user hits the “LOAD DATA” button with the empty edit box. Then,

it prompts the file open window for selecting a data file.

Figure 17: Load an input/output dataset to Frequency Response Estimation GUI

Once the experiment dataset is loaded, the GUI determines the input signal type based on
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its input power spectrum. The user has no control over the “Input Signal Type”.

“Quick Start” runs a series of frequency response estimations with basic options available

on the GUI.

6.3.2 Freqeuncy Response Methods

The user decides a method of frequency response estimation with the loaded input/output

data using the selection options in Figure 18.

Figure 18: Methods of frequency response estimation option

ETFE Analysis computes non-parametric Empirical Transfer Function Estimates. “Model-

on-Demand Curve Smoothing” is available for smoothing noisy frequency responses. The

ETFE of the h`-th element of G is obtained from a fraction of output and input DFT se-

quences (Ljung and Glad, 1994) such that

gh`(ωi) =
1
r ∑

r
s=1Y s

h (ωi)
U`(ωi)

(8)

Y s
h (ωi) and U`(ωi) represent the DFT sequences of ys

h(k) and u`(k) at frequency ωi, respec-

tively, and

ys
h(k) = yh(k +(s−1)Ns) (9)

for k = 1, ...,Ns and s = 1, ...,r.

Spectral Analysis uses the “spa” command of the Matlab. Alternatively, a frequency re-

sponse estimator can be obtained as follows

gh`(ωi) =
Su` yh(ωi)
Su` u`

(ωi)
(10)
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where Su` yh(ωi) and Su` u`(ωi) represent power spectra of corresponding signal sequence.

“Lag Window” is determined from the number of sinusoids (ns) and the sequence length

(Ns).

“Conf. Level” (confidence level) is optional for the standard deviation analysis with the

frequency response. With a selected confidence level, the GUI generates shaded areas as-

sociated with the frequency responses. The user can consult the “spa” command in Matlab

for details.

High-Order ARX Analysis utilizes a parametric ARX (auto-regressive exogenous) es-

timation. From a high-order ARX model, frequency responses are approximated as

G(ωi) ≈ (1+A1z1 + ...+Anazna)−1(B0 +B1 z1...+Bnb znb) znk (11)

where z = e− jωiT for a discrete-time model. The user can run either single-input multiple-

output (SIMO) or multiple-input multiple-output (MIMO) ARX analysis depending on the

order in “[na, nb, nk]”.

“na” determines the number of discrete output terms in the ARX model. For a 2×2 system,

“na” can be given “10” or “10 10” for SIMO and MIMO, respectively.

“nb” indicates the number of discrete input terms in ARX structure, which should be given

with respect to each input.

“nk” represents the order of discrete input delay in ARX structure, which should be given

with respect to each input.

“Order Selection” is an option available for SIMO-ARX analysis. The user should specify

ranges of the orders, e.g., [[1:10] [1:10] [1:1]] for “na”, “nb”, and “nk”, respectively. It also

requires a validation dataset with the same data dimension (data length can be different) as

the loaded estimation dataset. To load a validation dataset, it is the same for loading the

estimation dataset by hitting “LOAD” button.

“Residual Analysis” is available with the ARX model and residual data.

“Conf. Level” (confidence level) generates the standard deviation analysis with the pa-
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rameter values in the ARX model.

6.3.3 Plots

With the selected options, the user can start analyzing the input/output data into frequency

responses interactively on the GUI (Figure 19).

Figure 19: Analysis and Plot for frequency response estimation

“Response Amplitudes” generates the frequency response amplitudes for individual trans-

fer functions.

“Response Phases” generates the frequency response phases for individual transfer func-

tions.

“Time Sequences” draws the input and output time sequence over the total length.

“Input Power Spectrum” provides an input power spectrum.

“Output Power Spectrum” provides an output power spectrum using the last cycle from

the estimation data.

6.3.4 Additive Uncertainty Estimation

Additive uncertainty estimation is included in the GUI. One can assume that each element

pi j in the plant P is independent, but confined to a disk with radius `i j at p̃i j in the Nyquist
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plane (Morari and Zafiriou, 1988)

|pi j− p̃i j| ≤ `i j (12)

Therefore, a set of models are defined as they reside within the distance `. For more infor-

mation for the additive uncertainty description, the user can refer to Lee (2006).

Figure 20: Additive uncertainty estimation on the Frequency Response Estimation GUI

6.3.5 Action Buttons

The user can manipulate the estimated frequency responses for further analysis using the

action buttons, as shown in Figure 21. The estimation data can be in either “IDFRD” or

“struct” format for further analysis in the CR-IDENT.

Figure 21: Action buttons on the Frequency Response Estimation GUI

“SAVE” stores the estimation data into a *.mat file.

“LOAD” opens a *.mat data file and uploads it on the GUI.

“Export to IDFRD” transforms the frequency response data into an IDFRD object to the

Matlab workspace. The IDFRD object can be used for the control-relevant curvefitting;

however, currently it cannot contain the uncertainty description and other information from

the GUI.

“toWorkspace” puts the current data information into the Matlab workspace (in “struct”

format) with a given variable name.
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“CLEAR” empties all the information and data on the GUI.

“Close Figures” closes all the Matlab figures.

6.4 Examples

By the use of the Input Signal Design GUI, two examples of open-loop testing experiment

are performed in Matlab Simulink. Their Simulink MDL files are available in the “exam-

ple” directory. The input/output dataset are uploaded for frequency response estimation by

hitting the buttons in Figure 22

Figure 22: Example cases on the Frequency Estimation GUI

A Modified Shell Heavy-Oil Fractionator provides the two cases using phase-shifted and

standard zippered multisine input designs. In addition the model is slightly modified from

the Shell Heavy-Oil Fractionator with longer time delays in transfer functions.

Jacobsen-Skogestad Distillation Column provides the three cases using phase-shifted,

standard zippered, and modified zippered multisine input designs. In particular, the modi-

fied zippered spectrum is considered for the directional adjustment to enhance the low gain

directionality in the outputs, meaningful for such a highly interactive systems.

7 Control-Relevant Parameter Estimation GUI

The goal of the control-relevant frequency-response curvefitting GUI (Figure 23) is to op-

timally estimate a useful parametric model with satisfactory control-relevance which can

be used as a nominal for Model Predictive Control (MPC).

The approach used here follows according to the analysis described in Lee and Rivera

(2005a; 2005b). Users can rely on frequency responses from the previous GUI, or import

frequency responses in “idfrd” or “struct” format with the proper syntax. The control-

relevant curvefitting algorithm approximates frequency-responses into parsimonious discrete-

time state-space model representations based on linear Matrix Fractional Descriptions (MFD).
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Figure 23: Control-Relevant Parameter Estimation GUI.

The curvefitting relies on frequency-dependent pre- and post- weight functions meaningful

to MPC control (Rivera and Gaikwad, 1995). The control-relevant weighting functions sys-

tematically shift the model error into regions that are less significant to closed-loop control

performance. Sanathanan-Koerner iteration and Gauss-Newton minimization are applied

to successively improve the model estimate; robustness criteria such as the Small Gain The-

orem can be specified from the GUI to monitor the control-relevancy of an MFD model. If

a closed-loop Simulink model is available, users can test the estimated model with respect

to setpoint tracking directly from the GUI.

7.1 Entry Data Format for Control-Relevant Parameter Estimation
GUI

The necessary components for the entry data structure to the control-relevant curvefitting

GUI are given as follows

Components Description

Gw Frequency response, in complex valued-form

w Frequency grids

Ts Sampling time [in minute]

Table 3: Essential components for Control-Relevant Frequency Response Curvefitting GUI
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The components in Table 3 can be contained either “IDFRD”or “struct” format.

7.2 Getting Started with Control-Relevant Curvefitting

7.2.1 Loading DATA

An estimated data is loaded using the block in Figure 24. The user can load the data from

the Matlab workspace or a *.mat file.

From the workspace the user enters a data structure name on the edit block and hit the

“LOAD DATA” button. If the entered data is not available on the workspace, an error mes-

sage will appear.

From a *.mat file the user just hits the “LOAD DATA” button with the empty edit box.

Then, it prompts the file open window for selecting a data file.

Figure 24: Loading the dataset to the Control-Relevant Curvefitting GUI

Once the dataset is loaded without errors, its information is analyzed and printed in “System

Information” box, e.g., the number of inputs and outputs and frequency bandwidth range.

7.2.2 Specification for Matrix Fraction Description

Model Orders:
The MFD model consists of a matrix polynomial fraction. A model P̃ is approximated into

a linear parametric, real rational transfer function, formed by a left-side fractional matrix

polynomial description.

Left MFD P̃(ξ−1,θ) = A(ξ−1,θ)−1B(ξ−1,θ) (13)

where A and B denote parameterized polynomial matrices in the indeterminate ξ−1. ξ (ωi) =
jωi represents a continuous time model, whereas ξ (ωi) = e jωiT represents the shift opera-
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tor. It requires the model orders for the number of matrix polynomial in the B (“nb”) and

A (“na”), respectively. In addition, the time delay (“nk”) can be specified.

Iteration Options & Error Criteria:
“SK-Loop Iteration” gives the minimum and maximum iteration numbers for the Sanathanan

and Koerner (1963) method that updates the weighting functions utilizing the previous

model parameter.

“G.N. Iteration at a SK step” specifies the number of Gauss-Newton error minimization

iteration at each SK-step. Extended from the original SK-method, an optimal model pa-

rameter set is considered simultaneously with the SK-iteration.

“Abs. Error” sets the absolute weighted error criterion for the SK and GN loop termi-

nation.

“Rel. Error” sets the relative weighted error criterion for the SK and GN loop termina-

tion.

“Relative Parameter Difference” sets the relative parameter difference criterion with the

previous and current model parameters for the SK and GN loop termination.

The curvefitting loop terminates only when all three user error specifications are met. If the

loop is not numerically converging properly, the curvefitter will terminate abruptly. Curve-

fitting noisy frequency responses requires a more relaxed set of error criteria to keep it from

abrupt termination. Over-parameterization could result in crashes in the loop iteration. On

the other hand, the user can try setting some relaxed error criteria while monitoring model

performance with the Small Gain Theorem analysis and closed-loop MPC evaluation.

7.2.3 Parameter Estimation by Unweighted Curvefitting

Model estimation error is minimized iteratively without using weighting functions. Cur-

rently, the input change weighting is not implemented in the routine. This will considered

for the future release version.
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Figure 25: Specification options for MFD model on the curvefitting GUI

Figure 26: Unweighted curvefitting into MFD model

7.2.4 Parameter Estimation by Weighted Curvefitting

The control-relevant weighting is considered for curvefitting the frequency response into a

parametric MFD model. In particular, this requires more information than the unweighted

curvefitting. The weighted curvefitting needs an initial parameter model to obtain the

pre/post weighting functions. Since the closed-loop response is reflected on the weight-

ing functions, the user should provide an appropriate tuning set for MPC.

Select Initial Weighting:
The current release version is only based on the initial model “from Unweighted MFD

Model” for initial weights. The future release will consider “from Loopshaping bounds”

and “from User Defined Weights.”

Model Predictive Control Tuning for Weighting:
MPC (Model Predictive Control) takes a set of tuning parameters: PH (prediction horizon),

MH (moving horizon), Ywt (output weighting), and Uwt (move suppression). The detailed

information can referred to the Matlab MPC Toolbox manual. Moreover, the weighting

function also needs the “Input Changes” which is located in the “MPC Evaluation” panel.

“Tuning Adjustment” is a feature that draws the sensitivity and complementary sensitivity
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functions using a parametric model and the given MPC tuning set for the user convenience.

“True Plant” is an option for the user to provide the true plant to the curvefitting GUI,

in the state-space model or a Matlab transfer function object. If provided, true plant is used

for the spectral radius analysis and the comparison with frequency responses and paramet-

ric models.

Figure 27: Control-relevant weighted curvefitting into MFD model

7.2.5 MPC Evaluation

Taking advantage of the estimated parametric model, a closed-loop evaluation with the

MPC tuning parameters used for the weighting function that can be performed. It requires

a Matlab Simulink Model (*.MDL) file in “MPC Simulink Model”, and the user is required

to assign a name for an MPC object in “MPC Object.” In addition, the user should specify

“End Time” in the same unit with the sampling time.

“Input Change” is considered for generating the weighting function and a reference change
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Figure 28: Preparation for MPC closed-loop evaluation

in the closed-loop evaluation with MPC. For example, it can be given for a two-output sys-

tem as

r = [1 −1]

7.2.6 Action Buttons

Figure 29: Action buttons on the Curvefitting GUI

“Close Figures” closes all the Matlab figures.

“SAVE” stores all the information from the GUI into a file.

“LOAD” opens a file and uploads it onto the GUI.

“CLEAR ALL” empties all the information on the GUI.

“toWorkspace” exports all the information to the Matlab workspace.
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7.3 Examples

By the use of the Input Signal Design and Frequency Estimation GUIs, two example cases

for the curvefitting procedure available directly from the GUI. The frequency responses can

be uploaded by hitting the buttons in Figure 30

Figure 30: Illustrative example cases on the curvefitting GUI

A Modified Shell Heavy-Oil Fractionator provides the two cases using phase-shifted and

standard zippered multisine input designs. In addition, the model is slightly modified from

the Shell Heavy-Oil Fractionator with longer time delays in transfer functions.

Jacobsen-Skogestad Distillation Column provides the three cases using phase-shifted,

standard zippered, and modified zippered multisine input designs. In particular, the modi-

fied zippered spectrum is considered for the directional adjustment to enhance the low gain

direction in the distillation column.

The frequency responses are estimated based on the ETFE for a standard zippered spectrum

signal and Spectral Analysis for phase-shifted and modified zippered spectrum signals.

8 Robust Loopshaping GUI

The goal of the Robust Loopshaping GUI is to design a set of models that can meet the

requirements of robust stability and performance. Figure 31 shows the necessary compo-

nents for this robust loopshaping procedure. The robustness bounds for the sensitivity and

complementary sensitivity functions involve performance weight(s) and uncertainty bound.

Those conditions of robust stability and performance are computed using Structured Sin-

gular Value analysis.

For successful robust control system design, it is necessary to iterate between control-

relevant parameter estimation and robust loopshaping; this follows a procedure we call

identification test monitoring (Rivera et al., 2003). Initially, frequency responses with un-

certainty bounds are considered to compute robust loop bounds that are used as a prelimi-

nary guideline for controller tuning in the control-relevant curvefitting. The evaluation of
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Figure 31: Robust Loopshaping GUI.

a parametric model is performed using robust loopshaping considering both uncertainty

bounds and model estimation error. If the model satisfies the loop bounds, the procedure

can be terminated; otherwise, the user needs to change performance weights and otherwise

iterate on the control-relevant parameter estimation and robust loopshaping procedures.

8.1 Entry Data Format for Robust Loopshaping GUI

The Robust Loopshaping GUI supports data formats from the Frequency Response Esti-

mation GUI and the Control-Relevant Parameter Estimation GUI. Specifically, the Robust

Loopshaping GUI needs input and output data, frequency responses, or a parametric model

to evaluate robustness conditions. In addition, the data structure from the Robust Loop-

shaping GUI can work with the Control-Relevant Parameter Estimation GUI supporting

iterative procedure during identification test monitoring.
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8.2 Getting Started with Robust Loopshaping

8.2.1 Loading DATA

A dataset from Frequency Response Estimation GUI and Control-Relevant Parameter Es-

timation GUI is loaded using the block in Figure 32. The user can load the data from the

Matlab workspace or a *.mat file.

From the workspace the user enters a data structure name on the edit box and hit the

“LOAD DATA” button. If the entered data is not available on the workspace, an error mes-

sage will appear.

From a *.mat file the user just hits the “LOAD DATA” button with the empty edit box.

Then, it prompts the file open window for selecting a data file.

Figure 32: Loading the dataset to the Robust Loopshaping GUI

Once the dataset is loaded without errors, data information is analyzed and printed in the

box, e.g., the number of inputs and outputs, the number of sinusoids, the sequence length,

and the sampling time. If available, it indicates the signal-to-noise ratio in dB.

8.2.2 Process Source

The Robust Loopshaping GUI computes robust loop bounds based on frequency responses

or a parametric models. The user can select a process source in Figure 33. If a parametric

MFD model is selected, the loopshaping procedure will consider model estimation error in

addition to uncertainty bounds.
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Figure 33: Process Source for the Robust Loopshaping GUI

8.2.3 Uncertainty Estimation

Uncertainty estimation relies on the same procedure implemented in the Frequency Re-

sponse Estimation GUI. The user may change the confidence level during the iterative

procedure of designing a robust control system.

Figure 34: Uncertainty Estimation on the Robust Loopshaping GUI

8.2.4 Performance Weights

The two performance weights are considered for the robust control system: (1) Wp perfor-

mance weight (Figure 35) on the sensitivity function S̃ such that

‖Wp S̃‖ < 1 (14)

Wp =
s/Ms +ωb

s+ωbε
(15)

where Ms is the peak sensitivity, ωb is the bandwidth, and ε is given as |S̃(0)| ≤ ε , and (2)

Wu on P̃−1H̃ = CS̃ (Figure 36) is given as

‖Wu P̃−1H̃‖ < 1 (16)

Wu =
s+ωbc/Mu

ε1 s+ωbc
(17)

where Mu is the maximum gain of CS̃, ωbc is the controller bandwidth, and ε1 ≥ |CS̃| at

high frequencies. The parameters for Wp and Wu can be specified on Figure 37.
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Figure 35: Performance weight Wp on S̃

Figure 36: Performance weight Wu on CS̃

8.2.5 Transfer Function Plots

Robust loopshaping involves a number of transfer functions and the user can plot them

on the GUI. Select check boxes of transfer functions and hit “Refresh Plot” button on

Figure 38, it will update the figure window, as shown in Figure 39.

8.2.6 Action Buttons

“Close Figures” closes all the Matlab figures.

“Robust Stability” analyzes robust stability on a set of models, i.e., µ(M11).

“Mu Analysis Test” performs µ-analysis test on a set of models, i.e., µ(M).
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Figure 37: Performance weight specification on the Robust Loopshaping GUI

Figure 38: Plotting options on the Robust Loopshaping GUI

“LOOP SHAPING” computes robust loop bounds taking advantage of µ-analysis, i.e.,

σ̄(S̃) and σ̄(H̃).

“SAVE” stores all the information from the GUI into a file.

“LOAD” opens a file and uploads it onto the GUI.

“CLEAR” empties all the information on the GUI.

“toWorkspace” exports all the information to the Matlab workspace.

8.2.7 Sensitivity Function Specification

With computed robust loop bounds, the user can optionally specify a nominal model that

can meet robustness conditions. The specified nominal model and computed loop bounds

are used a guideline for controller tuning in control-relevant curvefitting.
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Figure 39: Plotting window on the Robust Loopshaping GUI

Figure 40: Action buttons on the Robust Loopshaping GUI

9 Illustrative Examples of CR-IDENT

CR-IDENT includes two built-in illustrative example cases to help the user with appro-

priate parameter specification on the GUIs. In this section, we demonstrate step-by-step

procedures for using CR-IDENT on two example cases: a modified version of the Shell

Heavy-Oil Fractionator Problem (Prett and Garcı́a, 1988) and Jacobsen-Skogestad distilla-

tion column (Jacobsen and Skogestad, 1994). The results and discussion for the Jacobsen-

Skogestad distillation column are presented later in this section.
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Figure 41: Nominal model specification on the Robust Loopshaping GUI

9.1 Illustration with Shell Heavy-Oil Fractionator Problem

1. Open the Multivariable Input Signal Design GUI

2. Hit “Heavy-Oil Fractionator” button, and it brings the preset parameters on the GUI.

The user may change some design options or multisine signal type.

3. Choose “Time Series”, “Power Spectral Density”, and “Auto/Cross Correlation”.

4. Hit “Analyze/Plot” button.

5. Put “test01” on the edit box above the “toWorkspace” button.

6. Hit “toWorkspace” button.

7. Go to the Matlab command window. Run “run shell idtest” and follow the instruc-
tions from the program such that

Enter Multisine Input Data Structure (e.g., contains ###.u): test01

Please make input signals as us[i,:], i=channel index

Please enter a number of cycles for running [nc=3]: 21

Please enter a name for saving Input/Output data to a structure: idtest01

idtest01 =

u: [7000x2 double]

y: [7000x2 double]

Ts: 4

Ns: 350

ns: 10

ncycles: 21

with “vard=1.0” for the noise option on the popup menu selection. Lowering the

value of vard will require less input signal cycles for successful estimation. The user

may change noise realization inside the script program of “run shell idtest.m”

8. Open the Frequency Response Estimation GUI
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9. Put “idtest01” on the data load box and Hit “LOAD DATA” button.

10. Select “Spectral Analysis” since the input signal is designed by the phase-shifting

method. Put “256” in the “Lag Window” box.

11. Select “Response Amplitudes” and Hit “ESTIMATE” button (the user can choose

different options).

12. Put “fresptest01” on the edit box in the “toWorkspace” box and Hit the button.

13. Open the Control-Relevant Curvefitting GUI

14. Before loading “fresptest01” on the GUI, please Hit “Heavy-Oil Fractionator” and

Choose “Phase-Shifted Case” because by doing this the user can take advantage of

preset curvefitting options for “A Modified Shell Heavy-Oil Fractionator” case on the

GUI. Then proceed to load “fresptest01’.’

15. Hit “MFD ESTIMATE” button for the unweighted curvefitting. If it is successful, the

user can run the closed-loop evaluation with MPC by hitting the “MPC Test” but-

ton with “MFD Model” selected. The user may change the parameters in “Matrix

Fraction Description Method” to improve the numerical convergence for the loop it-

eration. Model orders are [na=1, nb=1, nk=1], and Iteration Options & Error Criteria

are “SK-Loop Iteration: Max=30, Min=2”, “GN Iteration at a SK step=50”, “Abs.

Error=1e-12”, “Rel. Error=0.0001”, “Relative Parameter Difference=1e-10.”

16. Hit “CRMFD ESTIMATE” button for the weighted curvefitting. If it is successful,

the user can run the closed-loop evaluation with MPC by hitting the “MPC Test”

button with “CRPEP Model” selected. The user may change the parameters in “Ma-

trix Fraction Description Method” to improve the numerical convergence for the

loop iteration. To use the true model during the curvefitting, hit “Load Model” with

putting “shell ss” in the edit box and select “True Plant(optional).” For MPC-relevant

weights, “PH=35”, “MH=10”, “Ywt=[1 1]”, and “Uwt=[15 22]*1.605.” MPC Eval-

uation is set as “MPC Object=mpc3”, “MPC Simulink Model=Shell HOFP MPC”,

“Input Change: r=[0.1 -0.1]”, and “End Time=1500.”

17. The use may iterate the last two steps until the estimated model shows desirable

performance in the closed-loop evaluation. Otherwise, the user may need to refine

the frequency responses or to redo the input signal design and testing experiment.
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9.2 Illustration with Jacobsen-Skogestad Distillation Column

Utilizing the step-wise procedures given in the previous section, a modified zippered spec-

trum input design is utilized for the Jacobsen-Skogestad Distillation Column. The open-

loop Matlab Simulink simulation is provided at “run jacobsen skogestad idtest” in the “Ex-

ample” directory.

1. Open the Multivariable Input Signal Design GUI

2. Hit “Jacobsen-Skogestad Distillation Column” button, and it brings the preset pa-

rameters on the GUI. The user may change some design options or multisine signal

type.

3. Choose “Time Series”, “Power Spectral Density”, and “Auto/Cross Correlation”.

4. Hit “Analyze/Plot” button.

5. Put “test02” on the edit box above the “toWorkspace” button.

6. Hit “toWorkspace” button.

7. Go to the Matlab command window. Run “run jacobsen skogestad idtest” and
follow the instructions from the program such that

Enter Multisine Input Data Structure (e.g., contains ###.u): test02

Defining the Full-Order High-Purity Column...

MULTIVARIABLE IDENTIFICATION OF THE HIGH-PURITY DISTILLATION COLUMN

The 82-state high-purity column is described as:

y(t) = [P_LV(s)] u(t) + [P_F(s)] d(t)

where

|dyD| |dL |

y(t) = | | ; u(t) = | | ; d(t)=dF

|dxB| |dV |

Enter the variance of noise added to Output 1(0=no noise) [4.7e-005]:

Enter the variance of noise added to Output 2(0=no noise) [8.7e-005]:

Please make input signals as us[i,:], i=channel index

Please enter a number of cycles for running [nc=3]:6

Please enter a name for saving Input/Output data to a structure: idtest02
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idtest02 =

u: [4580x2 double]

y: [4580x2 double]

Ts: 8

Ns: 916

ns: 78

ncycles: 6

Inside the script program “run jacobsen skogestad idtest.m”, the user may change

noise realization.

8. Open the Frequency Response Estimation GUI

9. Put “idtest02” on the data load box and Hit “LOAD DATA” button.

10. Select “Spectral Analysis” since the input signal is designed by a modified zippered

power spectrum design. Put “256” or “512” in the “Window Lag” box.

11. Select “Response Amplitudes” and Hit “ESTIMATE” button (the user can choose

different options).

12. Put “fresptest02” on the edit box in the “toWorkspace” box and Hit the button.

13. Open the Robust Loopshaping GUI

14. Put “fresptest02” on the data load box and Hit “LOAD DATA” button.

15. Choose “Frequency Responses” on the “Process Source”.

16. Select a “Confidence Level” for the Uncertainty Estimation and then press the “Esti-

mate” button.

17. Select a “Performance Weight” and put appropriate parameters. Once such case is

“Wp” with mb = 4, wb = 0.001, and A = 10−6.

18. Hit the “LOOP SHAPING” and it computes the robustness bounds with respect to

the nonparametric frequency responses.

19. Write “rsloop02” in the edit box and Hit the “toWorkspace”.

20. Open the Control-Relevant Curvefitting GUI

21. Before loading “rsloop02” on the GUI, please Hit “Jacobsen-Skogestad Distillation

Column” and Choose “Modified Zippered Case” because by doing this the user can

take advantage of preset curvefitting options for “Jacobsen-Skogestad Distillation

Column” case on the GUI.
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22. Hit “MFD ESTIMATE” button for the unweighted curvefitting. If it is successful, the

user can run the closed-loop evaluation with MPC by hitting the “MPC Test” but-

ton with “MFD Model” selected. The user may change the parameters in “Matrix

Fraction Description Method” to improve the numerical convergence for the loop it-

eration. Model orders are [na=1, nb=1, nk=1], and Iteration Options & Error Criteria

are “SK-Loop Iteration: Max=20, Min=2”, “GN Iteration at a SK step=100”, “Abs.

Error=1e-12”, “Rel. Error=0.001”, “Relatvie Parameter Difference=0.001.”

23. Hit “CRMFD ESTIMATE” button for the weighted curvefitting. If it is successful,

the user can run the closed-loop evaluation with MPC by hitting the “MPC Test”

button with “CRPEP Model” selected. The user may change the parameters in

“Matrix Fraction Description Method” to improve the numerical convergence for

the loop iteration. To use the true model during the curvefitting, hit “Load Model”

with putting “jacob ss” in the edit box and select “True Plant(optional).” For MPC-

relevant weights, “PH=35”, “MH=5”, “Ywt=[1 1]”, and “Uwt=[0.05 0.03]*0.13.”

MPC Evaluation is set as “MPC Object=mpc3”,

“MPC Simulink Model=Jacobsen Skogestad MPC”, “Input Change: r=[0.1 -0.1]”,

and “End Time=500.”

24. The user may iterate the last two steps until the estimated model satisfies the robust-

ness conditions and shows desirable nominal performance in the closed-loop evalua-

tion.

25. Once the weighted model is obtained, repeat the procedure with the Robust Loop-

shaping GUI and compute the robustness conditions based on the parametric model.

For a weighting fuction in the loopshaping, “Wp” is used with mb = 4, wb = 0.001,

and A = 10−6, and “Confidence Level” is 95%.

26. When new robustness condition bounds are computed, repeat the procedure in the

Control-Relevant Curvefitting GUI. Find a controller tuning parameter set that can

satisfy robustness conditions. If a weighted model satisfies robust conditions in both

Control-Relevant Curvefitting and Robust Loopshaping GUIs, the user can stop.

27. At last, the obtained set of models based on the weighted model and uncertainty

bounds may possess sufficient model adequacy for robust control system.
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9.3 Example Study of Jacobsen-Skogestad Distillation Column

The Jacobsen-Skogestad column represents a highly interactive system, and as a result a

directional input signal design is considered to achieve balanced gain directionality in the

data. From a priori model information, a steady-state gain is obtained such that

K =

[
0.785 −0.771

0.966 −0.978

]
(18)

and SVD analysis on K gives

U =

[
−0.6249 −0.7807

−0.7807 0.6249

]
Σ =

[
1.7609 0

0 0.0130

]
V H =

[
−0.7072 −0.7070

0.7070 −0.7072

]
(19)

A γ range is obtained using the above information as

γmin = 54.25≤ γ ≤ γmax = 84.65 (20)

As a result, γavg = 69.45 and v2 = [−0.7070 −0.7072] are selected for designing a modified

zippered power spectrum, as shown in Figure 42a. The input magnitude is set to u =
[±14 ±14]. The high magnitude helps in reducing the uncertainty norm bound by applying

a higher signal-to-noise ratio, as indicated by the following equation

¯̀a ∝
n
N

Φv

Φu
(21)

where n is the number of model parameters and N is the data length. The nature of the distil-

lation process requires information at the lower frequencies for accurate gain directionality

of steady-state, while the closed-loop dynamics requires information at the higher frequen-

cies. Considering such characteristics, we can decide on design parameters τH
dom = 67,

τL
dom = 15, α = 2, and β = 3 that lead to a much shorter bandwidth, i.e., a sequence length

Ns = 316.

The higher correlated harmonics increase the corresponding output span in the [1 -1]

direction (see Figure 43), which ultimately enhances the low gain directionality. Spectral

analysis is applied to compute nonparametric frequency responses (P̃) using a Hamming

window with 128 lags. An uncertainty description bound is estimated to define a set of

models, as shown in Figure 45. As a consequence, robust loopshaping can be applied.

In this experiment, robust stability is satisfied over all frequencies, as shown in Fig-

ure 46. Robust stability and performance conditions from robust loopshaping can be used
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to assess control adequacy of the models estimated from the data, and hence can influence

the decision to start or stop experimental testing. The experiment is tested for 14 cycles to

reduce the norm bound of model uncertainty to a suitable level for robust loopshaping anal-

ysis. Initially, robust loopshaping on P̃ is performed, providing provides σ̄(H̃) and σ̄(S̃)
as a preliminary tuning guideline to properly tune the MPC controller in control-relevant

curvefitting that are selected to satisfy σ̄(H̃) and σ̄(S̃) bounds (Figure 44a). Relying on

previously weighted models, we can iteratively tune the weighted curvefitting algorithm

until a weighted model meets the loopshaping bounds. When a weighted model satisfies

the loopshaping bounds, its Small Gain condition shows sufficient levels of nominal sta-

bility, as seen in Figure 44b. The weighted model (P̂) is then taken into account again for

robust loopshaping including the model error P̃− P̂. The model estimation error and model

uncertainty are incorporated into NĤ and N Ŝ structures for loopshaping. As the bounds of

σ̄(Ĥ) and σ̄(Ŝ) are satisfied with the weighted model P̂, a finalized model can be obtained

that meets both control relevance and robustness requirements with an MPC tuning set of

PH=35, MH=5, Ywt=[1 1], and Uwt=[0.05 0.03]*0.13 (Figure 47).

A closed-loop model evaluation of a satisfactory curvefit model using setpoint tracking

is shown in Figure 48. With a faster set of MPC tuning parameters, only the weighted

model shows fast and over-damped responses without offset; the unweighted model suffers

numerical oscillations in y2 and overshoot in y1. A synergistic effect of using the directional

input signal design and weighted curvefitting clearly results in the accurate estimate of

the low singular values (Figure 49). In spite of the large number of testing cycles, the

unweighted curvefitted model does not show a reasonable estimate of the low singular

values. This is clear evidence that the weighted curvefitting is effectively able to efficiently

capture the low gain directional information which is designed to be emphasized by the use

of a modified zippered spectrum.

The performance weight and tuning parameters can provide flexibility to adjust the

robust loop bounds during the iterative procedure between the curvefitting and loopshaping.

The success of control-relevant and robust models can be guaranteed when a sufficient

number of testing cycles are tested so that the uncertainty norm bound is reduced to a

suitable level. A control-relevant model satisfying robustness conditions is obtained after

14 cycles, at which time experimental testing is halted.

At each cycle interval, the identification test monitoring framework evaluates updated

robust loopshaping bounds and whether these are applicable for weighted curvefitting; if

so, we can halt identification testing. Figures 51 to 52 show the intermediate identification

test monitoring analysis at 5 and 10 cycles, respectively. Their Small Gain conditions
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Figure 42: Experiment of identification test monitoring for the Jacobsen-Skogestad high

purity distillation column: a standard zippered power spectrum design (a) and time series

of input and output data (b)
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Figure 43: Experiment of identification test monitoring for the Jacobsen-Skogestad high

purity distillation column: input (a) and output (b) state-space plots
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are all under the unity (around 10−1) over the bandwidth (Figures 51a to 52a), which is

much lower than those of unweighted models. With the increasing number of cycles, the

levels of uncertainty bound are lower and have very similar values at 10 and 14 cycles

(see Figure 50). The robust loopshaping bounds are changed dynamically along testing

cycles. σ̄(H) is always lower than the unity in this case; therefore, σ̄(S) is only considered

for applicable robustness bound in the identification test monitoring procedure. σ̄(S) after

5 cycles is only available for the high frequencies (Figure 51b). After 10 cycles, σ̄(S) is

computed for a wider range but is partly missing in the low frequencies (Figures 52b). All

the low singular value plots show good estimation to the true plant (Figures 51d to 52d).

Robust stability analysis is improved with increasing test cycles from 5 to 10 cycles (see

Figures 53 and 54).

10 Remarks and Conclusions

CR-IDENT represents a software implementation of a comprehensive control-relevant iden-

tification methodology that is motivated by the needs and requirements of process systems,

particularly strongly interactive ones such as high purity distillation. The toolbox reduces

the background and skill level required to implement this procedure, since only a priori

knowledge of a system in terms of time constants and steady-state gains (if available) is

required to initiate this toolbox. Following identification testing, the frequency-response

estimation and control-relevant curvefitting modules work interactively (with necessary it-

erations between the GUIs) to produce a useful model leading to a high performance Model

Predictive Controller. This was demonstrated for a strongly interactive distillation column

simulation. As a result, CR-IDENT is able to provide an integrated framework that is highly

demanded to achieve a systematic identification test monitoring procedure. The most up-

dated CR-IDENT toolbox and its documents can be accessed from the ASU-CSEL website

using the link: http://www.fulton.asu.edu/̃csel/Software.html.
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Figure 51: Experiment of identification test monitoring (at ncycles = 5) for the Jacobsen-

Skogestad high purity distillation column: Small Gain condition (a), robust loopshaping

(b), MPC setpoint test (c), and singular values (d) with MPC tuning set: PH=35, MH=5,

Ywt=[1 1], and Uwt=[0.05 0.03]*0.2
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Figure 52: Experiment of identification test monitoring (at ncycles = 10) for the Jacobsen-

Skogestad high purity distillation column: Small Gain condition (a), robust loopshaping

(b), MPC setpoint tracking test (c), and singular values (d) with MPC tuning set: PH=35,

MH=5, Ywt=[1 1], and Uwt=[0.05 0.03]*0.2
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Figure 53: Experiment (at 5 cycles) of identification test monitoring for the Jacobsen-

Skogestad high purity distillation column: robust stability analysis
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Figure 54: Experiment (at 10 cycles) of identification test monitoring for the Jacobsen-

Skogestad high purity distillation column: robust stability analysis
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