Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Preliminary User's Manual

IE-703228-G1-EM1

Emulation Board

Target Device V850ES/PM1

Document No. U16879EJ1V0UM00 (1st edition)

Date Published March 2004 N CP(K)

[MEMO]

Windows is either a trademark or a registered trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

- The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production.
- Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent
 of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes
 in semiconductor product operation and application examples. The incorporation of these circuits, software and
 information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC
 Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of
 these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics products depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M5D 02 11-1

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- · Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT]

http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd.

Santa Clara, California Tel: 408-588-6000 800-366-9782

Duesseldorf, Germany Tel: 0211-65030

• Sucursal en España

Madrid, Spain Tel: 091-504 27 87

• Succursale Française

Vélizy-Villacoublay, France Tel: 01-30-675800

Filiale Italiana

Milano, Italy Tel: 02-66 75 41

• Branch The Netherlands Eindhoven, The Netherlands Tel: 040-2445845

Tyskland Filial

Taeby, Sweden Tel: 08-63 80 820

United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133

Hong Kong Tel: 2886-9318

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul. Korea Tel: 02-558-3737

NEC Electronics Shanghai Ltd.

Shanghai, P.R. China Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 6253-8311

J04.1

INTRODUCTION

Target Readers This manual is intended for users who design and develop application systems

using the V850ES/PM1 microcontroller.

Purpose The purpose of this manual is to describe the basic specifications of the IE-

703228-G1-EM1 and its proper operation.

Organization This manual is broadly divided into the following parts.

OutlinePart names and functionsRestrictions

• Setup procedure

How to Read This Manual

It is assumed that the reader of this manual has general knowledge in the fields of electrical engineering, logic circuits, and microcontrollers. Use the IE-703228-G1-EM1 connected to the in-circuit emulator (IE-V850ES-G1). This manual describes the basic setup procedures and switch settings of the IE-703228-G1-EM1 and IE-V850ES-G1. For the part names, functions, and configuration parts of the IE-V850ES-G1, refer to the IE-V850ES-G1 User's Manual (U16313E) provided separately.

To learn about the basic specifications and operation

→Read this manual in the order listed in **CONTENTS**.

To learn software settings such as the operation methods, command functions, etc., of the IE-V850ES-G1 or IE-703228-G1-EM1

 \rightarrow Read the user's manual of the debugger (sold separately) that is used.

Conventions Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numeral representation: Binary ··· ×××× or ××××B

 ${\sf Decimal} \, \cdots \, {\sf \times} {\sf \times} {\sf \times} \\$

Hexadecimal $\cdots \times \times \times \times H$

Prefix representing a power of 2 (address space, memory capacity):

K (kilo): $2^{10} = 1024$ M (mega): $2^{20} = 1024^2$

Terminology

The meanings of terms used in this manual are listed below.

Target device	This is the device to be emulated.
Target system	The system (user-built system) to be debugged. This includes the target program and hardware configured by the user.
Emulation CPU	The CPU that executes the program created by the user in the emulator.

Related Documents

When using this manual, refer to the following manuals.

The related documents (user's manuals) indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

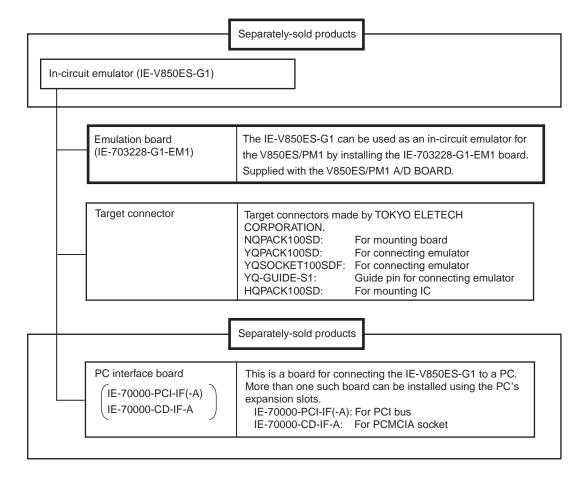
Documents Related to Development Tools (User's Manuals)

Document Name		Document Number	
IE-V850ES-G1 (In-Circuit Emulator for V850ES)	U16313E		
IE-703228-G1-EM1 (Emulation Board for V850ES/Pf	IE-703228-G1-EM1 (Emulation Board for V850ES/PM1)		
V850ES/PM1 Hardware		U16237E	
CA850 Ver.2.50 C Compiler Package	Operation	U16053E	
	C Language	U16054E	
	Assembly Language	U16042E	
PM Plus Ver. 5.10		U16559E	
ID850 Ver.2.50 Integrated Debugger	Operation Windows [™] based	U16217E	
SM850 Ver.2.50 System Simulator	Operation Windows based	U16218E	
SM850 Ver.2.00 or Later System Simulator External Part User Open Interface Specifications		U14873E	
RX850 Ver.3.13 or Later Real-Time OS	Basics	U13430E	
	Installation	U13410E	
	Technical	U13431E	
RX850 Pro Ver.3.13 Real-Time OS	Basics	U13773E	
	Installation	U13774E	
	Technical	U13772E	
RD850 Ver.3.01 Task Debugger	U13737E		
RD850 Pro Ver.3.01 Task Debugger	U13916E		
AZ850 Ver.3.10 System Performance Analyzer		U14410E	
PG-FP4 Flash Memory Programmer		U15260E	

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

CONTENTS

CHAPTER 1 OUTLINE	8
1.1 Product Configuration	9
1.2 Features (When Connected to IE-V850ES-G1)	10
1.3 Function Specifications (When Connected to IE-V850ES-G1)	10
1.4 System Configuration	
1.5 Contents in Carton	
CHAPTER 2 PART NAMES AND FUNCTIONS	13
2.1 Part Names and Functions of IE-703228-G1-EM1	13
2.2 Part Names and Functions of V850ES/PM1 A/D BOARD	15
2.3 LEDs Controlled by IE-703228-G1-EM1	17
CHAPTER 3 SETUP PROCEDURE	
3.1 Connecting IE-V850ES-G1 and IE-703228-G1-EM1	18
3.2 Connecting IE-703228-G1-EM1 and V850ES/PM1 A/D BOARD	20
3.3 Clock Settings	21
CHAPTER 4 CAUTIONS	22
4.1 Connection with Target System	22
4.2 Turning ON/OFF Power	22
4.3 Characteristics of Target Interface	22
CHAPTER 5 RESTRICTIONS	30
5.1 Clock Generator	30
5.2 Timing of Setting/Releasing Standby Mode	30
5.3 Operation During Break	30
ADDENDIY DACKAGE DDAWINGS	21


CHAPTER 1 OUTLINE

The IE-703228-G1-EM1 is an emulation board for the IE-V850ES-G1 in-circuit emulator.

Connected to the IE-V850ES-G1, the IE-703228-G1-EM1 can be used for efficient hardware and software debugging during system development using the V850ES/PM1.

This manual describes the basic setup procedure and the switch settings of the IE-V850ES-G1 when connected to the IE-703228-G1-EM1. For the part names and functions of the IE-V850ES-G1, refer to the separate **IE-V850ES-G1 User's Manual (U16313E)**.

1.1 Product Configuration

1.2 Features (When Connected to IE-V850ES-G1)

- Maximum operating frequency: 20 MHz (3.0 to 3.6 V)
- The following pins can be masked.

NMI, WAIT, RESET

• The external dimensions of the IE-703228-G1-EM1 are listed below.

Item		Value
External dimensions	Height	35 mm
	Width	205 mm
	Depth	140 mm

1.3 Function Specifications (When Connected to IE-V850ES-G1)

Item		Specification
Emulation memory capacity	For internal ROM	1 MB (Max.)
	For user memory	4 MB
Execution/pass detection coverage memory capacity	Internal ROM	256 KB
	External memory	1 MB
Memory access detection coverage memory capacity	External memory	1 MB
Branch destination entry count calculation coverage	Internal ROM	256 KB
memory capacity	External memory	1 MB
Trace memory capacity		168 bits × 32 K frames
Time measurement function		Internal timers × 3
External logic probe		8-bit external trace possible
		Trace/break event setting possible
Break function		Event break
		Step execution break
		Forced break
		Fail-safe break • Illegal access to peripheral I/O • Access to guard area • Write to ROM area

Caution Some functions may not be supported depending on the debugger that is used.

1.4 System Configuration

The system configuration when using the IE-703228-G1-EM1 connected to the IE-V850ES-G1, which itself is connected to a PC (PC-9800 series or PC/AT[™] compatible) is shown below.

4>
4>
4>
4>
40>

Figure 1-1. System Configuration

Remark

- <1>: PC (PC-9800 series or PC/AT compatible)
- <2>: Debugger (sold separately)
- <3>: Device file (obtained separately) Note
- <4>: PC interface board (IE-70000-PCI-IF(-A), IE-70000-CD-IF-A: Sold separately)
- <5>: PC interface cable (supplied with IE-V850ES-G1: Sold separately)
- <6>: Power supply cable (supplied with IE-V850ES-G1: Sold separately)
- <7>: IE-V850ES-G1 (sold separately)
- <8>: Emulation board (this product)
- <9>: V850ES/PM1 A/D BOARD (supplied with this product)
- <10>: Conversion socket (supplied with this product)

Note The device file can be downloaded from the NEC Electronics website. (URL: http://www.necel.com/micro)

1.5 Contents in Carton

The IE-703228-G1-EM1 package contains the IE-703228-G1-EM1 emulation board, a guarantee card, a packing list, this manual, and an accessory bag. Check whether the accessory bag contains the items listed below. If you find any missing or damaged items, contact an NEC Electronics sales representative or distributor.

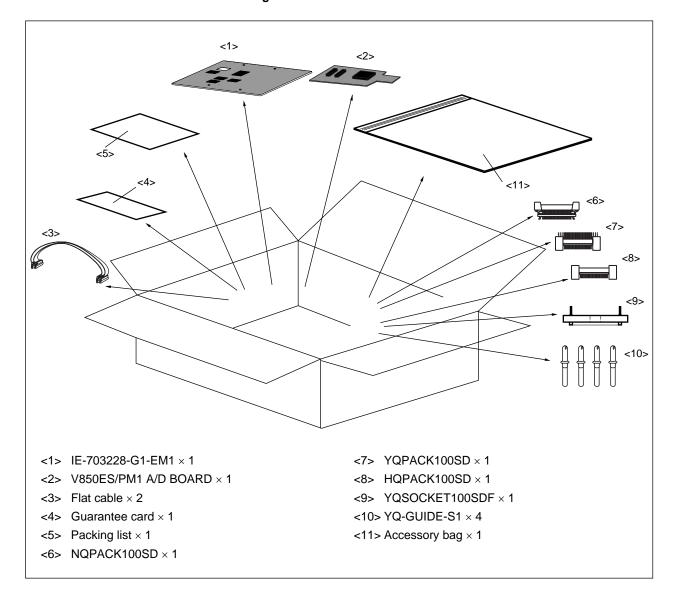
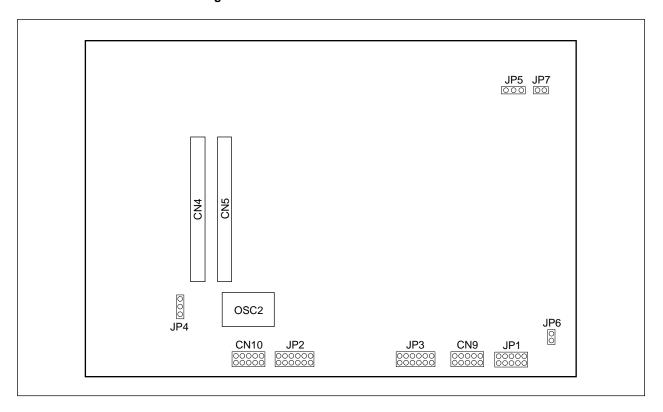


Figure 1-2. Contents in Carton


Check whether the accessory bag contains this manual, the packing list (\times 1), and sems screws (\times 6).

CHAPTER 2 PART NAMES AND FUNCTIONS

This chapter describes the part names and functions of the IE-703228-G1-EM1. For the part names and functions of the IE-V850ES-G1, refer to the **IE-V850ES-G1 User's Manual (U16313E)**.

2.1 Part Names and Functions of IE-703228-G1-EM1

Figure 2-1. Part Names of IE-703228-G1-EM1

(1) OSC2

This is the socket for mounting the oscillator for the main clock.

(For details, refer to 3.3 Clock Settings.)

(2) JP1

Unused.

Use it with the settings at shipment (all open).

(3) JP2

Unused.

Use it with the settings at shipment (1 and 2 shorted).

(4) JP3

Unused.

Use it with the settings at shipment (1 and 2 shorted).

(5) JP4

Unused.

Use it with the settings at shipment (2 and 3 shorted).

(6) JP5

Unused.

Use it with the settings at shipment (2 and 3 shorted).

(7) JP6

Unused.

Use it with the settings at shipment (open).

(8) JP7

Unused.

Use it with the settings at shipment (open).

(9) CN9

Unused.

Use it with the settings at shipment (all open).

(10) CN10

Unused.

Use it with the settings at shipment (all open).

2.2 Part Names and Functions of V850ES/PM1 A/D BOARD

TP6

| Target I/F |
| (CN3) |
| (CN3) |
| (CN3) |
| (D1) |
| (D2) |
| (D3) |
| (D4) |
| (D4) |
| (D7) |
| (D7) |
| (D8) |
| (D8)

Figure 2-2. Part Names of V850ES/PM1 A/D BOARD

(1) OSC1

This is the oscillator for the subclock.

The frequency cannot be changed. It is fixed to 32.768 kHz.

(2) Target I/F (CN3)

This is the interface for inserting the conversion socket on the target system.

(3) JP1

Unused.

Use it with the settings at shipment (1 and 2 shorted, 3 and 4 shorted).

(4) JP2

This is the jumper for selecting whether AV_{DD} of the V850ES/PM1 is supplied from the target system or the emulator. Set JP2 as follows.

Table 2-1. JP2 Settings

	JP2 Settings	Remark
When target system is connected	2 and 3: Shorted (setting at shipment)	AV _{DD} is supplied from target system
When emulator is used standalone	1 and 2: Shorted	AV _{DD} is supplied inside the emulator

(5) JP3

This is the jumper for shipment testing. Always use it left open.

(6) JP4

This is the jumper for selecting whether AVREFIN and AVREFOUT are connected in the emulator or not. Set JP4 as follows.

Table 2-2. JP4 Settings

	JP4 Settings	Remark
When target system is connected	1 and 2: Open (setting at shipment)	AVREFIN and AVREFOUT are not connected in the emulator
When emulator is used standalone	1 and 2: Shorted	AVREFIN and AVREFOUT are connected in the emulator

(7) TP1 to TP6

These are test pins for observing the waveforms.

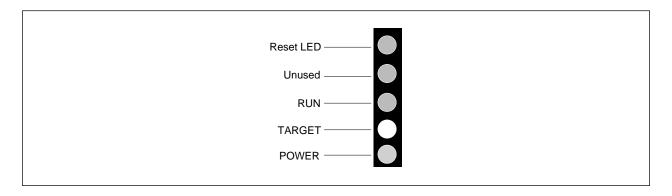
TP1: Vss/EVss

TP2: Vss/EVss

TP3: Vss/EVss

TP4: Vss/EVss

TP5: XT1


TP6: AVss

Remark Vss and EVss are common in the emulator.

2.3 LEDs Controlled by IE-703228-G1-EM1

Some of the LEDs mounted in the IE-V850ES-G1 are controlled by the IE-703228-G1-EM1. For the LEDs that are controlled by the IE-V850ES-G1, refer to the **IE-V850ES-G1 User's Manual (U16313E)**.

Figure 2-3. LEDs Controlled by IE-703228-G1-EM1

(1) Reset LED

The status of the RESET signal input from the target system is indicated as follows.

Lit (ON): The target system is connected and the RESET signal is active (GND level).

Unlit (OFF): Either the target system is not connected, or the RESET signal is inactive (VDD level).

(2) Unused

This LED is always unlit.

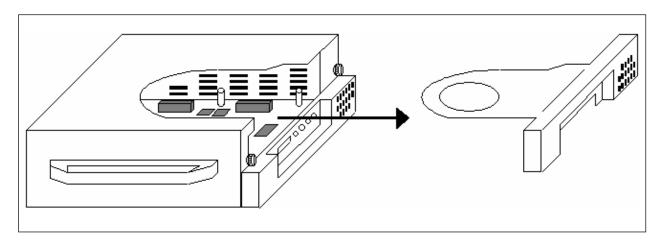
(3) RUN

This LED is lit during user program execution.

Lit (during RUN): Lit while the user program is being executed.

Unlit (during BREAK): The execution of the user program is stopped (during break).

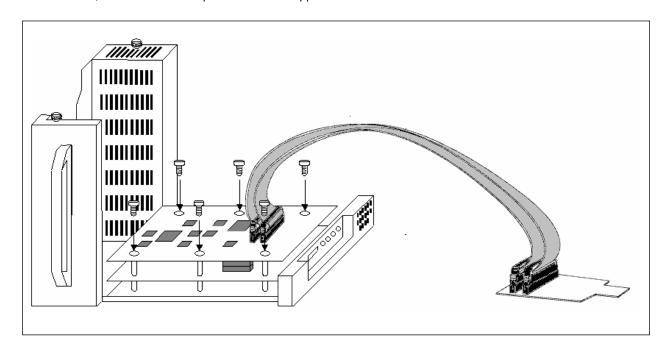
Remark The TARGET LED is judged as ON (TARGET LED is lit) when the voltages of both the V_{DD} and EV_{DD} pins on the target board are 2.2 V or more.

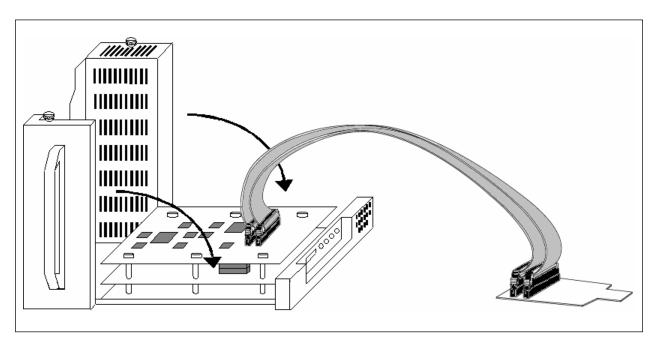

CHAPTER 3 SETUP PROCEDURE

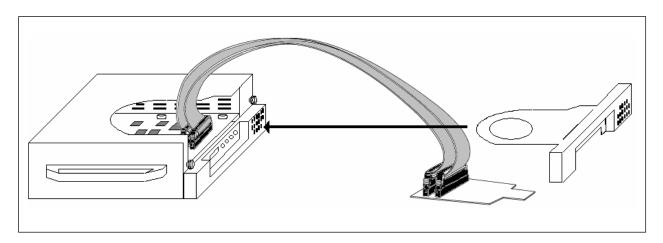
This chapter describes how to connect the IE-703228-G1-EM1 to related products and how to replace the resonator.

3.1 Connecting IE-V850ES-G1 and IE-703228-G1-EM1

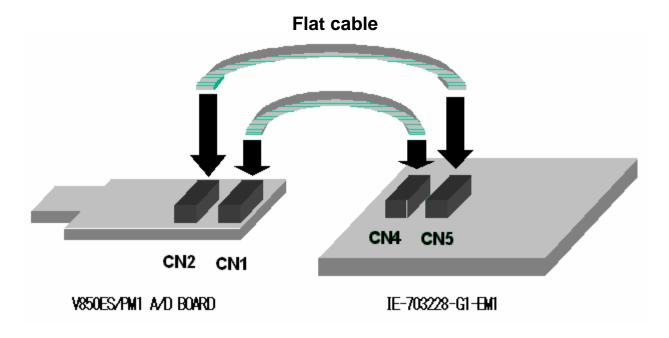
The following shows the procedure to connect the IE-V850ES-G1 and IE-703228-G1-EM1.


<1> Pull off the front cover of the IE-V850ES-G1.


<2> Raise the frame of the IE-V850ES-G1 as shown.


<3> Secure the IE-703228-G1-EM1 to the main board after inserting the cable into the IE-703228-G1-EM1. Insert three connectors so that the main board and the IE-703228-G1-EM1 are overlaid horizontally. Then, fasten the six cell spacers with the supplied screws.

<4> Slowly lower the frame of the IE-V850ES-G1.

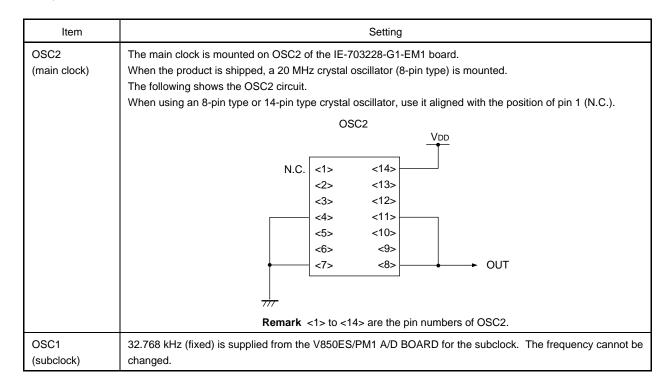


<5> Replace the front cover of the IE-V850ES-G1.

3.2 Connecting IE-703228-G1-EM1 and V850ES/PM1 A/D BOARD

Figure 3-1. Connecting IE-703228-G1-EM1 and V850ES/PM1 A/D BOARD

Connect CN1 and CN2 of the V850ES/PM1 A/D BOARD and CN4 and CN5 of the IE-703228-G1-EM1 as follows.


V850ES/PM1 A/D BOARD: CN1 ← IE-703228-G1-EM1: CN4
V850ES/PM1 A/D BOARD: CN2 ← IE-703228-G1-EM1: CN5

3.3 Clock Settings

At shipment, a 20 MHz crystal oscillator (8-pin type) is mounted.

To change the main clock frequency, replace the oscillator mounted in OSC2 on the IE-703228-G1-EM1 with an oscillator of the desired frequency.

32.768 kHz is supplied from the V850ES/PM1 A/D BOARD for the subclock. The subclock frequency cannot be changed.

This product does not support clock oscillation by the resonator on the target system.

Therefore, the operation between the resonator on the target system and the oscillator in the target device cannot be emulated using this product.

CHAPTER 4 CAUTIONS

The following must be observed when using the IE-703228-G1-EM1.

4.1 Connection with Target System

Turn off power to the IE-V850ES-G1 before connecting the IE-703228-G1-EM1 to the target system.

4.2 Turning ON/OFF Power

Start or terminate the emulator in the following order.

- Starting: Turn on emulator's power → Turn on target's power → Start debugger
- Terminating: Terminate debugger → Turn off target's power → Turn off emulator's power

4.3 Characteristics of Target Interface

The target interface (signals connecting the in-circuit emulator and the target system) functionally operates as if an actual device is connected, however, the characteristics may be different than those of the actual device. The target interface of the IE-703228-G1-EM1 is one of those shown in Figures 4-1 to 4-14. The target interface processing of each target device is shown in Table 4-1.

Figure 4-1. Equivalent Circuit A

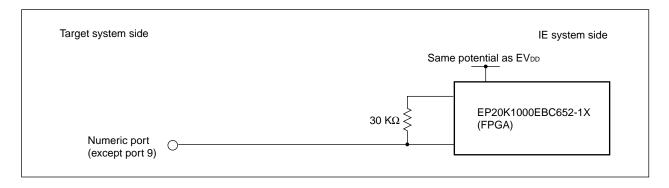


Figure 4-2. Equivalent Circuit B

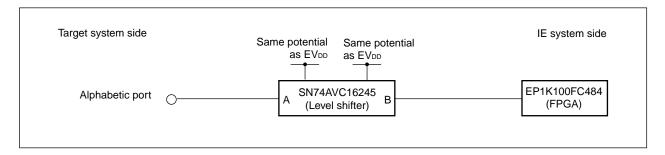
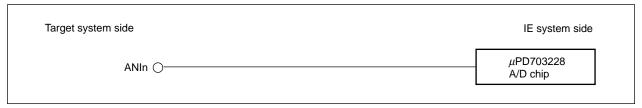



Figure 4-3. Equivalent Circuit C

Remark n: 00, 01, 10, 11, 20, 21, 30, 31, 40, 41, 50, 51

Figure 4-4. Equivalent Circuit D

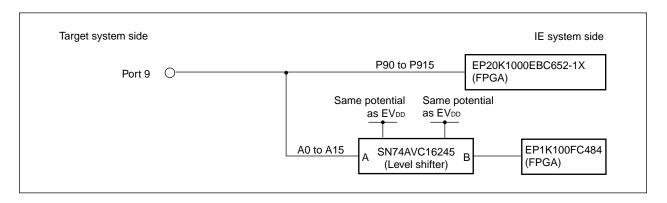
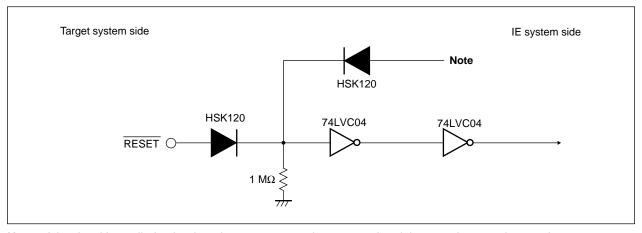



Figure 4-5. Equivalent Circuit E

Note A low level is applied only when the target system is connected and the target's power is turned on. In other cases, a high level is applied.

Figure 4-6. Equivalent Circuit F

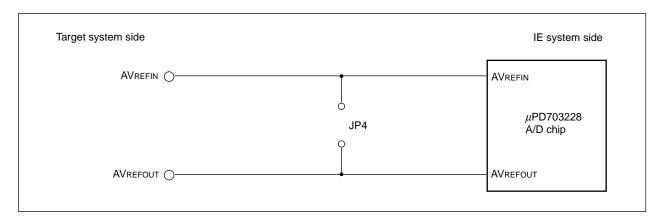


Figure 4-7. Equivalent Circuit G

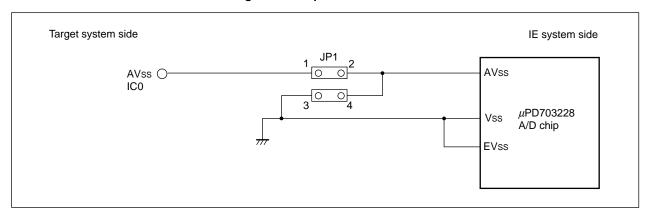


Figure 4-8. Equivalent Circuit H

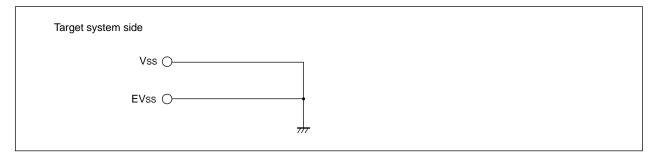


Figure 4-9. Equivalent Circuit I

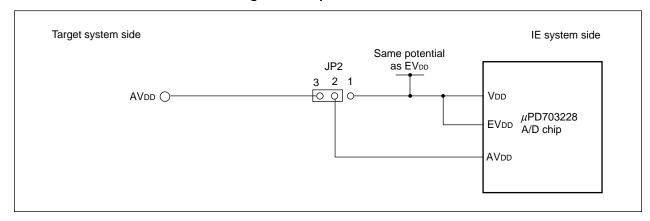


Figure 4-10. Equivalent Circuit J

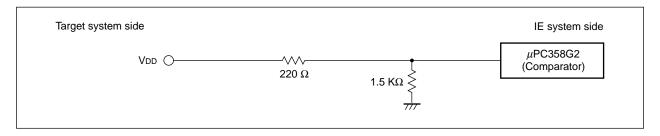


Figure 4-11. Equivalent Circuit K

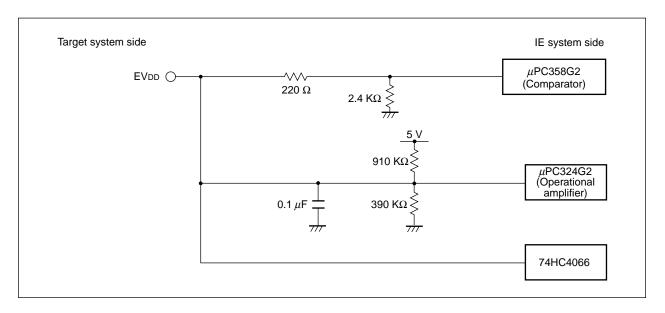


Figure 4-12. Equivalent Circuit L

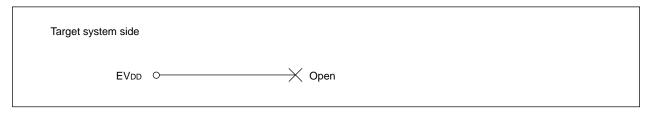


Figure 4-13. Equivalent Circuit M

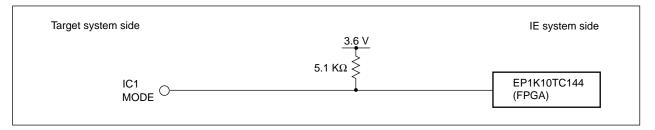


Figure 4-14. Equivalent Circuit N

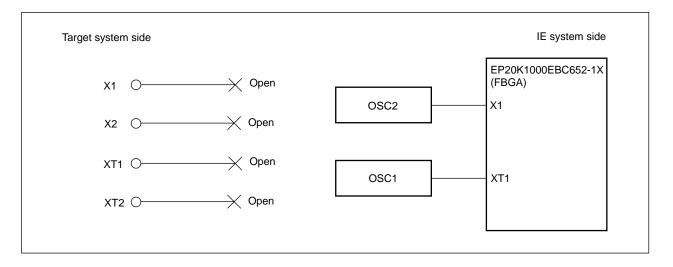


Table 4-1. Pin Correspondence List (1/3)

V850ES/PM1 Pin No.	Target Interface Name (V850ES/PM1 Pin Name)	Processing in In-Circuit Emulator
1	P34/SCK1	Equivalent circuit A
2	P33/SO1	Equivalent circuit A
3	P32/SI1	Equivalent circuit A
4	P31/TXD0	Equivalent circuit A
5	P30/RXD0	Equivalent circuit A
6	P10/PWM0	Equivalent circuit A
7	P11/TO00/PWM1	Equivalent circuit A
8	P12/TO01/PWM2	Equivalent circuit A
9	P13/TO20/PWM3	Equivalent circuit A
10	P14/TO21/TI21	Equivalent circuit A
11	V _{DD}	Equivalent circuit J
12	Vss	Equivalent circuit H
13	X1	Equivalent circuit N
14	X2	Equivalent circuit N
15	RESET	Equivalent circuit E
16	XT1	Equivalent circuit N
17	XT2	Equivalent circuit N
18	EVss	Equivalent circuit H
19	EV _{DD}	Equivalent circuit L
20	P90/A0	Equivalent circuit D
21	P91/A1	Equivalent circuit D
22	P92/A2	Equivalent circuit D
23	P93/A3	Equivalent circuit D
24	P94/A4	Equivalent circuit D
25	P95/A5	Equivalent circuit D
26	P96/A6	Equivalent circuit D
27	P97/A7	Equivalent circuit D
28	P98/A8/TI030	Equivalent circuit D
29	P99/A9/TI031	Equivalent circuit D
30	P910/A10/TI020	Equivalent circuit D
31	P911/A11/TI021	Equivalent circuit D
32	P912/A12/TI010	Equivalent circuit D
33	P913/A13/TI011	Equivalent circuit D
34	P914/A14/TI000	Equivalent circuit D
35	P915/A15/TI001	Equivalent circuit D
36	P20/TO02	Equivalent circuit A
37	P21/T003	Equivalent circuit A
38	EVss	Equivalent circuit H
39	EV _{DD}	Equivalent circuit L
40	PCM1/CLKOUT	Equivalent circuit B

Table 4-1. Pin Correspondence List (2/3)

V850ES/PM1 Pin No.	Target Interface Name (V850ES/PM1 Pin Name)	Processing in In-Circuit Emulator
41	PCM0/WAIT	Equivalent circuit B
42	PDH0/A16	Equivalent circuit B
43	PDH1/A17	Equivalent circuit B
44	PDH2/A18	Equivalent circuit B
45	PCT0/WR0	Equivalent circuit B
46	PCT1/WR1	Equivalent circuit B
47	PCT4/RD	Equivalent circuit B
48	PDL0/D0	Equivalent circuit B
49	PDL1/D1	Equivalent circuit B
50	PDL2/D2	Equivalent circuit B
51	PDL3/D3	Equivalent circuit B
52	PDL4/D4	Equivalent circuit B
53		
	PDL5/D5	Equivalent circuit B
54	PDL6/D6	Equivalent circuit B
55	PDL7/D7	Equivalent circuit B
56	PDL8/D8	Equivalent circuit B
57	PDL9/D9	Equivalent circuit B
58	PDL10/D10	Equivalent circuit B
59	PDL11/D11	Equivalent circuit B
60	PDL12/D12	Equivalent circuit B
61	PDL13/D13	Equivalent circuit B
62	PDL14/D14	Equivalent circuit B
63	PDL15/D15	Equivalent circuit B
64	EVss	Equivalent circuit H
65	EVDD	Equivalent circuit K
66	PCS0/CS0	Equivalent circuit B
67	PCS1/CS1	Equivalent circuit B
68	PCS2/CS2	Equivalent circuit B
69	P40/SI0	Equivalent circuit A
70	P41/SO0	Equivalent circuit A
71	P42/SCK0	Equivalent circuit A
72	P43/RXD1	Equivalent circuit A
73	P44/TXD1	Equivalent circuit A
74	P45/INTP101/TO10	Equivalent circuit A
75	P46/INTP111/TO11	Equivalent circuit A
76	P03/INTP2/TI20	Equivalent circuit A
77	P02/INTP1	Equivalent circuit A
78	P01/INTP0	Equivalent circuit A
79	P00/NMI	Equivalent circuit A
80	MODE	Equivalent circuit M

Table 4-1. Pin Correspondence List (3/3)

V850ES/PM1 Pin No.	Target Interface Name (V850ES/PM1 Pin Name)	Processing in In-Circuit Emulator
81	AV _{DD}	Equivalent circuit I
82	ANI00	Equivalent circuit C
83	ANI01	Equivalent circuit C
84	ANI20	Equivalent circuit C
85	ANI21	Equivalent circuit C
86	ANI40	Equivalent circuit C
87	ANI41	Equivalent circuit C
88	AVREFIN	Equivalent circuit F
89	AVREFOUT	Equivalent circuit F
90	ANI51	Equivalent circuit C
91	ANI50	Equivalent circuit C
92	ANI31	Equivalent circuit C
93	ANI30	Equivalent circuit C
94	ANI11	Equivalent circuit C
95	ANI10	Equivalent circuit C
96	IC0	Equivalent circuit G
97	AVss	Equivalent circuit G
98	IC1	Equivalent circuit M
99	P36/INTP110/TI11/TCLR11	Equivalent circuit A
100	P35/INTP100/TI10/TCLR10	Equivalent circuit A

CHAPTER 5 RESTRICTIONS

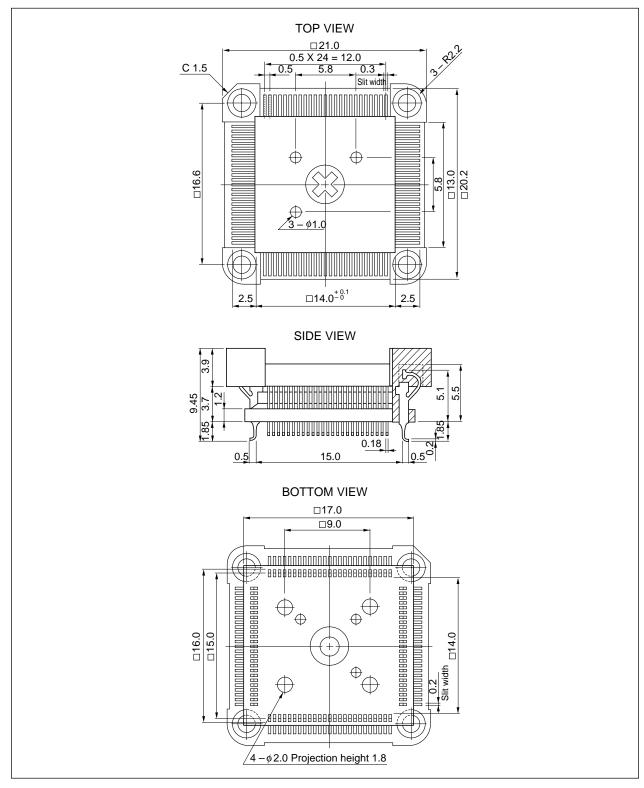
The IE-703228-G1-EM1 has the following restrictions.

5.1 Clock Generator

- (1) Resonator to be connected
 - Oscillation by the resonator on the target system is not supported. Therefore, clock oscillation operation on the target system cannot be emulated with the in-circuit emulator.
- (2) Emulation of oscillation stabilization time after reset has been released In the target device for emulation, oscillation stabilization time is inserted after reset has been released; however, it is not inserted in the in-circuit emulator.
- (3) Operation clock after reset In the target device for emulation, the operation clock after reset is fxx/8; however, there may be a period in which the clock is not initialized to fxx/8 with the in-circuit emulator (depending on the timing of reset release).

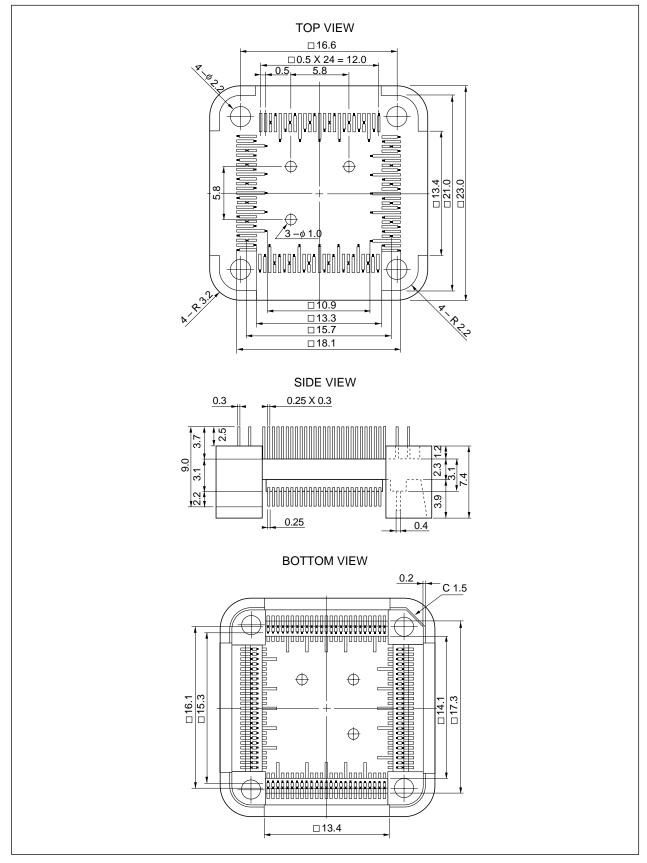
5.2 Timing of Setting/Releasing Standby Mode

The timing of setting/releasing the standby mode is different between the target device and the in-circuit emulator. The difference is within 1 clock when standby mode is set, and 2 or 3 clocks when it is released.

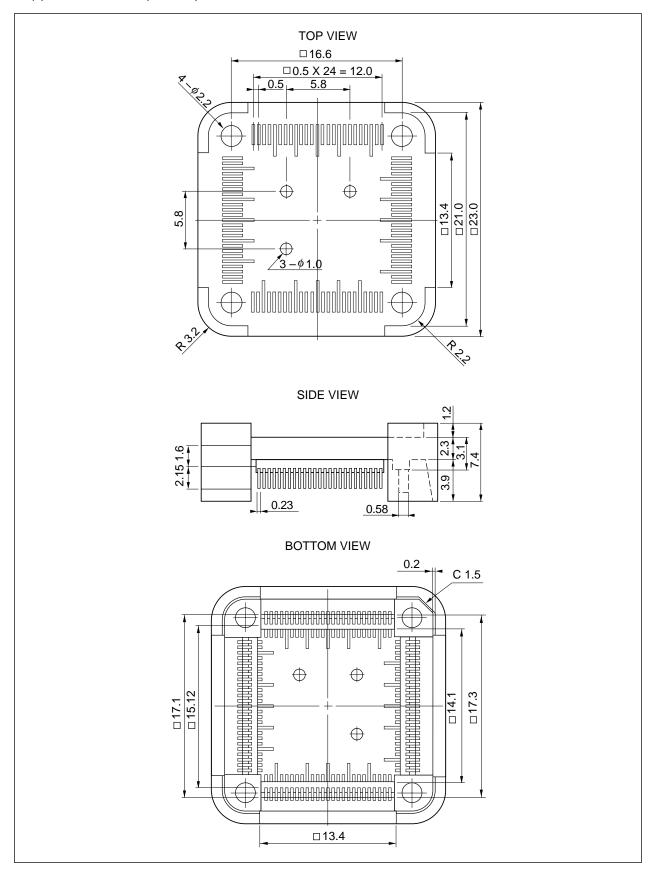

5.3 Operation During Break

In the in-circuit emulator, peripheral functions operate during a break, so there may be a difference between the operations of the in-circuit emulator and target device.

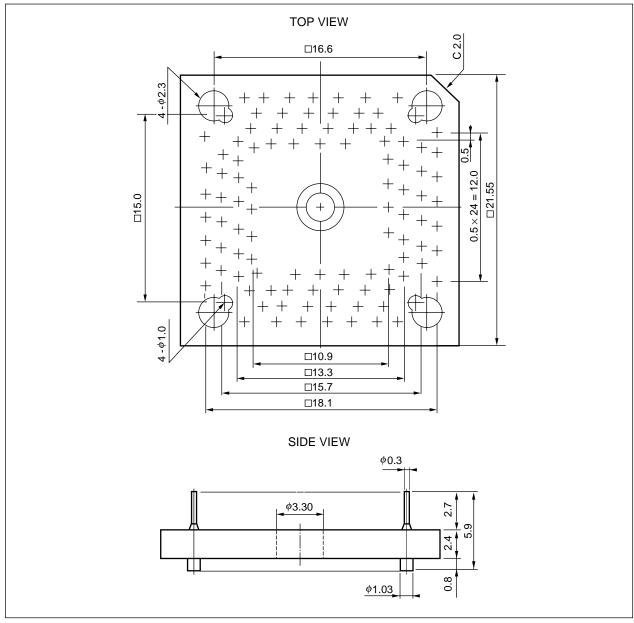
(However, while the in-circuit emulator is in the break status, the counter of the watchdog timer stops.)


APPENDIX PACKAGE DRAWINGS

(1) NQPACK100SD (unit: mm)


Remark NQPACK100SD is a product of TOKYO ELETECH CORPORATION.

(2) YQPACK100SD (unit: mm)


Remark YQPACK100SD is a product of TOKYO ELETECH CORPORATION.

(3) HQPACK100SD (unit: mm)

Remark HQPACK100SD is a product of TOKYO ELETECH CORPORATION.

(4) YQSOCKET100SDF (unit: mm)

Remark YQSOCKET100SDF is a product of TOKYO ELETECH CORPORATION.