
Parallel Computing for
Data Science

with Examples in R and Beyond

Norman Matloff

University of California, Davis

This is a draft of the first half of a book to be published in 2014 under the
Chapman & Hall imprint. Corrections and suggestions are highly encour-
aged!

c© 2013 by Taylor & Francis Group, LLC. Except as permitted under U.S.
copyright law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by an electronic, mechanical, or other means,
now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without
written permission from the publishers.

2

Preface

Thank you for your interest in this book. I’ve very much enjoyed writing
it, and I hope it turns out to become very useful to you. To set the stage,
there are a few general points of information I wish to present.

Goals:

This book hopefully will live up to its title—Parallel Computing for Data
Science. Unlike almost every other book I’m aware of on parallel comput-
ing, you will not find a single example here dealing with solving partial
differential equations and other applications of physics. This book really is
devoted to applications in data science—whether you define that term to
be statistics, data mining, machine learning, pattern recognition, analytics,
or whatever.1

This means more than simply that the book’s examples involve applications
chosen from the data science field. It also means that the data structures,
algorithms and so on reflect this orientation. This will range from the classic
“n observations, p variables” matrix format to time series to network graph
models to various other structures common in data science.

While the book is chock full of examples, it aims to emphasize general
principles. Accordingly, after presenting an introductory code example in
Chapter 1 (general principles are meaningless without real examples to tie
them to), I devote Chapter 2 not so much as how to write parallel code, as
to explaining what the general factors are that can rob a parallel program
of speed. This is a crucial chapter, referred to contantly in the succeeding
chapters. Indeed, one can regard the entire book as addressing the plight
of the poor guy described at the beginning of Chapter 2:

1Granted, increasingly data science does have some cnnnections to physics, such as
in financial modeling and random graphs, but the point is that this book is about data,
not physics.)

i

ii

Here is an all-too-common scenario: An analyst acquires a brand
new multicore machine, capable of wondrous things. With great
excitement, he codes up his favorite large problem on the new
machine—only to find that the parallel version runs more slowly
than the serial one. What a disappointment! Let’s see what fac-
tors can lead to such a situation...

One thing this book is not, is a user manual. Though it uses specific tools
throughout, such as R’s parallel and Rmpi packages, OpenMP, CUDA
and so on, this is for the sake of concreteness. The book will give the
reader a solid introduction to these tools, but is not a compendium of
all the different function arguments, environment options and so on. The
intent is that the reader, upon completing this book, will be well-poised
to learn more about these tools, and most importantly, to write effective
parallel code in various other languages, be it Python, Julia or whatever.

Necessary Background:

If you consider yourself reasonably adept in using R, you should find most
of this book quite accessible. A few sections do use C/C++, and prior
background in those languages is needed if you wish to read those sections
in full detail. However, even without knowing C/C++ well. you should
still find that material fairly readable, and of considerable value.

You should be familiar with basic math operations with matrices, mainly
multiplicatin and addition. Occasionally some more advanced operations
will be used, such as inversion (and its cousins, such as QR methods) and
diagonalization, which are presented in Appendix A.

Machines:

Except when stated otherwise, all timing examples in this book were run
on a 32-core Ubuntu machine. I generally used 2 to 24 cores, a range
that should be similar to the platforms most readers will have available.
I anticipate that the typical reader will have access to a multicore system
with 4 to 16 cores, or a cluster with dozens of nodes. But even if you only
have a single dual-core machine, you should still find the material here to
be valuable.

For those rare and lucky readers who have access to a system consisting of
thousands of cores, the material still applies, subject to the book’s point
that for such systems, the answer to the famous question, “Does it scale?”
is often No.

Thanks:

iii

I wish to thank everyone who provided information useful to this project, ei-
ther directly or indirectly. An alphabetic list would include Stuart Ambler,
Matt Butner, Federico De Giuli, Dirk Eddelbuettel, Stuart Hansen, Bill
Hsu, Michael Kane, Sameer Khan, Brian Lewis, Mikel McDaniel, Richard
Minner, Lars Seeman, Marc Sosnick, and Johan Wikström. [MORE TO BE
ADDED] I’m also very grateful to Professor Hsu for his making available
to me an advanced GPU-equipped machine, and to Professor Hao Chen for
use of his multicore system.

Much gratitude goes to the internal reviewers, and to John Kimmel, Ex-
ecutive Editor for Statistics at Chapman and Hall, who has been highly
supportive since the beginning.

My wife Gamis and my daughter Laura both have a contagious sense of
humor and zest for life that greatly improve everthing I do.

iv

Contents

Preface i

1 Introduction to Parallel Processing in R 1

1.1 What Language to Use? The Roles of R, C/C++, Etc. . . . 1

1.2 A Note on Machines . 2

1.3 Extended Example: Mutual Web Outlinks 3

1.3.1 Serial Code . 3

1.3.2 Choice of Parallel Tool 6

1.3.3 Meaning of “snow” in This Book 7

1.3.4 Introduction to snow 7

1.3.5 Mutual Outlinks Problem, Solution 1 7

1.3.5.1 Code . 7

1.3.5.2 Timings . 8

1.3.5.3 Analysis of the Code 10

2 “Why Is My Program So Slow?”: Obstacles to Speed 15

2.1 Obstacles to Speed . 15

2.2 Performance and Hardware Structures 16

2.3 Memory Basics . 18

2.3.1 Caches . 18

v

vi

2.3.2 Virtual Memory . 20

2.3.3 Monitoring Cache Misses and Page Faults 20

2.3.4 Locality of Reference 21

2.4 Network Basics . 21

2.5 Latency and Bandwidth . 22

2.5.1 Two Representative Hardware Platforms: Multicore
Machines and Clusters 23

2.5.1.1 Multicore 23

2.5.1.2 Clusters . 26

2.6 How Many Processes/Threads? 27

2.7 Example: Mutual Outlink Problem 27

2.8 “Big O” Notation . 28

2.9 Data Serialization . 29

2.10 “Embarrassingly Parallel” Applications 29

2.10.1 What People Mean by “Embarrassingly Parallel” . . 29

2.10.2 Suitable Platforms for Non-Embarrassingly Parallel
Applications . 30

3 Principles of Parallel Loop Scheduling 31

3.1 General Notions of Loop Scheduling 32

3.2 Chunking in Snow . 34

3.2.1 Example: Mutual Outlinks Problem 34

3.3 A Note on Code Complexity 36

3.4 Example: All Possible Regressions 37

3.4.1 Parallelization Strategies 37

3.4.2 The Code . 38

3.4.3 Sample Run . 40

3.4.4 Code Analysis . 41

vii

3.4.4.1 Our Task List 41

3.4.4.2 Chunking 42

3.4.4.3 Task Scheduling 43

3.4.4.4 The Actual Dispatching of Work 43

3.4.4.5 Wrapping Up 45

3.4.5 Timing Experiments 46

3.5 Example: All Possible Regressions, Improved Version 47

3.5.1 Code . 48

3.5.2 Code Analysis . 51

3.5.3 Timings . 51

3.6 Introducing Another Tool: multicore 52

3.6.1 Source of the Performance Advantage 53

3.6.2 Example: All Possible Regressions, Using multicore . 54

3.7 Issues with Chunk Size . 58

3.8 Example: Parallel Distance Computation 59

3.8.1 The Code . 60

3.8.2 Timings . 63

3.9 The foreach Package . 63

3.9.1 Example: Mutual Outlinks Problem 64

3.9.2 A Caution When Using foreach 66

3.10 Another Scheduling Approach: Random Task Permutation 67

3.10.1 The Math . 67

3.10.2 The Random Method vs. Others, in Practice 69

3.11 Debugging snow and multicore Code 70

3.11.1 Debugging in snow 70

3.11.2 Debugging in multicore 71

viii

4 The Message Passing Paradigm 73

4.1 Performance Issues . 74

4.1.1 The Basic Problems 74

4.1.2 Solutions . 75

4.2 Rmpi . 75

4.3 Example: Genomics Data Analysis 77

4.4 Example: Quicksort . 77

4.4.1 The Code . 77

4.4.2 Usage . 77

4.4.3 Timing Example . 77

4.4.4 Latency, Bandwdith and Parallelism 77

4.4.5 Possible Improvements 77

4.4.6 Analysis of the Code 77

4.5 Memory Allocation Issues 77

4.6 Some Other Rmpi Functions 78

4.7 Subtleties . 80

4.7.1 Blocking Vs. Nonblocking I/O 80

4.7.2 The Dreaded Deadlock Problem 81

4.8 Introduction to pdbR . 82

5 The Shared Memory Paradigm: Introduction through R 83

5.1 So, What Is Actually Shared? 84

5.2 Clarity and Conciseness of Shared-Memory Programming . 86

5.3 High-Level Introduction to Shared-Memory Programming:
Rdsm Package . 87

5.3.1 Use of Shared Memory 87

5.4 Example: Matrix Multiplication 88

5.4.1 The Code . 88

ix

5.4.2 Setup . 89

5.4.3 The App Code . 90

5.4.4 A Closer Look at the Shared Nature of Our Data . . 91

5.4.5 Timing Comparison 92

5.4.6 Leveraging R . 93

5.5 Shared Memory Can Bring A Performance Advantage . . . 93

5.6 Locks and Barriers . 96

5.6.1 Race Conditions and Critical Sections 96

5.6.2 Locks . 97

5.6.3 Barriers . 98

5.7 Example: Finding the Maximal Burst in a Time Series . . . 99

5.7.1 The Code . 99

5.8 Example: Transformation of an Adjacency Matrix 101

5.8.1 The Code . 102

5.8.2 Overallocation of Memory 105

5.8.3 Timing Experiment 106

6 The Shared Memory Paradigm: C Level 109

6.1 OpenMP . 109

6.2 Example: Finding the Maximal Burst in a Time Series . . . 110

6.2.1 The Code . 110

6.2.2 Compiling and Running 112

6.2.3 Analysis . 113

6.2.4 Setting the Number of Threads 116

6.3 Timings . 116

6.4 OpenMP Loop Scheduling Options 117

6.5 Example: Transformation an Adjacency Matrix 119

x

6.5.1 The Code . 119

6.5.2 Analysis of the Code 121

6.6 Example: Transforming an Adjancency Matrix, R-Callable
Version . 123

6.6.1 The Code . 124

6.6.2 Compiling and Running 125

6.6.3 Analysis . 128

6.7 Speedup in C . 128

6.8 Further Cache Issues . 129

6.9 Lockfree Synchronization 133

6.10 Rcpp . 134

7 Parallelism through Accelerator Chips 135

7.1 Overview . 136

7.2 Introduction to NVIDIA GPUs and the CUDA Language . 136

7.2.1 Example: Calculate Row Sums 136

7.2.2 NVIDIA GPU Hardware Structure 136

7.2.3 Example: Parallel Distance Computation 136

7.2.4 Example: Maximal Burst in a Time Series 136

7.3 R and GPUs . 136

7.3.0.1 The gputools Package 136

7.4 Thrust and Rth . 136

7.5 The Intel Xeon Phi Chip . 136

8 Parallel Sorting, Filtering and Prefix Scan 137

8.1 Parallel Sorting . 137

8.1.1 Example: Quicksort in OpenMP 137

8.1.2 Example: Radix Sort in CUDA/Thrust Libraries . . 137

xi

8.2 Parallel Filtering . 137

8.3 Parallel Prefix Scan . 137

8.3.1 Parallizing Prefix Scan 137

8.3.2 Example: Run Length Compression in OpenMP . . 137

8.3.3 Example: Run Length Uncompression in Thrust . . 137

9 Parallel Linear Algebra 139

9.1 Matrix Tiling . 140

9.1.1 Example: In-Place Matrix Transpose (Rdsm) 140

9.1.2 Example: Matrix Multiplication in CUDA 140

9.2 Packages . 140

9.2.1 RcppArmadillo and RccpEigen 140

9.2.2 The gputools Package (GPU) 140

9.2.3 OpenBLAS . 140

9.3 Parallel Linear Algebra . 140

9.3.1 Matrix Multiplication 140

9.3.2 Matrix Inversion (and Equivalent) 140

9.3.3 Singular Value Decomposition 140

9.3.4 Fast Fourier Transform 140

9.3.5 Sparse Matrices . 140

9.4 Applications . 140

9.4.1 Linear and Generalized Linear Models 140

9.4.2 Convolution of Two Distributions 140

9.4.3 Edge Detection in Images 140

9.4.4 Determining Whether a Graph Is Connected 140

9.4.5 Analysis of Random Graphs 140

9.5 Example: Matrix Power Computation 140

xii

9.5.1 Application: Markov Chains 140

9.5.2 Application: Graph Connectedness 140

10 Iterative Algorithms 141

10.1 What Is Different about Iterative Algorithms? 141

10.2 Example: k-Means Clustering 141

10.2.1 The Code . 142

10.2.2 Timing Experiment 148

10.3 Example: EM Algorithms 149

11 Inherently Statistical Approaches to Parallelization: Subset
Methods 151

11.1 Software Alchemy . 151

11.2 Mini-Bootstraps . 151

11.3 Subsetting Variables . 151

A Review of Matrix Algebra 153

A.1 Terminology and Notation 153

A.1.1 Matrix Addition and Multiplication 154

A.2 Matrix Transpose . 155

A.3 Linear Independence . 156

A.4 Determinants . 156

A.5 Matrix Inverse . 156

A.6 Eigenvalues and Eigenvectors 157

A.7 Matrix Algebra in R . 158

Chapter 1

Introduction to Parallel
Processing in R

Instead of starting with an abstract overview of parallel programming, we’ll
get right to work with a concrete example in R. The abstract overview can
wait. But we should place R in proper context first.

1.1 What Language to Use? The Roles of R,
C/C++, Etc.

Most of this book’s examples involve the R programming language, an in-
terpreted language. R’s core operations tend to have very efficient internal
implementation, and thus the language generally can offer good perfor-
mance if used properly.

In settings in which you really need to maximize execution speed, you may
wish to resort to writing in a compiled language such as C/C++, which
we will indeed do occasionally in this book. However, as with the Pretty
Good Privacy security system, in many cases just “pretty fast” is quite good
enough. The extra speed that may be attained via the compiled language
typically does not justify the possibly much longer time needed to write,
debug and maintain code at that level.

This of course is the reason for the popularity of the various parallel R pack-
ages. They fulfill a desire to code parallel operations yet still stay in R. For

1

2

example, the Rmpi package provides an R connection to the Message Pass-
ing Interface (MPI), a very widely used parallel processing system in which
applications are normally written in C/C++ or FORTRAN.1 Rmpi gives
analysts the opportunity to take advantage of MPI while staying within R.
But as an alternative to Rmpi that also uses MPI, R users could write their
application code in C/C++, calling MPI functions, and then interface R to
the resulting C /C++function. But in doing so, they would be foregoing
the coding convenience and rich package available in R. So, most opt for
using MPI only via the Rmpi interface, not directly in C/C++.

The aim of this book is to provide a general treatment of parallel processing
in data science. The fact that R provides a rich set of powerful, high-level
data and statistical operations means that examples in R will be shorter
and simpler than they would typically be in other languages. This enables
the reader to truly focus on the parallel computation methods themselves,
rather than be distracted by having to wade through the details of, say ,
intricate nested loops. Not only is this useful from a learning point of view,
but also it will make it easy to adapt the code and techniques presented
here to other languages, such as Python or Julia.

1.2 A Note on Machines

Three types of machines will be used for illustration in this book: multicore
systems, clusters and graphics processing units (GPUs). As noted in the
Preface, I am not targeting the book to those fortunate few who have access
to supercomputers (though the methods presented here do apply to such
machines). Instead, it is assumed that most readers will have access to
more modest systems, say multicore with 4-16 cores, or clusters with nodes
numbering in the dozens, or a single GPUs that may not be the absolute
latest model.

Most of the multicore examples in this book were run on a 32-core system
on which I seldom used all the cores (as I was a guest user). The timing
experiments usually start with a small number of cores, say 2 or 4.

As to clusters, my coverage of “message-passing” software was typically run
on the multicore system, though occasionally on a real cluster to demon-
strate the effects of overhead.

The GPU examples here were typically run on modest hardware.

1For brevity, I’ll usually not mention FORTRAN, as it is not used as much in data
science.

3

Again, the same methods as used here do apply to the more formidable
systems, such as the behemoth supercomputers with multiple GPUs and so
on. Tweaking is typically needed for such systems, but this is beyond the
scope of this book.

1.3 Extended Example: Mutual Web Out-
links

So, let’s look at our promised concrete example.

Suppose we are analyzing Web traffic, and one of our questions concerns
how often two Web sites have links to the same third site. Say we have
outlink information for n Web pages. We wish to find the mean number of
mutual outlinks per pair of sites, among all pairs.

This computation is actually similar in pattern to those of many statistical
methods, such as Kendall’s τ and the U-statistic family. The pattern takes
the following form. For data consisting of n observations, the pattern is to
compute some quantity g for each pair of observations, then sum all those
values, as in this pseudocode (i.e. outline):

sum = 0.0

for i = 1,...,n-1

for j = i+1,,...,n

sum = sum + g(obs.i, obs.j)

With nested loops like this, you’ll find in this book that it is generally easier
to parallelize the outer loop rather than the inner one. If we have a dual
core machine, for instance, we could assign one core to handle some values
of i above and the other core to handle the rest. Ultimately we’ll do that
here, but let’s first take a step back and think about this setting.

1.3.1 Serial Code

Let’s first implement this procedure in serial code:

1 mutoutser <− function (l i n k s) {
2 nr <− nrow(l i n k s)
3 nc <− ncol (l i n k s)
4 to t = 0

4

5 for (i in 1 : (nr−1)) {
6 for (j in (i +1): nr) {
7 for (k in 1 : nc)
8 to t <− to t + l i n k s [i , k] ∗ l i n k s [j , k]
9 }

10 }
11 to t / nr
12 }

Here links is a matrix representing outlinks of the various sites, with
links[i,j] being 1 or 0, according to whether there is an outlink from site i
from site j. The code is a straightforward implementation of the pseudocode
in Listing 1.3.1 above.

How does this code do in terms of performance? Consider this simulation:

1 sim <− function (nr , nc) {
2 lnk <− matrix (sample (0 : 1 , (nr∗nc) , replace=TRUE) ,nrow=nr)
3 print (system . time (mutoutser (lnk)))
4 }

We generate random 1s and 0s, and call the function. Here’s a sample run:

> sim (500 ,500)
user system e lapsed

106.111 0 .030 106.659

Elapsed time of 106.659 seconds—awful! We’re dealing with 500 Web sites,
a tiny number in view of the millions that are out there, and yet it took
almost 2 minutes to find the mean mutual outlink value for this small group
of sites.

It is well known, though, that explicit for loops are slow in R, and here we
have two of them. The first solution to try for loop avoidance is vectoriza-
tion, meaning to replace a loop with some vector computation. This gives
one the speed of the C code that underlies the vector operation, rather
than having to translate the R repeatedly for each line of the loop, at each
iteration.

In the code for mutoutser() above, the inner loops can be rewritten as a
matrix product, as we will see below, and that will turn out to eliminate
two of our loops.2

2In R, a matrix is a special case of a vector, so we are indeed using vectorization here,
as promised.

5

To see the matrix formulation, suppose we have this matrix:


0 1 0 0 1
1 0 0 1 1
0 1 0 1 0
1 1 1 0 0
1 1 1 0 1

 (1.1)

Consider the case in which i is 2 and j is 4 in the above pseudocode, Listing
1.3.1. The innermost loop, i.e. the one involving k, computes

1 · 1 + 0 · 1 + 0 · 1 + 1 · 0 + 1 · 0 = 1 (1.2)

But that is merely the inner product of rows i and j of the matrix! In other
words, it’s

l i n k s [i ,] %∗% l i n k s [j ,]

But there’s more. Again consider the case in which i is 2. The same
reasoning as above shows that the entire compution for all j and k, i.e. the
two innermost loops, can be written as

 0 1 0 1 0
1 1 1 0 0
1 1 1 0 1




1
0
0
1
1

 =

 1
1
2

 (1.3)

The matrix on the left is the portion of our original matrix below row 2,
and the vector on the right is row 2 itself.

Those numbers, 1, 1 and 2, are the results we would get from running the
code with i equal to 2 and j equal to 3, 4 and 5. (Check this yourself to get
a better grasp of how this works..)

So, we can eliminate two loops, as follows:

1 mutoutser1<− function (l i n k s) {
2 nr <− nrow(l i n k s)
3 nc <− ncol (l i n k s)
4 to t <− 0
5 for (i in 1 : (nr−1)) {
6 tmp <− l i n k s [(i +1): nr ,] %∗% l i n k s [i ,]

6

7 to t <− to t + sum(tmp)
8 }
9 to t / nr

10 }

This actually brings a dramatic improvement:

1 sim <− function (nr , nc) {
2 lnk <− matrix (sample (0 : 1 , (nr∗nc) , replace=TRUE) ,nrow=nr)
3 print (system . time (mutoutser1 (lnk)))
4 }

> sim (500 ,500)
user system e lapsed

1 .443 0 .044 1 .496

Wonderful! Nevertheless, that is still only for the very small 500-site case.
Let’s run it for 2000:

> sim (2000 ,2000)
user system e lapsed

92 .378 1 .002 94 .071

Over 1.5 minutes! And 2000 is still not very large.

We could further fine-tune our code, but it does seem that parallelizing
may be a better option. Let’s go that route.

1.3.2 Choice of Parallel Tool

The most popular tools for parallel R are snow, multicore, foreach and
Rmpi. Since the first two of these are now part of the R core in a package
named parallel, it is easiest to use one of them for our introductory mate-
rial in this chapter, rather than having the user install another package at
this point.

Our set of choices is further narrowed by the fact that multicore runs only
on Unix-family (e.g. Linux and Mac) platforms, not Windows. Accordingly,
at this early point in the book, we will focus on snow.

7

1.3.3 Meaning of “snow” in This Book

As noted, an old contributed package for R, snow, was later made part of
the R base, in the latter’s parallel package (with slight modifications). We
will make frequent use of this part of that package, so we need a short name
for it. “The portion of parallel adapted from snow” would be anything
but short. So, we’ll just call it snow.

1.3.4 Introduction to snow

Here is the overview of how snow operates: All four of the popular packages
cited above, including snow, typically employ a scatter/gather paradigm:
We have multiple instances of R running at the same time, either on several
machines in a cluster, or on a multicore machine. We’ll refer to one of
the instances as the manager, with the rest being workers. The parallel
computation then proceeds as follows:

• scatter: The manager breaks the desired computation into chunks,
and sends (“scatters”) the chunks to the workers.

• chunk computation: The workers then do computation on each chunk,
and send the results back to the manager.

• gather: The manager receives (“gathers”) those results, and com-
bines them to solve the original problem.

In our mutual-outlink example here, each chunk would consist of some
values of i in the outer for loop in Listing 1.3.1. In other words, each
worker would determine the total count of mutual outlinks for this worker’s
assigned values of i, and then return that count to the manager. The latter
would collect these counts, sum them to form the grand total, and then
obtain the average by dividing by the number of node pairs, n(n-1)/2.

1.3.5 Mutual Outlinks Problem, Solution 1

Here’s our first cut at the mutual outlinks problem:

1.3.5.1 Code

8

1
2 doichunk <− function (ichunk) {
3 to t <− 0
4 nr <− nrow(lnks) # l n k s g l o b a l a t worker
5 for (i in ichunk) {
6 tmp <− l nks [(i +1): nr ,] %∗% l nks [i ,]
7 to t <− to t + sum(tmp)
8 }
9 to t

10 }
11
12 mutoutpar <− function (c l s) {
13 require (p a r a l l e l)
14 nr <− nrow(lnks) # l n k s g l o b a l a t manager
15 c lu s t e rExpor t (c l s , ” lnks ”)
16 ichunks <− 1 : (nr−1) # each ”chunk” has on ly 1 v a l u e o f i , f o r now
17 t o t s <− c lus te rApp ly (c l s , ichunks , doichunk)
18 Reduce (sum, t o t s) / nr
19 }
20
21 sim <− function (nr , nc , c l s) {
22 lnks <<− matrix (sample (0 : 1 , (nr∗nc) , replace=TRUE) ,nrow=nr)
23 print (system . time (mutoutpar (c l s)))
24 }
25
26 # s e t up a c l u s t e r o f nworkers workers on a m u l t i c o r e machine
27 in i tmc <− function (nworkers) {
28 require (p a r a l l e l)
29 makeCluster (nworkers)
30 }
31
32 # s e t up a c l u s t e r on machines s p e c i f i e d , one worker per machine
33 i n i t c l s <− function (workers) {
34 require (p a r a l l e l)
35 makeCluster (spec=workers)
36 }

1.3.5.2 Timings

Before explaining how this code works, let’s see if it yields a speed improve-
ment. I ran on the same machine used earlier, but in this case with two
workers, i.e. on two cores. Here are the results:

9

> i n i t (2)
> sim (2000 ,2000)

user system e lapsed
0 .237 0 .047 80 .348

So we did get a speedup, with run time being diminished by almost 14
seconds. Good, but note that the speedup factor is only 94.071/80.348 =
1.17, not the 2.00 one might expect from using two workers. This illustrates
that communication and other overhead can indeed be a major factor.

Note the stark discrepancy between user and elapsed time here. Remem-
ber, these are times for the manager! The main computation is done by
the workers, and their times don’t show up here except in elapsed time.

You might wonder whether two cores are enough, since we have a total
of three processes—two workers and the manager. But since the manager
is idle while the two workers are computing, there would be no benefit in
having the manager run on a separate core, even if we had one (which we
in a sense do, with hyperthreading, to be explained shortly.).

This run was performed on a dual core machine, hence our using two work-
ers. However, we may be able to do a bit better, as this machine has a
hyperthreaded processor. This means that each core is capable, to some
degree, of running two programs at once. Thus I tried running with four
workers:

> i n i t (4)
> sim (2000 ,2000)

user system e lapsed
0 .484 0 .051 70 .077

So, hyperthreading did yield further improvement, raising our speedup fac-
tor to 1.34. Note, though, that now there is even further disparity between
the 4.00 speedup we might hope to get with four workers. As noted, these
issues will arise frequently in this book; the sources of overhead will be
discussed, and remedies presented.

There is another reason why our speedups above are not so impressive: Our
code is fundamentally unfair—it makes some workers do more work than
others. This is known as a load balancing problem, one of the central issues
in the parallel processing field. We’ll address this in a refined version in
Chapter 3.

10

1.3.5.3 Analysis of the Code

So, how does all this work? Let’s dissect the code.

Even though snow and multicore are now part of R via the parallel
package, the package is not automatically loaded. So we need to take care
of this first, placing a line

require (p a r a l l e l)

in the functions that make use of snow.

Now, who does what? It’s important to understand that most of the lines
of code in the serial version are executed by the manager. The only code
run by the workers will be doichunk(), though of course that is where the
main work is done. As will be seen, the manager sends that function (and
data) to the workers, who execute the function according to the manager’s
directions.

The basic idea is to break the values of i in the i loop in our earlier serial
code, Listing 1.3.1, into chunks, and then have each worker work on its
chunk. Our function doichunk() (“do i chunki”),

doichunk <− function (ichunk) {
to t <− 0
nr <− nrow(lnks) # l n k s g l o b a l a t worker
for (i in ichunk) {

tmp <− l nks [(i +1): nr ,] %∗% l nks [i ,]
t o t <− to t + sum(tmp)

}
to t

}

will be executed for each worker, with ichunk being different for each
worker.

Our function mutoutpar() wraps the overall process, dividing into the i
values into chunks and calling doichunk() on each one. It thus parallelizes
the outer loop of the serial code.

mutoutpar <− function (c l s) {
require (p a r a l l e l)
nr <− nrow(lnks) # l n k s g l o b a l a t manager
c lu s t e rExpor t (c l s , ” lnks ”)
ichunks <− 1 : (nr−1)
t o t s <− c lus te rApp ly (c l s , ichunks , doichunk)

11

Reduce (sum, t o t s) / nr
}

To get an overview of that function, note that the main actions consist of
the follwing calls to snow and R functions:

• We call snow’s clusterExport() to send our data, in this case the
lnks matrix, to the workers.

• We call snow’s clusterApply() to direct the workers to perform
their assigned chunks of work.

• We call R’s core function Reduce() as a convenient way to combine
the results returned by the workers.

Here are the details: Even before calling mutoutpar(), we set up our snow
cluster:

makeCluster (nworkers)

This sets up nworkers workers. Remember, each of these workers will be
separate R processes (as will be the manager). In this simple form, they
will all be running on the same machine, presumably multicore.

Clusters are snow abstractions, not physical entities, though we can set up
a snow cluster on a physical cluster of machines. As will be seen in detail
later, a cluster is an R object that contains information on the various
workers and how to reach them. So, if I run

c l s <− in i tmc (4)

I create a 4-node snow cluster (for 4 workers) and save its information in
an R object cls (of class “cluster”), which will be used in my subsequent
calls to snow functions.

There is one component in cls for each worker. So after the above call,
running

length (c l s)

prints out 4.

We can also run snow on a physical cluster of machines, i.e. several ma-
chines connected via a network. Calling the above function initcls() ar-
ranges this. In my department, for example, we have student lab machines
named pc1, pc2 and so on, so

12

i n i t c l s (c (”pc28” , ”pc29”))

would set up a two-node snow run.

In any case, in the above default call to makeCluster(), communication
between the manager and the workers is done via network sockets, even if
we are on a multicore machine.

Now, let’s take a closer look at mutoutpar(), first the call

c lu s t e rExpor t (c l s , ” lnks ”)

This sends our data matrix lnks to all the workers in cls.

An important point to note is that clusterExport() by default requires
the transmitted data to be global in the manager’s work space. It is then
placed in the global work space of each worker (without any alternative
option offered). To meet this requirement, I made lnks global back when I
created this data in sim(), using the superassignment operator <<−:

l nks <<− matrix (sample (0 : 1 , (nr∗nc) , replace=TRUE) ,nrow=nr)

The use of global variables is rather controversial in the software develop-
ment world. In my book The Art of R Programming (NSP, 2011), I address
some of the objections some programmers have to global variables, and ar-
gue that in many cases (especially in R), globals are the best (or least bad)
solution.

In any case, here the structure of clusterExport() basically forces us to
use globals. For the finicky, there is an option to use an R environment
instead of the manager’s global workspace. We could change the above call
with mutoutpar(), for instance, to

c lu s t e rExpor t (c l s , ” lnks ” , env i r=environment ())

The R function environment() returns the current environment, meaning
the context of code within mutoutpar(), in which lnks is a local variable.
But even then the data would still be global at the workers.

Here are the details of the clusterApply() call. Let’s refer to that second
argument of clusterApply(), in this case ichunks, as the “work assign-
ment” argument, as it parcels out work to workers.

To keep things simple in this introductory example, we have just a single i
value for each “chunk”:

ichunks <− 1 : (nr−1)
t o t s <− c lus te rApp ly (c l s , ichunks , doichunk)

13

(We’ll extend this to larger chunks in Section 3.2.1.)

Here clusterApply() will treat that ichunks vector as an R list of nr
- 1 elements. In the call to that function, we have the manager sending
ichunks[[1]] to cls[[1]], which is the first worker. Similarly, ichunks[[2]]
is sent to cls[[2]], the second worker, and so on.

Unless the problem is small (far too small to parallelize!), we will have more
chunks than workers here. The clusterApply() function handles this in
a Round Robin manner. Say we have 1000 chunks and 4 workers. After
clusterApply() sends the fourth chunk to the fourth worker, it starts over
again, sending the fifth chunk to the first worker, the sixth chunk to the
second worker, and so on, repeatedly cycling through the workers. In fact,
the internal code uses R’s recycling operation to implement this.

Each worker is told to run doichunk() on each chunk sent to that worker
by the manager. The second worker, for example, will call doichunk() on
ichunks[[2]], ichunks[[6]], etc.

So, each worker works on its assigned chunks, and returns the results—the
number of mutual outlinks discovered in the chunks—to the manager. The
clusterApply() function collects these results, and places them into an
R list. which we’ve assigned here to tots. That list will contain nr - 1
elements.

One might expect that we could then find the grand sum of all those totals
returned by the workers by simply calling R’s sum() function:

sum(t o t s)

This would have been fine if tots had been a vector, but it’s a list, hence
our use of R’s Reduce() function. Here Reduce() will apply the sum()
function to each element of the list tots, yielding the grand sum as desired.
You’ll find use of Reduce() common with functions in packages like snow,
which typically return values in lists.

This is a good time to point out that many parallel R packages require the
user to be adept at using R lists. Our call to clusterApply(), returned a
list type, and in fact its second argument is usually an R list, though not
here.

This example has illustrated some of the major issues, but it has barely
scratched the surface. The next chapter will begin to delve deeper into this
many-faceted subject.

14

Chapter 2

“Why Is My Program So
Slow?”: Obstacles to
Speed

Here is an all-too-common scenario: An analyst acquires a brand new mul-
ticore machine, capable of wondrous things. With great excitement, he
codes up his favorite large problem on the new machine—only to find that
the parallel version runs more slowly than the serial one. What a disap-
pointment!

Though you are no doubt eager to get to some more code, a firm grounding
in the infrastructural issues will prove to be quite valuable indeed, hence
the need for this chapter. These issues will arise repeatedly in the rest of
the book. If you wish, you could skip ahead to the other chapters now, and
come back to this one as the need arises, but it’s better if you go through
it now. So, let’s see what factors can lead to such a situation in which our
hapless analyst above sees his wonderful plans go awry.

2.1 Obstacles to Speed

Let’s refer to the computational entities as processes, such as the workers
in the case of snow. There are two main performance issues in parallel
programming:

15

16

• Communications overhead: Typically data must be transferred back
and forth between processes. This takes time, which can take quite a
toll on performance.

In addition, the processes can get in each other’s way if they all try to
access the same data at once. They can collide when trying to access
the same communications channel, the same memory module, and so
on. This is another sap on speed.

The term granularity is used to refer, roughly, to the ratio of computa-
tion to overhead. Large-grained or coarse-grained algorithms involve
large enough chunks of computation that the overhead isn’t much of a
problem. In fine-grained algorithms, we really need to avoid overhead
as much as possible.

• Load balance: As noted in the last chapter, if we are not careful in
the way in which we assign work to processes, we risk assigning much
more work to some than to others. This compromises performance,
as it leaves some processes unproductive at the end of the run, while
there is still work to be done.

There are a number of issues of this sort that occur generally enough to be
collected into this chapter, as an “early warning” of issues that can arise.
This is just an overview, with details coming in subsequent chapters, but
being forewarned of the problems will make it easier to recognize them as
they are encountered.

2.2 Performance and Hardware Structures

Scorecards, scorecards! You can’t tell the players without the scorecards!—
old chant of scorecard vendors at baseball games

The foot bone connected to the ankle bone, The ankle bone connected to the
shin bone...—from the children’s song, “Dem Bones”

The reason our unfortunate analyst in the preceding section was surprised
that his code ran more slowly on the parallel machine was almost certainly
due to a lack of understanding of the underlying hardware and systems
software. While one certainly need not understand the hardware on an
electronics level, a basic knowledge of “what is connected to what” is es-
sential.

In this section, we’ll present overviews of the major hardware issues, and
of the two parallel hardware technologies the reader is mostly likely to

17

encounter, multiprocessors and clusters:1

• A multiprocessor system has, as the name implies, two or more proces-
sors, i.e. two or more CPUs, so that two or more programs (or parts
of the same program) can be doing computation at the same time.
A multicore system, common in the home, is essentially a low-end
multiprocessor, as we will see later. Multiprocsssors are also known
as shared-memory systems, since they indeed share the same physical
RAM.

These days, almost any home PC or laptop is at least dual core. If
you own such a machine, congratulations, you own a multiprocessor
system!

You are also to be congratulated for owning a multiprocessor system
if you have a fairly sophisticated video card in your computer, one
that can serve as a graphics processing unit. GPUs are specialized
shared-memory systems.

• A cluster consists of multiple computers, each capable of running
independently, that are networked together, enabling their engaging
in a concerted effort to solve a big numerical problem.

If you have a network at home, say with a wireless or wired router,
than congratulations, you own a cluster!

I emphasize the “household item” aspect above, to stress that these are not
esoteric architectures, though of course scale can vary widely from what
you have at home to far more sophisticated and expensive systems, with
quite a bit in between.

The terms shared-memory and networked above give clues as to the ob-
stacles to computational speed that arise, which are key. So, we will first
discuss the high-level workings of these two hardware structures, in Sections
2.3 and 2.4.

We’ll then explain how they apply to the overhead issue with our two ba-
sic platform types, multicore (Section 2.5.1.1) and cluster (Section 2.5.1.2.
We’ll cover just enough details to illustrate the performance issues discussed
later in this chapter, and return for further details in later chapters.

1What about clouds? A cloud consists of multicore machines and clusters too, but
operating behind the scenes.

18

2.3 Memory Basics

Slowness of memory access is one of the most common issues arising in
high-performance computing. Thus a basic understanding of memory is
vital.

Consider an ordinary assignment statement, copying one variable (a single
integer, say) to another:

y = x

Typically, both x and y will be stored somewhere in memory, i.e. RAM
(Random Access Memory). Memory is broken down into bytes, designed
to hold one character, and words, usually designed to contain one number.
A byte consists of eight bits, i.e. eight 0s and 1s. On typical computers
today, the word size is 64 bits, or eight bytes.

Each word has an ID number, called an address. (Individual bytes have
addresses too, but this will not concern us here.) So the compiler (in the
case of C/C++/FORTRAN) or the interpreter in the case of a language
like R), will assign specific addresses in memory at which x and y are to be
stored. The above assignment will be executed by the machine’s copying
one word to the other.

A vector will typically be stored in a set of consecutive words. This will be
the case for matrices too, but there is a question as to whether this storage
will be row-by-row or column-by-column. C/C++ uses row-major order:
First all of the first row (called row 0) is stored, then all of the second row,
and so on. R and FORTRAN use column-major order, storing all of the
first column (named column 1) etc. So, for instance, if z is a 5x8 matrix in
R, then z[2,3] will be in the 12th word (5+5+2) in the portion of memory
occupied by z. These considerations will affect performance, as we will see
later.

Memory access time, even though measured in tens of nanoseconds—billionths
of a second—is slow relative to CPU speeds. This is due not only to elec-
tronic delays within the memory chips themselves, but also due to the fact
that the pathway to memory is often a bottleneck. More on this below.

2.3.1 Caches

A device commonly used to deal with slow memory access is a cache. This
is a small but fast chunk of memory that is located on or near the processor

19

chip. For this purpose, memory is divided into blocks, say of 512 bytes each.
Memory address 1200, for instance, would be in block 2, since 1200/512 is
equal to 2 plus a fraction. (The first block is called Block 0.) At any
give time, the cache contains local copies of some blocks of memory, with
the specific choice of blocks being dynamic—at some times the cache will
contain copies of some memory blocks, while a bit later it may contain
copies of some other blocks.2

If we are lucky, in most cases, the memory word that the processor wishes
to access (i.e. the variable in the programmer’s code she wishes to access)
already has a copy in its cache—a cache hit. If this is a read access (of
x in our little example above), then it’s great—we avoid the slow memory
access.

On the other hand, in the case of a write access (to y above), if the requested
word is currently in the cache, that’s nice too, as it saves us the long trip to
memory (if we do not “write through” and update memory right away, as
we are assuming here). But it does produce a discrepancy between the given
word in memory and its copy in the cache. In the cache architecture we
are discussing here, that discrepancy is tolerated, and eventually resolved
when the block in questioned is “evicted,” as we will see below.

If in a read or write access the desired memory word is not currently in the
cache, this is termed a cache miss. This is fairly expensive. When it occurs,
the entire block containing the requested word must be brought into the
cache. In other words, we must access many words of memory, not just one.
Moreover, usually a block currently in the cache must be evicted to make
room for the new one being brought in. If the old block had been written
to at all, we must now write that entire block back to memory, to update
the latter.3

So, though we save memory access time when we have a cache hit, we incur
a substantial penalty at a miss. Good cache design can make it so that
the penalty is incurred only rarely. When a read miss occurs, the hardware
makes “educated guesses” as to which blocks are least likely to be needed
again in the near future, and evicts one of these. It usually guesses well, so
that cache hit rates are typically well above 90%. Note carefully, though,
that this can be affected by the way we code. This will be discussed in
future chapters.

2What follows below is a description of a common cache design. There are many
variations, not discussed here.

3There is a dirty bit that records whether we’ve written to the block, but not which
particular words were affected. Thus the entire block must be written.

20

2.3.2 Virtual Memory

Though it won’t arise much in our context, we should at least briefly dis-
cuss virtual memory. Consider our example above, in which our program
contained variables x and y. Say these are assigned to addresses 200 and
8888, respectively. Fine, but what if another program is also running on the
machine? The compiler/interpreter may have assigned one of its variables,
say g, to address 200. How do we resolve this?

The standard solution is to make the address 200 (and all others) only
“virtual.” It may be, for instance, that x from the first program is actually
stored in physical address 7260. The program will still say x is at word
200, but the hardware will translate 200 to 7260 as the program executes.
If g in the second program is actually in word 6548, the hardware will
replace 200 by 6548 every time the program requests access to word 200.
The hardware has a table to do these lookups, one table for each program
currently running on the machine, with the table being maintained by the
operating system.

Virtual memory systems break memory into pages, say of 4096 bytes each,
analogous to cache blocks. Usually, only some of your program’s pages are
resident in memory at any given time, with the remainder of the pages out
on disk. If your program needs some memory word not currently resident—
a page fault, analogous to a cache miss—the hardware senses this, and
transfers control to the operating system. The OS must bring in the re-
quested page from disk, an extremely expensive operation in terms of time,
due to the fact that a disk drive is mechanical rather than electronic like
RAM. Thus page faults can really slow down program speed, and again as
with the cache case, you may be able to reduce page faults through careful
design of your code.

2.3.3 Monitoring Cache Misses and Page Faults

Both cache misses and page faults are enemies of good performance, so it
would be nice to monitor them.

This actually can be done in the case of page faults. As noted, a page
fault triggers a jump to the OS, which can thus record it. In Unix-family
systems, the time command gives not only run time but also a count of
page faults.

By contrast, cache misses are handled purely in hardware, thus not record-
able by the OS. But one might try to gauge the cache behavior of a program

21

by using the number of page faults as a proxy.

2.3.4 Locality of Reference

Clearly, the effectiveness of caches and virtual memory depend on repeat-
edly using items in the same blocks (spatial locality) within short time pe-
riods (temporal locality). As mentioned earlier, this in turn can be affected
to some degree by the way the programmer codes things.

Say we wish to find the sum of all elements in a matrix. Should our code
traverse the matrix row-by-row or column-by-column? In R, for instance,
which as mentioned stores matrices in column-major order, we should go
column-by-column, to get better locality.

A detailed case study will be presented in Section 6.8.

2.4 Network Basics

A single Ethernet, say within a building, is called a network. The Internet
is simply the interconnection of many networks–millions of them.

Say you direct the browser on your computer to go to the Cable Network
News (CNN) home page, and you are located in San Francisco. Since CNN
is headquartered in Atlanta, packets of information will go from San Fran-
cisco to Atlanta. (Actually, they may not go that far, since Internet service
providers (ISPs) often cache Web pages, but let’s suppose that doesn’t
occur.) Actually, a packet’s journey will be rather complicated:

• Your browser program will write your Web request to a socket. The
latter is not a physical object, but rather a software interface from
your program to the network.

• The socket software will form a packet from your request, which will
then go through several layers of the network protocol stack in your
OS. Along the way, the packet will grow, as more information is being
added, but also it will split into multiple, smaller packets.

• Eventually the packets will reach your computer’s network interface
hardware, from which they go onto the network.

• A gateway on the network will notice that the ultimate destination is
external to this network, so the packets will be transferred to another
network that the gateway is also attached to.

22

• Your packets will wend their way across the country, being sent from
one network to the next.4

• When your packets reach a CNN computer, they will now work their
way up the levels of the OS, finally reaching the Web server program.

2.5 Latency and Bandwidth

The speed of a communications channel—whether between processor cores
and memory in shared-memory platforms, or between network nodes in a
cluster of machines—is measured in terms of latency, the end-to-end travel
time for a single bit, and bandwidth, the number of bits per second that we
can pump onto the channel.

To make the notions a little more concrete, consider the San Francisco Bay
Bridge, a long, mutlilane structure for which westbound drivers pay a toll.
The notion of latency would describe the time it takes for a car to drive
from one end of the bridge to the other. (For simplificity, assume they all go
the same speed.) By contrast, the bandwidth would be the number of cars
exiting from the toll booths per unit time. We can reduce the latency by
raising the speed limit on the bridge, while we could increase the bandwidth
by adding more lanes and more toll booths.

The network time in seconds to send an n-byte message, with a latency of
l seconds and a bandwidth of b bytes/second, is clearly

l + n/b (2.1)

Of course, this assumes that there are no other messages contending for the
communication channel.

Clearly there are numerous delays in networks, including the less-obvious
ones incurred in traversing the layers of the OS. Such traversal involves
copying the packet from layer to layer, and in cases of interest in this book,
such copying can involve huge matrices and thus take a lot of time.

Though parallel computation is typically done within a network rather than
across networks as above, many of those delays are still there. So, network
speeds are much, much slower than processor speeds, both in terms of
latency and bandwidth.

4Run the traceroute command on your machine to see the exact path, though this
can change over time.

23

The latency in even a fast network such as Infiniband is on the order of mi-
croseconds, i.e. millionths of a second, which is eons compared the nanosec-
ond level of execution time for a machine instruction in a processor. (Be-
ware of a network that is said to be fast but turns out only to have high
bandwidth, not also low latency.)

Latency and bandwidth issues arise in shared-memory systems too. Con-
sider GPUs, for instance. In most applications, there is a lot of data trans-
fer between the CPU and the GPU, with attendant potential for slowdown.
Latency, for example, is the time for a single bit to go from the CPU to the
GPU, or vice versa.

One way to ameliorate the slowdown from long latency delays is latency
hiding. The basic idea is to try to do other useful work while a communi-
cation having long latency is pending. This approach is used, for instance,
in the use of nonblocking I/O in message-passing systems (Section 4.7.1) to
deal with network latency, and in GPUs (Chapter 7) to deal with memory
latency.

2.5.1 Two Representative Hardware Platforms: Mul-
ticore Machines and Clusters

Multicore machines have become standard on the desktop (even in the cell
phone!), and many data scientists have access to computer clusters. What
are the performance issues on these platforms? The next two sections
provide an overview.

2.5.1.1 Multicore

A symmetric multiprocessor system looks something like Figure 2.1 in terms
of components and, most importantly, their interconnection. What do we
see?

• There are processors, depicted by the Ps, in which your program is
physically executed.

• There are memory banks, the Ms, in which your program and data
reside during execution.5

5These were called banks in the old days. Later the term modules became more
popular, but with the recent popularity of GPUs, the word banks has come back into
favor.

24

Figure 2.1: Symmetric Multiprocsssor System

• The processors and memory banks are connected to a bus, a set of
parallel wires used for communication between these computer com-
ponents.

Your input/output hardware—disk drives, keyboards and so on—are also
connected to the bus, and there may actually be more than one bus, but
our focus will be mainly on the processors and memory.

A threaded program will have several instantiations of itself, called threads,
that are working in concert to achieve parallelism. They run independently,
except that they share the data of the program in common. If your program
is threaded, it will be running on several of the processors at once, each
thread on a different core. A key point, as we will see, is that the shared
memory becomes the vehicle for communication between the various pro-
cesses.

Your program consists of a number of machine language instructions. (If
you write in an interpreted language such as R, the interpreter itself consists
of such instructions.) As the processors execute your program, they will
fetch the instructions from memory.

As noted earlier, your data—the variables in your program—is stored in
memory. The machine instructions fetch the data from memory as needed,
so that it can be processed, e.g. summed, in the processors.

Until recently, ordinary PCs sold at your local electronics store followed
the model in Figure 2.1 but with only one P. Multprocessor systems en-
abled parallel computation, but cost hundreds of thousands of dollars. But
then it became standard for systems to have a multicore form. This means
that there are multiple Ps, but with the important distinction that they
are all one a single chip (each P is one core), making for inexpensive sys-

25

tems.6 Whether on a single chip or not, having multiple Ps sets up parallel
computation, and is known as the shared memory paradigm, for obvious
reasons.

By the way, why are there multiple Ms in Figur 2.1? To improve memory
performance, the system is set up so that memory is partitioned into several
banks (typically there are the same number of Ms as Ps). This enables
us to not only do computation on a parallel basis—several Ps working on
different pieces of a problem in parallel—but also to do memory access
in parallel—several memory accesses being active in parallel, in different
banks. This amortizes the memory access penalty. Of course, if more than
one P happens to need to access the same M at about the same time, we
lose this parallelism.

As you can see, a potential bottleneck is the bus. When more than one P
needs to access memory at a time, even if to different banks, attempting
to place memory access requests on the bus, all but one of them will need
to wait. This bus contention can cause significant slowdown. Much more
elaborate systems, featuring multiple communications channels to memory
rather than just a bus, have also been developed and serve to aemliorate
the bottleneck issue. Most readers of this book, however, are more likely
to use a multicore system on a single memory bus.

You can see now why efficient memory access is so crucial factor in achieving
high performance. There is one more tool to handle this that is vital to
discuss here: Use of caches. Note the plural; in Figure 2.1, there is usually
a C in between each P and the bus.

As with uniprocessor systems, caching can bring a big win in performance.
In fact, the potential is even greater with a multiprocessor system, since
caching will now bring the additional benefit of reducing bus contention.
Unfortunately, it also produces a new problem, cache coherency, as follows.7

Consider what happens upon a write hit. The problem is that other caches
may have a copy of this word, so they are now invalid for that block. (Recall
that validity is defined only at the block level; if all words in a block but
one are valid, the whole block is considered invalid.) The hardware must
now inform them that they are invalid for this block; it does so via the bus,
thus incurring an expensive bus operation. Moreover, the next time this
word (or for that matter, any word in this block) is requested at one of the
other caches, there will be a cache miss, again an expensive event.

6Terminology is not standardized, unfortunately. It is common to refer to that chip
as “the” processor, even though there actually are multiple processors inside.

7As noted earlier, there are variations of the structure described here, but this one is
typical.

26

Once again, proper coding on the programmer’s part can sometimes ame-
liorate the cache coherency problem.

A final point on multicore structure: Even on a uniprocessor machine, one
generally has multiple programs running concurrently. You might have your
browser busy downloading a file, say, while at the same time you are using a
photo processing application. With just a single processor, these programs
will actually take turns running; each one will run for a short time, say 50
milliseconds, then hand off the processor to the next program, in a cyclic
manner. (You as the user probably won’t be aware of this directly, but you
may notice the system as a whole slowing down.) Note by the way that if a
program is doing a lot of input/output (e.g. file access), it is effectively idle
during I/O times; as soon as it starts an I/O operation, it will relinquish
the processor.

By contrast, on a multicore machine, you can have multiple programs run-
ning physically simultaneously (though of course they will still take turns
if there are more of them than there are cores).

Say you have threaded program, for example with four threads and a ma-
chine with four cores. Then the four threads will run physically simulta-
neously (if there are no other programs competing with them). That of
course is the entire point, to achieve parallelism.

2.5.1.2 Clusters

These are much simpler to describe, though with equally thorny perfor-
mance obstacles.

The term cluster simply refers to a set of independent processing elements
(PEs) or nodes that are connected by a local area network, such as the
common Ethernet or the high-performance Infiniband. Each PE consists
of a CPU and some RAM. The PE could be a full desktop computer,
including keyboard, disk drive and monitor, but if it is used primarily for
parallel computation, then just one monitor, keyboard and so on suffice for
the entire system. A cluster may also have a special operating system, to
coordinate assigning of user programs to PEs.

We will may have one computational process per PE (unless of course each
PE is a multicore system, as is common). Communication between the
processes occurs via the network. The latter aspect, of course, is where the
major problems occur.

27

2.6 How Many Processes/Threads?

As mentioned earlier, it is customary in the R world to refer to each worker
in a snow program as a process. A question that then arises is, how many
processes should we run?

Say for instance we have a cluster of 16 nodes. Should we set up 16 workers
for our snow program? The same issues arise with threaded programs, say
with Rdsm or OpenMP (Chapters 5) and 6). On a quadcore machine,
should we run 4 threads?

The answer is not automatically Yes to these questions. With a fine-grained
program, using too many processes/threads may actually degrade perfor-
mance, as the overhead may overwhelm the presumed advantage of throw-
ing more hardware at the problem. So, one might actually use fewer cluster
nodes or fewer cores than one has available.

On the other hand, one might try to oversubscribe the resources. As dis-
cussed earlier, a cache miss causes a considerably delay, and a page fault
even more. This is time during which one of the nodes/cores will not be
doing any computation, exacting an opportunity cost from performance. It
may pay, then, to have “extra” threads for the program available to run.

2.7 Example: Mutual Outlink Problem

To make this concrete, let’s measure times for the mutual outlinks problem
(Section 1.3), with larger and larger numbers of processes.

Here I ran on a shared memory machine consisting of four processor chips,
each of which has eight cores. This gives us a 32-core system, and I ran
the mutual outlinks problem with values of nc, the number of cores, equal
to 2, 4, 6, 8, 10, 12, 16, 24, 28 and 32. The problem size was 1000 rows by
1000 columns. The times are plotted in Figure 2.2.

Here we see a classical U-shaped pattern: As we throw more and more
processes on the problem, it helps in the early stages, but performance
actually degrades when after a certain point. The latter phenomenon is
probably due to the communications overhead we discussed earlier, in this
case bus contention and the like.8

By the way, for each of our nc workers, we had one invocation of R running

8Though the processes are independent and do not share memory, they do share the
bus.

28

0.0

2.5

5.0

7.5

10.0

12.5

10 20 30
nc

tim
e

Figure 2.2: Run Time Versus Number of Cores

on the machine. There was also an additional invocation, for the manager.
However, this is not a performance issue in this case, as the manager spends
most of its time idle, waiting for the workers.

2.8 “Big O” Notation

With all this talk of physical obstacles to overcome, such as memory access
time, it’s important also to raise the question as to whether the application
itself is very parallelizable in the first place. One measure of that is “big
O” notation.

In our mutual outlinks example with an n × n adjacency matrix, we need
to do on average n/2 sum operations per row, with n rows, thus n · n/2
operations in all. In parallel processing circles, the key question asked about
hardware, software, algorithms and so on is, “Does it scale?”, meaning,
Does the run time grow manageably as the problem size grows?

We see above that the run time of the mutual outlinks problem grows
proportionally to the square of the problem size, in this case the number of

29

Web sites. (Dividing by 2 doesn’t affect this growth rate.) We write this as
O(n2), known colloquially as “big O” notation. When applied to analysis
of run time, we say that it measures the time complexity.

Ironically, applications that are manageable often are poor candidates for
parallel processing, due to overhead playing a greater role in such problems.
An application with O(n) time complexity, for instance, may present a
challenge. We will return to this notion at various points in this book.

2.9 Data Serialization

Some parallel R packages, e.g. snow, that send data through a network
serialize the data, meaning to convert it to ASCII form. The data must
then be unserialized on the receiving end. This creates a delay, which may
or may not be serious but must be taken into consideration.

2.10 “Embarrassingly Parallel” Applications

The term embarrassingly parallel is heard often in talk about parallel pro-
gramming. It is a central topic, hence deserving of having a separate section
devoted to it.

2.10.1 What People Mean by “Embarrassingly Paral-
lel”

It’s no shame to be poor...but it’s no great honor either—the character
Tevye in Fiddler on the Roof

Consider a matrix multiplication application, for instance, in which we
compute AX for a matrix A and a vector X. One way to parallelize this
problem would be to have each processor handle a group of rows of A,
multiplying each by X in parallel with the other processors, which are
handling other groups of rows. We call the problem embarrassingly parallel,
with the word “embarrassing” meaning that the problem is too easy, i.e.
there is no intellectual challenge involved. It is pretty obvious that the
computation Y = AX can be parallelized very easily by splitting the rows
of A into groups.

By contrast, most parallel sorting algorithms require a great deal of inter-

30

action. For instance, consider Mergesort. It breaks the vector to be sorted
into two (or more) independent parts, say the left half and right half, which
are then sorted in parallel by two processes. So far, this is embarrassingly
parallel, at least after the vector is broken in half. But then the two sorted
halves must be merged to produce the sorted version of the original vector,
and that process is not embarrassingly parallel; it can be parallelized, but
in a more complex, less obvious manner.

Of course, it’s no shame to have an embarrassingly parallel problem! On the
contrary, except for showoff academics, having an embarrassingly parallel
application is a cause for celebration, as it is easy to program.

In recent years, the term embarrassingly parallel has drifted to a somewhat
different meaning. Algorithms that are embarrassingly parallel in the above
sense of simplicity tend to have very low communication between processes,
key to good performance. That latter trait is the center of attention nowa-
days, so the term embarrassingly parallel generally refers to an algorithm
with low communication needs.

2.10.2 Suitable Platforms for Non-Embarrassingly Par-
allel Applications

The only general-purpose parallel computing platform suitable for non-
embarrassingly parallel applications is that of the multicore/multiprocessor
system. This is due to the fact that processor/memory copies have the least
communication overhead. Note carefully that this does not mean there is
NO overhead—if a cache coherency transaction occurs, we pay a heavy
price. But at least the “base” overhead is small.

Still, non-embarrassingly parallel problems are generally tough nuts to
crack. A good, commonplace example is linear regression analysis. Here a
matrix inversion or equivalent such as QR factorization, is tough to paral-
lelze. We’ll return to this issue frequently in this book.

Chapter 3

Principles of Parallel Loop
Scheduling

Many applications of parallel programming, both in R and in general, in-
volve the parallelization of for loops. As will be explained shortly, this at
first would seem to be a very easily programmed class of applications, but
there can be serious performance issues.

First, though, let’s define the class under consideration. Throughout this
chapter, it will be assumed that the iterations of a loop are independent of
each other, meaning that the execution of one iteration is does not use the
results of a previous one.

Here is an example of code that does not satisfy this condition:

t o t a l <− 0
for (i in 1 : n) t o t a l <− t o t a l + x [i]

Putting aside the fact that this computation can be done with R’s sum()
function, the point is that for each i, the computation needs the previous
value of total.

With this restriction of independent iterations, it would seem that we have
an embarrassingly parallel class of applications. In terms of programma-
bility, it is true. Using snow, for example in the mutual Web links code in
Section 1.3.5, we simply called clusterApply() on the range of i that we
had had in our serial loop:

ichunks <− 1 : (nr−1)

31

32

t o t s <− c lus te rApp ly (c l s , ichunks , doichunk)

This distributed the various iterations for execution by the workers. So,
isn’t it equally simple for any for loop?

The answer is no, because different iterations may have widely different
times. If we are not careful, we can end up with a serious load balance
issue. In fact, this was even the case in the mutual Web links code above—
for larger values of i, the function doichunk() has less work to do: In the
(serial) code in Listing 1.3.1, page 5, the matrix multiplication involves a
matrix with n-i rows at iteration i.

This can cause big load balancing problems if we are not careful as to
how we assign iterations to workers, i.e. how we do the loop scheduling.
Moreover, we typically don’t know the loop iteration times in advance, so
the problem of efficient loop scheduling is even more difficult. Methods to
address these issues will be the thrust of this chapter.

3.1 General Notions of Loop Scheduling

Suppose we have k processes and many loop iterations. Suppose too that
we do not know beforehand how much time each loop iteration will take.
Common types of loop scheduling are the following:

• Static scheduling: The assignment of loop iterations to processes is
arranged before execution starts.

• Dynamic scheduling: The assignment of loop iterations to processes
is arranged during execution. Each time a process finishes a loop
iteration, it picks up a new one (or several, with chunking) to work
on.

• Chunking: Assign a group of loop iterations to a process, rather than
a single loop iteration. In dynamic scheduling, say, when a process
becomes idle, it picks up a group of loop iterations to work on next.

• Reverse scheduling: In some applications, the execution time for an
iteration grows larger as the loop index grows. For reasons that will
become clear below, it is more efficient to reverse the order of the
iterations.

Note that while static and dynamic scheduling are mutually exclusive, one
can do chunking and reverse scheduling with either.

33

To make this concrete, suppose we have loop iterations A, B and C, and
have two processes, P1 and P2. Consider two loop schedules:

• Schedule I: Dole out the loop iterations in Round Robin, i.e. cyclic
order—assign A to P1, B to P2 and C to P1, statically..

• Schedule II: Dole out the loop iterations dynamically, one at a time,
as execution progresses. Let us suppose we do this in reverse order,
i.e. C, B and A, because we suspect that their loop iteration times
decrease in this order. (The relevance of this will be seen below.)

Now suppose loop iterations A, B and C have execution times of 10, 20 and
40, respectively. Let’s see how early we would finish the full loop iteration
set, and how much wasted idleness we would have, under both schedules.

In Schedule I, when P1 finishes loop iteration A at time 10, it starts C,
finishing the latter at time 50. P2 finishes at time 20, and then sits idle
during time 20-50.

Under Schedule II, there may be some randomness in terms of which of
P1 and P2 gets loop iteration C. Say it is P1. P1 will execute only loop
iteration C, never having a chance to do more. P2 will do B, then pick
up A and perform that loop iteration. The overall loop iteration set will
be completed at time 40, with only 10 units of idle time. In other words,
Schedule II outperforms Schedule I, both in terms of how soon we complete
the project and how much idle time we must tolerate.

By the way, note that a static version of Schedule II, still using the (C,B,A)
order, would in this case have the same poor performance as Schedule I.

There are two aspects, though, which we must consider:

• As mentioned earlier, typically we do not know the loop iteration
times in advance. In the above example, we had loop iterations in
Schedule II get their work in reverse order, due to a suspicion that C
would take the longest etc. That guess was correct (in this contrived
example), and placing our work queue in reverse order like that turned
out to be key to the superiority of Schedul II in this case.

• Schedule II, and any dynamic method, may exact a substantial over-
head penalty. In snow, for instance, there would need to be commu-
nication between a worker and the manager, in order for the worker to
determine which task is next assigned to it. Static scheduling doesn’t
have this drawback.

34

This is the motivation for chunking in the dynamic case (though it
can be used in the static case too). By assigning loop iterations to
processes in groups instead of singly, processes need to go to the work
queue less often, thus accruing less overhead.

On the other hand, large chunk sizes potentially bring back the prob-
lem of load imbalance. The final chunk handled by each process
may begin at substantially different times from one process to an-
other. This results in some processes incurring idle time—exactly the
problem dynamic scheduling was meant to ameliorate. Thus some
scheduling methods have been developed in which the chunk sizes
decreases over time, saving overhead early in the computation, but
reducing the possibility of substantial load imbalance near the end.
(More on this in Section 6.4.)

3.2 Chunking in Snow

The snow package itself doesn’t provide a chunking capability. This is
easily handled on one’s own, though, which will be seen in our revised
version of our mutual outlinks code.

3.2.1 Example: Mutual Outlinks Problem

Only one line of the code from Section 1.3.5 will be changed, but for con-
venience let’s see it all in one piece:

1 doichunk <− function (ichunk) {
2 to t <− 0
3 nr <− nrow(lnks) # l n k s g l o b a l a t worker
4 for (i in ichunk) {
5 tmp <− l nks [(i +1): nr ,] %∗% l nks [i ,]
6 to t <− to t + sum(tmp)
7 }
8 to t
9 }

10
11 mutoutpar <− function (c l s) {
12 require (p a r a l l e l)
13 nr <− nrow(lnks) # l n k s g l o b a l a t manager
14 c lu s t e rExpor t (c l s , ” lnks ”)
15 ichunks <− c l u s t e r S p l i t (c l s , 1 : (nr−1))

35

16 t o t s <− c lus te rApp ly (c l s , ichunks , doichunk)
17 Reduce (sum, t o t s) / nr
18 }

As before, our function mutoutpar() divides the i values into chunks, but
now they are real chunks, not one i value per chunk as before. It does so
via the snow function clusterSplit():

mutoutpar <− function (c l s) {
require (p a r a l l e l)
nr <− nrow(lnks) # l n k s g l o b a l a t manager
c lu s t e rExpor t (c l s , ” lnks ”)
ichunks <− c l u s t e r S p l i t (c l s , 1 : (nr−1))
t o t s <− c lus te rApp ly (c l s , ichunks , doichunk)
Reduce (sum, t o t s) / nr

}

So, what does clusterSplit() do? Say lnks has 500 rows and we have 4
workers. The goal here is to partition the row numbers 1,2,...,500 into 4
equal (or roughly equal) subsets, which will serve as the chunks of indices
for each worker to process. Clearly, the result should be 1-125, 126-250,
251-375 and 376-500, which will correspond to the values of i in the outer
for loop in our serial code, Listing 1.3.1. Worker 1 will process the outer
loop iterations for i = 1,2,...,125, and so on.

Let’s check this. To save space below, let’s try it on a smaller example,
1,2,...,50:

> c l u s t e r S p l i t (c l s , 1 : 5 0)
[[1]]
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13

[[2]]
[1] 14 15 16 17 18 19 20 21 22 23 24 25

[[3]]
[1] 26 27 28 29 30 31 32 33 34 35 36 37

[[4]]
[1] 38 39 40 41 42 43 44 45 46 47 48 49 50

The call to clusterSplit() returned a list with 4 elements, each of which
is a vector showing the indices to be processed by a given worker. It did
work as expected. Since 50 is not divisible by 4, snow gave me subsets of

36

sizes 13, 12, 12 and 13. The function tries to make the subsets as evenly
divided as possible.

So, again thinking of the case of 500 rows and 4 workers, the code

ichunks <− c l u s t e r S p l i t (c l s , 1 : (nr−1))
t o t s <− c lus te rApp ly (c l s , ichunks , doichunk)

will send the chunk 1:125 to the first worker, 126:250 to the second, 251:375
to the third, and 375:499 to the fourth. The return list, assigned to tots
will now consist of four elements, rather than 499 as before.

Again, the only change from the previous version of this code was to add
real chunks. This ought to help, because it allows us to better leverage
the fact that R can do matrix multiplication fairly quickly. Let’s see if
this turns out to be the case. Here are timings using 8 cores on our usual
32-core machine:

> c8 <− makeCluster (8)
> sim (1000 ,1000 , c8) # without chunking

user system e lapsed
0 .856 0 .196 9 .062

> sim (1000 ,1000 , c8) # with chunking
user system e lapsed

0 .256 0 .028 6 .264

Indeed, we got a speed improvement of about 30%.

3.3 A Note on Code Complexity

In general, chunking reduces overhead. This does also mean an increase in
code complexity in many cases, but it can be very much worthwhile. For
instance, in the example in Section 3.4.5, we find that a nonchunked version
runs more slowly than the serial code, while the chunked version has much
greater speed than the serial one.

Thus the code from here on will sometimes be more complex than what we
have seen before. The algorithms themselves are usually simple, but the
implementation often involves a lot of detail.

Welcome to the world of parallel programming! Working with details is a
fact of life for such programming. But as long as you keep your eye on the
big picture—the main points in the strategy in the design of the code—
you’ll have no trouble following the examples here, and more importantly,

37

writing your own code. You need not be a professional programmer to write
good parallel code; you simply need patience.

On a related note, the reader may be aware of the fact that for loops are
generally avoided by experienced R programmers. In some cases this is
to achieve better speed, but in others the goal is simply to write compact
code, which tends to be easier to read. But the reader should not hesitate
to make liberal use of for loops when the main advantage of non-loop code
would be code compactness. In particular, use of apply() typically does
not bring a speed improvement, and though we use it frequently in this
book, the reader may prefer to stick with good old-fashioned loops instead.

3.4 Example: All Possible Regressions

Consider linear regression analysis, one of the mainstays of statistical method-
ology. Here one tries to predict one variable from others.

A major issue is the choice of predictor variables: On the one hand, one
wants to include all relevant predictors in the regression equation. But on
the other hand, we must avoid overfitting, and a nice, compact, parsimo-
nious equation is desirable.

Suppose we have n observations and p predictor variables. In the all possible
regressions method of variable selection, we fit regression models to each
possible subset of the p predictors, and choose the one we like best according
to some criterion. The one we’ll use in our example here is adjusted R2,
a (nearly) statistically unbiased estimator of the (population value of the)
traditional R2 criterion. In other words, we will choose for our model the
predictor set for which adjusted R2 is largest.

3.4.1 Parallelization Strategies

There are 2p possible models, so the amount of computation could be quite
large—a perfect place to use parallel computation. There are two possibil-
ities here:

(a) For each set of predictors, we could perform the regression compu-
tation for that set in parallel. For instance, all the processes would
work in concert in computing the model using predictors 2 and 5.

(b) We could assign a different collection of predictor sets to each pro-
cess, with the process then performing the regression computations

38

for those assigned sets. So, for example, one process might do the en-
tire computation for the model involving predictors 2 and 5, another
process would handle the model using predictors 8, 9 and 12, and so
on.

Option (a) has problems. For a given set of m predictors, we must first com-
pute various sums of squares and products. Each sum has n summands, and
there are O(m2) sums, making for a computational complexity of O(nm2).
(Recall that this notation was introduced in Section 2.8.) Then a matrix
inversion (or equivalent operation, such as QR factorization) must be done,
with complexity O(m3).1

Unfortunately, matrix inversion is not an embarrassingly parallel operation,
and though many good methods have been developed, it is much easier here
to go the route of option (b). The latter is embarrassingly parallel, and in
fact involves a loop.

Below is a snow implementation of doing this in parallel. It finds the
adjusted R2 value for all models in which the predictor set has size at most
k. The user can opt for either static or dynamic scheduling, or reverse the
order of iterations, and can specify a (constant) chunk size.

3.4.2 The Code

1 # r e g r e s s e s response v a r i a b l e Y column a g a i n s t
2 # a l l p o s s i b l e s u b s e t s o f the Xi p r e d i c t o r v a r i a b l e s ,
3 # with s u b s e t s i z e up through k ; r e t u r n s the
4 # a d j u s t e d R−squared v a l u e f o r each s u b s e t
5
6 # s c h e d u l i n g parameters :
7 #
8 # s t a t i c (c l u s t e r A p p l y ())
9 # dynamic (c lusterApplyLB ())

10 # r e v e r s e the order o f the t a s k s
11 # chunk s i z e (in dynamic case)
12
13 # arguments :
14 # c l s : Snow c l u s t e r
15 # x : matrix o f p r e d i c t o r s , one per column
16 # y : v e c t o r o f the response v a r i a b l e

1In the QR case, the complexity may be O(m2), depending on exactly what is being
computed.

39

17 # k : max s i z e o f p r e d i c t o r s e t
18 # r e v e r s e : TRUE means r e v e r s e the order o f the i t e r a t i o n s
19 # dyn : TRUE means dynamic s c h e d u l i n g
20 # c h u n k s i z e : s c h e d u l i n g chunk s i z e
21 # return v a l u e :
22 # R matrix , showing a d j u s t e d R−squared va lues ,
23 # indexed by p r e d i c t o r s e t
24
25 snowapr <− function (c l s , x , y , k , r e v e r s e=F,dyn=F, chunks ize =1) {
26 require (p a r a l l e l)
27 p <− ncol (x)
28 # genera te matrix o f p r e d i c t o r s u b s e t s , an R l i s t , 1 e lement f o r each
29 # p r e d i c t o r s u b s e t
30 al lcombs <− genal lcombs (p , k)
31 ncombs <− length (a l lcombs)
32 c lu s t e rExpor t (c l s , ” do1pset ”)
33 # s e t up t a s k i n d i c e s
34 ta sk s <− i f (! r e v e r s e) seq (1 , ncombs , chunks ize) else
35 seq (ncombs ,1 ,− chunks ize)
36 i f (!dyn) {
37 out <− c lus te rApp ly (c l s , tasks , dochunk , x , y , al lcombs , chunks ize)
38 } else {
39 out <− clusterApplyLB (c l s , tasks , dochunk , x , y , al lcombs , chunks ize)
40 }
41 # each element o f out c o n s i s t s o f rows showing adj . R2 and the i n d i c e s o f
42 # the p r e d i c t o r s e t t h a t produced i t ; combine a l l t h o s e v e c t o r s i n t o
43 # a matrix
44 Reduce (rbind , out)
45 }
46
47 # genera te a l l nonempty s u b s e t s o f 1 . . p o f s i z e <= k ;
48 # r e t u r n s an R l i s t , one element per p r e d i c t o r se t , in the form of a
49 # v e c t o r o f i n d i c e s
50 genal lcombs <− function (p , k) {
51 al lcombs <− l i s t ()
52 for (i in 1 : k) {
53 tmp <− combn (1 : p , i)
54 al lcombs <− c (al lcombs , m a t r i x t o l i s t (tmp , rc =2))
55 }
56 al lcombs
57 }
58
59 # e x t r a c t s rows (rc =1) or columns (rc =2) o f a matrix , producing a l i s t

40

60 m a t r i x t o l i s t <− function (rc ,m) {
61 i f (rc == 1) {
62 Map(function (rownum) m[rownum ,] , 1 : nrow(m))
63 } else Map(function (colnum) m[, colnum] , 1 : ncol (m))
64 }
65
66 # p roc ess a l l t he p r e d i c t o r s e t s in the a l l combs
67 # chunk whose f i r s t index i s p s e t s s t a r t
68 dochunk <− function (p s e t s s t a r t , x , y , al lcombs , chunks ize) {
69 ncombs <− length (a l lcombs)
70 l a s t t a s k <− min(p s e t s s t a r t+chunksize −1,ncombs)
71 t (sapply (a l lcombs [p s e t s s t a r t : l a s t t a s k] , do1pset , x , y))
72 }
73
74 # f i n d the a d j u s t e d R−squared v a l u e s f o r the g iven
75 # p r e d i c t o r s e t onepse t ; re turn v a l u e w i l l be the adj . R2 value ,
76 # f o l l o w e d by the p r e d i c t o r s e t i n d i c e s , wi th 0 s as f i l l e r −−f o r
77 # convenience , a l l v e c t o r s re turned by c a l l s to do1pse t () have
78 # l e n g t h k+1; e . g . f o r k = 4 , (0 . 2 8 , 1 , 3 , 0 , 0) would mean the p r e d i c t o r
79 # s e t c o n s i s t i n g o f columns 1 and 3 o f x , wi th an R2 v a l u e o f 0.28
80 do1pset <− function (onepset , x , y) {
81 slm <− summary(lm(y ˜ x [, onepset]))
82 n0s <− ncol (x) − length (onepset)
83 c (slm$adj . r . squared , onepset , rep (0 , n0s))
84 }
85
86 # p r e d i c t o r s e t seems b e s t
87 t e s t <− function (c l s , n , p , k , chunks ize =1,dyn=F, r v r s=F) {
88 gendata (n , p)
89 snowapr (c l s , x , y , k , rvrs ,dyn , chunks ize)
90 }
91
92 gendata <− function (n , p) {
93 x <<− matrix (rnorm(n∗p) , ncol=p)
94 y <<− x%∗%c (rep (0 . 5 , p)) + rnorm(n)
95 }

3.4.3 Sample Run

Here is some sample output:

> test(c8,100,4,2)

[,1] [,2] [,3] [,4] [,5]

41

[1,] 0.21941625 1 0 0 0

[2,] 0.05960716 2 0 0 0

[3,] 0.11090411 3 0 0 0

[4,] 0.15092073 4 0 0 0

[5,] 0.26576805 1 2 0 0

[6,] 0.35730378 1 3 0 0

[7,] 0.32840075 1 4 0 0

[8,] 0.17534962 2 3 0 0

[9,] 0.20841665 2 4 0 0

[10,] 0.27900555 3 4 0 0

Here simulated data of size n = 100 was generated, with p = 4 predictors
and a maximum predictor set size of k = 2. The highest adjusted R2 value
was about 0.36, for the model using predictors 1 and 3, i.e. columns 1 and
3 of x.

3.4.4 Code Analysis

As noted in Section 3.3, parallel code does tend to involve a lot of detail,
so it is important to keep in mind the overall strategy of the algorithm. In
the case at hand here, the strategy is as follows:

• The manager determines all the predictor sets of size up to k.

• The manager assigns each worker to handle specified predictor sets.

• Each worker calculates the adjusted R2 value for each of its assigned
predictor sets.

• The manager collects the results, and assembles them into a results
matrix. The ith row of the matrix shows the adjusted R2 values and
their associated predictor sets.

Note that our approach here is consistent with the discussion in Section
1.1, i.e. to have our code leverage the power of R: Each worker calls the R
linear model function lm().

To understand the details, in the following continue to consider the case of
p = 4, k = 2. Also, suppose our chunk size is 2, and we have two workers.
We will use static, nonreverse scheduling.

3.4.4.1 Our Task List

Our main function snowapr() will first call genallcombs() which, as its
name implies, will generate all the combinations of predictor variables, one

42

combination per list element:

> genallcombs(4,2)

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] 3

[[4]]

[1] 4

[[5]]

[1] 1 2

[[6]]

[1] 1 3

[[7]]

[1] 1 4

[[8]]

[1] 2 3

[[9]]

[1] 2 4

[[10]]

[1] 3 4

For example, the last list element says that one of the combinations is (3,4),
corresponding to the model with predictors 3 and 4, i.e. columns 3 and 4
of x.

Thus, the list allcombs is our task list, one task per element of the list.

As mentioned, the basic idea is simple: We distribute these tasks, 10 of
them in this case, to the workers. Each worker then runs regressions on
each of its assigned combinations, and returns the results to the manager,
which coalesces them.

3.4.4.2 Chunking

Here we set up chunking, with the line

ta sk s <− seq (1 , ncombs , chunks ize)

43

In the above example, tasks will be (1,3,5,7,9). Our code will interpret
these numbers as the starting indices of the various chunks, with for exam-
ple 3 meaning the chunk starting at the third combination, i.e. the third
element of allcombs. Since our chunk size is 2 in this example, the chunk
will considst of the third and fourth combinations in allcombs: This chunk
will consist of two single-predictor models, one using predictor 3 and the
other using predictor 4.

3.4.4.3 Task Scheduling

Let us name our two workers P1 and P2, and suppose we use static schedul-
ing, the default for snow. The package implements scheduling in a Round
Robin manner. Recalling that our vector tasks is (1,3,5,7,9), we see that
1 will be assigned to P1, 3 will be assigned to P2, 5 will be assigned to P1,
and so on. Again, note that assigning 3 to P2, for instance, means that
combinations 3 and 4 will be handled by that worker, since our chunk size
is 2.

In our call to snowapr(), we would set chunksize to 2 and set dyn to
FALSE, as we are using static scheduling. We are not reversing the order
of tasks, so we set rvrs to FALSE.

In the dynamic case, at first the assignment will match the static case, with
P1 getting combinations 1 and 2, and P2 being assigned 3 and 4. After that,
though, things are unpredictable. The manager could assign combinations
5 and 6 to either P1 or P2, depending on which worker finishes its initial
combinations first. It’s a “first come, first served” kind of setup. The
snow package includes a variant of clusterApply() that does dynamic
scheduling, named clusterApplyLB() (“LB” for “load balance”).

As seen in the toy example in Section 3.1, it may be advantageous to
schedule iterations in reverse order. This is requested by setting reverse
to TRUE. Since iteration times are clearly increasing in this application,
we should consider using this option.

3.4.4.4 The Actual Dispatching of Work

That brings us to the heart of the code, the snow call

out <− c lus te rApp ly (c l s , tasks , dochunk , x , y , al lcombs , chunks ize)

(and the paired call to clusterApplyLB(), which works the same way).
As mentioned, tasks will be (1,3,5,7,9), each element of which will be fed

44

into the function dochunk() by a worker. P1, as noted, will do this for the
elements 1, 5 and 9, resulting in three calls to dochunk() being made by
P1. In those calls, psetsstart will be set to 1, 5 and 9, respectively.

Note that we’ve written our function dochunk() to have five arguments.
The first one will come from a portion of tasks, as explained above. The
value of that argument will be different for each worker. But the other four
arguments will be taken from the items that follow dochunk in the call

out <− c lus te rApp ly (c l s , tasks , dochunk , x , y , al lcombs , chunks ize)

The values of these arguments will be the same for all workers. The snow
function clusterApply() is structured this way, i.e. with all arguments
following the worker function (dochunk() in this case) being assigned in
common by all workers.

For convenience, here is a copy of the code of relevance right now:

dochunk <− function (p s e t s s t a r t , x , y , al lcombs , chunks ize) {
ncombs <− nrow(a l lcombs)
l a s t t a s k <− min(p s e t s s t a r t+chunksize −1,ncombs)
t (sapply (a l lcombs [p s e t s s t a r t : l a s t t a s k] , do1pset , x , y))

}

do1pset <− function (onepset , x , y) {
slm <− summary(lm(y ˜ x [, onepset]))
n0s <− ncol (x) − length (onepset)
c (slm$adj . r . squared , onepset , rep (0 , n0s))

}

And here again is (part of) what we found earlier for allcombs:

[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3
. . .

Let’s look at what happens when P1 calls dochunk() on the 1 element, i.e.
with psetsstart set to 1:

45

The name psetsstart is meant to evoke “predictor sets start,” alluding
to the fact that our predictor sets here start at element 1 of allcombs, in
which the predictor set is just the singleton predictor 1, since allcombs[[1]]
is just (1). And since lasttask, computed in the call to min(), will be 2, our
second and last predictor set will be the singleton 2. To recap: P1’s work
on the current chunk will consist of first performing a regression analysis
using column 1 of x as a predictor, and then running a regression using
column 2 instead.

Now let’s look at the call to sapply() in dochunk(),

t (sapply (a l lcombs [p s e t s s t a r t : l a s t t a s k] , do1pset , x , y))

The specifies that do1pset() will first be called on allcombs[psetsstart],
then on allcombs[psetsstart+1] etc., up through allcombs[lasttask]. In
other words, do1pset() will be called on each predictor set in this worker’s
chunk of allcombs. In the case at hand, this will be the set {1} and the
set {2}.

Since the return value from do1pset() has a vector type, the results of
sapply() will be arranged in columns. Thus in the end a call to the matrix
transpose function t() is needed.

The function do1pset() itself is fairly straightforward. Note that one of
the components of the object returned by the call to the regression function
lm() and then summary() is adj.r.squared, the adjusted R2 value.

The end result will be that the call to dochunk() with psetsstart equal
to 1 will return rows 1 and 2 of the final output seen in Section 3.4.3.
Thus chunking is handled in this manner, in spite of the lack of a chunking
capability in snow itself.

That’s quite a bit to digest! The partitioning of work due to chunking was
rather intricate, and a nonchunked version would have been much simpler.
But we will find in Section 3.4.5, the chunking is necessary; without it, our
parallel code would be slower than the serial version.

3.4.4.5 Wrapping Up

Back in snowapr(), we use Reduce() to amalgamate the results returned
by the workers (which, as before, will be in list form):

Reduce (rbind , out)

46

3.4.5 Timing Experiments

No attempt will be made here to do an exhaustive analysis, varying all the
factors—n, p, the scheduling methods, chunk size, number of processes and
so on. But let’s explore a little.

Here are some timings with n = 10000, p = 20 and k = 3 on our usual
32-core machine, though only eight cores were used here. As a baseline,
let’s see how long a run takes with just one core (without using snow). A
modified version of the code (not shown), yields the following:

> system.time(apr(x,y,3))

user system elapsed

35.070 0.132 35.295

Now let’s try it on an two-process cluster:

> system.time(snowapr(c2,x,y,3))

user system elapsed

31.006 5.028 77.447

This is awful! Instead of cutting the run time in half, using two processes
actually doubled the time. This is a great example of the problems that
overhead can bring.

Let’s see if dynamic scheduling helps:

> system.time(snowapr(c2,x,y,3,dyn=T))

user system elapsed

33.370 4.844 64.543

A little better, but still slower than the serial version. Maybe chunking will
help?

> system.time(snowapr(c2,x,y,3,dyn=T,chunk=10))

user system elapsed

2.904 0.572 22.753

> system.time(snowapr(c2,x,y,3,dyn=T,chunk=25))

user system elapsed

1.340 0.240 19.677

> system.time(snowapr(c2,x,y,3,dyn=T,chunk=50))

user system elapsed

0.652 0.128 19.692

47

Ah! That’s more like it. It’s not quite clear from this limited experiment
what chunk size is best, but all of the above sizes worked well.

How about an eight-process snow cluster?

> system.time(snowapr(c8,x,y,3,dyn=T,chunk=10))

user system elapsed

3.861 0.568 7.542

> system.time(snowapr(c8,x,y,3,dyn=T,chunk=15))

user system elapsed

2.592 0.284 6.828

> system.time(snowapr(c8,x,y,3,dyn=T,chunk=20))

user system elapsed

1.808 0.316 6.740

> system.time(snowapr(c8,x,y,3,dyn=T,chunk=25))

user system elapsed

1.452 0.232 7.082

This is approximately a five-fold speedup over the serial version, very nice.
Of course, theoretically we might hope for an eight-fold speedup, since we
have eight processes, but overhead prevents that.

By the way, in thinking about the chunk size, it might be useful to check
how many predictor sets we need to do in all:

> length(genallcombs(20,3))

[1] 1350

3.5 Example: All Possible Regressions, Im-
proved Version

We did get good speedups above from parallelization, but at the same time
we should have some nagging doubts. After all, we are doing an awful lot
of duplicate work.

If you have background in the mathematics of linear models (don’t worry
about this if you don’t, as the following will still be readable)), you know
that the vector of estimated regression coefficients is calculated as

β̂ = (X ′X)−1X ′Y (3.1)

(again, or with something like a QR decomposition instead of matrix inver-
sion) where X is the matrix of predictor data (one column per predictor), Y

48

is the vector of response variable values, and the prime symbol means ma-
trix transpose. If we include a constant term in the model, as is standard,
the first column of X consists of all 1s.

The problem is that in each of the calls to lm(), we are redoing part of
this computation. In particular, look at the quantity X ′X. For each set of
predictors we use, we are forming this product for a different set of columns
of X. Why not just do it once for all of X?

For example, say we are currently working with the predictor set (2,3,4).
Let X̃ denote the analog of X for this set. Then it can be shown that
X̃ ′X̃ is equal to the 3x3 submatrix of X ′X corresponding to rows 3-5 and
columns 3-5 of the latter.

So it makes sense to calculate X ′X once and for all, and then extract
submatrices as needed.

3.5.1 Code

1 # r e g r e s s e s response v a r i a b l e Y column a g a i n s t
2 # a l l p o s s i b l e s u b s e t s o f the Xi p r e d i c t o r v a r i a b l e s ,
3 # with s u b s e t s i z e up through k ; r e t u r n s the
4 # a d j u s t e d R−squared v a l u e f o r each s u b s e t
5
6 # t h i s v e r s i o n computes X’X and X’Y f i r s t , and s t o r e s i t a t the workers
7
8 # s c h e d u l i n g methods :
9 #

10 # s t a t i c (c l u s t e r A p p l y ())
11 # dynamic (c lusterApplyLB ())
12 # r e v e r s e the order o f the t a s k s
13 # vary ing chunk s i z e (in dynamic case)
14
15 # arguments :
16 # c l s : c l u s t e r
17 # x : matrix o f p r e d i c t o r s , one per column
18 # y : v e c t o r o f the response v a r i a b l e
19 # k : max s i z e o f p r e d i c t o r s e t
20 # r e v e r s e : True means r e v e r s e the order o f the i t e r a t i o n s
21 # dyn : True means dynamic s c h e d u l i n g
22 # c h u n k s i z e : s c h e d u l i n g chunk s i z e
23 # return v a l u e :
24 # R matrix , showing a d j u s t e d R−squared va lues ,

49

25 # indexed by p r e d i c t o r s e t
26
27 mcapr <− function (c l s , x , y , k , r e v e r s e=F,dyn=F, chunks ize =1) {
28 # add 1 s column
29 x <− cbind (1 , x)
30 xpx <− crossprod (x , x)
31 xpy <− crossprod (x , y)
32 p <− ncol (x) − 1
33 # genera te matrix o f p r e d i c t o r s u b s e t s
34 al lcombs <− genal lcombs (p , k)
35 ncombs <− length (a l lcombs)
36 c lu s t e rExpor t (c l s , ” do1pset1 ”)
37 c lu s t e rExpor t (c l s , ” l i n r e g a d j r 2 ”)
38 # s e t up t a s k i n d i c e s
39 ta sk s <− i f (! r e v e r s e) seq (1 , ncombs , chunks ize) else
40 seq (ncombs ,1 ,− chunks ize)
41 i f (!dyn) {
42 out <− mclapply (tasks , dochunk2 ,
43 x , y , xpx , xpy , al lcombs , chunks ize)
44 } else {
45 out <− clusterApplyLB (c l s , tasks , dochunk2 ,
46 x , y , xpx , xpy , al lcombs , chunks ize)
47 }
48 Reduce (rbind , out)
49 }
50
51 # genera te a l l nonempty s u b s e t s o f 1 . . p o f s i z e <= k ;
52 # r e t u r n s a l i s t , one element per p r e d i c t o r s e t
53 genal lcombs <− function (p , k) {
54 al lcombs <− l i s t ()
55 for (i in 1 : k) {
56 tmp <− combn (1 : p , i)
57 al lcombs <− c (al lcombs , m a t r i x t o l i s t (tmp , rc =2))
58 }
59 al lcombs
60 }
61
62 # e x t r a c t s rows (rc =1) or columns (rc =2) o f a matrix , producing a l i s t
63 m a t r i x t o l i s t <− function (rc ,m) {
64 i f (rc == 1) {
65 Map(function (rownum) m[rownum ,] , 1 : nrow(m))
66 } else Map(function (colnum) m[, colnum] , 1 : ncol (m))
67 }

50

68
69 # p roc ess a l l t he p r e d i c t o r s e t s in the chunk
70 # whose f i r s t index i s p s e t s t a r t
71 dochunk2 <− function (p s e t s t a r t , x , y , xpx , xpy , al lcombs , chunks ize) {
72 ncombs <− length (a l lcombs)
73 l a s t t a s k <− min(p s e t s t a r t+chunksize −1,ncombs)
74 t (sapply (a l lcombs [p s e t s t a r t : l a s t t a s k] , do1pset1 , x , y , xpx , xpy))
75 }
76
77 # f i n d the a d j u s t e d R−squared v a l u e s f o r the g iven
78 # p r e d i c t o r s e t index
79 do1pset1 <− function (onepset , x , y , xpx , xpy) {
80 ps <− c (1 , onepset +1) # account f o r cons tant term
81 x1 <− x [, ps]
82 xpx1 <− xpx [ps , ps]
83 xpy1 <− xpy [ps]
84 ar2 <− l i n r e g a d j r 2 (x1 , y , xpx1 , xpy1)
85 n0s <− ncol (x) − length (ps)
86 # form the r e p o r t f o r t h i s p r e d i c t o r s e t ; need t r a i l n g s 0 s so as to
87 # form matr ices o f uniform numbers o f rows , to use rb ind () in
88 # mcapr ()
89 c (ar2 , onepset , rep (0 , n0s))
90 }
91
92 # f i n d s r e g r e s s i o n e s t i m a t e s ”from s c r a t c h ”
93 l i n r e g a d j r 2 <− function (x , y , xpx , xpy) {
94 bhat <− solve (xpx , xpy)
95 r e s i d s <− y − x %∗% bhat
96 r2 <− 1 − sum(r e s i d s ˆ2)/sum((y−mean(y)) ˆ 2)
97 n <−nrow(x) ; p <− ncol (x) − 1
98 1 − (1− r2) ∗ (n−1) / (n−p−1) # adj R2
99 }

100
101 # which p r e d i c t o r s e t seems b e s t
102 t e s t <− function (c l s , n , p , k , chunks ize =1,dyn=F, r v r s=F) {
103 gendata (n , p)
104 mcapr (c l s , x , y , k , rvrs ,dyn , chunks ize)
105 }
106
107 gendata <− function (n , p) {
108 x <<− matrix (rnorm(n∗p) , ncol=p)
109 y <<− x%∗%c (rep (0 . 5 , p)) + rnorm(n)
110 }

51

3.5.2 Code Analysis

There are only a few changes from the previous code:

• As mentioned, typically regression models include a constant term,
i.e. the β0 in the model

mean response = β0 + β1 predictor1 + β2 predictor2 + ... (3.2)

To accommodate this, the math underpinnings of regression require
that a column of 1s be prepended to the X matrix. This is done via
the line

x <− cbind (1 , x)

in snowapr1().

• Our predictor set indices, e.g. (2,3,4) above, must then be shifted
accordingly in do1pset(), now named do1pset1() in this new code.

ps <− c (1 , onepset +1) # account f o r cons tant term

• Note that R’s crossprod() function is used. Called on matrices A
and B, it computes A′B.

• The function linregadjr2() computes adjusted R2 from the mathe-
matical definition. (The R function lm.fit() could not be used here,
as it would not take advantage of our having already computed X ′X
and X ′Y .)

3.5.3 Timings

Let’s run snowapr1() in the same settings we did earlier for snowapr().
Again, this is for n = 10000, p = 20 and k = 3, all with dyn = T, reverse
= F on an eight-node snow cluster.

chunksize snowapr() snowapr1()
1 39.81 63.67

10 7.54 6.16
15 6.83 4.60
20 6.74 3.39
25 7.08 3.13

52

Aside from an odd increase in the nonchunked case, there was a marked im-
provement. But there’s more: Since the times still seemed to be decreasing
at chunksize = 25, I tried some larger sizes:

> system.time(snowapr1(c8,x,y,3,dyn=T,chunksize=50))
user system elapsed

1.260 0.080 1.632
> system.time(snowapr1(c8,x,y,3,dyn=T,chunksize=75))

user system elapsed
0.804 0.056 1.026

> system.time(snowapr1(c8,x,y,3,dyn=T,chunksize=150))
user system elapsed

0.432 0.020 0.726
> system.time(snowapr1(c8,x,y,3,dyn=T,chunksize=200))

user system elapsed
0.256 0.032 0.633

> system.time(snowapr1(c8,x,y,3,dyn=T,chunksize=350))
user system elapsed

0.112 0.020 0.683
> system.time(snowapr1(c8,x,y,3,dyn=T,chunksize=500))

user system elapsed
0.060 0.028 0.831

So not only did it help to precompute X ′X and X ′Y in terms of improv-
ing corresponding earlier times, it also enables much better exploitation of
chunking.

The reader might wonder whether it would pay to parallelize those com-
putations, i.e. of X ′X and X ′Y . The answer is no for the problem sizes
seen above; the time for serial computation of those two matrices is already
quite small, so overhead would produce a net loss of speed. However, it
may be worthwhile on much larger problems.

3.6 Introducing Another Tool: multicore

As explained in Section 1.3.2, the parallel package was formed from two
contributed R packages, snow and multicore. Now that we’ve seen how
the former works, let’s take a look at the latter. (Note that just as we have
been using snow as a shorthand for “the portion of the parallel package
that was adapted from snow,” we’ll do the same for multicore.)

As the name implies, multicore must be run on a multicore machine. Also,
it’s restricted to Unix-family operating systems, notably Linux and the
Macintosh’s OS X. But with such a platform, you may find that multicore
outperforms snow.2

2One should add, “In the form of snow used so far. More on this below.

53

3.6.1 Source of the Performance Advantage

Unix-family OSs include a system call, i.e. a function in the OS that appli-
cation programmers can call as a service, named fork(). This is fork as in
“fork in the road,” rather than in “knife and fork.” The image the term is
meant to evoke is that of a process splitting into two.

What multicore does is call the OS fork(). The result is that if you call
one of the multicore functions in the parallel package, you will now have
two or more instances of R running on your machine! Say you have a quad
core machine, and you set mc.cores to 4 in your call to the multicore
function mclapply(). You will now have five instances of R running—
your original plus four copies. (You can check this by running your OS’ ps
command.)

This in principle should fully utilize your machine in the current computation—
four child R processes running on four cores. (The parent R process is
dormant, waiting for the four children to finish.)

An absolutely key point is that initially the four child R processes will
be exact copies of the parent. They will have the same values of your
variables, as of the time of the forks. Just as importantly, initially the four
children are actually sharing the data, i.e. are accessing the same physical
locations in memory. (Note the word initially above; any changes made to
the variables by a worker process will NOT be reflected at the manager or
at the other workers.)

To see why that is so important, think again of the all possible regressions
example earlier in this chapter, specifically the improved version discussed
in Section 3.5. The idea there was to limit duplicate computation, by
determining xpx and xpy just once, and sending them to the workers.

But the latter is a possible problem. It may take quite some time to send
large objects to the workers. In fact, shipping the two matrices to the
workers adds even more overhead, since as noted in Section 2.9, the snow
package serializes communication.

But with multicore, no such action is necessary. Because fork() creates
exact, shared, copies of the original R process, they all already have the
variables xpx and xpy! At least for Linux, a copy-on-write policy is used,
which is to have the child processes physically share the data until such time
as it is written to. But in this application, the variables do not change, so
using multicore should be a win. Note that the same gain might be made
for the variable allcombs too.

54

The snow package also has an option based on fork(), called makeFork-
Cluster(). Thus, potentially this same performance advantage can be
attained in snow, using that function instead of makeCluster(). If you
are using snow on a multcore platform, you should consider this option.

3.6.2 Example: All Possible Regressions, Using multi-
core

The workhorse of multicore is mclapply(), a parallel version of lapply().
Let’s convert our previous code to use this function. Since it is largely
similar to snow’s clusterApply(), the changes to our previous code will
be pretty minimal. In fact, since there are no (explicit) clusters, our code
here will be somewhat simpler than the snow version.

Here’s the code:

1 # r e g r e s s e s response v a r i a b l e Y column a g a i n s t
2 # a l l p o s s i b l e s u b s e t s o f the Xi p r e d i c t o r v a r i a b l e s ,
3 # with s u b s e t s i z e up through k ; r e t u r n s the
4 # a d j u s t e d R−squared v a l u e f o r each s u b s e t
5
6 # t h i s v e r s i o n computes X’X and X’Y f i r s t
7
8 # s c h e d u l i n g methods :
9 #

10 # s t a t i c (c l u s t e r A p p l y ())
11 # dynamic (c lusterApplyLB ())
12 # r e v e r s e the order o f the t a s k s
13 # chunk s i z e (in dynamic case)
14
15 # arguments :
16 # x : matrix o f p r e d i c t o r s , one per column
17 # y : v e c t o r o f the response v a r i a b l e
18 # k : max s i z e o f p r e d i c t o r s e t
19 # r e v e r s e : TRUE means r e v e r s e the order o f the i t e r a t i o n s
20 # dyn : TRUE means dynamic s c h e d u l i n g
21 # chunk : chunk s i z e
22 # return v a l u e :
23 # R matrix , showing a d j u s t e d R−squared va lues ,
24 # indexed by p r e d i c t o r s e t
25
26 mcapr <− function (x , y , k , ncores , r e v e r s e=F,dyn=F, chunk=1) {
27 require (p a r a l l e l)

55

28 # add 1 s column to X
29 x <− cbind (1 , x)
30 # f i n d X’X, X’Y
31 xpx <− crossprod (x , x)
32 xpy <− crossprod (x , y)
33 # genera te matrix o f p r e d i c t o r s u b s e t s
34 al lcombs <− genal lcombs (ncol (x)−1 ,k)
35 ncombs <− length (a l lcombs)
36 # s e t up t a s k i n d i c e s
37 ta sk s <− i f (! r e v e r s e) seq (1 , ncombs , chunk) else
38 seq (ncombs ,1 ,− chunk)
39 out <− mclapply (tasks , dochunk2 , x , y , xpx , xpy , al lcombs , chunk ,
40 mc . co r e s=ncores ,mc . pre schedu l e=!dyn)
41 Reduce (rbind , out)
42 }
43
44 # p roc ess a l l t he p r e d i c t o r s e t s in the chunk
45 # whose f i r s t a l l combs index i s p s e t s s t a r t
46 dochunk2 <− function (p s e t s s t a r t , x , y , xpx , xpy , al lcombs , chunk) {
47 ncombs <− length (a l lcombs)
48 l a s t t a s k <− min(p s e t s s t a r t+chunk−1,ncombs)
49 t (sapply (a l lcombs [p s e t s s t a r t : l a s t t a s k] , do1pset2 , x , y , xpx , xpy))
50 }
51
52 # f i n d the a d j u s t e d R−squared v a l u e s f o r the g iven
53 # p r e d i c t o r se t , onepse t
54 do1pset2 <− function (onepset , x , y , xpx , xpy) {
55 ps <− c (1 , onepset +1) # account f o r 1 s column
56 xps <− x [, ps]
57 xpxps <− xpx [ps , ps]
58 xpyps <− xpy [ps]
59 ar2 <− l i n r e g a d j r 2 (xps , y , xpxps , xpyps)
60 n0s <− ncol (x) − length (ps)
61 # form the r e p o r t f o r t h i s p r e d i c t o r s e t ; need t r a i l n g s 0 s so as to
62 # form matr ices o f uniform numbers o f rows , to use rb ind () in
63 # mcapr ()
64 c (ar2 , onepset , rep (0 , n0s))
65 }
66
67 # do l i n e a r r e g r e s s i o n wi th g iven xpx , xpy , re turn adj . R2
68 l i n r e g a d j r 2 <− function (xps , y , xpx , xpy) {
69 # g e t b e ta c o e f f i c i e n t e s t i m a t e s
70 bhat <− solve (xpx , xpy)

56

71 # f i n d R2 and then a d j u s t e d R2
72 r e s i d s <− y − xps %∗% bhat
73 r2 <− 1 − sum(r e s i d s ˆ2)/sum((y−mean(y)) ˆ 2)
74 n <−nrow(xps) ; p <− ncol (xps) − 1
75 1 − (1− r2) ∗ (n−1) / (n−p−1)
76 }
77
78 # genera te a l l nonempty s u b s e t s o f 1 . . p o f s i z e <= k ;
79 # r e t u r n s a l i s t , one element per p r e d i c t o r s e t
80 genal lcombs <− function (p , k) {
81 al lcombs <− l i s t ()
82 for (i in 1 : k) {
83 tmp <− combn (1 : p , i)
84 al lcombs <− c (al lcombs , m a t r i x t o l i s t (tmp , rc =2))
85 }
86 al lcombs
87 }
88
89 # e x t r a c t s rows (rc =1) or columns (rc =2) o f a matrix , producing a l i s t
90 m a t r i x t o l i s t <− function (rc ,m) {
91 i f (rc == 1) {
92 Map(function (rownum) m[rownum ,] , 1 : nrow(m))
93 } else Map(function (colnum) m[, colnum] , 1 : ncol (m))
94 }
95
96 # t e s t data
97 gendata <− function (n , p) {
98 x <<− matrix (rnorm(n∗p) , ncol=p)
99 y <<− x%∗%c (rep (0 . 5 , p)) + rnorm(n)

100 }

As noted, the changes from the snow version are pretty small. References
to clusters are gone, and we no longer export functions like do1pset1()
to the workers, again because the workers already have them! The calls to
clusterApply() have been replaced by mclapply().3

Let’s look at the calls to mclapply();

out <− mclapply (tasks , dochunk2 , x , y , xpx , xpy , al lcombs , chunk ,
mc . co r e s=ncores ,mc . pre schedu l e=!dyn)

3Though mclapply() still has xpx etc. as arguments, what will be copied will just
be pointers to those variables in shared memory; no actual data will be copied. By
contrast, if we run our previous snow code on clusters formed by makeCluster(), the
data will be copies, via the sockets.

57

The call format (at least as used here) is almost identical to that of clus-
terApply(), with the main difference being that we specify the number of
cores rather than specifying a cluster.

As with snow, multicore offers both static and dynamic scheduling, by
setting the mc.preschedule parameter to either TRUE or FALSE, respec-
tively. (The default is TRUE.) Thus here we simply set mc.preschedule
to the opposite of dyn.

In that static case, multicore assigns loop iterations to the cores in a
Round Robin manner as with clusterApply().

For dynamic scheduling, mclapply() initially creates a number of R child
processes equal to the specified number of cores; each one will handle one
iteration. Then, whenever a child process returns its result to the original
R process, the latter creates a new child, to handle another iteration.

Timings:

So, does it work well? Let’s try it on a slightly larger problem than before—
using eight cores again, same n and p, but with k = 5 instead of k = 3.

Here are the better times found in runs of the improved snow version we
developed earlier:

> system.time(snowapr1(c8,x,y,5,dyn=T,chunk=300))
user system elapsed

7.561 0.368 8.398
> system.time(snowapr1(c8,x,y,5,dyn=T,chunk=450))

user system elapsed
5.420 0.228 7.175

> system.time(snowapr1(c8,x,y,5,dyn=T,chunk=600))
user system elapsed

3.696 0.124 6.677
> system.time(snowapr1(c8,x,y,5,dyn=T,chunk=800))

user system elapsed
2.984 0.124 6.544

> system.time(snowapr1(c8,x,y,5,dyn=T,chunk=1000))
user system elapsed

2.505 0.092 6.441
> system.time(snowapr1(c8,x,y,5,dyn=T,chunk=1200))

user system elapsed
2.248 0.072 7.218

Compare to these results for the multicore version:

> system.time(mcapr(x,y,5,dyn=T,chunk=50,ncores=8))
user system elapsed

35.186 14.777 7.259
> system.time(mcapr(x,y,5,dyn=T,chunk=75,ncores=8))

user system elapsed
36.546 15.349 7.236

58

> system.time(mcapr(x,y,5,dyn=T,chunk=100,ncores=8))
user system elapsed

37.218 9.949 6.606
> system.time(mcapr(x,y,5,dyn=T,chunk=125,ncores=8))

user system elapsed
38.871 9.572 6.675

> system.time(mcapr(x,y,5,dyn=T,chunk=150,ncores=8))
user system elapsed

34.458 8.012 5.843
> system.time(mcapr(x,y,5,dyn=T,chunk=175,ncores=8))

user system elapsed
34.754 5.936 5.716

> system.time(mcapr(x,y,5,dyn=T,chunk=200,ncores=8))
user system elapsed

39.834 7.389 6.440

There are two points worth noting here. First, of course, we see that
multicore did better, by about 10%.

But also note that the snow version required much larger chunk sizes in
order to do well. This should make sense, recalling the fact that the whole
point of chunking is to amortize the overhead. Since the snow version has
more overhead, it needs a larger chunk size to get good performance.

3.7 Issues with Chunk Size

We’ve seen here that program performance can be quite sensitive to the
chunk size. So, how does one choose that value?

Data science is full of such vexing questions. Indeed, the example used
earlier, in which we computed all possible regressions, was motivated by
such a question: How do we choose the predictor set? That question has
never been fully settled, despite a plethora of methods that have been
developed. The situation for the chunk size is actually worse, since there
are not even standard (if suboptimal) methods to deal with the problem.

In many applications, one must handle a sequence of problems, not just one.
In such cases, one can determine a good chunk size via experimentation on
the first one or two problems, and then use that chunk size from that point
onward.

Note too that we have not tried the approach of using time-varying chunk
size, mentioned briefly early in this chapter. Recall that the idea is to start
out with large chunks for the early iterations, to reduce overhead, but then
use smaller chunks near the end, to achieve better load balance.

You may wonder if this is even possible in snow or multicore. In fact, it
is. Recall that we could achieve chunking with those two packages, even

59

though neither offered chunking as an option; we simply had to code things
properly.

Consider this simple example: We have 20 iterations and two processes.
We could, say, define our chunks to consist of iterations 1-7, iterations 8-
14, iterations 15-17 and iterations 18-20. In other words, we would have
chunks of size 7, 7, 3 and 3.

Then we would make adjustments to the code accordingly.

So, we could indeed have time-varying chunk size, though at the expense
of more complex coding. And there is no guarantee that the time-varying
chunk size would give us much improvement, if any.

3.8 Example: Parallel Distance Computation

Say we have two data sets, with m and n observations, respectively. There
are a number of applications in which we need to compute the mn pairs
of distances between observations in one set and observations in the other.
(The two data sets will be assumed separate from each other here, but the
code could be adjusted if the sets are the same.)

Many clustering algorithms make use of distances, for example. These tend
to be complex, so in order to have a more direct idea of why distances are
important in many statistical applications, consider nonparametric regres-
sion.

Suppose we are predicting one variable from two others. For simplicity
of illustration, let’s use an example with concrete variables. Suppose we
are predicting human weight from height and age. In essence, this involves
expressing mean weight as a function of height and age, and then estimating
the relationship from sample data in which all three variables are known,
often called the training set. We also have another data set, consisting of
people for whom only height and age are known, called the prediction set;
this is used for comparing the performance of several models we ran on the
training set, without the possible overfitting problem.

In nonparametric regression, the relationship beteen response and predictor
variables is not assumed to have a linear or other parametric form. To guess
the weight of someone in the prediction set, known to be 70 inches tall and
32 years old, we might look at people in our training set who are within,
say, 2 inches of that height and 3 years of that age. We would then take
the average weight of those people, and use it as our predicted weight for

60

the 70-inch tall, age 32 person in our prediction set. As a refinement, we
could give the people in our training sest who are very close to 70 inches
tall and 32 years old more weight in this average.

Either way, we need to know the distances from observations in our training
set to points in our prediction set. Suppose we have n people in our sample,
and wish to predict p new people. That means we need to calculate np
distances, exactly the setting described above. This could involve lots of
computation, so let’s see how we can parallelize it all, shown in the next
section.

3.8.1 The Code

As usual, we hope to write parallel code that leverages existing R serial
functions, in this case pdist().

1 # f i n d s d i s t a n c e s between a l l p o s s i b l e p a i r s o f rows in the matrix
2 # x and rows in the matrix y , as wi th p d i s t () but in p a r a l l e l
3
4 # arguments :
5 # c l s : c l u s t e r
6 # x : data matrix
7 # y : data matrix
8 # dyn : TRUE means dynamic s c h e d u l i n g
9 # chunk : chunk s i z e

10 # return v a l u e :
11 # f u l l d i s t a n c e matrix , as p d i s t o b j e c t
12
13 l ibrary (p a r a l l e l)
14 l ibrary (pd i s t)
15
16 snowpdist <− function (c l s , x , y ,dyn=F, chunk=1) {
17 nx <− nrow(x)
18 ichunks <− npart (nx , chunk)
19 d i s t s <−
20 i f (!dyn) { c lus te rApp ly (c l s , ichunks , dochunk , x , y)
21 } else clusterApplyLB (c l s , ichunks , dochunk , x , y)
22 tmp <− Reduce (c , d i s t s)
23 new(” pd i s t ” , d i s t = tmp , n = nrow(x) , p = nrow(y))
24 }
25
26 # p roc ess a l l rows in ichunk
27 dochunk <− function (ichunk , x , y

61

28) { require (pd i s t)
29 pd i s t (x [ichunk ,] , y) @dist
30 }
31
32 # p a r t i t i o n 1 :m i n t o chunks o f approx . s i z e chunk
33 npart <− function (m, chunk) {
34 require (p a r a l l e l)
35 s p l i t I n d i c e s (m, cei l ing (m/chunk))
36 }

Let’s see how this code works.

First, it builds upon the pdist package, available from R’s CRAN repository
of contributed code. The function pdist() in turn calls Rpdist(), written
in C. Once again, we are heeding the advice in Section 1.1: In building our
parallel code, we take advantage of powerful and efficiently implemented
operations in R.

The basic approach is simple: We break the matrix x into chunks, then use
pdist() to find the distances from rows in each chunk to y. However, we
have some details to attend to in combining the results.

The pdist package defines an S4 class of the same name, the core of which
is the distance matrix. Here is an example of such a matrix:

> x
[,1] [,2]

[1,] 2 5
[2,] 4 3
> y

[,1] [,2]
[1,] 1 4
[2,] 3 1

The distance matrix for these two data sets is

(
1.414214 4.123106
3.162278 2.236068

)
(3.3)

The distance from row 1 of x to row 1 of y is
√

(1− 2)2 + (4− 5)2 =

1.414214, while the distance from row 1 of x to row 2 of y is
√

(3− 2)2 + (1− 5)2 =
4.123106. These numbers form row 1 of the distance matrix, and row 2 is
formed similarly.

The function pdist() computes the distance matrix, returning it as the
dist slot in an object of the class pdist:

62

> pdist(x,y)
An object of class "pdist"
Slot "dist":
[1] 1.414214 4.123106 3.162278 2.236068
attr(,"Csingle")
[1] TRUE

Slot "n":
[1] 2

Slot "p":
[1] 2

Slot ".S3Class":
[1] "pdist"

Note that the distance matrix is given as a one-dimensional vector, stringing
all the rows together. You can convert it to a matrix if you wish:

> d <- pdist(x,y)
> as.matrix(d)

[,1] [,2]
[1,] 1.414214 4.123106
[2,] 3.162278 2.236068

With this in mind, look at the code:

d i s t s <−
i f (!dyn) { c lus te rApp ly (c l s , ichunks , dochunk , x , y)
} else clusterApplyLB (c l s , ichunks , dochunk , x , y)

tmp <− Reduce (c , d i s t s)
new(” pd i s t ” , d i s t = tmp , n = nrow(x) , p = nrow(y))

}

The list dists will contain the results of calling pdist() on the various
chunks. Each one will be an object of class pdist. We need to essentially
take them apart, combine the distance slots, then form a new object of
class pdist.

Since the dist slot in a pdist object contains row-by-row distances any-
way, we can simply use the standard R concatenate function c() to do the
combining. We then use new() to create a grand pdist object for our final
result.

If we simply wanted the distance matrix itself, we’d apply as.matrix() as
the last step in dochunk(), and not call new() in snowpdist().

63

3.8.2 Timings

As before, no attempt will be made here to do a general study of the
efficiency of the code, but below are some sample timings, on 2 and 4 cores.

> genxy
function (n, k)
{

x <<- matrix(runif(n * k), ncol = k)
y <<- matrix(runif(n * k), ncol = k)

}
> genxy(15000,20)
> system.time(pdist(x,y))

user system elapsed
40.459 6.144 46.885

> system.time(snowpdist(c2,x,y,chunk=500))
user system elapsed

15.189 3.156 46.520
> system.time(snowpdist(c4,x,y,chunk=500))

user system elapsed
15.749 3.620 34.537

The 2-node cluster failed to yield a speedup. The 4-node system was faster,
but yielded a speedup of only about 1.36, rather than the theoretical value
of 4.0.

Overhead seemed to have a major impact here, so a larger problem was
investigated, with 50 variables instead of 20, and computing with up to 8
cores:

> genxy(15000,50)
> system.time(pdist(x,y))

user system elapsed
88.925 5.597 94.901

> system.time(snowpdist(c2,x,y,chunk=500))
user system elapsed

16.973 3.832 77.563
> system.time(snowpdist(c4,x,y,chunk=500))

user system elapsed
17.069 3.800 49.824

> system.time(snowpdist(c8,x,y,chunk=500))
user system elapsed

15.537 3.360 32.098

Here even use of only two nodes produced an improvement, and cluster
sizes of 4 and 8 showed further speedups.

3.9 The foreach Package

Yet another popular R tool for parallelizing loops is the foreach package,
available from the CRAN repository of contributed code. Actually foreach

64

is more explicitly aimed at the loops case, as seen from its name, evoking
for loops.

The package has the user set up a for loop, as in serial code, but then use
the foreach() function instead of for(). One must also make one more
small change, adding an operator, %dopar%, but that’s all the user must
do to parallelize his/her serial code.

Thus foreach has a very appealing simplicity. However, in some cases, this
simplicity can mask major opportunities for achieving speedup, as will be
seen in the example in the next section.

3.9.1 Example: Mutual Outlinks Problem

Here is foreach code for the mutual outlinks problem.

1 mutoutfe <− function (l i n k s) {
2 nr <− nrow(l i n k s)
3 nc <− ncol (l i n k s)
4 to t = 0
5 fo r each (i = 1 : (nr−1)) %dopar% {
6 for (j in (i +1): nr) {
7 for (k in 1 : nc)
8 to t <− to t + l i n k s [i , k] ∗ l i n k s [j , k]
9 }

10 }
11 to t / nr
12 }
13
14 s imfe <− function (nr , nc , ncores) {
15 require (doMC)
16 c l s <− makeCluster (ncores)
17 registerMC (co r e s=ncores)
18 lnks <<− matrix (sample (0 : 1 , (nr∗nc) , replace=TRUE) ,nrow=nr)
19 print (system . time (mutoutfe (lnks)))
20 }

The function mutoutfe() above is an adaptation of the serial algorithm
back in Chapter 1:

mutoutser <− function (l i n k s) {
nr <− nrow(l i n k s)
nc <− ncol (l i n k s)
to t = 0

65

for (i in 1 : (nr−1)) {
for (j in (i +1): nr) {

for (k in 1 : nc)
to t <− to t + l i n k s [i , k] ∗ l i n k s [j , k]

}
}
to t / nr

}

The original for loop with index i has now been replaced by foreach and
%dopar%:

f o r each (i = 1 : (nr−1)) %dopar% {

The user does need to also specify the platform to run on, the backend in
foreach parlance. This can be snow, multicore or various other parallel
software systems. This is the flexibility alluded to above—one can use the
same code on different platforms.

To see how this works, here is a function that performs a speed test of the
above code:

s imfe <− function (nr , nc , ncores) {
require (doMC)
registerDoMC (co r e s=ncores)
lnks <<− matrix (sample (0 : 1 , (nr∗nc) , replace=TRUE) ,nrow=nr)
print (system . time (mutoutfe (lnks)))

}

Here we’ve chosen to use the multicore backend. The package doMC
is designed for this purpose. We call registerDoMC() to set up a call
to multicore with the desired number of cores, and then when foreach
within mutoutfe() runs, it uses that multicore platform.

Let’s see how well it works:

> s imfe (500 ,500 ,2)
user system e lapsed

17 .392 0 .036 17 .663
> s imfe (500 ,500 ,4)

user system e lapsed
52 .900 0 .176 13 .578

> s imfe (500 ,500 ,8)
user system e lapsed

62 .488 0 .352 7 .408

66

3.9.2 A Caution When Using foreach

As noted, a strong appeal of foreach is that (for embarrassingly parallel
problems) we can parallelize our serial code by simply changing just a single
line in the latter. We just replace

for (i in i r ange)

by

fo r each (i in i r ange) %dopar%

However, this simplicity can be quite deceiving in some cases.

For instance, the above timings for foreach on the mutual outlinks problem
look good at first; the more cores we use, the shorter the run time. But
something should trouble us here: We are checking one row at a time, i.e.
one value of i at a time, and thus not taking advantage of R’s fast matrix-
multiplication capability, which gave us a dramatic increase in speed back
in Section 1.3.5.

Indeed, the snow version, that did take advantage of matrix multiplication,
is much faster here:

> simsnow
function (nr , nc , ncores) {

require (p a r a l l e l)
lnks <<− matrix (sample (0 : 1 , (nr∗nc) , replace=TRUE) ,nrow=nr)
c l s <− makeCluster (ncores)
print (system . time (mutoutpar (c l s)))

}
> simsnow (500 ,500 ,2)

user system e lapsed
0 .272 0 .076 11 .266

> simsnow (500 ,500 ,4)
user system e lapsed

0 .304 0 .036 6 .008
> simsnow (500 ,500 ,8)

user system e lapsed
0 .348 0 .040 3 .407

Another example is our parallel distance computation in Section (3.8). Ac-
tually, you can see that this is a common scenario, occuring whenever there
is an R function available that works most efficiently on chunks rather than
on individual entities such as matrix rows.

67

The solution of course is easy: We simply incorporate chunking and matrix
multiplication into the foreach version, and then have i range through the
chunks accordingly.

3.10 Another Scheduling Approach: Random
Task Permutation

In situations in which nothing is known in advance about the iteration
times, another possibility would be to randomize the order of the iterations
before the computation begins.

For instance, consider the code in Section 3.4.2:

t a sk s <− i f (! r e v e r s e) seq (1 , ncombs , chunk) else
seq (ncombs ,1 ,− chunk)

nt <− length (ta sk s)
randpermut <− sample (1 : nt , nt , replace=F)
ta sk s <− ta sk s [randpermut]
i f (!dyn) {

out <− c lus te rApp ly (c l s , tasks , dochunk , x , y , al lcombs , chunk)
} else {

out <− clusterApplyLB (c l s , tasks , dochunk , x , y , al lcombs , chunk)

3.10.1 The Math

If you are not interested in the mathematics, this subsection can easily be
skipped, but it may provide insight for those who stay.

Say we have n iterations, with times t1, ..., tn, handled by p processes in
static scheduling. Let π denote a random permutation of (1,...,n), and set

Ti = tπ(i), i = 1, ...n (3.4)

So the Ti are the randomly permuted ti, thus random.

Then our ith process handles iterations πs through πe, where

s = (i− 1)c+ 1 (3.5)

68

and

e = ic (3.6)

with c being the chunk size:

c = n/p (3.7)

(assuming n is divisible by p).

Let µ and σ2 represent the mean and variance of the ti:

µ =
1

n

n∑
i=1

ti (3.8)

σ2 =
1

n

n∑
i=1

(ti − µ)2 (3.9)

Note that these are not the mean and variance of some hypothesized parent
distribution. No probabilistic model is being assumed for the ti; indeed,
they are not even being assumed random. So, µ and σ2 are simply the
mean and variance of the set of numbers t1, ..., tn.

Then Ts, ..., Te form a simple random sample (i.e. without replacement)
from t1, ..., tn. From finite-population sampling theory, the total computa-
tion time Ui for the ith process has mean

cµ (3.10)

and variance

(1− f)cσ2 (3.11)

where f = c/n.

The coefficient of variation of Ui, i.e. its standard deviation divided by its
mean, is then

√
(1− f)cσ2

cµ
→ 0 as c→∞ (3.12)

69

Using standard analysis, say Tchebychev’s Inequality, we know that a ran-
dom variable with small coefficient of variation is essentially constant. Since
c = n/p, then for large n, the Ti are essentially constant. (Here either p is
assumed fixed, or p/n → 0.) In other words, the Random method asympot-
ically achieves full load balance.

Meanwhile, the Random method involves minimum possible scheduling
overhead: A worker communicates only twice with the manager, once to
receive data and once to return the results. In other words, the Random
method is asympotically optimal, in theory.

3.10.2 The Random Method vs. Others, in Practice

The intuition behind the Random method is that in large problems, the
variance between processing time from thread to thread should be small.
This implies good load balance.

Simulation results by the author have shown that the Random method
generally performs fairly well. However, there are no “silver bullets” in the
parallel processing world. Note the following:

• By randomizing the iteration ordering, one might lose some locality
of reference, thus causing poor cache and/or virtual memory perfor-
mance. This might be ameliorated by randomizing chunks instead of
individual iterations.

• In the notation of the previous section, the theoretical justification for
the Random method is based on the variance of the random variables
Ti. Yet load balance involves the maximum of those random variables
(say via the quantity maximum minus minimum), rather than their
variance. For fixed n/p and increasing p, this could result in poor
performance, as the chances of some process taking a long time for
its chunk increase.

It is quite typical that either (a) the iteration times are known to be mono-
tonic or (b) the overhead for running a task queue is small, relative to task
times. In such cases, the Random method may not produce an improve-
ment. However, it’s something to keep in your loop scheduling toolkit.

70

3.11 Debugging snow and multicore Code

Generally debugging any code is hard, but it is extra difficult with parallel
code. Just like a juggler, we have to be good at watching many things
happening at once!

Worse, one cannot use debugging tools directly, such as R’s built-in de-
bug() and browser() functions. This is because our worker code is not
running within a terminal/window environment. For the same reason, even
calls to print() won’t work.

So, let’s see what we can do.

3.11.1 Debugging in snow

Though it is a little clumsy, one can still use browser() in a kind of tricked-
up way. Here is an outline, say for a cluster of 2 workers:

• We insert browser() calls in the code to be executed at the workers.

• When we set up a cluster, we set manual=T in our call to makeClus-
ter().

• That call will create the cluster, and then print out a message inform-
ing us at what IP address the manager is available.

• In 2 other windows on our screen, we start R, with an option to listen
to commands from the manager at the given IP address.

• In each of the 2 worker windows, we instruct the worker act on the
commands sent by the maager.

• In the manager window, we call the code to be executed by the man-
ager. That code will include a call to clusterApply(), or some
othersnow service. This causes the workers to start running our
application!

• The workers will hit the browser() call, and we can then debug as
usual in the two windows.

MORE TO COME, WITH A SCRIPT THAT SEMI-AUTOMATES THE
ABOVE PROCESS.

71

3.11.2 Debugging in multicore

Unfortunately, the above scheme doesn’t work for multicore.

One way around not having print() available is to use cat() and print to
a file. Say we are trying to confirm that a certain variable x has the value
8, which we believe it should if our code is working right. (I call this The
Principle of Confirmation, a fundamental rule in debugging: Step through
the code, checking to see at various points whether the variables have the
values we think they ought to have. Eventually we encounter a place that
doesn’t confirm, giving us a big clue as to the approximate location of the
bug.) We could insert code like

cat (”x i s ” ,x , ”\n” , f i l e=”dbg”)

If we next want to check a variable y we insert code like

cat (”y i s ” ,y , ”\n” , f i l e=”dbg” ,append=T)

Note the append parameter.

We can then inspect the file dbg from another window.

72

Chapter 4

The Message Passing
Paradigm

The scatter-gather paradigm we’ve seen in all our examples so far works
well for many problems, but it can be confining. This chapter will present
more general approaches to parallel computation.

Instead of a situation in which the workers communicate only with the
manager, think now of allowing the workers to send messages to each other
as well. This general case is known as the message passing paradigm, the
subject of this chapter.

A message-passing package will have some kind of send() and receive()
functions for its basic operations, along with variants such as broadcasting
messages to all processes. In addition, there may be functions for other
operations, such as:

• Scatter/gather (Section 1.3.4).

• Reduction, similar to R’s Reduce() function.

• Remote procedure call, in which one process triggers a function call
at another process.

The most popular C-level package for message passing is the Message Pass-
ing Interface (MPI), a collection of routines callable from C/C++. Pro-
fessor Hao Yu of the University of Western Ontario wrote an R package,
Rmpi, that interfaces R to MPI, as well as adding a number of R-specific

73

74

functions. Rmpi will be our main focus in this chapter. (Two other pop-
ular message-passing packages, PVM and 0MQ, also have had R interfaces
developed for them (Rpvm and Rzmq), as well as a very promising new
R interface to MPI, pdbR.)

So with Rmpi, we might have, say, eight machines in our cluster. When we
run Rmpi from one machine, that will then start up R processes on each of
the other machines. This is the same as what happens when we use snow
on a physical cluster.1 The various processes will occasionally exchange
data, via calls to Rmpi functions, in order to run the given application
in parallel. Again, this is the same as for snow, but here the workers can
directly exchange data with each other.

We’ll cover a specific example shortly. But first, let’s follow up on the
discussion of Section 2.5, and note the special issues that arise with message
passing code.

4.1 Performance Issues

Message passing is a software/algorithmic notion, and thus does not imply
any special structure of the underlying hardware platform. So, although
MPI and Rmpi can be run on a multicore machine, which is quite common,
message passing is typically thought of as being run on a cluster, i.e. a
network of independent standalone machines, each having its own processor
and memory. In a small business or university computing lab, for instance,
one may have a number of PCs, connected by a network. Though each PC
runs independently of the others, one can use the network to pass messages
among the PCs, thus forming a parallel processing system. We’ll assume
this situation thoughout.

4.1.1 The Basic Problems

Recall the discussion of network infrastructures in Section 2.4. The network
is, literally, the weakest link, meaning the major source of slowdown.

In data science applications, this delay can be especially acute, as copying
large amounts of data incurs a large time penalty.

1If we use a numeric argument, e.g. makeCluster(8), there will be 8 R processes
created on the manager’s machine.

75

4.1.2 Solutions

Though any set of computers that are networked together may be called
a cluster, the best usage of the terms is for a network of machines that is
dedicated to high-performance parallel computing. Since the machines are
not used individually, one dispenses with the keyboards and monitors, and
places multiple PCs on the same rack.

A more important distinction is that a cluster will typically have a fancier
network than the standard Ethernet used in an office or lab. An example
is InfiniBand. In this technology, the single communications channel is
replaced by multiple point-to-point links, connected by switches.

The fact that there are multiple links means that potential bandwidth is
greatly increased, and contention for a given link is reduced. InfiniBand
also strives for low latency.

Note, though, that even with InfiniBand, latency is on the order of a mi-
crosecond, i.e. a millionth of a second. Since CPU clock speeds are typically
more than a gigaherz, i.e. are capable of billions of operations per second,
even InfiniBand network latency presents considerable overhead.

One way of reducing the overhead arising from the network system soft-
ware is to use remote direct memory access (RDMA), which involves both
nonstandard hardware and software. The name derives from the Direct
Memory Acess devices that are common in even personal computers today.

When reading from a fast disk, for instance, DMA bypasses the “mid-
dleman,” the CPU, and writes directly to memory, a significant speedup.
(DMA devices in fact are special-purpose CPUs in their own right, designed
to copy data directly between an input-output device and memory.) Disk
writes are made faster the same way.

With RDMA, we bypass a different kind of middleman, in this case the
network protocol stack. When reading a message arriving from the network,
RDMA deposits the message directly into the memory used by our program.

4.2 Rmpi

As noted, Rmpi is an R interface to the famous MPI protocol, the lat-
ter normally being accessed via C, C++ or FORTRAN. MPI consists of
hundreds of functions callable from user programs.

Note that MPI also provides network services beyond simply sending and

76

receiving messages. An important point is that it enforces message order.
If say, messages A and B are sent from process 8 to process 3 in that order,
then the program at process 3 will receive them in that order. A call at
process 3 to receive from process 8 will receive A first, with B not being
processed until the second such call.2

This makes the logic in your application code much easier to write. Indeed,
if you are a beginner in the parallel processing world, keep this foremost
in mind. Code that makes things happen in the wrong order (among the
various processes) is one of the most common types of bugs in parallel
programming.

In addition, MPI allows the programmer to define several different kinds of
messages. One might make a call, for instance, that says in essence, “read
the next message of type 2 from process 8,” or even “read the next message
of type 2 from any process.”

Rmpi provides the R programmer with access to such operations, and also
provides some new R-specific messaging operations.

With all that power comes complexity. Rmpi can be tricky to install—and
even to launch—with various platform dependencies to deal with, even in
terms of how the manager launches the workers. These issues, as well as
the plethora of functions available in Rmpi and the plethora of options in
those functions, are beyond the scope of this book. Instead, the hope here
is to present a good introduction to the message-passing paradigm, with
Rmpi as our vehicle.

2This assumes that the calls do not specify message type, discussed below.

77

4.3 Example: Genomics Data Analysis

4.4 Example: Quicksort

4.4.1 The Code

4.4.2 Usage

4.4.3 Timing Example

4.4.4 Latency, Bandwdith and Parallelism

4.4.5 Possible Improvements

4.4.6 Analysis of the Code

4.5 Memory Allocation Issues

Memory allocation is a major issue, both in this application and many
others, thus worth spending some extra here. The problem is that when a
message arrives at a process, Rmpi needs to have a place to put it. If we
call mpi.recv(), we must set up a buffer for it, e.g.

b <− double (100000)
b <− mpi . recv (b , 2 , type=0)

If the receive call is within a loop, the overhead of repeatedly setting up
buffer space may be substantial. This of course would be remedied by
moving the statement

b <− double (100000)

to a position preceding the loop.

With mpi.recv.Robj(), this memory allocation overhead occurs “invisi-
bly.” If the function is called from within a loop, there is potentially a
reallocation at every iteration. So, while this type of receive call is more
convenient, you should not be lulled into thinking there are no memory
issues, exacerbated by the repeated allocation of memory if called within a
look..

78

Thus we may attain better efficiency from mpi.recv() than from mpi.recv.Robj().
(As mentioned earlier, the latter also suffers some slowdown from serializa-
tion.)

On the other hand, if we use mpi.recv() and set the memory allocation
before the loop, we must allocate enough memory for the largest message
that might be received. This may be wasteful of memory, and if memory
space is an issue, this is a problem that must be considered.

4.6 Some Other Rmpi Functions

MPI features many, many functions, and Rmpi features interfaces to most
of them. In addition, Rmpi adds some R-specific functions of its own.
Here we briefly introduce just a few.

Rmpi includes scatter/gather operations, including “vector” versions. Here’s
code run on the manager, in interactive mode, illustrating the ordinary
gather:

First, let’s set up some data, and check it using the remote execution func-
tion, mpi.remote.exec():

have each worker sense i t s rank (MPI ID) , and s t o r e i t in ” id ”
> mpi . bcast . cmd(id <− mpi .comm. rank ())
have a l l wrkrs e x e c u t e ” i d ” ; in Rmpi , r e s u l t s are re turned to the mgr ,
thus p r i n t e d on the screen ; here we are check ing t h a t the workers d id
indeed s e t ” id ” c o r r e c t l y
> mpi . remote . exec (id)
1 1 2
> mpi . bcast . cmd(z <− id + runif (1))
> mpi . remote . exec (z)

X1 X2
1 1.964408 2.789881

Now let’s do a gather operation on that data:

> myrcv <− double (3)
> mpi . bcast . cmd(mpi . gather (x=z , type =2, rdata=double (1)))
> mpi . gather (x=2.5 , type =2, rdata=myrcv)
[1] 2 .500000 1.964408 2.789881
> myrcv
[1] 2 .500000 1.964408 2.789881

79

What just happened here? First, it’s important to understand that all
the processes, both the workers and the manager, participate in the gather
operation. Thus we must pair a remote mpi.gather() call to each worker,
via mpi.bcast.cmd(), with a similar mpi.gather() call at the manager,
which we did.

Second, we are no longer working with objects here; we are working with the
vectors themselves. We are calling mpi.gather(), rather than mpi.gather.Robj().
The difference is that in the latter, the result comes out as the return value
from the call, while in the latter, the result is placed into the rdata argu-
ment (and also returned). Here we took myrcv for that argument, making
sure to allocate enough memory for myrcv first.

(Of course, the fact that the result of the gather was both placed in myrc
and returned would be a problem if we had a large amount of data. We
can suppress that by making the call within invisible().)

Note the different roles of some of the arguments above between the man-
ager and the workers. Since the result of the gather will go to the manager,
not to the workers (an optional argument can be used to change this), the
rdata argument is meaningless for them; we merely put in a placeholder,
a single dummy double. On the other hand, at the manager, we don’t put
in a dummy for the x argument, because it too will be gathered, as seen in
the final output.

The fact that myrcv at the manager is being directly written to is quite
important. We’ll return to this point in Section 5.5.

As mentioned, Rmpi also interfaces to MPI’s ‘v’ variants of scatter/gather.
Here’s an example on the scatter side:

> z <− runif (3)
> mpi . bcast . cmd(id <− mpi .comm. rank ())
> mpi . bcast . cmd(w <− double (id))
> mpi . bcast . cmd(mpi . s c a t t e r v (x=double (1) , scounts =0, type =2, rdata=w))
> mpi . s c a t t e r v (x=z , scounts=c (0 , 1 : 2) , type =2, rdata=double (1))
[1] 0
> mpi . remote . exec (w)
$ s l ave1
[1] 0 .6318092

$ s l ave2
[1] 0 .68236571 0.08751833

Here we wished to scatter the 3-element vector z at the manager to the

80

workers, with one element going to worker 1 and the other two to worker
2. So we allocated space to vectors w (the plural here alluding to the fact
that each worker has its own w), before doing the scatter operation.

The difference between mpi.scatter() and mpi.scatterv() is that the
latter allows the caller to specify what size chunk we wish to go to each
of the recipients. This is defined via the argument scounts (in the case of
mpi.gatherv(), it’s rcounts). In the call

mpi . s c a t t e r v (x=z , scounts=c (0 , 1 : 2) , type =2, rdata=double (1))

we are having the manager parcel out 0, 1 and 2 elements of z to the man-
ager itself and the two workers, respectively. Since the manager will receive
none of the data, we can allow the rdata argument to be a placeholder.
The argument scounts is also a placeholder in the call at the workers.

As you can see, Rmpi is more complex than the packages we’ve seen so
far. But it can be very powerful in some settings.

4.7 Subtleties

In message-passing systems, even an innocuous-looking operations can have
lots of important subtleties. This section will present an overview.

4.7.1 Blocking Vs. Nonblocking I/O

The call

mpi . send (x , type =2, tag =0, des t =8)

send the data in x. But when does the call return? The answer depends on
the underlying MPI implementation. In some implementations, probably
most, the call returns as soon as the space x is reusable, as follows. Rmpi
will call MPI, which in turn will call network-send functions in the operating
system. That last step will involve copying the contents of x to space in
the OS, after which x is reusable. The point is that this may be long before
the receiver has gotten the data.

Other implementations of MPI, though, wait until the destination process,
number 8 in the example above, has received the transmitted data. The
call to mpi.send() at the source process won’t return until this happens.

81

Due to network delays, there could be a large performance difference be-
tween the two MPI implementations. There are also possible implications
for deadlock (Section 4.7.2).

In fact, even with the first kind of implementation, there may be some delay.
For such reasons, MPI offers nonblocking send and receive functions, for
which Rmpi provides the interfaces such as mpi.isend() and mpi.irecv().
This way you can have your code get a send or receive started, do some
other useful work, and then later check back to see if the action has been
completed, using a function such as mpi.test().

4.7.2 The Dreaded Deadlock Problem

Consider code in which processes 3 and 8 trade data:

me <− mpi .comm. rank ()
i f (me == 3) {

mpi . send (x , type =2, tag =0, des t =8)
mpi . recv (y , type =2, tag =0,source=8)

} else i f (me == 8){
mpi . send (x , type =2, tag =0, des t =3)
mpi . recv (y , type =2, tag =0,source=3)

}

If the MPI implementation has send operations block until the matching
receive is posted, then this would create a deadlock problem, meaning that
two processes are stuck, waiting for each other. Here process 3 would start
the send, but then wait for an acknowledgment from 8, while 8 would do
the same and wait for 3. They would wait forever.

This arises in various other ways as well. Suppose we have the manager
launch the workers via the call

mpi . bcast . cmd(dowork , n , d i v i s o r s , msgs ize)

This sends the command to the workers, then immediately returns. By
contrast,

r e s <− mpi . remote . exec (dowork , n , d i v i s o r s , msgs ize)

would make the same call at the workers, but would wait until the workers
were done with their work before returning (and then assigning the results
to res). If we had made the alternative call to launch the workers, and
then tried to send some numbers to a process, we would have a deadlock.

82

Deadlock can arise in shared-memory programming as well (Chapter 5),
but the message-passing paradigm is especially susceptible to it. One must
constantly beware of the possibility when writing message-passing code.

So, what are the solutions? In the example involving processes 3 and 8
above, one could simply switch the ordering:

me <− mpi .comm. rank ()
i f (me == 3) {

mpi . send (x , type =2, tag =0, des t =8)
mpi . recv (y , type =2, tag =0,source=8)

} else i f (me == 8){
mpi . recv (y , type =2, tag =0,source=3)
mpi . send (x , type =2, tag =0, des t =3)

}

MPI also has a combined send-receive operation, interfaced to from Rmpi
via mpi.sendrecv().

Another way out of deadlock is to use the nonblocking sends and/or re-
ceives, at the cost of additional code complexity.

4.8 Introduction to pdbR

TO BE COMPLETED

Chapter 5

The Shared Memory
Paradigm: Introduction
through R

The familiar model for the shared memory paradigm (in the hardware sense)
is the multicore machine. The several parallel processes communicate with
each other by accessing memory (RAM) cells that they have in common
within a machine. This contrasts with message-passing hardware, in which
there are a number of separate machines, with processes communicating
via a network that connects the machines.

Shared-memory programming is considered by many in the parallel pro-
cessing community as being the clearest of the various paradigms available.
Since programming development time is just as important as program run
time, the clear, concise form of the shared-memory paradigm can be a major
advantage.

Another type of shared-memory hardware is accelerator chips, notably
graphics processing units (GPUs). Here one can use one’s computer’s
graphics card not for graphics, but for fast parallel computation of gen-
eral operations, say matrix multiply.

Shared memory programming will be presented in three chapters. This
chapter will present an overview of the subject, and illustrate it with the
R package Rdsm. Though to get the most advantage from shared mem-
ory, one should program in C/C++, Rdsm enables one to achieve shared

83

84

memory parallelism at the R level, which is much easier to program than
C/C++.1 The situation is analogous to MPI; to really exploit MPI’s power,
one should write in C/C++, but writing in R in Rmpi is much easier and
is often “fast enough.”

In addition, Rdsm shows that shared-memory programming can run sig-
nificantly faster than other parallel packages for R.

The following chapter will discuss shared-memory programming in C/C++,
and the third chapter in the set will discuss GPU programming.

5.1 So, What Is Actually Shared?

The term shared memory means that the processors all share a common
address space. Let’s see what that really means.

We won’t deal with machine language in this book, but a quick example
will be helpful. A processor will typically include several registers, which
are like memory cells but located inside the processor. In Intel processors,
one of the registers is named EAX.2 Note that on a multicore machine, each
core will have its own registers, so that for example each core will have its
own independent register named EAX.

Recall from Section 2.5.1.1 that the standard method of programming mul-
ticore machines is to set up threads. These are several instances of the
same program running simultaneously, with the key feature that they share
memory. To see what this means, suppose all the cores are running threads
from our program, and that the latter includes the Intel machine language
instruction

movl 200, %eax

which copies the contents of memory location 200 to the core’s EAX regis-
ter. Remember, there is only one memory location 200, shared by all cores,
but each core has its own separate register set. If core 1 and core 4 happen
to execute this same instruction at about the same time, the contents of
memory location 200 will be copied to both core 1’s EAX and core 4’s EAX
in the above example.

1One can also use FORTRAN, but is usage is much less common in data science.
2Some architectures are not register-oriented, but for simplicity we will assume a

register orientation here.

85

One technical issue that should be mentioned is that most machines today
use virtual addressing, as explained in Chapter 2. Location 200 is actually
mapped by the hardware to a different address, say 5208, during execution.
But since in our example the cores are running threads from the same
program, the virtual address 200 will still map to location 5208, for all of
the cores.

At any rate, the key point is that even though each core has its own separate
register set, all the cores share the same memory, i.e. the same RAM. The
same physical word of memory will be copied to all of the EAXs.

A subtlety here is that in referring to shared variables, we are really talking
about global variables, not local variables declared with a function. The
locals are stored in shared memory too, but they are typically in stack space,
a section of memory referenced via a stack pointer. Since each core has a
separate stack pointer (it is one of the registers), the stacks for the various
threads will be in different sections of memory. Thus in our threads-for-R
package Rdsm to be presented shortly, the local variable y in

f <− function (x) {
. . .
y <− 2
. . .

}

will have a separate, independent instantiation at each thread. An Rdsm
shared variable, by contrast, will have just one instantiation, readable and
writable by all threads, as we’ll see.

In non-shared-memory systems, say a network of workstations on which we
are running Rmpi or snow,3 each workstation has its own memory, and
each one will then have its own location 200, completely independent of
the locations 200 at the other workstations’ memories. Note, though, that
each workstation might be running multicore hardware, in which case we
have a hybrid system.

Note too that we can still run message-passing software such as Rmpi and
snow on a multicore machine (and indeed, did so in earlier chapters). But
in this case we simply are not taking advantage of the shared memory.4 If
we are using Rmpi, for instance, our several processes will not be threads,

3Recall that we use snow to refer to the portion of R’s parallel package that origi-
nated as a package named snow.

4You may recall that if we create a snow cluster using makeForkCluster(); our
globals are initially shared among the workers, but changes made by the workers to the
globals won’t be shared.

86

and virtual location 200 might map to 5208 on one core but 28888 on
another.

5.2 Clarity and Conciseness of Shared-Memory
Programming

The shared-memory programming world view s considered by many in the
parallel processing community to be one of the clearest forms of parallel
programming.5 Let’s see why.

Suppose for instance we wish to copy x to y. In a message-passing set-
ting such as Rmpi, x and y may reside in processes 2 and 5, say. The
programmer might write code like

mpi . send . Robj (x , tag =0, des t =5)

to run on process 2, and write code

y <− mpi . recv . Robj (tag =0,source=2)

to run on process 5. By contrast, in a shared-memory environment, the
variables x and y would be shared, and the programmer would merely
write for process 5

y <− x

What a difference! Now that x and y are shared by the processes, we can
access them directly, making our code vastly simpler.

Note carefully that we are talking about human efficiency here, not machine
efficiency. Use of shared memory can greatly simplify our code, with far less
clutter, so that we can write and debug our program much faster than we
could in a message-passing environment. That doesn’t necessarily mean our
program itself has faster execution speed. We may have cache performance
issues, for instance; we’ll return to this point later.

It will turn out, though, that Rdsm can indeed enjoy a speed advantage
over other parallel R packages for some applications. We’ll return to this
issue in Section 5.5.

5See Chandra, Rohit (2001), Parallel Programming in OpenMP, Kaufmann, pp.10ff
(especially Table 1.1), and Hess, Matthias et al (2003), Experiences Using OpenMP
Based on Compiler Directive Software DSM on a PC Cluster, in OpenMP Shared Memory
Parallel Programming: International Workshop on OpenMP Applications and Tools,
Michael Voss (ed.), Springer, p.216.

87

5.3 High-Level Introduction to Shared-Memory
Programming: Rdsm Package

Though one sometimes needs to write directly in C/C++ in order to truly
maximize speed, it is highly desirable to stay within R whenever possible, in
order to leverage R’s powerful data manipulation and statistical operations.
This is the philosophy underlying R packages such as Rmpi and snow.

However, those are message-passing approaches, and as mentioned above,
the inherent simplicity of the shared-memory programming paradigm makes
it highly desirable to get what many consider the best of both worlds—
working in shared memory but writing in R. At the time of this writing,
my package Rdsm is the only such package. You can download it from the
R contributed package repository, CRAN.

R itself is not threaded (or more accurately, R does not make threading
available at the R programming level). But Rdsm brings threads pro-
gramming to R. In addition to Rdsm’s direct value as a parallel package
for R, it is also useful for us here in this chapter as a gentle introduction
to shared-memory programming. The fact that R does the heavy lifting
in terms of data and statistical operations means we can focus on learning
shared-memory coding, more clearly than if we began with C/C++.

Rdsm version 2.0.0 is used here, as it has an easy user interface. Ironically,
the shared-memory package Rdsm uses the message-passing software snow
for some infrastructure.

5.3.1 Use of Shared Memory

As with snow and Rmpi, in Rdsm each process is a separate, independent
instantiation of R. However, the difference is that with Rdsm, the processes
share variables.

Modern operating systems allow the programmer to request that a chunk
of memory be made available on a shared basis by any process that holds a
certain code, a key. The bigmemory package in R’s CRAN code repository
enables this for R programmers. Rdsm builds on this.

Specifically, the Rdsm programmer makes a certain call to set up each
shared variable, and snow is used to distribute the associated keys to the
Rdsm threads, thus enabling the threads to share variables!

The shared variables must take the form of matrices, a bigmemory con-

88

straint. Of course, one can still have a shared scalar, as a 1 × 1 matrix. A
shared matrix will have the type big.matrix.

Note that one must use brackets in referencing the shared matrices. For
instance, to print the shared matrix m, write

print (m[,])

rather than

print (m)

The latter just prints out the location of the shared memory object.

As will be seen below, snow is also used as the mechanism to launch the
threads themselves.

Though Rdsm is intended to run on shared-memory machines, bigmem-
ory enables shared variables with the storage in disk files. Thus Rdsm
can also be used to provide the shard-memory world view on a distributed
system, e.g. clusters.

5.4 Example: Matrix Multiplication

The standard “Hello World” example of the parallel processing community
is matrix multiplication. Here is the Rdsm code, along with a small test.

5.4.1 The Code

1 # matrix m u l t i p l i c a t i o n ; the product u %∗% v i s computed on the
2 # snow c l u s t e r c l s , and w r i t t e n in−p l a c e in w; w i s a
3 # b i g . matrix o b j e c t
4
5 mmulthread <− function (u , v ,w) {
6 require (p a r a l l e l)
7 # determine which rows t h i s thread w i l l handle
8 myidxs <− s p l i t I n d i c e s (nrow(u) , myinfo$nwrkrs) [[myinfo$ id]]
9 w[myidxs ,] <− u [myidxs ,] %∗% v [,]

10 0 # don ’ t do e x p e n s i v e re turn o f r e s u l t
11 }
12
13 t e s t <− function (c l s) {

89

14 mgr in i t (c l s)
15 mgrmakevar (c l s , ”a” , 6 , 2)
16 mgrmakevar (c l s , ”b” ,2 , 6)
17 mgrmakevar (c l s , ”c” , 6 , 6)
18 a [,] <− 1 :12
19 b [,] <− rep (1 , 12)
20 c lu s t e rExpor t (c l s , ”mmulthread”)
21 c lusterEvalQ (c l s , mmulthread (a , b , c))
22 print (c [,]) # not p r i n t (c) !
23 }

Here is a test run:

> l ibrary (Rdsm)
> c2 <− makeCluster (2)
> source (”˜/R/Rdsm/examples/MMul.R”)
> t e s t (c2)

[, 1] [, 2] [, 3] [, 4] [, 5] [, 6]
[1 ,] 8 8 8 8 8 8
[2 ,] 10 10 10 10 10 10
[3 ,] 12 12 12 12 12 12
[4 ,] 14 14 14 14 14 14
[5 ,] 16 16 16 16 16 16
[6 ,] 18 18 18 18 18 18

Here we first set up a two-node snow cluster c2. Remember, with snow
this is not necessarily a physical cluster, and in this case, it will be entirely
on our multicore machine.

The code test() is run as the snow manager. It creates shared variables,
then uses snow to launch the Rdsm threads.

5.4.2 Setup

The setup phase in Rdsm here involves the following.

First, Rdsm’s mgrinit() is called to initialize the Rdsm system, after
which we use the Rdsm function mgrmakevar() to create three matrices
in shared memory, a, b and c (a and b could have been nonshared). This
action will distribute the necessary keys, and the sizes of the shared objects,
to the snow worker nodes.

Then snow’s clusterEvalQ() is used to launch the threads.6 On a quad-

6Another example of remote procedure call, mentioned in Chapter 4.

90

core machine running four Rdsm threads, for example, mmulthread()
will run on all threads at once (though it probably won’t be the case that
all threads are running the same line of code simultaneously).

5.4.3 The App Code

Now, how does mmulthread() work? The basic idea is break the rows
of the argument matrix u into chunks, and have each thread work on one
chunk.7 Say there are 1000 rows, and we have a quadcore machine (on
which we’ve set up a four-node snow cluster). Thread 1 would handle
rows 1-250, thread 2 would work on rows 251-500 and so on. The chunks
are assigned in the code

myidxs <− s p l i t I n d i c e s (nrow(u) , myinfo$nwrkrs) [[myinfo$ id]]

calling the snow function splitIndices(). For example, the value of myidxs
at thread 2 will be 251:500. The built-in Rdsm variable myinfo is an R
list containing nwrkrs, the total number of threads, and id, the ID number
of the thread. On thread 2 in our example here, those numbers will be 4
and 2, respectively.

The reader should note the “me, my” point of view that is key to threads
programming. Remember, each of the threads is (more or less) simulta-
neously executing mmulthread(). So, the code in that function must be
written from the point of view of a particular thread. That’s why we put
the “my” in the variable name myidxs. We’re writing the code from the
anthropomorphic view of imagining ourselves as a particular thread exe-
cuting the code. That thread is “me,” and so the row indices are “my”
indices, hence the name myidxs.

Each thread multiplies v by the thread’s own chunk of u, placing the result
in the corresponding chunk of w:

w[myidxs ,] <− u [myidxs ,] %∗% v [,]

As noted in Section 5.2, unlike a message-passing approach, here we have no
shipping of objects back and forth among threads; the objects are “already
there,” and we access them simply and directly.

Note in particular that the product matrix w is NOT part of the return
value of the function. Instead, it is simply there in the matrix that the
manager specified for w in the call to mmulthread(), in this case c. Hence
in the code

7Some parallel algorithms partition both u and v. See Chapter 9.

91

c lusterEvalQ (c l s , mmulthread (a , b , c))
print (c [,])

we can simply print c to see the product of a and b.

5.4.4 A Closer Look at the Shared Nature of Our Data

As noted, the matrix w is not returned to the caller. Instead, it is simply
available directly as a shared variable to all parties who hold the key for
that variable.

Let’s look at that a little more closely, running our test code through the
debugger:

> debug(t e s t)
> t e s t (c2)
debugging in : t e s t (c2)
. . .
debug at MM. tex#16: mgrmakevar (c l s , ”c ” , 6 , 6)
Browse [2]> n
debug at MM. tex#17: a [,] <− 1:12
Browse [2]> print (c)
An ob j e c t o f class ” big . matrix ”
S l o t ” address ” :
<po in t e r : 0 x105804ce0>

As mentioned, Rdsm variables are big.matrix objects, of R’s S4 class
type. We see above that the big.matrix class consists primarily of a mem-
ory address, 0x105804ce0 in this case, which is the location of the actual
shared matrix (and its associated information, such as the numbers of rows
and columns).8 Let’s see who accesses that memory address:

The line

c lusterEvalQ (c l s , mmulthread (a , b , c))

executed by the manager, commands each worker to execute

mmulthread (a , b , c)

8Readers who are well-versed in languages such as C may be interested in how the
address is actually used. Basically, in R the array-access operations are themselves
functions. As such, they can be overridden, as with operator overloading in C++, and
bigmemory uses this approach to redirect expressions like w[2,5] to shared memory
accesses.

92

When they do so, the variable c in the call will be w within mmulthread(),
and thus references to w will again be via that same address, 0x105804ce0.
As you can see, then, all of the threads are indeed sharing this matrix, as
is the manager, since they are all accessing this spot in memory. So for
example if any one of these entities writes to that shared object, the others
will see the new values.

A side note: “Traditionally,” R is a functional language, (mostly) free of
side effects. To explain this concept, consider a function call f(x). Any
change that f() makes to x does not change the value of x in the caller.
If it could change, this would be a side effect of the call, a commonplace
occurrence in languages such as C/C++ but not in R. If we do want x to
change in the caller, we must write f() to reurn the changed value of x, and
then in the caller, reassign it, e.g.

x <− f (x)

As seen above, the bigmemory package, and thus Rdsm, do produce side
effects.

R has never been 100% free of side effects, e.g. due to use of the <<−
operator, and the number of exceptions has been increasing. The big-
memory and data.table packages are examples, as is R’s new reference
classes. The motivation of allowing side effects is to avoid expensive copy-
ing of a large object when one changes only one small component of it. This
is especially true for our parallel processing context; as mentioned earlier,
needless copying of large objects can rob a parallel program of its speed.

The Rdsm package includes instructions for saving a key to a file and then
loading it from another invocation of R on the same machine. The latter
will then be able to access the shared variable as well.

5.4.5 Timing Comparison

We won’t do extensive timing experiments here, but let’s just check that
the code is indeed providing a speedup:

> n <− 5000
> m <− matrix (runif (n ˆ2) , ncol=n)
> system . time (m %∗% m)

user system e lapsed
345.077 0 .220 346.356
> c l s <− makeCluster (4)
> mgr in i t (c l s)

93

> mgrmakevar (c l s , ”msh” ,n , n)
> mgrmakevar (c l s , ”msh2” ,n , n)
> msh [,] <− m
> c lu s t e rExpor t (c l s , ”mmulthread”)
> system . time (c lusterEvalQ (c l s , mmulthread (msh , msh , msh2)))

user system e lapsed
0 .004 0 .000 91 .863

So, a fourfold increase in the number of cores yielded almost a fourfold
increase in speed, very good.

5.4.6 Leveraging R

It was pointed out earlier that a good reason for avoiding C/C++ if possible
is to be able to leverage R’s powerful built-in operations. In this example,
we made use of R’s built-in matrix-multiply capability, in addition to its
ability to extract subsets of matrices.

This is a common strategy. To solve a big problem, we break it into smaller
ones of the same type, apply R’s tools to the small problems, and then
somehow combine to obtain the final result. This of course is a general
parallel processing design pattern, but with a difference in that we need to
find appropriate R tools. R is an interpreted language, thus with a tendency
to be slow, but its basic operations typically make use of functions that are
written in C, which are fast. Matrix multiplication is such an operation, so
our approach here does work well.

5.5 Shared Memory Can Bring A Performance
Advantage

In addition to the tendency of shared-memory code to be clearer and more
concise, in many applications we can reap a significantly performance gain
as well. Message-passing systems by definition do a lot of copying of data,
sometimes very large amounts of data, that is often unnecessary. With
shared memory, we can read and write our needed data directly, as we saw
earlier.

Note, though, that shared-memory access may involve hidden data copying.
Each cache coherency transaction involves copying of data, and if such
transactions occur frequently, it can add up to large amounts. Indeed, some

94

of that copying may be unnecessary, say when a cache block is brought in
but never used much afterward. Thus shared-memory programming is not
necessarily a “win,” but it will become clear below that it can be much
faster for some applications, relative to other R parallel packages such as
snow, multicore, foreach and even Rmpi.

To see why, here is a version of mmulthread() using the snow package:

snowmmul <− function (c l s , u , v) {
require (p a r a l l e l)
idxs <− s p l i t I n d i c e s (nrow(u) , length (c l s))
mmulchunk <− function (idxchunk) u [idxchunk ,] %∗% v
r e s <− c lus te rApp ly (c l s , idxs , mmulchunk)
Reduce (rbind , r e s)

}

This test code was used:

testcmp <− function (c l s , n) {
require (Rdsm)
require (p a r a l l e l)
mgr in i t (c l s)
mgrmakevar (c l s , ”a” ,n , n)
mgrmakevar (c l s , ”c” ,n , n)
amat <− matrix (runif (n ˆ2) , ncol=n)
a [,] <− amat
c lu s t e rExpor t (c l s , ”mmulthread”)
print (system . time (c lusterEvalQ (c l s , mmul(a , a , c))))
print (system . time (cmat <− snowmmul(c l s , amat , amat)))

}

It turns out to be considerably slower than the Rdsm implementation, as
seen in Table 5.1.

The results are for various sizes of nxn matrices, and various numbers of
cores.

One of the culprits is the line

Reduce (rbind , r e s)

in the snow version. This involves a lot of copying of data, and possibly
worse, multiple allocation of large matrices, greatly sapping speed. This
is in stark contrast to the Rdsm case, in which the threads directly write
their chunked-multiplication results to the desired output matrix. Note
that the Reduce() operation itself is done serially, and though we might

95

n # cores Rdsm time Snow time
2000 8 4.640 6.398
3000 16 10.892 18.010
3000 24 8.778 19.001

Table 5.1: Rdsm vs. snow

try to parallelize that too, that itself would require lots of copying, and
thus may be difficult to make work well.

This of course was not a problem particular to snow. The same Reduce()
operation or equivalent would be needed with multicore, foreach (using
the .combine option), Rmpi and so on.9 Rdsm, by writing the results
directly to the desired output, avoids that problem.

It is clear that there are many applications with similar situations, in which
tools like snow etc. do a lot of serial data manipulation following the
parallel phase. In addition, iterative algorithms, such as k-means clustering
(Section 10.2) involve repeated alternating between a serial and parallel
phase. Rdsm should typically give faster speed than do the others in these
applications.

We should not overlook Rmpi. Its mpi.gather() and mpi.gatherv()
functions deposit items directly into their ultimate intended destination, as
we saw in Chapter 4. But we would still need to spend time copying the
two multiplicands to the workers.

The shared-memory vs. message-passing debate is a long-running one in
the parallel processing community. It has been traditional to argue that the
shared-memory paradigm doesn’t scale well (Section 2.8), but the advent
of modern multicore systems, especially GPUs, has done much to counter
that argument.

9With multicore, we would have a little less copying, as explained in Section 3.6.1.

96

5.6 Locks and Barriers

These are two central concepts in shared-memory programming. To explain
them, we begin with the concept of race conditions.

5.6.1 Race Conditions and Critical Sections

Consider software to manage online airline reservations, and for simplicity,
assume there is no overbooking of seats. At some point in the program,
there will be a section consisting of one or more lines of code whose purpose
is to perform the actual reservation of a seat: The customer’s name and
other data are entered into the database for the given flight on the given
day. That section of code is known as a critical section, for the following
reason.

Imagine a scenario in which two customers who want the given flight on the
given day log in to the reservation system at about the same time. Each of
them will be running a separate thread of the program (though of course
they won’t be aware of this). Suppose only one seat is left on the flight.
It could happen that each thread finds that there is a seat remaining on
the flight, and thus each thread enters the critical section—and thus each
thread books its customer for the flight! One of the threads will be slightly
ahead of the other, and the later thread will overwrite what the earlier one
wrote. In other words, the first customer thinks she has successfully booked
the flight, but actually has not.

Now you can see why such a section of code is called “critical.” It is fraught
with danger, with the situation being known as a race condition. (Sorry,
you will be bombarded with terminology in the next few paragraphs.)

Also, we say that the problem with the flight reservations above stemmed
from a failure to update the reservation records atomically. The Greek
word atom means “indivisible,” and the allusion here is that trouble may
arise if we “divide” the read (checking for availability of a seat) and write
(committing the seat to the customer) phases in the critical section, as op-
posed to doing both phases in one indivisible action. Doing that atomically
would mean that a thread does the read and write as an indivisible pair,
without having any other thread being able to act between the two phases.

97

5.6.2 Locks

What we need to avoid race conditions is a mechanism that will limit access
to the critical section to only one thread at a time, i.e. mutual exclusion.
A common mechanism is a lock variable or mutex. Most thread systems
include functions lock() and unlock(), applied to a lock variable. Just
before a critical section, one inserts a call to lock(), execution of which
will work as follows.

Supppose the lock variable is already locked, due to some other thread
currently being inside the critical section. Then the thread making the call
to lock() will block, meaning that it will just freeze up for the time being,
not returning yet. When the thread currently in the critical section finally
exits, it will call unlock(), and the blocked thread will now unblock: This
thread will enter the critical section, and relock the lock, so that any other
thread trying to get in will block.

To make this concrete, consider this toy example, in Rdsm. We’ve initial-
ized Rdsm as a two-thread system, c2, and set up a 1x1 shared variable
tot. The code simply repeatedly adds 1 to the total, n times, and thus
should have a final value of n.

t h i s f u n c t i o n i s not r e l i a b l e ; i f 2 t h r e a d s both t r y to
increment the t o t a l a t about the same time , they cou ld
i n t e r f e r e wi th each o th er

s <− function (n) {
for (i in 1 : n) {

to t [1 , 1] <− to t [1 , 1] + 1
}

}

l ibrary (p a r a l l e l)
c lu s t e rExpor t (c2 , ” s ”)
to t [1 , 1] <− 0
c lusterEvalQ (c2 , s (1000))
to t [1 , 1] # shou ld be 2000 , but l i k e l y f a r from i t

I did two runs of this. On the first one, the final value of tot[1,1] was 1021,
while the second time it was 1017. Neither time did it come out 2000 as it
“should.” Moreover, the result was random.

The problem here is that the action

98

to t [1 , 1] <− to t [1 , 1] + 1

is not atomic. We could have the following sequence of events:

thread 1 reads tot[1,1], finds it to be 227

thread 2 reads tot[1,1], finds it to be 227

thread 1 writes 228 to tot[1,1]

thread 2 writes 228 to tot[1,1]

Here, tot[1,1] should be 229, but is only 228. No wonder in the experiments
above, the total turned out to fall far short of the correct number, 2000.

But with locks, everything works fine:

here i s the r e l i a b l e vers ion , surrounding the
increment by l o c k and unlock , so on ly 1 thread
can e x e c u t e i t a t once
s1 <− function (n) {

for (i in 1 : n) {
r ea l rdsmlock (” t o t l o c k ”)
to t [1 , 1] <− to t [1 , 1] + 1
rea l rdsmunlock (” t o t l o c k ”)

}
}

mgrmakelock (c2 , ” t o t l o c k ”)

to t [1 , 1] <− 0
c lu s t e rExpor t (c2 , ” s1 ”)
c lusterEvalQ (c2 , s1 (1000))
to t [1 , 1] # w i l l p r i n t out 2000 , the c o r r e c t number

Here we call the Rdsm function mgrmakelock() to create a lock variable
(we need to name it, as we may have several lock variables in a program),
and then call Rdsm’s lock and unlock functions before and after adding
1 to the current total. Those latter two calls render the add-1-to-total
operation atomic, and resulting code works properly.

5.6.3 Barriers

Another key structure is that of a barrier, which is used to synchronize
all the threads. Suppose for instance that we need one thread to perform

99

some special action, but that we need to have the other threads wait for
that action to be performed. The threads system will provide a function to
call that accomplishes this. In Rdsm, this function is named barr(), and
when a thread calls it, the thread will block until all threads have called it.
Afterward, they all proceed to the next line of code.

Note that internally a barrier needs to be implemented with a lock. You,
the application programmer, won’t see the lock (unless you’re curious),
but you do need to be aware that it is there, as locks adversely impact
performance.

5.7 Example: Finding the Maximal Burst in
a Time Series

Consider a time series of length n. We may be interested in bursts, periods
in which a high average value is sustained. We might stipulate that we look
only at periods of length k consecutive points, for a user-specified k. So,
we wish to find the period of length k that has the maximal mean value.

5.7.1 The Code

Once again, let’s leverage the power of R. The zoo time series package
includes a function rollmean(w,m), which returns all the means of blocks
of length k, i.e. what are usually called moving averages—just what we
need.

Here is the code:

1 # Rdsm code to f i n d max b u r s t in a time s e r i e s ;
2
3 # arguments :
4
5 # x : data v e c t o r
6 # k : b l o c k s i z e
7 # mas : s c r a t c h space , shared , 1 x (l e n g t h (x)−1)
8 # r s l t s : 2− t u p l e showing the maximum b u r s t va lue , and
9 # where i t s t a r t s ; shared , 1 x 2

10
11 maxburst <− function (x , k , mas , r s l t s) {
12 require (Rdsm)
13 require (zoo)

100

14 # determine t h i s thread ’ s chunk o f x
15 n <− length (x)
16 myidxs <− g e t i dx s (n−k+1)
17 myf i r s t <− myidxs [1]
18 mylast <− myidxs [length (myidxs)]
19 mas [1 , my f i r s t : mylast] <− ro l lmean (x [my f i r s t : (mylast+k−1)] , k)
20 barr () # make sure a l l t h r e a d s have w r i t t e n to mas
21 # one thread does wrapup , might as w e l l be thread 1
22 i f (myinfo$ id == 1) {
23 r s l t s [1 , 1] <− which .max(mas [,])
24 r s l t s [1 , 2] <− mas [1 , r s l t s [1 , 1]]
25 }
26 }
27
28 t e s t <− function (c l s) {
29 require (Rdsm)
30 mgr in i t (c l s)
31 mgrmakevar (c l s , ”mas” ,1 , 9)
32 mgrmakevar (c l s , ” r s l t s ” , 1 , 2)
33 x <<− c (5 , 7 , 6 , 20 , 4 , 14 , 11 , 12 , 15 , 17)
34 c lu s t e rExpor t (c l s , ”maxburst”)
35 c lu s t e rExpor t (c l s , ”x”)
36 c lusterEvalQ (c l s , maxburst (x , 2 , mas , r s l t s))
37 print (r s l t s [,]) # not p r i n t (r s l t s) !
38 }

The division of labor here involves assigning different chunks of the data to
different Rdsm threads. To determine the chunks, we could call snow’s
splitIndices() as before, but actually Rdsm provides a simpler wrapper
for that, getidxs(), which we’ve call here, to determine where this thread’s
chunk begins and ends:

n <− length (x)
myidxs <− g e t i dx s (n−k+1)
my f i r s t <− myidxs [1]
mylast <− myidxs [length (myidxs)]

We then call rollmean() on this thread’s chunk, and write the results into
this thread’s section of mas:

mas [1 , my f i r s t : mylast] <− ro l lmean (x [my f i r s t : (mylast+k−1)] , k)

When all the threads are done executing the above line, we will be ready
to combine the results. But how will we know when they’re done? That’s

101

where the barrier comes in. We call barr() to make sure everyone is done,
and then designate one thread to then combine the results found by the
threads:

barr () # make sure a l l t h r e a d s have w r i t t e n to mas
i f (myinfo$ id == 1) {

r s l t s [1 , 1] <− which .max(mas [,])
r s l t s [1 , 2] <− mas [1 , r s l t s [1 , 1]]

}

5.8 Example: Transformation of an Adjacency
Matrix

Here is another example of the use of barriers, this one more involved, both
because the computation is a little more complex, and because we need two
variables this time.

Say we have a graph with an adjacency matrix


0 1 0 0
1 0 0 1
0 1 0 1
1 1 1 0

 (5.1)

For example, the 1s in row 1, column 2 and row 4, column 1, signify that
there is an edge from vertex 1 to vertex 2, and one from vertex 4 to vertex
1. We’d like to transform this to a two-column matrix that displays the
links, in this case



1 2
2 1
2 4
3 2
3 4
4 1
4 2
4 3


(5.2)

For instance, the (4,3) in the last row means there is an edge from vertex
4 to 3, corresponding to the 1 in row 4, column 3 of the adjacency matrix.

102

5.8.1 The Code

Here is Rdsm code for this:

1 # i n p u t s a graph adjacency matrix , and o u t p u t s a two−column matrix
2 # l i s t i n g the edges emanating from each ver tex , each row of the form
3 # (f v e r t , t v e r t) , i . e . ” from v e r t e x ” and ” to v e r t e x ”
4
5 # arguments :
6 # adj : adjacency matrix
7 # l n k s : edges matrix ; shared , nrow (adj)ˆ2 rows and 2 columns
8 # counts : numbers o f edges found by each thread ; shared ; 1 row ,
9 # l e n g t h (c l s) columns (i . e . 1 e lement per thread)

10
11 # in t h i s vers ion , the matrix l n k s must be c r e a t e d p r i o r to c a l l i n g
12 # f i n d l i n k s () ; s i n c e the number o f rows i s unknown a p r i o r i , one must
13 # a l l o w f o r the worst case , nrow (adj)ˆ2 rows ; a f t e r the run , the
14 # number o f a c t u a l rows w i l l be in counts [1 , l e n g t h (c l s)] , so t h a t the
15 # e x c e s s remaining rows can be removed
16
17 f i n d l i n k s <− function (adj , lnks , counts) {
18 require (p a r a l l e l)
19 nr <− nrow(adj)
20 # g e t t h i s thread ’ s a s s i g n e d p o r t i o n o f the rows o f adj
21 myidxs <− g e t i dx s (nr)
22
23 # determine where the 1 s are in t h i s thread ’ s p o r t i o n o f adj ; f o r
24 # each row number i in myidxs , an element o f myout w i l l record the
25 # column l o c a t i o n s o f the 1 s in t h a t row , i . e . record the edges out
26 # of v e r t e x i
27 myout <− apply (adj [myidxs ,] , 1 , function (onerow) which(onerow==1))
28
29 # t h i s thread w i l l now form i t s p o r t i o n o f lnks , s t o r i n g in tmp
30 tmp <− matrix (nrow=0,ncol=2)
31 my1strow <− myidxs [1]
32 for (idx in myidxs)
33 tmp <− rbind (tmp , convert1row (idx , myout [[idx−my1strow + 1]]))
34
35 # we need to know where in l n k s to put tmp ; e . g . i f t h r e a d s 1 and
36 # 2 f i n d 12 and 5 edges , then thread 3 ’ s p o r t i o n o f l n k s w i l l
37 # beg in at row 12+5+1 = 18 o f l n k s
38
39 # so , l e t ’ s f i n d cumula t ive edge sums , and p l a c e them in counts

103

40 nmyedges <− Reduce (sum, lapply (myout , length)) # t h i s thread ’ s edge count
41 me <− myinfo$ id
42 counts [1 ,me] <− nmyedges
43 barr () # wait f o r a l l t h r e a d s to w r i t e to counts
44
45 # determine where in l n k s the p o r t i o n o f thread 1 ends ;
46 # thread 2 ’ s p o r t i o n o f l n k s b e g i n s immediate ly a f t e r thread 1 ’ s ,
47 # e t c . , so we need cumulat ive sums , which we ’ l l p l a c e back in counts ;
48 # we ’ l l have thread 1 perform t h i s task , though any thread cou ld do i t
49 i f (me == 1) # any thread cou ld do t h i s , not j u s t thread 1
50 { counts [1 ,] <− cumsum(counts [1 ,]) }
51 barr () # o t h e r s wai t f o r thread 1 to f i n i s h
52
53 # t h i s thread now p l a c e s tmp in i t s proper p o s i t i o n w i t h i n l n k s
54 mystart <− i f (me == 1) 1 else counts [1 ,me−1] + 1
55 myend <− mystart + nmyedges − 1
56 lnks [mystart : myend ,] <− tmp
57
58 0 # don ’ t do e x p e n s i v e re turn o f r e s u l t
59 }
60
61 # i f , say , row 5 in adj has 1 s in columns 2 , 3 and 8 , t h i s f u n c t i o n
62 # r e t u r n s the matrix
63 # 5 2
64 # 5 3
65 # 5 8
66 convert1row <− function (rownum , c o l s w i t h 1 s) {
67 i f (i s . null (c o l s w i t h 1 s)) return (NULL)
68 cbind (rownum , c o l s w i t h 1 s) # use r e c y c l i n g
69 }
70
71 t e s t <− function (c l s) {
72 require (Rdsm)
73 mgr in i t (c l s)
74 mgrmakevar (c l s , ”x” ,6 , 6)
75 mgrmakevar (c l s , ” lnks ” ,36 ,2)
76 mgrmakevar (c l s , ” counts ” ,1 , length (c l s))
77 x [,] <− matrix (sample (0 : 1 , 3 6 , replace=T) , ncol=6)
78 c lu s t e rExpor t (c l s , ” f i n d l i n k s ”)
79 c lu s t e rExpor t (c l s , ” convert1row ”)
80 c lusterEvalQ (c l s , f i n d l i n k s (x , lnks , counts))
81 print (lnks [1 : counts [1 , length (c l s)] ,])
82 }

104

The division of labor here involves assigning different chunks of rows of the
adjacency matrix to different Rdsm threads. We first partition the rows,
as before, then determine the locations of the 1s in this thread’s chunk of
rows:

myidxs <− g e t i dx s (nr)
myout <− apply (a [myidxs ,] , 1 , function (rw) which(rw==1))

The R list myout will now give a row-by-row listing of the column numbers
of all the 1s in the rows of this thread’s chunk. Remember, our ultimate
output matrix, lnks, will have one row for each such 1, so the information
in myout will be quite useful.

Here is how it uses that information, for a given row:

convert1row <− function (rownum , c o l s w i t h 1 s) {
i f (i s . null (c o l s w i t h 1 s)) return (NULL)
cbind (rownum , c o l s w i t h 1 s) # use r e c y c l i n g

}

This function returns a chunk that will eventually go into lnks, specifically
the chunk corresponding to row rownum in adj. The code to form all such
chunks for our given thread is

tmp <− matrix (nrow=0,ncol=2)
my1strow <− myidxs [1]
for (idx in myidxs)

tmp <− rbind (tmp , convert1row (idx , myout [[idx−my1strow + 1]]))

Note that here the code needed to recognize the fact that the information
for row number idx in adj is stored in element idx - my1strow + 1 of
myout.

Now that this thread has computed its portion of lnks, it must place it
there. But in order to do so, this thread must know where in lnks to start
writing. And for that, this thread needs to know how many 1s were found
by threads prior to it. If for instance thread 1 finds eight 1s and thread 2
finds three, then thread 3 must start writing at row 8 + 3 + 1 = 12 in lnks.
Thus we need to find the overall 1s counts (across all rows of a thread) for
each thread,

nmyedges <− Reduce (sum, lapply (myout , length)) # my t o t a l edges

and then need to find cumulative sums, and share them. To do this, we’ll
have (for instance) thread 1 find those sums, and place them in our shared
variable counts:

105

me <− myinfo$ id
counts [1 ,me] <− nmyedges
barr ()
i f (me == 1) {

counts [1 ,] <− cumsum(counts [1 ,])
}
barr ()

Note the barrier calls just before and just after thread 1 does this work.
The first call is needed because thread 1 can’t start finding the cumulative
sums before all the individual counts are ready. Then we need the second
barrier, because all the threads will be making use of the cumulative sums,
and we need to be sure those sums ready first. These are typical examples
of barrier use.

Now that our thread knows where in lnks to write its results, it can go
ahead:

mystart <− i f (me == 1) 1 else counts [1 ,me−1] + 1
myend <− mystart + nmyedges − 1
lnks [mystart : myend ,] <− tmp

5.8.2 Overallocation of Memory

A problem above is having to allocate the lnks matrix to handle the worst
case, thus wasting space and execution time. The problem is that we don’t
know in advance the size of our “output,” in this case the argument lnks.
In our little example above, the adjacency matrix was of size 4x4, while
the edges matrix was 7x2. We know the number of columns in the edges
matrix will be 2, but the number of rows is unknown a priori.

Note that the user can determine the number of “real” rows in lnks by
inspecting counts[1,length(cls)] after the call returns, as seen in the test
code. One could copy that “real” rows to another matrix, then deallocate
the big one.

One alternate approach would be to postpone allocation until we know
how big the lnks matrix needs to be, which we will know after the cumu-
lative sums in counts are calculated. We could have thread 1 then create
the shared matrix lnks, by calling bigmemory directly rather than us-
ing mgrmakevar(). To distribute the shared-memory key for this matrix,
thread 1 would save the bigmemory descriptor to a file, then have the
other threads get access to lnks by loading from the file.

106

Actually, this problem is common in parallel processing applications. We
will return to it in Section 6.5.2.

5.8.3 Timing Experiment

For comparison, here is a serial version of the code:

1 > ge t l i nk snonpar
2 function (a , lnks) {
3 nr <− nrow(a)
4 myout <− apply (a [,] , 1 , function (rw) which(rw==1))
5 nmyedges <− Reduce (sum, lapply (myout , length))
6 lnk s idx <− 1
7 for (idx in 1 : nr) {
8 jdx <− idx
9 myoj <− myout [[jdx]]

10 endwrite <− l nk s idx + length (myoj) − 1
11 i f (! i s . null (myoj)) {
12 lnks [l nk s idx : endwrite ,] <− cbind (idx , myoj)
13 }
14 lnk s idx <− endwrite + 1
15 }
16 0
17 }

> n <− 10000
> system . time (f i n d l i n k s (x , lnks))

user system e lapsed
26 .170 1 .224 27 .516

(For convenience, we are still using Rdsm to set up the shared variables,
though we run in non-Rdsm code.)

Now try the parallel version:

> c l s <− makeCluster (4)
> mgr in i t (c l s)
> mgrmakevar (c l s , ” counts ” ,1 , length (c l s))
> mgrmakevar (c l s , ”x” ,n , n)
> mgrmakevar (c l s , ” lnks ” ,n ˆ2 ,2)
> x [,] <− matrix (sample (0 : 1 , nˆ2 , replace=T) , ncol=n)
> c lu s t e rExpor t (c l s , ” f i n d l i n k s ”)
> c lu s t e rExpor t (c l s , ” convert1row ”)

107

> system . time (c lusterEvalQ (c l s , f i n d l i n k s (x , lnks , counts)))
user system e lapsed

0 .000 0 .000 7 .783

So, the parallel code did indeed speed things up.

108

Chapter 6

The Shared Memory
Paradigm: C Level

The standard method for programming directly on multicore machines, is to
use threads libraries, which are available for all modern operating systems.
On Unix-family systems (Linux, Mac), for example, the pthreads library
is quite popular.

The programmer then calls functions in the threads library, such as the
pthread mutex lock() function in pthreads to lock a lock variable.
However, this can become very tedious, so higher-level libraries were de-
veloped specifically with parallel computation in mind, such as OpenMP,
Threads Building Blocks and Cilk++. Though the latter two are very pow-
erful, here we introduce OpenMP, the most popular of the three. We will
use C as our language.1

6.1 OpenMP

An OpenMP application still uses threads, but at a higher level of abstrac-
tion. One accesses OpenMP through C, C++ or FORTRAN. R users can
write an OpenMP application in one of those languages, and then call the
application from R, using either the .C() or .Call() functions available in
R for that purpose; if you do much of this, you can use the Rcpp package as

1Note to the reader: If you do not have a background in C, you should still be able
to follow the code here fairly well.

109

110

your interface. To keep things simple, we will stick just to the C language
and the .C() interface here. (In order to facilitate interface with R, we use
C’s double type instead of float.)

6.2 Example: Finding the Maximal Burst in
a Time Series

Consider a time series of length n, in the context of our example in Section
5.7, but with a modified goal, to find the period of at least k consecutive
time points that has the maximal mean value.

The time complexity of this application is, for fixed k and varying n, O(n2).
This growth rate in n suggests that this is a good candidate for paralleliza-
tion.

6.2.1 The Code

Here is the code, written without an R interface for the time being.

We wll discuss it in detail below, but you should glance through it first. As
you do, note the pragma lines, such as

#pragma omp s i n g l e

These are actually OpenMP directives, which instruct the compiler to insert
certain thread operations at that point.

For convenience, the code will assume that the time series values of non-
negative.

1 // OpenMP example program, Burst.c; burst() finds period of highest

2 // burst of activity in a time series

3

4 #include <omp.h>

5 #include <stdio.h>

6 #include <stdlib.h>

7

8 // arguments for burst()

9

10 // inputs:

11 // x: the time series, assumed nonnegative

12 // nx: length of x

13 // k: shortest period of interest

14 // outputs:

111

15 // startmax, endmax: pointers to indices of the maximal-burst period

16 // maxval: pointer to maximal burst value

17

18 // finds the mean of the block between y[s] and y[e]

19 double mean(double *y, int s, int e) {

20 int i; double tot = 0;

21 for (i = s; i <= e; i++) tot += y[i];

22 return tot / (e - s + 1);

23 }

24

25 void burst(double *x, int nx, int k,

26 int *startmax, int *endmax, double *maxval)

27 {

28 int nth; // number of threads

29 #pragma omp parallel

30 { int perstart, // period start

31 perlen, // period length

32 perend, // perlen end

33 pl1; // perlen - 1

34 // best found by this thread so far

35 int mystartmax, myendmax; // locations

36 double mymaxval; // value

37 // scratch variable

38 double xbar;

39 // this thread’s ID number

40 int me;

41 #pragma omp single

42 {

43 nth = omp_get_num_threads();

44 }

45 me = omp_get_thread_num();

46 mymaxval = -1;

47 #pragma omp for

48 for (perstart = 0; perstart <= nx-k; perstart++) {

49 for (perlen = k; perlen <= nx - perstart; perlen++) {

50 perend = perstart+perlen-1;

51 if (perlen == k)

52 xbar = mean(x,perstart,perend);

53 else {

54 // update the old mean

55 pl1 = perlen - 1;

56 xbar = (pl1 * xbar + x[perend]) / perlen;

57 }

58 if (xbar > mymaxval) {

59 mymaxval = xbar;

60 mystartmax = perstart;

61 myendmax = perend;

62 }

63 }

64 }

65 #pragma omp critical

66 {

67 if (mymaxval > *maxval) {

68 *maxval = mymaxval;

112

69 *startmax = mystartmax;

70 *endmax = myendmax;

71 }

72 }

73 }

74 }

75

76 // here’s our test code

77

78 int main(int argc, char **argv)

79 {

80 int startmax, endmax;

81 double maxval;

82 double *x;

83 int k = atoi(argv[1]);

84 int i,nx;

85 nx = atoi(argv[2]); // length of x

86 x = malloc(nx*sizeof(double));

87 for (i = 0; i < nx; i++) x[i] = rand() / (double) RAND_MAX;

88 double startime,endtime;

89 startime = omp_get_wtime();

90 // parallel

91 burst(x,nx,k,&startmax,&endmax,&maxval);

92 // back to single thread

93 endtime = omp_get_wtime();

94 printf("elapsed time: %f\n",endtime-startime);

95 printf("%d %d %f\n",startmax,endmax,maxval);

96 if (nx < 25) {

97 for (i = 0; i < nx; i++) printf("%f ",x[i]);

98 printf("\n");

99 }

100 }

6.2.2 Compiling and Running

One does need to specify to the compiler that one is using OpenMP. On
Linux, for instance, I compiled the code via the command

% gcc −g −o burst Burst . c −fopenmp

Note too that there is a corresponding include-file line in the code, to include
the OpenMP definitions:

#include <omp.h>

Here is a sample run k = 10 and n = 2500:

% burst 10 2500

113

6.2.3 Analysis

Now, take a look at burst():

void burst(double *x, int nx, int k,

int *startmax, int *endmax, double *maxval)

{

int nth; // number of threads

#pragma omp parallel

{ int perstart, // START OF PARALLEL BLOCK

perlen, // period length

...

...

...

*startmax = mystartmax;

*endmax = myendmax;

}

}

} // END OF PARALLEL BLOCK

This is really the crux of OpenMP. Note the pragma:

#pragma omp parallel

This instruction to the compiler unleashes a team of threads. Each of the
threads will execute the block that follows,2 with certain rules governing
the local variables:

Consider the variable nth. It is local to burst(), but signficantly it is
outside the block executed by the threads. This means, in effect, that nth
acts globally from the point of view of the threads, with this variable being
shared by all the threads. If one thread changes the value of this variable,
the other threads see the new value if they read nth.

By contrast, perstart is declared inside the threads block. This means that
each thread will have its own perstart, acting completely independently
of the others; this variable is not shared.

Shared-memory programming, by definition, needs shared variables. In
threads programming, all the global variables are shared, but the above
scope rules give the programmer the ability to designate some nonglobals
as shared as well. (OpenMP also has other options for this, which will not
be covered here.)

Let’s look at the next pragma:

2A block in C/C++ consists of code contained between left and right braces, { and
}. Here, we’ve highlighted them siwht START... and END... comments.

114

#pragma omp single

{

nth = omp_get_num_threads();

}

The single pragma directs that one thread (whichever reaches this line
first) will execute the next block, while the other threads wait. In this case,
we are just setting nth, the number of threads, and since the variable is
shared, only one thread need set it.

As mentioned, the other threads will wait for the one executing that single
block. In other words, there is an implied barrier right after the block. In
fact, OpenMP inserts invisible barriers after all parallel, for and sections
pragma blocks. In some settings, the programmer knows that such a barrier
is unnecessary, and can use the nowait clause to instruct OpenMP to not
insert a barrier after the block:

#pragma omp for nowait

Of course, programmers may need to insert their own barriers at very places
in their code. The OpenMP barrier pragma is available for this.

As usual, we need each thread to know its own ID number:

me = omp_get_thread_num();

Note again that me was declared inside the parallel pragma block, so that
each thread will have a different, independent version of this variable—
which of course is exactly what we need.

Unlike most of our earlier examples, the code here does not break our data
into chunks. Instead, the workload is partitioned in a different way to the
threads. Here is how. Look at the nested loop,

for (perstart = 0; perstart <= nx-k; perstart++) {

for (perlen = k; perlen <= nx - perstart; perlen++) {

The outer loop iterates over all possible starting points for a burst period,
while the inner loop iterates over all possible lengths for the period. One
natural way to divide up the work among the threads is to parallelize the
outer loop. The for pragma does exactly that:

#pragma omp for

for (perstart = 0; perstart <= nx-k; perstart++) {

115

This pragma says that the following for loop will have its iterations divided
among the threads. Each thread will work on a separate set of iterations,
thus accomplishing the work of the loop in parallel. (Clearly, a requirement
is that the iterations must be independent of each other.) One thread will
work on some values of perstart, a second thread will work on some other
values, and so on.

Note that we won’t know ahead of time which threads will handle which
loop iterations. We’ll have more on this below, but the point is that there
will be some partitioning done by the OpenMP code, thus parallelizing the
computation. Of course, a for pragma is meaningless if it is not inside a
parallel block, as there would be no threads to assign the iterations to.

The way we’ve set things up here, inner loop,

for (perlen = k; perlen <= nx - perstart; perlen++) {

does not have its work partitioned among threads. For any given value of
perstart, all values of perlen will be handled by the same thread.

So, each thread will keep track of its own record values, i.e. the location
and value of the maximal burst it has found so far. In the end, each thread
will need to update the overall record values, in this code:

if (mymaxval > *maxval) {

*maxval = mymaxval;

*startmax = mystartmax;

*endmax = myendmax;

}

This is a critical section, and the code must be executed atomically. If
we were programming directly with a threads interface library, we would
need to declare a lock variable and initialize the lock at the beginning of
the function burst(), and then have code locking and unlocking the lock
immediately before and after the critical section. By contrast, a program-
mer’s life is much easier with OpenMP: One simply inserts an OpenMP
critical pragma:

#pragma omp critical

{

if (mymaxval > *maxval) {

*maxval = mymaxval;

*startmax = mystartmax;

*endmax = myendmax;

}

}

116

threads time
2 18.543343
4 11.042197
8 6.170748

16 3.183520

Table 6.1: Timings for the maximal-burst example

6.2.4 Setting the Number of Threads

One can set the number of threads either before or during execution, For
the former, one sets the OMP NUM THREADS environment variable,
e.g.

export OMP_NUM_THREADS=8

to specify 8 threads in the bash shell on Unix-family systems. To do this
programmatically, use omp set num threads().

Technically, these only specify an upper bound on the number of threads
used. The OpenMP runtime system may choose to override the specified
value with a smaller number. You can disable this by

omp_set_dynamic(0)

6.3 Timings

Timings on simulated data, with n = 50000 and k = 100, on a 32-core
machine are shown in Table 6.1. The pattern was fairly linear, with each
doubling in the number of threads producing an approximate halving of
run time.

117

6.4 OpenMP Loop Scheduling Options

You may have noticed that we have a potential load balance problem in
the above maximal-burst example. Iterations that have a larger value of
perstart do less work. In fact, the pattern here is very similar to that of
our mutual outlinks example, in which we first mentioned the load balance
issue (Section 1.3.5.2). Thus the manner in which iterations are assigned
to threads may make a big difference in program speed.

So far, we haven’t discussed the details of how the various iterations in a
loop are assigned to the various threads. Back in Section 3.1, we discussed
general strategies for doing this, and OpenMP offers the programmer sev-
eral options along those lines.

The type of scheduling is specified via the schedule clause in a for pragma,
e.g.

#pragma omp for schedule(static)

and

#pragma omp for schedule(dynamic,50)

The keywords static and dynamic correspond to the scheduling strategies
presented in Section 3.1, with the optional second argument being chunk
size as discussed in that section. The static version assigns chunks before
the loop is executed, parceled out in Round Robin manner.

The third scheduling option is guided. It uses a large chunk size in early
iterations, but tapers down the chunk size as the execution of the loop pro-
gresses. This strategy, also discussed in Section 3.1, is designed to minimize
overhead in the early rounds, but minimize load imbalance later on. Details
are implementation-dependent.

Instead of hardcoding the options as above, one can allow the choices to
be made a run time, either via the function omp set schedule() or by
setting the environment variable OMP SCHEDULE.

Continuing the timing experiments from Section 6.3, with k = 10 and n =
75000, produced the results in Table 6.2.

Not much pattern emerges. There did seem to be a penalty for using too
large a chunk size with 4 threads, probably reflecting load imbalance.

118

theads sched, chunk time
4 default 22.773100
4 static, 1 22.932213
4 static, 50 22.887986
4 static, 500 25.730284
4 dynamic, 1 22.841720
4 dynamic, 50 22.774348
4 dynamic, 500 23.669525
4 guided 22.767232

16 default 7.081358
16 static, 1 7.046007
16 static, 50 7.059683
16 static, 500 7.010607
16 dynamic, 1 7.060027
16 dynamic, 50 7.020815
16 dynamic, 500 7.010607
16 guided 7.194322

Table 6.2: Timings, for various scheduling options

119

And most importantly, the default settings seem to work well. Unfortu-
nately, they are implementation-dependent, but things at least worked well
on this platform (GCC version 4.6.3 on Ubuntu).

As a rule of thumb, fine-tuning schedule settings should make a difference
only in very special applications. For example, if one has a small number of
threads, a small number of iterations and the iteration times are large and
widely-varying (in unpredictable ways), one might try a dynamic schedule
with a chunk size of 1.

Though beyond the scope of this book, we note OpenMP-like systems that
do internal work stealing, such as Threading Building Blocks and Cilk++.
Their internal algorithms for partitioning work to threads are aimed at
providing better load balance. The algorithms do runtime checks to see
whether one thread has become idle while another thread has a queue of
work to do. In such a case, work is transferred from the overburdened
thread to the idle one—all without the programmer having to go to any
effort.

Again, for most looping applications this won’t be necessary. But for com-
plication algorithms with dynamic work queues, work stealing may produce
a performance boost.

6.5 Example: Transformation an Adjacency
Matrix

Let’s see how the example in Section 5.8 can be implemented in OpenMP.

(It is recommended that the reader review the R version of this algorithm
before continuing. The pattern used below is similar, but we a bit harder
to follow in C, which is a lowel-level language than R.)

6.5.1 The Code

1 // takes a graph adjacency matrix for a directed graph, and converts it

2 // to a 2-column matrix of pairs (i,j), meaning an edge from vertex i to

3 // vertex j; the output matrix must be in lexicographical order

4

5 #include <omp.h>

6 #include <stdlib.h>

7 #include <stdio.h>

8

9 // transgraph() does this work

120

10 // arguments:

11 // adjm: the adjacency matrix (NOT assumed symmetric), 1 for edge, 0

12 // otherwise; note: matrix is overwritten by the function

13 // n: number of rows and columns of adjm

14 // nout: output, number of rows in returned matrix

15 // return value: pointer to the converted matrix

16

17 // finds chunk among 0,...,n-1 to assign to thread number me among nth

18 // threads

19 void findmyrange(int n,int nth,int me,int *myrange)

20 { int chunksize = n / nth;

21 myrange[0] = me * chunksize;

22 if (me < nth-1) myrange[1] = (me+1) * chunksize - 1;

23 else myrange[1] = n - 1;

24 }

25

26 int *transgraph(int *adjm, int n, int *nout)

27 {

28 int *outm, // to become the output matrix

29 *num1s, // i-th element will be the number of 1s in row i of adjm

30 *cumul1s; // cumulative sums in num1s

31 #pragma omp parallel

32 { int i,j,m;

33 int me = omp_get_thread_num(),

34 nth = omp_get_num_threads();

35 int myrows[2];

36 int tot1s;

37 int outrow,num1si;

38 #pragma omp single

39 {

40 num1s = malloc(n*sizeof(int));

41 cumul1s = malloc((n+1)*sizeof(int));

42 }

43 // determine the rows in adjm to be handled by this thread

44 findmyrange(n,nth,me,myrows);

45 // now go through each row of adjm assigned to this thread,

46 // recording the locations (column numbers) of the 1s; to save on

47 // malloc() ops, reuse adjm, writing the locations found in row i

48 // back into that row

49 for (i = myrows[0]; i <= myrows[1]; i++) {

50 tot1s = 0; // number of 1s found in this row

51 for (j = 0; j < n; j++)

52 if (adjm[n*i+j] == 1) {

53 adjm[n*i+(tot1s++)] = j;

54 }

55 num1s[i] = tot1s;

56 }

57 // one thread will use num1s, set by all threads, so make sure

58 // they’re all done

59 #pragma omp barrier

60 #pragma omp single

61 {

62 cumul1s[0] = 0; // cumul1s[i] will be tot 1s before row i of adjm

63 // now calculate where the output of each row in adjm

121

64 // should start in outm

65 for (m = 1; m <= n; m++) {

66 cumul1s[m] = cumul1s[m-1] + num1s[m-1];

67 }

68 *nout = cumul1s[n];

69 outm = malloc(2*(*nout) * sizeof(int));

70 }

71 // implied barrier after "single" pragam

72 // now fill in this thread’s portion of the output matrix

73 for (i = myrows[0]; i <= myrows[1]; i++) {

74 outrow = cumul1s[i]; // current row within outm

75 num1si = num1s[i];

76 for (j = 0; j < num1si; j++) {

77 outm[2*(outrow+j)] = i;

78 outm[2*(outrow+j)+1] = adjm[n*i+j];

79 }

80 }

81 }

82 // implied barrier after "parallel" pragma

83 return outm;

84 }

6.5.2 Analysis of the Code

Before we begin, note that parallel C/C++ code involving matrices typi-
cally is written in one dimension, as follows:

Consider a 3x8 array x. Since row-major order is used in C/C++, the
array is stored internally in 24 consecutive words of memory, in row-by-row
order. The element in the second row and fifth column, x[1,4] (recall that
C/C++ indices start at 0, not 1 as in R), would be in the 8 + 4 = 12th

word in internal storage. In general, x[i,j] is stored in word

8 * i + j

of the array.

In writing generally-applicable code, we typically don’t know at compile
time how many columns (8 in the little example above) our matrix has. So
it is typical to recognize the linear nature of the internal storage, and use
it in our C code explicitly, e.g.

i f (adjm [n∗ i+j] == 1) {
adjm [n∗ i +(to t1 s ++)] = j ;

The memory allocation issue has popped up again, as it did in the Rdsm
implementation. Recall that in the latter, we allocated memory for an

122

output of size equal to that of the worst possible case. In this case, we
have chosen to allocate memory during the midst of execution, rather than
allocating beforehand.

In particular, we first determine how many rows each input row will have
in the output, placing this information in the array num1s:

for (i = myrows[0]; i <= myrows[1]; i++) {

tot1s = 0; // number of 1s found in this row

for (j = 0; j < n; j++)

if (adjm[n*i+j] == 1) {

adjm[n*i+(tot1s++)] = j;

}

num1s[i] = tot1s;

}

Once that array is known, we find its cumulative values, which will give us
the knowledge of how large the output matrix will be, used in the call to
the C library memory allocation function malloc():

#pragma omp barrier

#pragma omp single

{

cumul1s[0] = 0; // cumul1s[i] will be tot 1s before row i of adjm

// now calculate where the output of each row in adjm

// should start in outm

for (m = 1; m <= n; m++) {

cumul1s[m] = cumul1s[m-1] + num1s[m-1];

}

*nout = cumul1s[n];

outm = malloc(2*(*nout) * sizeof(int));

}

Note again that memory allocation can be expensive, so in this particular
implementation, we have decided to save allocation time (and space) by
reusing adjm for scratch space. Thus the input matrix is written over,
and would have to be saved before the call if it were still needed. Those
intermediate results stored in the reused parts of adjm, which were the
column numbers of the 1s that were found, are then used to fill out the
output matrix:

// now fill in this thread’s portion of the output matrix

for (i = myrows[0]; i <= myrows[1]; i++) {

outrow = cumul1s[i]; // current row within outm

num1si = num1s[i];

for (j = 0; j < num1si; j++) {

outm[2*(outrow+j)] = i;

123

outm[2*(outrow+j)+1] = adjm[n*i+j];

}

}

Note that implied and explicit barriers are used in this program. For in-
stance, consider the second single pragma:

...

}

num1s[i] = tot1s;

}

#pragma omp barrier

#pragma omp single

{

cumul1s[0] = 0; // cumul1s[i] will be tot 1s before row i of adjm

// now calculate where the output of each row in adjm

// should start in outm

for (m = 1; m <= n; m++) {

cumul1s[m] = cumul1s[m-1] + num1s[m-1];

}

*nout = cumul1s[n];

outm = malloc(2*(*nout) * sizeof(int));

}

for (i = myrows[0]; i <= myrows[1]; i++) {

outrow = cumul1s[i];

...

The num1s array is used within the single pragma, but computed just
before it. We thus needed to insert a barrier before the pragam, to make
sure nums1 is ready.

Similarly, the single pragma computes cumul1s, which is used by all
threads after the pragma. Thus a barrier is needed right after the pragma,
but OpenMP inserts an implicit barrier there for us, so we don’t have an
explicit one.

6.6 Example: Transforming an Adjancency
Matrix, R-Callable Version

A typical application might involve an analyst writing most of his code in
R, for convenience, but write the parallel part of the code in C, to maximize
speed. Here is that version.

124

6.6.1 The Code

1 #include <R.h>

2 #include <omp.h>

3 #include <stdlib.h>

4 #include <stdio.h>

5

6 // transgraph() does this work

7 // arguments:

8 // adjm: the adjacency matrix (NOT assumed symmetric), 1 for edge, 0

9 // otherwise; note: matrix is overwritten by the function

10 // np: pointer to number of rows and columns of adjm

11 // nout: output, number of rows in returned matrix

12 // outm: the converted matrix

13

14 void findmyrange(int n,int nth,int me,int *myrange)

15 { int chunksize = n / nth;

16 myrange[0] = me * chunksize;

17 if (me < nth-1) myrange[1] = (me+1) * chunksize - 1;

18 else myrange[1] = n - 1;

19 }

20

21 void transgraph(int *adjm, int *np, int *nout, int *outm)

22 {

23 int *num1s, // i-th element will be the number of 1s in row i of adjm

24 *cumul1s, // cumulative sums in num1s

25 n = *np;

26 #pragma omp parallel

27 { int i,j,m;

28 int me = omp_get_thread_num(),

29 nth = omp_get_num_threads();

30 int myrows[2];

31 int tot1s;

32 int outrow,num1si;

33 #pragma omp single

34 {

35 num1s = malloc(n*sizeof(int));

36 cumul1s = malloc((n+1)*sizeof(int));

37 }

38 findmyrange(n,nth,me,myrows);

39 for (i = myrows[0]; i <= myrows[1]; i++) {

40 tot1s = 0; // number of 1s found in this row

41 for (j = 0; j < n; j++)

42 if (adjm[n*j+i] == 1) {

43 adjm[n*(tot1s++)+i] = j;

44 }

45 num1s[i] = tot1s;

46 }

47 #pragma omp barrier

48 #pragma omp single

49 {

50 cumul1s[0] = 0; // cumul1s[i] will be tot 1s before row i of adjm

51 // now calculate where the output of each row in adjm

125

52 // should start in outm

53 for (m = 1; m <= n; m++) {

54 cumul1s[m] = cumul1s[m-1] + num1s[m-1];

55 }

56 *nout = cumul1s[n];

57 }

58 int n2 = n * n;

59 for (i = myrows[0]; i <= myrows[1]; i++) {

60 outrow = cumul1s[i]; // current row within outm

61 num1si = num1s[i];

62 for (j = 0; j < num1si; j++) {

63 outm[outrow+j] = i + 1;

64 outm[outrow+j+n2] = adjm[n*j+i] + 1;

65 }

66 }

67 }

68 }

6.6.2 Compiling and Running

In writing a C file y.c containing a function f(), one can compile using R
from a shell command line:

R CMD SHLIB y.c

This produces a runtime-loadable library file. On Unix-family systems, for
instance, the file y.so would be created. We then load it from R:

> dyn . load (”y . so ”)

after which can call f() from R.

The call itself can take on various forms. We use the simplest one here,
.C(), which would take the form

> .C(” f ” , our arguments here)

A more complex but more powerful call form, .Call() is also available, as
well as an interface to that form, Rcpp. Note the choice of all affects how
one writes the code in y.c.

The file y.c must include the R header files:

#include<R.h>

The good thing about compiling via R CMD SHLIB is that we don’t have
to worry where those header files are, or worry about the library files. But

126

things are a bit more complicated if one’s code uses OpenMP, in which
case we must so inform the compiler. We can do this by setting the proper
environment variable. For C code and the bash shell, for instance, we
would issue the shell command

% SHLIB OPENMP CFLAGS = −fopenmp

Here is a sample run, again in the R interactive shell, with the C file being
ROMPAdj.c:

n <− 5
dyn . load (”ROMPAdj. so ”)
a <− matrix (sample (0 : 1 , nˆ2 , replace=T) , ncol=n)
out <−.C(” transgraph ” , as . integer (a) , as . integer (n) , integer (1) , integer (2∗n ˆ2))

Compare this last line to the signature of transgraph():

void transgraph(int *adjm, int *np, int *nout, int *outm)

Note the following:

• The return value must be of type void, and in fact return values are
passed via the arguments, in this case nout (the number of rows in
the output matrix) and outm (the output matrix itself).

• All arguments are pointers.

• Our R code must allocate space for the output arguments.

Concerning that last point, there is no longer reason to have our C code
allocate memory for the output matrix, as it did in Section 6.5. Here we
set up that matrix to have worst-case size before the call, as we did in the
Rdsm version.

So, here is a test run:

> n <- 5

> dyn.load("ROMPAdj.so")

> a <- matrix(sample(0:1,n^2,replace=T),ncol=n)

> out <-.C("transgraph",as.integer(a),as.integer(n),integer(1),integer(2*n^2))

> out

[[1]]

[1] 0 0 0 1 0 1 3 0 4 1 3 4 0 0 3 4 1 0 0 4 1 1 0 1 1

127

[[2]]

[1] 5

[[3]]

[1] 14

[[4]]

[1] 1 1 1 1 2 2 2 3 4 4 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 1 2 4 5 1 4 5 1 2 5 1 2 4

[39] 5 0 0 0 0 0 0 0 0 0 0 0

As you can see, the return value of .C() is an R list, with one element for
each of the arguments to transgraph(), including the output arguments.

Note that by default, all input arguments are duplicated, so that any
changes to them are visible only in the output list, not the original ar-
guments. Here out[[1]] is different from the input matrix a:

> a
[, 1] [, 2] [, 3] [, 4] [, 5]

[1 ,] 1 1 0 1 1
[2 ,] 1 0 0 1 1
[3 ,] 1 0 0 0 0
[4 ,] 0 1 0 0 1
[5 ,] 1 1 0 1 1

Duplication of the data might impose some slowdown, and can be disabled,
but this usage is discouraged by the R development team.

Our output matrix, out[[4]], is hard to read in its linear form. Let’s display
it as a matrix, keeping in mind that our other output variable, out[[3]],
tells us how many (real) rows there are in our output matrix:

> (nout <− out [[3]])
[1] 14
> o4 <− out [[4]]
> om <− matrix (o4 , ncol=2)
> om [1 : nout ,]

[, 1] [, 2]
[1 ,] 1 1
[2 ,] 1 2
[3 ,] 1 4
[4 ,] 1 5
[5 ,] 2 1

128

[6 ,] 2 4
[7 ,] 2 5
[8 ,] 3 1
[9 ,] 4 2

[1 0 ,] 4 5
[1 1 ,] 5 1
[1 2 ,] 5 2
[1 3 ,] 5 4
[1 4 ,] 5 5

6.6.3 Analysis

So, what has changed in this version? Most of the change is due to the
differences between R and C.

Most importantly, the fact that R uses column-major storage for matrices
while C uses row-major order means that much of our new code must
“reverse” the old code. For example, the line

outm[2*(outrow+j)+1] = adjm[n*i+j];

in the original code now becomes

int n2 = n * n;

...

outm[outrow+j+n2] = adjm[n*j+i] + 1;

6.7 Speedup in C

So, let’s check whether running in C can indeed do much better than R in
a parallel context, as discussed back in Section 1.1.

> n <− 10000
> a <− matrix (sample (0 : 1 , nˆ2 , replace=T) , ncol=n)
> system . time (out <−.C(” transgraph ” , as . integer (a) ,
+ as . integer (n) , integer (1) , integer (2∗n ˆ 2)))

user system e lapsed
5 .692 0 .852 3 .193

Gathering our old timings, the various methods are compared in Table 6.3.

129

cores language time
1 R 27.516
4 R (Rdsm) 7.783
4 C (OpenMP) 3.193

Table 6.3: Timing comparisons

Going from serial R to parallel R cut down run time by about 72%, while
OpenMP gave us a time savings of 88%. Running in C can indeed pay off,
if we are willing to spend the development time.

6.8 Further Cache Issues

It has been mentioned several times in this chapter that cache coherency
transactions can really compromise performance. Coupling that with the
point, made in Section 2.3.4, that different designs of the same code can
have quite different memory access patterns and thus quite different cache
performance, we see that we must be mindful of cache issues when we write
shared-memory code.

To make this idea concrete, we’ll look at two OpenMP programs to do
in-place matrix transpose. Here’s the first:

1 #include <omp.h>

2 #include <stdlib.h>

3 #include <stdio.h>

4

5 // translate from 2-D to 1-D indices

6 int onedim(int n,int i,int j) { return n * i + j; }

7

8 void transp(int *m, int n)

9 {

10 #pragma omp parallel

11 { int i,j,tmp;

12 // walk through all the above-diagonal elements, swapping them

13 // with their below-diagonal counterparts

14 #pragma omp for

15 for (i = 0; i < n; i++) {

16 for (j = i+1; j < n; j++) {

17 tmp = m[onedim(n,i,j)];

18 m[onedim(n,i,j)] = m[onedim(n,j,i)];

130

19 m[onedim(n,j,i)] = tmp;

20 }

21 }

22 }

23 }

24

25 int *m;

26

27 int main(int argc, char **argv)

28 { int i,j;

29 int n = atoi(argv[1]);

30 m = malloc(n*n*sizeof(int));

31 for (i = 0; i < n; i++)

32 for (j = 0; j < n; j++)

33 m[n*i+j] = rand() % 24;

34 if (n <= 10) {

35 for (i = 0; i < n; i++) {

36 for (j = 0; j < n; j++) printf("%d ",m[n*i+j]);

37 printf("\n");

38 }

39 }

40 double startime,endtime;

41 startime = omp_get_wtime();

42 transp(m,n);

43 endtime = omp_get_wtime();

44 printf("elapsed time: %f\n",endtime-startime);

45 if (n <= 10) {

46 for (i = 0; i < n; i++) {

47 for (j = 0; j < n; j++) printf("%d ",m[n*i+j]);

48 printf("\n");

49 }

50 }

51 }

The code is fairly straightforward. It goes through the matrix row-by-row,
exchanging the above-diagonal elements of each row with their correspond-
ing below-diagonal elements.

Recall once again that C stores matrices in row-major order. So, as the
above code traverses the matrix, it is staying in the same cache block for
a sustained amount of time, i.e. the cache performance is fairly good. We
say only “fairly” here, as the below-diagonal elements are being traversed
column-by-column, thus not auguring well for cache performance. Never-
theless, it would seem that this code will do better than the second version:

1 #include <omp.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4

5 // translate from 2-D to 1-D indices
6 int onedim(int n,int i,int j) { return n * i + j; }
7

131

8 void trade(int *m,int n,int i,int j) {
9 int tmp;

10 tmp = m[onedim(n,i,j)];
11 m[onedim(n,i,j)] = m[onedim(n,j,i)];
12 m[onedim(n,j,i)] = tmp;
13 }
14

15 void transp(int *m, int n)
16 { int n1 = n - 1;
17 int n2 = 2 * n - 3;
18 #pragma omp parallel
19 { int w,j;
20 int row, col;
21 #pragma omp for
22 // w is wavefront number, indexed across top row, bottom row
23 // we move from northeast to southwest within diagonals
24 for (w = 1; w <= n2; w++) {
25 if (w < n) {
26 row = 0;
27 col = w;
28 } else {
29 row = w - n1;
30 col = n1;
31 }
32 for (j = 0; ; j++) {
33 if (row > n1 || col < 0) break;
34 if (row >= col) break;
35 trade(m,n,row++,col--);
36 }
37 }
38 }
39 }
40

41 int *m;
42

43 int main(int argc, char **argv)
44 { int i,j;
45 int n = atoi(argv[1]);
46 m = malloc(n*n*sizeof(int));
47 for (i = 0; i < n; i++)
48 for (j = 0; j < n; j++)
49 m[n*i+j] = rand() % 24;
50 if (n <= 10) {
51 for (i = 0; i < n; i++) {
52 for (j = 0; j < n; j++) printf("%d ",m[n*i+j]);
53 printf("\n");
54 }
55 }
56 double startime,endtime;
57 startime = omp_get_wtime();
58 transp(m,n);
59 endtime = omp_get_wtime();
60 printf("elapsed time: %f\n",endtime-startime);
61 if (n <= 10) {
62 for (i = 0; i < n; i++) {
63 for (j = 0; j < n; j++) printf("%d ",m[n*i+j]);
64 printf("\n");
65 }
66 }
67 }

This version uses a wavefront approach. very common in matrix algo-

132

cores rowwise wavefront ratio
4 9.119054 10.767355 0.8469168
8 4.874676 6.173957 0.7895546

16 2.586739 3.545786 0.7295249

Table 6.4: Timings: same application, different memory patterns

rithms. Here, instead of each iteration of the for loop processing a differ-
ent row, each iteration now involves a different “northeast to southwest”
anti-diagonal. For instance, consider the iteration w = 3 in the outer for
loop in transp(). It will process m[0,3], m[1,2], m[2,1] and m[3,0].

Wavefront methods are widely used in matrix algorithms and can be very
advantageous. Yet in this particular application, the memory usage pat-
tern is more random from a caching point of view, and one suspects that
the resulting poorer hit rate will adversely impact performance. In plain
English: The second version should be slower.

Moreover, we would guess that, the more cores we use, the worse the speed
discrepancy between the two versions of the porgram. Any cache miss may
cause cache operations at any of the other caches, and since we have a cache
for each core, our troubles should intensify as system size grows.

This is confirmed in the timing experiments shown in Table 6.4. The matrix
sizes were 25000x25000. We see right away that it does pay to be mindful of
cache implications when one writes one’s code. And sure enough, the more
cores we use, the worse the ratio in run times between the two versions of
code.

Programmers who spend time truly optimizing their code may go further,
for instance worrying about false sharing. Suppose our code writes to a vari-
able x, thus invalidating that particular cache block—which, recall, means
the entire block. There may be a perfectly good copy of another variable y
in the same block. Yet now an access to y will trigger an unnecessary and
expensive cache coherency operation, since y is in a ‘bad” block.

One could avoid such a calamity by placing padding in between our decla-
rations of x and y, say

int x,w[63],y; // all assumed global

133

If our cache block size is 512 bytes, i.e. 64 8-byte integers, then y should
be 512 bytes past x in memory, hence not in the same block.

6.9 Lockfree Synchronization

Bear in mind that locks and barriers are “necessary evils.” We do need
them (or something equivalent) to ensure correct execution of our program,
but they slow things down. For instance, we say that lock variables, or the
critical sections they guard, serialize a program in the section they are used,
i.e. they change its parallel character to serial; only one thread is allowed
into the critical section at a time, so that execution is temporarily serial.
And contention for locks can cause lots of cache coherency transactions,
definitely putting a damper on performance. Thus one should always try
to find clever ways to avoid locks and barriers if possible.

One way to do this is to take advantage of the hardware. Modern processors
typically include a variety of hardware assists to make synchronization more
efficient.

For example, Intel machines allow a machine instruction to be prefixed by
a special byte called a lock prefix. It orders the hardware to lock up the
system bus while the given instruction is executing—so that the execution
is atomic. (The fact that this prefix, a hardware operation, is named lock
should not be confused with lock variables in software.)

Under the critical section approach, code to atomically add 1 to y would
look something like this:

lock the lock
add $1, y
unlock the lock

By contrast, we could do all this with a single machine instruction:

lock add $1, y

OpenMP includes an atomic pragma, which we’d use in the above example
via this code:

#pragma omp atomic
y++;

134

This instructs the compiler to try to find a hardware construct like the
lock prefix above to implement mutual exclusion, rather than taking the
less efficient critical section route.

Also, the C++ Standard Template Library contains related constructs,
such as the function fetch add(), which again instructs the compiler to
attempt to find an atomic hardware solution to the update-total example
above. This idea has been advanced even further in C++11.

6.10 Rcpp

The .C() interface that we have used here is considered by many to be
obsolescent. As we’ve seen, it has the drawbacks that it (a) requires one to
set up space for function outputs ahead of time, and (b) it copies its function
inputs (from R to the function). Drawback (a) causes the programmer some
inconvenience, while (b) may slow down execution speed.

Problem (b) may not be too bad. Suppose that in a given application, the
total work to be done is has time complexity O(n2) but the size of the data
is only O(n). Then the time spent on the data copying may be insignificant.
Nevertheless, it will be a concern in some applications. And problem (a) is
at least a nuisance, if not a robber of performance.

The .Call() interface is considered much more effective, but involves a steep
learning curve. The Rcpp package aims to alleviate the programmer of
much of the latter burden, and adds some powerful features in the process.
The details are beyond the scope of this book, but the reader is encouraged
to pursue the topic in the numerous resources available on the Web, as
well as a book by one of the authors of the package, Seamless R and C++
Integration with Rcpp, by Dirk Eddelbuettel, Springer, 2013.

135

136

Chapter 7

Parallelism through
Accelerator Chips

7.1 Overview

7.2 Introduction to NVIDIA GPUs and the
CUDA Language

7.2.1 Example: Calculate Row Sums

7.2.2 NVIDIA GPU Hardware Structure

7.2.3 Example: Parallel Distance Computation

7.2.4 Example: Maximal Burst in a Time Series

7.3 R and GPUs

7.3.0.1 The gputools Package

7.4 Thrust and Rth

7.5 The Intel Xeon Phi Chip

Chapter 8

Parallel Sorting, Filtering
and Prefix Scan

8.1 Parallel Sorting

8.1.1 Example: Quicksort in OpenMP

8.1.2 Example: Radix Sort in CUDA/Thrust Libraries

8.2 Parallel Filtering

8.3 Parallel Prefix Scan

8.3.1 Parallizing Prefix Scan

8.3.2 Example: Run Length Compression in OpenMP

8.3.3 Example: Run Length Uncompression in Thrust

137

138

139

140

Chapter 9

Parallel Linear Algebra

9.1 Matrix Tiling

9.1.1 Example: In-Place Matrix Transpose (Rdsm)

9.1.2 Example: Matrix Multiplication in CUDA

9.2 Packages

9.2.1 RcppArmadillo and RccpEigen

9.2.2 The gputools Package (GPU)

9.2.3 OpenBLAS

9.3 Parallel Linear Algebra

9.3.1 Matrix Multiplication

9.3.2 Matrix Inversion (and Equivalent)

9.3.3 Singular Value Decomposition

9.3.4 Fast Fourier Transform

9.3.5 Sparse Matrices

9.4 Applications

9.4.1 Linear and Generalized Linear Models

9.4.2 Convolution of Two Distributions

9.4.3 Edge Detection in Images

9.4.4 Determining Whether a Graph Is Connected

9.4.5 Analysis of Random Graphs

9.5 Example: Matrix Power Computation

9.5.1 Application: Markov Chains

9.5.2 Application: Graph Connectedness

Chapter 10

Iterative Algorithms

10.1 What Is Different about Iterative Algo-
rithms?

10.2 Example: k-Means Clustering

In discussion of parallel computation for data science, an example appli-
cation almost as common as matrix multiplication is k-means clustering.
The goal is to form k groups from our data matrix, hopefully in a way that
makes visual (or other) sense. Let’s see how that can be implemented in
Rdsm.

The general k-means method itself is quite simple, using an iterative algo-
rithm. At any step during the iteration process, the k groups are summa-
rized by their centroids.1 We iterate the following:

1. For each data point, i.e. each row of our data matrix, determine
which centroid this point is closest to.

2. Add this data point to the group corresponding to that centroid.

3. After all data points are processed in this manner, update the cen-
troids to reflect the current group memberships.

1If we have m variables, then the centroid of a group is the m-element vector of means
of those variables within this group.

141

142

4. Next iteration.

This example will bring in a concept in shared-memory work that didn’t
arise in our matrix multiplication example, related to the phrase, “After all
data points are processed...” in step 3. Some other new concepts will come
up as well, all to be explained below.

10.2.1 The Code

So, here is the code, again with a small test function:

1 # k−means c l u s t e r i n g on the data matrix x , wi th k c l u s t e r s and ni
2 # i t e r a t i o n s ; f i n a l c l u s t e r c e n t r o i d s p l aced in c n t r d s
3
4 # i n i t i a l c e n t r o i d s taken to be k randomly chosen rows o f x ; i f a
5 # c l u s t e r becomes empty , i t s new c e n t r o i d w i l l be a random row of
6 # x
7
8 l ibrary (Rdsm)
9

10 # arguments :
11 # x : data matrix x ; shared
12 # k : number o f c l u s t e r s
13 # ni : number o f i t e r a t i o n s
14 # c n t r d s : c e n t r o i d s matrix ; row i i s c e n t r o i d i ; shared , k by nco l (x)
15 # c i n i t : o p t i o n a l i n i t i a l v a l u e s f o r the c e n t r o i d s ; k by nco l (x)
16 # sums : s c r a t c h matrix ; sums [j ,] con t a in s the count
17 # and sum f o r c l u s t e r j ; shared , k by 1+nco l (x)
18 # l c k : l o c k v a r i a b l e ; shared
19
20 kmeans <− function (x , k , ni , cntrds , sums , lck , c i n i t=NULL) {
21 require (p a r a l l e l)
22 require (pd i s t)
23 nx <− nrow(x)
24 # g e t my a s s i g n e d p o r t i o n o f x
25 # myidxs <− s p l i t I n d i c e s (nx , myinfo$nwrkrs) [[myinfo$ i d]]
26 myidxs <− g e t i dx s (nx)
27 myx <− x [myidxs ,]
28 # random i n i t i a l c e n t r o i d s i f none s p e c i f i e d
29 i f (i s . null (c i n i t)) {
30 i f (myinfo$ id == 1)
31 cntrds [,] <− x [sample (1 : nx , k , replace=F) ,]

143

32 barr ()
33 } else cntrds [,] <− c i n i t
34
35 # mysum() sums the rows in myx corresponding to the i n d i c e s i d x s ; we
36 # a l s o produce a count o f t h o s e rows
37 mysum <− function (idxs , myx) {
38 c (length (idxs) , colSums (myx [idxs , , drop=F]))
39 }
40 for (i in 1 : n i) { # ni i t e r a t i o n s
41 # c l u s t e r node 1 i s sometimes asked to do some ” housekeep ing ”
42 i f (myinfo$ id == 1) {
43 sums [] <− 0
44 }
45 barr () # o the r nodes wai t f o r node 1 to do i t s work
46 # f i n d d i s t a n c e s from my rows o f x to the c e n t r o i d s , then
47 # f i n d which c e n t r o i d i s c l o s e s t to each such row
48 ds t s <− matrix (pd i s t (myx , cnt rds [,]) @dist , ncol=nrow(myx))
49 nr s t <− apply (dsts , 2 , which .min)
50 # n r s t [i] c on t a ins the index o f the n e a r e s t c e n t r o i d to row i in
51 # myx
52 tmp <− tapply (1 :nrow(myx) , nrst , mysum, myx)
53 # in the above , we g a t h e r the o b s e r v a t i o n s in myx whose c l o s e s t
54 # c e n t r o i d i s c e n t r o i d j , and f i n d t h e i r sum , p l a c i n g i t in
55 # tmp [j] ; the l a t t e r w i l l a l s o have the count o f such o b s e r v a t i o n s
56 # in i t s l e a d i n g component
57 # next , we need to add t h a t to sums [j ,] , as an atomic oper a t i on
58 rea l rdsmlock (l ck)
59 # the j v a l u e s in tmp w i l l be s t r i n g s , so conver t
60 for (j in as . integer (names(tmp))) {
61 sums [j ,] <− sums [j ,] + tmp [[j]]
62 }
63 rea l rdsmunlock (l ck)
64 barr () # wait from sums [,] to be ready
65 i f (myinfo$ id == 1) {
66 # update c e n t r o i d s , us ing a random data p o i n t i f a c l u s t e r
67 # becomes empty
68 for (j in 1 : k) {
69 # update c e n t r o i d f o r c l u s t e r j
70 i f (sums [j , 1] > 0) {
71 cntrds [j ,] <− sums [j ,−1] / sums [j , 1]
72 } else cntrds [j] <<− x [sample (1 : nx , 1) ,]
73 }
74 }

144

75 }
76 0 # don ’ t do e x p e n s i v e re turn o f r e s u l t
77 }
78
79 t e s t <− function (c l s) {
80 l ibrary (p a r a l l e l)
81 mgr in i t (c l s)
82 mgrmakevar (c l s , ”x” ,6 , 2)
83 mgrmakevar (c l s , ” cnt rds ” , 2 , 2)
84 mgrmakevar (c l s , ”sms” ,2 , 3)
85 mgrmakelock (c l s , ” l ck ”)
86 x [,] <− matrix (sample (1 : 2 0 , 1 2) , ncol=2)
87 c lu s t e rExpor t (c l s , ”kmeans”)
88 c lusterEvalQ (c l s , kmeans (x , 2 , 1 , cntrds , sms , ” l ck ” ,
89 c i n i t=rbind (c (5 , 5) , c (1 5 , 1 5))))
90 }
91
92 t e s t 1 <− function (c l s) {
93 mgr in i t (c l s)
94 mgrmakevar (c l s , ”x” ,10000 ,3)
95 mgrmakevar (c l s , ” cnt rds ” , 3 , 3)
96 mgrmakevar (c l s , ”sms” ,3 , 4)
97 mgrmakelock (c l s , ” l ck ”)
98 x [,] <− matrix (rnorm(30000) , ncol=3)
99 r i <− sample (1 :10000 ,3000)

100 x [r i , 1] <− x [r i , 1] + 5
101 r i <− sample (1 :10000 ,3000)
102 x [r i , 2] <− x [r i , 2] + 5
103 c lu s t e rExpor t (c l s , ”kmeans”)
104 c lusterEvalQ (c l s , kmeans (x , 3 , 5 0 , cntrds , sms , ” l ck ”))
105 }

Let’s first discuss the arguments of kmeans(). Our data matrix is x, which
is described in the comments as a shared variable (on the assumption that
it will often be such) but actually need not be.

By contrast, cntrds needs to be shared, as the threads repeatedly use it as
the iterations progress. We have thread 1 writing to this variable,

i f (myinfo$ id == 1) {
for (j in 1 : k) {

i f (sums [j , 1] > 0) {
cntrds [j ,] <<− sums [j ,−1] / sums [j , 1]

} else cntrds [j] <<− x [sample (1 : nx , 1) ,]

145

}
}

at the end of each iteration, and all threads reading it:

d s t s <− matrix (pd i s t (myx , cnt rds [,]) @dist , ncol=nrow(myx))

If cntrds were not shared, the whole thing would fall apart. When thread
1 would write to it, it would become a local variable for that thread, and
the new value would not become visible to the other threads. Note that as
in our previous examples, we store our function’s final result, in this case
cntrds, in a shared variable, rather than as a return value.

The argument sums is also shared by necessity. It is only used to store
intermediate results, but again this variable is written to by some threads
and subsequently read by others, hence must be shared.

Another argument to kmeans() that is shared is lck, a lock variable, to
be discussed below.

So, let’s look at the actual code, starting with

g e t my a s s i g n e d p o r t i o n o f x
myidxs <− s p l i t I n d i c e s (nx , myinfo$nwrkrs) [[myinfo$ i d]]
myidxs <− g e t i dx s (nx)
myx <− x [myidxs ,]

Once again our approach will be to break the data matrix into chunks of
rows. Each thread will handle one chunk, finding distances from rows in its
chunk to the current centroids. How is the above code preparing for this?

Note again the “me, my” point of view here, pointed out in Section 5.4 and
present in almost any threads function. The code here is written from the
point of view of a particular thread. So, the code first needs to determine
this thread’s rows chunk.

Why have this separate variable, myx? Why not just use x[myidxs,]?
First, having the separate variable results in less cluttered code. But sec-
ondly, repeated access to x could cause a lot of costly cache misses and
cache coherency actions.

Next we see another use of barriers:

i f (i s . null (c i n i t)) {
i f (myinfo$ id == 1)

cntrds [,] <− x [sample (1 : nx , k , replace=F) ,]
barr ()

146

} else cntrds [,] <− c i n i t

We’ve set things up so that if the user does not specify the initial values of
the centroids, they will be set to k random rows of x. We’ve written the
code so that thread 1 performs this task, but we need the other threads
to wait until the task is done. If we didn’t do that, one thread might race
ahead and start accessing cntrds before it is ready. Our call to barr()
ensures that this won’t happen.

We have a similar use of a barrier at the beginning of the main loop:

i f (myinfo$ id == 1) {
sums [] <− 0

}
barr () # o the r nodes wai t f o r node 1 to do i t s work

We need to compute the distances to the various centroids from all the rows
in this thread’s portion of our data:

d s t s <− matrix (pd i s t (myx , cnt rds [,]) @dist , ncol=nrow(myx))

R’s pdist package comes to the rescue! This package, which we saw in
Section 3.8, finds all distances from the rows of one matrix to the rows
of another, exactly what we need. So, here again, we are leveraging R!
(Indeed, an alternate way to parallelize the computation from what we are
doing here would be to parallelize pdist(), say using Rdsm instead of
snow as before.)

Next, we leverage R’s which.min() function, which finds indices of minima
(not the minima themselves). We use this to determine the new group
memberships for the data points in myx:

n r s t <− apply (dsts , 2 , which .min)
n r s t [i] c on t a ins the index o f the n e a r e s t c e n t r o i d to row i in
myx

Next, we need to collect the information in nrst into a more usable form,
in which we have, for each centroid, a vector stating the indices of all rows
in myx that now will belong to that centroid’s group. For each centroid,
we’ll also need to sum all such rows, in preparation for later averaging them
to find the new centroids.

Again, we can leverage R to do this quite compactly (albeit needing a bit
of thought):

mysum <− function (idxs , myx) {

147

c (length (idxs) , colSums (myx [idxs , , drop=F]))
}
. . .
tmp <− tapply (1 :nrow(myx) , nrst , mysum, myx)

But remember, all the threads are doing this! For instance, thread 1 is
finding the sum of its rows that are now closest to centroid 6, but thread
4 is doing the same. For centroid 6, we will need the sum of all such rows,
across all such threads.

In other words, multiple threads may be writing to the same row of sums
at about the same time. Race condition ahead! So, we need a lock:

l o ck (l ck)
for (j in names(tmp)) {

j <− as . integer (j)
sums [j ,] <− sums [j ,] + tmp [[j]]

}
unlock (l ck)

The for loop here is a critical section. Without the restriction, chaos could
result. Say for example two threads want to add 3 and 8 to a certain total,
respectively, and that the current total is 29. What could happen is that
they both see the 29, and compute 32 and 37, respectively, and then write
those numbers back to the shared total. The result might be that the new
total is either 32 or 37, when it actually should be 40. The locks prevent
such a calamity.

A refinement would be to set up k locks, one for each row of sums. As noted
earlier, locks sap performance, by temporarily serializing the execution of
the threads. Having k locks instead of one might ameliorate the problem
here.

After all the threads are done with this work, we can have thread 1 compute
the new averages, i.e. the new centroids. But the key word in the last
sentence is “after.” We can’t let thread 1 do that computation until we are
sure that all the threads are done. This calls for using a barrier:

barr ()
i f (myinfo$ id == 1) {

for (j in 1 : k) {
i f (sums [j , 1] > 0) {

cntrds [j ,] <<− sums [j ,−1] / sums [j , 1]
} else cntrds [j] <<− x [sample (1 : nx , 1) ,]

}

148

}

As noted earlier, the shared variable sums serves as storage for intermediate
results, not only sums of the data points in a group, but also their counts.
We can now use that information to compute the new centroids:

i f (myinfo$ id == 1) {
for (j in 1 : k) {

update c e n t r o i d f o r c l u s t e r j
i f (sums [j , 1] > 0) {

cntrds [j ,] <− sums [j ,−1] / sums [j , 1]
} else cntrds [j] <<− x [sample (1 : nx , 1) ,]

}
}

10.2.2 Timing Experiment

Let n denote the number of rows in our data matrix. With k clusters, we
have to compute nk distances per iteration, and then take n minima. So
the time complexity is O(nk).

This is not very promising for parallelization. In many cases O(n) (fixing
k here) does not provide enough computation to overcome overhead issues.
However, with our code here, there really isn’t much overhead. We copy
the data matrix just once,

myx <− x [myidxs ,]

and thus avoid problems of contention for shared memory and so on.

It appears that we can indeed get a speedup from our parallel version some
cases:

> x <− matrix (runif (100000∗25) , ncol=25)
> system . time (kmeans (x , 1 0)) # kmeans () f u n c t i o n in base R, k = 10

user system e lapsed
8 .972 0 .056 9 .051

> c l s <− makeCluster (4)
> mgr in i t (c l s)
> mgrmakevar (c l s , ” cntrds ” ,10 ,25)
> mgrmakevar (c l s , ”sms” ,10 ,26)
> c lu s t e rExpor t (c l s , ”kmeans”)
> mgrmakevar (c l s , ”x” ,100000 ,25)
> x [,] <− x

149

> system . time (c lusterEvalQ (c l s , kmeans (x , 10 , 10 , cntrds , sms , l c k)))
user system e lapsed

0 .000 0 .000 4 .086

A bit more than 2X speedup for four cores, fairly good in view of the above
considerations.

10.3 Example: EM Algorithms

150

Chapter 11

Inherently Statistical
Approaches to
Parallelization: Subset
Methods

11.1 Software Alchemy

11.2 Mini-Bootstraps

11.3 Subsetting Variables

151

152

Appendix A

Review of Matrix Algebra

This book assumes the reader has had a course in linear algebra (or has
self-studied it, always the better approach). This appendix is intended as a
review of basic matrix algebra, or a quick treatment for those lacking this
background.

A.1 Terminology and Notation

A matrix is a rectangular array of numbers. A vector is a matrix with
only one row (a row vector or only one column (a column vector).

The expression, “the (i,j) element of a matrix,” will mean its element in
row i, column j.

Please note the following conventions:

• Capital letters, e.g. A and X, will be used to denote matrices and
vectors.

• Lower-case letters with subscripts, e.g. a2,15 and x8, will be used to
denote their elements.

• Capital letters with subscripts, e.g. A13, will be used to denote sub-
matrices and subvectors.

If A is a square matrix, i.e. one with equal numbers n of rows and columns,
then its diagonal elements are aii, i = 1,...,n.

153

154

A square matrix is called upper-triangular if aij = 0 whenever i > j,
with a corresponding definition for lower-triangular matrices.

The norm (or length) of an n-element vector X is

‖ X ‖=

√√√√ n∑
i=1

x2i (A.1)

A.1.1 Matrix Addition and Multiplication

• For two matrices have the same numbers of rows and same numbers
of columns, addition is defined elementwise, e.g.

 1 5
0 3
4 8

+

 6 2
0 1
4 0

 =

 7 7
0 4
8 8

 (A.2)

• Multiplication of a matrix by a scalar, i.e. a number, is also defined
elementwise, e.g.

0.4

 7 7
0 4
8 8

 =

 2.8 2.8
0 1.6

3.2 3.2

 (A.3)

• The inner product or dot product of equal-length vectors X and
Y is defined to be

n∑
k=1

xkyk (A.4)

• The product of matrices A and B is defined if the number of rows
of B equals the number of columns of A (A and B are said to be
conformable). In that case, the (i,j) element of the product C is
defined to be

cij =

n∑
k=1

aikbkj (A.5)

155

For instance,  7 6
0 4
8 8

(1 6
2 4

)
=

 19 66
8 16
24 80

 (A.6)

It is helpful to visualize cij as the inner product of row i of A and
column j of B, e.g. as shown in bold face here: 7 6

0 4
8 8

(1 6
2 4

)
=

 7 70
8 16
8 80

 (A.7)

• Matrix multiplicatin is associative and distributive, but in general not
commutative:

A(BC) = (AB)C (A.8)

A(B + C) = AB +AC (A.9)

AB 6= BA (A.10)

A.2 Matrix Transpose

• The transpose of a matrix A, denoted A′ or AT , is obtained by ex-
changing the rows and columns of A, e.g.

 7 70
8 16
8 80

′ =

(
7 8 8
70 16 80

)
(A.11)

• If A + B is defined, then

(A+B)′ = A′ +B′ (A.12)

• If A and B are conformable, then

(AB)′ = B′A′ (A.13)

156

A.3 Linear Independence

Equal-length vectors X1,...,Xk are said to be linearly independent if it
is impossible for

a1X1 + ...+ akXk = 0 (A.14)

unless all the ai are 0.

A.4 Determinants

Let A be an nxn matrix. The definition of the determinant of A, det(A),
involves an abstract formula featuring permutations. It will be omitted
here, in favor of the following computational method.

Let A−(i,j) denote the submatrix of A obtained by deleting its ith row and

jth column. Then the determinant can be computed recursively across the
kth row of A as

det(A) =

n∑
m=1

(−1)k+mdet(A−(k,m)) (A.15)

where

det

(
s t
u v

)
= sv − tu (A.16)

Generally, determinants are mainly of theoretical importance, but they
often can clarify one’s understanding of concepts.

A.5 Matrix Inverse

• The identity matrix I of size n has 1s in all of its diagonal elements
but 0s in all off-diagonal elements. It has the property that AI = A
and IA = A whenever those products are defined.

• The A is a square matrix and AB = I, then B is said to be the inverse
of A, denoted A−1. Then BA = I will hold as well.

157

• A−1 exists if and only if its rows (or columns) are linearly indepen-
dent.

• A−1 exists if and only if det(A) 6= 0.

• If A and B are square, conformable and invertible, then AB is also
invertible, and

(AB)−1 = B−1A−1 (A.17)

A matrix U is said to be orthogonal if its rows each have norm 1 and
are orthogonal to each other, i.e. their inner product is 0. U thus has the
property that UU ′ = I i.e. U−1 = U .

The inverse of a triangular matrix is easily obtain by something called back
substitution.

Typically one does not compute matrix inverses directly. A common al-
ternative is the QR decomposition: For a matrix A, matrices Q and R
are calculated so that A = QR, where Q is an orthogonal matrix and R is
upper-triangular.

If A is square and inveritble, A−1 is easily found:

A−1 = (QR)−1 = R−1Q′ (A.18)

Again, though, in some cases A is part of a more complex system, and the
inverse is not explicitly computed.

A.6 Eigenvalues and Eigenvectors

Let A be a square matrix.1

• A scalar λ and a nonzero vector X that satisfy

AX = λX (A.19)

are called an eigenvalue and eigenvector of A, respectively.

1For nonsquare matrices, the discussion here would generalize to the topic of singular
value decomposition.

158

• If A is symmetric and real, then it is diagonalizable, i.e there exists
an orthogonal matrix U such that

U ′AU = D (A.20)

for a diagonal matrix D. The elements of D are the eigenvalues of A,
and the columns of U are the eigenvectors of A.

A.7 Matrix Algebra in R

The R programming language has extensive facilities for matrix algebra,
introduced here.

Note first that R matrix subscripts, like those of vectors, begin at 1, rather
than 0 as in C/C++. For instance:

> m <− rbind (3 : 4 , c (1 , 8))
> m

[, 1] [, 2]
[1 ,] 3 4
[2 ,] 1 8
> m[2 , 2]
[1] 8

Next, it is important to know that R uses column-major order, i.e. its
elements are stored in memory column-by-column. In the case of the matrix
m above, for instance, the element 1 will be the second one in the internal
memory storage of m, while the 8 will be the fourth.

This is also reflected in how R “inputs” data when a matrix is constructed,
e.g.

> d <− matrix (c (1 , −1 ,0 ,0 ,3 ,8) ,nrow=2)
> d

[, 1] [, 2] [, 3]
[1 ,] 1 0 3
[2 ,] −1 0 8

The R matrix type is a special case of vectors:

> d [5] # 5 th element , i . e . row 1 , column 3
[1] 3

159

A linear algebra vector can be formed as an R vector, or as a one-row or
one-column matrix. If you use it in a matrix product, R will usually be
able to figure out whether you mean it to be a row or a column.

> # c o n s t r u c t i n g matr ices
> a <− rbind (1 : 3 , 1 0 : 1 2)
> a

[, 1] [, 2] [, 3]
[1 ,] 1 2 3
[2 ,] 10 11 12
> b <− matrix (1 : 9 , ncol=3)
> b

[, 1] [, 2] [, 3]
[1 ,] 1 4 7
[2 ,] 2 5 8
[3 ,] 3 6 9

m u l t i p l i c a t i o n , a d d i t i o n e t c .
> c <− a %∗% b
> c

[, 1] [, 2] [, 3]
[1 ,] 14 32 50
[2 ,] 68 167 266
> c + matrix (c (1 , −1 ,0 ,0 ,3 ,8) ,nrow=2) # 2 d i f f e r e n t c ’ s !

[, 1] [, 2] [, 3]
[1 ,] 15 32 53
[2 ,] 67 167 274
> c %∗% c (1 , 5 , 6)

[, 1]
[1 ,] 474
[2 ,] 2499
> t (a) # matrix t r ans pose

[, 1] [, 2]
[1 ,] 1 10
[2 ,] 2 11
[3 ,] 3 12
> # matrix i n v e r s e
> u <− matrix (runif (9) ,nrow=3)
> u

[, 1] [, 2] [, 3]
[1 ,] 0 .08446154 0.86335270 0.6962092
[2 ,] 0 .31174324 0.35352138 0.7310355
[3 ,] 0 .56182226 0.02375487 0.2950227
> uinv <− solve (u)

160

> uinv
[, 1] [, 2] [, 3]

[1 ,] 0 .5818482 −1.594123 2.576995
[2 ,] 2 .1333965 −2.451237 1.039415
[3 ,] −1.2798127 3.233115 −1.601586
> u %∗% uinv # check , but note roundo f f e r ror

[, 1] [, 2] [, 3]
[1 ,] 1 .000000 e+00 −1.680513e−16 −2.283330e−16
[2 ,] 6 .651580 e−17 1.000000 e+00 4.412703 e−17
[3 ,] 2 .287667 e−17 −3.539920e−17 1.000000 e+00
> # e i g e n v a l u e s and e i g e n v e c t o r s
> eigen (u)
$va lue s
[1] 1.2456220+0.0000000 i −0.2563082+0.2329172 i −0.2563082−0.2329172 i

$ v ec to r s
[, 1] [, 2]

[, 3]
[1 ,] −0.6901599+0 i −0.6537478+0.0000000 i −0.6537478+0.0000000 i
[2 ,] −0.5874584+0 i −0.1989163−0.3827132 i −0.1989163+0.3827132 i
[3 ,] −0.4225778+0 i 0.5666579+0.2558820 i 0.5666579−0.2558820 i
> # d i a g o n a l matr ices (o f f−d i a g o n a l s 0)
> diag (3)

[, 1] [, 2] [, 3]
[1 ,] 1 0 0
[2 ,] 0 1 0
[3 ,] 0 0 1
> diag ((c (5 , 1 2 , 1 3)))

[, 1] [, 2] [, 3]
[1 ,] 5 0 0
[2 ,] 0 12 0
[3 ,] 0 0 13
> m

[, 1] [, 2] [, 3]
[1 ,] 5 6 7
[2 ,] 10 11 12
> diag (m) <− c (8 , 88)
> m

[, 1] [, 2] [, 3]
[1 ,] 8 6 7
[2 ,] 10 88 12

	Preface
	Introduction to Parallel Processing in R
	What Language to Use? The Roles of R, C/C++, Etc.
	A Note on Machines
	Extended Example: Mutual Web Outlinks
	Serial Code
	Choice of Parallel Tool
	Meaning of ``snow'' in This Book
	Introduction to snow
	Mutual Outlinks Problem, Solution 1
	Code
	Timings
	Analysis of the Code

	``Why Is My Program So Slow?'': Obstacles to Speed
	Obstacles to Speed
	Performance and Hardware Structures
	Memory Basics
	Caches
	Virtual Memory
	Monitoring Cache Misses and Page Faults
	Locality of Reference

	Network Basics
	Latency and Bandwidth
	Two Representative Hardware Platforms: Multicore Machines and Clusters
	Multicore
	Clusters

	How Many Processes/Threads?
	Example: Mutual Outlink Problem
	``Big O'' Notation
	Data Serialization
	``Embarrassingly Parallel'' Applications
	What People Mean by ``Embarrassingly Parallel''
	Suitable Platforms for Non-Embarrassingly Parallel Applications

	Principles of Parallel Loop Scheduling
	General Notions of Loop Scheduling
	Chunking in Snow
	Example: Mutual Outlinks Problem

	A Note on Code Complexity
	Example: All Possible Regressions
	Parallelization Strategies
	The Code
	Sample Run
	Code Analysis
	Our Task List
	Chunking
	Task Scheduling
	The Actual Dispatching of Work
	Wrapping Up

	Timing Experiments

	Example: All Possible Regressions, Improved Version
	Code
	Code Analysis
	Timings

	Introducing Another Tool: multicore
	Source of the Performance Advantage
	Example: All Possible Regressions, Using multicore

	Issues with Chunk Size
	Example: Parallel Distance Computation
	The Code
	Timings

	The foreach Package
	Example: Mutual Outlinks Problem
	A Caution When Using foreach

	Another Scheduling Approach: Random Task Permutation
	The Math
	The Random Method vs. Others, in Practice

	Debugging snow and multicore Code
	Debugging in snow
	Debugging in multicore

	The Message Passing Paradigm
	Performance Issues
	The Basic Problems
	Solutions

	Rmpi
	Example: Genomics Data Analysis
	Example: Quicksort
	The Code
	Usage
	Timing Example
	Latency, Bandwdith and Parallelism
	Possible Improvements
	Analysis of the Code

	Memory Allocation Issues
	Some Other Rmpi Functions
	Subtleties
	Blocking Vs. Nonblocking I/O
	The Dreaded Deadlock Problem

	Introduction to pdbR

	The Shared Memory Paradigm: Introduction through R
	So, What Is Actually Shared?
	Clarity and Conciseness of Shared-Memory Programming
	High-Level Introduction to Shared-Memory Programming: Rdsm Package
	Use of Shared Memory

	Example: Matrix Multiplication
	The Code
	Setup
	The App Code
	A Closer Look at the Shared Nature of Our Data
	Timing Comparison
	Leveraging R

	Shared Memory Can Bring A Performance Advantage
	Locks and Barriers
	Race Conditions and Critical Sections
	Locks
	Barriers

	Example: Finding the Maximal Burst in a Time Series
	The Code

	Example: Transformation of an Adjacency Matrix
	The Code
	Overallocation of Memory
	Timing Experiment

	The Shared Memory Paradigm: C Level
	OpenMP
	Example: Finding the Maximal Burst in a Time Series
	The Code
	Compiling and Running
	Analysis
	Setting the Number of Threads

	Timings
	OpenMP Loop Scheduling Options
	Example: Transformation an Adjacency Matrix
	The Code
	Analysis of the Code

	Example: Transforming an Adjancency Matrix, R-Callable Version
	The Code
	Compiling and Running
	Analysis

	Speedup in C
	Further Cache Issues
	Lockfree Synchronization
	Rcpp

	Parallelism through Accelerator Chips
	Overview
	Introduction to NVIDIA GPUs and the CUDA Language
	Example: Calculate Row Sums
	NVIDIA GPU Hardware Structure
	Example: Parallel Distance Computation
	Example: Maximal Burst in a Time Series

	R and GPUs
	The gputools Package

	Thrust and Rth
	The Intel Xeon Phi Chip

	Parallel Sorting, Filtering and Prefix Scan
	Parallel Sorting
	Example: Quicksort in OpenMP
	Example: Radix Sort in CUDA/Thrust Libraries

	Parallel Filtering
	Parallel Prefix Scan
	Parallizing Prefix Scan
	Example: Run Length Compression in OpenMP
	Example: Run Length Uncompression in Thrust

	Parallel Linear Algebra
	Matrix Tiling
	Example: In-Place Matrix Transpose (Rdsm)
	Example: Matrix Multiplication in CUDA

	Packages
	RcppArmadillo and RccpEigen
	The gputools Package (GPU)
	OpenBLAS

	Parallel Linear Algebra
	Matrix Multiplication
	Matrix Inversion (and Equivalent)
	Singular Value Decomposition
	Fast Fourier Transform
	Sparse Matrices

	Applications
	Linear and Generalized Linear Models
	Convolution of Two Distributions
	Edge Detection in Images
	Determining Whether a Graph Is Connected
	Analysis of Random Graphs

	Example: Matrix Power Computation
	Application: Markov Chains
	Application: Graph Connectedness

	Iterative Algorithms
	What Is Different about Iterative Algorithms?
	Example: k-Means Clustering
	The Code
	Timing Experiment

	Example: EM Algorithms

	Inherently Statistical Approaches to Parallelization: Subset Methods
	Software Alchemy
	Mini-Bootstraps
	Subsetting Variables

	Review of Matrix Algebra
	Terminology and Notation
	Matrix Addition and Multiplication

	Matrix Transpose
	Linear Independence
	Determinants
	Matrix Inverse
	Eigenvalues and Eigenvectors
	Matrix Algebra in R

