GNU TEXyiacs USER MANUAL

TABLE OF CONTENTS

1 GETTING STARTEDt ittt it it e et e e 7
1.1 Conventions for this manual 7
1.2 Configuring TEX\acs - - - - - -« v v oo e e 7
1.3 Creating, saving and loading documents 8
1.4 Printing documents L 8
2 WRITING SIMPLE DOCUMENTSottt 9
2.1 Generalities for typing text 9
2.2 Typing structured text 9
2.3 Content-based tags 10
2.4 Lists 10
2.5 Environments 11
2.6 Layout issues e 12
2.7 The font selection system 12
2.8 Mastering the keyboard 13

2.8.1 General prefixrules 13

2.8.2 Some fundamental keyboard shortcuts 13

2.8.3 Keyboard shortcuts for text mode 14

2.8.4 Hybrid commands and IATEX simulation 14

2.8.5 Dynamic objects 14

2.8.6 Customization of the keyboard 15
3 MATHEMATICAL FORMULASttt it 16
3.1 Main mathematical constructs oL 16
3.2 Typing mathematical symbols L 17
3.3 Typing big operators e 17
3.4 Typing large delimiters 18
3.5 Wide mathematical accents 19
4 TABULAR MATERIALttt 20
4.1 Creating tables 20
4.2 The formatting mode 20
4.3 Specifying the cell and table alignment 21
4.4 Specifying the cell and table size 21
4.5 Borders, padding and background color 21
4.6 Advanced table features 22
5 LINKS AND AUTOMATICALLY GENERATED CONTENT 23
5.1 Creating labels, links and references 23
0.2 Inserting images 23
5.3 Generating a table of contents L oL L 24
5.4 Compiling a bibliography 24
5.5 Generating an index 24

4 TABLE OF CONTENTS

5.6 Compiling a glossary e 25
5.7 Books and multifile documentso L 25
6 EDITING TOOLSttt e e e e 26
6.1 Cut and paste 26
6.2 Search and replace 26
6.3 Spell checking 27
6.4 Undoand redo 27
7 ADVANCED LAYOUT FEATURES 28
T.1 Flows .. 28
7.2 Floating objects 28
7.3 Page breaking 28
8 UsING GNU TgXpyacs AS AN INTERFACE 29
8.1 SeSSIONS 29
8.1.1 Basic usage 29
8.1.2 Customizing the session styles 29
8.2 Supported systems 30
8.2.1 Shell sessions and scheme sessions 30
8.2.2 Gilac 30
8.2.3 GTybalt 30
8.2.4 Macaulay 2 30
8.25 Maxima 31
8.2.6 Pari 31
8.2.7 Qcl . . o 31
8.2.8 Yacas 31

9 TEXMAcs STYLE FILES . o oottt e e e e 32
9.1 TpXyacg stylefileso o 32
9.2 The standard TEXy;acg styles and packages 32
9.3 Designing your own style files L 33
9.3.1 Look at an example 33
9.3.2 Keyboard shortcuts for writing style files 33
9.3.2.1 Macros, functions and environment variables 33
9.3.2.2 Computational markup oL 34

9.3.3 Important TEXyacg Paths oo oo oo 35
9.4 Customizing the standard TEXy;acg styles and packages 35
10 SUMMARY OF THE PRINCIPAL TEXpjacs TAGS 36
10.1 The common base for most styles 36
10.1.1 Standard markupo 36
10.1.2 Standard symbols 38
10.1.3 Standard mathematical markup o L 38
10.1.4 Standard lists 39
10.1.5 Automatic content generation L 40
10.1.6 Special markup for programs and sessions 41
10.2 Standard environments inside text L L o oo Lo 42
10.2.1 Defining new environments 42

10.2.2 Mathematical environments 42

TABLE OF CONTENTS 5

10.2.3 Theorem-like environments L L L. 43
10.2.4 Environments for floating objects 44
10.2.5 Default environments 44
10.3 Headers and footers 45
10.3.1 Standard headers 45
10.3.2 Standard titles 45
104 TATEX style sections 46
10.5 Markup for automatic numbering oL oL oL L 47
10.5.1 Numbering environments L. 47
10.5.2 Numbering sections 47
11 CUSTOMIZING TEXNMACS -+« v v v v v et e e e e e 48
11.1 Introduction to the GUILE extension language 48
11.2 Writing your own initialization files L. 48
11.3 Creating your own dynamic menus 49
11.4 Creating your own keyboard shortcuts 49
11.5 Other interesting files L 20
12 COMPATIBILITY WITH OTHER FORMATS o1
12.1 Compatibility with TATEX 51
12.1.1 Conversion from TEXyacg to INTEX . .o oo 51
12.1.2 Possible conversion problems 52
12.1.2.1 Specific TEXyjacg featureso oo oo 52
12.1.2.2 Not yet implemented conversions 23
12.1.2.3 Bugs in the conversion algorithm 23
12.1.2.4 Work-arounds 23

12.1.3 Conversion from IATEX t0 TEXMACS « « « « v v v v me e e e e 53
12.2 Conversion of TEXyacg documents to Htmlo o000 00000 L. 54
APPENDIX A. CONFIGURATION OF TEXpfaCcs - -« v v v v v oo e e a 29
Al Introduction 55
A.2 Configuration of the modifier keys 55
A.3 Notes for Russian and Ukranian users o6
APPENDIX B. ABOUT GNU TEXMACS - - - -« v v cmee e oo i 98
B.1 Summary 58
B.2 The philosophy behind TEXyacg - - - -+« o o v o oo e o8
B.2.1 A short description of GNU TEXyjacg - - - -« c v v v oo oo 58
B.2.2 Why freedom is important for scientists 59
B.3 The authors of TEXyjacs - - - - - - - o o oo e 59
B.3.1 Developers of TEX\[ACS - <« = =« v v v v oo e e e e e 59
B.3.2 Administration of TEXy;acg and material support 60
B.3.3 Porting TpXyiacg to other platforms 60
B.3.4 Contributors to TEXyjacg Packages L. 60
B.3.5 Internationalization of TEXyjacg -« « « « « v v v v v o e 61
B.3.6 Other contributors 61
B.3.7 Contacting us 62
B.4 Important changes in TEXyfacg « - -+« v v v v v e 63
B.4.1 Keyboard (1.0.0.11 — 1.0.1)o oo 63

B.4.2 Menus (1.0.0.7 = 1.0.1) . .o oo 63

6 TABLE OF CONTENTS

B.4.3 Style files (1.0.0.4) 64
B.4.4 Tabular material (0.3.5) 64
B.4.5 Document format (0.3.4) 64
APPENDIX C. CONTRIBUTING TO GNU TEXpjacs - -« v v v v v v v e v v e 65
C.1 Use TEXQMACS © « ¢ v v v oo e e e e e e e e e e 65
C.2 Making donations to the TEXyjacg project 65
Making donations to TeXmacs through the SPI organization 65

Details on how to donate money L 65

Important noteso 66

C.3 Contribute to the GNU TEXyjacg documentation 66
C.3.1 Introduction on how to contribute 66
C.3.2 UsSing CVS . . ot e e 66
C.3.3 Conventions for the names of files 67
C.3.4 Copyright information & the Free Documentation License 67
C.3.5 Traversing the TEXyjacg documentation 68
C.3.6 Using the tmdoc style 68
C.4 Internationalization 70
C.5 Writing data converters 70
C.6 Porting TEXyjacs to other platforms 70
C.7 Interfacing TEXyjacs With other systems 71
C.8 Become a TEXyjacg developer o o Lo 71
APPENDIX D. INTERFACING TEXpjacs WITH OTHER PROGRAMS 72
D.1 Studying the “mycas” example 72
D.2 Studying the source code step by step L 72
D.3 Graphical output 74
D.4 The complete listingo L 74
D.5 Writing your first interface with TEXyjacg - - - - - -« c o o o oo oo 75
D.6 Supporting your system inside TEXyjacg - - - - - - o o o i oo o 76
D.7 Further customization of the interface 7
D.8 Linking your system as a dynamic library 7
D.9 Connections via dynamically linked libraries 7
D.10 The TeXmacs communication protocol 78
D.11 Version 1 of the TeXmacs communication protocol 78
D.12 Future projects 79

CHAPTER 1

GETTING STARTED

1.1. CONVENTIONS FOR THIS MANUAL

Throughout the TEXj1acs manual, menu entries will be typeset using a sans serif font, like
in Document, File — Load or Text — Font shape — Italic. Keyboard input will be typeset in
a typewriter font inside boxes, like in . At the righthand side of menu entries, you see
keystroke equivalents, when these are available. The following abbreviations are used for
such keystrokes:

For shift key combinations.
For control key combinations.
For alternate key combinations.

@ For meta key combinations.

For hyper key combinations.

For instance, stands for [alt-ctrl-b| Spaces inside keyboard shortcuts indicate
multiple key-presses. For instance, stands for E

The [alt | [meta|and [hyper | keys are not available on all keyboards. On recent PC’s, the

key is often replaced by the key. In the case when one or several modifier
keys are missing on your keyboard, you may use instead of , | escape escape |
instead of and [F5), [escape escape escape| or [A-C- | instead of [H- | For instance,

is equivalent to [A-w| You may also configure the keyboard modifiers in order

to take full advantage out of the powerful set of keyboard shortcuts which is provided by
TEXyacs-

Notice that the TEXyacg menus and keyboard behavior are conteztual, i.e. they depend on
the current mode (i.e. text mode or “math mode”), the current language and the position
of the cursor inside your document. For instance, inside math mode, you have special
keyboard shortcuts which are handy for typing mathematical formulas, but which are
useless in text mode.

1.2. CONFIGURING TgEXy1acs

When starting TEXyjacg for the first time, the program automatically configures itself in
a way which it thinks to be most suitable for you. For instance, TEXyjacg Will attempt
to determine your systems settings for the language and the paper type of your printer.
However, the automatic configuration may sometimes fail or you may want to use an
alternative configuration. In that case, you should go to the Edit — Preferences menu and
specify your preferences.

8 GETTING STARTED

In particular, we recommend you to configure the desired “look and feel” of TEX\acs- By
default, we use the EMACS look and feel, which ensures a limited compatibility of the
TEXyracs keyboard shortcuts with those of EMACS. Also, TEXyjacg comes with a powerful
keyboard shortcut system, which attempts to optimize the use of the modifier keys like
and on your keyboard. However, on many X Window systems these
modifier keys are not well configured, so that you may wish to redo this yourself. More
details can be found in the section about the configuration of TEXy;acq-

1.3. CREATING, SAVING AND LOADING DOCUMENTS

When launching TEXyjacs without any command line options, the editor automatically
creates a new document for you. You may also create a new document yourself using
File — New. Newly created documents do not yet carry a name. In order to give them a
name, you should click on File — Save as.

We recommend you to give documents a name immediately after their creation; this will
avoid you to loose documents. It is also recommended to specify the global settings for
your document when necessary. First of all, you may specify a document style like article,
book or seminar using Document — Style. If you write documents in several languages,
then you may want to specify the language of your document using Document — Language.
Similarly, you may specify a paper type using Document — Page — Size.

After modifying your document, you may save it using File — Save. Old documents can
be retrieved using File — Load. Notice that you can edit several documents in the same
window using TEXyacs; you can switch between different buffers using Go.

1.4. PRINTING DOCUMENTS

You can print the current file using File — Print — Print all. By default, TEX\ acg assumes
that you have a 600dpi printer for a4 paper. These default settings can be changed in
Preferences — Printer. You can also print to a postscript file using File — Print — Print
all to file (in which case the default printer settings are used for creating the output) or
File — Export — Postscript (in which case the printer settings are ignored).

When adequately configuring TEXy acg, the editor is guaranteed to be wysiwyg: the result
after printing out is exactly what you see on your screen. In order to obtain full wysiwyg-
ness, you should in particular select Document — Page — Type — Paper and Document —
Page — Screen layout — Margins as on paper. You should also make sure that the characters
on your screen use the same number of dots per inch as your printer. This rendering
precision of the characters may be changed using Document — Font — Dpi. Currently,
minor typesetting changes may occur when changing the dpi, which may globally affect
the document through line and page breaking. In a future release this drawback should be
removed.

CHAPTER 2

WRITING SIMPLE DOCUMENTS

2.1. GENERALITIES FOR TYPING TEXT

As soon as you have performed the preparatory actions as explained above, you can start
typing. The usual English characters and punctuation symbols can easily be obtained
on most keyboards. Accented characters from foreign languages can systematically be
obtained using the escape key. For instance, “¢” is obtained by typing . Similarly, we
obtain “a” via and so on. Long words at borders of successive lines are automatically
hyphenated. In order to hyphenate foreign languages correctly, you should specify the
language of the document in the menu Document — Language.

At the left hand side of the footer, you see the document style, the text properties at the
current cursor position. Initially, it displays “text roman 12”, which means that you type
in text mode using a 12 point roman font and no document style. You can change the
text properties (font, font size, color, language) in the Text menu. You can also change the
text properties of the text you have already typed by selecting a region and then change
the text properties in the Text menu. Some text properties can also be changed for all the
document in the Document — Font and Document — Language menus.

At the right hand side of the footer, the character or object (like a change in the text
properties) just before the cursor is displayed. We also display all environments which are
active at the cursor position. This information should help you to orient yourself in the
document.

2.2. TYPING STRUCTURED TEXT

Usually, long documents have a structure: they are organized in chapters, sections and
subsections, they contain different types of text, such as regular text, citations, footnotes,
theorems, etc. After selecting a document style in Document — Style, TEXy;acg takes care of
specific layout issues, such as numbering of sections, pages, theorems, typesetting citations,
footnotes and theorems in a nice way and so on.

Currently, four document standard styles have been implemented: letter, article, book and
seminar. The seminar style is used for making transparencies. As soon as you have selected
such a style, you can organize your text into sections (see Text — Section) and use specific
environments. Examples of environments are theorem, proposition, remark and so on (see
Text — Environment). Other examples are lists of items (see Text — ltemize) or numbered
lists (see Text — Enumerate).

10 WRITING SIMPLE DOCUMENTS

When you get more acquainted with TEXyacg, it is possible to add your own new envi-
ronments in your own style file. Assume for instance that you often make citations and
that you want those to appear in italic, with left and right margins of lecm. Instead of
manually changing the text and paragraph properties each time you make a citation, it is
better to create a citation environment. Not only it will be faster to create a new citation
when doing so, but it is also possible to systematically change the layout of your citations
throughout the document just by changing the definition of the citation environment. The
latter situation occurs for instance if you discover a posterior: that you prefer the citations
to appear in a smaller font.

2.3. CONTENT-BASED TAGS

The simplest examples of structure in a text are content-based tags. In Text — content
tags you see a list of them. Content based tags indicate that a given portion of text is of a
particular kind or that it serves a specific purpose. For instance, important text should be
marked using the strong tag. Its default rendering uses a bold type face, like in this strong
text. However, strong text might be rendered in a different way according to the document
style. For instance, strong text may be rendered in a different color on transparencies for
presentations. Here follows a short list of the most common content-based tags and their
purpose:

Tag Example Purpose

strong | this is important Indicate an important region of text

em the real thing Emphasize a region of text

dfn A gnu is a horny beast | Definition of some concept

samp the ae ligature 2 A sequence of literal characters

name the LINUX system The name of a particular thing

person |l am JORIS The name of a person

citex Melville’s Moby Dick A bibliographic citation

abbr I work at the C.N.R.S. | An abbreviation

acronym |the HTML format An acronym

verbatim | the program said hello | Verbatim text like computer program output
kbd Please type return Text which should be entered on a keyboard
codex* cout << 1+1; yields 2 Code of a computer program

var cp src-file dest-file | Variables in a computer program

Table 2.1. Some of the most common content-based tags.

2.4. LiSTS

Using Text — ltemize you may start an unnumbered list. You may either select a particular
tag like o (bullets), — (dashes) or — (arrows) to indicate entries in the list or the default
tag. Lists may be nested inside other tags, like in the following list:

o First item.
e Now comes the sublist:

o A subitem.

2.5 ENVIRONMENTS 11

o Another one.
o A final item.

The default tag is rendered in a different way depending on the level of nesting. At the
outermost level, we used the e tag, at the second level o, and so on. When you are inside
a list, notice that pressing automatically starts a new item. If you need items
which are several paragraphs long, then you may always use in order to start a
new paragraph.

Enumerate environments, which are started using Text — Enumerate, behave in a similar
way as itemize, except that the items are numbered. Here follows an example of an enu-
meration which was started using Text — Enumerate — Roman:

I. A first item.
II. A second one.
III. And a last one.

The last type of lists are descriptive lists. They are started using Text — Description and
allow you to describe a list of concepts:

Gnu. A hairy but gentle beast.

Gnat. Ouly lives in a zoo.

2.5. ENVIRONMENTS

In a similar way as content-based tags, environments are used to mark portions of text
with a special meaning. However, while content-based tags usually enclose small portions
of text, environments often enclose portions that are several paragraphs long. Frequently
used environments in mathematics are theorem and proof, like in the example below:

THEOREM 2.1. There exist no positive integers a, b, ¢ and n with n > 3, such that
a +b"=c".

PRroOF. I do not have room here to write the proof down. 1

You may enter environments using Text — Environment. Other environments with a similar
rendering as theorems are proposition, lemma, corollary, axiom, definition. You may
use the dueto macro (entered using|\ d u e t o return) in order to specify the person(s)
to which the theorem is due, like in

THEOREM 2.2. (PYTHAGORAS) Under nice circumstances, we have a*+ b* = c2.

Other frequently used environments with a similar rendering as theorems, but which do not
emphasize the enclosed text, are remark, note, example, warning, exercise and problem.
The remaining environments verbatim, code, quote, quotation and verse can be used
in order to enter multiparagraph text or code, quotations or poetry.

12 WRITING SIMPLE DOCUMENTS

2.6. LAYOUT ISSUES

As a general rule, TEX) acg takes care of the layout of your text. Therefore, although we
did not want to forbid this possibility, we do not encourage you to typeset your document
visually. For instance, you should not insert spaces or blank lines as substitutes for hor-
izontal and vertical spaces between words and lines; instead, additional space should be
inserted explicitly using Insert — Space. This will make your text more robust in the sense
that you will not have to reconsider the layout when performing some minor changes, which
affect line or page breaking, or major changes, such as changing the document style.

Several types of explicit spacing commands have been implemented. First of all, you can
insert rigid spaces of given widths and heights. Horizontal spaces do not have a height
and are either stretchable or not. The length of a stretchable spaces depends on the way
a paragraph is hyphenated. Furthermore, it is possible to insert tabular spaces. Vertical
spaces may be inserted either at the start or the end of a paragraph: the additional vertical
space between two paragraphs is the maximum of the vertical space after the first one and
the vertical space before the second one (contrary to TEX, this prevents from superfluous
space between two consecutive theorems).

As to the paragraph layout, the user may specify the paragraph style (justified, left ragged,
centered or right ragged), the paragraph margins and the left (resp. right) indentation
of the first (resp. last) line of a paragraph. The user also controls the spaces between
paragraphs and successive lines in paragraphs.

You can specify the page layout in the Document — Page menu. First of all, you can
specify the way pages are displayed on the screen: when selecting “paper” as page type
in Document — Page — Type, you explicitly see the page breaks. By default, the page
type is “papyrus”, which avoids page breaking during the preparation of your document.
The “automatic” page type assumes that your paper size is exactly the size of your window.
The page margins and text width are specified in Document — Page — Layout. Often, it
is convenient to reduce the page margins for usage on the screen; this can be done in
Document — Page — Screen layout.

2.7. THE FONT SELECTION SYSTEM

In TEXyracs, fonts have five main characteristics:
e Its name (roman, pandora, concrete, etc.).
e Its family (roman, typewriter or sans serif).
e Its size (a base size (in points) and a relative size (normal, small, etc.).
e [Its series (bold, medium or light).
e Its shape (right, italic, small caps, etc.).
Notice that in the font selection system of INTEX 2¢, the font name and family are only

one (namely, the family). Notice also that the base font size is specified for the entire
document in Document — Font — Size.

2.8 MASTERING THE KEYBOARD 13

2.8. MASTERING THE KEYBOARD

2.8.1. General prefix rules

Since there are many keyboard shortcuts, it is important to have some ways of classifying
them in several categories, in order to make it easier to memorize them. As a general rule,
keyboard shortcuts which fall in the same category are indentified by a common prefix.
The main such common prefixes are:

Control key based shortcuts are used for frequently used editing commands.
They depend very much on the “look and feel” in Edit — Preferences. For instance,
if you use an EMACs-compatible look and feel, then the shortcuts of the form
correspond to EMACS commands, like for pasting text.

The alternate key is used for commands which depend on the mode that you are
in. For instance, produces strong text in text mode and a square root 1/ in
math mode. Notice that |escape escape |is equivalent to .

The meta key is used for general purpose TEXyjacg commands, which can be
used in all modes. For instance, @ produces a label. It is also used for additional
editing commands, like for copying text if you use the EMACS look and feel.

Notice that is equivalent to @

The user keyboard modifier key is used for producing special symbols like Greek
characters in math mode. You may configure your keyboard so as to let caps-lock
play the roéle of the hyper key. The is equivalent to @

We recall that the particular modifier keys which are used in order to obtain the @ and
prefixes can be configured in Edit — Preferences.

2.8.2. Some fundamental keyboard shortcuts

Some standard keyboard actions which are valid in all modes are:

always starts a new paragraph.
remove an object or environment.
insert a small space.

insert a small negative space.
manually set start of the selection.
manually set end of the selection.

go to the start of the document.

go to the end of the document.

14 WRITING SIMPLE DOCUMENTS

2.8.3. Keyboard shortcuts for text mode

The main keyboard actions available in text mode are | $ |in order to enter math mode and
the following shorthands to create accented characters:

Shortcut Example Shortcut Example

- || Acute ~ A-7 e || é||A-‘ || Grave A-f e]le

A-~||Hat » A-~ e||é|[A-~ || Umlaut ~ A-" e &

A-~ || Tilde ~ A-~ a||a||A-C||Cedilla , A-C c||¢

A-U || Breve ~ A-U g||g||A-V || Check ~ A-V s||§

A-0||Above ring ° ||A-0 a||& | A-. || Above dot "||A-. z ||z
A-H || Hungarian “ ||A-H o |6

Table 2.2. Typing accented characters with TEXy;acs-

The special characters £, SS, ce, (E, & and & are obtained by typing |S-F5 s, |S-F5 S|,
[S-F5 o e| [S-F5 A E| [S-F5 a|resp. [S-F5 4|

In French, you may also use the special keybindings and in order to obtain the
French guillemets. In Spanish, the opening exclamation and question marks are obtained
by typing |t *|or[! “|resp.[? x|or|? ‘|

2.8.4. Hybrid commands and IATEX simulation

TEXyracs allows you to enter INTEX commands directly from the keyboard as follows. You
first hit the [\ [key in order to enter the hybrid INTEX/TEXycs command mode. Next
you type the command you wish to execute. As soon as you finished typing your command,
the left footer displays something like

<return>: action to be undertaken

When you hit the key at this stage, your command will be executed. For instance,
in math-mode, you may create a fraction by typing |\ £ r a c return]

If the command you have typed is not a (recognized) IANTEX command, then we first look
whether the command is an existing TEXyacg macro, function or environment (provided
by the style file). If so, the corresponding macro expansion, function application or envi-
ronment application is created (with the right number of arguments). Otherwise, it is
assumed that your command corresponds to an environment variable and we ask for its
value. The |\ lkey is always equivalent to one of the commands [M-i 1] [M-i e] [M-i a],
(M-i #]or |[M-i v|

2.8.5. Dynamic objects

Certain more complex objects can have several states during the editing process. Examples
of such dynamic objects are labels and references, because the appearance of the reference
depends on a dynamically determined number. Many other examples of dynamic markup
can be found in the documentation about writing style files.

When entering a dynamic object like a label using IEL the default state is inactive. This
inactive state enables you to type the information which is relevant to the dynamic object,
such as the name of the label in our case. Certain dynamic objects take an arbitrary number
of parameters, and new ones can be inserted using .

2.8 MASTERING THE KEYBOARD 15

When you finished typing the relevant information for your dynamic object, you may type
in order to activate the object. An active dynamic object may be deactivated by

placing your cursor just behind the object and hitting .

2.8.6. Customization of the keyboard

It is possible for the user to modify the keyboard behaviour. In order to do so, we sug-
gest first to look at the files in the directory $TEXMACS_PATH/progs/keyboard, where the
standard keyboard behaviour is defined. Then you may redefine the keyboard behaviour
in your private initialization file.

CHAPTER 3

MATHEMATICAL FORMULAS

In order to type mathematical formulas, you should first enter “math mode” by pressing
the key or by inserting an equation (using Insert — Mathematics — Equation). In math
mode, you have specific commands and key-combinations to type mathematical symbols
and formulas. For instance, the prefix can be used in order to enter Greek symbols

(recall that is equivalent to , |escape escape escape |or [A-C-).

The editor favors typing mathematics with a certain meaning. This feature, which will be
developed more in future releases, is useful when communicating with a computer algebra
package. At this moment, you should for instance explicitly type the multiplication
between symbols a and b. By default, typing will yield ab and not ab.

3.1. MAIN MATHEMATICAL CONSTRUCTS

The main mathematical objects are created using the prefix as follows:

Shortcut | Purpose Example

[A-$ | Text L ={z|z is sufficiently large}
Fractions bi—c

[A-s] Square roots | /z +y

=3 n-th Roots ?’\/m

Negations #Lc

Table 3.1. Creation of major mathematical markup.

Primes, subscripts and superscripts are created as follows:

Shortcut | Purpose Example

7] Primes flor (g+h)"
(<] Back-primes \f

: Subscripts Ty, OF Tj,

- Superscripts 22, 22 or e
A-1 _ Left subscripts | oz

A-1 ~| |Left superscripts | "z or jHej

Table 3.2. Creation of primes, subscripts and superscripts

16

3.3 TYPING BIG OPERATORS 17

3.2. TYPING MATHEMATICAL SYMBOLS

The Greek characters are obtained in TEXyjacg by combining the hyper modifier key
with a letter. For instance, yields o and yields I". Recall that the key is

equivalent to , so that p can also be obtained by typing . Similarly, , ,

F8 |and | S-F6 |can be used in order to type bold, calligraphic, fraktur and blackboard bold
g

characters. For instance, yields m, yields R and yields Z.

Greek characters can also be obtained as “variants” of Latin characters using the

key. For instance, yields 7. The key is also used for obtaining variants of the
Greek letters themselves. For instance, both |[H-p tab|and [p tab tab |yield w.

Many other mathematical symbols are obtained by “natural” key-combinations. For

instance, yields — yields — and yields > . Similarly, E
yields F | yields ~— and yields & . Some general rules hold in

order to obtain variants of symbols:

is the main key for obtaining variants. For instance, yields >, but
yields >. Similarly, yields <, yields < and yields
<. Also, yields o and yields the constant e=exp(1). You may “cycle
back” using .

is used for putting symbols into circles or boxes. For instance, yields & and

yields ® . Similarly, yields H.
is used for negations. For instance, yields # and yields €. Notice

that [< = tab tab /|yields %, while [< = tab tab / tab]yields .

II| is used after arrows in order to force scripts to be placed above or below the arrow.

For instance, yields —* | but yields —= .

Several other symbols which cannot be entered naturally in the above way are obtained
using the prefix. Here follows a short table of such symbols:

Shortcut | Symbol | Shortcut | Symbol
S-F5 a il

S-Fb n N S-F5 u U
S-Fb v V S-Fb w A

Table 3.3. Some symbols which cannot be obtained using general rules in a natural way.

3.3. TYPING BIG OPERATORS

The following key-combinations are used in order to create big symbols:

18 MATHEMATICAL FORMULAS

Shortcut | Result Result

S-F5 I S-F5 0

S-Fb5 P S-F5 A

S-F5 S S-F5 @ +

S-Fb @ x S-Fb6 @ .

S-F5 U S-F5 N

S-F6 V S-F6 W

II IIC;r
=

<|C®ME—

Table 3.4. Big mathematical operators.

The big integral signs admit two variants, depending on where you want to place subscripts
and superscripts. By default, the scripts are placed as follows:

/ > dz
0 1 + $2)
The alternative rendering “with limits”
o0
dx
1+a22
0
is obtained using . Similarly, you may type in order to obtain § with

limits.

3.4. TYPING LARGE DELIMITERS

Large delimiters are created as follows:

Shortcut | Result | Shortcut | Result

()
[]

all
[N
dlka
|| [~

A-{ { A-} }
A-< (A-> >
A-/ / A-\ \

Table 3.5. Keyboard shortcuts for large delimiters.

77 L

In TEXyiacg, large delimiters may either be “left delimiters”, “right delimiters” or “middle
delimiters”. By default, (,[,{ and (are left delimiters,),], } and) are right delimiters and |, /
and \ are middle delimiters. But there status can be changed using the [A-1 | [A-r |and [A-m |
key combinations. For instance, produces), considered as a large left delimiter.

3.5 WIDE MATHEMATICAL ACCENTS 19

In TEX and IATEX, “middle delimiters”, or “separators” do not exist; they are used for
producing the vertical bars in formulas like
a
b+c/

a
b+c

There may be as many middle delimiters between a left and a right delimiter as one wishes.

p
q+r

3.5. WIDE MATHEMATICAL ACCENTS

The table below how to type mathematical accents above symbols or entire formulas.
Indeed, some of these accents automatically become as wide as the formulas below them.

Shortcut | Example | Wide variant | Shortcut | Result
A-~ T Tty @
A~ 7 T4y A 3
A-B T r+y T

7 D] | &
A-C T x\—{—/y
AU & T+ y

Table 3.6. Keyboard shortcuts for wide mathemarical accents.

CHAPTER 4

TABULAR MATERIAL

4.1. CREATING TABLES

In order to create a table, you may either use Insert — Table or one of the following keyboard
shorthands:

Create a regular table.
Create a regular table whose cells are centered.

Create a regular “block”, whose cells are separated by lines.

Create a block whose cells are centered.

In math mode, a few other table-like structures are provided:

Create a matrix.
Create a determinant.
Create a choice list.

The \eqnarray* environment is also a special kind of table-like structure, which extends
over the entire line. You may start a list of equations using Insert — Mathematics —
Equations.

When starting a new table, its size is minimal (usually 1 x 1) and its cells are empty.
New rows and columns are inserted using the |A-left | [A-right| |A-up|and |A-down |
shorthands. For instance, creates a new column at the right of the current
cursor position. You may also start a new row below the current cursor position by hitting

return |

4.2. THE FORMATTING MODE

In TEX\1acs, arbitrary blocks of cells in the table may be formatted in particular ways.
For instance, you may give individual cells a background color, but you may also decide
an entire column to be horizontally centered. By default, formatting commands operate on
individual cells, but this may be changed via Table — Cell operation mode. The following
operation modes are available:

Operate on individual cells.
Operate on rows.
Operate on columns.

20

4.5 BORDERS, PADDING AND BACKGROUND COLOR 21

Operate on the entire table.

It is also possible to select a block of cells using the mouse and perform a single operation
on that rectangle.

4.3. SPECIFYING THE CELL AND TABLE ALIGNMENT

The most frequent formatting operation is the horizontal or vertical alignment of a block
of cells. You may use the |[M-< | [M-— | [M-1] and [M-] | keystrokes to quickly align more
to the left, right, top or bottom.

A specific alignment can also be selected in the Table — Horizontal cell alignment and
Table — Vertical cell alignment menus. Alternatively, you may use keyboard shorthands of
the types |[M-t h z|and M-t v z |for horizontal resp. vertical alignment.

Similarly, you may specify how the table itself should be aligned with respect to the
surrounding text. This is either done via the Table — Horizontal table alignment and Table —
Vertical table alignment submenus, or using keyboard shorthands of the form or

. Here |z |represents |1 |for “left”, | ¢ | for “centered”, | r |for “right”, @ for “bottom”
and for “top”.

4.4. SPECIFYING THE CELL AND TABLE SIZE

Using Table — Cell width — Set width resp. Table — Cell height — Set height you may specify
the width or height of a cell. In fact, the specified width (or height) may be taken into
account in three different ways:

Minimum mode. The actual width of the cell will be the minimum of the specified
width and the width of the box inside the cell.

Exact mode. The width of the cell will be precisely the specified one.

Maximum mode. The actual width of the cell will be the maximum of the specified
width and the width of the box inside the cell.

The border width and the cell padding (to be explained below) are taken into account in
the size of the box inside the cell.

You may also specify the width and the height of the entire table in Table — Special
table properties. In particular, you may specify the table to run over the entire width of
a paragraph. When specifying a width (or height) for the entire table, you may specify
how the unused space is distributed over the cells using Table — Special cell properties —
Distribute unused space. By default, the unused space is equally distributed.

4.5. BORDERS, PADDING AND BACKGROUND COLOR

You may specify the border widths and padding spaces of a cell in all possible four direc-
tions: on the left, on the right, at the bottom and at the top (see Table — Cell border). You
have keyboard shorthands of the forms M-t b z |and M-t p = |in order to specify border
widths and cell padding.

22 TABULAR MATERIAL

The default border width for cells in the block environment is 11n, i.e. the standard line
width in the current font (like the width of a fraction bar). This width occurs at the right
and the bottom of each cell (except when the cell is on the first row or column). The default
horizontal cell padding is 1spc: the width of a white space in the current font. The default
vertical cell padding is 1sep: the standard minimal separation between two close boxes.

Cells may be given a background color via Table — Cell background color.

The entire table may also be given a border and a table padding in Table — Special table
properties — Border. In this case, the padding occurs outside the border.

4.6. ADVANCED TABLE FEATURES

In the menus, you also find some other more special features for tables. Very briefly, these
include the following;:

e Change the “span” of a cell and let it run over its neighbouring cells on its right and
below.

e Creation of entire subtables inside cells.
e Correction of the depth and height of text, in order to let the baselines match.
e Horizontal hyphenation of cell contents and vertical hyphenation of the entire table.

e Gluing several rows and/or columns together, so that the glued cells become “part
of the borders” of the remaining cells.

e Disactivation of the table, in order to see its “source code”.

e Setting the “extension center” of a table. From now on, the formatting properties
of this cell will be used for new cells created around this center.

e Specification of the minimal and maximum size of a table, which will be respected
during further editing. (this is mainly useful when creating table macros).

Currently, all tables come inside an environment like tabular, block, matrix, etc. When
creating your own table macros, you may use Table — Special table properties — Extract
format to extract the format from a given table.

CHAPTER 5

LINKS AND AUTOMATICALLY GENERATED CONTENT

5.1. CREATING LABELS, LINKS AND REFERENCES

You may create a new inactive label using [M-! | or Insert — Link — Label and a reference
to this label using or Insert — Link — Reference. Be careful to put the label at a point
where its number will be correct. When labeling sections, the recommended place is just
after the section name. When labeling equations, the recommended place is at the start
inside the equation.

It is possible to create hyperlinks to other documents using or Insert — Link —
Hyperlink. The first field of the hyperlink is the associated text, which is displayed in blue
when activated. The second field contains the name of a document, which may be on the
web. As is usual for hyperlinks, a link of the form #Iabel points to a label in the same
document and a link of the form url#label points to a label in the document located at
url.

In a similar fashion, an action may be associated to a piece of text or graphics using
or Insert — Link — Action. The second field now contains a Guile/Scheme script command,
which is executed whenever you double click on the text, after its activation. For security
reasons, such scripts are not always accepted. By default, you are prompted for acceptation;
this default behaviour may be changed in Options — Security. Notice that the Guile/Scheme
command

(system "shell-command")
evaluates shell-command as a shell command.

Finally, you may directly include other documents inside a given document using
or Insert — Link — Include. This allows you for instance to include the listing of a program
in your text in such a way that your modifications in your program are automatically
refelcted in your text.

5.2. INSERTING IMAGES

You can include images in the text using the menu Insert — Image. Currently, TEX\iacs
recognizes the ps, eps, tif, pdf, pdm, gif, ppm, xpm and fig file formats. Here, gs (i.e.
ghostscript) is used to render postscript images. If ghostscript has not yet been installed
on your system, you can download this package from

www.cs.wisc.edu/"ghost/index.html

Currently, the other file formats are converted into postscript files using the scripts
tiff2ps, pdf2ps, pnmtops, giftopnm, ppmtogif, xpmtoppm. If these scripts are not avail-
able on your system, please contact your system administrator.

23

24 LINKS AND AUTOMATICALLY GENERATED CONTENT

By default, images are displayed at their design size. The following operations are sup-
ported on images:

e C(lipping the images following a rectangle. The lower left corner of the default image
is taken as the origin for specifying a rectangle for clipping.

e Resizing an image. When specifying a new width, but no height at the prompt (or
vice versa), the image is resized so as to preserve the aspect ration.

e Magnifying the image. An alternative way to resize an image, by multiplying the
width and the height by a constant.

We also included a script to convert pictures, with optional INTEX formulas in it, into
encapsulated postscript. In order to include a INTEX formula in an xfig picture, we recall
you should enter the formula as text, while selecting a INTEX font and setting the special
flag in the text flags.

5.3. (GENERATING A TABLE OF CONTENTS

It is very easy to generate a table of contents for your document. Just put your cursor at
the place where you want your table of contents and click on Insert — Automatic — Table
of contents.

In order to generate the table of contents, you should be in a mode where page breaks
are visible (select paper in Document — Page — Type), so that the appropriate references
to page numbers can be computed. Next, use Document — Update — Table of contents or
Document — Update — All to generate the table of contents. You may have to do this several
times, until the document does not change anymore. Indeed, the page numbers may change
as a result of modifications in the table of contents!

5.4. COMPILING A BIBLIOGRAPHY

At the moment, TEXy;acg Uses bibtex to compile bibliographies. The mechanism to auto-
matically compile a bibliography is the following:

e Write a .bib file with all your bibliographic references. This file should have the
format of a standard bibliography file for INTEX.

e Use Insert — Link — Citation and Insert — Link — Invisible citation to insert citations,
which correspond to entries in your .bib file.

e At the place where your bibliography should be compiled, click on Insert — Auto-
matic — Bibliography. At the prompt, you should enter a bibtex style (such as plain,
alpha, abbrv, etc.) and your .bib file.

e Use Document — Update — Bibliography in order to compile your bibliography.

5.5. (RENERATING AN INDEX

For the generation of an index, you first have to put index entries in your document using
Insert — Link — Index entry. At a second stage, you must put your cursor at the place where
you want your index to be generated and click on Insert — Automatic — Index. The index
is than generated in a similar way as the table of contents.

5.7 BOOKS AND MULTIFILE DOCUMENTS 25

In the Insert — Link — Index entry menu, you find several types of index entries. The
simplest are “main”, “sub”, “subsub”, which are macros with one, two and three arguments
respectively. Entries of the form “sub” and “subsub” may be used to subordinate index
entries with respect to other ones.

A complex index entry takes four arguments. The first one is a key how the entry has to
be sorted and it must be a “tuple” (created using [M-i <) whose first component is the
main category, the second a subcategory, etc. The second argument of a complex index
entry is either blank or “strong”, in which case the page number of your entry will appear
in a bold typeface. The third argument is usually blank, but if you create two index entries
with the same non-blank third argument, then this will create a “range” of page numbers.
The fourth argument, which is again a tuple, is the entry itself.

It is also possible to create an index line without a page number using “interject” in
Insert — Link — Index entry. The first argument of this macro is a key for how to sort the
index line. The second argument contains the actual text. This construct may be useful
for creating different sections “A”, “B”, etc. in your index.

5.6. COMPILING A GLOSSARY

Glossaries are compiled in a similar way as indexes, but the entries are not sorted. A “reg-
ular” glossary entry just contains some text and a page number will be generated for it.
An “explained” glossary entry contains a second argument, which explains the notation.
A “duplicate” entry may be used to create a page number for the second occurence of an
entry. A glossary line creates an entry without a page number.

5.7. BOOKS AND MULTIFILE DOCUMENTS

When a document gets really large, you may want to subdivide it into smaller pieces. This
both makes the individual pieces more easily reusable in other works and it improves the
editor’s responsiveness. An entire file can be inserted into another one using Insert — Link —
Include. In order to speed up the treatment of included documents, they are being buffered.
In order to update all included documents, you should use Tools — Update — Inclusions.

When writing a book, one usually puts the individual chapters in files c1.tm, c2.tm until
cn.tm. One next creates one file book . tm for the whole book, in which the files c1.tm, c2.tm
until cn.tm are included using the above mechanism. The table of contents, bibliography,
etc. are usually put into book. tm.

In order to see cross references to other chapters when editing a particular chapter ci.tm,
one may specify book.tm as a “master file” for the files ¢1.tm to cn.tm using Document —
Master — Attach. Currently, the chapter numbers themselves are not dealt with by this
mechanism. You may want to manually assign the environment variable chapternr at the
start of each chapter file in order to get the numbering right when editing.

CHAPTER 6

EDITING TOOLS

6.1. CUT AND PASTE

You can select text and formulas by maintaining the left mouse button. In order to delete
the selected region, use Edit — Cut. In order to copy the selected region, first click on
Edit — Copy. Next, paste it as many times as you want to the location of your cursor, using
Edit — Paste. Alternatively, you may copy a selected region using the middle mouse button.

It is also possible to the change text properties of a selected region. For instance, in
order to transform some black text in red, you select it using the left mouse button and
click on Text — Color — Red. Similarly, if you select a formula and you click on Insert —
Mathematics — Fraction, then the formula becomes the numerator of some fraction.

When using the copy and paste mechanism to communicate with other applications, text
is copied and pasted using the TEXy;acg data format. You may specify other import and
export formats using Edit — Import resp. Edit — Export. By default, copying and pasting
uses the primary text buffer. Using Edit — Copy to and Edit — Paste from, you may specify
as many other buffers as you like.

6.2. SEARCH AND REPLACE

You can start searching text by pressing or Edit — Search. During a search, the “search
string” is displayed at the left hand side of the footer. Each character you type is appended
to this search string and the next occurrence of it is surrounded by a red box. When
pressing a second time during a search, the next occurrence is being searched. A
beep indicates that no more occurrences were found in the document; pressing will
continue the search at the beginning of your document. You may press in order
to undo key presses during a search.

Usually, text is being searched for in a forward manner, starting from the current cursor
position. You may also search backwards, using . During a search, only text in the
same mode and the same language will be found, as those which are active at the position
where you started your search. In other words, when searching an z in math-mode, you
will not find any x’s in the ordinary text. As a current limitation, the search string can
only contain ordinary text and no math-symbols or more complicated structured text.

A query replace is started by pressing or Edit — Replace. You are prompted for a
string which is to be replaced and the string by which to replace. At each occurrence of
the string to be replaced you are prompted and you have to choose between replacing the
string (y), not replacing it (n) and replace this and all further occurrences (a). Like in the
case of searching, the query-replace command is mode and language sensitive.

26

6.4 UNDO AND REDO 27

6.3. SPELL CHECKING

If the program ispell has been installed on your system, then you may use it to check your
text for misspelled words by pressing or Edit — Spell. Notice that you might have to
verify that the dictionaries corresponding to the languages in which your texts have been
written have been installed on your system; this is usually the case for English.

When you launch the spell checker (either on the whole text or a selected region), you will
be prompted at each misspelled word and the footer displays the available options:
a) Accepts the misspelled word and all its future occurrences in the text.

r) Replace the misspelled word by a correction you have to enter.

i) Indicate that the “misspelled” word is actually correct and that it has to be inserted
in your personal dictionary.

1-9) Several suggested corrections for your misspelled word.

Notice that ispell just checks for misspelled words. No grammatical faults will be
detected.

When starting the spell checker, it will use the dictionary of the language which is active
at the current cursor position (or the start of a selection). Only text in that language will
be checked for. If your document contains text in several languages, then you will have to
launch the spell checker once for each language being used.

6.4. UNDO AND REDO

It is possible to gradually undo the changes you made in a document from the moment
that you launched TgXyjacg. This can be done via Edit — Undo or using the keystrokes

or . Undone changes can be “redone” using Edit — Redo or .

In order to save memory, the number of successive actions which can be undone is limited
to 100 (by default). It is possible to increase this number by adding a command like

(set-maximal-undo-depth 1000)

in our personal initialization file (see Help — Scheme). When specifying a negative number
as your maximal undo depth, any number of actions can be undone.

CHAPTER 7

ADVANCED LAYOUT FEATURES

7.1. FLOwWS

Complex documents often contain footnotes or floating objects, which appear differently on
pages as the main text. In fact, the content of such complex documents use several flows,
one for the main text, one for the footnotes, one for floats, and still another one for two
column text. The different flows are broken across pages in a quite independent way.

In order to insert a footnote, you may use Insert — Page insertion — Footnote. The number
of columns of the text may be changed in Paragraph — Number of columns.

7.2. FLOATING OBJECTS

Floating objects are allowed to move on the page independently from the main text.
Usually they contain figures or tables which are too large to nicely fit into the main text.
A floating object may be inserted using Insert — Page insertion — Floating object.

You may also create a floating object and directly insert a figure or table inside it using
Insert — Page insertion — Floating figure resp. Insert — Page insertion — Floating table.
However, sometimes you might want to insert several smaller figures or tables inside one
floating object. You may do this using Insert — Image — Small figure resp. Insert — Table —
Small table.

After creating a floating object, you may control its position using Insert — Position float
(when inside the float). You may specify whether you allow the floating object to appear
at the top of the page, at the bottom, directly in the text, or on the next page. By default,
the float may appear everywhere. However, a floating object will never appear inside the
main text at less than three lines from the bottom or the top of a page.

7.3. PAGE BREAKING

The page breaking may be controlled very precisely by the user inside Document —
Page — Breaking. In the submenu Algorithm, you may specify the algorithm being used.
Professional page breaking is best in print, but may slow down the editing when being
used interactively in paper mode. Sloppy page breaking is fastest and medium is profes-
sional except for multicolumn material, for which the professional algorithm is significantly
slower.

You may also allow the page breaking algorithm to enlarge or reduce the length of pages
in exceptional cases in the submenu Limits. The stretchability of vertical space between
paragraphs and so may be specified in Flexibility. The factor 1 is default; a smaller factor
enforces a more rigid spacing, but the quality of the breaks may decrease.

28

CHAPTER 8

USING GNU TgXyiacs AS AN INTERFACE

An important feature of TEXy acg is it’s ability to communicate with extern systems in
shell-like sessions. Typically, it is possible to evaluate commands of an extern computer
algebra system inside such a session and display the results in a nice, graphical way. It is
also possible to evaluate shell commands and SCHEME programs inside such sessions.

8.1. SESSIONS

8.1.1. Basic usage

A session can be started from the Insert — Session menu. A session consists of a sequence
of input and output environments and possible text between them. When pressing
inside an input environment of a session, the text inside the environment is evaluated and
the result is displayed in an output environment.

When entering a command in a session, the application attempts to execute it. Several
commands may be launched concurrently in the same document, but the output will only
be active in the session where the cursor is and at the place of the cursor. Therefore, we
recommend to use different buffers for parallel executions. Executions may be interrupted
from the iconbar. it is also possible to disconnect (close) the application; in that case no
further commands can be executed in the corresponding session.

In the second iconbar you also have a few buttons for selecting mathematical input and
interrupting execution. When implemented for the given system, mathematical input
allows you to type the input in a graphical, two dimensional form. The other two but-
tons allow you to interrupt execution of a particular command (although this does not
work well for certain systems) or to disconnect the extern system. When pressing return
in the input of a non-connected system, the system will be restarted automatically.

8.1.2. Customizing the session styles

Each session environment takes two arguments: the programming language and a name for
the session. All input to be evaluated is redirected to the package which implements the
programming languages and the session name is passed as an extra argument.

It is possible to redefine the screen layout of sessions as follows. For each session in pro-
gramming language ‘p’, you then have to modify the environments ‘input-p’ and ‘output-p’
which respectively correspond to the layout of the input and the output. The first argument
to ‘input-p’ is the prompt for the input.

29

30 UsING GNU TgXy;4cq AS AN INTERFACE

It is possible to give sessions a name (the default name being “default”): by clicking on
Insert — Session — Other, one both has to enter a session type and a session name. Different
sessions which have the same type and the same name share correspond to one instance of
the application being executed. Consequently, such sessions share a common environment.
By using different session names, one may concurrently launch several instances of the
same application.

8.2. SUPPORTED SYSTEMS

When taking a look at the Insert — Session menu, only those systems which are actually
installed on your system will show up. The only exceptions are shell sessions and scheme
sessions, which are always available.

Below, you find a short list of free computer algebra systems which have been interfaced
with TEXyjacg. There also exist interfaces with several proprietary interfaces, but you
should look at the documentation of those systems for more information.

8.2.1. Shell sessions and scheme sessions

In a “shell session” it is possible to evaluate shell commands. All input and output is
verbatim. No particular command-line utilities (such as completion mechanisms) have been
implemented yet. The output of the shell command is displayed gradually as the program
executes.

In a “SCHEME session” you can evaluate GUILE/SCHEME programs. The input should
be verbatim text. The input is evaluated and the result is displayed. No gradual output
mechanism has been implemented yet for SCHEME session.

8.2.2. Giac

GIAcC Is A Computer algebra system, which can be downloaded from

http://www-fourier.ujf-grenoble.fr/"parisse/english.html

8.2.3. GTybalt
GTYBALT is a free computer algebra system which is built on top of GINAC, CLN and a
program to interpret C and C++ commands. For more information, see

http://www.fis.unipr.it/"stefanw/gtybalt.html

8.2.4. Macaulay 2

MACAULAY 2 is a new software system devoted to supporting research in algebraic geom-
etry and commutative algebra. The software is available now in source code for porting,
and in compiled form for LINUX, SUN OS, SOLARIS, WINDOWS, and a few other unix
machines. You can get it from

http://www.math.uiuc.edu/Macaulay?2

8.2 SUPPORTED SYSTEMS 31

8.2.5. Maxima

MAXIMA is not alone one of the oldest and best computer algebra systems around, it is
also one of the only general purpose systems for which there is a free implementation. You
can get it from

http://www.ma.utexas.edu/users/wfs/maxima.html
The supported version is GCL-based MAXIMA 5.6. For CLisp-based MAXIMA 5.6, edit

your tm_maxima and replace -load by -i. For MAXIMA 5.9-pre, replace -load by -p.
Known problems:

e If you press when a statement is not complete (typically, terminated by ;
or $), the interface will hang.

e If you cause the Lisp break prompt to appear, the interface will hang.

e The command info is not supported (it is defined in the underlying Lisp, and
difficult to support portably).

e Some commands in the debugger work, but some (including : c) don’t work, nobody
knows why.

e The command load sometimes behaves mysteriously.

8.2.6. Pari

PARI is a software package for computer-aided number theory. It consists of a C library,
libpari (with optional assembler cores for some popular architectures), and of the pro-
grammable interactive gp calculator. You can download PARI from

ftp://megrez.math.u-bordeaux.fr/pub/pari

You will need a version newer than PARI-2.1.0 for use from inside TEXy acg (for an already
installed PARI-system, type gp --version).

8.2.7. Qcl

QCL is a high level, architecture independent programming language for quantum com-
puters, with a syntax derived from classical procedural languages like C or PAscAL. This
allows for the complete implementation and simulation of quantum algorithms (including
classical components) in one consistent formalism. The TEXy acg interface is mainly useful
for displaying quantum states in a readable way. For more information, see

http://tph.tuwien.ac.at/~oemer/qcl.html

Starting from 1.0.0.8, TEXysacs supports QCL 0.4.3 or newer. Users of older versions should
upgrade.

8.2.8. Yacas

YACAS is, as it’s name suggest, yet another computer algebra system. Things implemented
include: arbitrary precision, rational numeric, vector, complex, and matrix computations
(including inverses and determinants and solving matrix equations), derivatives, solving,
Taylor series, numerical solving (Newtons method), and a lot more non-mathematical
algorithms. The language natively supports variables and user-defined functions. There
is basic support for univariate polynomials, integrating functions and tensor calculations.
You can get YACAS at

http://www.xs4all.nl/"apinkus/yacas.html

CHAPTER 9

TEXyacs STYLE FILES

9.1. TEXyacs STYLE FILES

One of the fundamental strengths of TEXy;acg is the possibility to write your own style
files and packages. The purpose of style files is multiple:

e They allow the abstraction of repetitive elements in texts, like sections, theorems,
enumerations, etc.

e They form a mechanism which allow you to structure your text. For instance,
you may indicate that a given portion of your text is an abbreviation, a quotation
or “important”.

e Standard document styles enable you to write professionally looking documents,
because the corresponding style files have been written with a lot of care by people
who know a lot about typography and aesthetics.

To a document, it is possible to associate one or several document styles, which are either
standard or user defined. The main document style of a document is selected in the
Document — Style menu. Extra styles can be added using Document — Use package.

From the editor point of view, each style corresponds to a .ts file. The files corresponding
to each style are processed in as if they were usual documents, but at the end, the editor
only keeps the final environment as the initial environment for the main document. More
precisely, the style files are processed in order as well as there own styles, in a recursive
manner.

9.2. THE STANDARD TEXjyjacs STYLES AND PACKAGES

Currently, the following standard document styles have been implemented:

e Book;
e Article;
o Letter;

e Seminar (for transparencies).

Each of these styles export a certain number of standard functions and environments listed
below. All future standard document styles are expected to support at least the above
commands and environments and we suggest users to write style files which do so too.

e Sectioning commands.

32

9.3 DESIGNING YOUR OWN STYLE FILES 33

e Itemize and enumerate environments.
e Equation like environments.
e Theorem like environments.
e Programming environments.

We notice that the theorem like environments are not standard in IATEX, which is a
standard source of non compatibility. New “theorems” can be added with the newtheorem
command. It is also possible to add new “remarks” with the newremark command; “remarks”
are different from “theorems” in the sense that their body is usually not typeset in an
emphasized font.

Of course, programming environments are not supported by IANTEX either. Such environ-
ments are currently under development.

9.3. DESIGNING YOUR OWN STYLE FILES

Whenever the standard TEXyacg style files are inadequate for a given purpose, it is possible
to write your own style files. However, designing your own style file from scratch may be a
complex task. For this reason, we recommend the reuse or customization of the standard
TEXyacs style files and packages whenever possible. Consequently, it may be wise to read
more about the customization of the TEXyacg style files and packages first.

9.3.1. Look at an example

Before writing your own style file, it may be useful to take a look at some standard style
files. For instance, you may load book.ts using File — Load (no path is necessary here,
since the style directory is included in the default file path).

After loading book.ts, you will see many function and environment declarations (these
declarations are visible, since style files are written in “preamble mode” (see Options —
Mode)). Some more declarations are contained in the files basic.ts, list.ts, theorem.ts
and program.ts on which book.ts is based. These files respectively contain basic, itemize-
like, theorem-like and programming environments.

9.3.2. Keyboard shortcuts for writing style files

9.3.2.1. Macros, functions and environment variables
The main key-combinations that you should know to write style files are the following:

@ creates a new assignment. The first argument is a new command name and the
second argument an expression.

permits to locally change one or more environment variables. With statements
are of the form (xi|ai|---|zn|an|b), where the z; are the names of the variables, the
a; their local values, and b the text on which the local environment applies.

@ creates a macro. Arguments to the macro can be inserted using the |tab lkey.

34 TEXyiacs STYLE FILES

creates a function. Arguments to the macro can be inserted using the [tab Fkey.

get the value of a macro argument.
get the value of an environment variable.

M-i e | expands the macro with zero or more arguments.

M-i a| applies a function to zero or more arguments.

More precisely, when evaluating a macro expansion {a|z|--|z,} created by [M-i e], the
following action is undertaken:

e If a is not a string nor a macro, then a is evaluated once. This results either in a
macro name or a macro expression f.

If we obtain a macro name, then we replace f by the value of the environment
variable f. If, after this, f is still not a macro expression, then we return f.

Let y1, ..., yn be the arguments of f and b it’s body (superfluous arguments are
discarded; missing arguments take the empty string as their default value). Then
we substitute x; for each y; in b and return the evaluated result.

Functions are similar to macros, except that the arguments of function appliciations are
evaluated and they can not be edited in a direct way (you first need to deactivate the
function application, edit the arguments, and reactivate). Also, y1, ..., ¥, are now rather
considered as local environment variables, which are given x1, ..., 2, as their values. These
local variables are not remembered when a function returns a function which involves these
variables.

9.3.2.2. Computational markup

The following commands can be used for performing dynamic computations:
sequential or of two conditions.

exclusive or of two conditions.

sequential and of two conditions.

negation of a condition.

M-e +| add two numbers or lengths.
subtract two numbers or lengths.
multiply two numbers.

divide two numbers.

~

concatenate two strings.

=T
(0] (0]
*

display a number in Arabic, roman, Roman, alpha or Alpha (used for instance
in enumerations).

9.4 CuUSTOMIZING THE STANDARD TEX\;pocg STYLES AND PACKAGES 35

translate a word from a source language into a destination language (see the
dictionaries in $TEXMACS_PATH/data/dic).

test equality.
test inequality.

M-e 7| insert an if statement with an optional else part.

9.3.3. Important TEXy;acs Paths

This should be elsewhere.

Before writing your own style file, it is useful to know the following important TEXyacs
paths:

e $TEXMACS_PATH is the main path for TEXacs-

e $TEXMACS_HOME_PATH is the main user path for TEXy acg files (documents, styles or
programs). By default, this path is set to ~/.TeXmacs.

e $TEXMACS_STYLE_ROOT the root directories for style files. By default, this path con-
tains $TEXMACS_PATH/styles and $TEXMACS_HOME_PATH/styles.

e $TEXMACS_PACKAGE_ROOT the root directories for style packages. By default, this
path contains $TEXMACS_PATH/packages and $TEXMACS_HOME_PATH/packages.

e $TEXMACS_STYLE_PATH contains the path for including style files. By default,
this path contains . and all subdirectories in $TEXMACS_STYLE_ROOT and
$TEXMACS_PACKAGE_ROOT.

e J$TEXMACS_FILE_PATH contains the path for searching text files. By default,
this path contains $TEXMACS_STYLE_PATH, $TEXMACS_PATH/texts and
$TEXMACS_HOME_PATH/texts.

9.4. CUSTOMIZING THE STANDARD TEXyiacs STYLES AND
PACKAGES

Whenever the standard TEXyacg style files are inadequate for a given purpose, it is possible
to write your own style files. Designing your own style file from scratch may be a complex
task. For this reason, the TEXy;acg style files have been subdivided in smaller packages in
order to facilitate the reuse of certain parts. The design policy also allows you to redefine
many macros a posteriori, which allows you to customize the existing style files in an easy
way.

CHAPTER 10

SUMMARY OF THE PRINCIPAL TEXy;acs TAGS

10.1. THE COMMON BASE FOR MOST STYLES

The common-base d.t.d. contains the markup which is common to virtually all styles. It is
subdivided into the following parts:

10.1.1. Standard markup

Various standard markup is defined in std-markup. The following textual content tags all
take one argument. Most can be found in the Text — Content tag menu.

strong Indicates an important region of text. You can enter this tag via Text —
Content tag — Strong.

em Emphasizes a region of text like in “the real thing”. This tag corresponds to the
menu entry Text — Content tag — Emphasize.

dfn For definitions like “a gnu is a horny beast”. This tag corresponds to Text —
Content tag — Definition.

samp A sequence of literal characters like the ae ligature . You can get this tag via
Text — Content tag — Sample.

name The name of a particular thing or concept like the LINUX system. This tag is
obtained using Text — Content tag — Name.

person The name of a person like JORIS. This tag corresponds to Text — Content
tag — Person.

citex A bibliographic citation like a book or magazine. Example: Melville’s Moby
Dick. This tag, which is obtained using Text — Content tag — Cite, should not be
confused with cite. The latter tag is also used for citations, but where the argument
refers to an entry in a database with bibliographic references.

abbr An abbreviation. Example: I work at the C.N.R.S. An abbreviation is created
using Text — Content tag — Abbreviation or the keyboard shortcut.

acronym An acronym is an abbreviation formed from the first letter of each word

in a name or a phrase, such as HT'ML or IBM. In particular, the letters are not
separated by dots. You may enter an acronym using Text — Content tag — Acronym.

36

10.1 THE COMMON BASE FOR MOST STYLES 37

verbatim Verbatim text like output from a computer program. Example: the program
said hello. You may enter verbatim text via Text — Content tag — Verbatim. The
tag may also be used as an environment for multi-paragraph text.

kbd Text which should be entered on a keyboard. Example: please type return. This
tag corresponds to the menu entry Text — Content tag — Keyboard.

code* Code of a computer program like in “cout << 1+1; yields 2”. This is entered
using Text — Content tag — Code. For longer pieces of code, you should use the code
environment.

var Variables in a computer program like in cp src-file dest-file. This tag cor-
responds to the menu entry Text — Content tag — Variable.

math This is a tag which will be used in the future for mathematics inside regular text.
Example: the formula sin?z + cos?z =1 is well-known.

op This is a tag which can be used inside mathematics for specifying that an operator
should be considered on itself, without any arguments. Example: the operation +
is a function from R? to R. This tag may become depreciated.

tt This is a physical tag for typewriter phase. It is used for compatability with HTML,
but we do not recommend its use.

The following are standard environments:
verbatim Described above.
code Similar to code*, but for pieces of code of several lines.
quote Environment for short (one paragraph) quotations.
quotation Environment for long (multi-paragraph) quotations.
verse Environment for poetry.

center This is a physical tag for centering one or several lines of text. It is used for
compatability with HTML, but we do not recommend its use.

Some standard tabular environments are
tabular* Centered tables.
block Left aligned tables with a border of standard 11n width.
block* Centered tables with a border of standard 11n width.
The following miscellaneous tags don’t take arguments:
TeXmacs The TEXyiacs logo.
TeX The TEX logo.

LaTeX The IMTEX logo.

38 SUMMARY OF THE PRINCIPAL TEX);50g TAGS

hflush Used by developers for flushing to the right in the definition of environments.

hrule A horizontal rule like the one you see below:

The following miscellaneous tags all take one or more arguments:
overline For overlined text, which can be wrapped across several lines.
underline For underlined text, which can be wrapped across several lines.

fold Macro with two arguments. The first argument is displayed and the second one
ignored: the macro corresponds to the folded presentation of a piece of content
associated to a short title or abstract. The second argument can be made visible
using Insert — Switch — Unfold.

unfold Macro with two arguments x and y, which yields the unfolded presentation of
a piece of content y associated to a short title or abstract x. The second argument
can be made invisible using Insert — Switch — Fold.

switch Macro with two arguments x and y, where y is a set of possible representations

of the switch and x the current representation. The function keys , ,
and can be used to switch between different representations.

phantom Function with one argument x. This tag takes as much space as the
typesetted argument x would take, but x is not displayed. For instance, the
text “phantom” as an argument of phantom yields “ ",

set-header Function with one argument for permanently changing the header. Notice
that certain tags in the style file, like sectional tags, may override such manual
changes.

set-footer Function with one argument for permanently changing the footer.

10.1.2. Standard symbols

The std-symbol d.t.d. defines the special symbols ¢, X, ¥, ©, @, ®, °, %, 2%, L, u, , 1. 5,
2 € and ™. As soon as the font support will be further improved, this d.t.d. will become
obsolete.

10.1.3. Standard mathematical markup

Standard mathematical markup is defined in std-math.

binom For binomial coefficients (:1)

choose Alternative name for binom (depreciated)

shrink-inline A macro which switches to scriptsize text when you are not in display
style. This macro is mainly used by developers. For instance, the binom macro uses
on it.

10.1 THE COMMON BASE FOR MOST STYLES 39

The following are standard mathematical tabular environments:

matrix For matrices M = (é i)

det For determinants A :‘ ; i ‘

—x, if x<0

choice For choice lists |z|= { RN
H =

10.1.4. Standard lists
The standard TEXyacg lists are defined in std-1ist. The unnumbered lists are:
itemize The tag before each item depends on the nesting depth.
itemize-minus Uses — for the tag.
itemize-dot Uses e for the tag.
itemize-arrow Uses — for the tag.
Numbered lists correspond to the following environments:
enumerate The kind of number before each item depends on the nesting depth.
enumerate-numeric Number the items by 1, 2, 3, etc.
enumerate-roman Number the items by i, ii, iii, etc.
enumerate-Roman Number the items by I, II, III, etc.
enumerate-alpha Number the items by a), b), c), etc.
enumerate-Alpha Number the items by A, B, C, etc.
The following environments can be used for descriptive lists.

description The environment for default descriptive lists (usually description-com-
pact).

description-compact Align the left hand sides of the items in the list and put their
descriptions shortly behind it.

description-dash Similar to description-compact, but use a — to seperate each
item from its description.

description-align Align the left hand sides of the descriptions, while aligning the
items to the right.

description-long Put the items and their descriptions on distinct lines.

New items in a list are indicated through the item tag or the unary item# tag in the case
of descriptions. Developers will also find a few additional, but unstable, macros in std-
list for defining additional list structures.

40 SUMMARY OF THE PRINCIPAL TEX);50g TAGS

10.1.5. Automatic content generation

The std-automatic d.t.d. specifies for the automatic generation of auxiliary content like
tables of contents and bibliographies, as well as for the presentation of such auxiliary
content. The following tags are used for bibliographies:

cite A function with an arbitrary number of arguments. Each argument is a citation
corresponding to an item in a BiB-TgX file. The citations are displayed in the same
way as they are referenced in the bibliography and they also provide hyperlinks to
the correspoding references. The citations are displayed as question marks if you
did not generate the bibliography.

nocite* Similar as cite, but the citations are not displayed in the main text.
bibitem* A function which specifies how to display an item in the bibliography.
The following tags are used for compiling tables of contents:

toc-main-1 A function with one argument for creating primordial entry in the table
of contents. This function can for instance be used when a book consists of several
parts.

toc-main-2 A function with one argument for creating a main entry in the table of
contents. This function is usually used for chapters.

toc-normal-1 A function with one argument for creating a normal entry in the table
of contents. This function is often used for sections.

toc-normal-2 Similar as toc-normal-2 for less important entries like subsections.

toc-normal-3 Similar as toc-normal-3 for even less important entries like subsub-
sections.

toc-small-1 Used for not very important entries such as paragraphs (may be ignored).
toc-small-2 Used for even less important entries such as subparagraphs.

toc-dots The separation between an entry in the table of contents and the corre-
sponding page number. By default, we use horizontal dots.

The following tags are used for indices:

index A function with one argument x, which inserts x in the index as a principal
entry.

subindex A function with two arguments x and y, which inserts y in the index as a
subentry of x.

subsubindex A function with three arguments x, y and z, which inserts z in the index
as a subentry of y, which is itself a subentry of x.

index-complex A function with four arguments key, how, range, entry, which is
documented in the section about index generation.

index-line This function takes a key argument, which tells how to sort the entry,
and the actual entry. No page number is generated.

10.1 THE COMMON BASE FOR MOST STYLES 41

index-1 Macro with an index entry and a page number, which is used for rendering
a principal index entry in the index.

index-1% Similar to index-1, but without the page number.

index-n (with n between 1 and 5): macro with an index entry and a page number,
which is used for rendering an index entry of level n.

index-n* Similar to index-n, but without the page number.

index-dots The macro which produces the dots between an index entry and the
corresponding page number(s).

The following tags are used for glossaries:
glossary A function which inserts its only argument into the glossary.

glossary-dup For creating an additional page number for an entry which was already
inserted before.

glossary-explain A function for inserting a glossary entry with its explanation.
glossary-line Insert a glossary entry without a page number.
glossary-1 Macro for rendering a glossary entry and its corresponding page number.

glossary-2 Macro for rendering a glossary entry, its explanation, and its page
number.

glossary-dots The macro which produces the dots between a glossary entry and the
corresponding page number(s).

10.1.6. Special markup for programs and sessions

The program d.t.d. mainly provides the following environments for computer algebra ses-
sions:

session Macro with three arguments: the computer algebra language, the name of
the session and the body of the session itself.

input Macro with two arguments: a prompt and a the input itself.
output Macro with the body of the output as its argument.

In fact, these environments are based on environments of the form lan-session, lan-
input and lan-output for every individual language lan.

The program d.t.d. also provides some markup for the layout of computer programs.
However, these tags should be considered as very unstable, since we plan to replace them
by a set of more detailed tags:

algorithm Macro with two arguments: the name of the algorithm and algorithm itself,
together with its possible specification.

42 SUMMARY OF THE PRINCIPAL TEX);50g TAGS

body The real body of the algorithm.

indent For indenting part of an algorithm.

10.2. STANDARD ENVIRONMENTS INSIDE TEXT

The env d.t.d. contains the standard environments which are available in most styles. It
is subdivided into the following parts:

10.2.1. Defining new environments

The env-manage contains high-level markup which can be used by the user to define new
environments for theorems, remarks, exercises and figures:

newtheorem Defines a theorem-like environment. You should specify a name for the
environment (like “experiment”) and the corresponding text (like “Experiment”).

newremark Similar as newtheorem, but for remarks.
newexercise Similar as newtheorem, but for exercises.
newfigure Similar as newtheorem, but for figures (in big and small pairs).

The d.t.d. also contains low-level markup for the actual definitions of the environments. In
fact, the definition of new theorems is done in two stages. At the first stage, the newtheorem
tag is used in order to specify which theorem-like environments should be defined. At the
second stage (just before the user’s document is processed) the theorem-like environments
are actually defined. This mechanism makes it possible to customize the environments
in packages which are processed between the two stages. For instance, the numbering of
theorems is customized in this way.

WARNING 10.1. At the moment, you should only use the newtheorem and similar tags
inside a personal style file or package. If you use newtheorem directly inside a document,
then the numbering can be incorrect, due to the two-stage scheme explained above. This
inconvenience will disappear as soon as it will be possible to specify clean preambles for
TEXyacs documents.

10.2.2. Mathematical environments
The env-math d.t.d. specifies which mathematical environments can be used inside text-
mode. In other words, the environments should be used inside text-mode, but their bodies
contain mathematical formulas or tables of mathematical formulas.

equation A numbered equation.

equation* An unnumbered equation.

eqnarray An array of numbered equations (should not be used yet).

10.2 STANDARD ENVIRONMENTS INSIDE TEXT 43

eqnarray* An array of unnumbered equations.

Inside the egnarray* environment, you can use the eqnumber tag in order to number the
equation.

WARNING 10.2. The numbering of equations inside tables is not yet as it should be. In
particular, the eqnarray tag is equivalent to eqnarray* at the moment. Later on, when
the eqnarray tag will be implemented correctly, you will also have a nonumber tag in order
to suppress the number of an equation, and a style package for numbering equations at
the left hand side.

WARNING 10.3. There is no option for numbering equations at the left hand side available
yet. Nevertheless, you may use the manual tag leqnumber for this. You also have a tag
nextnumber which directly display the next number and increases the equation counter.

WARNING 10.4. We do not encourage the use of the AMS-TEX environments align,
gather and split. Nevertheless, they are available under the names align, gather, eqs-
plit together with their variants align*, gather* and eqsplit*. In the future, we plan
to provide more powerful environments.

10.2.3. Theorem-like environments

The env-theorem d.t.d. provides tags for the layout of theorem-like environments. The
most important tags are

theorem* A macro for displaying a theorem-like environments. The first argument
specifies the name of the theorem, like “Theorem 1.2” and the second argument con-
tains the body of the theorem. This environment is used for environments defined
by newtheorem.

remark* Similar to theorem*, but for remark-like environments.

exercise* Similar to theorem*, but for exercise-like environments.

proof* Similar to theorem*, but for proofs. This environment is mainly used for
customizing the name of a proof, like in “End of the proof of theorem 1.2”.

dueto An environment which can be used to specify the inventors of a theorem.
corollary* For unnumbered corollaries. This environment is based on theorems.
proof For proofs of theorems. This environment is based on proof*.

The following tags can be used for further customization of the environments.

theoremname A macro which controls the appearance of the names of theorem-like and
remark-like environments. Most styles use bold face or small capitals.

exercisename Similar to theoremname, but for exercises.

44 SUMMARY OF THE PRINCIPAL TEX);50g TAGS

theoremsep The separator between the name of a theorem-like or remark-like envi-
ronment and its main body. By default, this is a period followed by a space.

exercisesep Similar to theoremsep, but for exercises.

10.2.4. Environments for floating objects

The env-float d.t.d. provides tags for floating objects. The following tag is the only high-
level one:

footnote Make a footnote.

The following low-level tags can be used for the definitions of high-level figure and table
environments like big-figure, small-figure, big-table and small-table:

small-figure* A macro for displaying a small figure. The arguments are a short
name (like “figure” or “table”) for the list of figures, its real name (like “Figure 2.3”
or “Table 5”), the figure itself and a caption.

big-figure* A variant of small-figurex for displaying a big figure.

The following tags can be used for customizing the appearance the text around figures,
tables and footnotes:

figurename A macro which controls the appearance of the text “Figure”. By default,
we use bold face.

figuresep The separator between the figure and its number and the caption. By
default, this is a period followed by a space.

footnotesep The separator between the number of the footnote and the text. By
default, this is a period followed by a space.

10.2.5. Default environments

The env-default d.t.d. contains the default textual environments. They are subdivided
into the following groups:

Variants of theorems. The bodies of theorem-like environments are usually empha-
sized. By default, the following such environments are available via Text — Environ-
ment: theorem, proposition, lemma, corollary, axiom, definition, notation,
conjecture.

Variants of remarks. The following ones are available via Text — Environment:
remark, example, note, warning, convention.

Variants of exercises. Two such environments are provided by default and available
via Text — Environment: exercise and problem.

Variants of figures. These environments always come by pairs: big and small ones.
By default, we provide big-figure, small-figure, big-table and small-table.
You can access them through Insert — Image and Insert — Table.

10.3 HEADERS AND FOOTERS 45

Other useful environments. We provide keywords and AMS-class (for the A.M.S.
subject classification). These environments should be entered at the interior of an
abstract.

10.3. HEADERS AND FOOTERS

10.3.1. Standard headers

The header d.t.d. provides tags for customizing the headers and footers. The customization
is based on the idea that we may specify a page text for every page. This page text can for
instance be a running title or the name of the current section. The page text may depend
on the parity of a page and appear in a different way for special pages like starts of new
chapters. The following tags control the physical layout of different types of pages:

start-page This tag, with the page text as its only argument, specifies the layout of
the first page of a new chapter or section.

odd-page-text Similar to start-page, but for the layout of ordinary odd pages.
even-page-text Similar to start-page, but for the layout of ordinary even pages.

The following tags control the logical header-related actions to be undertaken, when spec-
ifying a title, an author, or when starting a new section.

header-title A tag with a “title argument” which is used at the specification of the
document title.

header-author A tag with an “author argument” which is used at the specification of
the document author.

header-primary A tag with a “section name argument” which is used at the start of
each new primary section (i.e. chapter for book style, or section for article style).

header-secondary A tag with a “section name argument” which is used at the start of
each new secondary section (i.e. section for book style, or subsection for article
style).
10.3.2. Standard titles

The header-title d.t.d. provides tags for title information. The following high-level tags
can only be used when encapsulated inside a make-title tag:

title Specify a title for the document.

author Specify one or several authors for the document.

address Specify the address of the author.

address-block Specify an address of an author (in case of multiple addresses).

title-email Specify the email address of the author.

46 SUMMARY OF THE PRINCIPAL TEX);50g TAGS

title-date Specify the creation date of the article.

The title and author use the header-title and header-author tags for specifying the
running title and header. You may override these by reusing header-title resp. header-
author. The above tags also depend on the following low-level tags for their physical layout:

title* Macro with one argument which specifies the physical layout of titles.
author* Macro with one argument which specifies the physical layout of authors.
address* Macro with one argument which specifies the physical layout of addresses.

title-email* Macro with one argument which specifies the physical layout of email
addresses.

title-datex Macro with one argument which specifies the physical layout of creation
dates.

The header-title d.t.d. also defines the abstract tag for abstracts of documents.

10.4. IATEX STYLE SECTIONS

The section-latex d.t.d. provides the standard tags for sections, which are the same as
in IATEX. Most sectional tags take only one argument: the name of the section. In the
future, we plan to provide alternative tags with two arguments, which will allow you to see
the body of a section as part of the structure. The following tags usually yield numbered
sections, which are referenced in the table of contents:

chapter Macro for producing a potentially numbered chapter title.

section Macro for producing a potentially numbered section title.

subsection Macro for producing a potentially numbered subsection title.
subsubsection Macro for producing a potentially numbered subsubsection title.
paragraph Macro for producing a potentially numbered paragraph title.
subparagraph Macro for producing a potentially numbered subparagraph title.

The tags chapter*, section*, subsection#*, subsubsection*, paragraph* and subpara-
graph* can be used for producing the unnumbered variants of the above tags, which are not
referenced in the table of contents. The section-latex d.t.d. also provides the following
tags:

chapter** Macro with two arguments: a special type of chapter (like “Epilogue”) and
the name of the chapter.

appendix A variant of chapter or section for producing appendices.

sectionsep A macro for customizing the separator between the number of a section
and its title. By default, we use two spaces.

10.5 MARKUP FOR AUTOMATIC NUMBERING 47

10.5. MARKUP FOR AUTOMATIC NUMBERING

10.5.1. Numbering environments

The number-env d.t.d. provides low-level tags for the numbering of standard environments.
One of the most important tags is init-stdenv which is used for resetting all environment
counters. This is usually done at the start of each chapter or section, or once for the entire
document.

The d.t.d. also exports the very low-level tags newliststdenv, newlistfigure and
newliststdenv-counter, which control the numbering in collaboration with env-manage.
The packages number-us and number-europe are provided for American-style and Euro-
pean-style numbering.

10.5.2. Numbering sections

The number-section d.t.d. provides low-level tags for numbering sections. It defines
tags reset-chapter, reset-section, reset-subsection and reset-subsubsection, for
resetting the appropriate counters at each new chapter, section, subsection or subsub-
section. It also defines a tag reset-top for resetting all top-level counters.

The d.t.d. also defines the tags thechapter, thesection, thesubsection and thesubsub-
section for printing the name of the current chapter, section, subsection or subsubsection.
It finally provides the tag theprefix which yields the prefix when numbering environments
(equations, theorems, tables, etc.).

CHAPTER 11

CUSTOMIZING TEXyacs

One major feature of TEXyacg is that it can be highly customized. First of all, the most
important aspects of the program can be configured in Edit — Preferences. Most other parts
of TEXyacg can be entirely adapted or reprogrammed using the GUILE/SCHEME extension
language. In the sequel, we give a short overview of how this works in simple cases.

11.1. INTRODUCTION TO THE GUILE EXTENSION LANGUAGE

Like EmMACS, TEXyacg comes with a Lisp-like extension language, namely the GUILE
SCHEME dialect from the GNOME project. For documentation about GUILE SCHEME, we
refer to

http://www.gnu.org/software/guile/guile.html

SCHEME has the advantage that it may be extended with extern C and C++ types and
routines. In our case, we have extended SCHEME with routines which you can use to create
your own menus and key-combinations, and even to write your own extensions to TEXy acs-

If you have downloaded the source files of TEXy acq, then it may be interesting for you to
take a look at the files

Guile/Glue/build-glue-basic.scm
Guile/Glue/build-glue-editor.scm
Guile/Glue/build-glue-server.scm

These three “glue” files contain the C++ routines, which are visible within SCHEME. In
what follows, we will discuss some of the most important routines. We plan to write a
more complete reference guide later. You may also take a look at the scheme .scm files in
the directory $TEXMACS_PATH/progs.

11.2. WRITING YOUR OWN INITIALIZATION FILES

When starting up, TEXyjacg executes the file $TEXMACS_PATH/progs/init-texmacs.scm,
unless you have specified your own initialization file in $TEXMACS_HOME_PATH/progs/my-
init-texmacs.scm. By default, the path $TEXMACS_HOME_PATH equals .TeXmacs. Usually,
you want to add some extra actions to the default initialization file. In this case, you should
not forget to include the command

(exec-file "$TEXMACS_PATH/progs" "init-texmacs.scm")

in your personal initialization file. Similarly, the file $TEXMACS_PATH/progs/init-
buffer.scm is executed, each time you create a new buffer, unless you provide your own
initialization file $TEXMACS_HOME_PATH/progs/my-init-buffer.scm.

48

11.4 CREATING YOUR OWN KEYBOARD SHORTCUTS 49

11.3. CREATING YOUR OWN DYNAMIC MENUS

In particular, the default initialization file executes
$TEXMACS_PATH/progs/menu/main_menu.scm

in order to set up the TEXj;acg main menu. We suggest you to have a look at this file in
order to see how menus are created.

Actually, any menu or part of a menu is represented by a program. The program consists
of a list of programs of one of the following forms:

(=> "pulldown menu name" menu-definition)
(-> "pullright menu name" menu-definition)
("entry" action)

("entry" "shorthand" action)

(if condition menu-definition)
(link variable)

The constructors => and -> are used to create pulldown or pullright menus and menu-
definition should contain a program which creates the submenu. The constructor
("entry" action) creates an ordinary entry, where action will be compiled and exe-
cuted when you click on entry. The optional "shorthand" stands for a keyboard macro
with the same action. Items of a menu may be separated using ---. The constructor
if is used for inserting menu items only if a certain condition is satisfied (for instance,
if we are in math mode).

Finally, if we declared a TEXyzcg variable to be a menu by

(define variable menu-definition)
then we may use this menu indirectly using the 1ink constructor. This indirect way of
declaring submenus has two advantages

e An “indirect” submenu may be linked to as many menus as we like.

e New items may be added to “indirect” submenus a posteriori using
(set! variable (menu-merge variable menu-declaration))
Actually, existing terms may also be overwritten in this way.
Some standard TEXjyjacg indirect menus are texmacs-menu, file-menu, edit-menu,

insert-menu, text-menu, paragraph-menu, document-menu, options-menu and help-
menu. The command

(menu-main menu-declaration)
is used in order to actually set the main menu. For instance, at initialization, we execute

(menu-main ’(link texmacs-menu))

11.4. CREATING YOUR OWN KEYBOARD SHORTCUTS

Keymaps are specified using the command

(set-keymap (list of predicates) (list of keymaps))

50 CustoMIZING TEXyacs

The list of predicates specifies under which circumstances the keymaps are valid. Examples
of predicates are always?, in-math? and in-french?, but the user may define his own
predicates. Each map is of one of the following forms

(key-combination action_1 ... action_n)
(key-combination result)
(key-combination result help-message)

In the first case, the action_i are SCHEME commands associated to the string key-
combination. In the second and third case, result is a string which is to be inserted in
the text when the key-combination has been completed. An optional help-message may
be displayed when the key-combination is finished.

Kemaps can be cleared again using the command
(remove-keymap (list of predicates) (list of key combinations))

where the second arguments is a list of strings, each of which is a key-combination as
above.

11.5. OTHER INTERESTING FILES

Some other files may also be worth looking at:
e $TEXMACS_PATH/fonts/enc contains encodings for different TEX fonts.
e $TEXMACS_PATH/fonts/virtual contains definitions of virtual characters.

e $TEXMACS_PATH/langs/natural/dic contains the current dictionaries used by
TEXyiacs-

e $TEXMACS_PATH/langs/natural/hyphen contains hyphenation patterns for various
languages.

e $TEXMACS_PATH/progs/fonts contains SCHEME programs for setting up the fonts.

CHAPTER 12

COMPATIBILITY WITH OTHER FORMATS

TEXyracs 18 fully compatible with postscript, which is used as the format in order to print
documents. TEXypacs also provides converters from and to INTEX and an input filter for
Html.

12.1. COMPATIBILITY WITH IATEX

Although TEXy1acs has not been designed to be fully compatible with IATEX, it is possible
to convert documents from TEXyacg to INTEX and vice versa, although the result will not
always be perfect. Also, conversions from TEXyacg to IATEX will generally yield better
results than conversions the other way around. In particular, TEXy;pzcg may reasonably well
be used to write articles, which need to be converted to IANTEX for submission purposes.
In this chapter, we will describe more precisely the conversion mechanisms, which will help
you to obtain a result as satisfactory as possible.

12.1.1. Conversion from TEXy acs to IATEX

The most common situation is that you want to convert an article from TEXy acg to INTEX,
in order to submit it to some journal. Given a TEXy;acg file name.tm, you may convert it
into a IATEX file name . tex using File — Export — Latex. At a first stage, you may try to
run IATEX on name.tex, and see whether you obtain a satisfactory result. If so, then you
should submit name.tex together with the style file TeXmacs.sty, which can be found in
the directory $TEXMACS_PATH/misc/latex.

Often, the journal to which you submit uses its own style file, say journal.sty. In that
case, you should also copy the file

$TEXMACS_PATH/styles/article.ts
to
~/.TeXmacs/styles/journal.ts

and use journal as your document style in Document — Style — Other. You may option-
ally edit journal.ts, so that the article layout becomes closer to the journal’s style. In
some cases, you also have to create a new copy of TeXmacs.sty, and modify some of the
environments for compatibility with the journal’s style file journal.sty.

If your first try to convert your document into IATEX did not yield a satisfactory result,
then you will usually observe that only minor parts of the texts were not converted cor-
rectly. This may be due to three main reasons:

e Your text uses some specific TEXyacg features.

ol

52 COMPATIBILITY WITH OTHER FORMATS

¢ You used a TEXy acq feature, which has not yet been implemented in the conversion
algorithm.

e You found a bug in the conversion algorithm.

These issues will be discussed in more detail in the next section.

In case of problems, a naive strategy would be to correct the produced IATEX file and
to send it to the journal. However, this strategy has the disadvantage that you have to
make these corrections over and over again, each time that you convert your TEXyiacs
file name.tm, after having made some extra modifications. A better strategy is to use the
Insert — Specific — Latex and Insert — Specific — Texmacs constructs to write text which is
visible in the converted resp. original file only.

For instance, assume that the word “blauwbilgorgel” is hyphenated correctly in the
TEXyacs source, but not in the INTEX conversion. Then you may proceed as follows:

1. Select “blauwbilgorgel”.

2. Click on Insert — Specific — Texmacs to make the text “blauwbilgorgel” TEXyacs
specific.

3. Click on Insert — Specific — Latex.
4. Type the latex code blauw\-bil\-gor\-gel with the correct hyphenation.

5. Press to activate the INTEX-specific text.

In a similar fashion, you may insert INTEX-specific line breaks, page breaks, vertical space,
style parameter modifications, etc.

12.1.2. Possible conversion problems

12.1.2.1. Specific TEXyacs features
Some TEXyacy typesetting primitives have no analogues in IATEX, and the conversion
algorithm will simply transform them into blank space. Some main features which are
specific to TEXy acg are the following:

e Left primes.

e Big separators between big parentheses.

e Mosaics.

o Trees.

e Complex user macros.

e Vertical spaces “before” and “after”.

e Indentation flags “before” and “after”.

12.1 COMPATIBILITY WITH IATEX 53

You should avoid to use these specific TEXyjacg features, if your document needs to be
converted into INTEX. Nevertheless, in the far future, the conversion program might gen-
erate encapsulated postscript by default of a more intelligible translation.

12.1.2.2. Not yet implemented conversions

Although we try to keep the conversion algorithm as complete as possible for your needs,
certain things have not yet been implemented. Some examples of not yet implemented
issues are

e Non standard fonts.
e Conversion of tabulars.
e Style parameters.

Any suggestion about desirable extensions of the conversion algorithm should be reported
to

contact@texmacs.org

and we will try to incorporate it as quickly as possible. It may take some time to implement
the correct conversion of style parameters, since these are not the same in TEXyacg and
IATEX. Furthermore, layout differences between TEXyacq and IATEX can not entirely be
eliminated.

12.1.2.3. Bugs in the conversion algorithm

The most annoying situation if when a converted TEXy acg document produces lots of errors
at the compilation or if the result has nothing to do with the original. In that case you
have probably detected a bug in the conversion algorithm (or in the installation of IATEX
on your system). Please try to figure out the source of the bug in this case and report it
by sending an email to

TeXmacs@math.u-psud.fr

12.1.2.4. Work-arounds

TEXyacs has not been designed to be fully compatible with IATEX. As to the conversion
from TATEX to TEXyacs, our main aim is to help you in converting old documents to
TEXyracs- As long as you did not define weird environments and as long as you did not
use weird style files and commands, you should be able to convert your old documents
reasonably well. Otherwise, we suggest to modify your old document in a way that is does
convert reasonably well and to apply some final changes in the result.

12.1.3. Conversion from IATEX to TEXyiacs

The current aim of the conversion program from IATEX to TEXyacs, 18 to help you in trans-
lating old documents into TEXyacg. Grosso modo, conversions from IATEX to TEXyacs
are more problematic than conversions the other way around. Nevertheless, as long as
you restrict yourself to using the most common IATEX commands, you should be able to
convert your old documents reasonably well. For example, all TEXyacg help files have been
written in IATEX in order to validate the INTEX to TEXyacg conversion program.

54 COMPATIBILITY WITH OTHER FORMATS

You may convert a [NTEX document name.tex into TEXyacs using File — Import — Latex
and save it under name.tm. If your INTEX document was written sufficiently well, then
the converted result should be more or less acceptable, apart from certain unrecognized
commands, which appear in red. A good solution would be to write your own style file for
converted documents, based on the original style, and in which the unrecognized commands
are defined.

However, in certain less fortunate cases, the converted document will look like a great
mess. This usually stems from the fact that TEX and IATEX allow users to modify the
parser dynamically, for instance using the \catcode command. In this case, the conversion
program may get confused, by making erroneous assumptions on the mode or the envi-
ronment. As a result, text may be converted as mathematics, mathematics as verbatim,
and so on. Nevertheless, the commands in your source file name.tex which confused the
conversion program are usually easily localized by comparing the IATEX source with its
TEXyracs conversion. Modulo some hacking of the source, you should be able to remove
the litigious code, so that the document converts reasonably well.

In the future, we also plan to extend the conversion program with a style file converter and
some additional features which facilitate the translation of user defined commands, which
are defined in another document than the one you want to convert.

12.2. CONVERSION OF TgEXyjacs DOCUMENTS TO HTML

We have started to implemented the conversion between HTML and TEXjacg. At this
moment, it is only possible to import HTML documents using File — Import — Html. Most
of HTML 2.0 and parts of HTML 3.0 are currently supported. However, no browsing
facilities have been added yet. In the future, we plan to implement Math-ML.

When importing HTML documents, files whose names start with http: or ftp: will be
downloaded from the web using wget. If you compiled TEXyiacs yourself, then you can
download wget from

ftp://ftp.gnu.org/pub/gnu/wget/

In the binary distributions, we have included wget.

APPENDIX A

CONFIGURATION OF TgEXyiacs

A.1. INTRODUCTION

Before you start using TEXyacs, it may be wise to configure the program first in Edit —
Preferences, so that it will fit your needs best. Most importantly, you should choose a “look
and feel” in Edit — Preferences — Look and feel. This will enable you for instance to let
the keyboard shortcuts used by TEXyiacg be similar to what you are used to in other
applications.

Also, TEXyiacg comes with a powerful keyboard shortcut system, which attempts to opti-
mize the use of the modifier keys like | shift | and | control | on your keyboard. However,
on certain systems these modifier keys are not well configured, so that you may wish to
redo this yourself.

A.2. CONFIGURATION OF THE MODIFIER KEYS

TEXyacs uses five major keyboard modifiers: |shift |, | control | [alternate] |meta|and
'hyper | which are abbreviated as [S-], [C-] [A-], and [H- . The [shift]and |control]
keys are present on virtually all keyboards and the key on almost all. Most
keyboards for PC’s nowadays also have a key, which is usually equivalent to

for TEXy1acs-

Before reconfiguring your keyboard, you should first check that this is indeed necessary. If
you have keys which correspond to | shift | | control | [alternate |and [meta |in a suitable
way, then you probably do not want to do anything. A possible exception is when you

want to use a simple key like for typing mathematical symbols. In that case,
you should map | caps-lock | to | hyper |

In order to reconfigure the keyboard, you simply select the logicial modifier that you want
to correspond to a given physical key in Edit — Preferences — Keyboard. For instance,

selecting Windows key — Map to M modifier, the key will correspond to the
modifier. Similarly, when selecting Caps-lock key — Map to H modifier, the key

will correspond to the modifier.
Unfortunately, X Window only allows system-wide reconfiguration. Consequently, if you

reconfigure the key inside TEXysacs, then the new behaviour of will

affect all other applications too. It is therefore important to reconfigure only those keys
which you do not use for something else in other applications. For instance, the
key is not used by many applications, so it generally does not do any harm to reconfigure it.
You may also prefer to perform an appropriate system-wide configuration. This can be done
using the xmodmap command; see the corresponding manual page for more information.

95

56 CONFIGURATION OF TEX) 408

In certain cases, you already have keys on your keyboard which correspond to ,
\meta | and |hyper || but not in the way you want. This can be done by remapping the

[a-] and prefixes to other logical modifiers in the first group of submenus of
Edit — Preferences — Keyboard.

For instance, for Emacs compatability, you might want to permute the | meta | or | windows |
key with without making any system-wide changes. This can be done by finding out
which modifiers correspond to these keys; usually this will be |Mod1 | for |alter |and |Mod4 |
for |meta |or | windows | We next perform the necessary permutation in Edit — Preferences —
Keyboard, by selecting A modifier — Equivalent for Mod4 and M modifier — Equivalent for
Modl.

A.3. NOTES FOR RUSSIAN AND UKRANIAN USERS

In order to type Russian (and similarly for Ukranian) text, you may several options:

e Select Russian as your default language in Edit — Preferences — Language — Russian.
If TgpXyacs starts with Russian menus, then this is done automatically if the
Russian locale is set.

e Select Russian for an entire document using Document — Language — Russian.

e Select Russian for a portion of text in another document using Format — Language —
Russian.

If your X server uses the xkb extension, and is instructed to switch between the Latin and
Russian keyboard modes, you need not do anything special. Just switch your keyboard to
the Russian mode, and go ahead. All the software needed for this is included in modern
Linux distributions, and the xkb extension is enabled by default in XF86Config. With
the xkb extension, keysyms are 2-byte, and Russian letters are at 0x677. The keyboard
is configured by setxkbmap. When X starts, it issues this command with the system-
wide Xkbmap file (usually living in /etc/X11/xinit), if it exists; and then with the user’s
~/ .Xkbmap, if it exists. A typical ~/.Xkbmap may look like

ru basic grp:shift_toggle

This means that the keyboard mode is toggled by | 1-shift r-shift | Other popular choices
are |ctrl shift|or |ctrl alt| see /usr/X11R6/1ib/X11/xkb/ for more details. This is
the preferred keyboard setup for modern Linux systems, if you plan to use Russian often.

In older Linux systems, the xkb extension is often disabled. Keysyms are 1-byte, and
are configured by xmodmap. When X starts, it issues this command with the system-
wide Xmodmap (usually living in /etc/X11/xinit), if it exists; and then with the user’s
~/ .Xmodmap, if it exists. You can configure the mode toggling key combination, and use
a 1-byte Russian encoding (such as koi8-r) in the Russian mode. It is easier to download
the package xruskb, and just run

xrus jcuken-koi8

at the beginning of your X session. This sets the layout jcuken (see below) and the encoding
koi8-r for your keyboard in the Russian mode. If you use such keyboard setup, you should
select Options — international keyboard — russian — koi8-r.

It is also possible to use the Windows cpl251 encoding instead of koi8-r, though this is
rarely done in UNIX. If you do use xrus jcuken-cpl1251, select cpl251 instead of koi8-r.

A.3 NOTES FOR RUSSIAN AND UKRANIAN USERS 57

All the methods described above require some special actions to “russify” the keyboard.
This is not difficult, see the Cyrillic-cHOWTO or, better, its updated version

http://www.inp.nsk.su/"baldin/Cyrillic-HOWTO-russian/Cyrillic-HOWTO-
russian.html

Also, all of the above methods globally affect all X applications: text editors (emacs, nedit,
kedit...), xterms, TEXyacg etc.

If you need to type Russian only once, or very rarely, a proper keyboard setup may be more
trouble than it’s worth. For the benefit of such occasional users, TEXyacg has methods
of Russian input which require no preliminary work. Naturally, such methods affect only
TEXyacs, and no other application.

The simplest way to type some Russian on the standard US-style keyboard with no software
setup is to select Edit — Preferences — Keyboard — Cyrillic input method — translit. Then,
typing a Latin letter will produce “the most similar” Russian one. In order to get some
Russian letters, you have to type 2- or 3-letter combinations:

Shorthand | for | Shorthand(s) |for
y o € [|[Yo||YD E
zh XK ||Zh||ZH K
j tab] x ||J tab] K
ch 9 ||C h||ICH 9
sh m ||S h||S H il
sch u [[S c h|[s C H|ILL
e tab 5 ||E tab S
yu 0 ||Y YU IO
y a a ||Y Y A A

Table A.1. Typing Cyrillic text on a Roman keyboard.

If you want to get, e.g., “cx”, and not “mr”, you have to type . Of course, the choice
of “optimal” mapping of Latin letters to Russian ones in not unique. You can investigate
the mapping supplied with TEXy;acg and, if you don’t like something, override it in your
~/.TeXmacs/progs/my-init-texmacs.scm.

If you select jcuken instead of translit, you get the “official” Russian typewriter layout. It
is so called because the keys “qwerty” produce “iiitykerr”. This input method is most useful
when you have a Russian-made keyboard, which has additional Russian letters written
on the key caps in red, in the jcuken layout (a similar effect can be achieved by attaching
transparent stickers with red Russian letters to caps of a US-style keyboard). It is also
useful if you are an experienced Russian typist, and your fingers remember this layout.

Those who have no Russian letters indicated at the key caps often prefer the yawerty
layout, where the keys “qwerty” produce “aseprer’. Each Latin letter is mapped into
a “similar” Russian one; some additional Russian letters are produced by digits.
TEXy\racs comes with a slightly modified yawerty layout, because it does not redefine
the keys , , , which are important for TEXyiacg, are not redefined. The corre-
sponding Russian letters are produced by some digit combinations instead.

APPENDIX B

ABOUT GNU TgXyacs

B.1. SUMMARY

GNU TgXyacs

Supported systems | Most GNU/LINUX systems
Copyright © 1998-2002 by Joris van der Hoeven
License GNU General Public License
Web sites http://www.texmacs.org

http://www.gnu.org/software/texmacs
Contact contact@texmacs.org
Regular mail Dr. Joris van der Hoeven

Dépt. de Mathématiques (Bat. 425)
Université Paris-Sud

91405 Orsay Cedex

France

Table B.1. Summary of the principal information about GNU TEXyacs-

B.2. THE PHILOSOPHY BEHIND TEXjyiacs

B.2.1. A short description of GNU TgEXyiacs

GNU TgXyacs 1s a free scientific text editor, which was both inspired by TgX and GNU
EMAcS. The editor allows you to write structured documents via a wysiwyg (what-you-
see-is-what-you-get) and user friendly interface. New styles may be created by the user.
The program implements high-quality typesetting algorithms and TEX fonts, which help
you to produce professionally looking documents.

The high typesetting quality still goes through for automatically generated formulas, which
makes TEXyjacg suitable as an interface for computer algebra systems. TEXyjacg also
supports the GUILE/SCHEME extension language, so that you may customize the interface
and write your own extensions to the editor.

TEXyracs currently runs on most GNU/LINUX systems (a >200MHz processor and >32Mb
of memory are recommended) and on sun computers. Converters exist for TEX/IATEX
and they are under development for HTML/MATHML/XML. In the future, TEXy;acg 18
planned to evolve towards a complete scientific office suite, with spreadsheet capacities, a
technical drawing editor and a presentation mode.

o8

B.3 THE AUTHORS OF TEXy1acs 59

B.2.2. Why freedom is important for scientists

One major objective of TEXyjacg is to promote the development of free software for and
by scientists, by significantly reducing the cost of producing high quality user interfaces. If
you plan to write an interface between TEXy;acg and other software, then please contact us.

As a mathematician, I am deeply convinced that only free programs are acceptable from
a scientific point of view. I see two main reasons for this:

e A result computed by a “mathematical” system, whose source code is not public,
can not be accepted as part of a mathematical proof.

e Just as a mathematician should be able to build theorems on top of other theorems,
it should be possible to freely modify and release algorithms of mathematical soft-
ware.

However, it is strange, and a shame, that the main mathematical programs which are
currently being used are proprietary. The main reason for this is that mathematicians often
do not consider programming as a full scientific activity. Consequently, the development
of useful software is delegated to “engineers” and the resulting programs are used as black
boxes.

This subdivision of scientific activity is very artificial: it is often very important from a
scientific point of view to know what there is in the black box. Inversely, deep scientific
understanding usually leads to the production of better software. Consequently, I think
that scientists should advocate the development of software as a full scientific activity,
comparable to writing articles. Then it is clear too that such software should be diffused
in a way which is compatible with the requirements of science: public availability, repro-
ducibility and free usability.

B.3. THE AUTHORS OF TEXjyiacs

The GNU TgXyacg system, which is part of the GNU project, was designed and written
by Joris van der Hoeven. The system was inspired both by the TEX system, written by D.
Knuth, and by EMACS, written by R. Stallman. Special thanks goes to them, as well as
to the C.N.R.S. (the French national institute for scientific research), which employs me
and authorized me to freely distribute this program. Further thanks go to the contributors
below.

B.3.1. Developers of TEXy1acs

e Andrey Grozin has constantly helped us with many issues: interfaces to several
computer algebra systems, support for Cyrillic, tools for the manipulation of dic-
tionaries, etc.

e David Allouche replaced the gencc preprocessor by the more standard C++ tem-
plate system. He also made many other patches, bug reports and he did a lot of the
administration of TeXmacs.

e Dan Grayson helped me to implement communications with computer algebra sys-
tems via pipes. He also provided some money support for TEXyacg, and he made
many useful comments and suggestions.

60

Apout GNU TgXyacs

Karim Belabas designed and developed with me the first protocol for interfacing
TEXyacs With scientific computation or computer algebra systems. He also imple-
mented the interface with the pari system.

Stéphane Payrard made an important bugfix for destroying windows.

Michael Graffam for his help with the GNU Octave interface.

Michael Lachmann for his work on the upcoming GNU R interface.

Gwenael Gabard for some fixes in the INTEX to TEXyacg converter.

Felix Breuer for his help on XML support and a donation.

Igor V. Kovalenko for his help on debugging TeXmacs and a few patches.

Gareth McCaughan made several patches and comments.

Jonas Lo6f for a precise installation procedure on Cygwin.

Rob Clark made a patch which improves the system time support.

B.3.2. Administration of TEXy;scs and material support

Jean-Claude Fernandez, Fabien Salvi and the other persons from the CRI host and
administrate the TEXyacg Website.

Alvaro Tejero Cantero maintains up the TEXyacg Wiki.

Loic Dachary made TEXy acg accessible on Savannah.

B.3.3. Porting TpXy acs to other platforms

Marciano Siniscalchi ported TEXy acg to Cygwin.
Martin Costabel ported TEXyjacg to MacOSX.
Bruno Haible helped with porting TEXyacg to the SUN system.

Dan Martens and Stéphane Payrard are working on a Windows port.

B.3.4. Contributors to TpXy;acs Packages

Ralf Treinen maintains the Debian package for TEXyacs-
Christophe Merlet and Bo Forslund helped with making a portable RPM package.
Lenny Cartier maintains the TEXy;acg RPM for Mandrake Cooker.

Jean Pierre Demailly and Yves Potin made TEXyacq part of the CNDP project to
support free software.

B.3 THE AUTHORS OF TEXy1acg 61

B.3.5. Internationalization of TEXy;acs
Czech: David Rezac.
Dutch: Joris van der Hoeven.
Finnish: Teemu Ikonen.
French: Michéle Garoche, Joris van der Hoeven.

German: Hans Dembinski, Jan Ulrich Hasecke, Joris van der Hoeven, Thomas
Langen, Ralf Treinen.

Hungarian: Andras Kadinger.

Italian: Xav and Daniele Pighin.

Polish: Robert Janusz.

Portuguese: Maércio Laurini and Alexandre Taschetto de Castro.
Romanian: Dan Ignat.

Russian: Andrey Grozin.

Spanish: Alvaro Cantero Tejero, Pablo Ruiz Muzquiz, David Moriano Garcia, Offray
Vladimir Luna Céardenas.

Swedish: Harald Ellmann.

Ukrainian: Volodymyr Lisivka.

B.3.6. Other contributors

Final thanks go to all others who have contributed to TEXyracs, for instance by sending bug
reports or by giving suggestions for future releases: Alexandre Abbes, Alessio Abogani, Till
Adam, Murali Agastya, Guillaume Allégre, Larry D’Anna, Eizo Akiyama, Doublet Alban,
Tom Alsberg, James Amundson, Ayal Anis, Javier Arantegui Jimenez, André Arnold,
Uwe Assmann, Philippe Audebaud, Daniel Augot, Olaf Bachmann, Franky Backeljauw,
Nick Bailey, Pierre Barbier de Reuille, Giovanni Maniscalco Basile, Luc Béhar, Odile
Bénassy, Paul Benham, Roy C. Bentley, Attila Bergou, Christophe Bernard, Konrad Bern-
loehr, Karl Berry, Matthias Berth, Cédric Bertolini, Matthew Bettencourt, Anne-Laure
Biolley, Benedikt Birkenbach, Jim Blandy, Christof Boeckler, Mohsen Bouaissa, Thierry
Bouche, Adrien Bourdet, Didier Bretin, Jean-Yves Briend, Simon Britnell, Alexander
M. Budge, Yoel Callev, Niclas Carlsson, Dominique Caron, Anténio Carvalho, Michel
Castagner, Topher Cawlfield, Carlo Cecati, Henri Cohen, Teddy Fen-Chong, Dominique
Colnet, Claire M. Connelly, Christoph Conrad, Riccardo Corradini, Paulo Correia, Olivier
Cortes, Robert J. Cristel, Maxime Curioni, Jason Dagit, Mike Davidson, Jean-Pierre
Demailly, Peter Denisevich, Alban Doublet, Steingrim Dovland, Michael John Downes,
Benjamin Drieu, Amit Dubey, Daniel Duparc, Tim Ebringer, Magnus Ekdahl, Ulf Ekstrom,
Robin Fairbairns, Tony Falcone, Hilaire Fernandes, Juan Flynn, Jens Finke, Thomas Fis-
chbacher, Cedric Foellmi, Christian Forster, Charlie Fortner, Stefan Freinatis, Michael
P Friedlander, Nils Frohberg, Rudi Gaelzer, Maciej Gajewski, Lionel Garnier, Bjorn Gohla,

62 Apout GNU TgXyacs

Patrick Gonzalez, Nirmal Govind, Michael Graffam, Frédéric Grasset, Wilco Greven, Cyril
Grunspan, Laurent Guillon, Harri Haataja, Irwan Hadi, James W. Haefner, Ola Ham-
fors, Aaron Hammack, Guillaume Hanrot, Karl M. Hegbloom, Jochen Heinloth, Ralf
Hemmecke, Alain Herreman, Andreas Horn, Chu-Ching Huang, Ed Hurst, Karl Jarrod
Hyder, Richard Ibbotson, Benjamin T. Ingram, Alexander Isacson, Michael Ivanov, Maik
Jablonski, Frederic de Jaeger, Pierre Jarillon, Paul E. Johnson, Pierre-Henri Jondot,
Antoun Kanawati, Tim Kaulmann, Mukund S. Kalisi, Jeremy Kephart, Iwao Kimura,
Simon Kirkby, Ronny Klein, Matthias Koeppe, Denis Kovacs, Jeff Kowalczyk, Ralph
Krause, Neel Krishnaswami,, Friedrich Laher, Winter Laite, Russell Lang, Christopher
Lee, Milan Lehocky, Joerg Lippmann, Pierre Lorenzon, V.S. Lugovsky, Duraid Madina,
Yael Maguire, Paul Magwene, Jeremiah Mahler, Vincent Maillot, Giacomo Mallucci, Syl-
vain Marchand, Bernd Markgraf, Eric Marsden, Chris Marston, Evan Martin, Alisdair
McDiarmid, Phil Mendelsohn, Sébastien de Menten, Jean-Michel Mermet, Jon Merriman,
Herve le Meur, Amir Michail, Arkadiusz Miskiewicz, Sasha Mitelman, Dirk Moebius,
Jack Moffitt, Julian Morrison, Bernard Mourrain, Stephan Mucha, Nathan Myers, Nix
N. Nix, Eduardo Nogueira, Immanuel Normann, Jean-Baptiste Note, Ralf Nuetzel, Kostas
Oikonomou, Bill Page, Pierre Pansu, Bernard Parisse, Frédéric Parrenin, Ferndndez Pas-
cual, Yannick Patois, Alen L. Peacock, Frangois Pellegrini, Antonio Costa Pereira, Jacob
Perkins, Bernard Perrot, Jean Peyratout, Jacques Peyriere, Yves Pocchiola, Benjamin
Poussin, Isaias V. Prestes, Rui Prior, Julien Puydt, Nguyen-Dai Quy, Ramakrishnan,
Adrien Ramparison, Kenneth Reinhardt, Diego Restrepo, Christian Requena, Chris Ret-
ford, Staffan Ringbom, Will Robinson, Juan Pablo Romero, Juergen Rose, Mike Rosellini,
Filippo Rusconi, Philippe Sam-Long, Duncan Sands, Breton Saunders, Claire Sausset,
David Sauzin, Gilles Schaeffer, Guido Schimmels, Rainer Schopf, David Schweikert, Rui
Miguel Seabra, Sami Sieranoja,, Vasco Alexandre da Silva Costa, Marciano Siniscalchi,
Daniel Skarda, Murray Smigel, Luke Snow, Rodney Sparapani, Bas Spitters, Bas Spit-
ters, Starseeker, Harvey J. Stein, Bernard Stloup, Peter Stoehr, James Su, Przemyslaw
Sulek, Ben Sussman, Roman Svetlov, Milan Svoboda, Dan Synek, Pan Tadeusz, Sam Tan-
nous, John Tapsell, Dung TaQuang, Gerald Teschl, Eric Thiébaut, Nicolas Thiery, Helfer
Thomas, Reuben Thomas, Kurt Ting, Janus N. Tgndering, Marco Trevisani, Andreas
Umbach, Miguel A. Valle, Rémi Vanicat, Harro Verkouter, Sawan Vithlani, Guy Wallet,
Adam Warner, Thomas Wawrzinek, Maarten Wegewijs, Lars Willert, Grayson Williams,
Ben Wise, Damien Wyart, Volker Zell, Oleg Zhirov, Richard Zidlicky, Sascha Ziemann,
Reinhard Zierke, Paul Zimmermann.

B.3.7. Contacting us

You can either contact us by email at
contact@texmacs.org
or by regular mail at

Joris van der Hoeven

Dépt. de Mathématiques (Bat. 425)
Université Paris-Sud

91405 Orsay Cedex

France

There are also several TEXyjacg mailing lists:

texmacs-users@texmacs.org
texmacs-info@texmacs.org
texmacs-dev@gnu.org

B.4 IMPORTANT CHANGES IN TEXy1acs 63

B.4. IMPORTANT CHANGES IN TEXjytacs

Below, we briefly describe the most important changes which have occurred in TEXy;acg
since version 0.3.3.15. We also maintain a more detailed change log.

In general, when upgrading to a new version, we recommend you to make backups of your
old TEXyacs files before opening them with the newer version of TEXy acg. In the unlikely
case when your old file does not open in the correct way, please send a bug report to

bugs@texmacs.org

and send your old document as an attached file. Do not forget to mention your version of
TEXyacs and the system you are using.

B.4.1. Keyboard (1.0.0.11 — 1.0.1)
The TEXy1acs keybindings have been rationalized. Here follows a list of the major changes:

e The prefix has been renamed to @

. is equivalent to [M- | and |escape [escape | to [A- |

e Mode dependent commands are now prefixed by . In particular, accents are

typed using instead of .

e Variants are now obtained using instead of and you can circle back using

(shife-tab

e Greek characters are now typed using [A-C-| [F5 | or the hyper modifier, which
can be configured in Edit — Preferences. You may also obtain Greek characters as
variants of Latin characters. For instance, yields .

e The signification of the cursor keys in combination with control, alt and meta has
changed.

You may choose between several “look and feels” for the keyboard behaviour in Edit —
Preferences — Look and feel. The default is Emacs, but you may choose Old style if you want
to keep the behaviour to which you may be used now.

B.4.2. Menus (1.0.0.7 — 1.0.1)

Several changes have been made in the menus. Here follows a list of the major changes:
e Buffer has been renamed as Go.
e Several items from File have been moved to View.
e The Edit — Import and Edit — Export items have been moved to Tools — Selections.
e The Insert menu has been split up into the menus Insert, Text and Mathematics.
e The Text and Paragraph menus have been merged together in one Format menu.

e Options has been spread out across Document, View, Tools and Edit — Preferences.

64 Apout GNU TgXyacs

B.4.3. Style files (1.0.0.4)

Many changes have been made in the organization of the TEXy;acq style files. Personal style
files which depend on intermediate TEXyacg Packages may require some slight adaptations.

We are working towards a stabilization of the standard style files and packages. At the
end of this process, it should be easy to adapt existing IATEX style files for journals to
TEXyracs by customizing these standard style files and packages. As soon as we have time,
we plan to provide online documentation on how to do this at Help — Online documentation.

B.4.4. Tabular material (0.3.5)

The way tabular material is treated has completely changed. It has become much easier to
edit tables, matrices, equation arrays, etc. Also, many new features have been implemented,
such as background color, border, padding, hyphenation, subtables, etc. However, the
upgrading of old tabular material might sometimes be erroneous, in which case we invite
you to submit a bug report.

B.4.5. Document format (0.3.4)

The TeXmacs document format has profoundly changed in order to make TeXmacs com-
patible with XML in the future. Most importantly, the old style environments like

<assign|env|<environment|open|close>>,

which are applied via matching pairs <begin|env>text<end|env>, have been replaced by
macros

<assign|env|<macro|body|open<body>close>>,

which are applied via single macro expansions <expand|env|text>. Similarly, matching
pairs <set |var|val>text<reset|var> of environment variable changes are replaced by a
<with|var|val|text> construct (close to XML attributes). From a technical point of view,
these changes lead to several complications if the text body consists of several paragraphs.
As a consequence, badly structured documents may sometimes display differently in the
new version (although I only noticed one minor change in my own documents). Further-
more, in order to maintain the higher level of structure in the document, the behaviour of
the editor in relation to multiparagraph environments has slightly changed.

APPENDIX C

CONTRIBUTING TO GNU TgEXyiacs

C.1. USE TEXyacs

One of the best ways to contribute to GNU TEXyacg is by using it a lot, talk about it
to friends and collegues, and to report me about bugs or other unnatural behaviour.
Please mention the fact that you wrote articles using TEXy;acg when submitting them.
You can do this by putting the made-by-TeXmacs tag somewhere inside your title using
Text — Title — TeXmacs notice.

Besides these general (but very important) ways to contribute, your help on the more
specific subjects below would be appreciated. Don’t hesitate to contact us if you want
to contribute to these or any other issues. In the Help menu you can find documentation
about the source code of TEXyacg, its document format, how to write interfaces with other
formats, and so on.

C.2. MAKING DONATIONS TO THE TEXyiacg PROJECT

Making donations to TeXmacs through the SPI organization

One very important way to support TEXyjacg is by donating money to the project.
TEXyacs 1s currently one of the projets of SPI (Software in the Public Interest; see
http://www.spi-inc.org). You may make donations of money to TeXmacs via this orga-
nization, by noting on your check or e-mail for wire transfers that your money should
go to the TeXmacs project. You may also make donations of equipment or services or
donations through vendors. See the SPI website for more information. We will main-
tain a webpage with a list of donors soon (if you agree to be on the list).

Details on how to donate money

To make a donation, write a check or money order to:
Software in the Public Interest, Inc.
and mail it to the following address:

Software in the Public Interest, Inc.
P.O. Box 502761

Indianapolis, IN 46250-7761

United States

To make an electronic transfer (this will work for non-US too), you need to give your bank
the routing number and account number as follows:

The SPI bank account is at American Express Centurion Bank.
Routing Number: 124071889
Account Number: 1296789

65

66 CONTRIBUTING TO GNU TEX acs

Don’t forget to note on your check or e-mail for wire transfers that the money should be
spent on the TeXmacs projet. In addition you may specify a more specific purpose on
which you would like us to spend the money. You may also contact us for a more detailed
discussion on this issue.

Important notes

Let the SPI Treasurer (treasurer@spi-inc.org) know if you have problems. When you
have completed the electronic wire, please send a copy of the receipt to the above address
so there is a copy of your donation. The copy you send to the treasurer is important. You
may also want to contact the TeXmacs team in order to make sure that the money arrived
on the TeXmacs account.

Note: The SPI address and account numbers may change from time to time. Please do
not copy the address and account numbers, but rather point to the page http://www.spi-
inc.org/donations to ensure that donors will always see the most current information.

Donations in FEurope can be done through our partner in Germany, ffis e.V. If you are
interested in using their bank account (to save international money transfer costs), please
check the instructions on http://www.ffis.de/Verein/spi-en.html.

C.3. CONTRIBUTE TO THE GNU TgXyjacs DOCUMENTATION

There is a high need for good documentation on TEXyacg as well as people who are willing
to translate the existing documentation into other languages. The aim of this site is to
provide high quality documentation. Therefore, you should carefully read the guide-lines
on how to write such documentation.

C.3.1. Introduction on how to contribute

High quality documentation is both a matter of content and structure. The content itself
has to be as pedagogic as possible for the targeted group of readers. In order to achieve
this, you should not hesitate to provide enough examples and illustrative screen shots
whenever adequate. Although the documentation is not necessarily meant to be complete,
we do aim at providing relatively stable documentation. In particular, you should have
checked your text against spelling errors. The more experimental documentation should
be put in the incoming directory or on the TEXyazcg Wiki.

It is also important that you give your documentation as much structure as possible,
using special markup from the tmdoc style file. This structure can be used in order to
automatically compile printable books from your documentation, to make it suitable for
different ways of viewing, or to make it possible to efficiently search a certain type of
information in the documentation. In particular, you should always provide copyright and
license information, as well as indications on how to traverse your documentation, if it
contains many files.

C.3.2. Using CVs

The present TEXyacs documentation is currently maintained on
http://savannah.gnu.org using cvs (Concurrent Version System). In order to con-
tribute, you should first create an account there. When you are done with this,
you should send me an email at vdhoeven@texmacs.org and ask me to add your
name to the list of documenters. After that, you will be able to modify the doc-
umentation using cvs. For information on how to do that, you should consult
http://savannah.gnu.org/cvs/?group_id=1747.

C.3 ConTRIBUTE TO THE GNU TEXy scg DOCUMENTATION 67

In fact, the CVs system is not ideal for our documentation purpose, because it is not very
dynamic. In the future, we plan to create a dedicated publication website, which will allow
you to save documents directly to the web. It should also allow the automatic conversion
of the documentation to other formats, the compilation of books, etc.

C.3.3. Conventions for the names of files

Most documentation should be organized as a function of the topic in a directory tree. The
subdirectories of the top directory are the following:

devel Documentation for developers.

examples Examples of TEXy;acg documents.

incoming Incoming documentation, which is still a bit experimental.
main The main documentation.

meta How to write documentation and the compilation of documentation.

Please try to keep the number of entries per directory reasonably small.

File names in the main directory should be of the form type-name.language.tm. In the
other directories, they are of the form name.language.tm. Here type is a major indication
for the type of documentation; it should be one of the following;:

adv Documentation for advanced users.
man For inclusion in the TEXyzcg manual.
tut For inclusion in the TEXyacg tutorial.

You should try to keep the documentation on the same topic together, regardless of the
type. Indeed, this allows you to find more easily all existing documentation on a particular
topic. Also, it may happen that you want to include some documentation which was
initially meant for the tutorial in the manual. The language in which is the documen-
tation has been written should be a two letter code like en, fr, etc. The main name of
your file should be the same for the translations in other languages. For instance, man-
keyboard.en.tm should not be translated as man-clavier.fr.tm.

C.3.4. Copyright information & the Free Documentation License

All documentation on the texmacs-doc site falls under the GNU Free Documentation
License. If you write documentation for TEXy;acg on this site, then you have to agree that
it will be distributed under this license too. The copyright notice

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, with no Front-Cover
Texts, and with no Back-Cover Texts. A copy of the license

is included in the section entitled "GNU Free Documentation
License".

68 CONTRIBUTING TO GNU TEX acs

should be specified at the end of each file. This should be done inside the tmdoc-license
macro, in a similar way as at the end of the present document. When automatically
generating a printed book from several documentation files, this will enable us to include
the license only once.

You keep (part of) the copyright of all documentation that you will write for TEXyacg on
the official texmacs-doc site. When you or others make additions to (or modifications in,
or translations of) the document, then you should add your own name (at an appropriate
place, usually at the end) to the existing copyright information. The copyright notice
should be specified using the tmdoc-copyright function just before the license information
at the end of the document. The first argument of this function contains a year or a period.
Each remaining argument indicates one of the copyright holders. When combining (pieces
of) several documents into another one, you should merge the copyright holders. For cover
information (on a printed book for instance), you are allowed to list only the principal
authors, but a complete list should be given at a clearly indicated place.

C.3.5. Traversing the TEXy;acs documentation

As a general rule, you should avoid the use of sectioning commands inside the TEXyacs
documentation and try to write small help pages on well identified topics. At a second
stage, you should write recursive “meta help files” which indicate how to traverse the
documentation in an automatic way. This allows the reuse of a help page for different
purposes (a printed manual, a web-oriented tutorial, etc.).

The tmdoc style provides three markup macros for indicating how to traverse documenta-
tion. The traverse macro is used to encapsulate regions with traversal information. The
branch macro indicates a help page which should be considered as a subsection and the
continue macro indicates a follow-up page. Both the branch and the continue macro
take two arguments. The first argument describes the link and the second argument gives
the physical relative address of the linked file.

Typically, at the end of a meta help file you will find several branch or continue macros,
inside one traverse macro. At the top of the document, you should also specify a title for
your document using the tmdoc-title macro. When generating a printed manual from
the documentation, a chapter-section-subsection structure will automatically be generated
from this information and the document titles. Alternatively, one might automatically
generate additional buttons for navigating inside the documentation using a browser.

C.3.6. Using the tmdoc style

Besides the copyright information macros and traversal macros, which have been docu-
mented before, the tmdoc style comes with a certain number of other macros and functions,
which you should use whenever appropriate:

key This macro is used to indicate keyboard input like . The specialized
macros kbd-gen, kbd-text, kbd-math, kbd-symb, kbd-big, kbd-large, kbd-ia,
kbd-exec and kbd-table are used for keyboard input corresponding to a specific
type of action or mode. For instance, kbd-math corresponds to keyboard shortcuts
for mathematical operations, such as , which starts a fraction.

menu This function with an arbitrary number of arguments indicates a menu like File or
Document — Language. Menu entries are automatically translated by this function.

C.3 ConTRIBUTE TO THE GNU TEXy scg DOCUMENTATION 69

markup This macro is used in order to indicate a macro or a function like section.

tmstyle This macro indicates the name of a TEXyacg style file or package like
article.

tmpackage This macro indicates the name of a TEXyacg package like std-markup.
tmdtd This macro indicates the name of a TEXyacg d.t.d. like number-env.

Notice that the contents of none of the above tags should be translated into foreign lan-
guages. Indeed, for menu tags, the translations are done automatically, so as to keep the
translations synchronized with the translations of the actual TEXy;acg menus. In the cases
of markup, styles, packages and d.t.d.s, it is important to keep the original name, because
it often corresponds to a file name.

The following macros and functions are used for linking and indexing purposes, although
they should be improved in the future:

simple-link This macro takes an URL z as argument and is a hyperlink with name
and destination z.

hyper-link This macro is a usual hyperlink.

concept-link This macro takes a concept as argument. Later on an appropriate
hyperlink might be created automatically from this and the other documentation.

only-index Index a simple string.
def-index Definition of a new concept; the text is printed in italic and indexed.

re-index Reappearance of an already defined concept; the text is printed in roman
and put in the index.

The following tags are also frequently used:
icon Link to an icon in a central directory like $TEXMACS_PATH/doc/images/pixmaps.

screenshot Link to a screenshot. The actual screenshots are stored in a central direc-
tory like $TEXMACS_PATH/doc/images/screenshots.

scheme The SCHEME language.

framed-fragment For displaying a piece of code in a nice frame.
scheme-code For multi-paragraph SCHEME code.

tm-fragment For a piece of TEXyjacg markup code in SCHEME format.

descriptive-table For descriptive tables; such tables can be used to document lists
of keyboard shortcuts, different types of markup, etc.

The tmdoc style inherits from the generic style and you should use macros like em, ver-
batim, itemize, etc. from this style whenever appropriate.

70 CONTRIBUTING TO GNU TEX acs

C.4. INTERNATIONALIZATION

The support of a maximal number of foreign languages is another major challenge in
which your help would be appreciated. Making the translations to support a new language
usually requires several days of work. We therefore recommend you to find some friends
or collegues who are willing to help you.

The procedure for adding a new language is as follows

e You copy the file english-new.scm to english-yourlanguage.dic in
langs/natural/dic and fill out the corresponding translations. You may want
to use Andrey Grozin’s dictionary tool at

http://www.texmacs.org/Data/dictool.py.gz

In order to use it, may sure that Python is installed on your system, download the
file, gunzip it, make it executable and run it.

e You tell me about any special typographical rules in your language and handy
keystrokes for producing special characters.

e [take care of the hyphenation and typographical issues, but you test them.

e If you have enough time, you may also consider the translation of (part of) the
existing documentation.

Of course, the support for languages get out of date each time that new features are added
to TEXy1acg- For this reason, we also maintain a file miss-english-yourlanguage .dic
with all missing translation for your language, once that it has been added. Please do not
hesitate to send inclomplete versions of english-yourlanguage .dic or miss-english-
yourlanguage .dic; someone else may be willing to complete them.

C.5. WRITING DATA CONVERTERS

If you are familiar with TpX, IATEX, Html, Xml, Sgml, Mathml, Pdf, Rtf, or any other
frequently used data format, please consider contributing to writing good converters for
one or more of these formats.

Writing a specific converter for Pdf should not be very difficult, by adapting the file
src/Window/PsDevice/printer.cc. Converters for other formats may be more compli-
cated to write, and might sometimes require a closer collaboration with the main TEXy;acg
authors. In Help — Source code — Data format you will find details about the TEXy;acg data
format and in Help — Source code — Data conversion we give some suggestions which might
be helpful for these projects.

C.6. PORTING TEXyjacs TO OTHER PLATFORMS

Having only access to PC/Linux and SUN systems, I am interested in people who want to
port TEXyracg to other Unix systems with X Window and to maintain the corresponding
distributions. If you want to do this, you should take a look at the files

C.8 BECOME A TEXy;acg DEVELOPER 71

configure.in
src/Basic/fast_alloc.cc

Specialists on autoconf, redhat and rpm packages are also welcome to communicate their
suggestions, patches, etc.

Besides porting TEXyacg to other Unix-based systems, it would be nice to port TEXy;acg
to Windows (and Mac OS). Please join the texmacs-dev@gnu.org mailing list if you want
to help. Discussions have been going on about how to do the porting and in particular
about which portable graphical user interface (like Gtk, Qt, Wxwindows or GNUstep) we
should use. Our strategy will be to first put all GUI dependent code in a cleanly specified
TMGUI API and then do the actual porting. In fact, this will allow us to support multiple
graphical toolkits. More details can be found in the archives of the texmacs-dev@gnu.org
mailing list.

C.7. INTERFACING TEXpiacs WITH OTHER SYSTEMS

It is quite easy to write interfaces between TEXyacg and computer algebra systems or other
scientific programs with structured output. Please consider writing interfaces between
TEXyiacs and your favorite system(s). TEXyacg has already been interfaced with several
other free systems, like Giac, Macaulay 2, Maxima, GNU Octave, Pari, Qcl, gTybalt, Yacas.
Detailed documentation on how to add new interfaces is available in the Help — Interfacing
menu.

C.8. BECOME A TEXyacs DEVELOPER

Apart from the kind of contributions which have been described in more detail above,
there are many more issues where your help would be appreciated. Please take a look at
our plans for the future for more details. Of course, you should feel free to come up with
your own ideas and share them with us on the texmacs-dev@gnu.org mailing list!

APPENDIX D

INTERFACING TEXyiacs WITH OTHER PROGRAMS

D.1. STUDYING THE ‘“MYCAS” EXAMPLE

The best way to start implementing a new interface with TEXyacg is to take a look
at the sample “computer algebra system” mycas, which can be found in the directory
$TEXMACS_PATH/misc/mycas. The file mycas.cc, which is listed at the end of this section,
contains a very simple program which can be interfaced with TEXyacg. In order to test
the program, you should compile it using

gt++ mycas.cc -0 mycas

and move the binary mycas to some location in your path. When starting up TEXyacs,
you should then have a Mycas entry in the Insert — Session menu.

D.2. STUDYING THE SOURCE CODE STEP BY STEP

Let us study the source code of mycas step by step. First, all communication takes place
via standard input and output, using pipes. In order to make it possible for TEXy acg to
know when the output from your system has finished, all output needs to be encapsulated
in blocks, using three special control characters:

#define DATA_BEGIN ((char) 2)
#tdefine DATA_END ((char) 5)
#define DATA_ESCAPE ((char) 27)

The DATA_ESCAPE character followed by any other character ¢ may be used to produce c,
even if ¢ is one of the three control characters. An illustration of how to use DATA_BEGIN
and DATA_END is given by the startup banner:
int
main () {
cout << DATA_BEGIN << "verbatim:";
cout << Moo \n";
cout << "Welcome to my test computer algebra system for TeXmacs\n";
cout << "This software comes with no warranty whatsoever\n";
cout << "(c) 2001 by Joris van der Hoeven\n";
cout << Moo \n";
next_input ();
cout << DATA_END;
fflush (stdout);

The first line of main says that the startup banner will be printed in the “verbatim” format.
The next_input function, which is called after outputting the banner, is used for printing a
prompt and will be detailed later. The final DATA_END closes the startup banner block and
tells TEXyracs that mycas is waiting for input. Don’t forget to flush the standard output,
so that TEXyacs Will receive the whole message.

72

D.2 STUDYING THE SOURCE CODE STEP BY STEP 73

The main loop starts by asking for input from the standard input:

while (1) {
char buffer[100];
cin >> buffer;
if (strcmp (buffer, "quit") == 0) break;

The output which is send back should again be enclosed in a DATA_BEGIN-DATA_END block.

cout << DATA_BEGIN << "verbatim:";
cout << "You typed " << buffer << "\n";

Inside such a block you may recursively send other blocks, which may be specified in
defferent formats. For instance, the following code will send a IATEX formula:

cout << "And now a LaTeX formula: ";
cout << DATA_BEGIN << "latex:" << "$x"2+y~2=z"2$" << DATA_END;
cout << "\n";

For certain purposes, it may be useful to directly send output in TEXy;acq format using a
SCHEME representation:

cout << "And finally a fraction ";

cout << DATA_BEGIN << "scheme:" << "(frac \"a\" \"b\")" <<
DATA_END;

cout << ".\n";

In order to finish, we should again output the matching DATA_END and flush the standard
output:

next_input ();
cout << DATA_END;
fflush (stdout);
}
return O;

}

Notice that you should never output more than one DATA_BEGIN-DATA_END block. As soon
as the first DATA_BEGIN-DATA_END block has been received by TEXyacs, it is assumed that
your system is waiting for input. If you want to send several DATA_BEGIN-DATA_END blocks,
then they should be enclosed in one main block.

A special “channel” is used in order to send the input prompt. Channels are specified as
special DATA_BEGIN-DATA_END blocks:

static int counter= 0;

void

next_input () {
counter++;
cout << DATA_BEGIN << "channel:prompt" << DATA_END;
cout << "Input " << counter << "] ";

¥

Inside the prompt channel, you may again use DATA_BEGIN-DATA_END blocks in a nested
way. This allows you for instance to use a formula as a prompt. There are three standard
channels:

output. The default channel for normal output.

74 INTERFACING TEXy a0 WITH OTHER PROGRAMS

prompt. For sending input prompts.

input. For specifying a default value for the next input.

D.3. GRAPHICAL OUTPUT

It is possible to send postscript graphics as output. Assume for instance that you have a
picture picture.ps in your home directory. Then inserting the lines

cout << "A little picture:\n";
cout << DATA_BEGIN << "ps:";
fflush (stdout);

system ("cat $HOME/picture.ps");
cout << DATA_END;

cout << "\n";

at the appropriate place in the main loop will display your image in the middle of the
output.

D.4. THE COMPLETE LISTING

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream.h>

#define DATA_BEGIN ((char) 2)
#define DATA_END ((char) 5)
#define DATA_ESCAPE ((char) 27)

static int counter= 0;

void

next_input () {
counter++;
cout << DATA_BEGIN << "channel:prompt" << DATA_END;
cout << "Input " << counter << "] ";

¥

int

main () {
cout << DATA_BEGIN << "verbatim:";
COUut << Moo \n";
cout << "Welcome to my test computer algebra system for TeXmacs\n";
cout << "This software comes with no warranty whatsoever\n";
cout << "(c) 2001 by Joris van der Hoeven\n";
COUut << Moo \n";
next_input O;
cout << DATA_END;
fflush (stdout);

D.5 WRITING YOUR FIRST INTERFACE WITH TEXy1509 75

while (1) {
char buffer[100];
cin >> buffer;
if (strcmp (buffer, "quit") == 0) break;
cout << DATA_BEGIN << "verbatim:";
cout << "You typed " << buffer << "\n";

cout << "And now a LaTeX formula: ";
cout << DATA_BEGIN << "latex:" << "$x~2+y~2=z"2$" << DATA_END;
cout << "\n";

cout << "And finally a fraction ";
cout << DATA_BEGIN << "scheme:" << "(frac \"a\" \"b\")" << DATA_END;
cout << ".\n";

next_input ();
cout << DATA_END;
fflush (stdout);
}
return O;

}

D.5. WRITING YOUR FIRST INTERFACE WITH TEXjy1acs

In order to write your first interface to TEXy;acg, we recommend you to follow the following
steps:

1. Create a --texmacs option for your program which will be used for calling your
program from inside TEXyracs-

2. Modify your output routines in a such a way that the appropriate output is send
to TEXyracs When your program is started with the --texmacs option.

3. Create amycas script in your path which executes your program with the --texmacs
option.

After doing this, your program will be available under the name Mycas in Insert — Session.
We will explain later how to make your system listed under its own name, how to customize
it, and how to get the interface incorporated into the main TEXyscg distribution.

Usually, step 2 is the most complicated one and the time it will cost you depends on how
your system was designed. If you designed clean output routines (including the routines
for displaying error messages), then it usually suffices to modify these by mimicking the
mycas example and reusing existing INTEX output routines, which most systems provide.

At the moment, we only implemented IATEX as a standard transmission format for math-
ematical formulas, because this is the format which is most widely used. In the future, we
intend to implement more semantically secure formats, and we recommend you to keep in
mind the possibility of sending your output in tree format.

Nevertheless, we enriched standard IATEX with the * and \bignone commands for mul-
tiplication and closing big operators. This allows us to distinguish between

76 INTERFACING TEXy a0 WITH OTHER PROGRAMS

a * (b + c)
(or a multiplied by b+ ¢) and
f(x +y)
(or f applied to z + y). Similarly, in
\sum_{i=1}"m a_i \bignone + \sum_{j=1}"n b_j \bignone
the \bignone command is used in order to specify the scopes of the \sum operators.

It turns out that the systematic use of the * and \bignone commands, in combination
with clean IATEX output for the remaining constructs, makes it a priori possible to asso-
ciate an appropriate meaning to your output. In particular, this usually makes it possible
to write additional routines for copying and pasting formulae between different systems.

D.6. SUPPORTING YOUR SYSTEM INSIDE TEXjytacs

Assume that you have successfully written a first interface with TEXyiacg as explained in
the previous section. Then it is time now to include support for your system in the standard
TEXyracs distribution, after which further improvements can be made.

The easiest way to get your system supported is to send us a copy of your software with
the new interface with the request to incorporate the necessary support into TEXyacs- By
default, we will call your program using the --texmacs option; if this is not appropriate,
then you should say so.

You may also write the support for your system yourself. Assuming that the name of your

system is yourcas, you should follow the following steps:

1. Create a file of the form yourcas.scm in the directory $TEXMACS_PATH/progs/cas.
You should load this file on startup, by editing the global init-texmacs.scm (or
your personal my-init-texmacs.scm) initialization file.

2. Include a line of the form

(connection-declare "yourcas" "shell-cmd")

in yourcas.scm, where shell-cmd is the shell command to launch your system
(including special command line options which allow your program to recognize that
it was called from inside TEXyjacg). Usually shell-cmd is yourcas --texmacs.

3. Add a line of the form

(connection-format "yourcas" "input-format" "output-format")

to yourcas.scm if your input and output is not merely verbatim text. Usually,
the input-format is verbatim and the output-format is generic. Other avilable
formats are scheme, latex, html and ps.

4. Add a command like

(set! session-menu (menu-merge session-menu
>(("yourcas" (make-session "yourcas")))))

to yourcas.scm, in order to be able to start a TEXyjpcg-session from the Insert —
Session menu, in which you can evaluate expressions of your language. You may
also redefine the keyboard for such sessions.

D.9 CONNECTIONS VIA DYNAMICALLY LINKED LIBRARIES 77

5. Create a style file yourcas.ts in $TEXMACS_PATH/packages/session environ-
ments ‘yourcas-session’; ‘yourcas-input’ and ‘output-yourcas’. Alternatively, you
may put this file in $TEXMACS_HOME_PATH/packages.

6. If everything works well, and you wish to make it possible for others to
use your system inside the official TpXysacg distribution, then contact me at
vdhoeven@texmacs.org.

D.7. FURTHER CUSTOMIZATION OF THE INTERFACE

Having written a working interface between your system and TEXy;acg, you may want to
improve it further. Below, we will discuss a few directions for possible improvement.

First of all, you may want to customize the keyboard behavior inside a yourcas-session
and add appropriate menus. The mechanisms for doing that are described in the chapter
about the Guile/Scheme extension language and you may add such support to the file
yourcas.scm. We recommend you to take a look at some of the files in the directory
$TEXMACS_PATH/progs/cas in order to see how this is done for other systems.

Certain output from your system might require a special markup. For instance, assume
that you want to associate an invisible type to each subexpression in the output. Then
you may create a macro exprtype with two arguments in yourcas.ts and send IATEX
expressions like \exprtype{1}{Integer} to TEXyacg during the output.

In the case when you connected your system to TEXyiacg using pipes, you may directly
execute TEXyjacg commands during the output from your system by incorporating pieces
of code of the form

[DATA_BEGIN] command : scheme-program[DATA_END]

in your output. Inversily, when the cursor is inside a session of your system, you may use
the scheme command

(extern-exec cas-command)

in order to execute a command of your system.

D.8. LINKING YOUR SYSTEM AS A DYNAMIC LIBRARY

Instead of connecting your system to TEXyacg using a pipe, it is also possible to connect
it as a dynamically linked library. Although communication through pipes is usually easier
to implement, more robust and compatible with gradual output, the second option is faster.

D.9. CONNECTIONS VIA DYNAMICALLY LINKED LIBRARIES

Let us now describe the steps you have to go through in order to link your system as a
dynamic library.

1. Modify the architecture of your system in such a way that the main part of it can
be linked as a shared library; your binary should typically become a very small
program, which handles verbatim input and output, and which is linked with your
shared library at runtime.

78 INTERFACING TEXy a0 WITH OTHER PROGRAMS

2. Copy the include file $TEXMACS_PATH/include/TeXmacs.h into the include direc-
tory of your system’s source and write the input/output routines as required by the
last TeXmacs communication protocol as explained below.

3. Include a line of the form

(package-declare "yourcas" "libyourcas.so" '"get_name_package"
"init")

in a file yourcas.scm like in steps 2, 3 and 4 above. Here libyourcas.so is the
corresponding shared library, get_name_package the function which will be called
by TEXyacg in order to link your system to TEXy acg, and init some initialization
string for your package.

4. Proceed in a similar way as in the case of pipes.

D.10. THE TEXMACS COMMUNICATION PROTOCOL

The TEXyiacg communication protocol is used for linking libraries dynamically to TEXy acs-
The file $TEXMACS_PATH/include/TeXmacs.h contains the declarations of all data struc-
tures and functions used by the protocol. Actually, we foresee a succession of different
protocols. Each of these protocols have the abstract data structures TeXmacs_exports
and package_exports in common, with information about the versions of the protocol,

TEXyacs and your package.

The n-th concrete version of the communication protocol should provide two data struc-
tures TeXmacs_exports_n and package_exports_n. The first structure contains all
routines and data of TEXy;acg, Which may be necessary for the package. The second struc-
ture contains all routines and data of your package, which should be visible inside TEXyacs-

In order to link your system to TEXyacs, you have to implement a function
package_exports* get_my_package (int version);

This function takes the highest TEXy;scg communication protocol supported by your
TEXyracs system on input. It should return a pointer to an instance of a concrete struc-
ture package_exports_n, where n is inferior or equal to version.

D.11. VERSION 1 OF THE TEXMACS COMMUNICATION PRO-
TOCOL

In the first version of the TeXmacs communication protocol, your package should export
an instance of the following data structure:

typedef struct package_exports_1 {
char* version_protocol; /* "TeXmacs communication protocol 1" */
char* version_package;
charx (*install) (TeXmacs_exports_1x TM, char* options, char#*x

errors) ;

char* (xevaluate) (char* what, char* session, char** errors);
char* (xexecute) (char* what, char* session, char** errors);

} package_exports_1;

D.12 FUTURE PROJECTS 79

The string version_protocol should contain "TeXmacs communication protocol 1"
and the string version_package the version of your package.

The routine install will be called once by TEXyacg In order to initialize your system with
options options. It communicates the routines exported by TEXyacg to your system in
the form of TM. The routine should return a status message like

"yourcas-version successfully linked to TeXmacs"

If installation failed, then you should return NULL and *errors should contain an error
message. Both what and the returned string have a special format, in which it is possible
to encode arbitrary TEXyacg documents. This format will be explained in the next section.

The routine evaluate is used to evaluate the expression what inside a TEXyiacg-Session
with name session. It should return the evaluation of what or NULL if an error occurred.
xerrors either contains one or more warning messages or an error message, if the evalua-
tion failed. The command

(package-format "yourcas" "input-format" "output-format")

is used in order to specify the input and output formats for evaluations, in a similar way
as in the case of pipes.

The routine execute has a similar specification as evaluate, except that it is not used for
the evaluation of expressions inside a TEXyacg-session, but rather for other communication
purposes between TEXyacg and your package.

REMARK D.1. All strings returned by the routines install, evaluate and execute, as
well as all warning and error messages should be allocated using malloc. They will be
freed by TEXyjacs using free.

The first version of the TEXy;acg communication protocol also requires TEXyacg to export
an instance of the data structure

typedef struct TeXmacs_exports_1 {
char* version_protocol; /* "TeXmacs communication protocol 1" */
char* version_TeXmacs;

} TeXmacs_exports_1;

The string version_protocol contains the version "TeXmacs communication protocol
1" of the protocol and version_TeXmacs the current version of TeXmacs.

D.12. FUTURE PROJECTS

There are many improvements to be made in the TEXy acg interface to computer algebra
systems. First of all, the computer algebra sessions have to be improved (better hyphen-
ation, folding, more dynamic subexpressions, etc.). As to the real interface with computer
algebra systems, the upcoming changes fall into two categories:

e Changes to the existing interface.
e Support for communication between computer algebra systems.

An example of a change of the first type would be support for the automatic completion
of commands. The second project is far more ambitious and targets a semantically safe
way to communicate mathematical data. We plan to write a stand-alone program for this,
which can be used independently from TEXyiacs-

A modifier

INDEX

Equivalent for Mod4 56
abbr e 10, 36
abstract 45, 46
acronym 10, 36
address 45
address* 46
address-block 45
Algorithm oo 28
algorithm 41
align Lol 43
align¥ 43
AMS-class 0 oo 45
appendixo 46
article 69
author 45, 46
author* 46
AXIOM « v v e e e e e e e e e 11, 44
bibitem*00 .. 40
big-figure 44, 44
big-figurex 44
big-table 44, 44
binom 38, 38, 38
block 22, 37
block*x 37
body 0. 42
branch 68, 68, 68
Caps-lock key

Map to H modifier 55
center 37
chapter 45, 46, 46
chapter* 46
chapter*x 46
choice 39
choose, 38
cite 36, 40, 40
citex 10, 36
code . . . ih e e 11, 37, 37
code* 10, 37, 37
common-base 36
concept-link 69
conjecture 44
continue 68, 68, 68
convention 44
corollary 11, 44
corollary* 43
def-index 69
definition 11, 44
description 39
description-align 39
description-compact 39, 39, 39
description-dash 39
description-long 39

80

descriptive-table 69
det e 39
i 10, 36
Document 7
Font L 9
Dpi oo 8
Size 12
Language 8,9,9, 68
Russian 56
Master
Attach 25
Page 12
Breaking 28
Layout 12
Screen layouto 12
Margins as on paper 8
Sizeo 8
Type oo oo 12, 24
Paper 8
Style 8,9, 32
Other 51
Update
All Lo 24
Bibliography 24
Table of contents 24
Use package 32
document style 9
dueto oo 11, 43
Edit
Copy . .« v i 26
Copyto 26
Cut . .o 26
Export 26
Import 26
Paste 26
Paste from L. 26
Preferences 7,13, 13, 48, 55
Keyboard 55, 56, 56
Cyrillic input method
translit 57
Language
Russian 56
Look and feel 55
Redo, 27
Replace 26
Search, 26
Spell 27
Undo 27
=Y 10, 36, 69
enumerateo 39
enumerate-alpha 39
enumerate-Alpha 39
enumerate-numeric 39

INDEX 81
enumerate-roman 39 header-secondary 45
enumerate-Roman 39 header-title 45, 46, 46
BNV . . e e e e e e e e e e e e e 42 header-title 45, 46
env-default 44 Help 65
env-float 44 Interfacing 71
env-manage 42, 47 Scheme 27
env-math, 42 Source code
env-theorem 43 Data conversion 70
environments 9 Data format 70
eqnarrayo+ 42, 43, 43 hflush 38
eqnarray* 43, 43, 43 hrule, 38
eqnumber 43 hyper-link 69
egqsplit Lo 43 icono 69
egsplit* Lo 43 indent 0o 42
equation 42 indexo 40
equation* 42 index-1o 41, 41
even-page-text 45 index-1* 0L 41
example 11, 44 index-complex 40
exercise 11, 44 index-dots 41
exercise* 43 index-line 40
exercisename 43 index-m oo 41, 41
exercisesep 44 index-m* Lo 41
figurename 44 init-stdenv 47
figuresep 44 input Lo Lo 41
Fileo 68 Insert
Export Automatic
Latex 51 Bibliography 24
Postscript 8 Index 24
Import Table of contents 24
Html 000 54 Image 23, 44
Latex 54 Small figure 28
Load, 7,8, 33 Link
New 8 Actiono 23
Print Citation 24
Printall 8 Hyperlink 23
Printalltofile 8 Include 23, 25
Save 8 Index entry 24, 25, 25
Saveas 8 Invisible citation 24
Flexibility 28 Label 23
fold 38 Reference 23
footmote, 44 Mathematics
footnotesepo 44 Equation L. 16
Format Equationso L. 20
Language Fraction 26
Russian 56 Page insertion
framed-fragment 69 Floating figure 28
gather 43 Floating object 28
gather* 43 Floating table 28
generic 69 Footnote 28
glossary e e 41 Position float 28
glossary-1 41 Session 29, 30, 72, 75, 76
glossary-2 41 Other 30
glossary-dots 41 Space 12
glossary-dup o0 v e e 41 Specific
glossary-explain 41 Latex 52, 52
glossary-line 41 Texmacs 52, 52
Go e 8 Switch
header 45 Fold 38
header-author 45, 46, 46 Unfold 38
header-primary 45 Table 0. 20, 44

82 INDEX
Smalltable 28 paragraph 46

item 39 Number of columns 28
itemko 39 paragraph* 46
itemize L 39, 69 Persono e e 10, 36
itemize-arrow 39 phantom 38, 38
itemize-dot, 39 Preferences
itemize-minus 39 Printer 8
kKbd e 10, 37 problem 11, 44
kbd-big 68 program 41, 41
kbd-exec 68 proof 11, 43
kbd-gen, 68 proof* 43, 43
kbd-iao 68 proposition 11, 44
kbd-large 68 quotation 11, 37
kbd-math 68, 68 quoteo 11, 37
kbd-symb L. 68 re-index 69
kbd-table 68 remark, 11, 44
kbd-text00 .. 68 remark*o oo 43
key 68 reset-chapter 47
keywords 45 reset-section 47
lan-inputo 41 reset-subsection 47
lan-output 41 reset-subsubsection 47
lan-session 41 reset-top 47
LaTeX 37 SAMD + + v v v v e e e e e e e e e e e 10, 36
lemma 11, 44 scheme 69
legqnumber 43 scheme-code 69
Limits 28 screenshot 69
M modifier section 45, 45, 46, 46, 69

Equivalent for Modl 56 section* 46
made-by-TeXmacs 65 section-latex 46, 46
make-title 45 sectionsep 46
markupl 69 session 41
math 000 37 set-footer 38
matrix 22, 39 set-header 38
MENU . .+ « « v vt v e e e e e e e e e e e e 68 shrink-inline 38
Mycas 72,75 simple-link 69
NAME .+ + « ¢ v v v v v e e e e e 10, 36 small-figure 44, 44
newexercise 42 small-figure*x 44, 44
newfigure 42 small-table 44, 44
newlistfigure 47 start-page 45, 45, 45
newliststdenv 47 std-automatic 40
newliststdenv-counter 47 std-list0 39, 39
newremark u e e e e e 42 std-markup 36
newtheorem 42, 42, 42, 42, 42, 42, 42, 43 std-markup 69
nextnumber 43 std-math 0. 38
nocite* 40 std-symbol L. 38
nonumber L. 43 strong 10, 10, 36
notation 44 subindexo 40
note v e e e e 11, 44 subparagraph 46
number-env 47, 69 subparagraph* 46
number-europe e e .. . 47 subsection 45, 46
number-section 47 subsection* 46
number-uso e e e e e 47 subsubindex 40
odd-page-text 45 subsubsection 46
only-index 69 subsubsection* 46
OP v e e e e e e e e e 37 switch 38
Options Table

Mode, 33 Cell background color 22

Securityo 23 Cell border 21
output 41 Cell height
overline 38 Set height 21

INDEX 83
Cell operation mode 20 thechapter 47
Cell width theorem 11, 44
Setwidth 21 theorem* 43, 43, 43, 43, 43
Horizontal cell alignment 21 theoremname 43, 43
Horizontal table alignment 21 theoremsep 44, 44
Special cell properties theprefix 47
Distribute unused space 21 thesection 47
Special table properties 21 thesubsection 47
Border, 22 thesubsubsection 47
Extract format 22 title Lo 45, 46
Vertical cell alignment 21 titlex 46
Vertical table alignment 21 title-date 46
tabular 22 title-date* 46
tabular*00, 37 title-email 45
TeX . . o o e 37 title-email* 46
TeXmacs 37 tm-fragment 69
Texto 9,9 tmdoc 66, 68, 68, 69
Color tmdoc-copyright 68
Red 26 tmdoc-license 68
Contenttag 36 tmdoc-title 68
Abbreviation L. 36 tmdtd Lo 69
Acronym 36 tmpackage 69
Cite 36 tmstyle 69
Code 37 toc-dotsl e 40
Definition 36 toc-main-1o, 40
Emphasize 36 toc-main-2 L. L. 40
Keyboard 37 toc-normal-1 40
Name, 36 toc-normal-2 40, 40
Person 36 toc-normal-3 40, 40
Sample L. 36 toc-small-1 40
Strong 36 toc-small-2 40

Variable, 37 Tools

Verbatim 37 Update
contenttags 10 Inclusions 25
Description 11 traverseo 0w e 68, 68
Enumerateo 9,11 17 37

Roman 11 underline 38
Environment 9, 11, 44, 44, 44 unfold 38
Font shape T 10, 37

Italic 7 verbatim 10, 11, 37, 37, 69
ltemizeo L. 9, 10 VEISE . . . v v i 11, 37
Section, 9 warning 11, 44
Title Windows key

TeXmacs notice 65 Map to M modifier 55

