
A Practical Program Transformation SystemFor Reverse EngineeringM.P. WardComputer Science DepartmentScience LabsSouth RdDurham DH1 3LE K.H. BennettComputer Science DepartmentScience LabsSouth RdDurham DH1 3LEAbstractProgram transformation systems provide one meansof formally deriving a program from its speci�cation.The main advantage of this development method isthat the executable program is correct by construction.In this paper we describe a tool called ReForm whichis designed to address the inverse problem to supportthe extraction of a speci�cation from existing programcode, using transformations. This is an importantactivity during software maintenance.One of the problems of transformation systems isthe scarcity of practical tools which can address indus-trial scale problems, rather than contrived laboratory�toy� problems. The main contribution of this paperis an analysis of the important software engineeringfactors that contribute to a successful transformationbased tool. Results from using the tool are also presen-ted.1 BackgroundFour separate surveys carried out between 1977and 1990 [7,11,14,18] and summarised in [6], showthat between 40% and 60% of all commercial softwaree�ort is devoted to software maintenance. Despitethis, much of the research in software engineeringhas concentrated on methods for developing new coderather than methods for analysing, correcting and en-hancing existing code. This is especially true for workon program transformation systems. Other studieshave shown that much of the e�ort in maintenanceis in the area of code analysis, and reverse engineering(transforming code into equivalent representations athigher levels of abstraction) can be a useful aid to codeanalysis. More importantly, many problems with cur-rent maintenance practice are caused by the fact thatall maintenance is carried out at the code level. Formal

reverse engineering (which we call inverse engineeringbelow), can recover abstract speci�cations from thecode via program transformations. This enables main-tenance to be carried out at the appropriate level ofabstraction, which in turn, renders more e�cient andmore e�ective maintenance.In this paper we describe a practical program trans-formation system, based on a formal theory for pro-gram re�nement and equivalence, which is currentlybeing used for reverse-engineering assembler code.The system uses formal program transformations torestructure the code and extract high-level speci�c-ations. By a �speci�cation� we mean a su�cientlyprecise de�nition of the input-output behaviour ofthe program, where in practice �su�ciently precise�means �expressable in �rst order logic and set theory�.This includes Z, VDM [9,12], and most other formalspeci�cation languages.The system uses a Wide Spectrum Language (calledWSL), developed in [20,24,28] which includes low-levelprogramming constructs and high-level abstract spe-ci�cations within a single language. Naturally, thetranslation of speci�cations or source code written inan informal language (including incompletely or incon-sistently de�ned programming languages) into WSLcannot be formally proved correct. The semanticsof a source �le may depend on the particular com-piler/interpreter and target machine used to executeit. The best that can be done in such cases is to makethe translator as simple as possible by translatingeach statement as fully as possible, including all theimplied details, and explicitly record any assumptionsmade about the compiler/interpreter and operatingenvironment. Redundant details in the translatedWSL program, introduced by this process, are easilyremoved by optimising transformations.Working within a single formal language meansthat the proof that a program correctly implements a



speci�cation, or that a speci�cation correctly capturesthe behaviour of a program, can be achieved by meansof formal transformations in the language. We don'thave to develop transformations between the �pro-gramming� and �speci�cation� languages. An addedadvantage is that di�erent parts of the program can beexpressed at di�erent levels of abstraction, if required.(Feather [5] refers to a narrow-spectrum language asone which picks up some relatively narrow style ofprogram of speci�cation description and focuses on�nding notations and manipulations to support theexpression and application of transformations withinthat style).A program transformation is an operation whichmodi�es a program into a di�erent form which hasthe same external behaviour (it is equivalent under aprecisely-de�ned denotational semantics). Since bothprograms and speci�cations are part of the same lan-guage, transformations can be used to demonstratethat a given program is a correct implementation of agiven speci�cation.There are several distinct advantages to a trans-formational approach to program development andreverse engineering:� The �nal developed program, or derived speci�ca-tion, is correct by construction;� Transformations can be described by semantic rulesand can thus by used for a whole class of problemsand situations;� Due to formality, the whole process of programdevelopment, and reverse engineering, can be sup-ported by the computer. The computer can checkthe correctness conditions for each step, applythe transformation, store di�erent versions, attachcomments and documentation to code, preserve thelinks between code and speci�cations etc.;� Provided the set of transformations is su�cientlypowerful, and is capable of dealing with all thelow-level constructs in the language, then it be-comes possible to use program transformations asa means of restructuring and reverse-engineeringexisting source code (which has not been developedin accordance with any particular formal method).We have coined the term inverse engineering torefer to reverse engineering carried out by formaltransformation;� The user does not have to understand the codebefore transforming it: the program can be trans-formed into a more understandable form before it isanalysed. Thus transformations provide a powerfulprogram understanding tool.

In [21,23,25,27] program transformations are used toderive a variety of e�cient algorithms from abstractspeci�cations. In [22] the same transformations areused in the reverse direction: starting with a smallbut tangled and obscure program we were able to usetransformations to restructure the program and derivea concise abstract representation of its speci�cation.An alternative approach to transformational devel-opment, which is generally favoured in the Z com-munity and elsewhere, is to allow the user to selectthe next re�nement step (for example, introducing aloop) at each stage in the process. Each step will carrya set of proof obligations, which are theorems whichmust be proved for the re�nement step to be valid. Forexample, introducing a loop requires the user to supplyan invariant and a variant function, and to prove:1. That the invariant is preserved by the body of theloop;2. The variant function is decreased by the body ofthe loop;3. The invariant plus terminating condition are su�-cient to implement the speci�cation.Discharging these proof obligations can often involvea lot of tedious work, and much e�ort is being exertedto apply automatic theorem provers to aid with thesimpler proofs. However, Sennett in [19] indicates thatfor �real� sized programs it is impractical to dischargemuch more than a tiny fraction of the proof obliga-tions. He presents a case study of the development ofa simple algorithm, for which the implementation ofone function gave rise to over one hundred theoremswhich required proofs. Larger programs will requiremany more proofs. In practice, since few if any ofthese proofs will be rigorously carried out, what claimsto be a formal method for program development turnsout to be a formal method for program speci�cationtogether with an informal development method. Also,although this approach could in theory be used forreverse engineering as well as development, in practicethe proof obligations become much more di�cult toful�ll, and the selection of an appropriate abstraction(for which the method provides no help), much moredi�cult.The Re�nement Calculus approach to program de-rivation [8,15,17] is super�cially similar to our programtransformation method. It is based on a wide spec-trum language, using Morgan's speci�cation state-ment [16] and Dijkstra's guarded commands [4]. How-ever, their language has very limited programmingconstructs: lacking loops with multiple exits, actionsystems with a �terminating� action, and side-e�ects;



and their proof methods require that any loops in-troduced must be accompanied by suitable invariantcondition and variant function. Determining suitableinvariants for all the loops in a given program, es-pecially one which was not developed using modernstructured programming methods, is extremely di�-cult, and this makes it unlikely that the re�nementcalculus in its current state can be applied to practicalreverse engineering problems.By basing our proof methods on weakest precon-ditions expressed in in�nitary logic [4,10,20] we havebeen able to develop general purpose transformationsfor loops which can be applied without needing loopinvariants. These have been used successfully in de-riving programs from speci�cations [21,27] and reverseengineering program into speci�cations [22,30].2 MotivationAny practical program transformation system forreverse engineering has to meet the following require-ments:1. It has to be able to cope with all the usual program-ming constructs: loops with exits from the middle,gotos, recursion etc.;2. Techniques are needed for dealing with variablealiasing, side-e�ects and pointers;3. It cannot be assumed that the code was developed(or maintained) according to a particular program-ming method: real code (�warts and all�) must beacceptable to the system: in particular, signi�cantrestructuring may be required before the real re-verse engineering can take place. It is importantthat this restructuring can be carried out automat-ically or semi-automatically by the transformationsystem;4. It should be based on a formal language and formaltransformation theory, so that it is possible to provethat all the transformations used are semantic-preserving. This allows a high degree of con�denceto be placed in the results;5. The formal language should ideally be a wide spec-trum language which can cope with both low-levelconstructs such as gotos, and high-level constructs,including nonexecutable speci�cations expressed in�rst order logic and set theory;6. Translators are required from the source lan-guage(s) to the formal language: many large soft-ware systems are written in a combination of dif-ferent languages;7. It must be possible to apply transformationswithout needing to understand the program �rst:

this is so that transformations can be used as a pro-gram understanding and reverse engineering tool;8. It must be possible to extract a module, or smallercomponent, from the system for analysis and trans-formation, with the transformations guaranteed topreserve all the interactions of that component withthe rest of the system. This allows the maintainerto concentrate on �maintenance hot spots� in thesystem, without having to process the entire sourcecode (which may amount to millions of lines);9. An extensive catalogue of proven transformations isrequired, with mechanically checkable correctnessconditions and some means of composing trans-formations to develop new ones;10. An interactive interface which pretty-prints eachversion on the display will allow the user to in-stantly see the structure of the program from theindentation structure;11. The correctness of the transformation system itselfmust be well-established, since all results depend ofthe transformations being implemented correctly;12. A method for reverse engineering by program trans-formation needs to be developed alongside thetransformation system.In addition to these requirements, a reverse engineer-ing tool for Assembler programs will also need to copewith highly unstructured code, a complete lack of datastructures (everything is reduced to words of memory),and in extreme cases, self-modifying code. A partic-ular problem in reverse-engineering assembler code isdetermining procedure boundaries: a procedure call isinitiated (in IBM 370 assembler) by storing a returnaddress and jumping. However, later on there may beother jumps, the return address may be overwritten, orincremented by the length of one or more instructions,and so on. Thus, the program analysis cannot assumethat control will return to the point of the call. As-sembler code thus provides a particularly challengingtest for a transformation system.3 The ReForm ToolThe ReForm tool (Reverse Engineering throughFORmal Methods), is designed to automate much ofthe process of transforming code into speci�cationsand speci�cations into code. This process can neverbe completely automated�there are many ways ofwriting the speci�cation of a program, several of whichmay be useful for di�erent purposes. So the tool must



work interactively with the tedious checking and ma-nipulation carried out automatically, while the main-tainer provides high-level �guidance� to the transform-ation process. In the course of the development ofthe prototype, we have been able to capture much ofthe knowledge and expertise that we have developedthrough manual experiments, and case studies withearlier versions of the tool, and incorporate this know-ledge within the tool itself. For example, restructuringa regular action system (a collection of gotos andlabels) can now be handled completely automaticallythrough a single transformation.ReForm can be used as a transformation develop-ment system, starting with a high-level speci�cationexpressed in set-theory and logic notation (similar toZ or VDM [9]. It can also act on existing programcode as a tool to aid comprehension by producingspeci�cations (which can then be modi�ed). Thesystem can work with any language by �rst translat-ing into the system's internal language, which is theWide Spectrum Language WSL. Prototype stand-alone translators have been developed for IBM 370assembler and a subset of BASIC. Transformationsare themselves coded in an extension of WSL calledMeta-WSL: in fact, much of the code for the prototypeis written in WSL and this makes it possible to use thesystem to maintain its own code.The initial prototype of ReForm was developed aspart of an Alvey project at the University of Durham[29] whose aim was to develop a tool assist a main-tenance programmer in understanding and modifyingan initially unfamiliar program, given only the sourcecode. This work on applying program transformationtheory to software maintenance formed the basis fora joint research project between the University ofDurham, CSM Ltd and IBM UK Ltd. whose aim isto develop a tool which will interactively transformassembly code into high-level language code and Zspeci�cations. We have been able to transform theassembler code to a high-level language representation,replace the �areas of store� by the data structures theyimplement (using transformations which change thedata representation of a program), and then transformthis high-level language version into a speci�cation. Aprototype translator has been completed and tested onsample sections of assembler code from IBM's CICSproduct, and other large assembler systems rangingup to 20,000 lines, with very encouraging results (seeSection 5).

3.1 Theoretical FoundationsA programS is a piece of formal text, i.e. a sequenceof formal symbols. There are two ways in which weinterpret (give meaning to) these texts:1. Given a structure M for the logical language Lfrom which the programs are constructed, and a�nal state space (from which we can construct asuitable initial state space), we can interpret a pro-gram as a function f (a state transformation) whichmaps each initial state s to the set of possible �nalstates for s. By itself therefore, we can interpreta program as a function from structures to statetransformations;2. Given any formulaR (which represents a conditionon the �nal state), we can construct the formulaWP(S;R), the weakest precondition of S on R.This is the weakest condition on the initial statesuch that the program S is guaranteed to terminatein a state satisfying R if it is started in a statesatisfying WP(S;R).These interpretations give rise to two di�erent notionsof re�nement: semantic re�nement and proof-theoreticre�nement.3.2 Semantic Re�nementA state is a collection of variables (the state space)with values assigned to them; thus a state is a functionwhich maps from a (�nite, non-empty) set V of vari-ables to a set D of values. There is a special extra state? which is used to represent nontermination or errorconditions. A state transformation f maps each initialstate s in one state space, to the set of possible �nalstates f(s) which may be in a di�erent state space. If? is in f(s) then so is every other state, also f(?) isthe set of all states (including ?).Semantic re�nement is de�ned in terms of thesestate transformations. A state transformation f is are�nement of a state transformation g if they have thesame initial and �nal state spaces and f(s) � g(s)for every initial state s. Note that if ? 2 g(s) forsome s, then f(s) can be anything at all. In otherwords we can correctly re�ne an �unde�ned� programto do anything we please. If f is a re�nement of g(equivalently, g is re�ned by f) we write g � f . Astructure for a logical language L consists of a setof values, plus a mapping between constant symbols,function symbols and relation symbols of L and ele-ments, functions and relations on the set of values. Amodel for a set of sentences (formulae with no freevariables) is a structure for the language such thateach of the sentences is interpreted as true. If the



interpretation of statement S1 under the structure Mis re�ned by the interpretation of statement S2 underthe same structure, then we write S1 �M S2. If this istrue for every model of a countable set � of sentencesof L then we write � j= S1 � S2.3.3 Proof-Theoretic Re�nementGiven two statements S1 and S2, and a formulaR,we have the two formulaeWP(S1;R) and WP(S2;R).If there exists a proof of the formula WP(S1;R) )WP(S2;R) using the set � as assumptions, then wewrite � ` WP(S1;R) ) WP(S2;R). For S2 tobe a re�nement of S1, this result has to hold forevery postcondition R. We can avoid the need forquanti�cation over formulae, and remain in �rst or-der logic, by extending the language L by adding anew relation symbol G(w) where w is a list of allthe free variables in S1 and S2. If we can prove� `WP(S1; G(w)))WP(S2; G(w)) in the extendedlanguage L0 then the proof makes no assumptionsabout G(w) and is therefore still valid when G(w) isreplaced by any other formula. In this case we write� ` S1 � S2.A fundamental result, proved in [20] which gener-alises a theorem in [2] is that these two notions ofre�nement are equivalent. More formally:Theorem 3.1 For any statements S1 and S2, andany countable set � of sentences of L:� j= S1 � S2 () � ` S1 � S2These two equivalent de�nitions of re�nement giverise to two very di�erent proof methods for provingthe correctness of re�nements. Both methods areexploited in [24]�weakest preconditions and in�nit-ary logic are used to develop the induction rule forrecursion and the recursive implementation theorem,while state transformations are used to prove the rep-resentation theorem.4 The Architecture of ReFormThe tool consists of a structure editor, a library ofproven transformations and a knowledge-based systemwhich analyses the programs and speci�cations underconsideration and uses heuristic knowledge to determ-ine which transformations will achieve a given end(for example, deriving the speci�cation of a section ofcode, �nding the most suitable technique for recursionremoval, optimising for e�ciency etc.)The system is interactive and incorporates a graph-ical front end, pretty-printer and browser. This allowsthe programmer to move through the program, apply

transformations, undo changes he has made, and inspecial circumstances, edit the programmanually: butalways in such a way that it is syntactically correct.The system automatically checks the applicability con-ditions of a transformation before it is applied; or evenpresented in one of the menus. This means that thecorrectness of the resulting transformed program isguaranteed by the system rather than being dependenton the user. A history/future structure is built-in toallow back-tracking and forward-tracking enabling theprogrammer to change his mind. The system storesthe results of its analysis of a program fragment as partof the program, so that re-calculation of the analysis isavoided wherever possible. An interactive knowledgebase to suggest transformations in a given situationwill be built in to the system at a later stage.The system will use knowledge based heuristics toanalyse large programs and suggest suitable trans-formations as well as carrying out the transformationsand checking the applicability conditions. Present-ing the programmer with a variety of di�erent butequivalent representations of the program can greatlyaid the comprehension process, making best use ofhuman problem solving abilities (visualisation, logicalinference, kinetic reasoning etc).Note that the theoretical foundation work whichproves that each transformation in the system pre-serves the semantics of any applicable program isessential if this method is to be applied to prac-tical software maintenance. It must be possible towork with programs which are poorly (or not at all)understood, and it must be possible to apply manytransformations which drastically change the structureof the program (as in the example below) with avery high degree of con�dence in the correctness ofthe result. An additional bene�t of this formal linkbetween speci�cation and code is in the applicationto safety-critical systems. Such systems can be de-veloped by transforming high-level speci�cations downto e�cient low level code with a very high degree ofcon�dence that the code correctly implements everypart of the speci�cation. There are also applicationsto the reuse of software�both speci�cation, code, anddevelopment history can be stored in a repository andwhenever a similar speci�cation needs to be imple-mented the code and/or development history can bere-used. See [26] for more details.The WSL language has been developed over thelast eight years in parallel with the development of thetransformation theory and proof methods. Over thistime the language has developed from a simple andtractable kernel language to a complete and powerfulprogramming language.



The WSL KernelPrimitive Statements:1. Assertion: fPg2. Guard: [P]3. Add some variables: add(x)4. Remove some variables: remove(x)Compound Statements:1. Sequential Composition: (S1; S2)First S1 is executed and then S22. Choice: (S1 u S2)One of the statements S1 or S2 is chosen forexecution3. Recursive Procedure: (�X:S1)Within the body S1, occurrences of the statementvariable X represent recursive calls to theprocedure.WSL Language Extensions� Dijkstra's Guarded Command Language;� while loops;� Loops with multiple exits;� Mutually recursive procedures (labels and gotos);� Local variables;� Procedures and functions with parameters;� Expressions with side-e�ects;� Assembler language.At the �low-level� end of the language there exists anautomatic translator from IBM Assembler into WSL.At the �high-level� end it is possible to write high-level, abstract speci�cations, similar to Z and VDMspeci�cations [9,12].4.1 Main features of the ReForm tool� Source code is translated into WSL, then automat-ically restructured and simpli�ed;� Transformations are written in an extension of WSLcalled Meta-WSL;� The tool validates transformation choice and o�ersa menu of valid transformations according to thecontext;� A LISP engine carries out the transformations andrecords the history;� Documentation and comments can be attached tothe code ;

� Edits and modi�cations are recorded in the history;� An X Windows front end displays a pretty-printedversion of the current program;� The system calculates various metrics (McCabe,structural complexity, size) to monitor progress andquality.4.2 Modelling Assembler in WSLConstructing a useful scienti�c model necessarilyinvolves throwing away some information: in otherwords, to be useful a model must be inaccurate, or atleast idealised, to a certain extent. For example �idealgases�, �incompressible �uids� and �billiard ball mo-lecules� are all useful models which gain their utilityby abstracting away some details of the real world. Inthe case of modelling a programming language, such asAssembler, it is theoretically possible to have a perfectmodel of the language which correctly captures thebehaviour of all assembler programs. Certain featuresof Assembler, such as branching to register addresses,self-modifying code and so on, would imply that sucha model would have to record the entire state of themachine, including all registers, memory, disk space,and external devices, and �interpret� this state aseach instruction is executed. Unfortunately, such amodel is useless for inverse engineering purposes sincesuch trivial changes as deleting a NOP instruction, orchanging the load address of a module, can in theorychange the behaviour of the program.What we need is a practical model for assemblerprograms which is suitable for inverse engineering,and is wide enough to deal with all the programmingconstructs we are likely to encounter. Our approachinvolves three types of modelling:1. Complete model: Each assembler instruction istranslated into WSL statements which capture allthe e�ects of the instruction. The machine registersand memory are modelled as arrays, and the con-dition code as a variable. Thus, at the translationstate we don't attempt to recognise �if statements�as such, we translate into statements which assignto cc (the condition code variable), and statementswhich test cc. The automatic restructuring andsimpli�cation state can usually remove all refer-ences to cc, presenting the maintainer with a struc-tured program expressed in if statements, loops andactions;2. Partial model: Branches to register are modelled byattempting to determine all possible targets of sucha branch (including all labels and jump instructions



which follow labelled instructions). Each label isturned into a separate action with an associatedvalue (the relative address). A �store return ad-dress� instruction stores the relative address in theregister. A �branch to register� instruction passesthe relative address to a �dispatch� action whichtests the value against the set of recorded values,and jumps to the appropriate label. This can dealwith simple cases of address arithmetic (includingjump tables) but may theoretically be defeated ifmore complex address manipulations are carriedout before a branch to register instruction is ex-ecuted;3. Self-modifying code: This is not addressed, exceptfor some special cases which are recognised by thetranslator. In many environments, (such as IBM'sCICS product) the code must be re-entrant, or isto be blown into a ROM, and therefore cannot bemodi�ed. In other cases, the self-modi�cation maybe recognised by the translator and may requirehuman intervention to determine a suitable WSLequivalent.5 Results of using ReFormExperiments on small but complex programs havegiven very encouraging results: we have been ableto discover bugs in high-level language code whichwere revealed by the analysis process. We have alsodiscovered a performance hit in an existing, large scale,heavily used bit of Assembler code. This was intro-duced as a result of maintenance, and the maintenanceprogrammers became aware of it when they examinedthe transformed version of the assembler code. Thesame transformations have been used to derive severaltypes of algorithm from high-level, abstract speci�ca-tions [21,23,25,27].We have recently completed a case study involving anumber of modules of IBM Assembler, each consistingof up to 20,000 lines of code, taken from a largecommercial system. Each module was automaticallytranslated into WSL and interactively restructuredinto a high-level language form. One particular mod-ule had been repeatedly modi�ed over a period ofmany years until the control �ow structure had be-come highly convoluted. Using the prototype toolwe were able to transform this into a hierarchy of(single-entry, single-exit) subroutines resulting in amodule which was slightly shorter and considerablyeasier to read and maintain. The transformed versionwas hand-translated back into Assembler which (after�xing a single mis-translated instruction) �worked �rst

time�. A typical result for one of the smaller modulesis shown below:Stage lines McCabe Structural Size1 2,330 1,030 48,175 24,7362 1,381 245 17,021 8,4043 1,227 156 11,990 7,120Stage 1 is the translated WSL code, stage 2 is afterautomatic restructuring and simpli�cation, and stage3 is after a small amount of interactive transformation.The prototype system implements over 600 trans-formations, arranged in a set of 10 transformationmenus. When a menu is invoked, the system checksthe validity of each transformation in that class andconstructs a list of the valid ones. This means that theuser only ever sees valid transformations in the menus,which reduces the selection problem and eliminatesconfusion. The prototype consists of about 80,000lines of Common LISP and WSL source code (im-plementing the structure editor and transformationengine), and about 22,000 lines of C (implementingthe pretty-printer and X Windows front end). Thetransformation engine and front end act as separateprocesses, communicating via ASCII commands. Thismeans that they can, and frequently do, run on sep-arate machines: for example with the transformationengine running on a mainframe or �leserver and theinterface running on a workstation, PC, Macintosh orX terminal. The CommonLISP code has been writtenwith portability in mind: in fact it has to run ontwo di�erent LISP implementations, running on threedi�erent CPUs.The prototype has been developed using a �rapidprototyping� method, this is so that new ideas canbe implemented and tested quickly. Over the courseof the development, the internal data structures andorganisation have been changed several times as newresearch has shown better ways of doing things. Oneof the drawbacks of rapid prototyping is that theresulting tool can become unstable: i.e. bug-ridden,poorly-structured and di�cult to maintain. Tominim-ise this problem and maximise the �exibility of the toolwe developed an �abstract machine� implementation,with formally de�ned interfaces between the imple-mentation of the abstract machines and the rest ofthe system. The major components in the system are:� Internal representation of WSL code;� Structure editor;� Transformation library;� X Windows interface.



Each of these is implemented as an abstract machinewith formally de�ned interfaces. This means thatdi�erent people can work on reimplementing the dif-ferent modules without causing integration problems.Another technique we have used is to develop a com-prehensive regression test suite in parallel with thedevelopment of the system. This has acted as a �triptest�: each new version has to pass the test before it isreleased, and this has prevented many of the problemswhich can occur with a rapid turnaround of programversions.5.1 A Method for Reverse EngineeringOne of the major results from our research, whichthe availability of a prototype tool has helped to pro-duce, is the development of a method for reverse en-gineering using formal transformations. The methodis based on the following stages:1. Establish the reverse engineering environment.This will involve a CASE tool to record results,maintain di�erent versions of code, speci�cations,and documentation and the links between them;together with a WSL code browser and transform-ation system.2. Collect the software to be reverse engineered. Thisinvolved �nding the current versions of each subsys-tem and making these available to the CASE tool.3. Produce a high-level description of the system. Thismay already be available in the documentation,since the documentation at this level rarely needs tobe changed, and is therefore more likely to be up todate. The documentation is supplemented by theresults of a cross reference analysis which recordsthe control �ow and data dependencies among thesubsystems.4. Translate the source code into WSL. This will usu-ally be an automatic process involving parsing thesource �les and translating the language structuresinto equivalent WSL structures.5. �Inverse Engineering�, i.e. reverse engineeringthrough formal transformations. This is the stagewe illustrate in this paper. It involves the automaticand manual application of various transformationsto restructure the system and express it at increas-ingly higher levels of abstraction. We do this byiterating over the following four steps:(a) Restructuring transformations. These includeremoving goto statements, eliminating �ags,removing redundant tests, and other optim-isations. The e�ect of this restructuring isto reveal the �true� structure of the program

which may be obscured by poor design orsubsequent patching and enhancements. Thisstage is more radical than can be achieved byexisting automatic restructuring systems [3,13] since it takes note of both data �ow andcontrol �ow, and includes both syntactic andsemantic transformations [1]. We have how-ever had considerable success with automatingthe simpler restructuring transformations, byimplementing heuristics elicited from experi-enced program transformation users.(b) Analyse the resulting structures in order todetermine suitable higher-level data represent-ations and control structures.(c) Redocument: record the discoveries made sofar and any other useful information about thecode and its data structures.(d) Implement the higher-level data representa-tions and control structures using suitabletransformations. A powerful technique wehave developed for carrying out these datare�nements is to introduce the abstract vari-ables into the program as �ghost� variables(variables whose values are changed, but whichdo not a�ect the operation of the program inany way), together with invariants which makeexplicit the relationship between abstract andconcrete variables. Then, one by one, thereferences to concrete variables are replacedby references to the new abstract variables.Finally, the concrete variables become �ghost�variables and can be removed. See [22] belowfor an example of this process; it is used ex-tensively in [27]. In general, if our analysis instep 5b is correct then the result of this stageis likely to be in a form suitable for furtherrestructuring.6. Acceptance test: We now have a high-level speci�c-ation of the whole system which should go throughthe usual Q.A. and acceptance tests.6 ConclusionsThe ReForm project has been highly successful todate, producing a reverse-engineering tool based ona rigorous theoretical foundation, which is alreadycapable of producing useful results for real �spaghetti�assembler modules.We believe that the following main features havecontributed to the success of ReForm:� Use of weakest preconditions expressed in in�nitarylogic;



� Starting with a small, tractable kernel language,extended via de�nitional transformations;� Use of an imperative kernel language, with func-tional constructs added via de�nitional transform-ation, rather than a functional kernel language;� Developing the transformation theory in parallelwith the language development;� Dealing with assembler via simple translation fol-lowed by automatic restructuring and simpli�ca-tion;� Developing an interactive, semi-automatic tool,rather than attempting complete automation;� Mechanical checking of the correctness conditionsat each step, with only valid transformations ap-pearing in the menus;� Knowledge elicitation: using the prototype andmanual case studies to see how the experienceduser solves problem, and then implementing thesemethods and heuristics;� The use of generic transformations for merging,moving, separating etc.; these are automaticallyexpanded into the appropriate transformation foreach situation;� Rapid prototyping development, with the systemorganised as a collection of abstract machines withformally de�ned interfaces;� Separation of front-end issues into a separate pro-gram.7 Current ResearchWork is currently underway in the following areas:� Extension of the tool to high-level transforma-tions (to produce abstract speci�cations from code).These transformations exist but have yet to be fullyimplemented in the prototype tool;� More sophisticated data-�ow analysis;� Extension of the theory to communicating parallelprograms;� Extensions to deal with real-time and interrupt-driven programs [30];� The use of metrics, including size and complexitymetrics, to automate more of the transformationprocess and guide the selection of transformations.We are also currently working on some more extensivecase studies involving professional assembler program-mers working on real assembler code. These will at-tempt to quantify the improvements in maintainabilityachievable through inverse engineering.

AcknowledgementsThe research described in this paper has been partlyfunded by Alvey project SE-088, partly through aDTI/SERC and IBM UK Ltd. funded IEATP grant�From Assembler to Z using Formal Transformations�and partly by SERC (The Science and Engineering Re-search Council) project �A Proof Theory for ProgramRe�nement and Equivalence: Extensions�.References[1] J. Arsac, �Syntactic Source to Source Program Trans-formations and Program Manipulation,� Comm. ACM22 (Jan., 1982), 43�54.[2] R. J. R. Back, Correctness Preserving Program Re�ne-ments, Mathematical Centre Tracts#131, Mathemat-isch Centrum, Amsterdam, 1980.[3] F. W. Calliss, �Problems With Automatic Restruc-turerers,� Durham University, Technical Report, 1989.[4] E. W. Dijkstra, A Discipline of Programming, Pren-tice-Hall, Englewood Cli�s, NJ, 1976.[5] M. S. Feather, �A Survey and Classi�cation of SomeProgram Transformation Techniques,� Program Spe-ci�cation and Transformation (1987).[6] J. R. Foster, �Program Lifetime: A Vital Statistic forMaintenance,� Conference on Software Maintenance15th�17th October 1991, Sorrento, Italy (Oct., 1991).[7] J. R. Foster & H. P. Kiekuth, �Software MaintenanceSurvey: Summary,� Technical Report (Mar. 1990).[8] C. A. R. Hoare, I. J. Hayes, H. E. Jifeng, C. C. Mor-gan, A. W. Roscoe, J. W. Sanders, I. H. Sørensen, J.M. Spivey & B. A. Sufrin, �Laws of Programming,�Comm. ACM 30 (Aug., 1987), 672�686.[9] C. B. Jones, Systematic Software Development usingVDM , Prentice-Hall, Englewood Cli�s, NJ, 1986.[10] C. R. Karp, Languages with Expressions of In�niteLength, North-Holland, Amsterdam, 1964.[11] B. Lientz & E. B. Swanson, Software MaintenanceManagement, Addison Wesley, Reading, MA, 1980.[12] M. A. McMorran & J. E. Nicholls, �Z User Manual,�IBM UK Laboratories Ltd., TR12.274, Hursley Park,July, 1989.[13] J. C. Miller & B. M. Strauss, �Implications of Auto-matic Restructuring of COBOL,� SIGPLAN Notices22 (June, 1987), 76�82.[14] R. Moreton, �Analysis and Results from a Mainten-ance Survey,� Second Software Maintenance WorkshopNotes, Centre for Software Maintenance, University ofDurham (1988).[15] C. Morgan, Programming from Speci�cations, Pren-tice-Hall, Englewood Cli�s, NJ, 1990.[16] C. C. Morgan, �The Speci�cation Statement,� Trans.Programming Lang. and Syst. 10 (1988), 403�419.



[17] C. C. Morgan, K. Robinson & Paul Gardiner, �On theRe�nement Calculus,� Oxford University, TechnicalMonograph PRG-70, Oct., 1988.[18] J. T. Nosek & P. Palvia, �Software Maintenance Man-agement: Changes in the Last Decade,� J. SoftwareMaintenance: Research and Practice 2 (Sept. 1990),157�174.[19] C. T. Sennett, �Using Re�nement to Convince: Les-sons Learned from a Case Study,� Re�nement Work-shop, 8th�11th January, Hursley Park, Winchester(Jan., 1990).[20] M. Ward, �Proving Program Re�nements and Trans-formations,� Oxford University, DPhil Thesis, 1989.[21] M. Ward, �Derivation of a Sorting Algorithm,�Durham University, Technical Report, 1990.[22] M. Ward, �Abstracting a Speci�cation from Code,� J.Software Maintenance: Research and Practice 5 (1993),101�122.[23] M. Ward, �The Largest True Square Problem�AnExercise in the Derivation of an Algorithm,� DurhamUniversity, Technical Report, Apr., 1990.
[24] M. Ward, �Speci�cations and Programs in a WideSpectrum Language,� Submitted to J. Assoc. Comput.Mach., Apr., 1991.[25] M. Ward, �Iterative Procedures for Computing Acker-mann's Function,� Durham University, Technical Re-port 89-3, Feb., 1989.[26] M. Ward, �Using Formal Transformations to Con-struct a Component Repository,� in Software Reuse:the European Approach, Springer-Verlag, New York�Heidelberg�Berlin, Feb., 1991.[27] M. Ward, �Derivation of Data Intensive Algorithms byFormal Transformation,� Submitted to IEEE Trans.Software Eng., May, 1992.[28] M. Ward, �A Model for Partial Programs,� Submittedto J. Assoc. Comput. Mach., Nov., 1989.[29] M. Ward, F. W. Calliss & M. Munro, �The Main-tainer's Assistant,� Conference on Software Mainten-ance 16th�19th October 1989, Miami Florida (Oct.,1989).[30] E. J. Younger & M. Ward, �Inverse Engineering asimple Real Time program,� Submitted to J. SoftwareMaintenance: Research and Practice, New York, NY(Oct., 1992).

Maintainer
TranslatorStructureEditor

X-WindowsFront End BrowserInterface ViewASCII EditSelectTheTransformationLibrary Representationof WSL codeProgramTransformer
High-Level SourceWSL toZ WSL toLow-Level

InternalFileSource


