A Practical Program Transformation System
For Reverse Engineering

M.P. Ward

Computer Science Department

Science Labs
South Rd
Durham DH1 3LE

Abstract

Program transformation systems provide one means
of formally deriving a program from its specification.
The main advantage of this development method is
that the executable program s correct by construction.
In this paper we describe a tool called ReForm which
1s designed to address the inverse problem to support
the extraction of a specification from existing program
code, using transformations. This 1s an tmportant
activity during software maintenance.

One of the problems of transformation systems is
the scarcity of practical tools which can address indus-
trial scale problems, rather than contrived laboratory
“toy” problems. The main contribution of this paper
1s an analysis of the important software engineering
factors that contribute to a successful transformation
based tool. Results from using the tool are also presen-
ted.

1 Background

Four separate surveys carried out between 1977
and 1990 [7,11,14,18] and summarised in [6], show
that between 40% and 60% of all commercial software
effort is devoted to software maintenance. Despite
this, much of the research in software engineering
has concentrated on methods for developing new code
rather than methods for analysing, correcting and en-
hancing existing code. This is especially true for work
on program transformation systems. Other studies
have shown that much of the effort in maintenance
is in the area of code analysis, and reverse engineering
(transforming code into equivalent representations at
higher levels of abstraction) can be a useful aid to code
analysis. More importantly, many problems with cur-
rent maintenance practice are caused by the fact that
all maintenance is carried out at the code level. Formal

K.H. Bennett

Computer Science Department

Science Labs
South Rd
Durham DH1 3LE

reverse engineering (which we call inverse engineering
below), can recover abstract specifications from the
code via program transformations. This enables main-
tenance to be carried out at the appropriate level of
abstraction, which in turn, renders more efficient and
more effective maintenance.

In this paper we describe a practical program trans-
formation system, based on a formal theory for pro-
gram refinement and equivalence, which is currently
being used for reverse-engineering assembler code.
The system uses formal program transformations to
restructure the code and extract high-level specific-
ations. By a “specification” we mean a sufficiently
precise definition of the input-output behaviour of
the program, where in practice “sufficiently precise”
means “expressable in first order logic and set theory”.
This includes Z, VDM [9,12], and most other formal
specification languages.

The system uses a Wide Spectrum Language (called
WSL), developed in [20,24,28] which includes low-level
programming constructs and high-level abstract spe-
cifications within a single language. Naturally, the
translation of specifications or source code written in
an informal language (including incompletely or incon-
sistently defined programming languages) into WSL
cannot be formally proved correct. The semantics
of a source file may depend on the particular com-
piler/interpreter and target machine used to execute
it. The best that can be done in such cases is to make
the translator as simple as possible by translating
each statement as fully as possible, including all the
implied details, and explicitly record any assumptions
made about the compiler/interpreter and operating
environment. Redundant details in the translated
WSL program, introduced by this process, are easily
removed by optimising transformations.

Working within a single formal language means
that the proof that a program correctly implements a



specification, or that a specification correctly captures
the behaviour of a program, can be achieved by means
of formal transformations in the language. We don’t
have to develop transformations between the “pro-
gramming” and “specification” languages. An added
advantage is that different parts of the program can be
expressed at different levels of abstraction, if required.
(Feather [5] refers to a narrow-spectrum language as
one which picks up some relatively narrow style of
program of specification description and focuses on
finding notations and manipulations to support the
expression and application of transformations within
that style).

A program transformation is an operation which
modifies a program into a different form which has
the same external behaviour (it is equivalent under a
precisely-defined denotational semantics). Since both
programs and specifications are part of the same lan-
guage, transformations can be used to demonstrate
that a given program is a correct implementation of a
given specification.

There are several distinct advantages to a trans-
formational approach to program development and
reverse engineering:

e The final developed program, or derived specifica-
tion, is correct by construction;

e Transformations can be described by semantic rules
and can thus by used for a whole class of problems
and situations;

e Due to formality, the whole process of program
development, and reverse engineering, can be sup-
ported by the computer. The computer can check
the correctness conditions for each step, apply
the transformation, store different versions, attach
comments and documentation to code, preserve the
links between code and specifications etc.;

e Provided the set of transformations is sufficiently
powerful, and is capable of dealing with all the
low-level constructs in the language, then it be-
comes possible to use program transformations as
a means of restructuring and reverse-engineering
existing source code (which has not been developed
in accordance with any particular formal method).
We have coined the term inverse engineering to
refer to reverse engineering carried out by formal
transformation;

e The user does not have to understand the code
before transforming it: the program can be trans-
formed into a more understandable form before it is
analysed. Thus transformations provide a powerful
program understanding tool.

In [21,23,25,27] program transformations are used to
derive a variety of efficient algorithms from abstract
specifications. In [22] the same transformations are
used in the reverse direction: starting with a small
but tangled and obscure program we were able to use
transformations to restructure the program and derive
a concise abstract representation of its specification.

An alternative approach to transformational devel-
opment, which is generally favoured in the Z com-
munity and elsewhere, is to allow the user to select
the next refinement step (for example, introducing a
loop) at each stage in the process. Each step will carry
a set of proof obligations, which are theorems which
must be proved for the refinement step to be valid. For
example, introducing a loop requires the user to supply
an invariant and a variant function, and to prove:

1. That the invariant is preserved by the body of the
loop;

2. The variant function is decreased by the body of
the loop;

3. The invariant plus terminating condition are suffi-
cient to implement the specification.

Discharging these proof obligations can often involve
a lot of tedious work, and much effort is being exerted
to apply automatic theorem provers to aid with the
simpler proofs. However, Sennett in [19] indicates that
for “real” sized programs it is impractical to discharge
much more than a tiny fraction of the proof obliga-
tions. He presents a case study of the development of
a simple algorithm, for which the implementation of
one function gave rise to over one hundred theorems
which required proofs. Larger programs will require
many more proofs. In practice, since few if any of
these proofs will be rigorously carried out, what claims
to be a formal method for program development turns
out to be a formal method for program specification
together with an informal development method. Also,
although this approach could in theory be used for
reverse engineering as well as development, in practice
the proof obligations become much more difficult to
fulfill, and the selection of an appropriate abstraction
(for which the method provides no help), much more
difficult.

The Refinement Calculus approach to program de-
rivation [8,15,17]is superficially similar to our program
transformation method. It is based on a wide spec-
trum language, using Morgan’s specification state-
ment [16] and Dijkstra’s guarded commands [4]. How-
ever, their language has very limited programming
constructs: lacking loops with multiple exits, action
systems with a “terminating” action, and side-effects;



and their proof methods require that any loops in-
troduced must be accompanied by suitable invariant
condition and variant function. Determining suitable
invariants for all the loops in a given program, es-
pecially one which was not developed using modern
structured programming methods, is extremely diffi-
cult, and this makes it unlikely that the refinement
calculus in its current state can be applied to practical
reverse engineering problems.

By basing our proof methods on weakest precon-
ditions expressed in infinitary logic [4,10,20] we have
been able to develop general purpose transformations
for loops which can be applied without needing loop
invariants. These have been used successfully in de-
riving programs from specifications [21,27] and reverse
engineering program into specifications [22,30].

2 Motivation

Any practical program transformation system for
reverse engineering has to meet the following require-
ments:

1. It has to be able to cope with all the usual program-
ming constructs: loops with exits from the middle,
gotos, recursion etc.;

2. Techniques are needed for dealing with variable
aliasing, side-effects and pointers;

3. It cannot be assumed that the code was developed
(or maintained) according to a particular program-
ming method: real code (“warts and all”) must be
acceptable to the system: in particular, significant
restructuring may be required before the real re-
verse engineering can take place. It is important
that this restructuring can be carried out automat-
ically or semi-automatically by the transformation
system;

4. Tt should be based on a formal language and formal
transformation theory, so that it 1s possible to prove
that all the transformations used are semantic-
preserving. This allows a high degree of confidence
to be placed in the results;

5. The formal language should ideally be a wide spec-
trum language which can cope with both low-level
constructs such as gotos, and high-level constructs,
including nonexecutable specifications expressed in
first order logic and set theory;

6. Translators are required from the source lan-
guage(s) to the formal language: many large soft-
ware systems are written in a combination of dif-
ferent languages;

7. It must be possible to apply transformations
without needing to understand the program first:

this is so that transformations can be used as a pro-
gram understanding and reverse engineering tool;

8. It must be possible to extract a module, or smaller
component, from the system for analysis and trans-
formation, with the transformations guaranteed to
preserve all the interactions of that component with
the rest of the system. This allows the maintainer
to concentrate on “maintenance hot spots” in the
system, without having to process the entire source
code (which may amount to millions of lines);

9. An extensive catalogue of proven transformations is
required, with mechanically checkable correctness
conditions and some means of composing trans-
formations to develop new ones;

10. An interactive interface which pretty-prints each
version on the display will allow the user to in-
stantly see the structure of the program from the
indentation structure;

11. The correctness of the transformation system itself
must be well-established, since all results depend of
the transformations being implemented correctly;

12. A method for reverse engineering by program trans-
formation needs to be developed alongside the
transformation system.

In addition to these requirements, a reverse engineer-
ing tool for Assembler programs will also need to cope
with highly unstructured code, a complete lack of data
structures (everything is reduced to words of memory),
and in extreme cases, self-modifying code. A partic-
ular problem in reverse-engineering assembler code is
determining procedure boundaries: a procedure call is
initiated (in IBM 370 assembler) by storing a return
address and jumping. However, later on there may be
other jumps, the return address may be overwritten, or
incremented by the length of one or more instructions,
and so on. Thus, the program analysis cannot assume
that control will return to the point of the call. As-
sembler code thus provides a particularly challenging
test for a transformation system.

3 The ReForm Tool

The ReForm tool (Reverse Engineering through
FORmal Methods), is designed to automate much of
the process of transforming code into specifications
and specifications into code. This process can never
be completely automated—there are many ways of
writing the specification of a program, several of which
may be useful for different purposes. So the tool must



work interactively with the tedious checking and ma-
nipulation carried out automatically, while the main-
tainer provides high-level “guidance” to the transform-
ation process. In the course of the development of
the prototype, we have been able to capture much of
the knowledge and expertise that we have developed
through manual experiments, and case studies with
earlier versions of the tool, and incorporate this know-
ledge within the tool itself. For example, restructuring
a regular action system (a collection of gotos and
labels) can now be handled completely automatically
through a single transformation.

ReForm can be used as a transformation develop-
ment system, starting with a high-level specification
expressed in set-theory and logic notation (similar to
Z or VDM [9]. Tt can also act on existing program
code as a tool to aid comprehension by producing
specifications (which can then be modified). The
system can work with any language by first translat-
ing into the system’s internal language, which is the
Wide Spectrum Language WSL. Prototype stand-
alone translators have been developed for IBM 370
assembler and a subset of BASIC. Transformations
are themselves coded in an extension of WSL called
Meta-WSL: in fact, much of the code for the prototype
is written in WSL and this makes it possible to use the
system to maintain its own code.

The initial prototype of ReForm was developed as
part of an Alvey project at the University of Durham
[29] whose aim was to develop a tool assist a main-
tenance programmer in understanding and modifying
an 1nitially unfamiliar program, given only the source
code. This work on applying program transformation
theory to software maintenance formed the basis for
a joint research project between the University of
Durham, CSM Ltd and IBM UK Ltd. whose aim is
to develop a tool which will interactively transform
assembly code into high-level language code and Z
specifications. We have been able to transform the
assembler code to a high-level language representation,
replace the “areas of store” by the data structures they
implement (using transformations which change the
data representation of a program), and then transform
this high-level language version into a specification. A
prototype translator has been completed and tested on
sample sections of assembler code from IBM’s CICS
product, and other large assembler systems ranging
up to 20,000 lines, with very encouraging results (see
Section 5).

3.1 Theoretical Foundations

A program S is a piece of formal text, i.e. a sequence
of formal symbols. There are two ways in which we
interpret (give meaning to) these texts:

1. Given a structure M for the logical language £
from which the programs are constructed, and a
final state space (from which we can construct a
suitable initial state space), we can interpret a pro-
gram as a function f (a state transformation) which
maps each initial state s to the set of possible final
states for s. By itself therefore, we can interpret
a program as a function from structures to state
transformations;

2. Given any formula R (which represents a condition

on the final state), we can construct the formula
WP(S,R), the weakest precondition of S on R.
This is the weakest condition on the initial state
such that the program S is guaranteed to terminate
in a state satisfying R if it i1s started in a state
satisfying WP(S, R).

These interpretations give rise to two different notions

of refinement: semantic refinement and proof-theoretic

refinement.

3.2 Semantic Refinement

A state is a collection of variables (the state space)
with values assigned to them; thus a state is a function
which maps from a (finite, non-empty) set V' of vari-
ables to a set D of values. There is a special extra state
1 which is used to represent nontermination or error
conditions. A state transformation f maps each initial
state s in one state space, to the set of possible final
states f(s) which may be in a different state space. If
L isin f(s) then so is every other state, also f(L) is
the set of all states (including L).

Semantic refinement is defined in terms of these
state transformations. A state transformation f is a
refinement of a state transformation ¢ if they have the
same initial and final state spaces and f(s) C g¢(s)
for every initial state s. Note that if L € g(s) for
some s, then f(s) can be anything at all. In other
words we can correctly refine an “undefined” program
to do anything we please. If f is a refinement of g
(equivalently, ¢ is refined by f) we write ¢ < f. A
structure for a logical language £ consists of a set
of values, plus a mapping between constant symbols,
function symbols and relation symbols of £ and ele-
ments, functions and relations on the set of values. A
model for a set of sentences (formulae with no free
variables) is a structure for the language such that
each of the sentences is interpreted as true. If the



interpretation of statement S; under the structure M
is refined by the interpretation of statement So under
the same structure, then we write S; <zs S,. If thisis
true for every model of a countable set A of sentences
of £ then we write A =81 < Ss.

3.3 Proof-Theoretic Refinement

Given two statements S; and Ss, and a formula R,
we have the two formulae WP(S1, R) and WP(S2, R).
If there exists a proof of the formula WP(S;,R) =
WP(S2, R) using the set A as assumptions, then we
write A F WP(S;,R) = WP(S;,R). For S; to
be a refinement of Sy, this result has to hold for
every postcondition R. We can avoid the need for
quantification over formulae, and remain in first or-
der logic, by extending the language £ by adding a
new relation symbol G(w) where w is a list of all
the free variables in S§; and S,;. If we can prove
AFWP(S1,G(w)) = WP(S3, G(w)) in the extended
language £’ then the proof makes no assumptions
about G(w) and is therefore still valid when G(w) is
replaced by any other formula. In this case we write
AFS; <8Ss.

A fundamental result, proved in [20] which gener-
alises a theorem in [2] is that these two notions of
refinement are equivalent. More formally:

Theorem 3.1 For any statements S1 and S,, and
any countable set A of sentences of L:

AES; <Sy < AFS;<S,

These two equivalent definitions of refinement give
rise to two very different proof methods for proving
the correctness of refinements. Both methods are
exploited in [24]—weakest preconditions and infinit-
ary logic are used to develop the induction rule for
recursion and the recursive implementation theorem,
while state transformations are used to prove the rep-
resentation theorem.

4 The Architecture of ReForm

The tool consists of a structure editor, a library of
proven transformations and a knowledge-based system
which analyses the programs and specifications under
consideration and uses heuristic knowledge to determ-
ine which transformations will achieve a given end
(for example, deriving the specification of a section of
code, finding the most suitable technique for recursion
removal, optimising for efficiency etc.)

The system is interactive and incorporates a graph-
ical front end, pretty-printer and browser. This allows
the programmer to move through the program, apply

transformations, undo changes he has made, and in
special circumstances, edit the program manually: but
always in such a way that it is syntactically correct.
The system automatically checks the applicability con-
ditions of a transformation before it is applied; or even
presented in one of the menus. This means that the
correctness of the resulting transformed program is
guaranteed by the system rather than being dependent
on the user. A history/future structure is built-in to
allow back-tracking and forward-tracking enabling the
programmer to change his mind. The system stores
the results of its analysis of a program fragment as part
of the program, so that re-calculation of the analysis is
avoided wherever possible. An interactive knowledge
base to suggest transformations in a given situation
will be built in to the system at a later stage.

The system will use knowledge based heuristics to
analyse large programs and suggest suitable trans-
formations as well as carrying out the transformations
and checking the applicability conditions. Present-
ing the programmer with a variety of different but
equivalent representations of the program can greatly
aid the comprehension process, making best use of
human problem solving abilities (visualisation, logical
inference, kinetic reasoning etc).

Note that the theoretical foundation work which
proves that each transformation in the system pre-
serves the semantics of any applicable program is
essential if this method is to be applied to prac-
tical software maintenance. It must be possible to
work with programs which are poorly (or not at all)
understood, and 1t must be possible to apply many
transformations which drastically change the structure
of the program (as in the example below) with a
very high degree of confidence in the correctness of
the result. An additional benefit of this formal link
between specification and code is in the application
to safety-critical systems. Such systems can be de-
veloped by transforming high-level specifications down
to efficient low level code with a very high degree of
confidence that the code correctly implements every
part of the specification. There are also applications
to the reuse of software—both specification, code, and
development history can be stored in a repository and
whenever a similar specification needs to be imple-
mented the code and/or development history can be
re-used. See [26] for more details.

The WSL language has been developed over the
last eight years in parallel with the development of the
transformation theory and proof methods. Over this
time the language has developed from a simple and
tractable kernel language to a complete and powerful
programming language.



The WSL Kernel

Primitive Statements:

. Assertion: {P}
. Guard: [P]
. Add some variables: add(X)

. Remove some variables: remove(X)

= W N =

Compound Statements:
1. Sequential Composition: (S1; Ss)
First S is executed and then S»

2. Choice: (81 M8S5)
One of the statements S; or Sy is chosen for
execution

3. Recursive Procedure: (uX.S;)
Within the body S;, occurrences of the statement
variable X represent recursive calls to the
procedure.

WSL Language Extensions

e Dijkstra’s Guarded Command Language;

e while loops;

e Loops with multiple exits;

e Mutually recursive procedures (labels and gotos);
e Local variables;

e Procedures and functions with parameters;

e Expressions with side-effects;

e Assembler language.

At the “low-level” end of the language there exists an
automatic translator from IBM Assembler into WSL.
At the “high-level” end it is possible to write high-
level, abstract specifications, similar to Z and VDM
specifications [9,12].

4.1 Main features of the ReForm tool

e Source code is translated into WSL, then automat-
ically restructured and simplified;

e Transformations are written in an extension of WSL

called Meta-WSL;

e The tool validates transformation choice and offers
a menu of valid transformations according to the
context;

o A LISP engine carries out the transformations and
records the history;

e Documentation and comments can be attached to
the code ;

bl

e Edits and modifications are recorded in the history;

e An X Windows front end displays a pretty-printed
version of the current program,;

e The system calculates various metrics (McCabe,
structural complexity, size) to monitor progress and
quality.

4.2 Modelling Assembler in WSL

Constructing a useful scientific model necessarily
involves throwing away some information: in other
words, to be useful a model must be inaccurate, or at
least idealised, to a certain extent. For example “ideal
gases” | “incompressible fluids” and “billiard ball mo-
lecules” are all useful models which gain their utility
by abstracting away some details of the real world. In
the case of modelling a programming language, such as
Assembler, it is theoretically possible to have a perfect
model of the language which correctly captures the
behaviour of all assembler programs. Certain features
of Assembler, such as branching to register addresses,
self-modifying code and so on, would imply that such
a model would have to record the entire state of the
machine, including all registers, memory, disk space,
and external devices, and “interpret” this state as
each instruction is executed. Unfortunately, such a
model is useless for inverse engineering purposes since
such trivial changes as deleting a NOP instruction, or
changing the load address of a module, can in theory
change the behaviour of the program.

What we need is a practical model for assembler
programs which is suitable for inverse engineering,
and is wide enough to deal with all the programming
constructs we are likely to encounter. Qur approach
involves three types of modelling:

1. Complete model: Each assembler instruction is
translated into WSL statements which capture all
the effects of the instruction. The machine registers
and memory are modelled as arrays, and the con-
dition code as a variable. Thus, at the translation
state we don’t attempt to recognise “if statements”
as such, we translate into statements which assign
to cc (the condition code variable), and statements
which test cc. The automatic restructuring and
simplification state can usually remove all refer-
ences to cc, presenting the maintainer with a struc-
tured program expressed in if statements, loops and
actions;

2. Partial model: Branches to register are modelled by
attempting to determine all possible targets of such
a branch (including all labels and jump instructions



which follow labelled instructions). Each label is
turned into a separate action with an associated
value (the relative address). A “store return ad-
dress” instruction stores the relative address in the
register. A “branch to register” instruction passes
the relative address to a “dispatch” action which
tests the value against the set of recorded values,
and jumps to the appropriate label. This can deal
with simple cases of address arithmetic (including
jump tables) but may theoretically be defeated if
more complex address manipulations are carried
out before a branch to register instruction is ex-
ecuted;

3. Self-modifying code: This is not addressed, except
for some special cases which are recognised by the
translator. In many environments, (such as IBM’s
CICS product) the code must be re-entrant, or is
to be blown into a ROM, and therefore cannot be
modified. In other cases, the self-modification may
be recognised by the translator and may require
human intervention to determine a suitable WSL
equivalent.

5 Results of using ReForm

Experiments on small but complex programs have
given very encouraging results: we have been able
to discover bugs in high-level language code which
were revealed by the analysis process. We have also
discovered a performance hit in an existing, large scale,
heavily used bit of Assembler code. This was intro-
duced as a result of maintenance, and the maintenance
programmers became aware of it when they examined
the transformed version of the assembler code. The
same transformations have been used to derive several
types of algorithm from high-level, abstract specifica-
tions [21,23,2527].

We have recently completed a case study involving a
number of modules of IBM Assembler, each consisting
of up to 20,000 lines of code, taken from a large
commercial system. Each module was automatically
translated into WSL and interactively restructured
into a high-level language form. One particular mod-
ule had been repeatedly modified over a period of
many years until the control flow structure had be-
Using the prototype tool
we were able to transform this into a hierarchy of
(single-entry, single-exit) subroutines resulting in a
module which was slightly shorter and considerably
easier to read and maintain. The transformed version
was hand-translated back into Assembler which (after
fixing a single mis-translated instruction) “worked first

come highly convoluted.

time”. A typical result for one of the smaller modules
is shown below:

Stage | lines McCabe Structural Size
1 2,330 1,030 48 175 24,736
2 1,381 245 17,021 8,404
3 1,227 156 11,990 7,120

Stage 1 is the translated WSL code, stage 2 is after
automatic restructuring and simplification, and stage
3 is after a small amount of interactive transformation.

The prototype system implements over 600 trans-
formations, arranged in a set of 10 transformation
menus. When a menu is invoked, the system checks
the validity of each transformation in that class and
constructs a list of the valid ones. This means that the
user only ever sees valid transformations in the menus,
which reduces the selection problem and eliminates
confusion. The prototype consists of about 80,000
lines of Common LISP and WSL source code (im-
plementing the structure editor and transformation
engine), and about 22,000 lines of C (implementing
the pretty-printer and X Windows front end). The
transformation engine and front end act as separate
processes, communicating via ASCII commands. This
means that they can, and frequently do, run on sep-
arate machines: for example with the transformation
engine running on a mainframe or fileserver and the
interface running on a workstation, PC, Macintosh or
X terminal. The Common LISP code has been written
with portability in mind: in fact it has to run on
two different LISP implementations, running on three
different CPUs.

The prototype has been developed using a “rapid
prototyping” method, this is so that new ideas can
be implemented and tested quickly. Over the course
of the development, the internal data structures and
organisation have been changed several times as new
research has shown better ways of doing things. One
of the drawbacks of rapid prototyping is that the
resulting tool can become unstable: i.e. bug-ridden,
poorly-structured and difficult to maintain. To minim-
ise this problem and maximise the flexibility of the tool
we developed an “abstract machine” implementation,
with formally defined interfaces between the imple-
mentation of the abstract machines and the rest of
the system. The major components in the system are:

e Internal representation of WSL code;
e Structure editor;
e Transformation library;

o X Windows interface.



Each of these is implemented as an abstract machine
with formally defined interfaces. This means that
different people can work on reimplementing the dif-
ferent modules without causing integration problems.
Another technique we have used is to develop a com-
prehensive regression test suite in parallel with the
development of the system. This has acted as a “trip
test”: each new version has to pass the test before it 1s
released, and this has prevented many of the problems
which can occur with a rapid turnaround of program
versions.

5.1 A Method for Reverse Engineering

One of the major results from our research, which
the availability of a prototype tool has helped to pro-
duce, is the development of a method for reverse en-
gineering using formal transformations. The method
is based on the following stages:

1. Establish the reverse engineering environment.
This will involve a CASE tool to record results,
maintain different versions of code, specifications,
and documentation and the links between them;
together with a WSL code browser and transform-
ation system.

2. Collect the software to be reverse engineered. This
involved finding the current versions of each subsys-
tem and making these available to the CASE tool.

3. Produce a high-level description of the system. This
may already be available in the documentation,
since the documentation at this level rarely needs to
be changed, and is therefore more likely to be up to
date. The documentation is supplemented by the
results of a cross reference analysis which records
the control flow and data dependencies among the
subsystems.

4. Translate the source code into WSL. This will usu-
ally be an automatic process involving parsing the
source files and translating the language structures
into equivalent WSL structures.

5. “Inverse Engineering”, i.e. reverse engineering
through formal transformations. This is the stage
we 1llustrate in this paper. It involves the automatic
and manual application of various transformations
to restructure the system and express i1t at increas-
ingly higher levels of abstraction. We do this by
iterating over the following four steps:

(a) Restructuring transformations. These include
removing goto statements, eliminating flags,
removing redundant tests, and other optim-
isations. The effect of this restructuring is
to reveal the “true” structure of the program

which may be obscured by poor design or
subsequent patching and enhancements. This
stage is more radical than can be achieved by
existing automatic restructuring systems [3,
13] since it takes note of both data flow and
control flow, and includes both syntactic and
semantic transformations [1]. We have how-
ever had considerable success with automating
the simpler restructuring transformations, by
implementing heuristics elicited from experi-
enced program transformation users.

(b) Analyse the resulting structures in order to
determine suitable higher-level data represent-
ations and control structures.

(¢) Redocument: record the discoveries made so
far and any other useful information about the
code and its data structures.

(d) Tmplement the higher-level data representa-
tions and control structures using suitable
transformations. A powerful technique we
have developed for carrying out these data
refinements is to introduce the abstract vari-
ables into the program as “ghost” variables
(variables whose values are changed, but which
do not affect the operation of the program in
any way), together with invariants which make
explicit the relationship between abstract and
concrete variables. Then, one by one, the
references to concrete variables are replaced
by references to the new abstract variables.
Finally, the concrete variables become “ghost”
variables and can be removed. See [22] below
for an example of this process; it is used ex-
tensively in [27]. In general, if our analysis in
step bb is correct then the result of this stage
is likely to be in a form suitable for further
restructuring.

6. Acceptance test: We now have a high-level specific-
ation of the whole system which should go through
the usual Q.A. and acceptance tests.

6 Conclusions

The ReForm project has been highly successful to
date, producing a reverse-engineering tool based on
a rigorous theoretical foundation, which is already
capable of producing useful results for real “spaghetti”
assembler modules.

We believe that the following main features have
contributed to the success of ReForm:

e Use of weakest preconditions expressed in infinitary
logic;



e Starting with a small, tractable kernel language,
extended via definitional transformations;

e Use of an imperative kernel language, with func-
tional constructs added via definitional transform-
ation, rather than a functional kernel language;

e Developing the transformation theory in parallel
with the language development;

e Dealing with assembler via simple translation fol-
lowed by automatic restructuring and simplifica-
tion;

e Developing an interactive, semi-automatic tool,
rather than attempting complete automation;

e Mechanical checking of the correctness conditions
at each step, with only valid transformations ap-
pearing in the menus;

e Knowledge elicitation: using the prototype and
manual case studies to see how the experienced
user solves problem, and then implementing these
methods and heuristics;

e The use of generic transformations for merging,
moving, separating etc.; these are automatically
expanded into the appropriate transformation for
each situation;

e Rapid prototyping development, with the system
organised as a collection of abstract machines with
formally defined interfaces;

e Separation of front-end issues into a separate pro-
gram.

7 Current Research

Work is currently underway in the following areas:

e Extension of the tool to high-level transforma-
tions (to produce abstract specifications from code).
These transformations exist but have yet to be fully
implemented in the prototype tool,;

e More sophisticated data-flow analysis;

e Extension of the theory to communicating parallel
programs;

e Extensions to deal with real-time and interrupt-
driven programs [30];

e The use of metrics, including size and complexity
metrics, to automate more of the transformation
process and guide the selection of transformations.

We are also currently working on some more extensive
case studies involving professional assembler program-
mers working on real assembler code. These will at-
tempt to quantify the improvements in maintainability
achievable through inverse engineering.

Acknowledgements

The research described in this paper has been partly
funded by Alvey project SE-088, partly through a
DTI/SERC and IBM UK Ltd. funded TEATP grant
“From Assembler to Z using Formal Transformations”
and partly by SERC (The Science and Engineering Re-
search Council) project “A Proof Theory for Program
Refinement and Equivalence: Extensions”.

References

[1] J. Arsac, “Syntactic Source to Source Program Trans-
formations and Program Manipulation,” Comm. ACM
22 (Jan., 1982), 43-54.

[2] R. J. R. Back, Correctness Preserving Program Refine-
ments, Mathematical Centre Tracts #131, Mathemat-
isch Centrum, Amsterdam, 1980.

[3] F. W. Calliss, “Problems With Automatic Restruc-
turerers,” Durham University, Technical Report, 1989.

[4] E. W. Dijkstra, A Discipline of Programming, Pren-
tice-Hall, Englewood Cliffs, NJ, 1976.

[5] M. S. Feather, “A Survey and Classification of Some
Program Transformation Techniques,” Program Spe-
cification and Transformation (1987).

[6] J. R. Foster, “Program Lifetime: A Vital Statistic for
Maintenance,” Conference on Software Maintenance
15th—-17th October 1991, Sorrento, Italy (Oct., 1991).

[7] J. R. Foster & H. P. Kiekuth, “Software Maintenance
Survey: Summary,” Technical Report (Mar. 1990).

[8] C. A. R. Hoare, 1. J. Hayes, H. E. Jifeng, C. C. Mor-
gan, A. W. Roscoe, J. W. Sanders, I. H. Sgrensen, J.
M. Spivey & B. A. Sufrin, “Laws of Programming,”
Comm. ACM 30 (Aug., 1987), 672-686.

[9] C. B. Jones, Systematic Software Development using
VDM, Prentice-Hall, Englewood Cliffs, NJ, 1986.

[10] C. R. Karp, Languages with Expressions of Infinite
Length, North-Holland, Amsterdam, 1964.

[11] B. Lientz & E. B. Swanson, Software Maintenance
Management, Addison Wesley, Reading, MA, 1980.

[12] M. A. McMorran & J. E. Nicholls, “Z User Manual,”
IBM UK Laboratories Ltd., TR12.274, Hursley Park,
July, 1989.

[13] J. C. Miller & B. M. Strauss, “Implications of Auto-
matic Restructuring of COBOL;” SIGPLAN Notices
22 (June, 1987), 76-82.

[14] R. Moreton, “Analysis and Results from a Mainten-
ance Survey,” Second Software Maintenance Workshop

Notes, Centre for Software Maintenance, University of
Durham (1988).

[15] C. Morgan, Programming from Specifications, Pren-

tice-Hall, Englewood Cliffs, NJ, 1990.

[16] C. C. Morgan, “The Specification Statement,” Trans.
Programming Lang. and Syst.10(1988), 403-419.



[17] C. C. Morgan, K. Robinson & Paul Gardiner, “On the

Refinement Calculus,” Oxford University, Technical
Monograph PRG-70, Oct., 1988.

[18] J. T. Nosek & P. Palvia, “Software Maintenance Man-

agement: Changes in the Last Decade,” J. Software
Maintenance: Research and Practice 2 (Sept. 1990),
157-174.

[19] C. T. Sennett, “Using Refinement to Convince: Les-

sons Learned from a Case Study,” Refinement Work-
shop, 8th—11th January, Hursley Park, Winchester
(Jan., 1990).

[20] M. Ward, “Proving Program Refinements and Trans-

formations,” Oxford University, DPhil Thesis, 1989.

[21] M. Ward, “Derivation of a Sorting Algorithm,”

Durham University, Technical Report, 1990.

[22] M. Ward, “Abstracting a Specification from Code,” J.

Software Maintenance: Research and Practice 5 (1993),
101-122.

[23] M. Ward, “The Largest True Square Problem—An

Exercise in the Derivation of an Algorithm,” Durham
University, Technical Report, Apr., 1990.

[24] M. Ward, “Specifications and Programs in a Wide

Spectrum Language,” Submitted to J. Assoc. Comput.
Mach., Apr., 1991.

[25] M. Ward, “Tterative Procedures for Computing Acker-

mann’s Function,” Durham University, Technical Re-
port 89-3, Feb., 1989.

[26] M. Ward, “Using Formal Transformations to Con-

struct a Component Repository,” in Software Reuse:
the FEuropean Approach, Springer-Verlag, New York—
Heidelberg—Berlin, Feb., 1991.

[27] M. Ward, “Derivation of Data Intensive Algorithms by

Formal Transformation,” Submitted to IEEE Trans.
Software Eng., May, 1992.

[28] M. Ward, “A Model for Partial Programs,” Submitted

to J. Assoc. Comput. Mach., Nov., 1989.

[29] M. Ward, F. W. Calliss & M. Munro, “The Main-

tainer’s Assistant,” Conference on Software Mainten-
ance 16th—19th October 1989, Miami Florida (Oct.,
1989).

[30] E. J. Younger & M. Ward, “Inverse Engineering a

simple Real Time program,” Submitted to J. Software
Maintenance: Research and Practice, New York, NY
(Oct., 1992).

Translator
Transformation Program Structure . Inten;alt
: Transformer Editor epresentation
Library of WSL code
Select Bdit
View
The
Mawntainer
ASCII
@ — | X-Windows Browser High-Level Low-Level
Front End Interface WSL to WSL to
/ Source




