User Manual

CC10C – ARM® i.MX 6 Rugged COM Express®

and CC10 COM Express®

CC10C - Rugged COM Express® (VITA 59 RCE) with ARM® i.MX 6

The CC10C is a Rugged COM Express® module (RCE) built around the FreescaleTM ARM® i.MX 6 series of processors with a Cortex®-A9 architecture. Supporting different types of the i.MX 6Solo, 6DualLite, 6Dual and 6Quad families, the computer-on-module is widely scalable, e.g., to processing or graphics requirements. Where less performance is needed, you can optimize costs by choosing a single- or dual-core processor instead of a quad core.

Rugged COM Express® modules are 100% compatible to COM Express® but conform to the new VITA 59 standard (in process) which specifies the mechanics to make COM Express® modules suitable for operation in harsh environments. The CC10C is based on the "Compact", 95 x 95 mm form factor and Type 6 connector pin-out, and can even be semi-customized to become a standard COM Express® module, without much additional design effort.

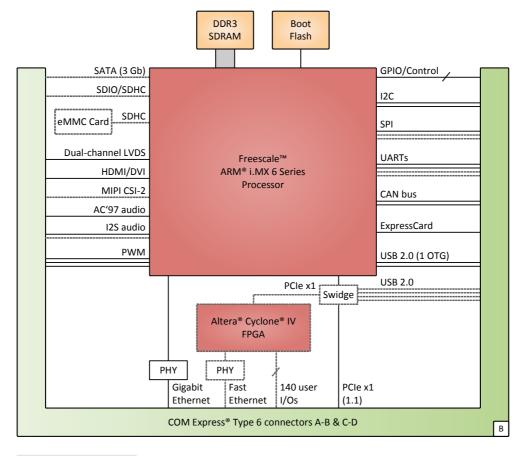
With RCE-compliant mechanics for conduction cooling, the module's size extends to 105×105 mm. It is embedded in a covered frame ensuring EMC protection and allowing efficient conductive cooling. Air cooling is also possible by applying a heat sink on top of the cover. Its optimized mechanics let the CC10C support an extended operating temperature range of -40 to +85°C.

The exclusive use of soldered components ensures that the COM withstands shock and vibration. The design is optimized for conformal coating.

Adding to its rugged design, the computer-on-module's range of supported functions leave almost nothing to wish for. With a maximum of 4 GB DDR3 RAM and an onboard eMMC device, the CC10C covers all basic memory needs. 3-Gbit SATA is provided for external mass storage.

One of the biggest strengths of the CC10C lies in its I/O flexibility. The i.MX 6 provides an abundance of onchip controllers and interfaces, including Gigabit Ethernet, USB 2.0 (also with OTG/client support) and PCI Express®. Different video outputs like LVDS and HDMI/DVI, audio and an optional camera interface make the card fit for multimedia applications. Other serial ports provide UARTs or CAN bus.

Where the processor's standard functions are not a perfect match, an onboard FPGA opens up 140 signal pins for user I/O. As IP cores are easy to integrate, the CC10C becomes a semi-custom solution with the suitable functionality even for more specialized applications.


The resulting I/O functionality in the ordered version depends on the customer's requirements and will always be a tailored combination of i.MX 6 and FPGA-based I/O, without the need for a completely new design.

For evaluation and development purposes a microATX carrier board, the XC15, is available.

For more information see the XC15 carrier board data sheet.

Diagram

Technical Data

CPU

- FreescaleTM ARM® i.MX 6 Series (ARM® Cortex®-A9 architecture)
- The following CPU types are available:
 - i.MX6S (i.MX 6Solo family)
 - i.MX6DL (i.MX 6DualLite family)
 - i.MX6D (i.MX 6Dual family)
 - i.MX6Q (i.MX 6Quad family)

See Table 1, Processor core options on CC10C, on page 24 for processor options and a feature matrix of the i.MX 6 series.

Memory

- System Memory
 - Soldered DDR3
 - 1 GB, 2 GB, or 4 GB
- Boot Flash
 - 4 MB, 8 MB, or 16 MB

Mass Storage

- The following mass storage devices can be assembled:
 - eMMC device, soldered; different sizes available

Graphics

- Integrated in i.MX 6 processor
- Multi-stream-capable HD video engine delivering up to 1080p60 decode, 1080p30 encode and 3D video playback in HD
- Maximum resolution: 1920 x 1200 pixels (WUXGA)
- Superior 3D graphics performance with up to four shaders performing 200 Mt/s and OpenCLTM support
- Separate 2D and/or OpenVG Vertex acceleration engines for optimal user interface experience
- Stereoscopic image sensor support for 3D imaging

Onboard Interfaces

- Available via COM Express® connectors
- Video
 - One HDMI/DVI interface
 - One LVDS interface, dual-channel
 - One MIPI CSI-2 camera serial host interface; optional
- Andio
 - One AC'97 audio interface
 - One I2S audio interface

- SATA
 - One channel, SATA Revision 2.x (3 Gbit/s); only with i.MX6D or i.MX6Q
- SDIO/SDHC
 - One channel for MMC/SD/SDIO cards
- USB
 - Two host channels, USB 2.0 (480 Mbit/s), or
 - Six host channels, USB 2.0 (480 Mbit/s)
 - One channel always implemented as OTG (On-The-Go) host/client port
- Ethernet
 - One channel, 1000BASE-T (1 Gbit/s)
 - One channel, 100BASE-T (100 Mbit/s); optional
 - Two link and activity LED signals per channel
- PCI Express
 - One x1 link (250 MB/s per link), PCIe® 1.1 (2.5 Gbit/s per lane)
- ExpressCard
 - One interface
- CAN bus
 - Two CAN bus channels, 2.0B CAN protocol, 1 Mbit/s
 - Two additional CAN bus channels, 2.0A/B CAN protocol, 1 Mbit/s; with FPGA; optional
 - External transceivers to be implemented on carrier board
- UART
 - Up to six interfaces, up to 4 Mbit/s
 - Physical interfaces RS232 or RS422/RS485 depending on interface controller and implementation on carrier board
- PWM
 - Three PWM interfaces
- I2C
 - Up to four I2C interfaces
- SPI
 - Up to three SPI interfaces
- COM Express® control signals
 - Four COM Express® control signals
- GPIO
 - 9 GPIO lines, 4 GPO lines, 3 GPI lines
 - 64 GPIO lines; with FPGA; optional

See Chapter 2.6 Customization Capabilities on page 26 for an overview of configurable I/O functions.

FPGA

- No FPGA assembled, with custom configuration of i.MX 6 I/O interfaces, or
- FPGA Altera® Cyclone® IV, with custom IP core and i.MX 6 I/O configuration
 - Total available pin count: 140 pins on COM Express® connectors

The IP cores that make sense and/or can be implemented depend on the board model, available pin counts and number of logic elements. Please contact MEN for information on feasibility.

Supervision and Control

- · Power supervision and watchdog
- Temperature measurement
 - i.MX 6 temperature measurement
 - Additional onboard temperature sensor; optional
- Real-time clock, with supercapacitor or battery backup on the carrier board

Computer-On-Module Standard

- CC10C: VITA 59 RCE: Rugged COM Express® in process
 - With conduction cooling cover and frame
 - Rugged COM Express® Compact, Module Pin-out Type 6
- CC10: PICMG COM.0 COM Express® Module Base Specification
 - COM Express® Compact, Module Pin-out Type 6

Electrical Specifications

- Supply voltage
 - +12 V (9 to 16 V)
- Power consumption
 - 12 W, measured in stress test using 15CC10C00, i.MX6Q quad-core @ 1.0 GHz
 - 7.4 W, measured in test (activity on Gb Ethernet and 1 USB interface) using 15CC10C00, i.MX6Q quad-core @ 1.0 GHz
 - 5 W, measured in test (activity on Gb Ethernet and 1 USB interface) using 15CC10-00, i.MX6S single-core @ 800 MHz

Mechanical Specifications

- Dimensions
 - CC10C: 105 mm x 105 mm x 18 mm (conforming to VITA 59 RCE Compact format, PCB mounted between a cover and a frame)
 - CC10: 95 mm x 95 mm (conforming to PICMG COM.0 COM Express® Compact format)
- Weight
 - CC10C: 356 g (model 15CC10C00)
 - CC10: 40 g (model 15CC10-00)

Environmental Specifications

- Temperature range (operation)
 - 40°C to +85°C Tcase (VITA 59 cover/frame) (qualified components) (model 15CC10C00)
 - -40°C to +85°C (qualified components) (model 15CC10-00)
- Temperature range (storage): -40°C to +85°C
- Cooling concept
 - CC10C: Conduction-cooled according to VITA 59 RCE: Rugged COM Express® in process, PCB with conduction cooling wings, mounted between a cover and a frame
 - CC10: Air-cooled according to PICMG COM.0 COM Express® standard
- Relative humidity (operation): max. 95% non-condensing
- Relative humidity (storage): max. 95% non-condensing
- Altitude: -300 m to +3000 m
- Shock: 50 m/s², 30 ms (EN 61373)
- Vibration (function): 1 m/s², 5 Hz to 150 Hz (EN 61373)
- Vibration (lifetime): 7.9 m/s², 5 Hz to 150 Hz (EN 61373)
- Conformal coating; optional

Reliability

- MTBF
 - 652 986 h @ 40°C according to IEC/TR 62380 (RDF 2000) (model 15CC10C00)
 - 1 233 470 h @ 40°C according to IEC/TR 62380 (RDF 2000) (model 15CC10-00)

Safety

- Flammability
 - UL 94V-0

EMC

- EMC behavior generally depends on the system and housing surrounding the COM module.
- The Rugged COM Express® module in its cover and frame supports the system to meet the requirements of
 - EN 55022 (radio disturbance)
 - IEC 61000-4-2 (ESD)
 - IEC 61000-4-3 (electromagnetic field immunity)
 - IEC 61000-4-4 (burst)
 - IEC 61000-4-5 (surge)
 - IEC 61000-4-6 (conducted disturbances)

Software Support

- Linux
- VxWorks®

For more information on supported operating system versions and drivers, please see the online data sheet.

BIOS

• U-Boot Universal Boot Loader

For available standard configurations see the online data sheet.

Product Safety

Electrostatic Discharge (ESD)

Computer boards and components contain electrostatic sensitive devices. Electrostatic discharge (ESD) can damage components. To protect the board and other components against damage from static electricity, you should follow some precautions whenever you work on your computer.

- Power down and unplug your computer system when working on the inside.
- Hold components by the edges and try not to touch the IC chips, leads, or circuitry.
- Use a grounded wrist strap before handling computer components.
- Place components on a grounded antistatic pad or on the bag that came with the component whenever the components are separated from the system.
- Only store the board in its original ESD-protected packaging. Retain the original packaging in case you need to return the board to MEN for repair.

About this Document

This user manual is intended only for system developers and integrators, it is not intended for end users.

It describes the hardware functions of the board, connection of peripheral devices and integration into a system. It also provides additional information for special applications and configurations of the board.

The manual does not include detailed information on individual components (data sheets etc.). A list of literature is given in the appendix.

Product Naming

'CC10C' is used throughout this document to name the products described. However, descriptions are generally valid for the CC10 COM Express module, too. Specific differences will be mentioned explicitly.

History

Issue	Comments	Date
E1	First issue	2014-12-05

Conventions

Indicates important information or warnings concerning proper functionality of the product described in this document.

in/out

The globe icon indicates a hyperlink that links directly to the Internet, where the latest updated information is available.

When no globe icon is present, the hyperlink links to specific elements and information within this document.

italics Folder, file and function names are printed in *italics*.

bold Bold type is used for emphasis.

mono A monospaced font type is used for hexadecimal numbers, listings, C function descriptions or wherever appropriate. Hexadecimal numbers

are preceded by "0x".

comments embedded into coding examples are shown in green text.

IRQ# Signal names followed by a hashtag "#" or preceded by a forward slash "/" indicate that this signal is either active low or that it becomes active at a falling edge.

Signal directions in signal mnemonics tables generally refer to the corresponding board or component, "in" meaning "to the board or component", "out" meaning "from it the board or component".

Blue vertical lines in the outer margin indicate sections where changes have been made to this version of the document.

MEN Mikro Elektronik GmbH 20CC10C00 E1 - 2014-12-05

Legal Information

Changes

MEN Mikro Elektronik GmbH ("MEN") reserves the right to make changes without further notice to any products herein

Warranty, Guarantee, Liability

MEN makes no warranty, representation or guarantee of any kind regarding the suitability of its products for any particular purpose, nor does MEN assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including, without limitation, consequential or incidental damages. TO THE EXTENT APPLICABLE, SPECIFICALLY EXCLUDED ARE ANY IMPLIED WARRANTIES ARISING BY OPERATION OF LAW, CUSTOM OR USAGE, INCLUDING WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE OR USE. In no event shall MEN be liable for more than the contract price for the products in question. If buyer does not notify MEN in writing within the foregoing warranty period, MEN shall have no liability or obligation to buyer hereunder.

The publication is provided on the terms and understanding that:

- 1. MEN is not responsible for the results of any actions taken on the basis of information in the publication, nor for any error in or omission from the publication; and
- 2. MEN is not engaged in rendering technical or other advice or services.

MEN expressly disclaims all and any liability and responsibility to any person, whether a reader of the publication or not, in respect of anything, and of the consequences of anything, done or omitted to be done by any such person in reliance, whether wholly or partially, on the whole or any part of the contents of the publication.

Conditions for Use, Field of Application

The correct function of MEN products in mission-critical and life-critical applications is limited to the environmental specification given for each product in the technical user manual. The correct function of MEN products under extended environmental conditions is limited to the individual requirement specification and subsequent validation documents for each product for the applicable use case and has to be agreed upon in writing by MEN and the customer. Should the customer purchase or use MEN products for any unintended or unauthorized application, the customer shall indemnify and hold MEN and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim or personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that MEN was negligent regarding the design or manufacture of the part. In no case is MEN liable for the correct function of the technical installation where MEN products are a part of.

Trademarks

All products or services mentioned in this publication are identified by the trademarks, service marks, or product names as designated by the companies which market those products. The trademarks and registered trademarks are held by the companies producing them. Inquiries concerning such trademarks should be made directly to those companies.

Conformity

MEN products are no ready-made products for end users. They are tested according to the standards given in the Technical Data and thus enable you to achieve certification of the product according to the standards applicable in your field of application.

RoHS

Since July 1, 2006 all MEN standard products comply with RoHS legislation.

Since January 2005 the SMD and manual soldering processes at MEN have already been completely lead-free. Between June 2004 and June 30, 2006 MEN's selected component suppliers have changed delivery to RoHS-compliant parts. During this period any change and status was traceable through the MEN ERP system and the boards gradually became RoHS-compliant.

WEEE Application

The WEEE directive does not apply to fixed industrial plants and tools. The compliance is the responsibility of the company which puts the product on the market, as defined in the directive; components and sub-assemblies are not subject to product compliance.

In other words: Since MEN does not deliver ready-made products to end users, the WEEE directive is not applicable for MEN. Users are nevertheless recommended to properly recycle all electronic boards which have passed their life cycle.

Nevertheless, MEN is registered as a manufacturer in Germany. The registration number can be provided on request.

Copyright © 2014 MEN Mikro Elektronik GmbH. All rights reserved.

Germany MEN Mikro Elektronik GmbH

Neuwieder Straße 3-7 90411 Nuremberg Phone +49-911-99 33 5-0 Fax +49-911-99 33 5-901 E-mail info@men.de www.men.de France

MEN Mikro Elektronik SAS 18, rue René Cassin ZA de la Châtelaine 74240 Gaillard Phone +33 (0) 450-955-312 Fax +33 (0) 450-955-211 E-mail info@men-france.fr www.men-france.fr USA
MEN Micro Inc.
860 Penllyn Blue Bell Pike
Blue Bell, PA 19422
Phone (215) 542-9575
Fax (215) 542-9577
E-mail sales@menmicro.com
www.menmicro.com

Contents

1	Getting	started	18
	1.1	Map of the Board	18
		1.1.1 CC10C Rugged COM Express	18
		1.1.2 CC10 COM Express	19
	1.2	First Operation.	
	1.3	Installing Operating System Software	21
	1.4	Installing Driver Software	21
2	Function	onal Description	22
	2.1	Power Supply and Control	22
	2.2	Board Supervision and Management	22
		2.2.1 Temperature and Voltage	22
		2.2.2 Watchdog	22
	2.3	Reset	23
	2.4	Real-Time Clock (RTC)	23
	2.5	Processor Core.	
		2.5.1 Thermal Considerations	
	2.6	Customization Capabilities	
		2.6.1 FPGA I/O	
		2.6.2 ARM i.MX 6 I/O	
		2.6.3 Interface Configurability Overview	
	2.7	Memory	
		2.7.1 DRAM System Memory	
		2.7.2 Boot Flash	
	2.8	Mass Storage	
		2.8.1 Serial ATA (SATA)	
		2.8.2 eMMC Multimedia Card (SDHC Interface)	
		2.8.3 SDIO/SDHC Interface	
	2.9	Multimedia	
		2.9.1 Video	
	2.10	2.9.2 Audio	
		USB	
	2.11	Ethernet	
		2.11.1 Ethernet MAC Addresses	
	2.12	2.11.2 Ethernet Status LEDs	
		PCI Express	
		ExpressCard Interface	
		CAN Bus	
		UART Interfaces	
		PWM	
	2.1/	2.17.1 I2C Interfaces Controlled by i.MX 6	
		2.17.1 I2C Interfaces Controlled by Onboard FPGA	

	2.18	SPI		39
	2.19	GPIO.		40
		2.19.1	GPIO Lines Controlled by i.MX 6	40
		2.19.2	GPIO Lines Controlled by Onboard FPGA	
	2.20	Rugged	COM Express (VITA 59)	41
		2.20.1	Module Form Factors	41
		2.20.2	Thermal Concept	41
		2.20.3	COM Express Connectors	43
		2.20.4	COM Express Control Signals	55
3	U-Boot	Boot Lo	oader	56
	3.1		L	
	3.2		Started: Setting Up Your Operating System	
	0.2	3.2.1	Setting Up the Boot File	
		3.2.2	Setting Up the Boot and TFTP Parameters	
		3.2.3	Starting Up the Operating System	
	3.3		ing with U-Boot.	
		3.3.1	Setting Up a Console Connection	
		3.3.2	Entering the U-Boot Command Line	
		3.3.3	User Interface Basics	
	3.4	U-Boot	Images and Start-Up	
		3.4.1	Images	63
		3.4.2	Booting an Operating System	63
	3.5	Updatir	ng the Boot Flash	67
		3.5.1	Update via the Serial Console	67
		3.5.2	Update via Network	67
		3.5.3	Update via USB	67
		3.5.4	Performing an Update	67
		3.5.5	Updating U-Boot Image 1	69
	3.6	Workin	g with Interfaces and Devices	70
		3.6.1	PCI	70
		3.6.2	USB	70
		3.6.3	eMMC/SDHC	71
		3.6.4	I2C	71
		3.6.5	PWM	72
		3.6.6	Watchdog	72
	3.7	Diagno	stic Tests	73
	3.8	U-Boot	Configuration and Organization	74
		3.8.1	Boot Flash Memory Map	74
		3.8.2	Environment Variables	74
	3.9		Commands	
	3.10	Hardwa	re Interfaces Not Supported by U-Boot	80

4	Organi	ization o	f the Board	81
	4.1	Global	Address Map	81
	4.2	PCI De	vices	81
	4.3	SMB us	Devices	81
5	Appen	dix	• • • • • • • • • • • • • • • • • • • •	82
	5.1		re and Web Resources	
		5.1.1	COM Express	82
		5.1.2	Rugged COM Express	
		5.1.3	CPU	82
		5.1.4	eMMC	82
		5.1.5	SATA	82
		5.1.6	LVDS	83
		5.1.7	DVI	83
		5.1.8	USB	83
		5.1.9	Ethernet	83
		5.1.10	PCI Express	83
		5.1.11	AC'97 Audio	83
		5.1.12	CAN Bus	84
		5.1.13	I2C Bus	84
	5.2	Finding	out the Product's Article Number, Revision and Serial	
		Number	r	84
	5.3	Dimens	ions of CC10C Rugged COM Express Compact Module	84

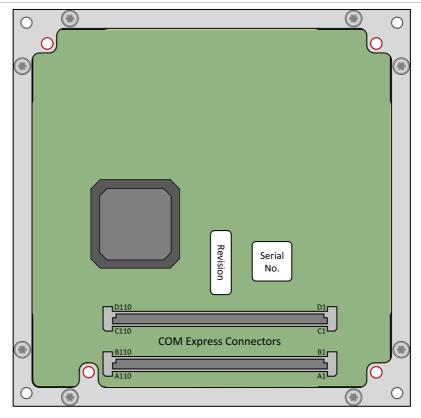
Figures

_	1,	
Figure 2.	Map of the board (CC10 COM Express)	19
Figure 3.	Rugged COM Express Compact module with cooling wings (PCB without frame and cover)	42
Figure 4.	Labels giving the product's article number, revision and serial number	84
Tablas		
Tables		
Table 1.	Processor core options on CC10C	24
Table 2.	Interface configurability overview (COM Express connectors)	27
Table 3.	Multiplexed interfaces for i.MX 6 or FPGA use	29
Table 4.	Ethernet status LED modes	
Table 5.	UART interface control and configurability	
Table 6.	Form factors defined for Rugged COM Express	
Table 7.	Pin assignment of COM Express connectors J1 and J2 – CC10C	43
Table 8.	Pin assignment of COM Express connectors J1 and J2 – CC10	47
Table 9.	Signal Mnemonics	
Table 10.	U-Boot – Boot Flash memory map	74
Table 11.	U-Boot – Environment variables – OS boot.	74
Table 12.	U-Boot – Environment variables – Network	75
Table 13.	U-Boot – Environment variables – Console	76
Table 14.	U-Boot – Environment variables – Other.	76
Table 15.	U-Boot – Command reference	77
Table 16.	Global address map	81
	PCI devices.	
Table 18.	SMBus devices	81

1 Getting Started

This chapter gives an overview of the board and some hints for first installation.

1.1 Map of the Board


1.1.1 CC10C Rugged COM Express

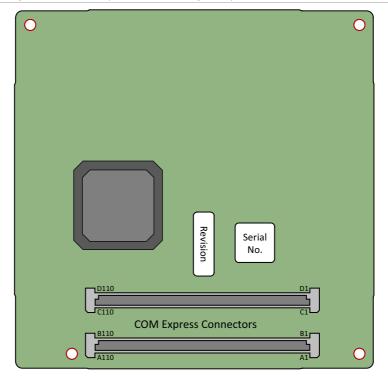
The following board map shows the board inside the cover and frame from its connector side (bottom). The cover includes holes for mounting the Rugged COM Express module onto a carrier.

If you want to use a Rugged COM Express (RCE) module together with a COM Express carrier or other custom carrier board, please make sure that the carrier provides appropriate 'landing zones' for the RCE frame.

For the exact dimensions of CC10C, see Chapter 5.3 Dimensions of CC10C Rugged COM Express Compact Module on page 84.

Figure 1. Map of the board (CC10C Rugged COM Express)

- OM Express screw holes for installation on the carrier board.
- Screws connecting the frame and cover of the module. Do not remove.
- O Holes for optional carrier board fixing when used as wall-mount assembly


For more information on Rugged COM Express mechanics see the VITA 59 specification: Chapter 5.1.2 Rugged COM Express on page 82.

1.1.2 CC10 COM Express

The following board map shows the COM.0 CC10 board from its connector side (bottom).

For the dimensions of COM Express Compact modules, please see the COM Express COM.0 specification. See Chapter 5.1.1 COM Express on page 82.

Figure 2. Map of the board (CC10 COM Express)

OM Express screw holes for installation on the carrier board.

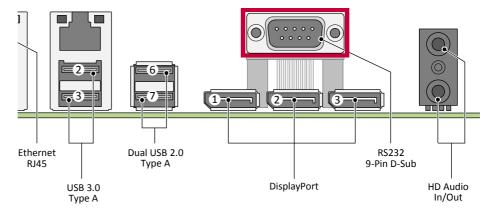
1.2 First Operation

You can use the following check list when installing the board for the first time and with minimum configuration using a Windows host PC.

The U-Boot firmware is preinstalled on the CC10C and is preconfigured for the board.

- ☑ Power down the system.
- ☑ If you use a Rugged COM Express (RCE) module embedded into an aluminum frame together with a COM Express carrier or other custom carrier board, please make sure that the carrier provides appropriate 'landing zones' for the RCE frame.

For the exact dimensions of CC10C, see Chapter 5.3 Dimensions of CC10C Rugged COM Express Compact Module on page 84.


- ☑ Plug the CC10C on your carrier board, making sure that the COM Express connectors are properly aligned.
- ☑ Fasten the four screws connecting the COM Express module to the carrier (marked in red in Figure 1, Map of the board (CC10C Rugged COM Express) on page 18 and Figure 2, Map of the board (CC10 COM Express) on page 19).

To provide a better example, we assume that you are using MEN's standard evaluation carrier, XC15, which provides the necessary connections for a Windows host PC.

You can find more information on the XC15 in the XC15 User Manual, which is available for download on MEN's website.

☑ Connect a Windows PC to the RS232 interface of XC15.

- ☑ Power-up the system.
- ☑ Start up a terminal program on your Windows PC, e.g., HyperTerm, and open a terminal connection.
- ☑ Set your terminal connection to the following protocol:
 - 115 200 baud data transmission rate
 - 8 data bits
 - 1 stop bit
 - No parity

☑ U-Boot will load and then display a command line. The terminal displays a message similar to the following:

```
U-Boot 2013.01 (Sep 10 2014 - 17:58:33) MEN CC10-Quad VO.4 (standard)
       Freescale i.MX6Q rev1.2 at 984 MHz
Reset cause: POR
Board: MEN CC10
I2C:
       ready
RAM Configuration:
Bank #0: 10000000 2 GiB
WARNING: Caches not enabled
MMC: FSL_SDHC: 0, FSL_SDHC: 1
SF: Detected N25Q032 with page size 64 KiB, total 4 MiB
auto-detected panel HDMI
enable_hdmi: setup HDMI monitor
Display: HDMI (1024x768)
In:
      serial
Out: serial
Err:
       serial
Thermal fuse is 0x59e4ec7d, raw_25c=1438 raw_hot=1260 hot_temp=125 C scale=0.56
Temperature raw=1378 temperature= 58.70 C
Net: using phy at Nr.3, phy_id=0x221622
FEC [PRIME]
=>
```

☑ Now you can make configurations for your operating system in the U-Boot boot loader.

See the detailed description in Chapter 3 U-Boot Boot Loader on page 56.

1.3 Installing Operating System Software

The board supports Linux and VxWorks.

By default, no operating system is installed on the board. Please refer to the respective manufacturer's documentation on how to configure your operating system image!

- You can find any BSP software available on the CC10C pages on MEN's website.
- The U-Boot Chapter of this manual describes the first steps of how to get your operating system running, see Chapter 3.2 Getting Started: Setting Up Your Operating System on page 57.

1.4 Installing Driver Software

For a detailed description on how to install driver software please refer to the respective documentation of the software package to be installed.

You can find any driver software available for download on the CC10C pages on MEN's website.

2 Functional Description

The following describes the individual functions of the board and their configuration on the board. There is no detailed description of the individual controller chips and the CPU. They can be obtained from the data sheets or data books of the semiconductor manufacturer concerned.

See Chapter 5.1 Literature and Web Resources on page 82.

Please note: The board BSPs for the different operating systems may not support all the functions of the CC10C. For more information on hardware support please see the respective BSP data sheet on MEN's website.

2.1 Power Supply and Control

The CC10C board is supplied with +12 V (9 to 16 V) only via COM Express connectors J1/J2. All other required voltages are generated on the board.

The CC10C supports the *PWR_OK* signal (input from main power supply) available at the COM Express connector according to the PICMG COM.0 standard.

The CC10C supports the i.MX 6 processors' power down modes to reduce power consumption.

2.2 Board Supervision and Management

2.2.1 Temperature and Voltage

The board supports temperature measurement and voltage monitoring as integrated in the i.MX 6 processor.

A voltage monitor supervises all onboard core voltages and holds the CPU in reset condition until the supply voltage is within its nominal values.

As an option, the board is also available with an additional onboard temperature sensor.

2.2.2 Watchdog

The CC10C supports the watchdog integrated in the i.MX 6 processor.

The watchdog can be enabled or disabled and can be triggered by a software application. This function is supported by the CC10C board support packages.

The watchdog provides timeout periods from 0.5 to 128 seconds with a time resolution of 0.5 seconds.

2.3 Reset

The CC10C provides the reset signals *CB_RESET#* (carrier board reset) and *SYS_RESET#* (reset button input) which are available at the COM Express connector according to the PICMG COM.0 standard.

You can find the pinout for the reset signals in Chapter 2.20.3 COM Express Connectors on page 43.

2.4 Real-Time Clock (RTC)

The board includes a real-time clock inside the i.MX 6 processor. For data retention during power off the RTC can be backed up by a supercapacitor or battery installed on the carrier.

For back-up voltage supply from the carrier board, the board supports a 3 V input using J1 pin *VCC_RTC* (J1-A47).

Also see pinout in Chapter 2.20.3 COM Express Connectors on page 43.

You can set the system date and time through the U-Boot firmware.

2.5 Processor Core

The computer-on-module is built around Freescale's i.MX 6 scalable multicore platform, which includes single-, dual- and quad-core families based on the ARM Cortex-A9 architecture. The i.MX 6 series combines the power-efficient processing capabilities of ARM Cortex-A9 with 3D and 2D graphics as well as high-definition video, providing multimedia performance next to serial connectivity.

Table 1. Processor core options on CC10C

Family	Cores	Core Frequency	L2 Cache	DDR3 Width and Clock	Video	SATA
i.MX6S (Solo)	1	800 MHz or 1.0 GHz	512 KB	32 bits, 400 MHz	3D graphics with one shader, 2D graphics engine, two MIPI CSI-2 data lanes	-
i.MX6DL (DualLite)	2	800 MHz or 1.0 GHz	512 KB	64 bits, 400 MHz	3D graphics with one shader, 2D graphics engine, two MIPI CSI-2 data lanes	-
i.MX6D (Dual)	2	850 MHz or 1.0 GHz	1 MB	64 bits, 533 MHz	3D graphics with four shaders, two 2D graphics engines, four MIPI CSI-2 data lanes	3 Gbit/s
i.MX6Q (Quad)	4	850 MHz or 1.0 GHz	1 MB	64 bits, 533 MHz	3D graphics with four shaders, two 2D graphics engines, four MIPI CSI-2 data lanes	3 Gbit/s

Further options such as higher core frequencies are available on request, using processors from Freescale's "Consumer" category. However, these processors do not support extended operating temperature ranges.

The processor families above support -40 to +85°C.

The CC10C supports the i.MX 6 processors' power down modes to reduce power consumption.

2.5.1 Thermal Considerations

The power dissipation of CC10C heavily depends on its processor and I/O configuration and on the workload.

As measured during a stress test (e.g., with busy Ethernet and graphics functions), the CC10C generates a typical 12 W of power dissipation with an i.MX6Q quadcore processor operated at 1.0 GHz.

If stripped down to a single-core processor and with lower I/O load, the COM's power dissipation reduces to approx. 5 W, as measured in a test with activity on the Gigabit Ethernet interface and on one USB interface.

Rugged COM Express modules (VITA 59) are enclosed inside a cover and frame and therefore provides a flexible thermal interface that can be used as needed to fulfill the thermal needs of the application. Typically you should use it for conduction cooling or convection cooling. It depends on the system configuration and airflow if an additional heat sink is needed or not. In any case you should check your thermal conditions and implement appropriate cooling.

See also Chapter 2.20.2 Thermal Concept on page 41.

Please note that if you do not use the cover and frame supplied by MEN and/or no heat sink, warranty on functionality and reliability of the CC10C may cease. If you have any questions or problems regarding thermal behavior, please contact MEN.

COM Express modules (COM.0) may also need additional cooling facilities, depending on the configuration of the board and the general system design, i.e. integration of the computer-on-module into the system. Implementation is up to the customer.

A general heat spreader solution, e.g., for evaluation purposes, is available from MEN as an accessory for CC10 (part number 05CC10-00).

See the CC10C pages on MEN's website for ordering information.

2.6 Customization Capabilities

The CC10C has the capability of implementing all kinds of storage and I/O functions on a wide scale. Two main components control I/O on the board:

- ARM i.MX 6 processor
- Onboard FPGA

The signals are available at the COM Express connector. Many pins are multiplexed to be driven by **either** i.MX 6 **or** FPGA signals.

For an overview of signals multiplexed to use either i.MX 6 or FPGA I/O, see Chapter 2.6.3.1 Multiplexed Interfaces for i.MX 6 or FPGA I/O on page 29.

MEN offers different configurations with and without FPGA as standard versions. Depending on your I/O needs, MEN can provide a semi-custom version of the board with the functions desired.

While the CC10C is extremely flexible in its I/O configuration, line routing is also complex and not all combinations are possible. The configuration of the available standard versions of the COM reflect both the i.MX 6 and FPGA capabilities, as can be seen in the standard COM Express connector pinouts.

You can find the pinouts for different standard board versions, with and without an FPGA, in Chapter 2.20.3 COM Express Connectors on page 43.

2.6.1 FPGA I/O

With an Altera Cyclone IV FPGA assembled, the CC10C provides 140 FPGA-controlled I/O pins. While some interfaces are implemented by standard with an FPGA assembled, IP cores with the desired functionality are integrated as needed for all free pins.

The CC10C FPGA can be updated in the field. This is supported by the available BSPs and by a software tool for FPGA Flash updates provided by MEN.

You can find any BSP and driver software available for download on the CC10C pages on MEN's website.

You can find the pinout of FPGA-controlled signals in Table 7, Pin assignment of COM Express connectors J1 and J2 – CC10C on page 43.

More information on FPGA technology and usable IP cores is available on the MEN website in the "User I/O in FPGA" section.

2.6.2 ARM i.MX 6 I/O

Since the i.MX 6 series of processors come with an abundance of I/O functions, no FPGA may be needed for many applications.

2.6.3 Interface Configurability Overview

This chapter gives an overview of the board's interface options. In any case we recommend that you contact our sales team for semi-custom configuration of CC10C for your requirements.

Contact MEN's sales team for further information.

The following table relates to the pinout of the COM Express connectors. It gives an interface list to show what is configurable on the board.

It does **not** give a full list of options of the board. E.g., assembly of an eMMC is a storage option, but eMMC signals are not relevant for the connector pinout.

Please see Table 1, Processor core options on CC10C, on page 24 for a feature matrix of the i.MX 6 series.

 Table 2. Interface configurability overview (COM Express connectors)

Function	Configura- bility	i.MX6 I/O	FPGA I/O	Configurable	Standard CC10C (RCE VITA 59) Configuration	Standard CC10 (COM.0) Configuration	Comment
Storage							
SATA	1 interface	х		Х	1	-	Depends on i.MX 6 processor type
SDIO/SDHC	1 interface	х			1	1	
Multimedia							
LVDS	1 dual- channel interface	х			1	1	
HDMI/DVI	1 interface	х			1	1	
MIPI CSI-2 camera	1 interface, 2 or 4 data lanes	х		х	-	1 (2 data lanes)	Data lanes depend on i.MX 6 processor type
AC'97 audio	1 interface	х			1	1	
I2S audio	1 interface	х			1	1	
I/O							
USB 2.0	2 or 6 interfaces	х		х	6	2	
Ethernet	1 interface, 1000BASE-T	х			1	1	
	1 interface, 100BASE-T		х	х	1	-	Dedicated FPGA I/O, with Ethernet PHY (in addition to 140 configurable pins)
PCI Express 1.1	1 x1 link	х			1	1	
ExpressCard	1 interface	х			1	1	

Function	Configura- bility	i.MX6 I/O	FPGA I/O	Configurable	Standard CC10C (RCE VITA 59) Configuration	Standard CC10 (COM.0) Configuration	Comment
UARTS	Up to 4 interfaces with different handshake configuration	х		х	2 (without handshake lines)	4 (2 with handshake lines)	
	Up to 4 interfaces with different handshake configuration		х	х	4 (with handshake lines)	-	
CAN bus	2 channels 2.0B CAN protocol	х			2	2	
	2 channels 2.0A/B CAN protocol		х	х	2	-	
GPIOs	9 GPIOs, 4 GPOs, 3 GPIs	х			9 GPIOs, 4 GPOs, 3 GPIs	9 GPIOs, 4 GPOs, 3 GPIs	
	64 GPIOs		х	х	64	-	More lines possible with custom FPGA configuration
PWM	3 interfaces	х			3	3	A fourth PWM signal is used for LVDS backlight control
I2C	2 interfaces	х		x (see Comment)	2 (without MIPI CSI-2 support)	2 (with MIPI CSI- 2 support)	Specific MIPI CSI-2 device support optional
	2 interfaces		х	x	2	-	
SPI	Up to 3 interfaces	х		х	1	3	
COM Express Signals	4 control signals	Х			4	4	Other COM.0 defined control signals may be usable through GPIOs
FPGA- controlled I/O	Up to 140 signals		х	x	140	-	This gives the total number of signals available for free configuration. For standard versions they already include some interfaces implemented through the FPGA.

2.6.3.1 Multiplexed Interfaces for i.MX 6 or FPGA I/O

The following interfaces are multiplexed to be driven by **either** i.MX 6 **or** FPGA.

Table 3. Multiplexed interfaces for i.MX 6 or FPGA use

: MV C Function	FP	COM O Croup		
i.MX 6 Function	I/O Signals	Default Function	COM.0 Group	
UART1 (SER1) CTS and RTS	FPGA_IO[17:18]		DDI2_CTRL	
UART2 (SER2) with CTS and RTS	FPGA_IO[77:80]	UART2 (SER2) with CTS and RTS	PEG	
UART3 (SER3)	FPGA_IO[83:84]	UART3 (SER3)		
MIPI CSI I2C	FPGA_IO[81:82]	UART3 (SER3) handshake lines DSR and DTR		
MIPI CSI	FPGA_IO[89:90]	UART4 (SER4) RTS and CTS		
	FPGA_IO[91:92]	UART3 (SER3) DCD and RI		
	FPGA_IO[93:94]	UART5 (SER5)		
	FPGA_IO[96:97]	UART5 (SER5) CTS and RTS		
	FPGA_IO[98:99]			
	FPGA_IO[101:102]			
SPI2/3	FPGA_IO[34:38]			
	FPGA_IO[42:43]			
	FPGA_IO[45:46]			

For a complete overview of configurable UARTs and handshake lines, see Chapter Table 5. UART interface control and configurability on page 37.

2.6.3.2 Standard CC10C FPGA Configuration

The following MEN IP cores are implemented in the standard CC10C FPGA (board version 15CC10C00):

- 16Z087_ETH Ethernet controller (10/100Base-T)
- 16Z125_UART UART controller (four UARTs)
- 16Z029_CAN CAN controller (two channels)
- 16Z127_GPIO GPIO controller (64 lines)
- 16Z001_SMB SMBus controller (two I2C interfaces)

2.7 Memory

2.7.1 DRAM System Memory

The board provides up to 4 GB onboard, soldered DDR3 (double data rate) SDRAM. Depending on the processor family used, the memory bus is up to 64 bits wide and operates with up to 533 MHz.

2.7.2 Boot Flash

The boot Flash memory contains the U-Boot/operating system bootstrapper and U-Boot environment variables. It can also contain an operating system image and application software.

The size of the boot Flash is scalable up to 16 MB, with a default size of 4 MB.

See also Chapter 3.8.1 Boot Flash Memory Map on page 74.

2.8 Mass Storage

2.8.1 Serial ATA (SATA)

The CC10C provides one SATA port controlled by the i.MX 6 processor at the COM Express connector using pin group SATA 0 according to the PICMG COM.0 standard.

The interface is compliant with SATA Revision 2.x and supports transfer rates of 3.0 Gbit/s.

The SATA activity indicator (SATA_ACT#) according to COM.0 is also supported.

You can find the pinout for the SATA signals in Chapter 2.20.3 COM Express Connectors on page 43.

This interface type may be implemented differently on every board version. Board versions assembled with the i.MX6S (Solo) or i.MX6DL (DualLite) **do not provide** the SATA interface.

2.8.2 eMMC Multimedia Card (SDHC Interface)

The CC10C comes with a 4-GB eMMC multimedia device already soldered on the board. Higher capacities are available as hardware options.

The eMMC is controlled by the i.MX 6 uSDHC Controller (Ultra Secured Digital Host Controller).

2.8.3 SDIO/SDHC Interface

CC10C supports an additional SDIO/SDHC interface controlled by the i.MX 6 processor at the COM Express connector according to the PICMG COM.0 standard.

You can find the pinout for the SDIO/SDHC signals in Chapter 2.20.3 COM Express Connectors on page 43.

2.9 Multimedia

2.9.1 Video

One of the i.MX 6 processors' strengths are next-generation graphics and high-definition video capabilities. Controlling all of the CC10C's graphics functions, the i.MX 6 processor supports the following features:

- Multi-stream-capable HD video engine delivering up to 1080p60 decode, 1080p30 encode and 3D video playback in HD
- Maximum resolution: 1920 x 1200 pixels (WUXGA+)
- Superior 3D graphics performance with up to four shaders performing 200 Mt/s and OpenCLTM support
- Separate 2D and/or OpenVG Vertex acceleration engines for optimal user interface experience
- Stereoscopic image sensor support for 3D imaging

- For processor options and the main differences in graphics capability, compare Table 1, Processor core options on CC10C on page 24.
- For a detailed description of each i.MX 6 family's graphics subsystem, please refer to the respective Freescale reference manual.

The CC10C supports the following interfaces to/from the graphics subsystem:

- HDMI/DVI, standard for all versions
- LVDS, dual-channel, standard for all versions
- MIPI CSI camera interface, standard for CC10

You can find the pinout for the graphics signals in Chapter 2.20.3 COM Express Connectors on page 43.

2.9.1.1 HDMI/DVI

The CC10C uses Digital Display Interface DDI1 at the COM Express connector according to the PICMG COM.0 standard to provide an HDMI/DVI interface. The interface uses TMDS signaling.

This interface also supports additional I2C device communication.

Also see Chapter 2.17.1 I2C Interfaces Controlled by i.MX 6 on page 38.

2.9.1.2 LVDS

The CC10C supports one dual-channel LVDS interface at the COM Express connector according to the PICMG COM.0 standard.

The interface supports one port with up to 165 Mpixels/s or two single-channel ports up to 85 Mpixels/s (e.g., WUXGA+ at 60Hz) each. The maximum resolution is WUXGA+ with 1920 by 1200 pixels.

The LVDS ports may be used as follows:

- One single-channel output
- One dual channel output: single input, split to two output channels
- Two identical outputs: single input sent to both output channels
- Two independent outputs: two inputs sent, each, to a different output channel

This interface also supports additional I2C device communication.

2.9.1.3 MIPI CSI-2 Camera Interface

The CC10C supports one MIPI CSI-2 camera interface at the COM Express connector. The signals are implemented in place of PCI Express Graphics (PEG) signals on the COM Express connector and are multiplexed with FPGA I/O signals.

This interface also supports additional I2C device communication.

Also see Chapter 2.17.1 I2C Interfaces Controlled by i.MX 6 on page 38.

This interface type is configurable and may be implemented differently on every board version. See Table 2, Interface configurability overview (COM Express connectors).

For an overview of signals multiplexed to use either i.MX 6 or FPGA I/O, see Chapter 2.6.3.1 Multiplexed Interfaces for i.MX 6 or FPGA I/O on page 29.

2.9.2 Audio

The CC10C supports AC'97 audio and I2S audio. All audio functions are controlled by the i.MX 6 processor.

A codec for either interface type must be provided on the carrier board.

You can find the pinout for the audio signals in Chapter 2.20.3 COM Express Connectors on page 43.

2.9.2.1 AC'97

The CC10C provides one AC'97 audio interface at the COM Express connector according to the PICMG COM.0 standard.

2.9.2.2 I2S

The CC10C provides one I2S audio interface.

2.10 USB

The CC10C provides up to six USB 2.0 host ports at the COM Express connector according to the PICMG COM.0 standard.

USB 0 is implemented as a USB 2.0 OTG (On-The-Go) host/client port. The additional OTG signal is implemented using a reserved pin of the COM.0 standard.

Interfaces USB 0 and USB 1 are controlled by an FSL-EHCI controller in the i.MX 6 processor which also supports USB 1.1.

Four additional USB 2.0 interfaces are driven by controllers inside an onboard PCIe Swidge with an integrated EHCI and OHCI controller.

You can find the pinout for the USB signals in Chapter 2.20.3 COM Express Connectors on page 43.

This interface type is configurable and may be implemented differently on every board version. See Table 2, Interface configurability overview (COM Express connectors).

2.11 Ethernet

The CC10C provides one Gigabit Ethernet interface controlled by the i.MX 6 processor at the COM Express connector according to the PICMG COM.0 standard. The interface is controlled by the Ethernet MAC controller inside the CPU. It supports 10 Mbit/s up to 1000 Mbit/s as well as full-duplex operation.

Board models with an onboard FPGA provide an additional, Fast Ethernet interface at the COM Express connector. It supports 10 Mbit/s and 100 Mbit/s in half-duplex and full-duplex operation.

Note: While the two possible Ethernet interfaces are called GBE0 and GBE1, only GBE0 conforms to the PICMG COM.0 standard and supports Gigabit connection

You can find the pinout for the Ethernet signals in Chapter 2.20.3 COM Express Connectors on page 43.

This interface type is configurable and may be implemented differently on every board version. See Table 2, Interface configurability overview (COM Express connectors).

2.11.1 Ethernet MAC Addresses

The unique MAC address is set at the factory and should not be changed. Any attempt to change this address may create node or bus contention and thereby render the board inoperable.

The naming of the interfaces may differ depending on the operating system. The MAC addresses on CC10C are:

```
CC10C, port 0: 0x 00 C0 3A CA 00 00 - 0x 00 C0 3A CA 7F FF
CC10C, port 1: 0x 00 C0 3A CA 80 00 - 0x 00 C0 3A CA FF FF
CC10, port 0: 0x 00 C0 3A CB 00 00 - 0x 00 C0 3A CB 7F FF
CC10, port 1: 0x 00 C0 3A CB 80 00 - 0x 00 C0 3A CB FF FF
```

where "00 C0 3A" is the MEN vendor code. The last six digits describe the range from which the addresses for the board are taken. The serial number is added by the last three digits in the range:

Serial number 42 (CC10C, port 1): $0 \times 8000 + 0 \times 002A = 0 \times 802A$.

Also see Chapter 5.2 Finding out the Product's Article Number, Revision and Serial Number on page 84.

2.11.2 Ethernet Status LEDs

The CC10C supports two control signals per Ethernet interface for the Ethernet status LEDs at the COM Express connector according to the definition of PICMG COM.0 standard: *GBE[0:1]_LINK#* and *GBE[0:1]_ACT#*.

Control signals GBE[0:1]_LINK1000# and GBE[0:1]_LINK100# are not supported.

Table 4. Ethernet status LED modes

Signal	Mode	On	Off	Blinking
GBE[0:1]_LINK#	LINK	Link up	No link	n/a
GBE[0:1]_ACT#	ACT	n/a	No activity	Tx/Rx activity

2.12 PCI Express

The CC10C provides one PCI Express x1 link controlled by the i.MX 6 processor at the COM Express connector using pin group PCIE 0 according to the PICMG COM.0 standard.

The port supports the PCIe 1.1 standard; i.e. data rates up to 250 MB/s in each direction (2.5 Gbit/s per lane).

You can find the pinout for the PCI Express signals in Chapter 2.20.3 COM Express Connectors on page 43.

2.13 ExpressCard Interface

The CC10C provides one ExpressCard interface controlled by the i.MX 6 processor at the COM Express connector according to the PICMG COM.0 standard.

ExpressCard is a small form factor expansion card for mobile systems that uses PCI Express or USB as the interface. The CC10C provides ExpressCard signals *EXCD0_PERST#* and *EXCD0_CPPE#*, but no PCI Express or USB link is specifically allocated to ExpressCard use.

You can find the pinout for the PCI Express Card signals in Chapter 2.20.3 COM Express Connectors on page 43.

2.14 CAN Bus

The CC10C provides two CAN bus interfaces controlled by the i.MX 6 processor at the COM Express connector, and an additional, optional two interfaces driven by the onboard FPGA.

The physical interfaces (transceivers) are implemented on the carrier board for each channel.

Main features of i.MX 6 controlled interfaces:

- CAN 2.0B protocol
- Data rates up to 1 Mbit/s
- Flexible Controller Area Network (FLEXCAN) controller

Main features of FPGA controlled interfaces:

- CAN 2.0A/B protocol
- Data rates up to 1 Mbit/s

The CAN interfaces are implemented in place of COM.0 LPC signals.

You can find the pinout for the CAN bus signals in Chapter 2.20.3 COM Express Connectors on page 43.

This interface type is configurable and may be implemented differently on every board version. See Table 2, Interface configurability overview (COM Express connectors).

2.15 UART Interfaces

The CC10C provides up to six UART interfaces controlled by the i.MX 6 processor and/or the onboard FPGA at the COM Express connector. The physical layers are defined on the carrier board for each channel.

Main features of i.MX 6 controlled interfaces:

- Data rates up to 4 Mbit/s per interface
- 64-byte transmit/receive buffer
- Handshake lines: none or CTS/RTS

Main features of FPGA controlled interfaces:

- Data rates up to 3 Mbit/s per interface
- 60-byte transmit/receive buffer (124-byte buffer on request)
- Handshake lines: CTS/RTS or full support (CTS, RTS, DSR, DTR, DCD, RI)

Configuration Varieties

There are various configuration varieties for the CC10C's UART interfaces, with differing handshake lines.

In general, the UARTs are implemented as follows:

- UART0 and UART1 are always controlled by the i.MX 6 processor and are implemented according to the PICMG COM.0 standard, using the General Purpose Serial Interfaces RS1 and RS2.
- UART2 and UART3 can either be controlled by the i.MX 6 processor or by the onboard FPGA, with different handshake line support.
- UART4 and UART5 are always controlled by the onboard FPGA.
- The signal mnemonics for the UARTs is *SERn*, e.g., UART0 signals are called *SER0_TX* and *SER0_RX*.

Table 5. UART interface control and configurability

UART #	Connector Row	Configurable	Controlled by	Comments
0	Α		i.MX 6	
1	Α		i.MX 6	
	С	х	i.MX 6	Additional handshake lines CTS and RTS
2	D	х	i.MX 6	i.MX 6: With handshake lines CTS and RTS
			or FPGA	FPGA: With handshake lines CTS and RTS, on FPGA_IO[77:80]
3	D	х	i.MX 6	i.MX 6: No handshake lines
			or FPGA	FPGA: With handshake lines CTS, RTS, DSR, DTR, DCD and RI, on FPGA_IO[81:86] and FPGA_IO[91:92]
4	D	х	FPGA	With handshake lines CTS and RTS, on FPGA_IO[87:88] and FPGA_IO[89:90]
5	D	х	FPGA	With handshake lines CTS and RTS, on FPGA_IO[93:94] and FPGA_IO[96:97]

You can find the pinout for the UART signals in Chapter 2.20.3 COM Express Connectors on page 43.

This interface type is configurable and may be implemented differently on every board version. See Table 2, Interface configurability overview (COM Express connectors).

Related FPGA I/O lines are not fixed to UART functionality but can also be custom-configured with different functions.

For an overview of signals multiplexed to use either i.MX 6 or FPGA I/O, see Chapter 2.6.3.1 Multiplexed Interfaces for i.MX 6 or FPGA I/O on page 29.

2.16 PWM

The CC10C provides three PWM (pulse-width modulation) signals controlled by the i.MX 6 processor at the COM Express connector.

PWM1 and PWM2 are implemented in place of COM.0 PEG signals.

PWM0 is implemented in place of COM.0 signal *FAN_PWMOUT*, so this signal can be used as specified by the standard to control a fan's RPM.

Note: A fourth PWM signal is fixed to a specific function: it is used as backlight signal for LVDS (LVDS_BKLT_CTRL).

You can find the pinout for the PWM signals in Chapter 2.20.3 COM Express Connectors on page 43.

2.17 I2C

The CC10C provides two general-purpose I2C interfaces controlled by the i.MX 6 processor at the COM Express connector and can offer additional interfaces as implemented in the onboard FPGA.

You can find the pinout for the I2C signals in Chapter 2.20.3 COM Express Connectors on page 43.

2.17.1 I2C Interfaces Controlled by i.MX 6

The two interfaces driven by the i.MX 6 processor are used in different ways:

• I2C1: Used for onboard functions and for communication with the carrier board concerning board data. The signals are implemented according to the PICMG COM.0 standard.

Also see I2C.

• I2C2: Available for free use, but can also be connected specifically to MIPI CSI-2 and HDMI/DVI devices with dedicated signals in addition to the normal I2C signals. The normal I2C and HDMI/DVI signals are implemented according to the PICMG COM.0 standard (SMBus and DDI1_CTRL signals). The additional MIPI CSI-2 signals are implemented in place of PCI Express Graphics (PEG) signals.

Also see I2C, HDMI1_CTRLCLK and MIPI_I2C_SCL.

Also see Chapter 4.3 SMBus Devices on page 81.

2.17.2 I2C Interfaces Controlled by Onboard FPGA

Additional interfaces can be implemented using the onboard FPGA. By default, these signals are implemented in place of PCI Express signals on the COM Express connector.

Also see I2C.

This interface type is configurable and may be implemented differently on every board version. See Table 2, Interface configurability overview (COM Express connectors).

2.18 SPI

The CC10C provides three SPI interfaces controlled by the i.MX 6 processor at the COM Express connector.

SPI1 is implemented according to the PICMG COM.0 standard.

SPI2 and SPI3 are implemented in place of COM.0 PEG signals and are multiplexed with FPGA I/O signals.

You can find the pinout for the SPI signals in Chapter 2.20.3 COM Express Connectors on page 43.

This interface type is configurable and may be implemented differently on every board version. See Table 2, Interface configurability overview (COM Express connectors).

For an overview of signals multiplexed to use either i.MX 6 or FPGA I/O, see Chapter 2.6.3.1 Multiplexed Interfaces for i.MX 6 or FPGA I/O on page 29.

2.19 GPIO

The CC10C provides nine GPIO, four GPO and three GPI lines controlled by the i.MX 6 processor at the COM Express connector and can offer additional GPIOs as implemented in the onboard FPGA.

You can find the pinout for GPIO signals in Chapter 2.20.3 COM Express Connectors on page 43.

GPIOs are accessible through driver software provided by the board support package (if i.MX 6 controlled) or other driver software (if FPGA controlled).

You can find any BSP and driver software available for download on the CC10C pages on MEN's website.

2.19.1 GPIO Lines Controlled by i.MX 6

A number of GPIOs controlled by the i.MX 6 processor are implemented in place of COM.0 control signals and may partly be used as control signals through special software support.

All GPIO lines are interrupt-capable.

- For a reference to COM.0-defined standard control signals see section GPIO of the mnemonics table.
- Also see Chapter 2.20.4 COM Express Control Signals on page 55.

Note that pins *GPO[0:3]* refer to i.MX 6 GPO lines. They are not to be confused with the COM.0 defined GPO pins of the same name, which are used for different functions on CC10C.

2.19.2 GPIO Lines Controlled by Onboard FPGA

Additional GPIO lines can be implemented using the onboard FPGA.

This interface type is configurable and may be implemented differently on every board version. See Table 2, Interface configurability overview (COM Express connectors).

Related FPGA I/O lines are not fixed to GPIO functionality but can also be custom-configured with different functions.

2.20 Rugged COM Express (VITA 59)

Rugged COM Express is a Computer-On-Module (COM/SOM) standard that is based on PICMG standard COM.0 or COM Express but is especially ruggedized and provides a high-performance, low-power architecture for harsh environments.

RCE modules are electrically compatible to standard COM Express (PICMG COM.0) boards. For this reason, MEN is able to provide every Rugged COM Express board also as a standard COM Express board without much development effort.

The RCE concept has been developed for applications that require highly robust electronics to ensure safe and reliable operation even in severe environments, e.g., in railways and avionics, industrial automation and medical engineering or mobile applications in general.

To make standard COM Express modules suitable for this kind of applications they were embedded in a frame and a cover which ensures 100% EMC protection. Only soldered components are used to withstand shock and vibration, and the design is optimized for conformal coating.

2.20.1 Module Form Factors

Generally three form factors are defined for Rugged COM Express:

Module Type	Length	Width	Height	MEN Product Name Convention
Mini	94 mm	65 mm	18 mm	CMxxC
Compact	105 mm	105 mm	18 mm	CCxxC

105 mm

Table 6. Form factors defined for Rugged COM Express

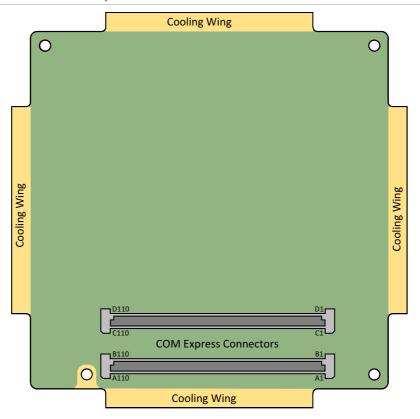
135 mm

Related COM Express (COM.0) modules from MEN are named the same as Rugged COM Express modules but without the 'C' at the end, e.g., CB70 or CC10.

18 mm

CBxxC

The CC10C module has Rugged COM Express Compact format, the CC10 has COM Express Compact format.


2.20.2 Thermal Concept

Basic

Rugged COM Express modules are equipped with four cooling wings for conductive cooling. The heat generated on the board is transported to the frame and the cover via the cooling wings. The frame and the cover, however, are only part of the thermal solution for a module. They only provide a common interface between the Rugged COM Express module and implementation-specific thermal solutions.

The module can, e.g., be cooled via conductive cooling, where the heat is transported to a housing or a heat sink built on top of the cover.

For applications where operating temperatures are moderate and in combination with a suitable low-power processor and airflow, MEN's modules can also be used without the frame and cover as standard COM Express modules in accordance with the PICMG COM.0 standard.

Figure 3. Rugged COM Express Compact module with cooling wings (PCB without frame and cover)

Please contact MEN's sales team for further information.

2.20.3 COM Express Connectors

The CC10C is connected to the carrier board via two 220-pin connectors using COM Express Type 6 connector pin-out. The *TYPEx* connector pins are implemented accordingly, in compliance with the PICMG COM.0 standard.

Connector J1 (rows A/B) is fully COM Express Type 6 compliant. Connector J2 (rows C/D) is based on COM Express Type 6 but includes module-specific signals.

Connector types:

- 2-row, 220-pin free height 4H receptacle, 0.5 mm pitch, e.g., Tyco Electronics 3-6318490-6
- Mating connector:
 2-row, 220-pin free height 5H plug connector, 0.5 mm pitch,
 e.g., Tyco Electronics 3-1827253-6

In the following pinout tables the COM Express connectors are shown as seen on a carrier board.

Pins shown as '-' are not connected.

Table 7. Pin assignment of COM Express connectors J1 and J2 - CC10C

	·	J1		J2			
A1	GND	B1	GND	C1	GND	D1	GND
A2	GBE0_MDI3-	B2	GBE0_ACT#	C2	GND	D2	GND
A3	GBE0_MDI3+	В3	FPGA_IO111 / CAN3_TX	СЗ	FPGA_IO2	D3	-
A4	-	B4	CAN1_TX	C4	FPGA_IO1	D4	-
A5	-	B5	CAN1_RX	C5	GND	D5	GND
A6	GBE0_MDI2-	В6	FPGA_IO112 / CAN3_RX	C6	FPGA_IO4	D6	-
A7	GBE0_MDI2+	B7	FPGA_IO113 / CAN4_TX	C7	FPGA_IO3	D7	-
A8	GBE0_LINK#	B8	CAN2_TX	C8	GND	D8	GND
A9	GBE0_MDI1-	B9	CAN2_RX	C9	FPGA_IO6	D9	-
A10	GBE0_MDI1+	B10	FPGA_IO114 / CAN4_RX	C10	FPGA_IO5	D10	-
A11	GND	B11	GND	C11	GND	D11	GND
A12	GBE0_MDI0-	B12	PWRBTN#	C12	FPGA_IO8	D12	-
A13	GBE0_MDI0+	B13	12C2_CK	C13	FPGA_IO7	D13	-
A14	GBE0_CTREF	B14	I2C2_DAT	C14	GND	D14	GND
A15	GPO0	B15	GPIO3	C15	-	D15	HDMI1_CTRLCLK
A16	SATA0_TX+	B16	-	C16	-	D16	HDMI1_CTRLDATA
A17	SATA0_TX-	B17	-	C17	FPGA_IO9	D17	FPGA_IO59
A18	GPO1	B18	GPO3	C18	FPGA_IO10	D18	FPGA_IO60

	J	1			J2			
A19	SATA0_RX+	B19	-	C19	FPGA_IO11	D19	FPGA_IO61	
A20	SATA0_RX-	B20	-	C20	FPGA_IO12	D20	FPGA_IO62	
A21	GND	B21	GND	C21	GND	D21	GND	
A22	-	B22	FPGA_IO115	C22	FPGA_IO13	D22	FPGA_IO63	
A23	-	B23	FPGA_IO116	C23	FPGA_IO14	D23	FPGA_IO64	
A24	GPO2	B24	PWR_OK	C24	HDMI1_HPD	D24	FPGA_IO65	
A25	-	B25	FPGA_IO117	C25	-	D25	FPGA_IO32	
A26	-	B26	FPGA_IO118	C26	-	D26	TMDS1_DATA2+	
A27	GPIO5 (BATLOW#)	B27	WDT	C27	FPGA_IO15	D27	TMDS1_DATA2-	
A28	SATA_ACT#	B28	-	C28	FPGA_IO16	D28	FPGA_VCCIO7	
A29	AC/HDA_SYNC	B29	-	C29	-	D29	TMDS1_DATA1+	
A30	AC/HDA_RST#	B30	AC/HDA_SDIN0	C30	-	D30	TMDS1_DATA1-	
A31	GND	B31	GND	C31	GND	D31	GND	
A32	AC/HDA_BITCLK	B32	FPGA_IO119	C32	FPGA_IO17	D32	TMDS1_DATA0+	
A33	AC/HDA_SDOUT	B33	I2C1_CK	C33	FPGA_IO18	D33	TMDS1_DATA0-	
A34	GPIO0	B34	I2C1_DAT	C34	FPGA_IO19	D34	DDI1_AUXSEL	
A35	GPIO1	B35	GPIO4	C35	FPGA_IO47	D35	Reserved	
A36	FPGA_IO108	B36	FPGA_IO120	C36	FPGA_IO20	D36	TMDS1_CLK+	
A37	FPGA_IO109	B37	FPGA_IO121	C37	FPGA_IO21	D37	TMDS1_CLK-	
A38	FPGA_IO110	B38	USB_4_5_OC#	C38	FPGA_IO22	D38	Reserved	
A39	USB4-	B39	USB5-	C39	FPGA_IO23	D39	FPGA_IO66	
A40	USB4+	B40	USB5+	C40	FPGA_IO24	D40	FPGA_IO67	
A41	GND	B41	GND	C41	GND	D41	GND	
A42	USB2-	B42	USB3-	C42	FPGA_IO25	D42	FPGA_IO68	
A43	USB2+	B43	USB3+	C43	FPGA_IO26	D43	FPGA_IO69	
A44	USB_2_3_OC#	B44	USB_0_1_OC#	C44	FPGA_IO27	D44	FPGA_IO70	
A45	USB0-	B45	USB1-	C45	FPGA_IO33	D45	FPGA_IO71	
A46	USB0+	B46	USB1+	C46	FPGA_IO28	D46	FPGA_IO72	
A47	VCC_RTC	B47	FPGA_IO122 / I2C3_SCL	C47	FPGA_IO29	D47	FPGA_IO73	
A48	EXCD0_PERST#	B48	FPGA_IO123 / I2C3_SDA	C48	USBOTG_ID	D48	FPGA_IO74	
A49	EXCD0_CPPE#	B49	SYS_RESET#	C49	FPGA_IO30	D49	FPGA_IO75	
A50	GPIO2	B50	CB_RESET#	C50	FPGA_IO31	D50	FPGA_IO76	
A51	GND	B51	GND	C51	GND	D51	GND	
A52	-	B52	FPGA_IO124 / I2C4_SCL	C52	FPGA_IO103	D52	FPGA_IO77 / SER2_TX	
A53	-	B53	FPGA_IO125 / I2C4_SDA	C53	FPGA_IO104	D53	FPGA_IO78 / SER2_RX	
A54	SD_DATA0	B54	SD_CMD	C54	-	D54	FPGA_IO39	

	· ·	11		J2			
A55	-	B55	FPGA_IO126	C55	FPGA_IO34	D55	FPGA_IO79 / SER2_CTS
A56	-	B56	FPGA_IO127	C56	FPGA_IO35	D56	FPGA_IO80 / SER2_RTS
A57	GND	B57	SD_WP	C57	-	D57	GND
A58	-	B58	FPGA_IO128	C58	FPGA_IO36	D58	FPGA_IO82 / SER3_DSR
A59	-	B59	FPGA_IO129	C59	FPGA_IO37	D59	FPGA_IO81 / SER3_DTR
A60	GND	B60	GND	C60	GND	D60	GND
A61	-	B61	FPGA_IO130	C61	FPGA_IO38	D61	FPGA_IO83 / SER3_TX
A62	-	B62	FPGA_IO131	C62	FPGA_IO105	D62	FPGA_IO84 / SER3_RX
A63	SD_DATA1	B63	SD_CD#	C63	FPGA_IO40	D63	FPGA_IO85 / SER3_RTS
A64	-	B64	FPGA_IO132	C64	FPGA_IO41	D64	FPGA_IO86 / SER3_CTS
A65	-	B65	FPGA_IO133	C65	FPGA_IO42	D65	FPGA_IO87 / SER4_TX
A66	GND	B66	GPIO7 (WAKE0#)	C66	FPGA_IO43	D66	FPGA_IO88 / SER4_RX
A67	SD_DATA2	B67	GPIO8 (WAKE1#)	C67	FPGA_IO44	D67	GND
A68	PCIE_TX0+	B68	PCIE_RX0+	C68	FPGA_IO45	D68	FPGA_IO89 / SER4_RTS
A69	PCIE_TX0-	B69	PCIE_RX0-	C69	FPGA_IO46	D69	FPGA_IO90 / SER4_CTS
A70	GND	B70	GND	C70	GND	D70	GND
A71	LVDS_A0+	B71	LVDS_B0+	C71	FPGA_IO106	D71	FPGA_IO91 / SER3_DCD
A72	LVDS_A0-	B72	LVDS_B0-	C72	FPGA_IO107	D72	FPGA_IO92 / SER3_RI
A73	LVDS_A1+	B73	LVDS_B1+	C73	GND	D73	GND
A74	LVDS_A1-	B74	LVDS_B1-	C74	PWM1	D74	FPGA_IO93 / SER5_TX
A75	LVDS_A2+	B75	LVDS_B2+	C75	PWM2	D75	FPGA_IO94 / SER5_RX
A76	LVDS_A2-	B76	LVDS_B2-	C76	GND	D76	GND
A77	LVDS_VDD_EN	B77	LVDS_B3+	C77	FPGA_IO49	D77	FPGA_IO95
A78	LVDS_A3+	B78	LVDS_B3-	C78	FPGA_IO50	D78	FPGA_IO96 / SER5_CTS
A79	LVDS_A3-	B79	LVDS_BKLT_EN	C79	FPGA_IO51	D79	FPGA_IO97 / SER5_RTS
A80	GND	B80	GND	C80	GND	D80	GND

		J1			J2			
A81	LVDS_A_CK+	B81	LVDS_B_CK+	C81	FPGA_IO52	D81	FPGA_IO98	
A82	LVDS_A_CK-	B82	LVDS_B_CK-	C82	FPGA_IO53	D82	FPGA_IO99	
A83	LVDS_I2C_CK	B83	LVDS_BKLT_CTRL	C83	FPGA_IO54	D83	FPGA_IO100	
A84	LVDS_I2C_DAT	B84	-	C84	GND	D84	GND	
A85	SD_DATA3	B85	-	C85	FPGA_IO55	D85	FPGA_IO101	
A86	-	B86	-	C86	FPGA_IO56	D86	FPGA_IO102	
A87	-	B87	-	C87	GND	D87	GND	
A88	PCIE_CK_REF+	B88	GPIO11	C88	FPGA_IO57	D88	AC2_MCLK	
A89	PCIE_CK_REF-	B89	FPGA_IO134	C89	FPGA_IO58	D89	GBE1_CTREF	
A90	GND	B90	GND	C90	GND	D90	GND	
A91	SPI1_PWR	B91	FPGA_IO135	C91	AC/HDA2_LRCLK	D91	GBE1_ACT#	
A92	SPI1_MISO	B92	FPGA_IO136	C92	AC/HDA2_BITCLK	C92	-	
A93	SD_CLK	B93	FPGA_IO137	C93	GND	D93	GND	
A94	SPI1_CLK	B94	FPGA_IO138	C94	AC/HDA2_DAT_O	D94	-	
A95	SPI1_MOSI	B95	FPGA_IO139	C95	AC/HDA2_DAT_U	D95	GBE1_LINK#	
A96	-	B96	FPGA_IO140	C96	GND	D96	GND	
A97	-	B97	SPI1_CS#	C97	FPGA_IO48	D97	Reserved	
A98	SER0_TX	B98	-	C98	-	D98	-	
A99	SER0_RX	B99	-	C99	-	D99	-	
A100	GND	B100	GND	C100	GND	D100	GND	
A101	SER1_TX	B101	PWM0 (FAN_PWMOUT)	C101	GBE1_MDI0+	D101	GBE1_MDI1+	
A102	SER1_RX	B102	GPIO9 (FAN_TACHIN)	C102	GBE1_MDI0-	D102	GBE1_MDI1-	
A103	GPIO6 (LID#)	B103	GPIO10 (SLEEP#)	C103	GND	D103	GND	
A104	VCC_12V	B104	VCC_12V	C104	VCC_12V	D104	VCC_12V	
A105	VCC_12V	B105	VCC_12V	C105	VCC_12V	D105	VCC_12V	
A106	VCC_12V	B106	VCC_12V	C106	VCC_12V	D106	VCC_12V	
A107	VCC_12V	B107	VCC_12V	D107	VCC_12V	C107	VCC_12V	
A108	VCC_12V	B108	VCC_12V	D108	VCC_12V	C108	VCC_12V	
A109	VCC_12V	B109	VCC_12V	C109	VCC_12V	D109	VCC_12V	
A110	GND	B110	GND	C110	GND	D110	GND	

Table 8. Pin assignment of COM Express connectors J1 and J2 - CC10

	J	1			J	2	
A1	GND	B1	GND	C1	GND	D1	GND
A2	GBE0_MDI3-	B2	GBE0_ACT#	C2	GND	D2	GND
А3	GBE0_MDI3+	В3	-	C3	-	D3	-
A4	-	B4	CAN1_TX	C4	-	D4	-
A5	-	B5	CAN1_RX	C5	GND	D5	GND
A6	GBE0_MDI2-	В6	-	C6	-	D6	-
A7	GBE0_MDI2+	В7	-	C7	-	D7	-
A8	GBE0_LINK#	B8	CAN2_TX	C8	GND	D8	GND
A9	GBE0_MDI1-	B9	CAN2_RX	C9	-	D9	-
A10	GBE0_MDI1+	B10	-	C10	-	D10	-
A11	GND	B11	GND	C11	GND	D11	GND
A12	GBE0_MDI0-	B12	PWRBTN#	C12	-	D12	-
A13	GBE0_MDI0+	B13	I2C2_CK	C13	-	D13	-
A14	GBE0_CTREF	B14	I2C2_DAT	C14	GND	D14	GND
A15	GPO0	B15	GPIO3	C15	-	D15	HDMI1_CTRLCLK
A16	-	B16	-	C16	-	D16	HDMI1_CTRLDATA
A17	-	B17	-	C17	-	D17	-
A18	GPO1	B18	GPO3	C18	-	D18	-
A19	-	B19	-	C19	-	D19	-
A20	-	B20	-	C20	-	D20	-
A21	GND	B21	GND	C21	GND	D21	GND
A22	-	B22	-	C22	-	D22	-
A23	-	B23	-	C23	-	D23	-
A24	GPO2	B24	PWR_OK	C24	HDMI1_HPD	D24	-
A25	-	B25	-	C25	-	D25	-
A26	-	B26	-	C26	-	D26	TMDS1_DATA2+
A27	GPIO5 (BATLOW#)	B27	WDT	C27	-	D27	TMDS1_DATA2-
A28	-	B28	-	C28	-	D28	-
A29	AC/HDA_SYNC	B29	-	C29	-	D29	TMDS1_DATA1+
A30	AC/HDA_RST#	B30	AC/HDA_SDIN0	C30	-	D30	TMDS1_DATA1-
A31	GND	B31	GND	C31	GND	D31	GND
A32	AC/HDA_BITCLK	B32	-	C32	SER1_CTS	D32	TMDS1_DATA0+
A33	AC/HDA_SDOUT	B33	I2C1_CK	C33	SER1_RTS	D33	TMDS1_DATA0-
A34	GPIO0	B34	I2C1_DAT	C34	-	D34	DDI1_AUXSEL
A35	GPIO1	B35	GPIO4	C35	-	D35	-
A36	-	B36	-	C36	-	D36	TMDS1_CLK+
A37	-	B37	-	C37	-	D37	TMDS1_CLK-
A38	-	B38	-	C38	-	D38	-
A39	-	B39	-	C39	-	D39	-

J1			J2				
A40	-	B40	-	C40	-	D40	-
A41	GND	B41	GND	C41	GND	D41	GND
A42	-	B42	-	C42	-	D42	-
A43	-	B43	-	C43	-	D43	-
A44	-	B44	USB_0_1_OC#	C44	-	D44	-
A45	USB0-	B45	USB1-	C45	-	D45	-
A46	USB0+	B46	USB1+	C46	-	D46	-
A47	VCC_RTC	B47	-	C47	-	D47	-
A48	EXCD0_PERST#	B48	-	C48	USBOTG_ID	D48	-
A49	EXCD0_CPPE#	B49	SYS_RESET#	C49	-	D49	-
A50	GPIO2	B50	CB_RESET#	C50	-	D50	-
A51	GND	B51	GND	C51	GND	D51	GND
A52	-	B52	-	C52	-	D52	SER2_TX
A53	-	B53	-	C53	-	D53	SER2_RX
A54	SD_DATA0	B54	SD_CMD	C54	-	D54	-
A55	-	B55	-	C55	SPI2_MISO	D55	SER2_CTS
A56	-	B56	-	C56	SPI2_MOSI	D56	SER2_RTS
A57	GND	B57	SD_WP	C57	-	D57	GND
A58	-	B58	-	C58	SPI2_CLK	D58	MIPI_I2C_SCL
A59	-	B59	-	C59	SPI2_CS#	D59	MIPI_I2C_SDA
A60	GND	B60	GND	C60	GND	D60	GND
A61	-	B61	-	C61	SPI2/3_PWR	D61	SER3_TX
A62	-	B62	-	C62	-	D62	SER3_RX
A63	SD_DATA1	B63	SD_CD#	C63	-	D63	-
A64	-	B64	-	C64	-	D64	-
A65	-	B65	-	C65	SPI3_MISO	D65	-
A66	GND	B66	GPIO7 (WAKE0#)	C66	SPI3_CLK	D66	-
A67	SD_DATA2	B67	GPIO8 (WAKE1#)	C67	-	D67	GND
A68	PCIE_TX0+	B68	PCIE_RX0+	C68	SPI3_MOSI	D68	CSI_ENABLE#
A69	PCIE_TX0-	B69	PCIE_RX0-	C69	SPI3_CS#	D69	CSI_RESET#
A70	GND	B70	GND	C70	GND	D70	GND
A71	LVDS_A0+	B71	LVDS_B0+	C71	-	D71	CSI_CLK+
A72	LVDS_A0-	B72	LVDS_B0-	C72	-	D72	CSI_CLK-
A73	LVDS_A1+	B73	LVDS_B1+	C73	GND	D73	GND
A74	LVDS_A1-	B74	LVDS_B1-	C74	PWM1	D74	CSI_DAT0+
A75	LVDS_A2+	B75	LVDS_B2+	C75	PWM2	D75	CSI_DAT0-
A76	LVDS_A2-	B76	LVDS_B2-	C76	GND	D76	GND
A77	LVDS_VDD_EN	B77	LVDS_B3+	C77	-	D77	-
A78	LVDS_A3+	B78	LVDS_B3-	C78	-	D78	CSI_DAT1+
A79	LVDS_A3-	B79	LVDS_BKLT_EN	C79	-	D79	CSI_DAT1-

		J1			J2			
A80	GND	B80	GND	C80	GND	D80	GND	
A81	LVDS_A_CK+	B81	LVDS_B_CK+	C81	-	D81	CSI_DAT2+	
A82	LVDS_A_CK-	B82	LVDS_B_CK-	C82	-	D82	CSI_DAT2-	
A83	LVDS_I2C_CK	B83	LVDS_BKLT_CTRL	C83	-	D83	-	
A84	LVDS_I2C_DAT	B84	-	C84	GND	D84	GND	
A85	SD_DATA3	B85	-	C85	-	D85	CSI_DAT3+	
A86	-	B86	-	C86	-	D86	CSI_DAT3-	
A87	-	B87	-	C87	GND	D87	GND	
A88	PCIE_CK_REF+	B88	GPIO11	C88	-	D88	AC2_MCLK	
A89	PCIE_CK_REF-	B89	-	C89	-	D89	-	
A90	GND	B90	GND	C90	GND	D90	GND	
A91	SPI1_PWR	B91	-	C91	AC/HDA2_LRCLK	D91	-	
A92	SPI1_MISO	B92	-	C92	AC/HDA2_BITCLK	C92	-	
A93	SD_CLK	B93	-	C93	GND	D93	GND	
A94	SPI1_CLK	B94	-	C94	AC/HDA2_DAT_O	D94	-	
A95	SPI1_MOSI	B95	-	C95	AC/HDA2_DAT_U	D95	-	
A96	-	B96	-	C96	GND	D96	GND	
A97	-	B97	SPI1_CS#	C97	-	D97	-	
A98	SER0_TX	B98	-	C98	-	D98	-	
A99	SER0_RX	B99	-	C99	-	D99	-	
A100	GND	B100	GND	C100	GND	D100	GND	
A101	SER1_TX	B101	PWM0 (FAN_PWMOUT)	C101	-	D101	-	
A102	SER1_RX	B102	GPIO9 (FAN_TACHIN)	C102	-	D102	-	
A103	GPIO6 (LID#)	B103	GPIO10 (SLEEP#)	C103	GND	D103	GND	
A104	VCC_12V	B104	VCC_12V	C104	VCC_12V	D104	VCC_12V	
A105	VCC_12V	B105	VCC_12V	C105	VCC_12V	D105	VCC_12V	
A106	VCC_12V	B106	VCC_12V	C106	VCC_12V	D106	VCC_12V	
A107	VCC_12V	B107	VCC_12V	D107	VCC_12V	C107	VCC_12V	
A108	VCC_12V	B108	VCC_12V	D108	VCC_12V	C108	VCC_12V	
A109	VCC_12V	B109	VCC_12V	C109	VCC_12V	D109	VCC_12V	
A110	GND	B110	GND	C110	GND	D110	GND	

Table 9. Signal Mnemonics

	Signal	Direction	Function		
Power	GND	-	Ground		
	VCC_12V	in	Primary power input: +12V nominal		
	VCC_RTC	in	Real-time clock circuit-power input. Nominally +3.0 V		
Power &	CB_RESET#	out	Reset output from module to carrier board		
System Management	PWR_OK	in	Power OK signal from external main power supply		
Control	PWRBTN#	in	Power button to bring system out of S5 (soft off)		
Signals	SYS_RESET#	in	Reset button input		
	WDT	out	Output indicating that a watchdog time-out event has occurred		
Ethernet	GBE0_ACT#	out	Signal for activity status LED, port 0		
	GBE0_CTREF	out	Port 0 reference voltage		
	GBE0_LINK#	out	Signal for link status LED, port 0		
	GBE0_MDI[0:3]+, GBE0_MDI[0:3]-	in/out	Media Dependent Interface data, differential pairs 0 to 3, port 0 (Gigabit Ethernet)		
	GBE1_ACT#	out	Signal for activity status LED, port 1		
	GBE1_CTREF	out	Port 1 reference voltage		
	GBE1_LINK#	out	Signal for link status LED, port 1		
	GBE1_MDI[0:1]+, GBE1_MDI[0:1]-	in/out	Media Dependent Interface data, differential pairs 0 to 1, port 1 (Fast Ethernet), MDI0 = TX, MDI1 = RX		
PCI Express	PCIE_CK_REF+, PCIE_CK_REF-	out	Reference clock output for all PCI Express lanes		
	PCIE_RX0+, PCIE_RX0-	in	Differential PCIe receive lines, lane 0		
	PCIE_TX0+, PCIE_TX0-	out	Differential PCIe transmit lines, lane 0		
Express	EXCD0_CPPE#	in	ExpressCard: PCI Express capable card request		
Card	EXCD0_PERST#	out	ExpressCard: reset		

	Signal	Direction	Function
LVDS	LVDS_A_CK+, LVDS_A_CK-	out	Differential LVDS clock output, port A
	LVDS_A[0:3]+, LVDS_A[0:3]-	out	Differential LVDS lines, port A
	LVDS_B_CK+, LVDS_B_CK-	out	Differential LVDS clock output, port B
	LVDS_B[0:3]+, LVDS_B[0:3]-	out	Differential LVDS lines, port B
	LVDS_BKLT_CTRL	out	LVDS panel backlight brightness control (using fourth PWM interface)
	LVDS_BKLT_EN	out	LVDS panel backlight enable
	LVDS_I2C_CK	out	I2C clock output for LVDS display use
	LVDS_I2C_DAT	in/out	I2C data line for LVDS display use
	LVDS_VDD_EN	out	LVDS panel power enable
SATA	SATA0_RX+, SATA0_RX-	in	Differential SATA receive lines, port 0
	SATA0_TX+, SATA0_TX-	out	Differential SATA transmit lines, port 0
	SATA_ACT#	in/out	SATA or SAS activity indicator
SDHC/SDIO	SD_CD#	in	SDIO Card Detect. This signal indicates when an SDIO/MMC card is present.
	SD_CLK	out	SDIO Clock. With each cycle of this signal a one-bit transfer on the command and each data line occurs. This signal has a maximum frequency of 48 MHz.
	SD_CMD	out	SDIO Command/Response. This signal is used for card initialization and for command transfers.
	SD_DATA[0:3]	in/out	SDIO data lines
	SD_WP	out	SDIO Write Protect. This signal denotes the state of the write-protect tab on SD cards.
USB	USB0+, USB0-	in/out	Differential USB lines, port 0
	USB1+, USB1-	in/out	Differential USB lines, port 1
	USB2+, USB2-	in/out	Differential USB lines, port 2
	USB3+, USB3-	in/out	Differential USB lines, port 3
	USB4+, USB4-	in/out	Differential USB lines, port 4
	USB5+, USB5-	in/out	Differential USB lines, port 5
	USB_0_1_OC#	in	USB overcurrent sense, ports 0 and 1
	USB_2_3_OC#	in	USB overcurrent sense, ports 2 and 3
	USB_4_5_OC#	in	USB overcurrent sense, ports 4 and 5
	USBOTG_ID	in	OTG signal for port 0

	Signal	Direction	Function
AC'97 Audio	AC/HDA_BITCLK	out	Serial data clock generated by the external codec
	AC/HDA_RST#	out	Reset output to codec
	AC/HDA_SDOUT	out	Serial TDM data output to the codec
	AC/HDA_SDIN0	in	Serial TDM data input from codec
	AC/HDA_SYNC	out	Sample-synchronization signal to the codec(s)
I2S Audio	AC/HDA2_BITCLK	out	Serial data clock generated by the external codec
	AC/HDA2_DAT_O	out	Serial data output to the codec
	AC/HDA2_DAT_U	in	Serial data input from codec
	AC/HDA2_LRCLK	out	I2S word clock line (left right clock)
	AC2_MCLK	out	I2S master clock
MIPI CSI-2	CSI_CLK+, CSI_CLK-	in	MIPI CSI-2 clock differential pair
(CSI_DAT[0:3]+, CSI_DAT[0:3]-	in	MIPI CSI-2 data lanes 0, 1, 2 and 3 differential pairs
	CSI_ENABLE#	out	MIPI CSI-2 camera enable
	CSI_RESET#	out	MIPI CSI-2 camera reset
	MIPI_I2C_SCL	out	I2C clock output for MIPI CSI-2 use
	MIPI_I2C_SDA	in/out	I2C data line for MIPI CSI-2 use
HDMI	DDI1_AUXSEL	in	DDI1 DDC/AUX Select. On CC10C this permanently sets the interface to HDMI function
	HDMI1_CTRLCLK	in/out	HDMI/DVI I2C control clock
	HDMI1_CTRLDATA	in/out	HDMI/DVI I2C control data
	HDMI1_HPD	in	HDMI/DVI hot-plug detect
	TMDS1_CLK+, TMDS1_CLK-	out	HDMI/DVI TMDS clock differential pair
	TMDS1_DATA[0:2]+, TMDS1_DATA[0:2]-	out	HDMI/DVI TMDS lanes 0, 1 and 2 differential pairs
UART0	SER0_RX	in	Receive data, UART0
(i.MX 6)	SER0_TX	out	Transmit data, UART0
UART1 (i.MX 6)	SER1_CTS	in	Clear to send, UART1, only available without onboard FPGA
	SER1_RTS	out	Request to send, UART1, only available without onboard FPGA
	SER1_RX	in	Receive data, UART1
	SER1_TX	out	Transmit data, UART1

	Signal	Direction	Function
UART2 (FPGA or i.MX 6)	SER2_CTS	in	Clear to send, UART2, if FPGA controlled: using FPGA_IO79
	SER2_RTS	out	Request to send, UART2, if FPGA controlled: using FPGA_IO80
	SER2_RX	in	Receive data, UART2, if FPGA controlled: using FPGA_IO78
	SER2_TX	out	Transmit data, UART2, if FPGA controlled: using FPGA_IO77
UART3	SER3_CTS	in	Clear to send, UART3, using FPGA_IO86
(FPGA)	SER3_DCD	in	Data carrier detected, UART3, using FPGA_IO91
	SER3_DSR	in	Data set ready, UART3, using FPGA_IO82
	SER3_DTR	out	Data terminal ready, UART3, using FPGA_IO81
	SER3_RI	in	Ring indicator, UART3, using FPGA_IO92
	SER3_RTS	out	Request to send, UART3, using FPGA_IO85
	SER3_RX	in	Receive data, UART3, using FPGA_IO84
	SER3_TX	out	Transmit data, UART3, using FPGA_IO83
UART4	SER4_CTS	in	Clear to send, UART4, using FPGA_IO90
(FPGA)	SER4_RTS	out	Request to send, UART4, using FPGA_IO89
	SER4_RX	in	Receive data, UART4, using FPGA_IO88
	SER4_TX	out	Transmit data, UART4, using FPGA_IO87
UART5	SER5_CTS	in	Clear to send, UART5, using FPGA_IO96
(FPGA)	SER5_RTS	out	Request to send, UART5, using FPGA_IO97
	SER5_RX	in	Receive data, UART5, using FPGA_IO94
	SER5_TX	out	Transmit data, UART5, using FPGA_IO93
CAN Bus	CAN1_RX	in	CAN bus interface 1 data receive line
	CAN1_TX	out	CAN bus interface 1 data transmit line
	CAN2_RX	in	CAN bus interface 2 data receive line
	CAN2_TX	out	CAN bus interface 2 data transmit line
	CAN3_RX	in	CAN bus interface 3 data receive line, if FPGA controlled: using FPGA_IO112
	CAN3_TX	out	CAN bus interface 3 data transmit line, if FPGA controlled: using FPGA_IO111
	CAN4_RX	in	CAN bus interface 4 data receive line, if FPGA controlled: using FPGA_IO114
	CAN4_TX	out	CAN bus interface 4 data transmit line, if FPGA controlled: using FPGA_IO113
FPGA I/O	FPGA_IO[1:140]	in/out	FPGA I/O signal. Functions depending on implemented IP cores

	Signal	Direction	Function
I2C	I2C[1:2]_CK	out	General purpose I2C port clock lines, controlled by i.MX 6
	I2C[1:2]_DAT	in/out	General purpose I2C port data I/O lines, controlled by i.MX 6
	12C[3:4]_SCL	out	General purpose I2C port clock lines, controlled by onboard FPGA, using FPGA_IO122 and FPGA_IO124
	I2C[3:4]_SDA	in/out	General purpose I2C port data I/O lines, controlled by onboard FPGA, using FPGA_IO123 and FPGA_IO125
PWM	PWM[0:2]	out	Pulse Width Modulation (PWM) interfaces (PWM0 can be used as FAN_PWMOUT for fan speed control.)
SPI	SPI[1:3]_CLK	out	Clock from COM module to carrier SPI
	SPI[1:3]_CS#	out	Chip select for carrier board SPI
	SPI[1:3]_MISO	in	Data out from COM module to carrier SPI
	SPI[1:3]_MOSI	out	Data in to COM module from carrier SPI
	SPI1_PWR, SPI2/3_PWR	out	Power supply for carrier board SPI – sourced from COM module – nominally 3.3V. SPI2/3_PWR supplies both SPI2 and SPI3
GPIO	GPIO[0:5], GPIO[7:8], GPIO11	in/out	i.MX 6 GPIO0 (COM.0 pin definition: BIOS_DIS0#) i.MX 6 GPIO1 (COM.0 pin definition: THRMTRIP#) i.MX 6 GPIO2 (COM.0 pin definition: LPC_SERIRQ) i.MX 6 GPIO3 (COM.0 pin definition: SMB_ALERT#) i.MX 6 GPIO4 (COM.0 pin definition: THRM#) i.MX 6 GPIO5 (COM.0 pin definition: BATLOW#) i.MX 6 GPIO7 (COM.0 pin definition: WAKE0#) i.MX 6 GPIO8 (COM.0 pin definition: WAKE1#) i.MX 6 GPIO8 (COM.0 pin definition: BIOS_DIS1#) i.MX 6 GPIO6 (COM.0 pin definition: LID#) i.MX 6 GPIO9 (COM.0 pin definition: FAN_TACHIN) i.MX 6 GPIO10 (COM.0 pin definition: SLEEP#)
	GPO[0:3]	out	i.MX 6 GPO0 (COM.0 pin definition: SUS_S3#) i.MX 6 GPO1 (COM.0 pin definition: SUS_S4#) i.MX 6 GPO2 (COM.0 pin definition: SUS_S5#) i.MX 6 GPO3 (COM.0 pin definition: SUS_S7AT#)

Note that pins *GPO[0:3]* refer to i.MX 6 GPO lines. They are not to be confused with the COM.0 defined GPO pins of the same name, which are used for different functions on CC10C.

2.20.4 COM Express Control Signals

The CC10C supports a number of COM Express control signals for power and system management at the COM Express connector.

For power and system management control signals see section Power & System Management Control Signals in the mnemonics table.

Please note that not all COM Express control signals are supported. Unsupported pins are used for i.MX 6 controlled GPIO pins.

You can find the pinout for GPIO signals along with a reference to COM.0-defined standard control signals in section GPIO of the mnemonics table.

See also Chapter 2.19 GPIO on page 40.

3 U-Boot Boot Loader

3.1 General

U-Boot is the CPU board firmware that is invoked when the system is powered on.

The basic tasks of U-Boot are:

- Initialize the CPU and its peripherals.
- PCI configuration.
- Provide debug/diagnostic features on the U-Boot command line.
- Boot operating system via Flash, TFTP or similar methods.

The current U-Boot (patch file and complete binaries, i.e. prebuilt main U-Boot image) is available for download on MEN's website.

The following description only includes board-specific features. For a general description and in-depth details on U-Boot, please refer to the DENX U-Boot and Linux Guide (DULG) available under www.denx.de/wiki/DULG/WebHome. (For a PDF version refer to Chapter 2.3 Availability.)

For advanced developing and programming, you can also use the following resources:

- U-Boot source code on the DENX website (also includes README files):
 - http://git.denx.de (GIT repositories) and ftp://ftp.denx.de/pub/u-boot (TAR archives)
- U-Boot mailing list: http://lists.denx.de/mailman/listinfo/u-boot

3.2 Getting Started: Setting Up Your Operating System

This chapter describes a recommended procedure of how to get your operating system running for the first time. You can use MEN's XC15 evaluation carrier board to do this. The carrier provides the necessary facilities, e.g., standard RJ45 and UART connectors.

When U-Boot starts up for the first time, it does not know yet which operating system (OS) to load and normally stops the boot procedure by its prompt. (If you don't see the U-Boot prompt, reset the board again and press any key during start-up.) You need to make the necessary settings first and then load a boot image, e.g., via network.

The following gives an example of how to integrate and boot the example images for Linux or VxWorks provided by the MEN BSPs. In the example, the images are loaded from a host computer via TFTP.

Note: This procedure uses the U-Boot standard commands to make the individual steps clearer. For your actual application, you can use additional environment variables that the CC10C U-Boot provides for booting, and which short-cut the individual steps shown below.

```
See Chapter 3.4.2 Booting an Operating System on page 63.
```

☑ Connect the host computer where your boot image is located to the CC10C's GBE0 Ethernet port.

3.2.1 Setting Up the Boot File

☑ Create a boot file for your operating system on your host computer.

3.2.2 Setting Up the Boot and TFTP Parameters

☑ Set the network parameters through the U-Boot environment variables for the network connection:

☑ Set up the boot file through environment variable *bootfile*, e.g.:

```
Linux:
=> setenv bootfile /tftpboot/pMulti_CC10C

VxWorks:
=> setenv bootfile /tftpboot/vxW_CC10C.st
```

☑ Set the boot arguments through environment variable *bootargs*, e.g.:

Linux:

=> setenv bootargs root=/dev/ram rw console=ttymxc0,115200 video=mxcfb0:hdmi,1280x720@60,if=RGB24

VxWorks:

☑ Set up the autostart script through environment variable *bootcmd*:

```
Linux:
=> setenv bootcmd 'tftpboot && bootm'

VxWorks:
=> setenv bootcmd 'tftpboot && cpenv && bootvx'
```

3.2.3 Starting Up the Operating System

✓ Save the changed environment variables.

=> saveenv

☑ Reset the board.

=> reset

☑ U-Boot restarts the board and loads the configured operating system with the settings made.

3.3 Interacting with U-Boot

U-Boot uses a shell similar to the Linux Hush shell with a command history and autocompletion support.

3.3.1 Setting Up a Console Connection

To interact with U-Boot, you can use UART0 as a serial console port.

You can select the active console by means of environment variables *stdin*, *stdout* and *stderr*.

U-Boot command *coninfo* lists all active consoles.

The default setting of the COM ports is 115200 baud, 8 data bits, no parity, and one stop bit. You can set the baud rate through environment variable *baudrate*.

You can find all console variables in Table 13, U-Boot – Environment variables – Console on page 76.

3.3.2 Entering the U-Boot Command Line

During normal boot, you can abort the booting process by pressing any key during start-up.

By default, autoboot waits 3 seconds (measured from its beginning) before it starts the operating system, to give the user a chance to abort booting and enter the command line.

You can modify the autoboot wait time through U-Boot environment variable bootdelay.

See Table 11, U-Boot – Environment variables – OS boot on page 74.

3.3.3 User Interface Basics

3.3.3.1 Help and Navigation

Use the *help* command to get a list of available commands.

Arrow keys "up" ↑and "down" ↓ let you navigate in the command line history.

The *<TAB>* key autocompletes commands and variables.

You can press $\langle CTRL \rangle \langle c \rangle$ to abort.

3.3.3.2 Configuring Your System

Use environment variables to configure your system. They can be viewed using the *printenv* command. To set or add variables, you can use commands *editenv* and *setenv*. To save the changed parameters use *saveenv*.

Examples: Displaying environment variables

Examples: Editing and saving environment variables

For a list of the CC10C environment variables see Chapter 3.8.2 Environment Variables on page 74.

3.3.3.3 Working with Scripts and Applications

You can use scripts or stand-alone applications for more complex tasks. Scripts can be stored in environment variables and executed by the *run* command.

You can enter a sequence of commands using different separators:

- ; separated = all commands are executed
- && separated = next command is executed only if no error occurred
- || separated = next command is executed only if an error occurred

Simple Scripts using the Command Line

You can create a script using the command line, and you can store it in an environment variable:

☑ Create script (i.e. store list of commands in variable):

```
=> setenv menu_script 'echo "1=VxWorks"; echo "2=Linux"; echo
"3=Mem test"; askenv _number; if test ${_number} = 1; then run
vxworks; elif test ${_number} = 2; then run linux; else mtest; fi'
```


Also see www.denx.de/wiki/view/DULG/CommandLineParsing.

☑ Save the script in an environment variable (optional):

```
=> saveenv
```

☑ Execute the script:

```
=> run menu_script
```

Scripts using Source Files

For more complex scripts, you can write a text file on your host computer, convert it, load it into the CC10C Flash and run it on the board from the source file. The following shows how an example script is created on a Linux host computer:

☑ Write the script as a TXT file. In the example, we have written a file called *brd_info.txt*:

```
# example U-Boot script (show board info)
# convert:
# mkimage -A arm -O linux -T script -C none -a O -e O -n "board info
script" -d ./brd_info.txt ./brd_info.scr
echo
echo Version:
echo ----- \\c
                    \# \c = no new line
version
echo
echo Board:
echo ----- \\c
eeprod
echo
clocks
echo
echo Network:
echo -----
echo Interface: ${ethact}
echo Target: ${ipaddr} (${ethaddr})
echo Server: ${serverip}
echo
echo bdinfo:
echo -----
bdinfo
echo
```

☑ Convert the TXT script to .scr format:

```
<code>me@server:/> mkimage -A arm -O linux -T script -C none -a \emptyset -e \emptyset -n "board info script" -d /examples/brd_info.txt /tftpboot/brd_info.scr</code>
```

☑ Download the script via network using the U-Boot command line:

```
=> tftpboot 192.1.1.22:/tftpboot/brd_info.scr
```

✓ Execute the script:

```
=> source ${loadaddr}
```

3.3.3.4 Protecting Access to the U-Boot Console

You can protect the CC10C U-Boot console from access using a password. If U-Boot environment variable *password* is set, the protection is on; if the variable *password* is not set, no password is required to access the U-Boot console.

The value of environment variable *password* is a hash string. U-Boot command *pwd* can be used to set or clear the password.

To set a user password, do the following:

✓ Set the new password 'men':

```
=> pwd men
```

☑ Save the hash value of the password in the environment variable:

```
=> saveenv
```

☑ To clear the password, do the following:

```
=> pwd clear
=> saveenv
```

The user password is case-sensitive.

The CC10C U-Boot also supports a master password, which works in any case and which cannot be changed.

Master password: SIGRID

3.4 U-Boot Images and Start-Up

3.4.1 Images

U-Boot has a full-featured **fallback image** mainly intended for board recovery, and another **image for normal operation** called "Image 1". Both images are stored in the onboard boot Flash.

After a board reset, the CPU starts executing the fallback image. If Image 1 is valid (i.e. a valid version string is found and the image CRC is correct), the fallback image starts Image 1. This is done very early in the fallback image to provide start-up flexibility and speed.

3.4.1.1 Loading the Fallback Image

U-Boot for CC10C includes the *fallback* command that can be used to start the fallback image from within the Image 1 U-Boot's command line. E.g., you can reduce the functions of Image 1 for fast booting. To get the full functionality, you can call the full-featured fallback image using the *fallback* command.

Please note that both images use the same environment variable settings, and the fallback uses the last configured settings. The fallback **does not** load default values.

3.4.2 Booting an Operating System

U-Boot provides the *bootm* and *bootvx* commands to support booting of Linux and VxWorks.

You can completely configure how U-Boot boots the operating system through environment variables. Variables *bootargs* and *bootcmd* include the arguments to be set and commands to be executed at boot-up to start the operating system.

See examples in Chapter 3.2.2 Setting Up the Boot and TFTP Parameters on page 57.

3.4.2.1 Boot Methods

Note: Please remember to save the settings you have made in the environment variables using *saveenv*.

OS Boot via Network

U-Boot command *tftpboot* allows loading of the operating system via the board's Ethernet interface GBE0 using the TFTP protocol.

You can find a detailed description of the necessary settings in Chapter 3.2.2 Setting Up the Boot and TFTP Parameters on page 57.

OS Boot via Boot Flash

☑ Set the boot arguments through environment variable *bootargs*, e.g.:

Linux: => setenv bootargs root=/dev/ram rw console=ttymxc0,115200 video=mxcfb0:hdmi,1280x720@60,if=RGB24 VxWorks: => setenv bootargs motfec(0,0)ccl0c:\${bootfile} e=\$ {ipaddr} h=\${serverip} g=\${gatewayip} u=username pw=password tn= s= 'u' is the FTP user name 'pw' is the FTP password => setenv bootaddr 10001100

☑ Set up the autostart script through environment variable *bootcmd*:

OS Boot via Mass Storage Devices (SATA, eMMC, SDHC, USB)

Please note that SATA and SDHC devices may not be available with every board configuration.

USB boot is supported for ports USB 0 and USB 1.

U-Boot commands *ext2load*, *fatload* or *usbboot* (raw) allow loading of the operating system via SATA, eMMC, SDHC or USB mass storage devices. The command to be used depends on the file system of the device.

```
See also Chapter 3.6.2 USB on page 70.
```

Example with *fatload*:

☑ Set the load address to the default DRAM value in environment variable *loadaddr*:

```
=> setenv loadaddr Øx12000000
```

☑ Set up the boot file through environment variable *bootfile*, e.g.:

```
Linux:
=> setenv bootfile /pMulti_CC10C

VxWorks:
=> setenv bootfile /vxW_CC10C.st
```

☑ Set the boot arguments through environment variable *bootargs*, e.g.:

```
Linux:

=> setenv bootargs root=/dev/ram rw console=ttymxc0,115200
video=mxcfb0:hdmi,1280x720@60,if=RGB24

VxWorks:

=> setenv bootargs motfec(0,0)ccl0c:${bootfile} e=$
{ipaddr} h=${serverip} g=${gatewayip} u=username pw=password tn= s=
'u' is the FTP user name
'pw' is the FTP password

=> setenv bootaddr 10001100
```

☑ Set up the autostart script through environment variable *bootcmd* to initialize the device and load the boot file into DRAM.

For a **SATA device**:

```
Linux:
=> setenv bootcmd 'sata; fatload sata Ø ${loadaddr}
${bootfile}; bootm'

VxWorks:
=> setenv bootcmd 'sata; fatload sata Ø ${loadaddr} ${bootfile};
cpenv && bootvx'
```

For an eMMC card:

```
Linux:
=> setenv bootcmd 'mmc rescan; fatload mmc Ø ${loadaddr}
${bootfile}; bootm'

VxWorks:
=> setenv bootcmd 'mmc rescan; fatload mmc Ø ${loadaddr}
${bootfile}; cpenv && bootvx'
```

For an **SDHC device**:

```
Linux:
=> setenv bootcmd 'mmc rescan; fatload mmc 1 ${loadaddr}
${bootfile}; bootm'

VxWorks:
=> setenv bootcmd 'mmc rescan; fatload mmc 1 ${loadaddr}
${bootfile}; cpenv && bootvx'
```

For a **USB device**:

```
Linux:

=> setenv bootcmd 'usb start; fatload usb Ø:1 ${loadaddr}
${bootfile}; bootm'

**O:1 = device O partition 1

**VxWorks:

=> setenv bootcmd 'usb start; fatload usb Ø:1 ${loadaddr}
${bootfile}; cpenv && bootvx'

**O:1 = device O partition 1
```

3.4.2.2 Configuring Boot using Additional Environment Variables

Due to additional environment variables provided by the CC10C U-Boot, it takes only a few steps to configure booting:

 \square Set the operating system to *linux* or *vxworks* through environment variable *os*:

```
=> setenv os linux
```

☑ Set the boot method to *flash*, *tftp*, *sata*, *mmc* or *usb* through environment variable *bootmethod*:

```
=> setenv bootmethod tftp
```

☑ Set the boot files:

```
Linux:
=> editenv linux_file

VxWorks:
=> editenv vxworks_file
```

☑ Set the boot arguments (the defaults should work in most cases):

```
Linux:
=> editenv linux_setargs

VxWorks:
=> editenv vxworks_setargs
```

☑ Set environment variable *bootcmd*:

```
=> setenv bootcmd 'run ${os}'
```

☑ If you want to start the boot directly from U-Boot, execute:

```
Linux:
=> run linux
VxWorks:
=> run vxworks
```

3.5 Updating the Boot Flash

You can update U-Boot and other binaries located in the boot Flash via a serial console connection, network or USB device. U-Boot provides commands specific for each medium to load a binary update file, and the general *sf* and *cp* commands to program the boot Flash.

U-Boot's integrated Flash update functions allow you to do updates yourself. However, you need to take great care when doing this. Otherwise, you may make your board inoperable!

In any case, read the following instructions carefully!

Please be aware that you do U-Boot updates at your own risk.

After an incorrect update your CPU board may not be able to boot.

3.5.1 Update via the Serial Console

U-Boot provides the *loady* tool to download a binary update file.

The terminal emulation program must be configured to start the upload via the "Ymodem" (for *loady*) or "Kermit" protocol (for *loadb* and *loads*) and send the required file.

Set the terminal emulation program to 115200 baud, 8 data bits, 1 stop bit, no parity, no handshaking (if you haven't changed the target baud rate before).

3.5.2 Update via Network

You can use U-Boot commands *tftpboot* and *sf* to download the binary update file from a TFTP server in the network.

3.5.3 Update via USB

You can also make a Flash update from a USB mass storage device. Use the U-Boot *ext2load* or *fatload* command to load the binary update file.

3.5.4 Performing an Update

To perform an update, e.g., of your operating system image inside the Flash, use the following procedure.

For instructions on how to update the U-Boot code itself, please see Chapter 3.5.5 Updating U-Boot Image 1 on page 69.

For a memory map of the Flash, please see Chapter 3.8.1 Boot Flash Memory Map on page 74.

☑ Download the update file:

```
Via serial console, e.g., with Y protocol:
=> loady

Via network, e.g.:
=> tftpboot 192.1.1.22:/path/file.bin

Via USB storage, e.g.:
=> usb start; fatload usb Ø:1 ${loadaddr} /file.bin

0:1 = device 0 partition 1
```

☑ Erase the part of the Flash that you want to update:

```
=> sf probe; sf erase 0x200000 +${filesize}
```

☑ Write the file to Flash:

```
=> sf write ${loadaddr} 0x200000 ${filesize}
```

If you want to do your updates in a more user-friendly way, you can create a script that includes the above steps:

☑ Create a new update script in an environment variable, e.g.:

```
=> setenv update_os 'setenv bootfile /tftpboot/pMulti_CC10C && editenv bootfile && setenv loadaddr \emptyset2000000 && tftpboot && itest ${filesize} != \emptyset && sf probe; sf erase \emptysetx200000 +${filesize} && crcSave && sf write ${loadaddr} \emptysetx200000 ${filesize}'
```

☑ Save the script (optional):

```
=> saveenv
```

✓ Start the update:

```
=> run update_os
```

3.5.5 Updating U-Boot Image 1

Updates of the CC10C U-Boot (only Image 1) are available for download from the CC10C pages on MEN's website.

U-Boot's integrated Flash update functions allow you to do updates yourself. However, you need to take care and follow the instructions given here. Otherwise, you may make your board inoperable!

In any case, read the following instructions carefully!

Please be aware that you do U-Boot updates at your own risk.

After an incorrect update your CPU board may not be able to boot.

You can update U-Boot Image 1 via serial console, network or USB. Do the following to update U-Boot:

- ☑ Unzip the downloaded file, e.g., 14CC10C-00_01_02.zip, into a temporary directory on your host system or on a USB device.
- ☑ If you use a serial console or network connection, connect your host computer to the CC10C.
- ☑ Power on the CC10C and enter the command line.
- ☑ Load the U-Boot to memory:

```
Via serial console, e.g., with Y protocol:
=> loady

Via network, e.g.:
=> tftpboot ${loadaddr} 192.1.1.22:/path/u-boot.imx

Via USB storage, e.g.:
=> usb start; fatload usb Ø:1 ${loadaddr} /u-boot.imx

0:1 = device 0 partition 1
```

☑ Erase the U-Boot Image 1 part of the Flash:

```
=> sf probe; sf erase 0x80000 0x80000
```

☑ Write the U-Boot image to Flash:

```
=> crcSave && sf write ${loadaddr} @x80400 @x7FC00
```

☑ When the update procedure has completed, reset the CC10C.

3.6 Working with Interfaces and Devices

U-Boot provides some useful commands especially for PCI, USB and I2C devices and for board-specific interfaces.

For a complete list of available U-Boot commands, see Chapter 3.9 U-Boot Commands on page 77.

3.6.1 PCI

Note: The *pci* command also allows access to the FPGA through the PCIe interface.

List PCI devices

pci [bus] [long]	List of PCI devices on bus bus (long = detailed)
------------------	--

Read (config space)

pci display[.b,.w,.l] b.d.f [addr]	Read config space
[no_of_objects]	
pci header b.d.f	Show header of PCI device 'bus.device.function'

Write (config space)

pci write[.b,.w,.l] b.d.f addr value	Write to config space
pci modify[.b,.w,.l] b.d.f addr	Modify config space (read, write)
pci next[.b,.w,.l] b.d.f addr	Modify config space (const. addr.)

3.6.2 USB

Before you access USB devices you have to call *usb start*. At compilation time, a specific USB controller must be configured, e.g., the EHCI (high-speed) i.MX 6 controller. This means that high-speed and low/full-speed devices cannot be supported at the same time.

List all devices

usb tree	Show USB device tree
usb info [dev]	Show available USB devices

List storage devices

usb storage	Show details of USB storage devices
usb part [dev]	Print partition table of one or all USB storage devices

Read RAW data

usb dev [dev]	Show or set current USB storage device
usb read [addr] [blk#] [cnt]	Read <i>cnt</i> blocks starting at block <i>blk#</i> of the USB device to system memory address <i>addr</i>

Read file system

Use commands ext2load, ext2ls, fatinfo, fatload, fatls, e.g.:

3.6.3 eMMC/SDHC

U-Boot command *mmc* supports both access to the onboard eMMC card and to other SDHC devices, if present. The commands to access devices directly (e.g., to read, write or erase) always refer to one selected device, i.e. the **current** device, if several are present.

Read

mmc read [addr] [blk#] [cnt]	Read <i>cnt</i> blocks (bytes) starting at block <i>blk#</i> of the eMMC/SDHC device to system
	memory address addr

Write

mmc write [addr] [blk#] [cnt]	Write cnt blocks starting at block blk# of the
	eMMC/SDHC device, taking content from
	system memory address addr

Erase

mmc erase [blk#] [cnt]	Erase cnt blocks starting at block blk# from
	the eMMC/SDHC device

Scan and display device information

mmc rescan	Scan for eMMC/SDHC devices
mmc part	List available partitions on current eMMC/ SDHC device
mmc dev [dev] [part]	Show or set current eMMC/SDHC device partition
mmc list	List available devices

3.6.4 I2C

Set bus

i2c dev [dev]	Show or set current I2C bus

List

i2c probe	Show devices on the I2C bus

Read

i2c md chip addr[.0, .1, .2] [no_of_objects]	Read from I2C device
i2c loop chip addr[.0, .1, .2] [no_of_objects]	Loop reading of device

Write

i2c mm chip addr[.0, .1, .2]	Write (modify)
i2c mw chip addr[.0, .1, .2] value [count]	Write (fill)
i2c nm chip addr[.0, .1, .2]	Write (constant addr.)

3.6.5 PWM

This commands controls the three PWM interfaces that are implemented by standard.

Turn on a PWM signal

pwm [number] on [period] [dutycycle]	Turn on PWM signal (1, 2,or 3). Set the period to a value in Hertz (Hz) with a duty cycle given in %.
	Example: Turn on PWM 3, set the period to 33 kHz and set the duty cycle to 50%. => pwm 3 on 33000 50

Turn off a PWM signal

pwm [number] off	Turn off PWM signal (1, 2 or 3)
	Example: Turn off PWM 3.
	=> pwm 3 off

3.6.6 Watchdog

Setting a watchdog time-out

wd set [seconds]	Set the watchdog time-out to a specified period in seconds, between 0 and 128
	Example, 10 seconds: => wd set 10
wd en	Enable watchdog Only when the watchdog is enabled will the time-out be used.
	Example: If a time-out of 10 seconds is enabled and the application does not trigger the watchdog within this time, the system reboots after 10 seconds.

3.7 Diagnostic Tests

U-Boot provides a test function to check the hardware interfaces and U-Boot integrity. The following items are tested using U-Boot command *test*:

- SDRAM: Quick SDRAM read/write test in the whole range of the SDRAM
- I2C: Check presence of EEPROM
- Flash: Check presence of the boot Flash
- U-Boot binary: Check integrity of the fallback and standard U-Boot binary
- eMMC: Check presence of the eMMC card
- FPGA: Check presence of the FPGA
- USB: Check presence of a USB Flash drive
- Ethernet: Check connection of Gigabit Ethernet port (GBE0)

3.8 U-Boot Configuration and Organization

3.8.1 Boot Flash Memory Map

Table 10. U-Boot – Boot Flash memory map

Address Range	Size	Description
0x 0000 00000007 FFFF	512 KB	U-Boot binary, fallback image
0x 0008 0000000F FFFF	512 KB	U-Boot binary, Image 1
0x 0010 00000011 FFFF	128 KB	U-Boot environment
0x 0012 0000003F FFFF	2944 KB	Available to user

3.8.2 Environment Variables

U-Boot uses environment variables to configure the target. The available variables are board-specific for the CC10C.

Environment variables are stored in Flash. They can be viewed using the *printenv* command. To set or add variables, you can use commands *editenv* and *setenv*. To save the changed parameters use *saveenv*.

See Chapter 3.3.3.2 Configuring Your System on page 60 for command line examples.

Table 11. U-Boot - Environment variables - OS boot

Variable	Description	Default	Access
bootargs	Boot arguments when booting an OS image	The boot command will set bootargs.	r/w
bootcmd	Command string that is automatically executed after reset	run \${os}	r/w
bootdelay	Delay before the default image is automatically booted, in seconds. Set to -1 to disable autoboot	3	r/w
bootmethod1	Method to boot operating system	mmc	r/w
	Possible values: bootp, sf, mmc, tftp, usb		
linux_file1	Linux boot file used by default bootcmd /tftpboot/pMulti_CC10C		r/w
linux_setargs ¹	Used to set bootargs		
	Default: setenv bootargs root=/dev/ram rw console=ttymxc0,\${baudrate}		
linux ¹	Example script for booting Linux Default:		
	setenv bootfile \${linux_file};setenv loadaddr 12000000;run linux_setargs \${bootmethod};bootm \${loadaddr}		
os ¹	Operating system to boot (e.g., vxworks, linux) do not boot		r/w

Variable	Description	Default	Access
vxworks_file1	VxWorks boot file used by default bootcmd /tftpboot/ vxW_CC10C.st		r/w
vxworks_setargs1	Used to set bootargs Default: setenv bootargs motfec(0,0)\${hostname}:\${bootfile} e=\${ipaddr} h=\${serverip} g=\${gatewayip} u=\${user} pw=\${pwd} tn=\${target} s=\${script}		r/w
vxworks ¹	Example script for booting VxWorks Default: \$\{vxworks_file\}; setenv loadaddr 12000000; run vxworks_setargs \$\{bootmethod\}; cpenv; bootvx \$\{loadaddr\}		r/w

¹ These MEN-specific variables can be used to provide a user-friendly way to boot the operating system: Once files and arguments are set correctly, the user can boot the operating system using commands *boot*, *run linux* or *run vxworks*.

Table 12. U-Boot – Environment variables – Network

Variable	Description	Default	Access
bootfile	Name of the image to load through command tftpboot	Empty	r/w
ethact	Controls which network interface is currently active	FEC	r/w
ethaddr	MAC address of Gigabit Ethernet interface (see Chapter 2.11 Ethernet on page 34). You can pass the MAC address to the OS using the <i>cpenv</i> command.	00:c0:3a:c4:40:00	r
gatewayip	IP address of the gateway (router) to use	192.1.1.22	r/w
hostname	Target host name	Empty	r/w
ipaddr	IP address; needed for tftpboot command	192.1.2.120	r/w
loadaddr	Default load address for commands like bootp, tftpboot, loadb etc.	0x12000000	r/w
netmask	Subnet mask	255.255.255.0	r/w
pwd	TFTP password	Empty	r/w
serverip	TFTP server IP address; needed for tftpboot command	192.1.2.22	r/w
user	TFTP user name	Empty	r/w

Table 13. U-Boot - Environment variables - Console

Variable	Description	Default	Access
baudrate	Baud rate for serial console Possible values: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200	115200	r/w
loads_echo	If set to 1, all characters received during a serial download (using the <i>loads</i> command) are echoed back. This might be needed by some terminal emulations (like <i>cu</i>), but may just take time on others.	1	r/w
stderr	Standard error console Possible values: serial	serial	r/w
stdin	Standard input console Possible values: serial	serial	r/w
stdout	Standard output console Possible values: serial	serial	r/w

Table 14. U-Boot – Environment variables – Other

Variable	Description	Default	Access
update ¹	Example update script, see Chapter 3.5.4 Performing an Update on page 67		r/w
	Default:		
	tftp 0x12000000 \${uboot}; crcSave; sf probe; 0x80000; sf write 0x12000000 0x80400 0x7F0		

¹ This example script provides a user-friendly way to update U-Boot Image 1. You can start the update using command *run update*.

3.9 U-Boot Commands

The following table gives all U-Boot commands that can be entered on the CC10C U-Boot prompt. The available commands are board-specific.

You can access the command list using the *help* command (or the ? alias. More detailed information is displayed if you enter *help* <*command>*. U-Boot supports auto completion using the <*TAB>* key.

Table 15. U-Boot - Command reference

Command	Description	
?	Alias for 'help'	
bdinfo	Print board info structure	
boot	Boot default, i.e. run bootcmd	
bootelf	Boot from an ELF image in memory	
bootm	Boot application image from memory	
bootp	Boot image via network using BOOTP/TFTP protocol	
bootvx	Boot VxWorks from an ELF image	
break	Set or clear a breakpoint	
clocks	Print clock configuration	
стр	Compare memory	
coninfo	Print console devices and information	
continue	Continue from a breakpoint	
ср	Copy memory	
cpenv	Copy environment string, may be needed to forward some additional parameters to the OS	
crc32	Calculate checksum	
date	Get/set/reset the date and time of the system RTC	
dhcp	Boot image via network using DHCP/TFTP protocol	
echo	Echo arguments to console	
editenv	Edit environment variable	
eeprom	EEPROM sub-system	
eeprod	Print MEN's CPU board production data	
exit	Exit script	
ext2load	Load binary file from an Ext2 file system	
ext2ls	List files in a directory (default /)	
fallback	Start fallback (full-featured) U-Boot image, see Chapter 3.4 U-Boot Images and Start-Up on page 63	
fatinfo	Print information about file system	
fatload	Load binary file from a DOS file system	
fatls	List files in a directory (default /)	
fdt	Flattened device tree utility commands	

Command	Description		
go	Start application at address addr		
gpio	GPIO utility, used only for diagnostic testing		
help	Print online help		
i2c	I2C sub-system, see Chapter 3.6.4 I2C on page 71		
iminfo	Print header information for application image		
itest	Return true/false on integer compare		
loadb	Load binary file over serial line (Kermit mode)		
loads	Load S-Record file over serial line		
loady	Load binary file over serial line (Ymodem mode)		
loop	Infinite read loop on address range		
loopw	Infinite write loop on address range		
md	Display memory		
mii	MII utility commands		
mm	Modify memory (auto-incrementing address)		
ттс	Read from and write to eMMC card		
mtest	Simple RAM read/write test		
mw	Write to memory (fill)		
next	Single step execution, stepping over subroutines		
nfs	Boot image via network using NFS protocol		
nm	Modify memory (constant address)		
pci	List and access PCI Configuration Space, see Chapter 3.6.1 PCI on page 70		
ping	Send ICMP ECHO_REQUEST to network host		
printenv	Print environment variables		
pwd	Switches U-Boot console protection on or off, see Chapter 3.3.3.4 Protecting Access to the U-Boot Console on page 62		
pwm	PWM utility, see Chapter 3.6.5 PWM on page 72		
reset	Reset the CPU		
run	Run commands in an environment variable		
saveenv	Save environment variables to persistent storage		
saves	Save S-Record file over serial line		
setenv	Set environment variable		
setexpr	Set environment variable as the result of eval expression		
sf	Read from and write to boot Flash		
showvar	Print local hush shell variables		
sleep	Delay execution for some time		
source	Run script from memory		
step	Single step execution		

Command	Description
temp	Display temperature
test	Perform diagnostic tests, see Chapter 3.7 Diagnostic Tests on page 73
tftpboot	Boot image via network using TFTP protocol, see Chapter OS Boot via Network on page 63
time	Run command and output execution time
usb	USB sub-system, see Chapter 3.6.2 USB on page 70
usbboot	Boot from USB device, see Chapter OS Boot via Mass Storage Devices (SATA, eMMC, SDHC, USB) on page 64
version	Print U-Boot version
wd	Watchdog utility, see Chapter 3.6.6 Watchdog on page 72

3.10 Hardware Interfaces Not Supported by U-Boot

The standard CC10C U-Boot does **not** support the following hardware interfaces:

- USB2 to USB4
- Fast Ethernet (FPGA-controlled)
- AC'97 audio
- UARTs other than UART1 and UART2
- CAN bus
- MIPI CSI camera
- FPGA-based functions

4 Organization of the Board

To install software on the board or to develop low-level software it is essential to be familiar with the board's address and interrupt organization.

4.1 Global Address Map

Table 16. Global address map

Address Range	Size	Description
0x 0000 00000FFF FFFF	256 MB	i.MX 6 internal units and registers
0x 0100 000001FF BFFF	16 MB - 16 KB	PCIe address space
0x 1000 0000FFFF FFFF	3840 MB	DDR3 system RAM

4.2 PCI Devices

Table 17. PCI devices

Bus	Device Number	Vendor ID	Device ID	Function	Interrupt
0	0x00	0x16C3	OxABCD	PCI bridge in i.MX 6	-
1	0x00	0x12D8	0x400A	Pericom PCI Express bridge	-
2	0x01	0x12D8	0x400A	Pericom PCI Express bridge	-
	0x02	0x12D8	0x400A	Pericom PCI Express bridge	-
	0x03	0x12D8	0x400A	Pericom PCI Express bridge	-
4	0x00	0x1A88	0x4D45	FPGA	INTB
5	0x00	0x12D8	0x400E	USB OHCI controller	INTA
	0x00	0x12D8	0x400E	USB OHCI controller	INTD
	0x00	0x12D8	0x400F	USB EHCI controller	INTC

4.3 SMBus Devices

Table 18. SMBus devices

Bus	Address		Function
bus	(7-bit notation)	(8-bit notation)	
1	0x50/0x53	0xA0/0xA6	CPU EEPROM (1024 bytes)
	0x55	0xAA	Carrier board EEPROM (256 bytes)
2	Address depends on connected		HDMI/DVI
	device		MIPI CSI-2
3			LVDS

5 Appendix

5.1 Literature and Web Resources

CC10C data sheet with up-to-date information and documentation: www.men.de/products/15CC10C.html

XC15 carrier data sheet with up-to-date information and documentation:

www.men.de/products/08XC15-.html

5.1.1 COM Express

- COM Express Specification PICMG COM.0 Rev. 2.1: 2012; PCI Industrial Computers Manufacturers Group (PICMG) www.picmg.org
- COM Express Carrier Design Guide Rev. 2.0: 2013; PCI Industrial Computers Manufacturers Group (PICMG) www.picmg.org/v2internal/resourcepage2.cfm?id=3

5.1.2 Rugged COM Express

Rugged COM Express Specification VITA 59.0: Working Group - Draft; VMEbus International Trade Association (VITA) www.vita.com/home/Specification/Specifications.html

5.1.3 CPU

i.MX 6 Series Applications Processors: Multicore, ARM Cortex-A9

www.freescale.com/webapp/sps/site/ taxonomy.jsp?code=IMX6X_SERIES&cof=0&am=0

5.1.4 eMMC

Embedded Multi-Media Card (e•MMC), Electrical Standard www.jedec.org/standards-documents/results/jesd84-b50

5.1.5 SATA

Serial ATA International Organization (SATA-IO) www.serialata.org

5.1.6 LVDS

Online Tutorial at International Engineering Consortium (IEC): www.iec.org/online/tutorials/low_voltage/

5.1.7 DVI

Digital Visual Interface Revision 1.0 www.ddwg.org

5.1.8 USB

USB Implementers Forum, Inc. www.usb.org

5.1.9 Ethernet

- ANSI/IEEE 802.3-1996, Information Technology Telecommunications and Information Exchange between Systems
 Local and Metropolitan Area Networks Specific Requirements Part 3: Carrier Sense Multiple Access with Collision Detection
 (CSMA/CD) Access Method and Physical Layer Specifications;
 1996; IEEE
 - www.ieee.org
- Charles Spurgeon's Ethernet Web Site
 Extensive information about Ethernet (IEEE 802.3) local area
 network (LAN) technology.

 www.ethermanage.com/ethernet/
- InterOperability Laboratory, University of New Hampshire This page covers general Ethernet technology.
 www.iol.unh.edu/services/testing/ethernet/training/

5.1.10 PCI Express

PCI Special Interest Group www.pcisig.com

5.1.11 AC'97 Audio

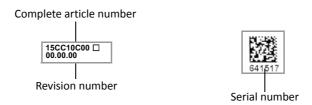
Audio Codec '97 component specification http://download.intel.com/support/motherboards/desktop/sb/ ac97 r23.pdf

5.1.12 CAN Bus

CAN in Automation e. V. www.can-cia.de

5.1.13 I2C Bus

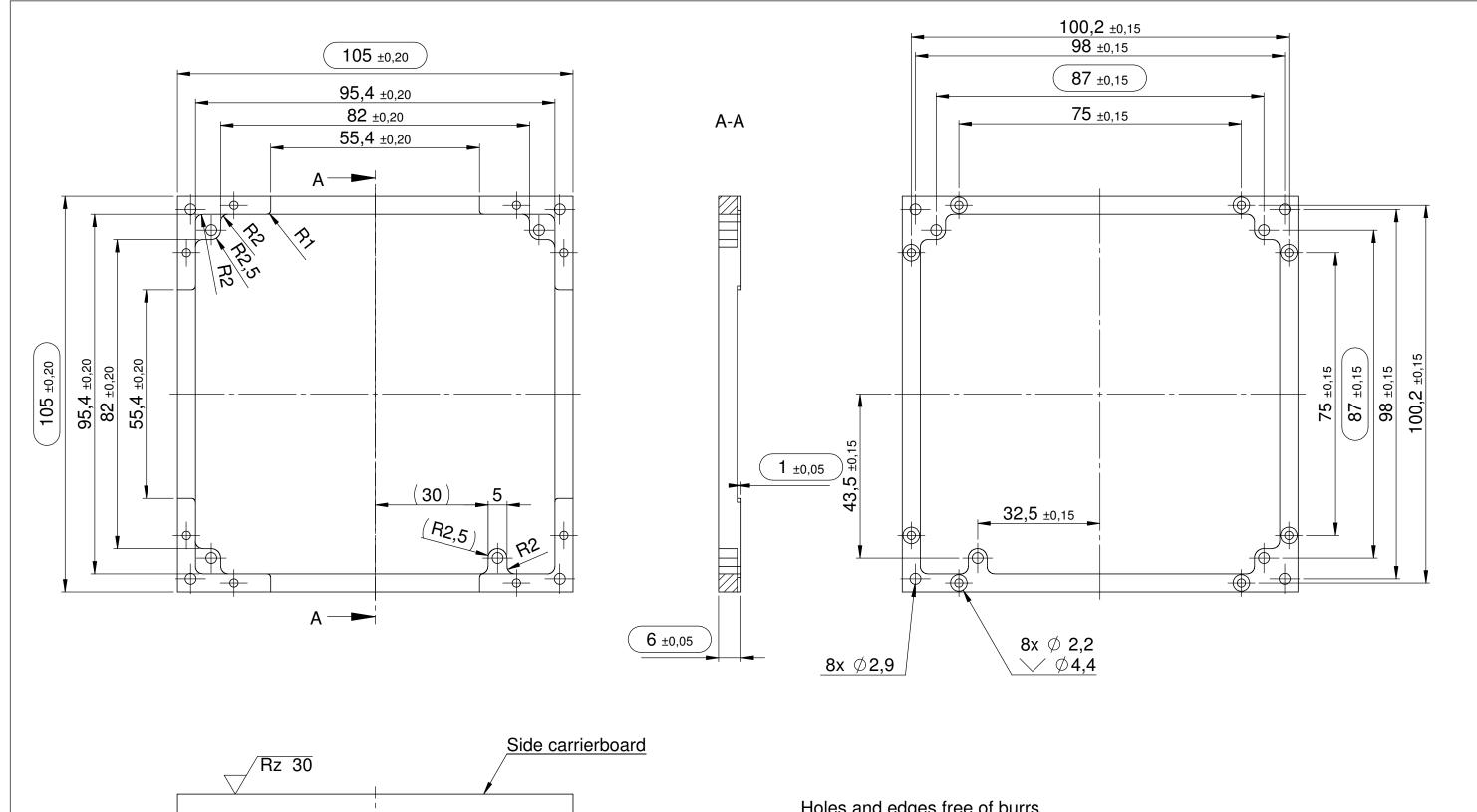
- Very good introduction to the I2C bus www.i2cbus.com
- Wikipedia article with many references http://en.wikipedia.org/wiki/I2C


5.2 Finding out the Product's Article Number, Revision and Serial Number

MEN user documentation may describe several different models and/or design revisions of the CC10C. You can find information on the article number, the design revision and the serial number on two labels attached to the board.

- **Article number:** Gives the product's family and model. This is also MEN's ordering number. To be complete it must have 9 characters.
- **Revision number:** Gives the design revision of the product.
- Serial number: Unique identification assigned during production.

If you need support, you should communicate these numbers to MEN.


Figure 4. Labels giving the product's article number, revision and serial number

5.3 Dimensions of CC10C Rugged COM Express Compact Module

The following drawing gives the exact dimensions of Rugged COM Express Compact modules.

For the dimensions of COM Express Compact modules, please see the COM Express COM.0 specification. See Chapter 5.1.1 COM Express on page 82.

Rz 30

Holes and edges free of burrs Part free of swarfs, oil and grease!

ALL DIMENSIONS IN MILLIMETER

(1.0)	SDietz Initial version							
\ <u></u>	2013-09-06							
Rev.:	Rev.: Prepared/Date: Modification:							
Respo	nsible author: S.	Dietz			RoHS-compliant (2011/65/EU): yes			
	rsions FOR INFORMATION electronic document. It has I	ONLY. been digitally signed. Please see rele	ease form.	For this document a		rights are reserved		
Scale: 1:1			Tolerance: ISO 2768-mK DIN 7		167	DIN ISO -0,3 +0,		,3
Material:			Surface:			13715		,U
EN AW-6060 (AlMgSi)			Surtec 650 (transparent)					_
							MAI	
Description:				Document No. 5876-0363 Project: VITA 59		DIN A3	mikro elektronik gmbh · nürnberg	
VITA59 COMPACT Frame 5876-0363_VITA59_CC-Frame_BtoB_5mm			(1.0)			Sheet: 1/1		