
System Analysis and Tuning
Guide

SUSE Linux Enterprise Server 12 SP1

System Analysis and Tuning Guide
SUSE Linux Enterprise Server 12 SP1

An administrator's guide for problem detection, resolution and optimization. Find how to in-
spect and optimize your system by means of monitoring tools and how to efficiently manage
resources. Also contains an overview of common problems and solutions and of additional
help and documentation resources.

Publication Date: December 14, 2015

SUSE LLC
10 Canal Park Drive
Suite 200
Cambridge MA 02141
USA

https://www.suse.com/documentation

Copyright © 2006–2015 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license.

A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation License”.

For SUSE trademarks, see http://www.suse.com/company/legal/. All other third party trademarks are the property of

their respective owners. A trademark symbol (®, ™ etc.) denotes a SUSE or Novell trademark; an asterisk (*) denotes

a third party trademark.

All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee

complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be held liable for possible

errors or the consequences thereof.

https://www.suse.com/documentation
http://www.suse.com/company/legal/

iii System Analysis and Tuning Guide

Contents

About This Guide xi

I BASICS 1

1 General Notes on System Tuning 2
1.1 Be Sure What Problem to Solve 2

1.2 Rule Out Common Problems 3

1.3 Finding the Bottleneck 4

1.4 Step-by-step Tuning 4

II SYSTEM MONITORING 5

2 System Monitoring Utilities 6
2.1 Multi-Purpose Tools 7

vmstat 7 • System Activity Information: sar 10

2.2 System Information 14
Device Load Information: iostat 14 • Processor Activity Monitoring:

mpstat 15 • Task Monitoring: pidstat 16 • Kernel Ring Buffer:

dmesg 16 • List of Open Files: lsof 17 • Kernel and udev Event Sequence

Viewer: udevadm monitor 18

2.3 Processes 18
Interprocess Communication: ipcs 19 • Process List: ps 19 • Process

Tree: pstree 21 • Table of Processes: top 22 • System z Hypervisor

Monitor: hyptop 24 • A top-like I/O Monitor: iotop 26 • Modify a

process's niceness: nice and renice 27

2.4 Memory 28
Memory Usage: free 28 • Detailed Memory Usage: /proc/memin-

fo 28 • Process Memory Usage: smaps 33

iv System Analysis and Tuning Guide

2.5 Networking 33
Basic Network Diagnostics: ip 33 • Show the Network Usage of Processes:

nethogs 35 • Ethernet Cards in Detail: ethtool 35 • Show the Network

Status: ss 36

2.6 The /proc File System 38
procinfo 41 • System Control Parameters: /proc/sys/ 42

2.7 Hardware Information 43
PCI Resources: lspci 43 • USB Devices: lsusb 45 • MCELog: Machine

Check Exceptions (MCE) 45

2.8 Files and File Systems 46
Determine the File Type: file 46 • File Systems and Their Usage: mount, df

and du 46 • Additional Information about ELF Binaries 47 • File Proper-

ties: stat 48

2.9 User Information 49
User Accessing Files: fuser 49 • Who Is Doing What: w 49

2.10 Time and Date 50
Time Measurement with time 50

2.11 Graph Your Data: RRDtool 51
How RRDtool Works 52 • A Practical Example 52 • For More Informa-

tion 57

3 Analyzing and Managing System Log Files 58
3.1 System Log Files in /var/log/ 58

3.2 Viewing and Parsing Log Files 60

3.3 Managing Log Files with logrotate 60

3.4 Monitoring Log Files with logwatch 62

3.5 Using logger to Make System Log Entries 63

v System Analysis and Tuning Guide

III KERNEL MONITORING 64

4 SystemTap—Filtering and Analyzing System Da-
ta 65

4.1 Conceptual Overview 65
SystemTap Scripts 65 • Tapsets 66 • Commands and Privi-

leges 66 • Important Files and Directories 67

4.2 Installation and Setup 68

4.3 Script Syntax 69
Probe Format 70 • SystemTap Events (Probe Points) 71 • SystemTap

Handlers (Probe Body) 72

4.4 Example Script 77

4.5 User-Space Probing 78

4.6 For More Information 79

5 Kernel Probes 80
5.1 Supported Architectures 80

5.2 Types of Kernel Probes 81
Kprobes 81 • Jprobes 81 • Return Probe 82

5.3 Kprobes API 82

5.4 debugfs Interface 83
Listing Registered Kernel Probes 83 • How to Switch All Kernel Probes On or

Off 83

5.5 For More Information 84

6 Hardware-Based Performance Monitoring with
Perf 85

6.1 Hardware-Based Monitoring 85

6.2 Sampling and Counting 85

6.3 Installing Perf 86

vi System Analysis and Tuning Guide

6.4 Perf Subcommands 86

6.5 Counting Particular Types of Event 87

6.6 Recording Events Specific to Particular Commands 88

6.7 For More Information 89

7 OProfile—System-Wide Profiler 90
7.1 Conceptual Overview 90

7.2 Installation and Requirements 90

7.3 Available OProfile Utilities 91

7.4 Using OProfile 91
Creating a Report 91 • Getting Event Configurations 93

7.5 Using OProfile's GUI 94

7.6 Generating Reports 95

7.7 For More Information 96

IV RESOURCE MANAGEMENT 97

8 General System Resource Management 98
8.1 Planning the Installation 98

Partitioning 98 • Installation Scope 99 • Default Target 99

8.2 Disabling Unnecessary Services 99

8.3 File Systems and Disk Access 100
File Systems 101 • Disabling Access Time (atime) Updates 101 • Prioritizing

Disk Access with ionice 101

9 Kernel Control Groups 103
9.1 Technical Overview and Definitions 103

9.2 Scenario 104

9.3 Control Group Subsystems 104

vii System Analysis and Tuning Guide

9.4 Using Controller Groups 108
Prerequisites 108 • Example: Cpusets 108 • Example:

cgroups 110 • Setting Directory and File Permissions 110

9.5 For More Information 111

10 Automatic Non-Uniform Memory Access (NUMA)
Balancing 112

10.1 Implementation 112

10.2 Configuration 113

10.3 Monitoring 114

10.4 Impact 115

11 Power Management 118
11.1 Power Management at CPU Level 118

C-States (Processor Operating States) 118 • P-States (Processor Performance

States) 119 • Turbo Features 120

11.2 In-Kernel Governors 120

11.3 The cpupower Tools 121
Viewing Current Settings with cpupower 122 • Viewing Kernel Idle Statistics

with cpupower 122 • Monitoring Kernel and Hardware Statistics with cpupow-

er 124 • Modifying Current Settings with cpupower 125

11.4 Special Tuning Options 125
Tuning Options for P-States 126

11.5 Troubleshooting 126

11.6 For More Information 127

V KERNEL TUNING 128

12 Tuning I/O Performance 129
12.1 Switching I/O Scheduling 129

viii System Analysis and Tuning Guide

12.2 Available I/O Elevators 130
CFQ (Completely Fair Queuing) 130 • NOOP 134 • DEADLINE 135

12.3 I/O Barrier Tuning 135

13 Tuning the Task Scheduler 137
13.1 Introduction 137

Preemption 137 • Timeslice 138 • Process Priority 138

13.2 Process Classification 138

13.3 Completely Fair Scheduler 139
How CFS Works 140 • Grouping Processes 140 • Kernel Configuration Op-

tions 141 • Terminology 141 • Changing Real-time Attributes of Processes

with chrt 142 • Runtime Tuning with sysctl 143 • Debugging Interface

and Scheduler Statistics 146

13.4 For More Information 148

14 Tuning the Memory Management Subsys-
tem 149

14.1 Memory Usage 149
Anonymous Memory 150 • Pagecache 150 • Buffercache 150 • Buffer

Heads 150 • Writeback 150 • Readahead 151 • VFS caches 151

14.2 Reducing Memory Usage 151
Reducing malloc (Anonymous) Usage 152 • Reducing Kernel Memory Over-

heads 152 • Memory Controller (Memory Cgroups) 152

14.3 Virtual Memory Manager (VM) Tunable Parameters 152
Reclaim Ratios 153 • Writeback Parameters 154 • Timing Differences

of I/O Writes between SUSE Linux Enterprise 12 and SUSE Linux Enterprise

11 155 • Readahead parameters 157 • Further VM Parameters 157

14.4 Monitoring VM Behavior 157

15 Tuning the Network 158
15.1 Configurable Kernel Socket Buffers 158

ix System Analysis and Tuning Guide

15.2 Detecting Network Bottlenecks and Analyzing Network Traffic 160

15.3 Netfilter 160

15.4 Improving the Network Performance with Receive Packet Steering
(RPS) 161

15.5 For More Information 162

VI HANDLING SYSTEM DUMPS 163

16 Tracing Tools 164
16.1 Tracing System Calls with strace 164

16.2 Tracing Library Calls with ltrace 169

16.3 Debugging and Profiling with Valgrind 170
Installation 170 • Supported Architectures 171 • General Informa-

tion 171 • Default Options 172 • How Valgrind Works 172 • Mes-

sages 173 • Error Messages 175

16.4 For More Information 176

17 Kexec and Kdump 177
17.1 Introduction 177

17.2 Required Packages 177

17.3 Kexec Internals 178

17.4 Calculating crashkernel Allocation Size 179

17.5 Basic Kexec Usage 182

17.6 How to Configure Kexec for Routine Reboots 183

17.7 Basic Kdump Configuration 183
Manual Kdump Configuration 184 • YaST Configuration 185

17.8 Analyzing the Crash Dump 187
Kernel Binary Formats 188

17.9 Advanced Kdump Configuration 192

x System Analysis and Tuning Guide

17.10 For More Information 193

VII SYNCHRONIZED CLOCKS WITH PRECISION TIME PROTOCOL 194

18 Precision Time Protocol 195
18.1 Introduction to PTP 195

PTP Linux Implementation 195

18.2 Using PTP 196
Network Driver and Hardware Support 196 • Using ptp4l 197 • ptp4l

Configuration File 198 • Delay Measurement 199 • PTP Management Client:

pmc 199

18.3 Synchronizing the Clocks with phc2sys 201
Verifying Time Synchronization 201

18.4 Examples of Configurations 203

18.5 PTP and NTP 204
NTP to PTP Synchronization 204 • PTP to NTP Synchronization 204

A Documentation Updates 206
A.1 December 2015 (Initial Release of SUSE Linux Enterprise Server 12

SP1) 206

A.2 February 2015 (Documentation Maintenance Update) 207

A.3 October 2014 (Initial Release of SUSE Linux Enterprise Server
12) 208

B GNU Licenses 211
B.1 GNU Free Documentation License 211

xi About This Guide SLES 12 SP1

About This Guide

SUSE Linux Enterprise Server is used for a broad range of usage scenarios in enterprise and
scientific data centers. SUSE has ensured SUSE Linux Enterprise Server is set up in a way that it
accommodates different operation purposes with optimal performance. However, SUSE Linux
Enterprise Server must meet very different demands when employed on a number crunching
server compared to a file server, for example.

It is not possible to ship a distribution that is optimized for all workloads. Different workloads
vary substantially in some aspects. Most important among those are I/O access patterns, memory
access patterns, and process scheduling. A behavior that perfectly suits a certain workload might
reduce performance of another workload. For example, I/O-intensive tasks, such as handling
database requests, usually have completely different requirements than CPU-intensive tasks,
such as video encoding. The versatility of Linux makes it possible to configure your system in
a way that it brings out the best in each usage scenario.

This manual introduces you to means to monitor and analyze your system. It describes methods
to manage system resources and to tune your system. This guide does not offer recipes for
special scenarios, because each server has got its own different demands. It rather enables you
to thoroughly analyze your servers and make the most out of them.

General Notes on System Tuning

Tuning a system requires a carefully planned proceeding. Learn which steps are necessary
to successfully improve your system.

Part II, “System Monitoring”

Linux offers a large variety of tools to monitor almost every aspect of the system. Learn
how to use these utilities and how to read and analyze the system log files.

Part III, “Kernel Monitoring”

The Linux kernel itself offers means to examine every nut, bolt and screw of the system.
This part introduces you to SystemTap, a scripting language for writing kernel modules
that can be used to analyze and filter data. Collect debugging information and find bottle-
necks by using kernel probes. Last, monitor applications with the help of Oprofile.

Part IV, “Resource Management”

Learn how to set up a tailor-made system fitting exactly the server's need. Get to know how
to use power management while at the same time keeping the performance of a system at
a level that matches the current requirements.

xii Available Documentation SLES 12 SP1

Part V, “Kernel Tuning”

The Linux kernel can be optimized either by using sysctl or via the /proc file system.
This part covers tuning the I/O performance and optimizing the way how Linux sched-
ules processes. It also describes basic principles of memory management and shows how
memory management could be fine-tuned to suit needs of specific applications and usage
patterns. Furthermore, it describes how to optimize network performance.

Part VI, “Handling System Dumps”

This part enables you to analyze and handle application or system crashes. It introduces
tracing tools such as strace or ltrace and describes how to handle system crashes using
Kexec and Kdump.

Tip: Getting the SUSE Linux Enterprise SDK
The SDK is a module for SUSE Linux Enterprise and is available via an online channel
from the SUSE Customer Center. Alternatively, go to http://download.suse.com/, search
for SUSE Linux Enterprise Software Development Kit and download it from there.
Refer to Book “Deployment Guide”, Chapter 9 “Installing Modules, Extensions, and Third
Party Add-On Products” for details.

Many chapters in this manual contain links to additional documentation resources. This includes
additional documentation that is available on the system and documentation available on the
Internet.

For an overview of the documentation available for your product and the latest documentation
updates, refer to http://www.suse.com/doc or to the following section:

1 Available Documentation

We provide HTML and PDF versions of our books in different languages. The following manuals
for users and administrators are available for this product:

Article “Installation Quick Start”

Lists the system requirements and guides you step-by-step through the installation of SUSE
Linux Enterprise Server from DVD, or from an ISO image.

http://download.suse.com/
http://www.suse.com/doc

xiii Available Documentation SLES 12 SP1

Book “Deployment Guide”

Shows how to install single or multiple systems and how to exploit the product inherent
capabilities for a deployment infrastructure. Choose from various approaches, ranging
from a local installation or a network installation server to a mass deployment using a
remote-controlled, highly-customized, and automated installation technique.

Book “Administration Guide”

Covers system administration tasks like maintaining, monitoring and customizing an ini-
tially installed system.

Book “Virtualization Guide”

Describes virtualization technology in general, and introduces libvirt—the unified inter-
face to virtualization—and detailed information on specific hypervisors.

Book “Storage Administration Guide”

Provides information about how to manage storage devices on a SUSE Linux Enterprise
Server.

Book “AutoYaST”

AutoYaST is a system for installing one or more SUSE Linux Enterprise systems automati-
cally and without user intervention, using an AutoYaST profile that contains installation
and configuration data. The manual guides you through the basic steps of auto-installa-
tion: preparation, installation, and configuration.

Book “Security Guide”

Introduces basic concepts of system security, covering both local and network security
aspects. Shows how to use the product inherent security software like AppArmor or the
auditing system that reliably collects information about any security-relevant events.

Book “Security and Hardening Guide”

Deals with the particulars of installing and setting up a secure SUSE Linux Enterprise
Server, and additional post-installation processes required to further secure and harden
that installation. Supports the administrator with security-related choices and decisions.

System Analysis and Tuning Guide

An administrator's guide for problem detection, resolution and optimization. Find how to
inspect and optimize your system by means of monitoring tools and how to efficiently
manage resources. Also contains an overview of common problems and solutions and of
additional help and documentation resources.

xiv Feedback SLES 12 SP1

Book “GNOME User Guide”

Introduces the GNOME desktop of SUSE Linux Enterprise Server. It guides you through
using and configuring the desktop and helps you perform key tasks. It is intended mainly
for end users who want to make efficient use of GNOME as their default desktop.

Find HTML versions of most product manuals in your installed system under /usr/share/doc/
manual or in the help centers of your desktop. Find the latest documentation updates at http://

www.suse.com/doc where you can download PDF or HTML versions of the manuals for your
product.

2 Feedback
Several feedback channels are available:

Bugs and Enhancement Requests

For services and support options available for your product, refer to http://www.suse.com/

support/.
To report bugs for a product component, go to https://scc.suse.com/support/requests, log
in, and click Create New.

User Comments

We want to hear your comments about and suggestions for this manual and the other
documentation included with this product. Use the User Comments feature at the bottom
of each page in the online documentation or go to http://www.suse.com/doc/feedback.html

and enter your comments there.

Mail

For feedback on the documentation of this product, you can also send a mail to doc-
team@suse.de . Make sure to include the document title, the product version and the
publication date of the documentation. To report errors or suggest enhancements, provide
a concise description of the problem and refer to the respective section number and page
(or URL).

http://www.suse.com/doc
http://www.suse.com/doc
http://www.suse.com/support/
http://www.suse.com/support/
https://scc.suse.com/support/requests
http://www.suse.com/doc/feedback.html

xv Documentation Conventions SLES 12 SP1

3 Documentation Conventions
The following typographical conventions are used in this manual:

/etc/passwd : directory names and file names

placeholder : replace placeholder with the actual value

PATH : the environment variable PATH

ls , --help : commands, options, and parameters

user : users or groups

Alt , Alt – F1 : a key to press or a key combination; keys are shown in uppercase as on
a keyboard

File, File Save As: menu items, buttons

x86_64 This paragraph is only relevant for the x86_64 architecture. The arrows mark the
beginning and the end of the text block.
System z, POWER This paragraph is only relevant for the architectures System z and POW-
ER . The arrows mark the beginning and the end of the text block.

Dancing Penguins (Chapter Penguins, ↑Another Manual): This is a reference to a chapter in
another manual.

I Basics

1 General Notes on System Tuning 2

2 General Notes on System Tuning SLES 12 SP1

1 General Notes on System Tuning

This manual discusses how to find the reasons for performance problems and provides means
to solve these problems. Before you start tuning your system, you should make sure you have
ruled out common problems and have found the cause for the problem. You should also have
a detailed plan on how to tune the system, because applying random tuning tips often will not
help and could make things worse.

PROCEDURE 1.1: GENERAL APPROACH WHEN TUNING A SYSTEM

1. Specify the problem that needs to be solved.

2. In case the degradation is new, identify any recent changes to the system.

3. Identify why the issue is considered a performance problem.

4. Specify a metric that can be used to analyze performance. This metric could for example
be latency, throughput, the maximum number of simultaneously logged-in users, or the
maximum number of active users.

5. Measure current performance using the metric from the previous step.

6. Identify the subsystem(s) where the application is spending the most time.

7.
a. Monitor the system and/or the application.

b. Analyze the data, categorize where time is being spent.

8. Tune the subsystem identified in the previous step.

9. Remeasure the current performance without monitoring using the same metric as before.

10. If performance is still not acceptable, start over with Step 3.

1.1 Be Sure What Problem to Solve
Before starting to tuning a system, try to describe the problem as exactly as possible. A statement
like “The system is slow!” is not a helpful problem description. For example, it could make a
difference whether the system speed needs to be improved in general or only at peak times.

3 Rule Out Common Problems SLES 12 SP1

Furthermore, make sure you can apply a measurement to your problem, otherwise you will not
be able to verify if the tuning was a success or not. You should always be able to compare “be-
fore” and “after”. Which metrics to use depends on the scenario or application you are looking
into. Relevant Web server metrics, for example, could be expressed in terms of

Latency

The time to deliver a page throughput, measured in pages per second or megabytes per
second

Active Users

The maximum number of users that can be downloading pages while still receiving pages
within an acceptable latency

1.2 Rule Out Common Problems
A performance problem often is caused by network or hardware problems, bugs, or configuration
issues. Make sure to rule out problems such as the ones listed below before attempting to tune
your system:

Check the output of the systemd journal (see Book “Administration Guide”, Chapter 10
“journalctl: Query the systemd Journal”) for unusual entries.

Check (using top or ps) whether a certain process misbehaves by eating up unusual
amounts of CPU time or memory.

Check for network problems by inspecting /proc/net/dev .

In case of I/O problems with physical disks, make sure it is not caused by hardware prob-
lems (check the disk with the smartmontools) or by a full disk.

Ensure that background jobs are scheduled to be carried out in times the server load is
low. Those jobs should also run with low priority (set via nice).

If the machine runs several services using the same resources, consider moving services
to another server.

Last, make sure your software is up-to-date.

4 Finding the Bottleneck SLES 12 SP1

1.3 Finding the Bottleneck
Finding the bottleneck very often is the hardest part when tuning a system. SUSE Linux Enter-
prise Server offers many tools to help you with this task. See Part II, “System Monitoring” for de-
tailed information on general system monitoring applications and log file analysis. If the prob-
lem requires a long-time in-depth analysis, the Linux kernel offers means to perform such analy-
sis. See Part III, “Kernel Monitoring” for coverage.

Once you have collected the data, it needs to be analyzed. First, inspect if the server's hardware
(memory, CPU, bus) and its I/O capacities (disk, network) are sufficient. If these basic conditions
are met, the system might benefit from tuning.

1.4 Step-by-step Tuning
Make sure to carefully plan the tuning itself. It is of vital importance to only do one step at a
time. Only by doing so you will be able to measure if the change provided an improvement
or even had a negative impact. Each tuning activity should be measured over a sufficient time
period to ensure you can do an analysis based on significant data. If you cannot measure a
positive effect, do not make the change permanent. Chances are, that it might have a negative
effect in the future.

II System Monitoring

2 System Monitoring Utilities 6

3 Analyzing and Managing System Log Files 58

6 System Monitoring Utilities SLES 12 SP1

2 System Monitoring Utilities

There are number of programs, tools, and utilities which you can use to examine the status of
your system. This chapter introduces some and describes their most important and frequently
used parameters.

Note: Gathering and Analyzing System Information with
supportconfig
Apart from the utilities presented in the following, SUSE Linux Enterprise Server also
contains supportconfig , a tool to create reports about the system such as: current Ker-
nel version, hardware, installed packages, partition setup and much more. These reports
are used to provide the SUSE support with needed information in case a support ticket is
created. However, they can also be analyzed for known issues to help resolve problems
faster. For this purpose, SUSE Linux Enterprise Server provides both an appliance and a
command line tool for Supportconfig Analysis (SCA). See Book “Administration Guide”,
Chapter 36 “Gathering System Information for Support” for details.

For each of the described commands, examples of the relevant outputs are presented. In the
examples, the first line is the command itself (after the tux > or root #). Omissions are indicated
with square brackets ([...]) and long lines are wrapped where necessary. Line breaks for long
lines are indicated by a backslash (\).

tux > command -x -y

output line 1

output line 2

output line 3 is annoyingly long, so long that \

 we need to break it

output line 4

[...]

output line 98

output line 99

The descriptions have been kept short so that we can include as many utilities as possible. Fur-
ther information for all the commands can be found in the manual pages. Most of the commands
also understand the parameter --help , which produces a brief list of possible parameters.

7 Multi-Purpose Tools SLES 12 SP1

2.1 Multi-Purpose Tools
While most Linux system monitoring tools monitor only a single aspect of the system, there are
a few tools with a broader scope. To get an overview and find out which part of the system to
examine further, use these tools first.

2.1.1 vmstat
vmstat collects information about processes, memory, I/O, interrupts and CPU. If called without
a sampling rate, it displays average values since the last reboot. When called with a sampling
rate, it displays actual samples:

EXAMPLE 2.1: vmstat OUTPUT ON A LIGHTLY USED MACHINE

tux > vmstat 2

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----

 r b swpd free buff cache si so bi bo in cs us sy id wa st

 1 0 44264 81520 424 935736 0 0 12 25 27 34 1 0 98 0 0

 0 0 44264 81552 424 935736 0 0 0 0 38 25 0 0 100 0 0

 0 0 44264 81520 424 935732 0 0 0 0 23 15 0 0 100 0 0

 0 0 44264 81520 424 935732 0 0 0 0 36 24 0 0 100 0 0

 0 0 44264 81552 424 935732 0 0 0 0 51 38 0 0 100 0 0

EXAMPLE 2.2: vmstat OUTPUT ON A HEAVILY USED MACHINE (CPU BOUND)

tux > vmstat 2

procs -----------memory----------- ---swap-- -----io---- -system-- -----cpu------

 r b swpd free buff cache si so bi bo in cs us sy id wa st

32 1 26236 459640 110240 6312648 0 0 9944 2 4552 6597 95 5 0 0 0

23 1 26236 396728 110336 6136224 0 0 9588 0 4468 6273 94 6 0 0 0

35 0 26236 554920 110508 6166508 0 0 7684 27992 4474 4700 95 5 0 0 0

28 0 26236 518184 110516 6039996 0 0 10830 4 4446 4670 94 6 0 0 0

21 5 26236 716468 110684 6074872 0 0 8734 20534 4512 4061 96 4 0 0 0

Tip: First Line of Output
The first line of the vmstat output always displays average values since the last reboot.

8 vmstat SLES 12 SP1

The columns show the following:

r

Shows the number of processes in the run queue. These processes are waiting for a free
CPU slot to be executed. If the number of processes in this column is constantly higher
than the number of CPUs available, this is an indication of insufficient CPU power.

b

Shows the number of processes waiting for a resource other than a CPU. A high number
in this column may indicate an I/O problem (network or disk).

swpd

The amount of swap space (KB) currently used.

free

The amount of unused memory (KB).

inact

Recently unused memory that can be reclaimed. This column is only visible when calling
vmstat with the parameter -a (recommended).

active

Recently used memory that normally does not get reclaimed. This column is only visible
when calling vmstat with the parameter -a (recommended).

buff

File buffer cache (KB) in RAM. This column is not visible when calling vmstat with the
parameter -a (recommended).

cache

Page cache (KB) in RAM. This column is not visible when calling vmstat with the para-
meter -a (recommended).

si / so

Amount of data (KB) that is moved from swap to RAM (si) or from RAM to swap (so)
per second. High so values over a long period of time may indicate that an application
is leaking memory and the leaked memory is being swapped out. High si values over a
long period of time could mean that an application that was inactive for a very long time
is now active again. Combined high si and so values for prolonged periods of time are
evidence of swap thrashing and may indicate that more RAM needs to be installed in the
system because there is not enough memory to hold the working set size.

9 vmstat SLES 12 SP1

bi

Number of blocks per second received from a block device (for example, a disk read). Note
that swapping also impacts the values shown here.

bo

Number of blocks per second sent to a block device (for example, a disk write). Note that
swapping also impacts the values shown here.

in

Interrupts per second. A high value may indicate a high I/O level (network and/or disk),
but could also be triggered for other reasons such as inter-processor interrupts triggered
by another activity. Make sure to also check /proc/interrupts to identify the source
of interrupts.

cs

Number of context switches per second. This is the number of times that the kernel replaces
executable code of one program in memory with that of another program.

us

Percentage of CPU usage from user processes.

sy

Percentage of CPU usage from system processes.

id

Percentage of CPU time spent idling. If this value is zero over a longer period of time,
your CPU(s) are working to full capacity. This is not necessarily a bad sign—rather refer
to the values in columns r and b to determine if your machine is equipped with sufficient
CPU power.

wa

If "wa" time is non-zero, it indicates throughput lost because of waiting for I/O. This may
be inevitable, for example, if a file is being read for the first time, background writeback
cannot keep up, and so on. It can also be an indicator for a hardware bottleneck (network
or hard disk). Lastly, it can indicate a potential for tuning the virtual memory manager
(refer to Chapter 14, Tuning the Memory Management Subsystem).

st

Percentage of CPU time used by virtual machines.

See vmstat --help for more options.

10 System Activity Information: sar SLES 12 SP1

2.1.2 System Activity Information: sar
sar can generate extensive reports on almost all important system activities, among them CPU,
memory, IRQ usage, IO, or networking. It can also generate reports on the fly. sar gathers all
their data from the /proc file system.

Note: sysstat Package
sar is a part of the sysstat package. You need to install the package either with YaST,
or with zypper in sysstat .

2.1.2.1 Generating reports with sar

To generate reports on the fly, call sar with an interval (seconds) and a count. To generate
reports from files specify a file name with the option -f instead of interval and count. If file
name, interval and count are not specified, sar attempts to generate a report from /var/log/
sa/saDD , where DD stands for the current day. This is the default location to where sadc writes
its data. Query multiple files with multiple -f options.

sar 2 10 # on-the-fly report, 10 times every 2 seconds

sar -f ~/reports/sar_2014_07_17 # queries file sar_2014_07_17

sar # queries file from today in /var/log/sa/

cd /var/log/sa &&\

sar -f sa01 -f sa02 # queries files /var/log/sa/0[12]

Find examples for useful sar calls and their interpretation below. For detailed information on
the meaning of each column, refer to the man (1) of sar . Also refer to the man page for more
options and reports— sar offers plenty of them.

2.1.2.1.1 CPU Usage Report: sar

When called with no options, sar shows a basic report about CPU usage. On multi-processor
machines, results for all CPUs are summarized. Use the option -P ALL to also see statistics for
individual CPUs.

root # sar 10 5

11 System Activity Information: sar SLES 12 SP1

Linux 3.12.24-7-default (jupiter) 07/17/14 _x86_64_ (2 CPU)

17:51:29 CPU %user %nice %system %iowait %steal %idle

17:51:39 all 57,93 0,00 9,58 1,01 0,00 31,47

17:51:49 all 32,71 0,00 3,79 0,05 0,00 63,45

17:51:59 all 47,23 0,00 3,66 0,00 0,00 49,11

17:52:09 all 53,33 0,00 4,88 0,05 0,00 41,74

17:52:19 all 56,98 0,00 5,65 0,10 0,00 37,27

Average: all 49,62 0,00 5,51 0,24 0,00 44,62

%iowait displays the percentage of time that the CPU was idle while waiting for an I/O request.
If this value is significantly higher than zero over a longer time, there is a bottleneck in the I/
O system (network or hard disk). If the %idle value is zero over a longer period of time, your
CPU is working at capacity.

2.1.2.1.2 Memory Usage Report: sar -r

Generate an overall picture of the system memory (RAM) by using the option -r :

root # sar -r 10 5

Linux 3.12.24-7-default (jupiter) 07/17/14 _x86_64_ (2 CPU)

17:55:27 kbmemfree kbmemused %memused kbbuffers kbcached kbcommit %commit kbactive kbinact kbdirty

17:55:37 104232 1834624 94.62 20 627340 2677656 66.24 802052 828024 1744

17:55:47 98584 1840272 94.92 20 624536 2693936 66.65 808872 826932 2012

17:55:57 87088 1851768 95.51 20 605288 2706392 66.95 827260 821304 1588

17:56:07 86268 1852588 95.55 20 599240 2739224 67.77 829764 820888 3036

17:56:17 104260 1834596 94.62 20 599864 2730688 67.56 811284 821584 3164

Average: 96086 1842770 95.04 20 611254 2709579 67.03 815846 823746 2309

The columns kbcommit and %commit show an approximation of the maximum amount of memo-
ry (RAM and swap) that the current workload could need. While kbcommit displays the absolute
number in kilobytes, %commit displays a percentage.

2.1.2.1.3 Paging Statistics Report: sar -B

Use the option -B to display the kernel paging statistics.

12 System Activity Information: sar SLES 12 SP1

root # sar -B 10 5

Linux 3.12.24-7-default (jupiter) 07/17/14 _x86_64_ (2 CPU)

18:23:01 pgpgin/s pgpgout/s fault/s majflt/s pgfree/s pgscank/s pgscand/s pgsteal/s %vmeff

18:23:11 366.80 11.60 542.50 1.10 4354.80 0.00 0.00 0.00 0.00

18:23:21 0.00 333.30 1522.40 0.00 18132.40 0.00 0.00 0.00 0.00

18:23:31 47.20 127.40 1048.30 0.10 11887.30 0.00 0.00 0.00 0.00

18:23:41 46.40 2.50 336.10 0.10 7945.00 0.00 0.00 0.00 0.00

18:23:51 0.00 583.70 2037.20 0.00 17731.90 0.00 0.00 0.00 0.00

Average: 92.08 211.70 1097.30 0.26 12010.28 0.00 0.00 0.00 0.00

The majflt/s (major faults per second) column shows how many pages are loaded from disk
into memory. The source of the faults may be file accesses or faults. There are times when a
large number of major faults are normal such as during application start-up time. If major faults
are experienced for the entire lifetime of the application it may be an indication that there
is insufficient main memory, particularly if combined with large amounts of direct scanning
(pgscand/s).

The %vmeff column shows the number of pages scanned (pgscand/s) in relation to the ones being
reused from the main memory cache or the swap cache (pgsteal/s). It is a measurement of the
efficiency of page reclaim. Healthy values are either near 100 (every inactive page swapped out
is being reused) or 0 (no pages have been scanned). The value should not drop below 30.

2.1.2.1.4 Block Device Statistics Report: sar -d

Use the option -d to display the block device (hard disk, optical drive, USB storage device, etc.).
Make sure to use the additional option -p (pretty-print) to make the DEV column readable.

root # sar -d -p 10 5

 Linux 3.12.24-7-default (jupiter) 07/17/14 _x86_64_ (2 CPU)

18:46:09 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util

18:46:19 sda 1.70 33.60 0.00 19.76 0.00 0.47 0.47 0.08

18:46:19 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18:46:19 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util

18:46:29 sda 8.60 114.40 518.10 73.55 0.06 7.12 0.93 0.80

13 System Activity Information: sar SLES 12 SP1

18:46:29 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18:46:29 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util

18:46:39 sda 40.50 3800.80 454.90 105.08 0.36 8.86 0.69 2.80

18:46:39 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18:46:39 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util

18:46:49 sda 1.40 0.00 204.90 146.36 0.00 0.29 0.29 0.04

18:46:49 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18:46:49 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util

18:46:59 sda 3.30 0.00 503.80 152.67 0.03 8.12 1.70 0.56

18:46:59 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average: DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util

Average: sda 11.10 789.76 336.34 101.45 0.09 8.07 0.77 0.86

Average: sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Compare the Average values for tps, rd_sec/s, and wr_sec/s of all disks. Constantly high values in
the svctm and %util columns could be an indication that the amount of free space on the disk
is insufficient.

If the machine uses multiple disks, then it is best if I/O is interleaved evenly between disks
of equal speed and capacity. It will be necessary to take into account whether the storage has
multiple tiers. Furthermore, if there are multiple paths to storage then consider what the link
saturation will be when balancing how storage is used.

2.1.2.1.5 Network Statistics Reports: sar -n KEYWORD

The option -n lets you generate multiple network related reports. Specify one of the following
keywords along with the -n :

DEV: Generates a statistic report for all network devices

EDEV: Generates an error statistics report for all network devices

NFS: Generates a statistic report for an NFS client

NFSD: Generates a statistic report for an NFS server

14 System Information SLES 12 SP1

SOCK: Generates a statistic report on sockets

ALL: Generates all network statistic reports

2.1.2.2 Visualizing sar Data

sar reports are not always easy to parse for humans. kSar, a Java application visualizing your
sar data, creates easy-to-read graphs. It can even generate PDF reports. kSar takes data gener-
ated on the fly and past data from a file. kSar is licensed under the BSD license and is available
from https://sourceforge.net/projects/ksar/.

2.2 System Information

2.2.1 Device Load Information: iostat

To monitor the system device load, use iostat . It generates reports that can be useful for better
balancing the load between physical disks attached to your system.

To be able to use iostat , install the package sysstat .

The first iostat report shows statistics collected since the system was booted. Subsequent
reports cover the time since the previous report.

tux > iostat

Linux 3.12.24-7-default (jupiter) 29/07/14 _x86_64_ (4 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle

 17.68 4.49 4.24 0.29 0.00 73.31

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn

sdb 2.02 36.74 45.73 3544894 4412392

sda 1.05 5.12 13.47 493753 1300276

sdc 0.02 0.14 0.00 13641 37

https://sourceforge.net/projects/ksar/

15 Processor Activity Monitoring: mpstat SLES 12 SP1

Invoking iostat in this way will help you find out whether throughput is different from your
expectation, but not why. Such questions can be better answered by an extended report which
can be generated by invoking iostat -x . Extended reports additionally include, for example,
information on average queue sizes and average wait times. Find definitions for each of the
displayed column titles in the man page of iostat (man 1 iostat).

You can also specify that a certain device should be monitored at specified intervals. For exam-
ple, to generate five reports at three-second intervals for the device sda , use:

tux > iostat -p sda 3 5

To show statistics of network file systems (NFS), there are two similar utilities:

nfsiostat-sysstat is included with the package sysstat .

nfsiostat is included with the package nfs-client . The option -x shows extended
statistics information.

2.2.2 Processor Activity Monitoring: mpstat

The utility mpstat examines activities of each available processor. If your system has one
processor only, the global average statistics will be reported.

The timing arguments work the same way as with the iostat command. Entering mpstat 2
5 prints five reports for all processors in two-second intervals.

root # mpstat 2 5

Linux 3.12.24-7-default (jupiter) 07/18/14 _x86_64_ (2 CPU)

13:51:10 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle

13:51:12 all 8,27 0,00 0,50 0,00 0,00 0,00 0,00 0,00 0,00 91,23

13:51:14 all 46,62 0,00 3,01 0,00 0,00 0,25 0,00 0,00 0,00 50,13

13:51:16 all 54,71 0,00 3,82 0,00 0,00 0,51 0,00 0,00 0,00 40,97

13:51:18 all 78,77 0,00 5,12 0,00 0,00 0,77 0,00 0,00 0,00 15,35

13:51:20 all 51,65 0,00 4,30 0,00 0,00 0,51 0,00 0,00 0,00 43,54

Average: all 47,85 0,00 3,34 0,00 0,00 0,40 0,00 0,00 0,00 48,41

16 Task Monitoring: pidstat SLES 12 SP1

2.2.3 Task Monitoring: pidstat

If you need to see what load a particular task applies to your system, use pidstat command. It
prints activity of every selected task or all tasks managed by Linux kernel if no task is specified.
You can also set the number of reports to be displayed and the time interval between them.

For example, pidstat -C firefox 2 3 prints the load statistic for tasks whose command name
includes the string “firefox”. There will be three reports printed at two second intervals.

root # pidstat -C firefox 2 3

Linux 3.12.24-7-default (jupiter) 07/18/14 _x86_64_ (2 CPU)

14:09:11 UID PID %usr %system %guest %CPU CPU Command

14:09:13 1000 387 22,77 0,99 0,00 23,76 1 firefox

14:09:13 UID PID %usr %system %guest %CPU CPU Command

14:09:15 1000 387 46,50 3,00 0,00 49,50 1 firefox

14:09:15 UID PID %usr %system %guest %CPU CPU Command

14:09:17 1000 387 60,50 7,00 0,00 67,50 1 firefox

Average: UID PID %usr %system %guest %CPU CPU Command

Average: 1000 387 43,19 3,65 0,00 46,84 - firefox

2.2.4 Kernel Ring Buffer: dmesg

The Linux kernel keeps certain messages in a ring buffer. To view these messages, enter the
command dmesg -T .

Older events are logged in the systemd journal. See Book “Administration Guide”, Chapter 10
“journalctl: Query the systemd Journal” for more information on the journal.

17 List of Open Files: lsof SLES 12 SP1

2.2.5 List of Open Files: lsof

To view a list of all the files open for the process with process ID PID , use -p . For example,
to view all the files used by the current shell, enter:

root # lsof -p $$

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

bash 8842 root cwd DIR 0,32 222 6772 /root

bash 8842 root rtd DIR 0,32 166 256 /

bash 8842 root txt REG 0,32 656584 31066 /bin/bash

bash 8842 root mem REG 0,32 1978832 22993 /lib64/libc-2.19.so

[...]

bash 8842 root 2u CHR 136,2 0t0 5 /dev/pts/2

bash 8842 root 255u CHR 136,2 0t0 5 /dev/pts/2

The special shell variable $$, whose value is the process ID of the shell, has been used.

When used with -i , lsof lists currently open Internet files as well:

root # lsof -i

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

wickedd-d 917 root 8u IPv4 16627 0t0 UDP *:bootpc

wickedd-d 918 root 8u IPv6 20752 0t0 UDP [fe80::5054:ff:fe72:5ead]:dhcpv6-client

sshd 3152 root 3u IPv4 18618 0t0 TCP *:ssh (LISTEN)

sshd 3152 root 4u IPv6 18620 0t0 TCP *:ssh (LISTEN)

master 4746 root 13u IPv4 20588 0t0 TCP localhost:smtp (LISTEN)

master 4746 root 14u IPv6 20589 0t0 TCP localhost:smtp (LISTEN)

sshd 8837 root 5u IPv4 293709 0t0 TCP jupiter.suse.de:ssh->venus.suse.de:33619 (ESTABLISHED)

sshd 8837 root 9u IPv6 294830 0t0 TCP localhost:x11 (LISTEN)

sshd 8837 root 10u IPv4 294831 0t0 TCP localhost:x11 (LISTEN)

18 Kernel and udev Event Sequence Viewer: udevadm monitor SLES 12 SP1

2.2.6 Kernel and udev Event Sequence Viewer: udevadm
monitor

udevadm monitor listens to the kernel uevents and events sent out by a udev rule and prints
the device path (DEVPATH) of the event to the console. This is a sequence of events while
connecting a USB memory stick:

Note: Monitoring udev Events
Only root user is allowed to monitor udev events by running the udevadm command.

UEVENT[1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2

UEVENT[1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2

UEVENT[1138806687] add@/class/scsi_host/host4

UEVENT[1138806687] add@/class/usb_device/usbdev4.10

UDEV [1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2

UDEV [1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2

UDEV [1138806687] add@/class/scsi_host/host4

UDEV [1138806687] add@/class/usb_device/usbdev4.10

UEVENT[1138806692] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2

UEVENT[1138806692] add@/block/sdb

UEVENT[1138806692] add@/class/scsi_generic/sg1

UEVENT[1138806692] add@/class/scsi_device/4:0:0:0

UDEV [1138806693] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2

UDEV [1138806693] add@/class/scsi_generic/sg1

UDEV [1138806693] add@/class/scsi_device/4:0:0:0

UDEV [1138806693] add@/block/sdb

UEVENT[1138806694] add@/block/sdb/sdb1

UDEV [1138806694] add@/block/sdb/sdb1

UEVENT[1138806694] mount@/block/sdb/sdb1

UEVENT[1138806697] umount@/block/sdb/sdb1

2.3 Processes

19 Interprocess Communication: ipcs SLES 12 SP1

2.3.1 Interprocess Communication: ipcs
The command ipcs produces a list of the IPC resources currently in use:

root # ipcs

------ Message Queues --------

key msqid owner perms used-bytes messages

------ Shared Memory Segments --------

key shmid owner perms bytes nattch status

0x00000000 65536 tux 600 524288 2 dest

0x00000000 98305 tux 600 4194304 2 dest

0x00000000 884738 root 600 524288 2 dest

0x00000000 786435 tux 600 4194304 2 dest

0x00000000 12058628 tux 600 524288 2 dest

0x00000000 917509 root 600 524288 2 dest

0x00000000 12353542 tux 600 196608 2 dest

0x00000000 12451847 tux 600 524288 2 dest

0x00000000 11567114 root 600 262144 1 dest

0x00000000 10911763 tux 600 2097152 2 dest

0x00000000 11665429 root 600 2336768 2 dest

0x00000000 11698198 root 600 196608 2 dest

0x00000000 11730967 root 600 524288 2 dest

------ Semaphore Arrays --------

key semid owner perms nsems

0xa12e0919 32768 tux 666 2

2.3.2 Process List: ps
The command ps produces a list of processes. Most parameters must be written without a minus
sign. Refer to ps --help for a brief help or to the man page for extensive help.

To list all processes with user and command line information, use ps axu :

tux > ps axu

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

20 Process List: ps SLES 12 SP1

root 1 0.0 0.3 34376 4608 ? Ss Jul24 0:02 /usr/lib/systemd/systemd

root 2 0.0 0.0 0 0 ? S Jul24 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? S Jul24 0:00 [ksoftirqd/0]

root 5 0.0 0.0 0 0 ? S< Jul24 0:00 [kworker/0:0H]

root 6 0.0 0.0 0 0 ? S Jul24 0:00 [kworker/u2:0]

root 7 0.0 0.0 0 0 ? S Jul24 0:00 [migration/0]

[...]

tux 12583 0.0 0.1 185980 2720 ? Sl 10:12 0:00 /usr/lib/gvfs/gvfs-mtp-volume-monitor

tux 12587 0.0 0.1 198132 3044 ? Sl 10:12 0:00 /usr/lib/gvfs/gvfs-gphoto2-volume-monitor

tux 12591 0.0 0.1 181940 2700 ? Sl 10:12 0:00 /usr/lib/gvfs/gvfs-goa-volume-monitor

tux 12594 8.1 10.6 1418216 163564 ? Sl 10:12 0:03 /usr/bin/gnome-shell

tux 12600 0.0 0.3 393448 5972 ? Sl 10:12 0:00 /usr/lib/gnome-settings-daemon-3.0/gsd-

printer

tux 12625 0.0 0.6 227776 10112 ? Sl 10:12 0:00 /usr/lib/gnome-control-center-search-

provider

tux 12626 0.5 1.5 890972 23540 ? Sl 10:12 0:00 /usr/bin/nautilus --no-default-window

[...]

To check how many sshd processes are running, use the option -p together with the command
pidof , which lists the process IDs of the given processes.

tux > ps -p $(pidof sshd)

 PID TTY STAT TIME COMMAND

 1545 ? Ss 0:00 /usr/sbin/sshd -D

 4608 ? Ss 0:00 sshd: root@pts/0

The process list can be formatted according to your needs. The option -L returns a list of all
keywords. Enter the following command to issue a list of all processes sorted by memory usage:

tux > ps ax --format pid,rss,cmd --sort rss

 PID RSS CMD

 PID RSS CMD

 2 0 [kthreadd]

 3 0 [ksoftirqd/0]

 4 0 [kworker/0:0]

 5 0 [kworker/0:0H]

 6 0 [kworker/u2:0]

21 Process Tree: pstree SLES 12 SP1

 7 0 [migration/0]

 8 0 [rcu_bh]

[...]

12518 22996 /usr/lib/gnome-settings-daemon-3.0/gnome-settings-daemon

12626 23540 /usr/bin/nautilus --no-default-window

12305 32188 /usr/bin/Xorg :0 -background none -verbose

12594 164900 /usr/bin/gnome-shell

USEFUL ps CALLS

ps aux --sort column

Sort the output by column . Replace column with

pmem for physical memory ratio
pcpu for CPU ratio
rss for resident set size (non-swapped physical memory)

ps axo pid,%cpu,rss,vsz,args,wchan

Shows every process, their PID, CPU usage ratio, memory size (resident and virtual), name,
and their syscall.

ps axfo pid,args

Show a process tree.

2.3.3 Process Tree: pstree
The command pstree produces a list of processes in the form of a tree:

tux > pstree

systemd---accounts-daemon---{gdbus}

 | |-{gmain}

 |-at-spi-bus-laun---dbus-daemon

 | |-{dconf worker}

 | |-{gdbus}

 | |-{gmain}

 |-at-spi2-registr---{gdbus}

 |-cron

 |-2*[dbus-daemon]

 |-dbus-launch

22 Table of Processes: top SLES 12 SP1

 |-dconf-service---{gdbus}

 | |-{gmain}

 |-gconfd-2

 |-gdm---gdm-simple-slav---Xorg

 | | |-gdm-session-wor---gnome-session---gnome-setti+

 | | | | |-gnome-shell+++

 | | | | |-{dconf work+

 | | | | |-{gdbus}

 | | | | |-{gmain}

 | | | |-{gdbus}

 | | | |-{gmain}

 | | |-{gdbus}

 | | |-{gmain}

 | |-{gdbus}

 | |-{gmain}

[...]

The parameter -p adds the process ID to a given name. To have the command lines displayed
as well, use the -a parameter:

2.3.4 Table of Processes: top
The command top (an abbreviation of “table of processes”) displays a list of processes that
is refreshed every two seconds. To terminate the program, press Q . The parameter -n 1
terminates the program after a single display of the process list. The following is an example
output of the command top -n 1 :

tux > top -n 1

Tasks: 128 total, 1 running, 127 sleeping, 0 stopped, 0 zombie

%Cpu(s): 2.4 us, 1.2 sy, 0.0 ni, 96.3 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st

KiB Mem: 1535508 total, 699948 used, 835560 free, 880 buffers

KiB Swap: 1541116 total, 0 used, 1541116 free. 377000 cached Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 1 root 20 0 116292 4660 2028 S 0.000 0.303 0:04.45 systemd

 2 root 20 0 0 0 0 S 0.000 0.000 0:00.00 kthreadd

23 Table of Processes: top SLES 12 SP1

 3 root 20 0 0 0 0 S 0.000 0.000 0:00.07 ksoftirqd+

 5 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 kworker/0+

 6 root 20 0 0 0 0 S 0.000 0.000 0:00.00 kworker/u+

 7 root rt 0 0 0 0 S 0.000 0.000 0:00.00 migration+

 8 root 20 0 0 0 0 S 0.000 0.000 0:00.00 rcu_bh

 9 root 20 0 0 0 0 S 0.000 0.000 0:00.24 rcu_sched

 10 root rt 0 0 0 0 S 0.000 0.000 0:00.01 watchdog/0

 11 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 khelper

 12 root 20 0 0 0 0 S 0.000 0.000 0:00.00 kdevtmpfs

 13 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 netns

 14 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 writeback

 15 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 kintegrit+

 16 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 bioset

 17 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 crypto

 18 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 kblockd

By default the output is sorted by CPU usage (column %CPU, shortcut Shift – P). Use the
following key combinations to change the sort field:

Shift – M : Resident Memory (RES)
Shift – N : Process ID (PID)
Shift – T : Time (TIME+)

To use any other field for sorting, press F and select a field from the list. To toggle the sort
order, Use Shift – R .

The parameter -U UID monitors only the processes associated with a particular user. Replace
UID with the user ID of the user. Use top -U $(id -u) to show processes of the current user

24 System z Hypervisor Monitor: hyptop SLES 12 SP1

2.3.5 System z Hypervisor Monitor: hyptop
hyptop provides a dynamic real-time view of a System z hypervisor environment, using the
kernel infrastructure via debugfs. It works with either the z/VM or the LPAR hypervisor. De-
pending on the available data it, for example, shows CPU and memory consumption of active
LPARs or z/VM guests. It provides a curses based user interface similar to the top command.
hyptop provides two windows:

sys_list: Shows a list of systems that the currently hypervisor is running

sys: Shows one system in more detail

You can run hyptop in interactive mode (default) or in batch mode with the -b option. Help
in the interactive mode is available by pressing ? after hyptop is started.

Output for the sys_list window under LPAR:

12:30:48 | CPU-T: IFL(18) CP(3) UN(3) ?=help

system #cpu cpu mgm Cpu+ Mgm+ online

(str) (#) (%) (%) (hm) (hm) (dhm)

H05LP30 10 461.14 10.18 1547:41 8:15 11:05:59

H05LP33 4 133.73 7.57 220:53 6:12 11:05:54

H05LP50 4 99.26 0.01 146:24 0:12 10:04:24

H05LP02 1 99.09 0.00 269:57 0:00 11:05:58

TRX2CFA 1 2.14 0.03 3:24 0:04 11:06:01

H05LP13 6 1.36 0.34 4:23 0:54 11:05:56

TRX1 19 1.22 0.14 13:57 0:22 11:06:01

TRX2 20 1.16 0.11 26:05 0:25 11:06:00

H05LP55 2 0.00 0.00 0:22 0:00 11:05:52

H05LP56 3 0.00 0.00 0:00 0:00 11:05:52

 413 823.39 23.86 3159:57 38:08 11:06:01

Output for the "sys_list" window under z/VM:

12:32:21 | CPU-T: UN(16) ?=help

system #cpu cpu Cpu+ online memuse memmax wcur

(str) (#) (%) (hm) (dhm) (GiB) (GiB) (#)

T6360004 6 100.31 959:47 53:05:20 1.56 2.00 100

T6360005 2 0.44 1:11 3:02:26 0.42 0.50 100

25 System z Hypervisor Monitor: hyptop SLES 12 SP1

T6360014 2 0.27 0:45 10:18:41 0.54 0.75 100

DTCVSW1 1 0.00 0:00 53:16:42 0.01 0.03 100

T6360002 6 0.00 166:26 40:19:18 1.87 2.00 100

OPERATOR 1 0.00 0:00 53:16:42 0.00 0.03 100

T6360008 2 0.00 0:37 30:22:55 0.32 0.75 100

T6360003 6 0.00 3700:57 53:03:09 4.00 4.00 100

NSLCF1 1 0.00 0:02 53:16:41 0.03 0.25 500

EREP 1 0.00 0:00 53:16:42 0.00 0.03 100

PERFSVM 1 0.00 0:53 2:21:12 0.04 0.06 0

TCPIP 1 0.00 0:01 53:16:42 0.01 0.12 3000

DATAMOVE 1 0.00 0:05 53:16:42 0.00 0.03 100

DIRMAINT 1 0.00 0:04 53:16:42 0.01 0.03 100

DTCVSW2 1 0.00 0:00 53:16:42 0.01 0.03 100

RACFVM 1 0.00 0:00 53:16:42 0.01 0.02 100

 75 101.57 5239:47 53:16:42 15.46 22.50 3000

Output for the sys window under LPAR:

14:08:41 | H05LP30 | CPU-T: IFL(18) CP(3) UN(3) ? = help

cpuid type cpu mgm visual.

(#) (str) (%) (%) (vis)

0 IFL 96.91 1.96 |## |

1 IFL 81.82 1.46 |##################################### |

2 IFL 88.00 2.43 |## |

3 IFL 92.27 1.29 |## |

4 IFL 83.32 1.05 |##################################### |

5 IFL 92.46 2.59 |## |

6 IFL 0.00 0.00 | |

7 IFL 0.00 0.00 | |

8 IFL 0.00 0.00 | |

9 IFL 0.00 0.00 | |

 534.79 10.78

Output for the sys window under z/VM:

15:46:57 | T6360003 | CPU-T: UN(16) ? = help

cpuid cpu visual

26 A top-like I/O Monitor: iotop SLES 12 SP1

(#) (%) (vis)

0 548.72 |### |

 548.72

2.3.6 A top-like I/O Monitor: iotop

The iotop utility displays a table of I/O usage by processes or threads.

Note: Installing iotop
iotop is not installed by default. You need to install it manually with zypper in iotop
as root .

iotop displays columns for the I/O bandwidth read and written by each process during the
sampling period. It also displays the percentage of time the process spent while swapping in
and while waiting on I/O. For each process, its I/O priority (class/level) is shown. In addition,
the total I/O bandwidth read and written during the sampling period is displayed at the top
of the interface.

The ← and → keys change the sorting.

R reverses the sort order.

O toggles between showing all processes and threads (default view) and showing only
those doing I/O. (This function is similar to adding --only on command line.)

P toggles between showing threads (default view) and processes. (This function is similar
to --only .)

A toggles between showing the current I/O bandwidth (default view) and accumulated
I/O operations since iotop was started. (This function is similar to --accumulated .)

I lets you change the priority of a thread or a process's threads.

Q quits iotop .

Pressing any other key will force a refresh.

27 Modify a process's niceness: nice and renice SLES 12 SP1

Following is an example output of the command iotop --only , while find and emacs are
running:

tux > iotop --only

Total DISK READ: 50.61 K/s | Total DISK WRITE: 11.68 K/s

 TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND

 3416 be/4 tux 50.61 K/s 0.00 B/s 0.00 % 4.05 % find /

 275 be/3 root 0.00 B/s 3.89 K/s 0.00 % 2.34 % [jbd2/sda2-8]

 5055 be/4 tux 0.00 B/s 3.89 K/s 0.00 % 0.04 % emacs

iotop can be also used in a batch mode (-b) and its output stored in a file for later analysis.
For a complete set of options, see the manual page (man 1 iotop).

2.3.7 Modify a process's niceness: nice and renice

The kernel determines which processes require more CPU time than others by the process's nice
level, also called niceness. The higher the “nice” level of a process is, the less CPU time it will
take from other processes. Nice levels range from -20 (the least “nice” level) to 19. Negative
values can only be set by root .

Adjusting the niceness level is useful when running a non time-critical process that lasts long
and uses large amounts of CPU time. For example, compiling a kernel on a system that also
performs other tasks. Making such a process “nicer”, ensures that the other tasks, for example
a Web server, will have a higher priority.

Calling nice without any parameters prints the current niceness:

tux > nice

0

Running nice command increments the current nice level for the given command by 10. Using
nice -n level command lets you specify a new niceness relative to the current one.

To change the niceness of a running process, use renice priority -p process id , for
example:

renice +5 3266

28 Memory SLES 12 SP1

To renice all processes owned by a specific user, use the option -u user . Process groups are
reniced by the option -g process group id .

2.4 Memory

2.4.1 Memory Usage: free
The utility free examines RAM and swap usage. Details of both free and used memory and
swap areas are shown:

tux > free

 total used free shared buffers cached

Mem: 32900500 32703448 197052 0 255668 5787364

-/+ buffers/cache: 26660416 6240084

Swap: 2046972 304680 1742292

The options -b , -k , -m , -g show the output in bytes, KB, MB, or GB, respectively. The para-
meter -d delay ensures that the display is refreshed every delay seconds. For example, free
-d 1.5 produces an update every 1.5 seconds.

2.4.2 Detailed Memory Usage: /proc/meminfo
Use /proc/meminfo to get more detailed information on memory usage than with free . Ac-
tually free uses some of the data from this file. See an example output from a 64-bit system
below. Note that it slightly differs on 32-bit systems because of different memory management:

MemTotal: 1942636 kB

MemFree: 1294352 kB

MemAvailable: 1458744 kB

Buffers: 876 kB

Cached: 278476 kB

SwapCached: 0 kB

Active: 368328 kB

Inactive: 199368 kB

29 Detailed Memory Usage: /proc/meminfo SLES 12 SP1

Active(anon): 288968 kB

Inactive(anon): 10568 kB

Active(file): 79360 kB

Inactive(file): 188800 kB

Unevictable: 80 kB

Mlocked: 80 kB

SwapTotal: 2103292 kB

SwapFree: 2103292 kB

Dirty: 44 kB

Writeback: 0 kB

AnonPages: 288592 kB

Mapped: 70444 kB

Shmem: 11192 kB

Slab: 40916 kB

SReclaimable: 17712 kB

SUnreclaim: 23204 kB

KernelStack: 2000 kB

PageTables: 10996 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 3074608 kB

Committed_AS: 1407208 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 145996 kB

VmallocChunk: 34359588844 kB

HardwareCorrupted: 0 kB

AnonHugePages: 86016 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 2048 kB

DirectMap4k: 79744 kB

DirectMap2M: 2017280 kB

30 Detailed Memory Usage: /proc/meminfo SLES 12 SP1

These entries stand for the following:

MemTotal

Total amount of RAM.

MemFree

Amount of unused RAM.

MemAvailable

Estimate of how much memory is available for starting new applications without swapping.

Buffers

File buffer cache in RAM

Cached

Page cache in RAM. This excludes buffer cache and swap cache, but includes Shmem mem-
ory.

SwapCached

Page cache for swapped-out memory.

Active, Active(anon), Active(file)

Recently used memory that will not be reclaimed unless necessary or on explicit request.
Active is the sum of Active(anon) and Active(file):

Active(anon) tracks swap-backed memory. This includes private and shared anony-
mous mappings and private file pages after copy-on-write.

Active(file) tracks other file-system backed memory.

Inactive, Inactive(anon), Inactive(file)

Less recently used memory that will usually be reclaimed first. Inactive is the sum of
Inactive(anon) and Inactive(file):

Inactive(anon) tracks swap backed memory. This includes private and shared anony-
mous mappings and private file pages after copy-on-write.

Inactive(file) tracks other file-system backed memory.

Unevictable

Amount of memory that cannot be reclaimed (for example, because it is Mlocked or used
as a RAM disk).

31 Detailed Memory Usage: /proc/meminfo SLES 12 SP1

Mlocked

Amount of memory that is backed by the mlock system call. mlock allows processes to
define which part of physical RAM their virtual memory should be mapped to. However,
mlock does not guarantee this placement.

SwapTotal

Amount of swap space.

SwapFree

Amount of unused swap space.

Dirty

Amount of memory waiting to be written to disk, because it contains changes compared
to the backing storage.

Writeback

Amount of memory that is currently being written to disk.

Mapped

Memory claimed with the mmap system call.

Shmem

Memory shared between groups of processes, such as IPC data, tmpfs data and shared
anonymous memory.

Slab

Memory allocation for internal data structures of the kernel.

SReclaimable

Slab section that can be reclaimed, such as caches (inode, dentry, etc.).

SUnreclaim

Slab section that cannot be reclaimed.

KernelStack

Amount of kernel space memory used by applications (through system calls).

PageTables

Amount of memory dedicated to page tables of all processes.

NFS_Unstable

NFS pages that have already been sent to the server, but are not yet committed there.

32 Detailed Memory Usage: /proc/meminfo SLES 12 SP1

Bounce

Memory used for bounce buffers of block devices.

WritebackTmp

Memory used by FUSE for temporary writeback buffers.

CommitLimit

Amount of memory available to the system based on the overcommit ratio setting. This is
only enforced if strict overcommit accounting is enabled.

Committed_AS

An approximation of the total amount of memory (RAM and swap) that the current work-
load would need in the worst case.

VmallocTotal

Amount of allocated kernel virtual address space.

VmallocUsed

Amount of used kernel virtual address space.

VmallocChunk

The largest contiguous block of available kernel virtual address space.

HardwareCorrupted

Amount of failed memory (can only be detected when using ECC RAM).

AnonHugePages

Anonymous hugepages that are mapped into userspace page tables. These are allocated
transparently for processes without being specifically requested, therefore they are also
known as transparent hugepages (THP).

HugePages_Total

Number of preallocated hugepages for use by SHM_HUGETLB and MAP_HUGETLB or through
the hugetlbfs file system, as defined in /proc/sys/vm/nr_hugepages

HugePages_Free

Number of hugepages available.

HugePages_Rsvd

Number of hugepages that are committed.

33 Process Memory Usage: smaps SLES 12 SP1

HugePages_Surp

Number of hugepages available beyond HugePages_Total (“surplus”), as defined in /proc/
sys/vm/nr_overcommit_hugepages .

Hugepagesize

Size of a hugepage, on AMD64/Intel 64—the default is 2048 KB.

DirectMap4k etc.

Amount of kernel memory that is mapped to pages with a given size (in the example: 4 kB).

2.4.3 Process Memory Usage: smaps
Exactly determining how much memory a certain process is consuming is not possible with
standard tools like top or ps . Use the smaps subsystem, introduced in Kernel 2.6.14, if you
need exact data. It can be found at /proc/pid/smaps and shows you the number of clean
and dirty memory pages the process with the ID PID is using at that time. It differentiates
between shared and private memory, so you can see how much memory the process is using
without including memory shared with other processes. For more information see /usr/src/
linux/Documentation/filesystems/proc.txt (requires the package kernel-source to be
installed).

smaps is expensive to read. Therefore it is not recommended to monitor it regularly, but only
when closely monitoring a certain process.

2.5 Networking

Tip: Traffic Shaping
In case the network bandwidth is lower than expected, you should first check if any traffic
shaping rules are active for your network segment.

2.5.1 Basic Network Diagnostics: ip
ip is a powerful tool to set up and control network interfaces. You can also use it to quickly
view basic statistics about network interfaces of the system. For example, whether the interface
is up or how many errors, dropped packets, or packet collisions there are.

34 Basic Network Diagnostics: ip SLES 12 SP1

If you run ip with no additional parameter, it displays a help output. To list all network inter-
faces, enter ip addr show (or abbreviated as ip a). ip addr show up lists only running
network interfaces. ip -s link show device lists statistics for the specified interface only:

root # ip -s link show br0

6: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode

 DEFAULT

 link/ether 00:19:d1:72:d4:30 brd ff:ff:ff:ff:ff:ff

 RX: bytes packets errors dropped overrun mcast

 6346104756 9265517 0 10860 0 0

 TX: bytes packets errors dropped carrier collsns

 3996204683 3655523 0 0 0 0

ip can also be used to show interfaces (link), routing tables (route), and much more—refer
to man 8 ip for details.

root # ip route

default via 192.168.2.1 dev eth1

192.168.2.0/24 dev eth0 proto kernel scope link src 192.168.2.100

192.168.2.0/24 dev eth1 proto kernel scope link src 192.168.2.101

192.168.2.0/24 dev eth2 proto kernel scope link src 192.168.2.102

root # ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen

 1000

 link/ether 52:54:00:44:30:51 brd ff:ff:ff:ff:ff:ff

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen

 1000

 link/ether 52:54:00:a3:c1:fb brd ff:ff:ff:ff:ff:ff

4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen

 1000

 link/ether 52:54:00:32:a4:09 brd ff:ff:ff:ff:ff:ff

35 Show the Network Usage of Processes: nethogs SLES 12 SP1

2.5.2 Show the Network Usage of Processes: nethogs
In some cases, for example if the network traffic suddenly becomes very high, it is desirable to
quickly find out which application(s) is/are causing the traffic. nethogs , a tool with a design
similar to top , shows incoming and outgoing traffic for all relevant processes:

PID USER PROGRAM DEV SENT RECEIVED

27145 root zypper eth0 5.719 391.749 KB/sec

? root ..0:113:80c0:8080:10:160:0:100:30015 0.102 2.326 KB/sec

26635 tux /usr/lib64/firefox/firefox eth0 0.026 0.026 KB/sec

? root ..0:113:80c0:8080:10:160:0:100:30045 0.000 0.021 KB/sec

? root ..0:113:80c0:8080:10:160:0:100:30045 0.000 0.018 KB/sec

? root ..0:113:80c0:8080:10:160:0:100:30015 0.000 0.018 KB/sec

? root ..0:113:80c0:8080:10:160:0:100:30045 0.000 0.017 KB/sec

? root ..0:113:80c0:8080:10:160:0:100:30045 0.000 0.017 KB/sec

? root ..0:113:80c0:8080:10:160:0:100:30045 0.069 0.000 KB/sec

? root unknown TCP 0.000 0.000 KB/sec

TOTAL 5.916 394.192 KB/sec

Like in top , nethogs features interactive commands:

M : cycle between display modes (kb/s, kb, b, mb)
R : sort by RECEIVED
S : sort by SENT
Q : quit

2.5.3 Ethernet Cards in Detail: ethtool
ethtool can display and change detailed aspects of your Ethernet network device. By default
it prints the current setting of the specified device.

root # ethtool eth0

Settings for eth0:

 Supported ports: [TP]

 Supported link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full

36 Show the Network Status: ss SLES 12 SP1

 1000baseT/Full

 Supports auto-negotiation: Yes

 Advertised link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full

 1000baseT/Full

 Advertised pause frame use: No

[...]

 Link detected: yes

The following table shows ethtool options that you can use to query the device for specific
information:

TABLE 2.1: LIST OF QUERY OPTIONS OF ethtool

ethtool option it queries the device for

-a pause parameter information

-c interrupt coalescing information

-g Rx/Tx (receive/transmit) ring parameter in-
formation

-i associated driver information

-k offload information

-S NIC and driver-specific statistics

2.5.4 Show the Network Status: ss
ss is a tool to dump socket statistics and replaces the netstat command. To show a list of
all connections use ss parameters:

root # ss

Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port

u_str ESTAB 0 0 * 14082 * 14083

u_str ESTAB 0 0 * 18582 * 18583

u_str ESTAB 0 0 * 19449 * 19450

37 Show the Network Status: ss SLES 12 SP1

u_str ESTAB 0 0 @/tmp/dbus-gmUUwXABPV 18784 * 18783

u_str ESTAB 0 0 /var/run/dbus/system_bus_socket 19383 * 19382

u_str ESTAB 0 0 @/tmp/dbus-gmUUwXABPV 18617 * 18616

u_str ESTAB 0 0 @/tmp/dbus-58TPPDv8qv 19352 * 19351

u_str ESTAB 0 0 * 17658 * 17657

u_str ESTAB 0 0 * 17693 * 17694

[..]

To show all network ports currently open, use the following command:

root # ss -l

Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port

nl UNCONN 0 0 rtnl:4195117 *

nl UNCONN 0 0 rtnl:wickedd-auto4/811 *

nl UNCONN 0 0 rtnl:wickedd-dhcp4/813 *

nl UNCONN 0 0 rtnl:4195121 *

nl UNCONN 0 0 rtnl:4195115 *

nl UNCONN 0 0 rtnl:wickedd-dhcp6/814 *

nl UNCONN 0 0 rtnl:kernel *

nl UNCONN 0 0 rtnl:wickedd/817 *

nl UNCONN 0 0 rtnl:4195118 *

nl UNCONN 0 0 rtnl:nscd/706 *

nl UNCONN 4352 0 tcpdiag:ss/2381 *

[...]

When displaying network connections, you can specify the socket type to display: TCP (-t)
or UDP (-u) for example. The -p option shows the PID and name of the program to which
each socket belongs.

The following example lists all TCP connections and the programs using these connections. The
-a option make sure all established connections (listening and non-listening) are shown. The
-p option shows the PID and name of the program to which each socket belongs.

root # ss -t -a -p

State Recv-Q Send-Q Local Address:Port Peer Address:Port

LISTEN 0 128 *:ssh *:* users:(("sshd",1551,3))

LISTEN 0 100 127.0.0.1:smtp *:* users:(("master",1704,13))

ESTAB 0 132 10.120.65.198:ssh 10.120.4.150:55715 users:(("sshd",2103,5))

38 The /proc File System SLES 12 SP1

LISTEN 0 128 :::ssh :::* users:(("sshd",1551,4))

LISTEN 0 100 ::1:smtp :::* users:(("master",1704,14))

2.6 The /proc File System
The /proc file system is a pseudo file system in which the kernel reserves important information
in the form of virtual files. For example, display the CPU type with this command:

tux > cat /proc/cpuinfo

processor : 0

vendor_id : GenuineIntel

cpu family : 6

model : 30

model name : Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz

stepping : 5

microcode : 0x6

cpu MHz : 1197.000

cache size : 8192 KB

physical id : 0

siblings : 4

core id : 0

cpu cores : 4

apicid : 0

initial apicid : 0

fpu : yes

fpu_exception : yes

cpuid level : 11

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36

 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp lm constant_tsc

 arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni dtes64

 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 sse4_2 popcnt lahf_lm

 ida dtherm tpr_shadow vnmi flexpriority ept vpid

bogomips : 5333.85

clflush size : 64

39 The /proc File System SLES 12 SP1

cache_alignment : 64

address sizes : 36 bits physical, 48 bits virtual

power management:

[...]

Tip: Detailed Processor Information
Detailed information about the processor on the x86_64 architecture is also available by
running x86info .

Query the allocation and use of interrupts with the following command:

tux > cat /proc/interrupts

 CPU0 CPU1 CPU2 CPU3

 0: 121 0 0 0 IO-APIC-edge timer

 8: 0 0 0 1 IO-APIC-edge rtc0

 9: 0 0 0 0 IO-APIC-fasteoi acpi

 16: 0 11933 0 0 IO-APIC-fasteoi ehci_hcd:+

 18: 0 0 0 0 IO-APIC-fasteoi i801_smbus

 19: 0 117978 0 0 IO-APIC-fasteoi ata_piix,+

 22: 0 0 3275185 0 IO-APIC-fasteoi enp5s1

 23: 417927 0 0 0 IO-APIC-fasteoi ehci_hcd:+

 40: 2727916 0 0 0 HPET_MSI-edge hpet2

 41: 0 2749134 0 0 HPET_MSI-edge hpet3

 42: 0 0 2759148 0 HPET_MSI-edge hpet4

 43: 0 0 0 2678206 HPET_MSI-edge hpet5

 45: 0 0 0 0 PCI-MSI-edge aerdrv, P+

 46: 0 0 0 0 PCI-MSI-edge PCIe PME,+

 47: 0 0 0 0 PCI-MSI-edge PCIe PME,+

 48: 0 0 0 0 PCI-MSI-edge PCIe PME,+

 49: 0 0 0 387 PCI-MSI-edge snd_hda_i+

 50: 933117 0 0 0 PCI-MSI-edge nvidia

NMI: 2102 2023 2031 1920 Non-maskable interrupts

LOC: 92 71 57 41 Local timer interrupts

SPU: 0 0 0 0 Spurious interrupts

PMI: 2102 2023 2031 1920 Performance monitoring int+

40 The /proc File System SLES 12 SP1

IWI: 47331 45725 52464 46775 IRQ work interrupts

RTR: 2 0 0 0 APIC ICR read retries

RES: 472911 396463 339792 323820 Rescheduling interrupts

CAL: 48389 47345 54113 50478 Function call interrupts

TLB: 28410 26804 24389 26157 TLB shootdowns

TRM: 0 0 0 0 Thermal event interrupts

THR: 0 0 0 0 Threshold APIC interrupts

MCE: 0 0 0 0 Machine check exceptions

MCP: 40 40 40 40 Machine check polls

ERR: 0

MIS: 0

The address assignment of executables and libraries is contained in the maps file:

tux > cat /proc/self/maps

08048000-0804c000 r-xp 00000000 03:03 17753 /bin/cat

0804c000-0804d000 rw-p 00004000 03:03 17753 /bin/cat

0804d000-0806e000 rw-p 0804d000 00:00 0 [heap]

b7d27000-b7d5a000 r--p 00000000 03:03 11867 /usr/lib/locale/en_GB.utf8/

b7d5a000-b7e32000 r--p 00000000 03:03 11868 /usr/lib/locale/en_GB.utf8/

b7e32000-b7e33000 rw-p b7e32000 00:00 0

b7e33000-b7f45000 r-xp 00000000 03:03 8837 /lib/libc-2.3.6.so

b7f45000-b7f46000 r--p 00112000 03:03 8837 /lib/libc-2.3.6.so

b7f46000-b7f48000 rw-p 00113000 03:03 8837 /lib/libc-2.3.6.so

b7f48000-b7f4c000 rw-p b7f48000 00:00 0

b7f52000-b7f53000 r--p 00000000 03:03 11842 /usr/lib/locale/en_GB.utf8/

[...]

b7f5b000-b7f61000 r--s 00000000 03:03 9109 /usr/lib/gconv/gconv-module

b7f61000-b7f62000 r--p 00000000 03:03 9720 /usr/lib/locale/en_GB.utf8/

b7f62000-b7f76000 r-xp 00000000 03:03 8828 /lib/ld-2.3.6.so

b7f76000-b7f78000 rw-p 00013000 03:03 8828 /lib/ld-2.3.6.so

bfd61000-bfd76000 rw-p bfd61000 00:00 0 [stack]

ffffe000-fffff000 ---p 00000000 00:00 0 [vdso]

41 procinfo SLES 12 SP1

A lot more information can be obtained from the /proc file system. Some of the important files
and their contents are:

/proc/devices

Available devices

/proc/modules

Kernel modules loaded

/proc/cmdline

Kernel command line

/proc/meminfo

Detailed information about memory usage

/proc/config.gz

gzip -compressed configuration file of the kernel currently running

/proc/ PID/

Find information about processes currently running in the /proc/ NNN directories, where
NNN is the process ID (PID) of the relevant process. Every process can find its own char-
acteristics in /proc/self/ .

Further information is available in the text file /usr/src/linux/Documentation/filesys-
tems/proc.txt (this file is available when the package kernel-source is installed).

2.6.1 procinfo
Important information from the /proc file system is summarized by the command procinfo :

tux > procinfo

Linux 3.11.10-17-desktop (geeko@buildhost) (gcc 4.8.1 20130909) #1 4CPU

 [jupiter.example.com]

Memory: Total Used Free Shared Buffers Cached

Mem: 8181908 8000632 181276 0 85472 2850872

Swap: 10481660 1576 10480084

Bootup: Mon Jul 28 09:54:13 2014 Load average: 1.61 0.85 0.74 2/904 25949

42 System Control Parameters: /proc/sys/ SLES 12 SP1

user : 1:54:41.84 12.7% page in : 2107312 disk 1: 52212r 20199w

nice : 0:00:00.46 0.0% page out: 1714461 disk 2: 19387r 10928w

system: 0:25:38.00 2.8% page act: 466673 disk 3: 548r 10w

IOwait: 0:04:16.45 0.4% page dea: 272297

hw irq: 0:00:00.42 0.0% page flt: 105754526

sw irq: 0:01:26.48 0.1% swap in : 0

idle : 12:14:43.65 81.5% swap out: 394

guest : 0:02:18.59 0.2%

uptime: 3:45:22.24 context : 99809844

irq 0: 121 timer irq 41: 3238224 hpet3

irq 8: 1 rtc0 irq 42: 3251898 hpet4

irq 9: 0 acpi irq 43: 3156368 hpet5

irq 16: 14589 ehci_hcd:usb1 irq 45: 0 aerdrv, PCIe PME

irq 18: 0 i801_smbus irq 46: 0 PCIe PME, pciehp

irq 19: 124861 ata_piix, ata_piix, f irq 47: 0 PCIe PME, pciehp

irq 22: 3742817 enp5s1 irq 48: 0 PCIe PME, pciehp

irq 23: 479248 ehci_hcd:usb2 irq 49: 387 snd_hda_intel

irq 40: 3216894 hpet2 irq 50: 1088673 nvidia

To see all the information, use the parameter -a . The parameter -nN produces updates of the
information every N seconds. In this case, terminate the program by pressing Q .

By default, the cumulative values are displayed. The parameter -d produces the differential
values. procinfo -dn5 displays the values that have changed in the last five seconds:

2.6.2 System Control Parameters: /proc/sys/
System control parameters are used to modify the Linux kernel parameters at runtime. They
reside in /proc/sys/ and can be viewed and modified with the sysctl command. To list all
parameters, run sysctl -a . A single parameter can be listed with sysctl parameter name .

Parameters are grouped into categories and can be listed with sysctl category or by listing
the contents of the respective directories. The most important categories are listed below. The
links to further readings require the installation of the package kernel-source .

sysctl dev (/proc/sys/abi/)

Device-specific information.

43 Hardware Information SLES 12 SP1

sysctl fs (/proc/sys/fs/)

Used file handles, quotas, and other file system-oriented parameters. For details see /usr/
src/linux/Documentation/sysctl/fs.txt .

sysctl kernel (/proc/sys/kernel/)

Information about the task scheduler, system shared memory, and other kernel-related
parameters. For details see /usr/src/linux/Documentation/sysctl/kernel.txt

systctl net (/proc/sys/net/)

Information about network bridges, and general network parameters (mainly the ipv4/
subdirectory). For details see /usr/src/linux/Documentation/sysctl/net.txt

sysctl vm (/proc/sys/vm/)

Entries in this path relate to information about the virtual memory, swapping, and caching.
For details see /usr/src/linux/Documentation/sysctl/vm.txt

To set or change a parameter for the current session, use the command sysctl -w para-
meter= value . To permanently change a setting, add a line parameter= value to /etc/
sysctl.conf .

2.7 Hardware Information

2.7.1 PCI Resources: lspci

Note: Accessing PCI configuration.
Most operating systems require root user privileges to grant access to the computer's PCI
configuration.

The command lspci lists the PCI resources:

root # lspci

00:00.0 Host bridge: Intel Corporation 82845G/GL[Brookdale-G]/GE/PE \

 DRAM Controller/Host-Hub Interface (rev 01)

00:01.0 PCI bridge: Intel Corporation 82845G/GL[Brookdale-G]/GE/PE \

44 PCI Resources: lspci SLES 12 SP1

 Host-to-AGP Bridge (rev 01)

00:1d.0 USB Controller: Intel Corporation 82801DB/DBL/DBM \

 (ICH4/ICH4-L/ICH4-M) USB UHCI Controller #1 (rev 01)

00:1d.1 USB Controller: Intel Corporation 82801DB/DBL/DBM \

 (ICH4/ICH4-L/ICH4-M) USB UHCI Controller #2 (rev 01)

00:1d.2 USB Controller: Intel Corporation 82801DB/DBL/DBM \

 (ICH4/ICH4-L/ICH4-M) USB UHCI Controller #3 (rev 01)

00:1d.7 USB Controller: Intel Corporation 82801DB/DBM \

 (ICH4/ICH4-M) USB2 EHCI Controller (rev 01)

00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev 81)

00:1f.0 ISA bridge: Intel Corporation 82801DB/DBL (ICH4/ICH4-L) \

 LPC Interface Bridge (rev 01)

00:1f.1 IDE interface: Intel Corporation 82801DB (ICH4) IDE \

 Controller (rev 01)

00:1f.3 SMBus: Intel Corporation 82801DB/DBL/DBM (ICH4/ICH4-L/ICH4-M) \

 SMBus Controller (rev 01)

00:1f.5 Multimedia audio controller: Intel Corporation 82801DB/DBL/DBM \

 (ICH4/ICH4-L/ICH4-M) AC'97 Audio Controller (rev 01)

01:00.0 VGA compatible controller: Matrox Graphics, Inc. G400/G450 (rev 85)

02:08.0 Ethernet controller: Intel Corporation 82801DB PRO/100 VE (LOM) \

 Ethernet Controller (rev 81)

Using -v results in a more detailed listing:

root # lspci -v

[...]

00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet \

Controller (rev 02)

 Subsystem: Intel Corporation PRO/1000 MT Desktop Adapter

 Flags: bus master, 66MHz, medium devsel, latency 64, IRQ 19

 Memory at f0000000 (32-bit, non-prefetchable) [size=128K]

 I/O ports at d010 [size=8]

 Capabilities: [dc] Power Management version 2

 Capabilities: [e4] PCI-X non-bridge device

 Kernel driver in use: e1000

 Kernel modules: e1000

45 USB Devices: lsusb SLES 12 SP1

Information about device name resolution is obtained from the file /usr/share/pci.ids . PCI
IDs not listed in this file are marked “Unknown device.”

The parameter -vv produces all the information that could be queried by the program. To view
the pure numeric values, use the parameter -n .

2.7.2 USB Devices: lsusb
The command lsusb lists all USB devices. With the option -v , print a more detailed list. The
detailed information is read from the directory /proc/bus/usb/ . The following is the output
of lsusb with these USB devices attached: hub, memory stick, hard disk and mouse.

root # lsusb

Bus 004 Device 007: ID 0ea0:2168 Ours Technology, Inc. Transcend JetFlash \

 2.0 / Astone USB Drive

Bus 004 Device 006: ID 04b4:6830 Cypress Semiconductor Corp. USB-2.0 IDE \

 Adapter

Bus 004 Device 005: ID 05e3:0605 Genesys Logic, Inc.

Bus 004 Device 001: ID 0000:0000

Bus 003 Device 001: ID 0000:0000

Bus 002 Device 001: ID 0000:0000

Bus 001 Device 005: ID 046d:c012 Logitech, Inc. Optical Mouse

Bus 001 Device 001: ID 0000:0000

2.7.3 MCELog: Machine Check Exceptions (MCE)
The mcelog package logs and parses/translates Machine Check Exceptions (MCE) on hardware
errors (also including memory errors). Formerly this has been done by a cron job executed
hourly. Now hardware errors are immediately processed by an mcelog daemon.

However, the mcelog service is not enabled by default, resulting in memory and CPU errors also
not being logged by default. In addition, mcelog has a new feature to also handle predictive bad
page offlining and automatic core offlining when cache errors happen.

The service can either be enabled and started via the YaST system services editor or via command
line:

systemctl enable mcelog

46 Files and File Systems SLES 12 SP1

systemctl start mcelog

2.8 Files and File Systems
For file system-specific information, refer to Book “Storage Administration Guide”.

2.8.1 Determine the File Type: file
The command file determines the type of a file or a list of files by checking /usr/share/
misc/magic .

tux > file /usr/bin/file

/usr/bin/file: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), \

 for GNU/Linux 2.6.4, dynamically linked (uses shared libs), stripped

The parameter -f list specifies a file with a list of file names to examine. The -z allows
file to look inside compressed files:

tux > file /usr/share/man/man1/file.1.gz

/usr/share/man/man1/file.1.gz: gzip compressed data, from Unix, max compression

tux > file -z /usr/share/man/man1/file.1.gz

/usr/share/man/man1/file.1.gz: troff or preprocessor input text \

 (gzip compressed data, from Unix, max compression)

The parameter -i outputs a mime type string rather than the traditional description.

tux > file -i /usr/share/misc/magic

/usr/share/misc/magic: text/plain charset=utf-8

2.8.2 File Systems and Their Usage: mount, df and du
The command mount shows which file system (device and type) is mounted at which mount
point:

root # mount

/dev/sda2 on / type ext4 (rw,acl,user_xattr)

47 Additional Information about ELF Binaries SLES 12 SP1

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

debugfs on /sys/kernel/debug type debugfs (rw)

devtmpfs on /dev type devtmpfs (rw,mode=0755)

tmpfs on /dev/shm type tmpfs (rw,mode=1777)

devpts on /dev/pts type devpts (rw,mode=0620,gid=5)

/dev/sda3 on /home type ext3 (rw)

securityfs on /sys/kernel/security type securityfs (rw)

fusectl on /sys/fs/fuse/connections type fusectl (rw)

gvfs-fuse-daemon on /home/tux/.gvfs type fuse.gvfs-fuse-daemon \

(rw,nosuid,nodev,user=tux)

Obtain information about total usage of the file systems with the command df . The parameter -
h (or --human-readable) transforms the output into a form understandable for common users.

tux > df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sda2 20G 5,9G 13G 32% /

devtmpfs 1,6G 236K 1,6G 1% /dev

tmpfs 1,6G 668K 1,6G 1% /dev/shm

/dev/sda3 208G 40G 159G 20% /home

Display the total size of all the files in a given directory and its subdirectories with the command
du . The parameter -s suppresses the output of detailed information and gives only a total for
each argument. -h again transforms the output into a human-readable form:

tux > du -sh /opt

192M /opt

2.8.3 Additional Information about ELF Binaries
Read the content of binaries with the readelf utility. This even works with ELF files that were
built for other hardware architectures:

tux > readelf --file-header /bin/ls

ELF Header:

 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

48 File Properties: stat SLES 12 SP1

 Class: ELF64

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: EXEC (Executable file)

 Machine: Advanced Micro Devices X86-64

 Version: 0x1

 Entry point address: 0x402540

 Start of program headers: 64 (bytes into file)

 Start of section headers: 95720 (bytes into file)

 Flags: 0x0

 Size of this header: 64 (bytes)

 Size of program headers: 56 (bytes)

 Number of program headers: 9

 Size of section headers: 64 (bytes)

 Number of section headers: 32

 Section header string table index: 31

2.8.4 File Properties: stat
The command stat displays file properties:

tux > stat /etc/profile

 File: `/etc/profile'

 Size: 9662 Blocks: 24 IO Block: 4096 regular file

Device: 802h/2050d Inode: 132349 Links: 1

Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)

Access: 2009-03-20 07:51:17.000000000 +0100

Modify: 2009-01-08 19:21:14.000000000 +0100

Change: 2009-03-18 12:55:31.000000000 +0100

The parameter --file-system produces details of the properties of the file system in which
the specified file is located:

tux > stat /etc/profile --file-system

49 User Information SLES 12 SP1

 File: "/etc/profile"

 ID: d4fb76e70b4d1746 Namelen: 255 Type: ext2/ext3

Block size: 4096 Fundamental block size: 4096

Blocks: Total: 2581445 Free: 1717327 Available: 1586197

Inodes: Total: 655776 Free: 490312

2.9 User Information

2.9.1 User Accessing Files: fuser
It can be useful to determine what processes or users are currently accessing certain files. Sup-
pose, for example, you want to unmount a file system mounted at /mnt . umount returns "de-
vice is busy." The command fuser can then be used to determine what processes are accessing
the device:

tux > fuser -v /mnt/*

 USER PID ACCESS COMMAND

/mnt/notes.txt tux 26597 f.... less

Following termination of the less process, which was running on another terminal, the file sys-
tem can successfully be unmounted. When used with -k option, fuser will terminate processes
accessing the file as well.

2.9.2 Who Is Doing What: w
With the command w , find out who is logged onto the system and what each user is doing.
For example:

tux > w

 16:00:59 up 1 day, 2:41, 3 users, load average: 0.00, 0.01, 0.05

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

tux :0 console Wed13 ?xdm? 8:15 0.03s /usr/lib/gdm/gd

50 Time and Date SLES 12 SP1

tux console :0 Wed13 26:41m 0.00s 0.03s /usr/lib/gdm/gd

tux pts/0 :0 Wed13 20:11 0.10s 2.89s /usr/lib/gnome-

If any users of other systems have logged in remotely, the parameter -f shows the computers
from which they have established the connection.

2.10 Time and Date

2.10.1 Time Measurement with time

Determine the time spent by commands with the time utility. This utility is available in two
versions: as a Bash built-in and as a program (/usr/bin/time).

tux > time find . > /dev/null

real 0m4.051s 1

user 0m0.042s 2

sys 0m0.205s 3

1 The real time that elapsed from the command's start-up until it finished.

2 CPU time of the user as reported by the times system call.

3 CPU time of the system as reported by the times system call.

The output of /usr/bin/time is much more detailed. It is recommended to run it with the -
v switch to produce human-readable output.

/usr/bin/time -v find . > /dev/null

 Command being timed: "find ."

 User time (seconds): 0.24

 System time (seconds): 2.08

 Percent of CPU this job got: 25%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0:09.03

 Average shared text size (kbytes): 0

 Average unshared data size (kbytes): 0

51 Graph Your Data: RRDtool SLES 12 SP1

 Average stack size (kbytes): 0

 Average total size (kbytes): 0

 Maximum resident set size (kbytes): 2516

 Average resident set size (kbytes): 0

 Major (requiring I/O) page faults: 0

 Minor (reclaiming a frame) page faults: 1564

 Voluntary context switches: 36660

 Involuntary context switches: 496

 Swaps: 0

 File system inputs: 0

 File system outputs: 0

 Socket messages sent: 0

 Socket messages received: 0

 Signals delivered: 0

 Page size (bytes): 4096

 Exit status: 0

2.11 Graph Your Data: RRDtool
There are a lot of data in the world around you, which can be easily measured in time. For
example, changes in the temperature, or the number of data sent or received by your computer's
network interface. RRDtool can help you store and visualize such data in detailed and customiz-
able graphs.

RRDtool is available for most Unix platforms and Linux distributions. SUSE® Linux Enterprise
Server ships RRDtool as well. Install it either with YaST or by entering

zypper install rrdtool in the command line as root .

Tip: Bindings
There are Perl, Python, Ruby, and PHP bindings available for RRDtool, so that you can
write your own monitoring scripts in your preferred scripting language.

52 How RRDtool Works SLES 12 SP1

2.11.1 How RRDtool Works

RRDtool is an abbreviation of Round Robin Database tool. Round Robin is a method for manipu-
lating with a constant amount of data. It uses the principle of a circular buffer, where there is no
end nor beginning to the data row which is being read. RRDtool uses Round Robin Databases
to store and read its data.

As mentioned above, RRDtool is designed to work with data that change in time. The ideal
case is a sensor which repeatedly reads measured data (like temperature, speed etc.) in constant
periods of time, and then exports them in a given format. Such data are perfectly ready for
RRDtool, and it is easy to process them and create the desired output.

Sometimes it is not possible to obtain the data automatically and regularly. Their format needs
to be preprocessed before it is supplied to RRDtool, and often you need to manipulate RRDtool
even manually.

The following is a simple example of basic RRDtool usage. It illustrates all three important phases
of the usual RRDtool workflow: creating a database, updating measured values, and viewing the
output.

2.11.2 A Practical Example

Suppose we want to collect and view information about the memory usage in the Linux system
as it changes in time. To make the example more vivid, we measure the currently free memory
over a period of 40 seconds in 4-second intervals. Three applications that usually consume a lot
of system memory are started and closed: the Firefox Web browser, the Evolution e-mail client,
and the Eclipse development framework.

2.11.2.1 Collecting Data

RRDtool is very often used to measure and visualize network traffic. In such case, the Simple
Network Management Protocol (SNMP) is used. This protocol can query network devices for
relevant values of their internal counters. Exactly these values are to be stored with RRDtool.
For more information on SNMP, see http://www.net-snmp.org/.

Our situation is different—we need to obtain the data manually. A helper script free_mem.sh
repetitively reads the current state of free memory and writes it to the standard output.

tux > cat free_mem.sh

http://www.net-snmp.org/

53 A Practical Example SLES 12 SP1

INTERVAL=4

for steps in {1..10}

do

 DATE=`date +%s`

 FREEMEM=`free -b | grep "Mem" | awk '{ print $4 }'`

 sleep $INTERVAL

 echo "rrdtool update free_mem.rrd $DATE:$FREEMEM"

done

The time interval is set to 4 seconds, and is implemented with the sleep command.

RRDtool accepts time information in a special format - so called Unix time. It is defined
as the number of seconds since the midnight of January 1, 1970 (UTC). For example,
1272907114 represents 2010-05-03 17:18:34.

The free memory information is reported in bytes with free -b . Prefer to supply basic
units (bytes) instead of multiple units (like kilobytes).

The line with the echo ... command contains the future name of the database file
(free_mem.rrd), and together creates a command line for updating RRDtool values.

After running free_mem.sh , you see an output similar to this:

tux > sh free_mem.sh

rrdtool update free_mem.rrd 1272974835:1182994432

rrdtool update free_mem.rrd 1272974839:1162817536

rrdtool update free_mem.rrd 1272974843:1096269824

rrdtool update free_mem.rrd 1272974847:1034219520

rrdtool update free_mem.rrd 1272974851:909438976

rrdtool update free_mem.rrd 1272974855:832454656

rrdtool update free_mem.rrd 1272974859:829120512

rrdtool update free_mem.rrd 1272974863:1180377088

rrdtool update free_mem.rrd 1272974867:1179369472

rrdtool update free_mem.rrd 1272974871:1181806592

It is convenient to redirect the command's output to a file with

sh free_mem.sh > free_mem_updates.log

to simplify its future execution.

54 A Practical Example SLES 12 SP1

2.11.2.2 Creating the Database

Create the initial Robin Round database for our example with the following command:

tux > rrdtool create free_mem.rrd --start 1272974834 --step=4 \

DS:memory:GAUGE:600:U:U RRA:AVERAGE:0.5:1:24

POINTS TO NOTICE

This command creates a file called free_mem.rrd for storing our measured values in a
Round Robin type database.

The --start option specifies the time (in Unix time) when the first value will be added to
the database. In this example, it is one less than the first time value of the free_mem.sh
output (1272974835).

The --step specifies the time interval in seconds with which the measured data will be
supplied to the database.

The DS:memory:GAUGE:600:U:U part introduces a new data source for the database. It
is called memory, its type is gauge, the maximum number between two updates is 600
seconds, and the minimal and maximal value in the measured range are unknown (U).

RRA:AVERAGE:0.5:1:24 creates Round Robin archive (RRA) whose stored data are
processed with the consolidation functions (CF) that calculates the average of data points. 3
arguments of the consolidation function are appended to the end of the line .

If no error message is displayed, then free_mem.rrd database is created in the current direc-
tory:

tux > ls -l free_mem.rrd

-rw-r--r-- 1 tux users 776 May 5 12:50 free_mem.rrd

2.11.2.3 Updating Database Values

After the database is created, you need to fill it with the measured data. In Section 2.11.2.1, “Col-

lecting Data”, we already prepared the file free_mem_updates.log which consists of rrdtool
update commands. These commands do the update of database values for us.

tux > sh free_mem_updates.log; ls -l free_mem.rrd

55 A Practical Example SLES 12 SP1

-rw-r--r-- 1 tux users 776 May 5 13:29 free_mem.rrd

As you can see, the size of free_mem.rrd remained the same even after updating its data.

2.11.2.4 Viewing Measured Values

We have already measured the values, created the database, and stored the measured value in
it. Now we can play with the database, and retrieve or view its values.

To retrieve all the values from our database, enter the following on the command line:

tux > rrdtool fetch free_mem.rrd AVERAGE --start 1272974830 \

--end 1272974871

 memory

1272974832: nan

1272974836: 1.1729059840e+09

1272974840: 1.1461806080e+09

1272974844: 1.0807572480e+09

1272974848: 1.0030243840e+09

1272974852: 8.9019289600e+08

1272974856: 8.3162112000e+08

1272974860: 9.1693465600e+08

1272974864: 1.1801251840e+09

1272974868: 1.1799787520e+09

1272974872: nan

POINTS TO NOTICE

AVERAGE will fetch average value points from the database, because only one data source
is defined (Section 2.11.2.2, “Creating the Database”) with AVERAGE processing and no other
function is available.

The first line of the output prints the name of the data source as defined in Section 2.11.2.2,

“Creating the Database”.

The left results column represents individual points in time, while the right one represents
corresponding measured average values in scientific notation.

The nan in the last line stands for “not a number”.

56 A Practical Example SLES 12 SP1

Now a graph representing the values stored in the database is drawn:

tux > rrdtool graph free_mem.png \

--start 1272974830 \

--end 1272974871 \

--step=4 \

DEF:free_memory=free_mem.rrd:memory:AVERAGE \

LINE2:free_memory#FF0000 \

--vertical-label "GB" \

--title "Free System Memory in Time" \

--zoom 1.5 \

--x-grid SECOND:1:SECOND:4:SECOND:10:0:%X

POINTS TO NOTICE

free_mem.png is the file name of the graph to be created.

--start and --end limit the time range within which the graph will be drawn.

--step specifies the time resolution (in seconds) of the graph.

The DEF:... part is a data definition called free_memory. Its data are read from the
free_mem.rrd database and its data source called memory. The average value points are
calculated, because no others were defined in Section 2.11.2.2, “Creating the Database”.

The LINE... part specifies properties of the line to be drawn into the graph. It is 2 pixels
wide, its data come from the free_memory definition, and its color is red.

--vertical-label sets the label to be printed along the y axis, and --title sets the
main label for the whole graph.

--zoom specifies the zoom factor for the graph. This value must be greater than zero.

--x-grid specifies how to draw grid lines and their labels into the graph. Our example
places them every second, while major grid lines are placed every 4 seconds. Labels are
placed every 10 seconds under the major grid lines.

57 For More Information SLES 12 SP1

FIGURE 2.1: EXAMPLE GRAPH CREATED WITH RRDTOOL

2.11.3 For More Information

RRDtool is a very complex tool with a lot of sub-commands and command line options. Some are
easy to understand, but to make it produce the results you want and fine-tune them according
to your liking may require a lot of effort.

Apart from RRDtool's man page (man 1 rrdtool) which gives you only basic information,
you should have a look at the RRDtool home page [http://oss.oetiker.ch/rrdtool/]. There is
a detailed documentation [http://oss.oetiker.ch/rrdtool/doc/index.en.html] of the rrdtool
command and all its sub-commands. There are also several tutorials [http://oss.oetiker.ch/rrd-
tool/tut/index.en.html] to help you understand the common RRDtool workflow.

If you are interested in monitoring network traffic, have a look at MRTG (Multi Router Traffic

Grapher) [http://oss.oetiker.ch/mrtg/]. MRTG can graph the activity of many network devices.
It can use RRDtool.

http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/doc/index.en.html
http://oss.oetiker.ch/rrdtool/doc/index.en.html
http://oss.oetiker.ch/rrdtool/tut/index.en.html
http://oss.oetiker.ch/rrdtool/tut/index.en.html
http://oss.oetiker.ch/rrdtool/tut/index.en.html
http://oss.oetiker.ch/mrtg/
http://oss.oetiker.ch/mrtg/
http://oss.oetiker.ch/mrtg/

58 Analyzing and Managing System Log Files SLES 12 SP1

3 Analyzing and Managing System Log Files

System log file analysis is one of the most important tasks when analyzing the system. In fact,
looking at the system log files should be the first thing to do when maintaining or troubleshoot-
ing a system. SUSE Linux Enterprise Server automatically logs almost everything that happens
on the system in detail. Since the move to systemd , kernel messages and messages of system
services registered with systemd are logged in systemd journal (see Book “Administration
Guide”, Chapter 10 “journalctl: Query the systemd Journal”). Other log files (mainly those
of system applications) are written in plain text and can be easily read using an editor or pager.
It is also possible to parse them using scripts. This allows you to filter their content.

3.1 System Log Files in /var/log/
System log files are always located under the /var/log directory. The following list presents
an overview of all system log files from SUSE Linux Enterprise Server present after a default
installation. Depending on your installation scope, /var/log also contains log files from other
services and applications not listed here. Some files and directories described below are “place-
holders” and are only used, when the corresponding application is installed. Most log files are
only visible for the user root .

apparmor

AppArmor log files. See Book “Security Guide” for details of AppArmor.

audit

Logs from the audit framework. See Book “Security Guide” for details.

ConsoleKit/*

Logs of the ConsoleKit daemon (daemon for tracking what users are logged in and how
they interact with the computer).

cups/

Access and error logs of the Common Unix Printing System (cups).

faillog

Database file that contains all login failures. Use the faillog command to view. See man
8 faillog for more information.

59 System Log Files in /var/log/ SLES 12 SP1

firewall

Firewall logs.

gdm/*

Log files from the GNOME display manager.

krb5

Log files from the Kerberos network authentication system.

lastlog

A database containing information on the last login of each user. Use the command last-
log to view. See man 8 lastlog for more information.

localmessages

Log messages of some boot scripts, for example the log of the DHCP client.

mail*

Mail server (postfix , sendmail) logs.

messages

This is the default place where all Kernel and system log messages go and should be the
first place (along with /var/log/warn) to look at in case of problems.

NetworkManager

NetworkManager log files.

news/*

Log messages from a news server.

ntp

Logs from the Network Time Protocol daemon (ntpd).

pk_backend_zypp

PackageKit (with libzypp back-end) log files.

puppet/*

Log files from the data center automation tool puppet.

samba/*

Log files from samba, the Windows SMB/CIFS file server.

warn

Log of all system warnings and errors. This should be the first place (along with the output
of the systemd journal) to look in case of problems.

60 Viewing and Parsing Log Files SLES 12 SP1

wtmp

Database of all login/logout activities, and remote connections. Use the command last
to view. See man 1 last for more information.

xinetd.log

Log files from the extended Internet services daemon (xinetd).

Xorg.0.log

X.Org start-up log file. Refer to this in case you have problems starting X.Org. Copies from
previous X.Org starts are numbered Xorg. ? .log.

YaST2/*

All YaST log files.

zypp/*

libzypp log files. Refer to these files for the package installation history.

zypper.log

Logs from the command line installer zypper .

3.2 Viewing and Parsing Log Files
To view log files, you can use any text editor. There is also a simple YaST module for viewing
the system log available in the YaST control center under Miscellaneous System Log.

For viewing log files in a text console, use the commands less or more . Use head and tail
to view the beginning or end of a log file. To view entries appended to a log file in real-time
use tail -f . For information about how to use these tools, see their man pages.

To search for strings or regular expressions in log files use grep . awk is useful for parsing and
rewriting log files.

3.3 Managing Log Files with logrotate
Log files under /var/log grow on a daily basis and quickly become very large. logrotate is
a tool that helps you manage log files and their growth. It allows automatic rotation, removal,
compression, and mailing of log files. Log files can be handled periodically (daily, weekly, or
monthly) or when exceeding a particular size.

61 Managing Log Files with logrotate SLES 12 SP1

logrotate is usually run as a daily cron job, and thus usually modifies log files only once a
day. However, exceptions occur when a log file is modified because of its size, if logrotate is
run multiple times a day, or if --force is enabled.

The main configuration file of logrotate is /etc/logrotate.conf . System packages and
programs that produce log files (for example, apache2) put their own configuration files in
the /etc/logrotate.d/ directory. The content of /etc/logrotate.d/ is included via /etc/
logrotate.conf .

EXAMPLE 3.1: EXAMPLE FOR /etc/logrotate.conf

see "man logrotate" for details

rotate log files weekly

weekly

keep 4 weeks worth of backlogs

rotate 4

create new (empty) log files after rotating old ones

create

use date as a suffix of the rotated file

dateext

uncomment this if you want your log files compressed

#compress

comment these to switch compression to use gzip or another

compression scheme

compresscmd /usr/bin/bzip2

uncompresscmd /usr/bin/bunzip2

RPM packages drop log rotation information into this directory

include /etc/logrotate.d

62 Monitoring Log Files with logwatch SLES 12 SP1

Important: Avoid Permission Conflicts
The create option pays heed to the modes and ownerships of files specified in /etc/
permissions* . If you modify these settings, make sure no conflicts arise.

logrotate is controlled through cron and is called daily by /etc/cron.daily/logrotate .
Use /var/lib/logrotate.status to find out when a particular file has been rotated lastly.

3.4 Monitoring Log Files with logwatch
logwatch is a customizable, pluggable log-monitoring script. It parses system logs, extracts
the important information and presents them in a human readable manner. To use logwatch ,
install the logwatch package.

logwatch can either be used at the command line to generate on-the-fly reports, or via cron to
regularly create custom reports. Reports can either be printed on the screen, saved to a file, or
be mailed to a specified address. The latter is especially useful when automatically generating
reports via cron .

On the command line, you can tell logwatch for which service and time span to generate a
report and how much detail should be included:

Detailed report on all kernel messages from yesterday

logwatch --service kernel --detail High --range Yesterday --print

Low detail report on all sshd events recorded (incl. archived logs)

logwatch --service sshd --detail Low --range All --archives --print

Mail a report on all smartd messages from May 5th to May 7th to root@localhost

logwatch --service smartd --range 'between 5/5/2005 and 5/7/2005' \

--mailto root@localhost --print

The --range option has got a complex syntax—see logwatch --range help for details. A
list of all services that can be queried is available with the following command:

ls /usr/share/logwatch/default.conf/services/ | sed 's/\.conf//g'

63 Using logger to Make System Log Entries SLES 12 SP1

logwatch can be customized to great detail. However, the default configuration should
usually be sufficient. The default configuration files are located under /usr/share/log-
watch/default.conf/ . Never change them because they would get overwritten again with the
next update. Rather place custom configuration in /etc/logwatch/conf/ (you may use the
default configuration file as a template, though). A detailed HOWTO on customizing logwatch
is available at /usr/share/doc/packages/logwatch/HOWTO-Customize-LogWatch . The fol-
lowing configuration files exist:

logwatch.conf

The main configuration file. The default version is extensively commented. Each configu-
ration option can be overwritten on the command line.

ignore.conf

Filter for all lines that should globally be ignored by logwatch .

services/*.conf

The service directory holds configuration files for each service you can generate a report
for.

logfiles/*.conf

Specifications on which log files should be parsed for each service.

3.5 Using logger to Make System Log Entries
logger is a tool for making entries in the system log. It provides a shell command interface to
the rsyslogd system log module. For example, the following line outputs its message in /var/
log/messages or directly in the journal (if no logging facility is running):

logger -t Test "This messages comes from $USER"

Depending on the current user and host name, the log contains a line similar to this:

Sep 28 13:09:31 venus Test: This messages comes from tux

III Kernel Monitoring

4 SystemTap—Filtering and Analyzing System Data 65

5 Kernel Probes 80

6 Hardware-Based Performance Monitoring with Perf 85

7 OProfile—System-Wide Profiler 90

65 SystemTap—Filtering and Analyzing System Data SLES 12 SP1

4 SystemTap—Filtering and Analyzing System
Data

SystemTap provides a command line interface and a scripting language to examine the activities
of a running Linux system, particularly the kernel, in fine detail. SystemTap scripts are written
in the SystemTap scripting language, are then compiled to C-code kernel modules and inserted
into the kernel. The scripts can be designed to extract, filter and summarize data, thus allowing
the diagnosis of complex performance problems or functional problems. SystemTap provides
information similar to the output of tools like netstat , ps , top , and iostat . However, more
filtering and analysis options can be used for the collected information.

4.1 Conceptual Overview
Each time you run a SystemTap script, a SystemTap session is started. A number of passes are
done on the script before it is allowed to run. Then, the script is compiled into a kernel module
and loaded. If the script has been executed before and no system components have changed (for
example, different compiler or kernel versions, library paths, or script contents), SystemTap does
not compile the script again. Instead, it uses the *.c and *.ko data stored in the SystemTap
cache (~/.systemtap). The module is unloaded when the tap has finished running. For an
example, see the test run in Section 4.2, “Installation and Setup” and the respective explanation.

4.1.1 SystemTap Scripts

SystemTap usage is based on SystemTap scripts (*.stp). They tell SystemTap which type of
information to collect, and what to do once that information is collected. The scripts are written
in the SystemTap scripting language that is similar to AWK and C. For the language definition,
see http://sourceware.org/systemtap/langref/. A lot of useful example scripts are available from
http://www.sourceware.org/systemtap/examples/.

The essential idea behind a SystemTap script is to name events , and to give them handlers .
When SystemTap runs the script, it monitors for certain events. When an event occurs, the Linux
kernel runs the handler as a sub-routine, then resumes. Thus, events serve as the triggers for
handlers to run. Handlers can record specified data and print it in a certain manner.

http://sourceware.org/systemtap/langref/
http://www.sourceware.org/systemtap/examples/

66 Tapsets SLES 12 SP1

The SystemTap language only uses a few data types (integers, strings, and associative arrays of
these), and full control structures (blocks, conditionals, loops, functions). It has a lightweight
punctuation (semicolons are optional) and does not need detailed declarations (types are in-
ferred and checked automatically).

For more information about SystemTap scripts and their syntax, refer to Section 4.3, “Script Syn-

tax” and to the stapprobes and stapfuncs man pages, that are available with the system-
tap-docs package.

4.1.2 Tapsets

Tapsets are a library of prewritten probes and functions that can be used in SystemTap scripts.
When a user runs a SystemTap script, SystemTap checks the script's probe events and handlers
against the tapset library. SystemTap then loads the corresponding probes and functions before
translating the script to C. Like SystemTap scripts themselves, tapsets use the file name extension
*.stp .

However, unlike SystemTap scripts, tapsets are not meant for direct execution. They constitute
the library from which other scripts can pull definitions. Thus, the tapset library is an abstraction
layer designed to make it easier for users to define events and functions. Tapsets provide aliases
for functions that users could want to specify as an event. Knowing the proper alias is often
easier than remembering specific kernel functions that might vary between kernel versions.

4.1.3 Commands and Privileges

The main commands associated with SystemTap are stap and staprun . To execute them, you
either need root privileges or must be a member of the stapdev or stapusr group.

stap

SystemTap front-end. Runs a SystemTap script (either from file, or from standard input). It
translates the script into C code, compiles it, and loads the resulting kernel module into a
running Linux kernel. Then, the requested system trace or probe functions are performed.

staprun

SystemTap back-end. Loads and unloads kernel modules produced by the SystemTap front-
end.

67 Important Files and Directories SLES 12 SP1

For a list of options for each command, use --help . For details, refer to the stap and the
staprun man pages.

To avoid giving root access to users solely to enable them to work with SystemTap, use one of
the following SystemTap groups. They are not available by default on SUSE Linux Enterprise,
but you can create the groups and modify the access rights accordingly.

stapdev

Members of this group can run SystemTap scripts with stap , or run SystemTap instru-
mentation modules with staprun . As running stap involves compiling scripts into ker-
nel modules and loading them into the kernel, members of this group still have effective
root access.

stapusr

Members of this group are only allowed to run SystemTap instrumentation mod-
ules with staprun . In addition, they can only run those modules from /lib/mod-
ules/kernel_version/systemtap/ . This directory must be owned by root and must
only be writable for the root user.

4.1.4 Important Files and Directories

The following list gives an overview of the SystemTap main files and directories.

/lib/modules/kernel_version/systemtap/

Holds the SystemTap instrumentation modules.

/usr/share/systemtap/tapset/

Holds the standard library of tapsets.

/usr/share/doc/packages/systemtap/examples

Holds several example SystemTap scripts for various purposes. Only available if the sys-
temtap-docs package is installed.

~/.systemtap/cache

Data directory for cached SystemTap files.

/tmp/stap*

Temporary directory for SystemTap files, including translated C code and kernel object.

68 Installation and Setup SLES 12 SP1

4.2 Installation and Setup
As SystemTap needs information about the kernel, some additional kernel-related packages must
be installed. For each kernel you want to probe with SystemTap, you need to install a set of
the following packages. This set should exactly match the kernel version and flavor (indicated
by * in the overview below).

Important: Repository for Packages with Debugging Information
If you subscribed your system for online updates, you can find “debuginfo” packages in
the *-Debuginfo-Updates online installation repository relevant for SUSE Linux Enter-
prise Server 12 SP1. Use YaST to enable the repository.

For the classic SystemTap setup, install the following packages (using either YaST or zypper).

systemtap

systemtap-server

systemtap-docs (optional)

kernel-*-base

kernel-*-debuginfo

kernel-*-devel

kernel-source-*

gcc

To get access to the man pages and to a helpful collection of example SystemTap scripts for
various purposes, additionally install the systemtap-docs package.

To check if all packages are correctly installed on the machine and if SystemTap is ready to use,
execute the following command as root .

stap -v -e 'probe vfs.read {printf("read performed\n"); exit()}'

It probes the currently used kernel by running a script and returning an output. If the output is
similar to the following, SystemTap is successfully deployed and ready to use:

Pass 1 : parsed user script and 59 library script(s) in 80usr/0sys/214real ms.

69 Script Syntax SLES 12 SP1

Pass 2 : analyzed script: 1 probe(s), 11 function(s), 2 embed(s), 1 global(s) in

 140usr/20sys/412real ms.

Pass 3 : translated to C into

 "/tmp/stapDwEk76/stap_1856e21ea1c246da85ad8c66b4338349_4970.c" in 160usr/0sys/408real ms.

Pass 4 : compiled C into "stap_1856e21ea1c246da85ad8c66b4338349_4970.ko" in

 2030usr/360sys/10182real ms.

Pass 5 : starting run.

 read performed

Pass 5 : run completed in 10usr/20sys/257real ms.

1 Checks the script against the existing tapset library in /usr/share/systemtap/tapset/
for any tapsets used. Tapsets are scripts that form a library of pre-written probes and func-
tions that can be used in SystemTap scripts.

2 Examines the script for its components.

3 Translates the script to C. Runs the system C compiler to create a kernel module from it.
Both the resulting C code (*.c) and the kernel module (*.ko) are stored in the SystemTap
cache, ~/.systemtap .

4 Loads the module and enables all the probes (events and handlers) in the script by hooking
into the kernel. The event being probed is a Virtual File System (VFS) read. As the event
occurs on any processor, a valid handler is executed (prints the text read performed)
and closed with no errors.

5 After the SystemTap session is terminated, the probes are disabled, and the kernel module
is unloaded.

In case any error messages appear during the test, check the output for hints about any missing
packages and make sure they are installed correctly. Rebooting and loading the appropriate
kernel may also be needed.

4.3 Script Syntax
SystemTap scripts consist of the following two components:

SystemTap Events (Probe Points)

Name the kernel events at the associated handler should be executed. Examples for events
are entering or exiting a certain function, a timer expiring, or starting or terminating a
session.

70 Probe Format SLES 12 SP1

SystemTap Handlers (Probe Body)

Series of script language statements that specify the work to be done whenever a certain
event occurs. This normally includes extracting data from the event context, storing them
into internal variables, or printing results.

An event and its corresponding handler is collectively called a probe . SystemTap events are
also called probe points . A probe's handler is also called probe body .

Comments can be inserted anywhere in the SystemTap script in various styles: using either # ,
/* */ , or // as marker.

4.3.1 Probe Format

A SystemTap script can have multiple probes. They must be written in the following format:

probe event {statements}

Each probe has a corresponding statement block. This statement block must be enclosed in { }
and contains the statements to be executed per event.

EXAMPLE 4.1: SIMPLE SYSTEMTAP SCRIPT

The following example shows a simple SystemTap script.

probe 1 begin 2

{ 3

 printf 4 ("hello world\n") 5

 exit () 6

} 7

1 Start of the probe.

2 Event begin (the start of the SystemTap session).

3 Start of the handler definition, indicated by { .

4 First function defined in the handler: the printf function.

5 String to be printed by the printf function, followed by a line break (/n).

6 Second function defined in the handler: the exit() function. Note that the System-
Tap script will continue to run until the exit() function executes. If you want to
stop the execution of the script before, stop it manually by pressing Ctrl – C .

71 SystemTap Events (Probe Points) SLES 12 SP1

7 End of the handler definition, indicated by } .

The event begin 2 (the start of the SystemTap session) triggers the handler enclosed in
{ } . Here, that is the printf function 4 . In this case, it prints hello world followed
by a new line 5 . Then, the script exits.

If your statement block holds several statements, SystemTap executes these statements in se-
quence—you do not need to insert special separators or terminators between multiple state-
ments. A statement block can also be nested within another statement blocks. Generally, state-
ment blocks in SystemTap scripts use the same syntax and semantics as in the C programming
language.

4.3.2 SystemTap Events (Probe Points)

SystemTap supports several built-in events.

The general event syntax is a dotted-symbol sequence. This allows a breakdown of the event
namespace into parts. Each component identifier may be parametrized by a string or number
literal, with a syntax like a function call. A component may include a * character, to expand
to other matching probe points. A probe point may be followed by a ? character, to indicate
that it is optional, and that no error should result if it fails to expand. Alternately, a probe point
may be followed by a ! character to indicate that it is both optional and sufficient.

SystemTap supports multiple events per probe—they need to be separated by a comma (,). If
multiple events are specified in a single probe, SystemTap will execute the handler when any
of the specified events occur.

In general, events can be classified into the following categories:

Synchronous events: Occur when any process executes an instruction at a particular loca-
tion in kernel code. This gives other events a reference point (instruction address) from
which more contextual data may be available.
An example for a synchronous event is vfs.file_operation : The entry to the
file_operation event for Virtual File System (VFS). For example, in Section 4.2, “Instal-

lation and Setup”, read is the file_operation event used for VFS.

Asynchronous events: Not tied to a particular instruction or location in code. This family
of probe points consists mainly of counters, timers, and similar constructs.

72 SystemTap Handlers (Probe Body) SLES 12 SP1

Examples for asynchronous events are: begin (start of a SystemTap session—as soon
as a SystemTap script is run, end (end of a SystemTap session), or timer events. Timer
events specify a handler to be executed periodically, like example timer.s(seconds) ,
or timer.ms(milliseconds) .
When used in conjunction with other probes that collect information, timer events allow
you to print out periodic updates and see how that information changes over time.

EXAMPLE 4.2: PROBE WITH TIMER EVENT

For example, the following probe would print the text “hello world” every 4 seconds:

probe timer.s(4)

{

 printf("hello world\n")

}

For detailed information about supported events, refer to the stapprobes man page. The See
Also section of the man page also contains links to other man pages that discuss supported events
for specific subsystems and components.

4.3.3 SystemTap Handlers (Probe Body)

Each SystemTap event is accompanied by a corresponding handler defined for that event, con-
sisting of a statement block.

4.3.3.1 Functions

If you need the same set of statements in multiple probes, you can place them in a function for
easy reuse. Functions are defined by the keyword function followed by a name. They take any
number of string or numeric arguments (by value) and may return a single string or number.

function function_name(arguments) {statements}

probe event {function_name(arguments)}

The statements in function_name are executed when the probe for event executes. The ar-
guments are optional values passed into the function.

Functions can be defined anywhere in the script. They may take any

73 SystemTap Handlers (Probe Body) SLES 12 SP1

One of the functions needed very often was already introduced in Example 4.1, “Simple SystemTap

Script”: the printf function for printing data in a formatted way. When using the printf
function, you can specify how arguments should be printed by using a format string. The format
string is included in quotation marks and can contain further format specifiers, introduced by
a % character.

Which format strings to use depends on your list of arguments. Format strings can have mul-
tiple format specifiers—each matching a corresponding argument. Multiple arguments can be
separated by a comma.

EXAMPLE 4.3: printf FUNCTION WITH FORMAT SPECIFIERS

printf (" 1 %s 2 (%d 3) open\n 4 ", execname(), pid())

1 Start of the format string, indicated by " .

2 String format specifier.

3 Integer format specifier.

4 End of the format string, indicated by " .

The example above prints the current executable name (execname()) as a string and the process
ID (pid()) as an integer in brackets. Then, a space, the word open and a line break follow:

[...]

vmware-guestd(2206) open

hald(2360) open

[...]

Apart from the two functions execname() and pid()) used in Example 4.3, “printf Function with

Format Specifiers”, a variety of other functions can be used as printf arguments.

Among the most commonly used SystemTap functions are the following:

tid()

ID of the current thread.

pid()

Process ID of the current thread.

uid()

ID of the current user.

74 SystemTap Handlers (Probe Body) SLES 12 SP1

cpu()

Current CPU number.

execname()

Name of the current process.

gettimeofday_s()

Number of seconds since Unix epoch (January 1, 1970).

ctime()

Convert time into a string.

pp()

String describing the probe point currently being handled.

thread_indent()

Useful function for organizing print results. It (internally) stores an indentation counter for
each thread (tid()). The function takes one argument, an indentation delta, indicating
how many spaces to add or remove from the thread's indentation counter. It returns a string
with some generic trace data along with an appropriate number of indentation spaces.
The generic data returned includes a time stamp (number of microseconds since the initial
indentation for the thread), a process name, and the thread ID itself. This allows you to
identify what functions were called, who called them, and how long they took.
Call entries and exits often do not immediately precede each other (otherwise it would
be easy to match them). In between a first call entry and its exit, usually a number of
other call entries and exits are made. The indentation counter helps you match an entry
with its corresponding exit as it indents the next function call in case it is not the exit
of the previous one. For an example SystemTap script using thread_indent() and the
respective output, refer to the SystemTap Tutorial: http://sourceware.org/systemtap/tutori-

al/Tracing.html#fig:socket-trace.

For more information about supported SystemTap functions, refer to the stapfuncs man page.

4.3.3.2 Other Basic Constructs

Apart from functions, you can use several other common constructs in SystemTap handlers,
including variables, conditional statements (like if / else , while loops, for loops, arrays or
command line arguments.

http://sourceware.org/systemtap/tutorial/Tracing.html#fig:socket-trace
http://sourceware.org/systemtap/tutorial/Tracing.html#fig:socket-trace

75 SystemTap Handlers (Probe Body) SLES 12 SP1

4.3.3.2.1 Variables

Variables may be defined anywhere in the script. To define one, simply choose a name and
assign a value from a function or expression to it:

foo = gettimeofday()

Then you can use the variable in an expression. From the type of values assigned to the variable,
SystemTap automatically infers the type of each identifier (string or number). Any inconsisten-
cies will be reported as errors. In the example above, foo would automatically be classified as
a number and could be printed via printf() with the integer format specifier (%d).

However, by default, variables are local to the probe they are used in: They are initialized, used
and disposed of at each handler evocation. To share variables between probes, declare them
global anywhere in the script. To do so, use the global keyword outside of the probes:

EXAMPLE 4.4: USING GLOBAL VARIABLES

global count_jiffies, count_ms

probe timer.jiffies(100) { count_jiffies ++ }

probe timer.ms(100) { count_ms ++ }

probe timer.ms(12345)

{

 hz=(1000*count_jiffies) / count_ms

 printf ("jiffies:ms ratio %d:%d => CONFIG_HZ=%d\n",

 count_jiffies, count_ms, hz)

 exit ()

 }

This example script computes the CONFIG_HZ setting of the kernel by using timers that
count jiffies and milliseconds, then computing accordingly. (A jiffy is the duration of one
tick of the system timer interrupt. It is not an absolute time interval unit, since its duration
depends on the clock interrupt frequency of the particular hardware platform). With the
global statement it is possible to use the variables count_jiffies and count_ms also
in the probe timer.ms(12345) . With ++ the value of a variable is incremented by 1 .

76 SystemTap Handlers (Probe Body) SLES 12 SP1

4.3.3.2.2 Conditional Statements

There are a number of conditional statements that you can use in SystemTap scripts. The fol-
lowing are probably most common:

If/Else Statements

They are expressed in the following format:

if (condition) 1 statement1 2

else 3 statement2 4

The if statement compares an integer-valued expression to zero. If the condition expres-
sion 1 is non-zero, the first statement 2 is executed. If the condition expression is zero,
the second statement 4 is executed. The else clause (3 and 4) is optional. Both 2 and

4 can also be statement blocks.

While Loops

They are expressed in the following format:

while (condition) 1 statement 2

As long as condition is non-zero, the statement 2 is executed. 2 can also be a statement
block. It must change a value so condition will eventually be zero.

For Loops

They are a shortcut for while loops and are expressed in the following format:

for (initialization 1 ; conditional 2 ; increment 3) statement

The expression specified in 1 is used to initialize a counter for the number of loop iter-
ations and is executed before execution of the loop starts. The execution of the loop con-
tinues until the loop condition 2 is false. (This expression is checked at the beginning of
each loop iteration). The expression specified in 3 is used to increment the loop counter.
It is executed at the end of each loop iteration.

Conditional Operators

The following operators can be used in conditional statements:

==: Is equal to

!=: Is not equal to

77 Example Script SLES 12 SP1

>=: Is greater than or equal to

<=: Is less than or equal to

4.4 Example Script
If you have installed the systemtap-docs package, you can find a number of useful SystemTap
example scripts in /usr/share/doc/packages/systemtap/examples .

This section describes a rather simple example script in more detail: /usr/share/doc/pack-
ages/systemtap/examples/network/tcp_connections.stp .

EXAMPLE 4.5: MONITORING INCOMING TCP CONNECTIONS WITH tcp_connections.stp

#! /usr/bin/env stap

probe begin {

 printf("%6s %16s %6s %6s %16s\n",

 "UID", "CMD", "PID", "PORT", "IP_SOURCE")

}

probe kernel.function("tcp_accept").return?,

 kernel.function("inet_csk_accept").return? {

 sock = $return

 if (sock != 0)

 printf("%6d %16s %6d %6d %16s\n", uid(), execname(), pid(),

 inet_get_local_port(sock), inet_get_ip_source(sock))

}

This SystemTap script monitors the incoming TCP connections and helps to identify unautho-
rized or unwanted network access requests in real time. It shows the following information for
each new incoming TCP connection accepted by the computer:

User ID (UID)

Command accepting the connection (CMD)

Process ID of the command (PID)

78 User-Space Probing SLES 12 SP1

Port used by the connection (PORT)

IP address from which the TCP connection originated (IP_SOUCE)

To run the script, execute

stap /usr/share/doc/packages/systemtap/examples/network/tcp_connections.stp

and follow the output on the screen. To manually stop the script, press Ctrl – C .

4.5 User-Space Probing
For debugging user-space applications (like DTrace can do), SUSE Linux Enterprise Server 12
SP1 supports user-space probing with SystemTap: Custom probe points can be inserted in any
user-space application. Thus, SystemTap lets you use both Kernel- and user-space probes to
debug the behavior of the whole system.

To get the required utrace infrastructure and the uprobes Kernel module for user-space probing,
you need to install the kernel-trace package in addition to the packages listed in Section 4.2,

“Installation and Setup”.

utrace implements a framework for controlling user-space tasks. It provides an interface that
can be used by various tracing “engines”, implemented as loadable Kernel modules. The engines
register callback functions for specific events, then attach to whichever thread they want to
trace. As the callbacks are made from “safe” places in the Kernel, this allows for great leeway
in the kinds of processing the functions can do. Various events can be watched via utrace, for
example, system call entry and exit, fork(), signals being sent to the task, etc. More details about
the utrace infrastructure are available at http://sourceware.org/systemtap/wiki/utrace.

SystemTap includes support for probing the entry into and return from a function in user-space
processes, probing predefined markers in user-space code, and monitoring user-process events.

To check if the currently running Kernel provides the needed utrace support, use the following
command:

 grep CONFIG_UTRACE /boot/config-`uname -r`

For more details about user-space probing, refer to https://sourceware.org/system-

tap/SystemTap_Beginners_Guide/userspace-probing.html.

http://sourceware.org/systemtap/wiki/utrace
https://sourceware.org/systemtap/SystemTap_Beginners_Guide/userspace-probing.html
https://sourceware.org/systemtap/SystemTap_Beginners_Guide/userspace-probing.html

79 For More Information SLES 12 SP1

4.6 For More Information
This chapter only provides a short SystemTap overview. Refer to the following links for more
information about SystemTap:

http://sourceware.org/systemtap/

SystemTap project home page.

http://sourceware.org/systemtap/wiki/

Huge collection of useful information about SystemTap, ranging from detailed user and de-
veloper documentation to reviews and comparisons with other tools, or Frequently Asked
Questions and tips. Also contains collections of SystemTap scripts, examples and usage
stories and lists recent talks and papers about SystemTap.

http://sourceware.org/systemtap/documentation.html

Features a SystemTap Tutorial, a SystemTap Beginner's Guide, a Tapset Developer's Guide, and
a SystemTap Language Reference in PDF and HTML format. Also lists the relevant man pages.

You can also find the SystemTap language reference and SystemTap tutorial in your installed
system under /usr/share/doc/packages/systemtap . Example SystemTap scripts are avail-
able from the example subdirectory.

http://sourceware.org/systemtap/
http://sourceware.org/systemtap/wiki/
http://sourceware.org/systemtap/documentation.html

80 Kernel Probes SLES 12 SP1

5 Kernel Probes

Kernel probes are a set of tools to collect Linux kernel debugging and performance information.
Developers and system administrators usually use them either to debug the kernel, or to find
system performance bottlenecks. The reported data can then be used to tune the system for
better performance.

You can insert these probes into any kernel routine, and specify a handler to be invoked after
a particular break-point is hit. The main advantage of kernel probes is that you no longer need
to rebuild the kernel and reboot the system after you make changes in a probe.

To use kernel probes, you typically need to write or obtain a specific kernel module. Such mod-
ules include both the init and the exit function. The init function (such as register_kprobe())
registers one or more probes, while the exit function unregisters them. The registration func-
tion defines where the probe will be inserted and which handler will be called after the
probe is hit. To register or unregister a group of probes at one time, you can use relevant
register_<probe_type>probes() or unregister_<probe_type>probes() functions.

Debugging and status messages are typically reported with the printk kernel routine. printk
is a kernel-space equivalent of a user-space printf routine. For more information on printk ,
see Logging kernel messages [http://www.win.tue.nl/~aeb/linux/lk/lk-2.html#ss2.8]. Normal-
ly, you can view these messages by inspecting the output of the systemd journal (see Book
“Administration Guide”, Chapter 10 “journalctl: Query the systemd Journal”). For more in-
formation on log files, see Chapter 3, Analyzing and Managing System Log Files.

5.1 Supported Architectures
Kernel probes are fully implemented on the following architectures:

i386

x86_64 (AMD-64, EM64T)

ppc64

arm

ppc

http://www.win.tue.nl/~aeb/linux/lk/lk-2.html#ss2.8
http://www.win.tue.nl/~aeb/linux/lk/lk-2.html#ss2.8

81 Types of Kernel Probes SLES 12 SP1

Kernel probes are partially implemented on the following architectures:

ia64 (does not support probes on instruction slot1)

sparc64 (return probes not yet implemented)

5.2 Types of Kernel Probes
There are three types of kernel probes: Kprobes, Jprobes, and Kretprobes. Kretprobes are some-
times called return probes. You can find source code examples of all three type of probes
in the Linux kernel. See the directory /usr/src/linux/samples/kprobes/ (package ker-
nel-source).

5.2.1 Kprobes

Kprobes can be attached to any instruction in the Linux kernel. When Kprobes is registered, it
inserts a break-point at the first byte of the probed instruction. When the processor hits this
break-point, the processor registers are saved, and the processing passes to Kprobes. First, a pre-
handler is executed, then the probed instruction is stepped, and, finally a post-handler is executed.
The control is then passed to the instruction following the probe point.

5.2.2 Jprobes

Jprobes is implemented through the Kprobes mechanism. It is inserted on a function's entry
point and allows direct access to the arguments of the function which is being probed. Its handler
routine must have the same argument list and return value as the probed function. To end it,
call the jprobe_return() function.

When a jprobe is hit, the processor registers are saved, and the instruction pointer is directed
to the jprobe handler routine. The control then passes to the handler with the same register
contents as the function being probed. Finally, the handler calls the jprobe_return() function,
and switches the control back to the control function.

In general, you can insert multiple probes on one function. Jprobe is, however, limited to only
one instance per function.

82 Return Probe SLES 12 SP1

5.2.3 Return Probe
Return probes are also implemented through Kprobes. When the register_kretprobe() func-
tion is called, a kprobe is attached to the entry of the probed function. After hitting the probe,
the Kernel probes mechanism saves the probed function return address and calls a user-defined
return handler. The control is then passed back to the probed function.

Before you call register_kretprobe() , you need to set a maxactive argument, which spec-
ifies how many instances of the function can be probed at the same time. If set too low, you
will miss a certain number of probes.

5.3 Kprobes API
The programming interface of Kprobes consists of functions which are used to register and
unregister all used kernel probes, and associated probe handlers. For a more detailed description
of these functions and their arguments, see the information sources in Section 5.5, “For More

Information”.

register_kprobe()

Inserts a break-point on a specified address. When the break-point is hit, the pre_handler
and post_handler are called.

register_jprobe()

Inserts a break-point in the specified address. The address needs to be the address of the
first instruction of the probed function. When the break-point is hit, the specified handler
is run. The handler should have the same argument list and return type as the probed.

register_kretprobe()

Inserts a return probe for the specified function. When the probed function returns, a
specified handler is run. This function returns 0 on success, or a negative error number
on failure.

unregister_kprobe() , unregister_jprobe() , unregister_kretprobe()

Removes the specified probe. You can use it any time after the probe has been registered.

register_kprobes() , register_jprobes() , register_kretprobes()

Inserts each of the probes in the specified array.

unregister_kprobes() , unregister_jprobes() , unregister_kretprobes()

Removes each of the probes in the specified array.

83 debugfs Interface SLES 12 SP1

disable_kprobe() , disable_jprobe() , disable_kretprobe()

Disables the specified probe temporarily.

enable_kprobe() , enable_jprobe() , enable_kretprobe()

Temporarily enables disabled probes.

5.4 debugfs Interface
In recent Linux kernels, the Kprobes instrumentation uses the kernel's debugfs interface. It can
list all registered probes and globally switch all probes on or off.

5.4.1 Listing Registered Kernel Probes

The list of all currently registered probes is in the /sys/kernel/debug/kprobes/list file.

saturn.example.com:~ # cat /sys/kernel/debug/kprobes/list

c015d71a k vfs_read+0x0 [DISABLED]

c011a316 j do_fork+0x0

c03dedc5 r tcp_v4_rcv+0x0

The first column lists the address in the kernel where the probe is inserted. The second column
prints the type of the probe: k for kprobe, j for jprobe, and r for return probe. The third
column specifies the symbol, offset and optional module name of the probe. The following
optional columns include the status information of the probe. If the probe is inserted on a virtual
address which is not valid anymore, it is marked with [GONE] . If the probe is temporarily
disabled, it is marked with [DISABLED] .

5.4.2 How to Switch All Kernel Probes On or Off

The /sys/kernel/debug/kprobes/enabled file represents a switch with which you can glob-
ally and forcibly turn on or off all the registered kernel probes. To turn them off, simply enter

echo "0" > /sys/kernel/debug/kprobes/enabled

on the command line as root . To turn them on again, enter

84 For More Information SLES 12 SP1

echo "1" > /sys/kernel/debug/kprobes/enabled

Note that this way you do not change the status of the probes. If a probe is temporarily disabled,
it will not be enabled automatically but will remain in the [DISABLED] state after entering the
latter command.

5.5 For More Information
To learn more about kernel probes, look at the following sources of information:

Thorough but more technically oriented information about kernel probes is in /usr/src/
linux/Documentation/kprobes.txt (package kenrel-source).

Examples of all three types of probes (together with related Makefile) are in the /usr/
src/linux/samples/kprobes/ directory (package kenrel-source).

In-depth information about Linux kernel modules and printk kernel routine is in The Lin-

ux Kernel Module Programming Guide [http://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html]

Practical but slightly outdated information about the use of kernel probes can be
found in Kernel debugging with Kprobes [http://www.ibm.com/developerworks/library/l-
kprobes.html]

http://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html
http://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html
http://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html
http://www.ibm.com/developerworks/library/l-kprobes.html
http://www.ibm.com/developerworks/library/l-kprobes.html
http://www.ibm.com/developerworks/library/l-kprobes.html

85 Hardware-Based Performance Monitoring with Perf SLES 12 SP1

6 Hardware-Based Performance Monitoring with
Perf

Perf is an interface to access the performance monitoring unit (PMU) of a processor and to
record and display software events such as page faults. It supports system-wide, per-thread,
and KVM virtualization guest monitoring.

You can store resulting information in a report. This report contains information about, for
example, instruction pointers or what code a thread was executing.

Perf consists of two parts:

Code integrated into the Linux kernel that is responsible for instructing the hardware.

The perf userspace utility that allows you to use the kernel code and helps you analyze
gathered data.

6.1 Hardware-Based Monitoring
Performance monitoring means collecting information related to how an application or system
performs. This information can be obtained either through software-based means or from the
CPU or chipset. Perf integrates both of these methods.

Many modern processors contain a performance monitoring unit (PMU). The design and func-
tionality of a PMU is CPU-specific. For example, the number of registers, counters and features
supported will vary by CPU implementation.

Each PMU model consists of a set of registers: the performance monitor configuration (PMC)
and the performance monitor data (PMD). Both can be read, but only PMCs are writable. These
registers store configuration information and data.

6.2 Sampling and Counting
Perf supports several profiling modes:

Counting. Count the number of occurrences of an event.

Event-Based Sampling. A less exact way of counting: A sample is recorded whenever a
certain threshold number of events has occurred.

86 Installing Perf SLES 12 SP1

Time-Based Sampling. A less exact way of counting: A sample is recorded in a defined
frequency.

Instruction-Based Sampling (AMD64 only). The processor follows instructions appearing
in a given interval and samples which events they produce. This allows following up on
individual instructions and seeing which of them is critical to performance.

Instruction-Based Sampling (AMD64 only). The processor follows instructions appearing
in a given interval and samples which events they produce. This allows following up on
individual instructions and seeing which of them is critical to performance.

6.3 Installing Perf
The Perf kernel code is already included with the default kernel. To be able to use the userspace
utility, install the package perf .

6.4 Perf Subcommands
To gather the required information, the perf tool has several subcommands. This section gives
an overview of the most often used commands.

To see help in the form of a man page for any of the subcommands, use either perf help SUB-

COMMAND or man perf- SUBCOMMAND .

perf stat

Start a program and create a statistical overview that is displayed after the program quits.
perf stat is used to count events.

perf record

Start a program and create a report with performance counter information. The report is
stored as perf.data in the current directory. perf record is used to sample events.

perf report

Display a report that was previously created with perf record .

perf annotate

Display a report file and an annotated version of the executed code. If debug symbols are
installed, you will also see the source code displayed.

87 Counting Particular Types of Event SLES 12 SP1

perf list

List event types that Perf can report with the current kernel and with your CPU. You can
filter event types by category—for example, to see hardware events only, use perf list
hw .
The man page for perf_event_open has short descriptions for the most important
events. For example, to find a description of the event branch-misses , search for
BRANCH_MISSES (note the spelling differences):

tux > man perf_event_open | grep -A5 BRANCH_MISSES

Sometimes, events may be ambiguous. Note that the lowercase hardware event names are
not the name of raw hardware events but instead the name of aliases created by Perf.
These aliases map to differently named but similarly defined hardware events on each
supported processor.
For example, the cpu-cycles event is mapped to the hardware event
UNHALTED_CORE_CYCLES on Intel processors. On AMD processors, however, it is mapped
to hardware event CPU_CLK_UNHALTED .
Perf also allows measuring raw events specific to your hardware. To look up their descrip-
tions, see the Architecture Software Developer's Manual of your CPU vendor. The relevant
documents for AMD64/Intel 64 processors are linked to in Section 6.7, “For More Information”.

perf top

Display system activity as it happens.

perf trace

This command behaves similarly to strace . With this subcommand, you can see which
system calls are executed by a particular thread or process and which signals it receives.

6.5 Counting Particular Types of Event
To count the number of occurrences of an event, such as those displayed by perf list , use:

root # perf stat -e EVENT -a

To count multiple types of events at once, list them separated by commas. For example, to count
cpu-cycles and instructions , use:

root # perf stat -e cpu-cycles,instructions -a

88 Recording Events Specific to Particular Commands SLES 12 SP1

To stop the session, press Ctrl – C .

You can also count the number of occurrences of an event within a particular time:

root # perf stat -e EVENT -a -- sleep TIME

Replace TIME by a value in seconds.

6.6 Recording Events Specific to Particular Com-
mands
There are various ways to sample events specific to a particular command:

To create a report for a newly invoked command, use:

root # perf record COMMAND

Then, use the started process normally. When you quit the process, the Perf session will
also stop.

To create a report for the entire system while a newly invoked command is running, use:

root # perf record -a COMMAND

Then, use the started process normally. When you quit the process, the Perf session will
also stop.

To create a report for an already running process, use:

root # perf record -p PID

Replace PID with a process ID. To stop the session, press Ctrl – C .

Afterwards, you can view the gathered data (perf.data) using:

tux > perf report

This will open a pseudo-graphical interface. To receive help, press H . To quit, press Q .

89 For More Information SLES 12 SP1

If you prefer a graphical interface, try the GTK+ interface of Perf:

tux > perf report --gtk

However, note that the GTK+ interface is very limited in functionality.

6.7 For More Information
This chapter only provides a short overview. Refer to the following links for more information:

https://perf.wiki.kernel.org/index.php/Main_Page

The project home page. It also features a tutorial on using perf .

http://www.brendangregg.com/perf.html

Unofficial page with many one-line examples of how to use perf .

http://web.eece.maine.edu/~vweaver/projects/perf_events/

Unofficial page with several resources, mostly relating to the Linux kernel code of Perf and
its API. This page includes, for example, a CPU compatibility table and a programming
guide.

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-

architectures-software-developer-vol-3b-part-2-manual.pdf

The Intel Architectures Software Developer's Manual, Volume 3B.

https://support.amd.com/TechDocs/24593.pdf

The AMD Architecture Programmer's Manual, Volume 2.

Chapter 7, OProfile—System-Wide Profiler

Consult this chapter for other performance optimizations.

https://perf.wiki.kernel.org/index.php/Main_Page
http://www.brendangregg.com/perf.html
http://web.eece.maine.edu/~vweaver/projects/perf_events/
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://support.amd.com/TechDocs/24593.pdf

90 OProfile—System-Wide Profiler SLES 12 SP1

7 OProfile—System-Wide Profiler

OProfile is a profiler for dynamic program analysis. It investigates the behavior of a running
program and gathers information. This information can be viewed and gives hints for further
optimization.

It is not necessary to recompile or use wrapper libraries to use OProfile. Not even a kernel
patch is needed. Usually, when profiling an application, a small overhead is expected, de-
pending on the workload and sampling frequency.

7.1 Conceptual Overview
OProfile consists of a kernel driver and a daemon for collecting data. It makes use of the hard-
ware performance counters provided on many processors. OProfile is capable of profiling all
code including the kernel, kernel modules, kernel interrupt handlers, system shared libraries,
and other applications.

Modern processors support profiling through the hardware by performance counters. Depending
on the processor, there can be many counters and each of these can be programmed with an
event to count. Each counter has a value which determines how often a sample is taken. The
lower the value, the more often it is used.

During the post-processing step, all information is collected and instruction addresses are
mapped to a function name.

7.2 Installation and Requirements
To use OProfile, install the oprofile package that is included with the SLE SDK. OProfile works
on AMD64/Intel 64, System z, and POWER processors. To find out how to install software from
the SDK, refer to Book “Deployment Guide”, Chapter 9 “Installing Modules, Extensions, and Third
Party Add-On Products”, Section 9.3 “SUSE Software Development Kit (SDK) 12 SP1”.

It is useful to install the *-debuginfo package for the respective application you want to profile.
If you want to profile the Kernel, you need the debuginfo package as well.

91 Available OProfile Utilities SLES 12 SP1

7.3 Available OProfile Utilities
OProfile contains several utilities to handle the profiling process and its profiled data. The fol-
lowing list is a short summary of programs used in this chapter:

opannotate

Outputs annotated source or assembly listings mixed with profile information. An anno-
tated report can be used in combination with addr2line to identify the source file and
line where hotspots potentially exist. See man addr2line for more information.

opcontrol

Controls the profiling sessions (start or stop), dumps profile data, and sets up parameters.

ophelp

Lists available events with short descriptions.

opimport

Converts sample database files from a foreign binary format to the native format.

opreport

Generates reports from profiled data.

7.4 Using OProfile
With OProfile, you can profile both the kernel and applications. When profiling the kernel, tell
OProfile where to find the vmlinuz* file. Use the --vmlinux option and point it to vmlinuz*
(usually in /boot). If you need to profile kernel modules, OProfile does this by default. How-
ever, make sure you read http://oprofile.sourceforge.net/doc/kernel-profiling.html.

Applications usually do not need to profile the kernel, therefore you should use the --no-
vmlinux option to reduce the amount of information.

7.4.1 Creating a Report

Starting the daemon, collecting data, stopping the daemon, and creating a report.

1. Open a shell and log in as root .

http://oprofile.sourceforge.net/doc/kernel-profiling.html

92 Creating a Report SLES 12 SP1

2. Decide if you want to profile with or without the Linux Kernel:

a. Profile With the Linux Kernel. Execute the following commands, because opcontrol
can only work with uncompressed images:

cp /boot/vmlinux-`uname -r`.gz /tmp

gunzip /tmp/vmlinux*.gz

opcontrol --vmlinux=/tmp/vmlinux*

b. Profile Without the Linux Kernel. Use the following command:

opcontrol --no-vmlinux

If you want to see which functions call other functions in the output, additionally
use the --callgraph option and set a maximum DEPTH :

opcontrol --no-vmlinux --callgraph DEPTH

3. Start the OProfile daemon:

opcontrol --start

Using 2.6+ OProfile kernel interface.

Using log file /var/lib/oprofile/samples/oprofiled.log

Daemon started.

Profiler running.

4. Now start the application you want to profile.

5. Stop the OProfile daemon:

opcontrol --stop

6. Dump the collected data to /var/lib/oprofile/samples :

opcontrol --dump

7. Create a report:

opreport

Overflow stats not available

93 Getting Event Configurations SLES 12 SP1

CPU: CPU with timer interrupt, speed 0 MHz (estimated)

Profiling through timer interrupt

 TIMER:0|

 samples| %|

 84877 98.3226 no-vmlinux

...

8. Shut down the oprofile daemon:

opcontrol --shutdown

7.4.2 Getting Event Configurations

The general procedure for event configuration is as follows:

1. Use first the events CPU-CLK_UNHALTED and INST_RETIRED to find optimization oppor-
tunities.

2. Use specific events to find bottlenecks. To list them, use the command opcontrol --
list-events .

If you need to profile certain events, first check the available events supported by your processor
with the ophelp command (example output generated from Intel Core i5 CPU):

ophelp

oprofile: available events for CPU type "Intel Architectural Perfmon"

See Intel 64 and IA-32 Architectures Software Developer's Manual

Volume 3B (Document 253669) Chapter 18 for architectural perfmon events

This is a limited set of fallback events because oprofile does not know your CPU

CPU_CLK_UNHALTED: (counter: all))

 Clock cycles when not halted (min count: 6000)

INST_RETIRED: (counter: all))

 number of instructions retired (min count: 6000)

LLC_MISSES: (counter: all))

94 Using OProfile's GUI SLES 12 SP1

 Last level cache demand requests from this core that missed the LLC (min

 count: 6000)

 Unit masks (default 0x41)

 0x41: No unit mask

LLC_REFS: (counter: all))

 Last level cache demand requests from this core (min count: 6000)

 Unit masks (default 0x4f)

 0x4f: No unit mask

BR_MISS_PRED_RETIRED: (counter: all))

 number of mispredicted branches retired (precise) (min count: 500)

You can get the same output from opcontrol --list-events .

Specify the performance counter events with the option --event . Multiple options are possible.
This option needs an event name (from ophelp) and a sample rate, for example:

opcontrol --event=CPU_CLK_UNHALTED:100000

Warning: Setting Sampling Rates with CPU_CLK_UNHALTED
Setting low sampling rates can seriously impair the system performance while high sam-
ple rates can disrupt the system to such a high degree that the data is useless. It is recom-
mended to tune the performance metric for being monitored with and without OProfile
and to experimentally determine the minimum sample rate that disrupts the performance
the least.

7.5 Using OProfile's GUI
The GUI for OProfile can be started as root with oprof_start , see Figure 7.1, “GUI for OProfile”.
Select your events and change the counter, if necessary. Every green line is added to the list
of checked events. Hover the mouse over the line to see a help text in the status line below.
Use the Configuration tab to set the buffer and CPU size, the verbose option and others. Click
Start to execute OProfile.

95 Generating Reports SLES 12 SP1

FIGURE 7.1: GUI FOR OPROFILE

7.6 Generating Reports
Before generating a report, make sure OProfile has dumped your data to the /var/lib/opro-
file/samples directory using the command opcontrol --dump . A report can be generated
with the commands opreport or opannotate .

Calling opreport without any options gives a complete summary. With an executable as an
argument, retrieve profile data only from this executable. If you analyze applications written
in C++, use the --demangle smart option.

The opannotate generates output with annotations from source code. Run it with the following
options:

opannotate --source \

 --base-dirs=BASEDIR \

 --search-dirs= \

 --output-dir=annotated/ \

 /lib/libfoo.so

The option --base-dir contains a comma separated list of paths which is stripped from debug
source files. These paths were searched prior to looking in --search-dirs . The --search-
dirs option is also a comma separated list of directories to search for source files.

96 For More Information SLES 12 SP1

Note: Inaccuracies in Annotated Source
Because of compiler optimization, code can disappear and appear in a different place. Use
the information in http://oprofile.sourceforge.net/doc/debug-info.html to fully understand
its implications.

7.7 For More Information
This chapter only provides a short overview. Refer to the following links for more information:

http://oprofile.sourceforge.net

The project home page.

Manpages

Details descriptions about the options of the different tools.

/usr/share/doc/packages/oprofile/oprofile.html

Contains the OProfile manual.

http://developer.intel.com/

Architecture reference for Intel processors.

http://www-01.ibm.com/chips/techlib/techlib.nsf/productfamilies/PowerPC/

Architecture reference for PowerPC64 processors in IBM iSeries, pSeries, and Blade server
systems.

http://oprofile.sourceforge.net/doc/debug-info.html
http://oprofile.sourceforge.net
http://developer.intel.com/
http://www-01.ibm.com/chips/techlib/techlib.nsf/productfamilies/PowerPC/

IV Resource Management

8 General System Resource Management 98

9 Kernel Control Groups 103

10 Automatic Non-Uniform Memory Access (NUMA) Balancing 112

11 Power Management 118

98 General System Resource Management SLES 12 SP1

8 General System Resource Management

Tuning the system is not only about optimizing the kernel or getting the most out of your ap-
plication, it begins with setting up a lean and fast system. The way you set up your partitions
and file systems can influence the server's speed. The number of active services and the way
routine tasks are scheduled also affects performance.

8.1 Planning the Installation
A carefully planned installation ensures that the system is set up exactly as you need it for
the given purpose. It also saves considerable time when fine tuning the system. All changes
suggested in this section can be made in the Installation Settings step during the installation. See
Book “Deployment Guide”, Chapter 6 “Installation with YaST”, Section 6.13 “Installation Settings”
for details.

8.1.1 Partitioning

Depending on the server's range of applications and the hardware layout, the partitioning
scheme can influence the machine's performance (although to a lesser extent only). It is beyond
the scope of this manual to suggest different partitioning schemes for particular workloads.
However, the following rules will positively affect performance. They do not apply when using
an external storage system.

Make sure there always is some free space available on the disk, since a full disk delivers
inferior performance

Disperse simultaneous read and write access onto different disks by, for example:

using separate disks for the operating system, data, and log files

placing a mail server's spool directory on a separate disk

distributing the user directories of a home server between different disks

99 Installation Scope SLES 12 SP1

8.1.2 Installation Scope

The installation scope has no direct influence on the machine's performance, but a carefully
chosen scope of packages has advantages. It is recommended to install the minimum of packages
needed to run the server. A system with a minimum set of packages is easier to maintain and
has fewer potential security issues. Furthermore, a tailor made installation scope also ensures
that no unnecessary services are started by default.

SUSE Linux Enterprise Server lets you customize the installation scope on the Installation Sum-
mary screen. By default, you can select or remove preconfigured patterns for specific tasks, but
it is also possible to start the YaST Software Manager for a fine-grained package-based selection.

One or more of the following default patterns may not be needed in all cases:

GNOME Desktop Environment

Servers rarely need a full desktop environment. In case a graphical environment is needed,
a more economical solution such as IceWM can be sufficient.

X Window System

When solely administrating the server and its applications via command line, consider not
installing this pattern. However, keep in mind that it is needed to run GUI applications
from a remote machine. If your application is managed by a GUI or if you prefer the GUI
version of YaST, keep this pattern.

Print Server

This pattern is only needed if you want to print from the machine.

8.1.3 Default Target

A running X Window System consumes many resources and is rarely needed on a server. It is
strongly recommended to start the system in target multi-user.target . You will still be able
to remotely start graphical applications.

8.2 Disabling Unnecessary Services
The default installation starts several services (the number varies with the installation scope).
Since each service consumes resources, it is recommended to disable the ones not needed. Run
YaST System Services Manager to start the services management module.

100 File Systems and Disk Access SLES 12 SP1

If you are using the graphical version of YaST, you can click the column headlines to sort the
list of services. Use this to get an overview of which services are currently running. Use the
Start/Stop button to disable the service for the running session. To permanently disable it, use
the Enable/Disable button.

The following list shows services that are started by default after the installation of SUSE Linux
Enterprise Server. Check which of the components you need, and disable the others:

alsasound

Loads the Advanced Linux Sound System.

auditd

A daemon for the Audit system (see Book “Security Guide” for details). Disable this if you
do not use Audit.

bluez-coldplug

Handles cold plugging of Bluetooth dongles.

cups

A printer daemon.

java.binfmt_misc

Enables the execution of *.class or *.jar Java programs.

nfs

Services needed to mount NFS.

smbfs

Services needed to mount SMB/CIFS file systems from a Windows* server.

splash / splash_early

Shows the splash screen on start-up.

8.3 File Systems and Disk Access
Hard disks are the slowest components in a computer system and therefore often the cause for
a bottleneck. Using the file system that best suits your workload helps to improve performance.
Using special mount options or prioritizing a process's I/O priority are further means to speed
up the system.

101 File Systems SLES 12 SP1

8.3.1 File Systems

SUSE Linux Enterprise Server ships with several different file systems, including BrtFS, Ext3,
Ext2, ReiserFS, and XFS. Each file system has its own advantages and disadvantages. Refer to
Book “Storage Administration Guide”, Chapter 1 “Overview of File Systems in Linux” for detailed
information.

8.3.1.1 NFS

NFS (Version 3) tuning is covered in detail in the NFS Howto at http://nfs.sourceforge.net/nfs-

howto/. The first thing to experiment with when mounting NFS shares is increasing the read
write blocksize to 32768 by using the mount options wsize and rsize .

8.3.2 Disabling Access Time (atime) Updates

Whenever a file is read on a Linux file system, its access time (atime) is updated. As a result,
each read-only file access in fact causes a write operation. On a journaling file system two write
operations are triggered since the journal will be updated, too. It is recommended to turn this
feature off when you do not need to keep track of access times. This can be true for file and
Web servers or for network storage.

To turn off access time updates, mount the file system with the noatime option. To do so, either
edit /etc/fstab directly, or use the Fstab Options dialog when editing or adding a partition
with the YaST Partitioner.

8.3.3 Prioritizing Disk Access with ionice
The ionice command lets you prioritize disk access for single processes. This enables you to
give less I/O priority to background processes with heavy disk access that are not time-critical,
such as backup jobs. ionice also lets you raise the I/O priority for a specific process to make
sure this process always has immediate access to the disk. You can set the following three
scheduling classes:

Idle

A process from the idle scheduling class is only granted disk access when no other process
has asked for disk I/O.

http://nfs.sourceforge.net/nfs-howto/
http://nfs.sourceforge.net/nfs-howto/

102 Prioritizing Disk Access with ionice SLES 12 SP1

Best effort

The default scheduling class used for any process that has not asked for a specific I/O
priority. Priority within this class can be adjusted to a level from 0 to 7 (with 0 being the
highest priority). Programs running at the same best-effort priority are served in a round-
robin fashion. Some kernel versions treat priority within the best-effort class differently—
for details, refer to the ionice(1) man page.

Real-time

Processes in this class are always granted disk access first. Fine-tune the priority level
from 0 to 7 (with 0 being the highest priority). Use with care, since it can starve other
processes.

For more details and the exact command syntax refer to the ionice(1) man page.

103 Kernel Control Groups SLES 12 SP1

9 Kernel Control Groups

Kernel Control Groups (abbreviated known as “cgroups”) are a kernel feature that allows ag-
gregating or partitioning tasks (processes) and all their children into hierarchical organized
groups. These hierarchical groups can be configured to show a specialized behavior that helps
with tuning the system to make best use of available hardware and network resources.

In the following sections, we often reference kernel documentation such as /usr/src/lin-
ux/Documentation/cgroups/ . These files are part of the kernel-source package.

This chapter is just an overview. To use cgroups properly and to avoid performance implica-
tions, you must study the provided references.

9.1 Technical Overview and Definitions
The following terms are used in this chapter:

“cgroup” is another name for Control Groups.

In a cgroup there is a set of tasks (processes) associated with a set of subsystems that act
as parameters constituting an environment for the tasks.

Subsystems provide the parameters that can be assigned and define CPU sets, freezer, or
—more general—“resource controllers” for memory, disk I/O, network traffic, etc.

cgroups are organized in a tree-structured hierarchy. There can be more than one hierarchy
in the system. You use a different or alternate hierarchy to cope with specific situations.

Every task running in the system is in exactly one of the cgroups in the hierarchy.

104 Scenario SLES 12 SP1

9.2 Scenario
See the following resource planning scenario for a better understanding (source: /usr/src/
linux/Documentation/cgroups/cgroups.txt):

CPUs Memory

Network I/O Disk I/O

Professors (50%)

Students (30%)

System (20%)

Network File Systems (60%)

WWW Browsing (20%)

Others (20%)

Professors (15%) Students (5%)

Top CPU Set (20%)

CPU Set 1 (60%) CPU Set 2 (20%)

Professors Students

Professors (50%)

Students (30%)

System (20%)

FIGURE 9.1: RESOURCE PLANNING

Web browsers such as Firefox will be part of the Web network class, while the NFS daemons such
as (k)nfsd will be part of the NFS network class. On the other side, Firefox will share appropriate
CPU and memory classes depending on whether a professor or student started it.

9.3 Control Group Subsystems
The following subsystems are available: cpuset , cpu,cpuacct , memory , devices , freezer ,
net_cls,net_prio , blkio , perf_event , and hugetlbt .

105 Control Group Subsystems SLES 12 SP1

Either mount each subsystem separately, for example:

mkdir /cpuset /cpu

mount -t cgroup -o cpuset none /cpuset

mount -t cgroup -o cpu,cpuacct none /cpu

or all subsystems in one go; you can use an arbitrary device name (e.g., none), which will
appear in /proc/mounts , for example:

mount -t cgroup none /sys/fs/cgroup

Some additional information on available subsystems:

net_cls (Identification)

The Network classifier cgroup helps with providing identification for controlling processes
such as Traffic Controller (tc) or Netfilter (iptables). These controller tools can act on
tagged network packets.
For more information, see /usr/src/linux/Documentation/cgroups/net_cls.txt .

net_prio (Identification)

The Network priority cgroup helps with setting the priority of network packets.
For more information, see /usr/src/linux/Documentation/cgroups/net_prio.txt .

devices (Isolation)

A system administrator can provide a list of devices that can be accessed by processes
under cgroups.
It limits access to a device or a file system on a device to only tasks that belong to the
specified cgroup. For more information, see /usr/src/linux/Documentation/cgroups/
devices.txt .

freezer (Control)

The freezer subsystem is useful for high-performance computing clusters (HPC clus-
ters). Use it to freeze (stop) all tasks in a group or to stop tasks, if they reach a de-
fined checkpoint. For more information, see /usr/src/linux/Documentation/cgroups/
freezer-subsystem.txt .
Here are basic commands to use the freezer subsystem:

mount -t cgroup -o freezer freezer /freezer

Create a child cgroup:

106 Control Group Subsystems SLES 12 SP1

mkdir /freezer/0

Put a task into this cgroup:

echo $task_pid > /freezer/0/tasks

Freeze it:

echo FROZEN > /freezer/0/freezer.state

Unfreeze (thaw) it:

echo THAWED > /freezer/0/freezer.state

perf_event (Control)

perf_event collects performance data.

cpuset (Isolation)

Use cpuset to tie processes to system subsets of CPUs and memory (“memory nodes”).
For an example, see Section 9.4.2, “Example: Cpusets”.

cpuacct (Accounting)

The CPU accounting controller groups tasks using cgroups and accounts the CPU usage
of these groups. For more information, see /usr/src/linux/Documentation/cgroups/
cpuacct.txt .

memory (Resource Control)

Tracking or limiting memory usage of user space processes.

Control swap usage by setting swapaccount=1 as a kernel boot parameter.

Limit LRU (Least Recently Used) pages.

Anonymous and file cache.

No limits for kernel memory.

Maybe in another subsystem if needed.

Note: Protection from Memory Pressure
memory cgroup now offers a mechanism allowing easier workload opt-in isolation.
Memory cgroup can define its so called low limit (memory.low_limit_in_bytes),
which works as a protection from memory pressure. Workloads that need to be iso-
lated from outside memory management activity should set the value to the expect-
ed Resident Set Size (RSS) plus some head room. If a memory pressure condition

107 Control Group Subsystems SLES 12 SP1

triggers on the system and the particular group is still under its low limit, its mem-
ory is protected from reclaim. As a result, workloads outside of the cgroup do not
need the aforementioned capping.

For more information, see /usr/src/linux/Documentation/cgroups/memory.txt .

hugetlb (Resource Control)

The HugeTLB controller accounts the memory allocated in huge pages.
For more information, see /usr/src/linux/Documentation/cgroups/hugetlb.txt .

cpu (Control)

Share CPU bandwidth between groups with the group scheduling function of CFS (the
scheduler). Mechanically complicated.

Blkio (Resource Control)

The Block IO controller is available as a disk I/O controller. With the blkio controller you
can currently set policies for proportional bandwidth and for throttling.
These are the basic commands to configure proportional weight division of bandwidth by
setting weight values in blkio.weight :

Setup in /sys/fs/cgroup

mkdir /sys/fs/cgroup/blkio

mount -t cgroup -o blkio none /sys/fs/cgroup/blkio

Start two cgroups

mkdir -p /sys/fs/cgroup/blkio/group1 /sys/fs/cgroup/blkio/group2

Set weights

echo 1000 > /sys/fs/cgroup/blkio/group1/blkio.weight

echo 500 > /sys/fs/cgroup/blkio/group2/blkio.weight

Write the PIDs of the processes to be controlled to the

appropriate groups

command1 &

echo $! > /sys/fs/cgroup/blkio/group1/tasks

command2 &

echo $! > /sys/fs/cgroup/blkio/group2/tasks

108 Using Controller Groups SLES 12 SP1

These are the basic commands to configure throttling or upper limit pol-
icy by setting values in blkio.throttle.read_bps_device for reads and
blkio.throttle.write_bps_device for writes:

Setup in /sys/fs/cgroup

mkdir /sys/fs/cgroup/blkio

mount -t cgroup -o blkio none /sys/fs/cgroup/blkio

Bandwidth rate of a device for the root group; format:

<major>:<minor> <byes_per_second>

echo "8:16 1048576" > /sys/fs/cgroup/blkio/blkio.throttle.read_bps_device

For more information about caveats, usage scenarios, and additional parameters, see /
usr/src/linux/Documentation/cgroups/blkio-controller.txt .

9.4 Using Controller Groups

9.4.1 Prerequisites

To conveniently use cgroups, install the following additional packages:

libcgroup-tools — basic user space tools to simplify resource management

libcgroup1 — control groups management library

cpuset — contains the cset to manipulate cpusets

libcpuset1 — C API to cpusets

kernel-source — only needed for documentation purposes

9.4.2 Example: Cpusets

With the command line proceed as follows:

1. To determine the number of CPUs and memory nodes see /proc/cpuinfo and /proc/
zoneinfo .

109 Example: Cpusets SLES 12 SP1

2. Create the cpuset hierarchy as a virtual file system (source: /usr/src/linux/Documen-
tation/cgroups/cpusets.txt):

mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset

cd /sys/fs/cgroup/cpuset

mkdir Charlie

cd Charlie

List of CPUs in this cpuset:

echo 2-3 > cpuset.cpus

List of memory nodes in this cpuset:

echo 1 > cpuset.mems

echo $$ > tasks

The subshell 'sh' is now running in cpuset Charlie

The next line should display '/Charlie'

cat /proc/self/cpuset

3. Remove the cpuset using shell commands:

rmdir /sys/fs/cgroup/cpuset/Charlie

This fails as long as this cpuset is in use. First, you must remove the inside cpusets or tasks
(processes) that belong to it. Check it with:

cat /sys/fs/cgroup/cpuset/Charlie/tasks

For background information and additional configuration flags, see /usr/src/linux/Docu-
mentation/cgroups/cpusets.txt .

With the cset tool, proceed as follows:

Determine the number of CPUs and memory nodes

cset set --list

Creating the cpuset hierarchy

cset set --cpu=2-3 --mem=1 --set=Charlie

Starting processes in a cpuset

cset proc --set Charlie --exec -- stress -c 1 &

Moving existing processes to a cpuset

cset proc --move --pid PID --toset=Charlie

110 Example: cgroups SLES 12 SP1

List task in a cpuset

cset proc --list --set Charlie

Removing a cpuset

cset set --destroy Charlie

9.4.3 Example: cgroups

Using shell commands, proceed as follows:

1. Create the cgroups hierarchy:

mount -t cgroup cgroup /sys/fs/cgroup

cd /sys/fs/cgroup/cpuset/cgroup

mkdir priority

cd priority

cat cpu.shares

2. Understanding cpu.shares:

1024 is the default (for more information, see /Documentation/scheduler/sched-
design-CFS.txt) = 50% usage

1524 = 60% usage

2048 = 67% usage

512 = 40% usage

3. Changing cpu.shares

echo 1024 > cpu.shares

9.4.4 Setting Directory and File Permissions

This is a simple example. Use the following in /etc/cgconfig.conf :

group foo {

111 For More Information SLES 12 SP1

 perm {

 task {

 uid = root;

 gid = users;

 fperm = 660;

 }

 admin {

 uid = root;

 gid = root;

 fperm = 600;

 dperm = 750;

 }

 }

}

mount {

 cpu = /mnt/cgroups/cpu;

}

Then start the cgconfig service and stat /mnt/cgroups/cpu/foo/tasks which should show
the permissions mask 660 with root as an owner and users as a group. stat /mnt/cgroups/
cpu/foo/ should be 750 and all files (but tasks) should have the mask 600 . Note that fperm
is applied on top of existing file permissions as a mask.

For more information, see the cgconfig.conf man page.

9.5 For More Information
Kernel documentation (package kernel-source): files in /usr/src/linux/Documenta-
tion/cgroups .

http://lwn.net/Articles/604609/—Brown, Neil: Control Groups Series (2014, 7 parts).

http://lwn.net/Articles/243795/—Corbet, Jonathan: Controlling memory use in containers
(2007).

http://lwn.net/Articles/236038/—Corbet, Jonathan: Process containers (2007).

http://lwn.net/Articles/604609/
http://lwn.net/Articles/243795/
http://lwn.net/Articles/236038/

112 Automatic Non-Uniform Memory Access (NUMA) Balancing SLES 12 SP1

10 Automatic Non-Uniform Memory Access (NU-
MA) Balancing

There are physical limitations to hardware that are encountered when large numbers of CPU
and memory are required. For the purposes of this chapter, the important limitation is that
there is limited communication bandwidth between the CPUs and the memory. One architec-
ture modification that was introduced to address this is Non-Uniform Memory Access (NU-
MA).

In this configuration, there are multiple nodes. Each of the nodes contains a subset of all CPUs
and memory. The access speed to main memory is determined by the location of the memo-
ry relative to the CPU. The performance of a workload depends on the application threads ac-
cessing data that is local to the CPU the thread is executing on. Automatic NUMA Balancing
is a new feature of SLE 12. Automatic NUMA Balancing migrates data on demand to memory
nodes that are local to the CPU accessing that data. Depending on the workload, this can dra-
matically boost performance when using NUMA hardware.

10.1 Implementation
Automatic NUMA balancing happens in three basic steps:

1. A task scanner periodically scans a portion of a task's address space and marks the memory
to force a page fault when the data is next accessed.

2. The next access to the data will result in a NUMA Hinting Fault. Based on this fault, the
data can be migrated to a memory node associated with the task accessing the memory.

3. To keep a task, the CPU it is using and the memory it is accessing together, the scheduler
groups tasks that share data.

The unmapping of data and page fault handling incurs overhead. However, commonly the over-
head will be offset by threads accessing data associated with the CPU.

113 Configuration SLES 12 SP1

10.2 Configuration
Static configuration has been the recommended way of tuning workloads on NUMA hardware
for some time. To do this, memory policies can be set with numactl , taskset or cpusets .
NUMA-aware applications can use special APIs. In cases where the static policies have already
been created, automatic NUMA balancing should be disabled as the data access should already
be local.

numactl --hardware will show the memory configuration of the machine and whether it
supports NUMA or not. This is example output from a 4-node machine.

tux > numactl --hardware

available: 4 nodes (0-3)

node 0 cpus: 0 4 8 12 16 20 24 28 32 36 40 44

node 0 size: 16068 MB

node 0 free: 15909 MB

node 1 cpus: 1 5 9 13 17 21 25 29 33 37 41 45

node 1 size: 16157 MB

node 1 free: 15948 MB

node 2 cpus: 2 6 10 14 18 22 26 30 34 38 42 46

node 2 size: 16157 MB

node 2 free: 15981 MB

node 3 cpus: 3 7 11 15 19 23 27 31 35 39 43 47

node 3 size: 16157 MB

node 3 free: 16028 MB

node distances:

node 0 1 2 3

 0: 10 20 20 20

 1: 20 10 20 20

 2: 20 20 10 20

 3: 20 20 20 10

Automatic NUMA balancing can be enabled or disabled for the current session by writing NU-
MA or NO_NUMA to /sys/kernel/debug/sched_features which will enable or disable the fea-
ture respectively. To permanently enable or disable it, use the kernel command line option
numa_balancing=[enabled|disabled] .

114 Monitoring SLES 12 SP1

If Automatic NUMA Balancing is enabled, the task scanner behavior can be configured. The task
scanner balances the overhead of Automatic NUMA Balancing with the amount of time it takes
to identify the best placement of data.

numa_balancing_scan_delay_ms

The amount of CPU time a thread must consume before its data is scanned. This prevents
creating overhead because of short-lived processes.

numa_balancing_scan_period_min_ms and numa_balancing_scan_period_max_ms

Controls how frequently a task's data is scanned. Depending on the locality of the faults
the scan rate will increase or decrease. These settings control the min and max scan rates.

numa_balancing_scan_size_mb

Controls how much address space is scanned when the task scanner is active.

10.3 Monitoring
The most important task is to assign metrics to your workload and measure the performance
with Automatic NUMA Balancing enabled and disabled to measure the impact. Profiling tools
can be used to monitor local and remote memory accesses if the CPU supports such monitoring.
Automatic NUMA Balancing activity can be monitored via the following parameters in /proc/
vmstat :

numa_pte_updates

The amount of base pages that were marked for NUMA hinting faults.

numa_huge_pte_updates

The amount of transparent huge pages that were marked for NUMA hinting faults. In
combination with numa_pte_updates the total address space that was marked can be
calculated.

numa_hint_faults

Records how many NUMA hinting faults were trapped.

numa_hint_faults_local

Shows how many of the hinting faults were to local nodes. In combination with
numa_hint_faults , the percentage of local versus remote faults can be calculated. A high
percentage of local hinting faults indicates that the workload is closer to being converged.

115 Impact SLES 12 SP1

numa_pages_migrated

Records how many pages were migrated because they were misplaced. As migration is
a copying operation, it contributes the largest part of the overhead created by NUMA
balancing.

10.4 Impact
The following illustrates a simple test case of a 4-node NUMA machine running the SpecJBB
2005 using a single instance of the JVM with no static tuning around memory policies. Note,
however, that the impact for each workload will vary and that this example is based on a pre-
release version of SUSE Linux Enterprise Server 12.

 Balancing disabled Balancing enabled

TPut 1 26629.00 (0.00%) 26507.00 (-0.46%)

TPut 2 55841.00 (0.00%) 53592.00 (-4.03%)

TPut 3 86078.00 (0.00%) 86443.00 (0.42%)

TPut 4 116764.00 (0.00%) 113272.00 (-2.99%)

TPut 5 143916.00 (0.00%) 141581.00 (-1.62%)

TPut 6 166854.00 (0.00%) 166706.00 (-0.09%)

TPut 7 195992.00 (0.00%) 192481.00 (-1.79%)

TPut 8 222045.00 (0.00%) 227143.00 (2.30%)

TPut 9 248872.00 (0.00%) 250123.00 (0.50%)

TPut 10 270934.00 (0.00%) 279314.00 (3.09%)

TPut 11 297217.00 (0.00%) 301878.00 (1.57%)

TPut 12 311021.00 (0.00%) 326048.00 (4.83%)

TPut 13 324145.00 (0.00%) 346855.00 (7.01%)

TPut 14 345973.00 (0.00%) 378741.00 (9.47%)

TPut 15 354199.00 (0.00%) 394268.00 (11.31%)

TPut 16 378016.00 (0.00%) 426782.00 (12.90%)

TPut 17 392553.00 (0.00%) 437772.00 (11.52%)

TPut 18 396630.00 (0.00%) 456715.00 (15.15%)

TPut 19 399114.00 (0.00%) 484020.00 (21.27%)

TPut 20 413907.00 (0.00%) 493618.00 (19.26%)

TPut 21 413173.00 (0.00%) 510386.00 (23.53%)

TPut 22 420256.00 (0.00%) 521016.00 (23.98%)

116 Impact SLES 12 SP1

TPut 23 425581.00 (0.00%) 536214.00 (26.00%)

TPut 24 429052.00 (0.00%) 532469.00 (24.10%)

TPut 25 426127.00 (0.00%) 526548.00 (23.57%)

TPut 26 422428.00 (0.00%) 531994.00 (25.94%)

TPut 27 424378.00 (0.00%) 488340.00 (15.07%)

TPut 28 419338.00 (0.00%) 543016.00 (29.49%)

TPut 29 403347.00 (0.00%) 529178.00 (31.20%)

TPut 30 408681.00 (0.00%) 510621.00 (24.94%)

TPut 31 406496.00 (0.00%) 499781.00 (22.95%)

TPut 32 404931.00 (0.00%) 502313.00 (24.05%)

TPut 33 397353.00 (0.00%) 522418.00 (31.47%)

TPut 34 382271.00 (0.00%) 491989.00 (28.70%)

TPut 35 388965.00 (0.00%) 493012.00 (26.75%)

TPut 36 374702.00 (0.00%) 502677.00 (34.15%)

TPut 37 367578.00 (0.00%) 500588.00 (36.19%)

TPut 38 367121.00 (0.00%) 496977.00 (35.37%)

TPut 39 355956.00 (0.00%) 489430.00 (37.50%)

TPut 40 350855.00 (0.00%) 487802.00 (39.03%)

TPut 41 345001.00 (0.00%) 468021.00 (35.66%)

TPut 42 336177.00 (0.00%) 462260.00 (37.50%)

TPut 43 329169.00 (0.00%) 467906.00 (42.15%)

TPut 44 329475.00 (0.00%) 470784.00 (42.89%)

TPut 45 323845.00 (0.00%) 450739.00 (39.18%)

TPut 46 323878.00 (0.00%) 435457.00 (34.45%)

TPut 47 310524.00 (0.00%) 403914.00 (30.07%)

TPut 48 311843.00 (0.00%) 459017.00 (47.19%)

 Balancing Disabled Balancing Enabled

 Expctd Warehouse 48.00 (0.00%) 48.00 (0.00%)

 Expctd Peak Bops 310524.00 (0.00%) 403914.00 (30.07%)

 Actual Warehouse 25.00 (0.00%) 29.00 (16.00%)

 Actual Peak Bops 429052.00 (0.00%) 543016.00 (26.56%)

 SpecJBB Bops 6364.00 (0.00%) 9368.00 (47.20%)

 SpecJBB Bops/JVM 6364.00 (0.00%) 9368.00 (47.20%)

117 Impact SLES 12 SP1

Automatic NUMA Balancing takes away some of the pain when tuning workloads for high per-
formance on NUMA machines. Where possible, it is still recommended to statically tune the
workload to partition it within each node. However, in all other cases, automatic NUMA bal-
ancing should boost performance.

118 Power Management SLES 12 SP1

11 Power Management

Power management aims at reducing operating costs for energy and cooling systems while
at the same time keeping the performance of a system at a level that matches the current re-
quirements. Thus, power management is always a matter of balancing the actual performance
needs and power saving options for a system. Power management can be implemented and
used at different levels of the system. A set of specifications for power management functions
of devices and the operating system interface to them has been defined in the Advanced Con-
figuration and Power Interface (ACPI). As power savings in server environments can primarily
be achieved at the processor level, this chapter introduces some main concepts and highlights
some tools for analyzing and influencing relevant parameters.

11.1 Power Management at CPU Level
At the CPU level, you can control power usage in various ways. For example by using idling
power states (C-states), changing CPU frequency (P-states), and throttling the CPU (T-states).
The following sections give a short introduction to each approach and its significance for power
savings. Detailed specifications can be found at http://www.acpi.info/spec.htm.

11.1.1 C-States (Processor Operating States)
Modern processors have several power saving modes called C-states . They reflect the capa-
bility of an idle processor to turn off unused components in order to save power.

When a processor is in the C0 state, it is executing instructions. A processor running in any other
C-state is idle. The higher the C number, the deeper the CPU sleep mode: more components are
shut down to save power. Deeper sleep states can save large amounts of energy. Their downside
is that they introduce latency. This means, it takes more time for the CPU to go back to C0 .
Depending on workload (threads waking up, triggering CPU usage and then going back to sleep
again for a short period of time) and hardware (for example, interrupt activity of a network
device), disabling the deepest sleep states can significantly increase overall performance. For
details on how to do so, refer to Section 11.3.2, “Viewing Kernel Idle Statistics with cpupower”.

Some states also have submodes with different power saving latency levels. Which C-states and
submodes are supported depends on the respective processor. However, C1 is always available.

Table 11.1, “C-States” gives an overview of the most common C-states.

http://www.acpi.info/spec.htm

119 P-States (Processor Performance States) SLES 12 SP1

TABLE 11.1: C-STATES

Mode Definition

C0 Operational state. CPU fully turned on.

C1 First idle state. Stops CPU main internal
clocks via software. Bus interface unit and
APIC are kept running at full speed.

C2 Stops CPU main internal clocks via hard-
ware. State in which the processor main-
tains all software-visible states, but may take
longer to wake up through interrupts.

C3 Stops all CPU internal clocks. The processor
does not need to keep its cache coherent, but
maintains other states. Some processors have
variations of the C3 state that differ in how
long it takes to wake the processor through
interrupts.

To avoid needless power consumption, it is recommended to test your workloads with deep sleep
states enabled versus deep sleep states disabled. For more information, refer to Section 11.3.2,

“Viewing Kernel Idle Statistics with cpupower” or the cpupower-idle-set(1) man page.

11.1.2 P-States (Processor Performance States)

While a processor operates (in C0 state), it can be in one of several CPU performance states (P-
states) . Whereas C-states are idle states (all but C0), P-states are operational states that
relate to CPU frequency and voltage.

The higher the P-state, the lower the frequency and voltage at which the processor runs. The
number of P-states is processor-specific and the implementation differs across the various types.
However, P0 is always the highest-performance state (except for Section 11.1.3, “Turbo Features”).
Higher P-state numbers represent slower processor speeds and lower power consumption. For
example, a processor in P3 state runs more slowly and uses less power than a processor running

120 Turbo Features SLES 12 SP1

in the P1 state. To operate at any P-state, the processor must be in the C0 state, which means
that it is working and not idling. The CPU P-states are also defined in the ACPI specification,
see http://www.acpi.info/spec.htm.

C-states and P-states can vary independently of one another.

11.1.3 Turbo Features

Turbo features allow to dynamically overtick active CPU cores while other cores are in deep
sleep states. This increases the performance of active threads while still complying with Thermal
Design Power (TDP) limits.

However, the conditions under which a CPU core can use turbo frequencies are architecture-spe-
cific. Learn how to evaluate the efficiency of those new features in Section 11.3, “The cpupower

Tools”.

11.2 In-Kernel Governors
The in-kernel governors belong to the Linux kernel CPUfreq infrastructure and can be used to
dynamically scale processor frequencies at runtime. You can think of the governors as a sort
of preconfigured power scheme for the CPU. The CPUfreq governors use P-states to change
frequencies and lower power consumption. The dynamic governors can switch between CPU
frequencies, based on CPU usage, to allow for power savings while not sacrificing performance.

The following governors are available with the CPUfreq subsystem:

Performance Governor

The CPU frequency is statically set to the highest possible for maximum performance.
Consequently, saving power is not the focus of this governor.
See also Section 11.4.1, “Tuning Options for P-States”.

Powersave Governor

The CPU frequency is statically set to the lowest possible. This can have severe impact on
the performance, as the system will never rise above this frequency no matter how busy
the processors are.

http://www.acpi.info/spec.htm

121 The cpupower Tools SLES 12 SP1

However, using this governor often does not lead to the expected power savings as the
highest savings can usually be achieved at idle through entering C-states. With the pow-
ersave governor, processes run at the lowest frequency and thus take longer to finish. This
means it takes longer until the system can go into an idle C-state.
Tuning options: The range of minimum frequencies available to the governor can be ad-
justed (for example, with the cpupower command line tool).

On-demand Governor

The kernel implementation of a dynamic CPU frequency policy: The governor monitors
the processor usage. As soon as it exceeds a certain threshold, the governor will set the
frequency to the highest available. If the usage is less than the threshold, the next lowest
frequency is used. If the system continues to be underemployed, the frequency is again
reduced until the lowest available frequency is set.

Important: Drivers and In-kernel Governors
Not all drivers use the in-kernel governors to dynamically scale power frequency at run-
time. For example, the intel_pstate driver adjusts power frequency itself. Use the
cpupower frequency-info command to find out which driver your system uses.

11.3 The cpupower Tools
The cpupower tools are designed to give an overview of all CPU power-related parameters that
are supported on a given machine, including turbo (or boost) states. Use the tool set to view and
modify settings of the kernel-related CPUfreq and cpuidle systems as well as other settings not
related to frequency scaling or idle states. The integrated monitoring framework can access both,
kernel-related parameters and hardware statistics, and is thus ideally suited for performance
benchmarks. It also helps you to identify the dependencies between turbo and idle states.

After installing the cpupower package, view the available cpupower subcommands with
cpupower --help . Access the general man page with man cpupower , and the man pages of
the subcommands with man cpupower-subcommand .

122 Viewing Current Settings with cpupower SLES 12 SP1

11.3.1 Viewing Current Settings with cpupower
The cpupower frequency-info command shows the statistics of the cpufreq driver used in
the Kernel. Additionally, it shows if turbo (boost) states are supported and enabled in the BIOS.
Run without any options, it shows an output similar to the following:

EXAMPLE 11.1: EXAMPLE OUTPUT OF cpupower frequency-info

root # cpupower frequency-info

analyzing CPU 0:

 driver: intel_pstate

 CPUs which run at the same hardware frequency: 0

 CPUs which need to have their frequency coordinated by software: 0

 maximum transition latency: 0.97 ms.

 hardware limits: 1.20 GHz - 3.80 GHz

 available cpufreq governors: performance, powersave

 current policy: frequency should be within 1.20 GHz and 3.80 GHz.

 The governor "powersave" may decide which speed to use

 within this range.

 current CPU frequency is 3.40 GHz (asserted by call to hardware).

 boost state support:

 Supported: yes

 Active: yes

 3500 MHz max turbo 4 active cores

 3600 MHz max turbo 3 active cores

 3600 MHz max turbo 2 active cores

 3800 MHz max turbo 1 active cores

To get the current values for all CPUs, use cpupower -c all frequency-info .

11.3.2 Viewing Kernel Idle Statistics with cpupower
The idle-info subcommand shows the statistics of the cpuidle driver used in the Kernel. It
works on all architectures that use the cpuidle Kernel framework.

EXAMPLE 11.2: EXAMPLE OUTPUT OF cpupower idle-info

root # cpupower idle-info

CPUidle driver: intel_idle

123 Viewing Kernel Idle Statistics with cpupower SLES 12 SP1

CPUidle governor: menu

Analyzing CPU 0:

Number of idle states: 6

Available idle states: POLL C1-SNB C1E-SNB C3-SNB C6-SNB C7-SNB

POLL:

Flags/Description: CPUIDLE CORE POLL IDLE

Latency: 0

Usage: 163128

Duration: 17585669

C1-SNB:

Flags/Description: MWAIT 0x00

Latency: 2

Usage: 16170005

Duration: 697658910

C1E-SNB:

Flags/Description: MWAIT 0x01

Latency: 10

Usage: 4421617

Duration: 757797385

C3-SNB:

Flags/Description: MWAIT 0x10

Latency: 80

Usage: 2135929

Duration: 735042875

C6-SNB:

Flags/Description: MWAIT 0x20

Latency: 104

Usage: 53268

Duration: 229366052

C7-SNB:

Flags/Description: MWAIT 0x30

Latency: 109

Usage: 62593595

Duration: 324631233978

124 Monitoring Kernel and Hardware Statistics with cpupower SLES 12 SP1

After finding out which processor idle states are supported with cpupower idle-info , indi-
vidual states can be disabled using the cpupower idle-set command. Typically one wants to
disable the deepest sleep state, for example:

cpupower idle-set -d 5

Or, for disabling all CPUs with latencies equal to or higher than 80 :

cpupower idle-set -D 80

11.3.3 Monitoring Kernel and Hardware Statistics with
cpupower

Use the monitor subcommand to report processor topology, and monitor frequency and idle
power state statistics over a certain period of time. The default interval is 1 second, but it
can be changed with the -i . Independent processor sleep states and frequency counters are
implemented in the tool—some retrieved from kernel statistics, others reading out hardware
registers. The available monitors depend on the underlying hardware and the system. List them
with cpupower monitor -l . For a description of the individual monitors, refer to the cpupow-
er-monitor man page.

The monitor subcommand allows you to execute performance benchmarks. To compare Kernel
statistics with hardware statistics for specific workloads, concatenate the respective command,
for example:

cpupower monitor db_test.sh

EXAMPLE 11.3: EXAMPLE cpupower monitor OUTPUT

root # cpupower monitor

|Mperf || Idle_Stats

 1 2

CPU | C0 | Cx | Freq || POLL | C1 | C2 | C3

 0| 3.71| 96.29| 2833|| 0.00| 0.00| 0.02| 96.32

 1| 100.0| -0.00| 2833|| 0.00| 0.00| 0.00| 0.00

 2| 9.06| 90.94| 1983|| 0.00| 7.69| 6.98| 76.45

125 Modifying Current Settings with cpupower SLES 12 SP1

 3| 7.43| 92.57| 2039|| 0.00| 2.60| 12.62| 77.52

1 Mperf shows the average frequency of a CPU, including boost frequencies, over a
period of time. Additionally, it shows the percentage of time the CPU has been active
(C0) or in any sleep state (Cx). As the turbo states are managed by the BIOS, it is
impossible to get the frequency values at a given instant. On modern processors with
turbo features the Mperf monitor is the only way to find out about the frequency a
certain CPU has been running in.

2 Idle_Stats shows the statistics of the cpuidle kernel subsystem. The kernel updates
these values every time an idle state is entered or left. Therefore there can be some
inaccuracy when cores are in an idle state for some time when the measure starts
or ends.

Apart from the (general) monitors in the example above, other architecture-specific mon-
itors are available. For detailed information, refer to the cpupower-monitor man page.

By comparing the values of the individual monitors, you can find correlations and dependen-
cies and evaluate how well the power saving mechanism works for a certain workload. In Ex-

ample 11.3 you can see that CPU 0 is idle (the value of Cx is near 100%), but runs at a very high
frequency. This is because the CPUs 0 and 1 have the same frequency values which means
that there is a dependency between them.

11.3.4 Modifying Current Settings with cpupower

You can use cpupower frequency-set command as root to modify current settings. It allows
you to set values for the minimum or maximum CPU frequency the governor may select or to
create a new governor. With the -c option, you can also specify for which of the processors the
settings should be modified. That makes it easy to use a consistent policy across all processors
without adjusting the settings for each processor individually. For more details and the available
options, refer to the cpupower-freqency-set man page or run cpupower frequency-set
--help .

11.4 Special Tuning Options
The following sections highlight some of the most relevant settings that you might want to touch.

126 Tuning Options for P-States SLES 12 SP1

11.4.1 Tuning Options for P-States

The CPUfreq subsystem offers several tuning options for P-states: You can switch between the
different governors, influence minimum or maximum CPU frequency to be used or change in-
dividual governor parameters.

To switch to another governor at runtime, use cpupower frequency-set with the -g option.
For example, running the following command (as root) will activate the performance governor:

cpupower frequency-set -g performance

To set values for the minimum or maximum CPU frequency the governor may select, use the
-d or -u option, respectively.

11.5 Troubleshooting

BIOS options enabled?

To use C-states or P-states, check your BIOS options:

To use C-states, make sure to enable CPU C State or similar options to benefit from
power savings at idle.

To use P-states and the CPUfreq governors, make sure to enable Processor Per-
formance States options or similar.

In case of a CPU upgrade, make sure to upgrade your BIOS, too. The BIOS needs to know
the new CPU and its frequency stepping to pass this information on to the operating system.

Log file information?

Check the systemd journal (see Book “Administration Guide”, Chapter 10 “journalctl:
Query the systemd Journal”) for any output regarding the CPUfreq subsystem. Only severe
errors are reported there.
If you suspect problems with the CPUfreq subsystem on your machine, you can also enable
additional debug output. To do so, either use cpufreq.debug=7 as boot parameter or
execute the following command as root :

echo 7 > /sys/module/cpufreq/parameters/debug

127 For More Information SLES 12 SP1

This will cause CPUfreq to log more information to dmesg on state transitions, which
is useful for diagnosis. But as this additional output of kernel messages can be rather
comprehensive, use it only if you are fairly sure that a problem exists.

11.6 For More Information
Platforms with a Baseboard Management Controller (BMC) may have additional power man-
agement configuration options accessible via the service processor. These configurations are
vendor specific and therefore not subject of this guide. For more information, refer to the man-
uals provided by your vendor. For example, HP ProLiant Server Power Management on SUSE Lin-
ux Enterprise Server 11—Integration Note provides detailed information how the HP platform
specific power management features interact with the Linux Kernel. The paper is available from
http://h18004.www1.hp.com/products/servers/technology/whitepapers/os-techwp.html.

http://h18004.www1.hp.com/products/servers/technology/whitepapers/os-techwp.html

V Kernel Tuning

12 Tuning I/O Performance 129

13 Tuning the Task Scheduler 137

14 Tuning the Memory Management Subsystem 149

15 Tuning the Network 158

129 Tuning I/O Performance SLES 12 SP1

12 Tuning I/O Performance

I/O scheduling controls how input/output operations will be submitted to storage. SUSE Linux
Enterprise Server offers various I/O algorithms—called elevators— suiting different work-
loads. Elevators can help to reduce seek operations, can prioritize I/O requests, or make sure,
and I/O request is carried out before a given deadline.

Choosing the best suited I/O elevator not only depends on the workload, but on the hardware,
too. Single ATA disk systems, SSDs, RAID arrays, or network storage systems, for example, each
require different tuning strategies.

12.1 Switching I/O Scheduling
SUSE Linux Enterprise Server lets you set a default I/O scheduler at boot-time, which can be
changed on the fly per block device. This makes it possible to set different algorithms, for
example, for the device hosting the system partition and the device hosting a database.

By default the CFQ (Completely Fair Queuing) scheduler is used. To change this default, use
the following boot parameter:

elevator=SCHEDULER

Replace SCHEDULER with one of the values cfq , noop , or deadline . See Section 12.2, “Available

I/O Elevators” for details.

To change the elevator for a specific device in the running system, run the following command:

echo SCHEDULER > /sys/block/DEVICE/queue/scheduler

Here, SCHEDULER is one of cfq , noop , or deadline . DEVICE is the block device (sda for
example).

Note: Default Scheduler on IBM System z
On IBM System z, the default I/O scheduler for a storage device is set by the device driver.

130 Available I/O Elevators SLES 12 SP1

12.2 Available I/O Elevators
In the following elevators available on SUSE Linux Enterprise Server are listed. Each elevator
has a set of tunable parameters, which can be set with the following command:

echo VALUE > /sys/block/DEVICE/queue/iosched/TUNABLE

where VALUE is the desired value for the TUNABLE and DEVICE the block device.

To find out which elevator is the current default, run the following command. The currently
selected scheduler is listed in brackets:

jupiter:~ # cat /sys/block/sda/queue/scheduler

noop deadline [cfq]

12.2.1 CFQ (Completely Fair Queuing)
CFQ is a fairness-oriented scheduler and is used by default on SUSE Linux Enterprise Server.
The algorithm assigns each thread a time slice in which it is allowed to submit I/O to disk.
This way each thread gets a fair share of I/O throughput. It also allows assigning tasks I/O
priorities which are taken into account during scheduling decisions (see man 1 ionice). The
CFQ scheduler has the following tunable parameters:

 /sys/block/<device>/queue/iosched/slice_idle

When a task has no more I/O to submit in its time slice, the I/O scheduler waits for a while
before scheduling the next thread to improve locality of I/O. For media where locality
does not play a big role (SSDs, SANs with lots of disks) setting /sys/block/<device>/
queue/iosched/slice_idle to 0 can improve the throughput considerably.

 /sys/block/<device>/queue/iosched/quantum

This option limits the maximum number of requests that are being processed at once by
the device. The default value is 4 . For a storage with several disks, this setting can unnec-
essarily limit parallel processing of requests. Therefore, increasing the value can improve
performance. However, it can also cause latency of certain I/O operations to increase be-
cause more requests are buffered inside the storage. When changing this value, you can
also consider tuning /sys/block/<device>/queue/iosched/slice_async_rq (the de-
fault value is 2). This limits the maximum number of asynchronous requests—usually
write requests—that are submitted in one time slice.

131 CFQ (Completely Fair Queuing) SLES 12 SP1

/sys/block/<device>/queue/iosched/low_latency

When enabled (which is the default on SUSE Linux Enterprise Server) the scheduler may
dynamically adjust the length of the time slice by aiming to meet a tuning parameter
called the target_latency . Time slices are recomputed to meet this target_latency
and ensure that processes get fair access within a bounded length of time.

/sys/block/<device>/queue/iosched/target_latency

Contains an estimated latency time for the CFQ . CFQ will use it to calculate the time slice
used for every task.

EXAMPLE 12.1: INCREASING INDIVIDUAL THREAD THROUGHPUT USING CFQ

In SUSE Linux Enterprise Server 12 SP1, the low_latency tuning parameter is enabled
by default to ensure that processes get fair access within a bounded length of time. (Note
that this parameter was not enabled in versions prior to SUSE Linux Enterprise 12.)

This is usually preferred in a server scenario where processes are executing I/O as part
of transactions, as it makes the time needed for each transaction predictable. However,
there are scenarios where that is not the desired behavior:

If the performance metric of interest is the peak performance of a single process
when there is I/O contention.

If a workload must complete as quickly as possible and there are multiple sources of
I/O. In this case, unfair treatment from the I/O scheduler may allow the transactions
to complete faster: Processes take their full slice and exit quickly, resulting in reduced
overall contention.

To address this, there are two options—increase target_latency or disable
low_latency . As with all tuning parameters it is important to verify your workload be-
haves as expected before and after the tuning modification. Take careful note of whether
your workload depends on individual process peak performance or scales better with fair-
ness. It should also be noted that the performance will depend on the underlying storage
and the correct tuning option for one installation may not be universally true.

Find below an example that does not control when I/O starts but is simple enough to
demonstrate the point. 32 processes are writing a small amount of data to disk in parallel.
Using the SUSE Linux Enterprise Server default (enabling low_latency), the result looks
as follows:

root # echo 1 > /sys/block/sda/queue/iosched/low_latency

root # time ./dd-test.sh

132 CFQ (Completely Fair Queuing) SLES 12 SP1

10485760 bytes (10 MB) copied, 2.62464 s, 4.0 MB/s

10485760 bytes (10 MB) copied, 3.29624 s, 3.2 MB/s

10485760 bytes (10 MB) copied, 3.56341 s, 2.9 MB/s

10485760 bytes (10 MB) copied, 3.56908 s, 2.9 MB/s

10485760 bytes (10 MB) copied, 3.53043 s, 3.0 MB/s

10485760 bytes (10 MB) copied, 3.57511 s, 2.9 MB/s

10485760 bytes (10 MB) copied, 3.53672 s, 3.0 MB/s

10485760 bytes (10 MB) copied, 3.5433 s, 3.0 MB/s

10485760 bytes (10 MB) copied, 3.65474 s, 2.9 MB/s

10485760 bytes (10 MB) copied, 3.63694 s, 2.9 MB/s

10485760 bytes (10 MB) copied, 3.90122 s, 2.7 MB/s

10485760 bytes (10 MB) copied, 3.88507 s, 2.7 MB/s

10485760 bytes (10 MB) copied, 3.86135 s, 2.7 MB/s

10485760 bytes (10 MB) copied, 3.84553 s, 2.7 MB/s

10485760 bytes (10 MB) copied, 3.88871 s, 2.7 MB/s

10485760 bytes (10 MB) copied, 3.94943 s, 2.7 MB/s

10485760 bytes (10 MB) copied, 4.12731 s, 2.5 MB/s

10485760 bytes (10 MB) copied, 4.15106 s, 2.5 MB/s

10485760 bytes (10 MB) copied, 4.21601 s, 2.5 MB/s

10485760 bytes (10 MB) copied, 4.35004 s, 2.4 MB/s

10485760 bytes (10 MB) copied, 4.33387 s, 2.4 MB/s

10485760 bytes (10 MB) copied, 4.55434 s, 2.3 MB/s

10485760 bytes (10 MB) copied, 4.52283 s, 2.3 MB/s

10485760 bytes (10 MB) copied, 4.52682 s, 2.3 MB/s

10485760 bytes (10 MB) copied, 4.56176 s, 2.3 MB/s

10485760 bytes (10 MB) copied, 4.62727 s, 2.3 MB/s

10485760 bytes (10 MB) copied, 4.78958 s, 2.2 MB/s

10485760 bytes (10 MB) copied, 4.79772 s, 2.2 MB/s

10485760 bytes (10 MB) copied, 4.78004 s, 2.2 MB/s

10485760 bytes (10 MB) copied, 4.77994 s, 2.2 MB/s

10485760 bytes (10 MB) copied, 4.86114 s, 2.2 MB/s

10485760 bytes (10 MB) copied, 4.88062 s, 2.1 MB/s

real 0m4.978s

user 0m0.112s

133 CFQ (Completely Fair Queuing) SLES 12 SP1

sys 0m1.544s

Note that each process completes in similar times. This is the CFQ scheduler meeting its
target_latency : Each process has fair access to storage.

Note that the earlier processes complete somewhat faster. This happens because the start
time of the processes is not identical. In a more complicated example, it is possible to
control for this.

This is what happens when low_latency is disabled:

root # echo 0 > /sys/block/sda/queue/iosched/low_latency

root # time ./dd-test.sh

10485760 bytes (10 MB) copied, 0.813519 s, 12.9 MB/s

10485760 bytes (10 MB) copied, 0.788106 s, 13.3 MB/s

10485760 bytes (10 MB) copied, 0.800404 s, 13.1 MB/s

10485760 bytes (10 MB) copied, 0.816398 s, 12.8 MB/s

10485760 bytes (10 MB) copied, 0.959087 s, 10.9 MB/s

10485760 bytes (10 MB) copied, 1.09563 s, 9.6 MB/s

10485760 bytes (10 MB) copied, 1.18716 s, 8.8 MB/s

10485760 bytes (10 MB) copied, 1.27661 s, 8.2 MB/s

10485760 bytes (10 MB) copied, 1.46312 s, 7.2 MB/s

10485760 bytes (10 MB) copied, 1.55489 s, 6.7 MB/s

10485760 bytes (10 MB) copied, 1.64277 s, 6.4 MB/s

10485760 bytes (10 MB) copied, 1.78196 s, 5.9 MB/s

10485760 bytes (10 MB) copied, 1.87496 s, 5.6 MB/s

10485760 bytes (10 MB) copied, 1.9461 s, 5.4 MB/s

10485760 bytes (10 MB) copied, 2.08351 s, 5.0 MB/s

10485760 bytes (10 MB) copied, 2.28003 s, 4.6 MB/s

10485760 bytes (10 MB) copied, 2.42979 s, 4.3 MB/s

10485760 bytes (10 MB) copied, 2.54564 s, 4.1 MB/s

10485760 bytes (10 MB) copied, 2.6411 s, 4.0 MB/s

10485760 bytes (10 MB) copied, 2.75171 s, 3.8 MB/s

10485760 bytes (10 MB) copied, 2.86162 s, 3.7 MB/s

10485760 bytes (10 MB) copied, 2.98453 s, 3.5 MB/s

10485760 bytes (10 MB) copied, 3.13723 s, 3.3 MB/s

10485760 bytes (10 MB) copied, 3.36399 s, 3.1 MB/s

10485760 bytes (10 MB) copied, 3.60018 s, 2.9 MB/s

134 NOOP SLES 12 SP1

10485760 bytes (10 MB) copied, 3.58151 s, 2.9 MB/s

10485760 bytes (10 MB) copied, 3.67385 s, 2.9 MB/s

10485760 bytes (10 MB) copied, 3.69471 s, 2.8 MB/s

10485760 bytes (10 MB) copied, 3.66658 s, 2.9 MB/s

10485760 bytes (10 MB) copied, 3.81495 s, 2.7 MB/s

10485760 bytes (10 MB) copied, 4.10172 s, 2.6 MB/s

10485760 bytes (10 MB) copied, 4.0966 s, 2.6 MB/s

real 0m3.505s

user 0m0.160s

sys 0m1.516s

Note that the time processes take to complete is spread much wider as processes are not
getting fair access. Some processes complete faster and exit, allowing the total workload
to complete faster, and some processes measure higher apparent I/O performance. It is
also important to note that this example may not behave similarly on all systems as the
results depend on the resources of the machine and the underlying storage.

It is important to emphasize that neither tuning option is inherently better than the other.
Both are best in different circumstances and it is important to understand the requirements
of your workload and tune accordingly.

12.2.2 NOOP

A trivial scheduler that only passes down the I/O that comes to it. Useful for checking whether
complex I/O scheduling decisions of other schedulers are causing I/O performance regressions.

This scheduler is recommended for setups with devices that do I/O scheduling themselves, such
as intelligent storage or in multipathing environments. If you choose a more complicated sched-
uler on the host, the scheduler of the host and the scheduler of the storage device compete with
each other. This can decrease performance. The storage device can usually determine best how
to schedule I/O.

For similar reasons, this scheduler is also recommended for use within virtual machines.

The NOOP scheduler can be useful for devices that do not depend on mechanical movement,
like SSDs. Usually, the DEADLINE I/O scheduler is a better choice for these devices. However,
NOOP creates less overhead and thus can on certain workloads increase performance.

135 DEADLINE SLES 12 SP1

12.2.3 DEADLINE

DEADLINE is a latency-oriented I/O scheduler. Each I/O request is assigned a deadline. Usual-
ly, requests are stored in queues (read and write) sorted by sector numbers. The DEADLINE
algorithm maintains two additional queues (read and write) in which requests are sorted by
deadline. As long as no request has timed out, the “sector” queue is used. When timeouts occur,
requests from the “deadline” queue are served until there are no more expired requests. Gener-
ally, the algorithm prefers reads over writes.

This scheduler can provide a superior throughput over the CFQ I/O scheduler in cases where
several threads read and write and fairness is not an issue. For example, for several parallel
readers from a SAN and for databases (especially when using “TCQ” disks). The DEADLINE
scheduler has the following tunable parameters:

/sys/block/<device>/queue/iosched/writes_starved

Controls how many reads can be sent to disk before it is possible to send writes. A value
of 3 means, that three read operations are carried out for one write operation.

/sys/block/<device>/queue/iosched/read_expire

Sets the deadline (current time plus the read_expire value) for read operations in millisec-
onds. The default is 500.

/sys/block/<device>/queue/iosched/write_expire

/sys/block/<device>/queue/iosched/read_expire Sets the deadline (current time
plus the read_expire value) for read operations in milliseconds. The default is 500.

12.3 I/O Barrier Tuning
Most file systems (such as XFS, Ext3, Ext4, or reiserfs) send write barriers to disk after fsync or
during transaction commits. Write barriers enforce proper ordering of writes, making volatile
disk write caches safe to use (at some performance penalty). If your disks are battery-backed in
one way or another, disabling barriers can safely improve performance.

Sending write barriers can be disabled using the barrier=0 mount option (for Ext3, Ext4, and
reiserfs), or using the nobarrier mount option (for XFS).

136 I/O Barrier Tuning SLES 12 SP1

Warning: Disabling Barriers Can Lead to Data Loss
Disabling barriers when disks cannot guarantee caches are properly written in case of
power failure can lead to severe file system corruption and data loss.

137 Tuning the Task Scheduler SLES 12 SP1

13 Tuning the Task Scheduler

Modern operating systems, such as SUSE® Linux Enterprise Server, normally run many different
tasks at the same time. For example, you can be searching in a text file while receiving an e-
mail and copying a big file to an external hard disk. These simple tasks require many additional
processes to be run by the system. To provide each task with its required system resources, the
Linux kernel needs a tool to distribute available system resources to individual tasks. And this
is exactly what the task scheduler does.

The following sections explain the most important terms related to a process scheduling. They
also introduce information about the task scheduler policy, scheduling algorithm, description
of the task scheduler used by SUSE Linux Enterprise Server, and references to other sources of
relevant information.

13.1 Introduction
The Linux kernel controls the way that tasks (or processes) are managed on the system. The
task scheduler, sometimes called process scheduler, is the part of the kernel that decides which
task to run next. It is responsible for best using system resources to guarantee that multiple
tasks are being executed simultaneously. This makes it a core component of any multitasking
operating system.

13.1.1 Preemption

The theory behind task scheduling is very simple. If there are runnable processes in a system, at
least one process must always be running. If there are more runnable processes than processors
in a system, not all the processes can be running all the time.

Therefore, some processes need to be stopped temporarily, or suspended, so that others can be
running again. The scheduler decides what process in the queue will run next.

As already mentioned, Linux, like all other Unix variants, is a multitasking operating system. That
means that several tasks can be running at the same time. Linux provides a so called preemptive
multitasking, where the scheduler decides when a process is suspended. This forced suspension
is called preemption. All Unix flavors have been providing preemptive multitasking since the
beginning.

138 Timeslice SLES 12 SP1

13.1.2 Timeslice

The time period for which a process will be running before it is preempted is defined in advance.
It is called a timeslice of a process and represents the amount of processor time that is provided
to each process. By assigning timeslices, the scheduler makes global decisions for the running
system, and prevents individual processes from dominating over the processor resources.

13.1.3 Process Priority

The scheduler evaluates processes based on their priority. To calculate the current priority of a
process, the task scheduler uses complex algorithms. As a result, each process is given a value
according to which it is “allowed” to run on a processor.

13.2 Process Classification
Processes are usually classified according to their purpose and behavior. Although the borderline
is not always clearly distinct, generally two criteria are used to sort them. These criteria are
independent and do not exclude each other.

One approach is to classify a process either I/O-bound or processor-bound.

I/O-bound

I/O stands for Input/Output devices, such as keyboards, mice, or optical and hard disks.
I/O-bound processes spend the majority of time submitting and waiting for requests. They
are run very frequently, but for short time intervals, not to block other processes waiting
for I/O requests.

processor-bound

On the other hand, processor-bound tasks use their time to execute a code, and usually run
until they are preempted by the scheduler. They do not block processes waiting for I/O
requests, and, therefore, can be run less frequently but for longer time intervals.

Another approach is to divide processes by type into interactive, batch, and real-time processes.

139 Completely Fair Scheduler SLES 12 SP1

Interactive processes spend a lot of time waiting for I/O requests, such as keyboard or
mouse operations. The scheduler must wake up such processes quickly on user request,
or the user will find the environment unresponsive. The typical delay is approximately
100 ms. Office applications, text editors or image manipulation programs represent typical
interactive processes.

Batch processes often run in the background and do not need to be responsive. They usually
receive lower priority from the scheduler. Multimedia converters, database search engines,
or log files analyzers are typical examples of batch processes.

Real-time processes must never be blocked by low-priority processes, and the scheduler
guarantees a short response time to them. Applications for editing multimedia content are
a good example here.

13.3 Completely Fair Scheduler
Since the Linux kernel version 2.6.23, a new approach has been taken to the scheduling of
runnable processes. Completely Fair Scheduler (CFS) became the default Linux kernel scheduler.
Since then, important changes and improvements have been made. The information in this
chapter applies to SUSE Linux Enterprise Server with kernel version 2.6.32 and higher (including
3.x kernels). The scheduler environment was divided into several parts, and three main new
features were introduced:

Modular Scheduler Core

The core of the scheduler was enhanced with scheduling classes. These classes are modular
and represent scheduling policies.

Completely Fair Scheduler

Introduced in kernel 2.6.23 and extended in 2.6.24, CFS tries to assure that each process
obtains its “fair” share of the processor time.

Group Scheduling

For example, if you split processes into groups according to which user is running them,
CFS tries to provide each of these groups with the same amount of processor time.

As a result, CFS brings optimized scheduling for both servers and desktops.

140 How CFS Works SLES 12 SP1

13.3.1 How CFS Works

CFS tries to guarantee a fair approach to each runnable task. To find the most balanced way of
task scheduling, it uses the concept of red-black tree. A red-black tree is a type of self-balancing
data search tree which provides inserting and removing entries in a reasonable way so that
it remains well balanced. For more information, see the wiki pages of Red-black tree [http://
en.wikipedia.org/wiki/Red_black_tree].

When a task enters into the run queue (a planned time line of processes to be executed next),
the scheduler records the current time. While the process waits for processor time, its “wait”
value gets incremented by an amount derived from the total number of tasks currently in the
run queue and the process priority. As soon as the processor runs the task, its “wait” value gets
decremented. If the value drops below a certain level, the task is preempted by the scheduler
and other tasks get closer to the processor. By this algorithm, CFS tries to reach the ideal state
where the “wait” value is always zero.

13.3.2 Grouping Processes

Since the Linux kernel version 2.6.24, CFS can be tuned to be fair to users or groups rather than
to tasks only. Runnable tasks are then grouped to form entities, and CFS tries to be fair to these
entities instead of individual runnable tasks. The scheduler also tries to be fair to individual
tasks within these entities.

Tasks can be grouped in two mutually exclusive ways:

By user IDs

By kernel control groups.

The way the kernel scheduler lets you group the runnable tasks depends on setting the kernel
compile-time options CONFIG_FAIR_USER_SCHED and CONFIG_FAIR_CGROUP_SCHED . The de-
fault setting in SUSE® Linux Enterprise Server 12 SP1 is to use control groups, which lets you
create groups as needed. For more information, see Chapter 9, Kernel Control Groups.

http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree

141 Kernel Configuration Options SLES 12 SP1

13.3.3 Kernel Configuration Options
Basic aspects of the task scheduler behavior can be set through the kernel configuration op-
tions. Setting these options is part of the kernel compilation process. Because kernel compila-
tion process is a complex task and out of this document's scope, refer to relevant source of in-
formation.

Warning: Kernel Compilation
If you run SUSE Linux Enterprise Server on a kernel that was not shipped with it, for
example on a self-compiled kernel, you lose the entire support entitlement.

13.3.4 Terminology
Documents regarding task scheduling policy often use several technical terms which you need
to know to understand the information correctly. Here are some:

Latency

Delay between the time a process is scheduled to run and the actual process execution.

Granularity

The relation between granularity and latency can be expressed by the following equation:

gran = (lat / rtasks) - (lat / rtasks / rtasks)

where gran stands for granularity, lat stand for latency, and rtasks is the number of running
tasks.

13.3.4.1 Scheduling Policies

The Linux kernel supports the following scheduling policies:

SCHED_FIFO

Scheduling policy designed for special time-critical applications. It uses the First In-First
Out scheduling algorithm.

SCHED_BATCH

Scheduling policy designed for CPU-intensive tasks.

142 Changing Real-time Attributes of Processes with chrt SLES 12 SP1

SCHED_IDLE

Scheduling policy intended for very low prioritized tasks.

SCHED_OTHER

Default Linux time-sharing scheduling policy used by the majority of processes.

SCHED_RR

Similar to SCHED_FIFO , but uses the Round Robin scheduling algorithm.

13.3.5 Changing Real-time Attributes of Processes with chrt
The chrt command sets or retrieves the real-time scheduling attributes of a running process,
or runs a command with the specified attributes. You can get or retrieve both the scheduling
policy and priority of a process.

In the following examples, a process whose PID is 16244 is used.

To retrieve the real-time attributes of an existing task:

root # chrt -p 16244

pid 16244's current scheduling policy: SCHED_OTHER

pid 16244's current scheduling priority: 0

Before setting a new scheduling policy on the process, you need to find out the minimum and
maximum valid priorities for each scheduling algorithm:

root # chrt -m

SCHED_OTHER min/max priority : 0/0

SCHED_FIFO min/max priority : 1/99

SCHED_RR min/max priority : 1/99

SCHED_BATCH min/max priority : 0/0

SCHED_IDLE min/max priority : 0/0

In the above example, SCHED_OTHER, SCHED_BATCH, SCHED_IDLE polices only allow for pri-
ority 0, while that of SCHED_FIFO and SCHED_RR can range from 1 to 99.

To set SCHED_BATCH scheduling policy:

root # chrt -b -p 0 16244

pid 16244's current scheduling policy: SCHED_BATCH

143 Runtime Tuning with sysctl SLES 12 SP1

pid 16244's current scheduling priority: 0

For more information on chrt , see its man page (man 1 chrt).

13.3.6 Runtime Tuning with sysctl

The sysctl interface for examining and changing kernel parameters at runtime introduces im-
portant variables by means of which you can change the default behavior of the task scheduler.
The syntax of the sysctl is simple, and all the following commands must be entered on the
command line as root .

To read a value from a kernel variable, enter

sysctl variable

To assign a value, enter

sysctl variable=value

To get a list of all scheduler related sysctl variables, enter

sysctl -A | grep "sched" | grep -v"domain"

root # sysctl -A | grep "sched" | grep -v "domain"

kernel.sched_cfs_bandwidth_slice_us = 5000

kernel.sched_child_runs_first = 0

kernel.sched_compat_yield = 0

kernel.sched_latency_ns = 6000000

kernel.sched_migration_cost_ns = 500000

kernel.sched_min_granularity_ns = 2000000

kernel.sched_nr_migrate = 32

kernel.sched_rr_timeslice_ms = 25

kernel.sched_rt_period_us = 1000000

kernel.sched_rt_runtime_us = 950000

kernel.sched_shares_window_ns = 10000000

kernel.sched_time_avg_ms = 1000

kernel.sched_tunable_scaling = 1

144 Runtime Tuning with sysctl SLES 12 SP1

kernel.sched_wakeup_granularity_ns = 2500000

Note that variables ending with “_ns” and “_us” accept values in nanoseconds and microseconds,
respectively.

A list of the most important task scheduler sysctl tuning variables (located at /proc/sys/
kernel/) with a short description follows:

sched_child_runs_first

A freshly forked child runs before the parent continues execution. Setting this parameter
to 1 is beneficial for an application in which the child performs an execution after fork.
For example make -j<NO_CPUS> performs better when sched_child_runs_first is turned
off. The default value is 0 .

sched_compat_yield

Enables the aggressive yield behavior of the old 0(1) scheduler. Java applications that use
synchronization extensively perform better with this value set to 1 . Only use it when you
see a drop in performance. The default value is 0 .
Expect applications that depend on the sched_yield() syscall behavior to perform better
with the value set to 1 .

sched_migration_cost_ns

Amount of time after the last execution that a task is considered to be “cache hot” in
migration decisions. A “hot” task is less likely to be migrated, so increasing this variable
reduces task migrations. The default value is 500000 (ns).
If the CPU idle time is higher than expected when there are runnable processes, try reduc-
ing this value. If tasks bounce between CPUs or nodes too often, try increasing it.

sched_latency_ns

Targeted preemption latency for CPU bound tasks. Increasing this variable increases a CPU
bound task's timeslice. A task's timeslice is its weighted fair share of the scheduling period:
timeslice = scheduling period * (task's weight/total weight of tasks in the run queue)
The task's weight depends on the task's nice level and the scheduling policy. Minimum
task weight for a SCHED_OTHER task is 15, corresponding to nice 19. The maximum task
weight is 88761, corresponding to nice -20.
Timeslices become smaller as the load increases. When the number of runnable
tasks exceeds sched_latency_ns / sched_min_granularity_ns , the slice becomes
number_of_running_tasks * sched_min_granularity_ns . Prior to that, the slice is equal
to sched_latency_ns .

145 Runtime Tuning with sysctl SLES 12 SP1

This value also specifies the maximum amount of time during which a sleeping task is
considered to be running for entitlement calculations. Increasing this variable increases
the amount of time a waking task may consume before being preempted, thus increasing
scheduler latency for CPU bound tasks. The default value is 6000000 (ns).

sched_min_granularity_ns

Minimal preemption granularity for CPU bound tasks. See sched_latency_ns for details.
The default value is 4000000 (ns).

sched_wakeup_granularity_ns

The wake-up preemption granularity. Increasing this variable reduces wake-up preemp-
tion, reducing disturbance of compute bound tasks. Lowering it improves wake-up latency
and throughput for latency critical tasks, particularly when a short duty cycle load com-
ponent must compete with CPU bound components. The default value is 2500000 (ns).

Warning: Setting the Right Wake-up Granularity Value
Settings larger than half of sched_latency_ns will result in no wake-up preemp-
tion. Short duty cycle tasks will be unable to compete with CPU hogs effectively.

sched_rt_period_us

Period over which real-time task bandwidth enforcement is measured. The default value
is 1000000 (µs).

sched_rt_runtime_us

Quantum allocated to real-time tasks during sched_rt_period_us. Setting to -1 disables RT
bandwidth enforcement. By default, RT tasks may consume 95%CPU/sec, thus leaving
5%CPU/sec or 0.05s to be used by SCHED_OTHER tasks. The default value is 950000 (µs).

sched_nr_migrate

Controls how many tasks can be moved across processors through migration software
interrupts (softirq). If a large number of tasks is created by SCHED_OTHER policy, they
will all be run on the same processor. The default value is 32 . Increasing this value gives
a performance boost to large SCHED_OTHER threads at the expense of increased latencies
for real-time tasks.

146 Debugging Interface and Scheduler Statistics SLES 12 SP1

13.3.7 Debugging Interface and Scheduler Statistics

CFS comes with a new improved debugging interface, and provides runtime statistics informa-
tion. Relevant files were added to the /proc file system, which can be examined simply with
the cat or less command. A list of the related /proc files follows with their short description:

/proc/sched_debug

Contains the current values of all tunable variables (see Section 13.3.6, “Runtime Tuning with

sysctl”) that affect the task scheduler behavior, CFS statistics, and information about the
run queue on all available processors.

root # cat /proc/sched_debug

Sched Debug Version: v0.11, 3.12.24-7-default #1

ktime : 23533900.395978

sched_clk : 23543587.726648

cpu_clk : 23533900.396165

jiffies : 4300775771

sched_clock_stable : 0

sysctl_sched

 .sysctl_sched_latency : 6.000000

 .sysctl_sched_min_granularity : 2.000000

 .sysctl_sched_wakeup_granularity : 2.500000

 .sysctl_sched_child_runs_first : 0

 .sysctl_sched_features : 154871

 .sysctl_sched_tunable_scaling : 1 (logaritmic)

cpu#0, 2666.762 MHz

 .nr_running : 1

 .load : 1024

 .nr_switches : 1918946

[...]

cfs_rq[0]:/

 .exec_clock : 170176.383770

 .MIN_vruntime : 0.000001

 .min_vruntime : 347375.854324

 .max_vruntime : 0.000001

147 Debugging Interface and Scheduler Statistics SLES 12 SP1

[...]

rt_rq[0]:/

 .rt_nr_running : 0

 .rt_throttled : 0

 .rt_time : 0.000000

 .rt_runtime : 950.000000

runnable tasks:

 task PID tree-key switches prio exec-runtime sum-exec sum-sleep

R cat 21772 347375.854324 2 120 347375.854324 0.488560 0.000000 0 /

/proc/schedstat

Displays statistics relevant to the current run queue. Also domain-specific statistics for
SMP systems are displayed for all connected processors. Because the output format is not
user-friendly, read the contents of /usr/src/linux/Documentation/scheduler/sched-
stats.txt for more information.

/proc/PID/sched

Displays scheduling information on the process with id PID .

root # cat /proc/$(pidof gdm)/sched

gdm (744, #threads: 3)

se.exec_start : 8888.758381

se.vruntime : 6062.853815

se.sum_exec_runtime : 7.836043

se.statistics.wait_start : 0.000000

se.statistics.sleep_start : 8888.758381

se.statistics.block_start : 0.000000

se.statistics.sleep_max : 1965.987638

[...]

se.avg.decay_count : 8477

policy : 0

prio : 120

clock-delta : 128

mm->numa_scan_seq : 0

148 For More Information SLES 12 SP1

numa_migrations, 0

numa_faults_memory, 0, 0, 1, 0, -1

numa_faults_memory, 1, 0, 0, 0, -1

13.4 For More Information
To get a compact knowledge about Linux kernel task scheduling, you need to explore several
information sources. Here are some:

For task scheduler System Calls description, see the relevant manual page (for example
man 2 sched_setaffinity).

General information on scheduling is described in Scheduling [http://en.wikipedia.org/
wiki/Scheduling_(computing)] wiki page.

A useful lecture on Linux scheduler policy and algorithm is available in http://www.inf.fu-

berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf.

A good overview of Linux process scheduling is given in Linux Kernel Development by
Robert Love (ISBN-10: 0-672-32512-8). See http://www.informit.com/articles/article.aspx?

p=101760.

A very comprehensive overview of the Linux kernel internals is given in Understanding the
Linux Kernel by Daniel P. Bovet and Marco Cesati (ISBN 978-0-596-00565-8).

Technical information about task scheduler is covered in files under /usr/src/lin-
ux/Documentation/scheduler .

http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf
http://www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf
http://www.informit.com/articles/article.aspx?p=101760
http://www.informit.com/articles/article.aspx?p=101760

149 Tuning the Memory Management Subsystem SLES 12 SP1

14 Tuning the Memory Management Subsystem

To understand and tune the memory management behavior of the kernel, it is important to first
have an overview of how it works and cooperates with other subsystems.

The memory management subsystem, also called the virtual memory manager, will subsequently
be called “VM”. The role of the VM is to manage the allocation of physical memory (RAM)
for the entire kernel and user programs. It is also responsible for providing a virtual memory
environment for user processes (managed via POSIX APIs with Linux extensions). Finally, the
VM is responsible for freeing up RAM when there is a shortage, either by trimming caches or
swapping out “anonymous” memory.

The most important thing to understand when examining and tuning VM is how its caches
are managed. The basic goal of the VM's caches is to minimize the cost of I/O as generated
by swapping and file system operations (including network file systems). This is achieved by
avoiding I/O completely, or by submitting I/O in better patterns.

Free memory will be used and filled up by these caches as required. The more memory is avail-
able for caches and anonymous memory, the more effectively caches and swapping will oper-
ate. However, if a memory shortage is encountered, caches will be trimmed or memory will
be swapped out.

For a particular workload, the first thing that can be done to improve performance is to increase
memory and reduce the frequency that memory must be trimmed or swapped. The second thing
is to change the way caches are managed by changing kernel parameters.

Finally, the workload itself should be examined and tuned as well. If an application is allowed
to run more processes or threads, effectiveness of VM caches can be reduced, if each process is
operating in its own area of the file system. Memory overheads are also increased. If applications
allocate their own buffers or caches, larger caches will mean that less memory is available for
VM caches. However, more processes and threads can mean more opportunity to overlap and
pipeline I/O, and may take better advantage of multiple cores. Experimentation will be required
for the best results.

14.1 Memory Usage
Memory allocations in general can be characterized as “pinned” (also known as “unre-
claimable”), “reclaimable” or “swappable”.

150 Anonymous Memory SLES 12 SP1

14.1.1 Anonymous Memory
Anonymous memory tends to be program heap and stack memory (for example, >malloc()).
It is reclaimable, except in special cases such as mlock or if there is no available swap space.
Anonymous memory must be written to swap before it can be reclaimed. Swap I/O (both swap-
ping in and swapping out pages) tends to be less efficient than pagecache I/O, because of allo-
cation and access patterns.

14.1.2 Pagecache
A cache of file data. When a file is read from disk or network, the contents are stored in page-
cache. No disk or network access is required, if the contents are up-to-date in pagecache. tmpfs
and shared memory segments count toward pagecache.

When a file is written to, the new data is stored in pagecache before being written back to a
disk or the network (making it a write-back cache). When a page has new data not written back
yet, it is called “dirty”. Pages not classified as dirty are “clean”. Clean pagecache pages can be
reclaimed if there is a memory shortage by simply freeing them. Dirty pages must first be made
clean before being reclaimed.

14.1.3 Buffercache
This is a type of pagecache for block devices (for example, /dev/sda). A file system typically uses
the buffercache when accessing its on-disk metadata structures such as inode tables, allocation
bitmaps, and so forth. Buffercache can be reclaimed similarly to pagecache.

14.1.4 Buffer Heads
Buffer heads are small auxiliary structures that tend to be allocated upon pagecache access.
They can generally be reclaimed easily when the pagecache or buffercache pages are clean.

14.1.5 Writeback
As applications write to files, the pagecache (and buffercache) becomes dirty. When pages have
been dirty for a given amount of time, or when the amount of dirty memory reaches a speci-
fied number of pages in bytes (vm.dirty_background_bytes), the kernel begins writeback. Flusher

151 Readahead SLES 12 SP1

threads perform writeback in the background and allow applications to continue running. If
the I/O cannot keep up with applications dirtying pagecache, and dirty data reaches a critical
setting (vm.dirty_bytes), then applications begin to be throttled to prevent dirty data exceeding
this threshold.

14.1.6 Readahead

The VM monitors file access patterns and may attempt to perform readahead. Readahead reads
pages into the pagecache from the file system that have not been requested yet. It is done to
allow fewer, larger I/O requests to be submitted (more efficient). And for I/O to be pipelined
(I/O performed at the same time as the application is running).

14.1.7 VFS caches

14.1.7.1 Inode Cache

This is an in-memory cache of the inode structures for each file system. These contain attributes
such as the file size, permissions and ownership, and pointers to the file data.

14.1.7.2 Directory Entry Cache

This is an in-memory cache of the directory entries in the system. These contain a name (the
name of a file), the inode which it refers to, and children entries. This cache is used when
traversing the directory structure and accessing a file by name.

14.2 Reducing Memory Usage

152 Reducing malloc (Anonymous) Usage SLES 12 SP1

14.2.1 Reducing malloc (Anonymous) Usage

Applications running on SUSE Linux Enterprise Server 12 SP1 can allocate more memory com-
pared to SUSE Linux Enterprise Server 10. This is because of glibc changing its default behav-
ior while allocating userspace memory. See http://www.gnu.org/s/libc/manual/html_node/Mal-

loc-Tunable-Parameters.html for explanation of these parameters.

To restore a SUSE Linux Enterprise Server 10-like behavior, M_MMAP_THRESHOLD should be
set to 128*1024. This can be done with mallopt() call from the application, or via setting
MALLOC_MMAP_THRESHOLD environment variable before running the application.

14.2.2 Reducing Kernel Memory Overheads

Kernel memory that is reclaimable (caches, described above) will be trimmed automatically
during memory shortages. Most other kernel memory cannot be easily reduced but is a property
of the workload given to the kernel.

Reducing the requirements of the userspace workload will reduce the kernel memory usage
(fewer processes, fewer open files and sockets, etc.)

14.2.3 Memory Controller (Memory Cgroups)

If the memory cgroups feature is not needed, it can be switched off by passing
cgroup_disable=memory on the kernel command line, reducing memory consumption of the
kernel a bit.

14.3 Virtual Memory Manager (VM) Tunable Pa-
rameters
When tuning the VM it should be understood that some changes will take time to affect the
workload and take full effect. If the workload changes throughout the day, it may behave very
differently at different times. A change that increases throughput under some conditions may
decrease it under other conditions.

http://www.gnu.org/s/libc/manual/html_node/Malloc-Tunable-Parameters.html
http://www.gnu.org/s/libc/manual/html_node/Malloc-Tunable-Parameters.html

153 Reclaim Ratios SLES 12 SP1

14.3.1 Reclaim Ratios

/proc/sys/vm/swappiness

This control is used to define how aggressively the kernel swaps out anonymous memo-
ry relative to pagecache and other caches. Increasing the value increases the amount of
swapping. The default value is 60 .
Swap I/O tends to be much less efficient than other I/O. However, some pagecache pages
will be accessed much more frequently than less used anonymous memory. The right bal-
ance should be found here.
If swap activity is observed during slowdowns, it may be worth reducing this parameter.
If there is a lot of I/O activity and the amount of pagecache in the system is rather small,
or if there are large dormant applications running, increasing this value might improve
performance.
Note that the more data is swapped out, the longer the system will take to swap data back
in when it is needed.

/proc/sys/vm/vfs_cache_pressure

This variable controls the tendency of the kernel to reclaim the memory which is used for
caching of VFS caches, versus pagecache and swap. Increasing this value increases the rate
at which VFS caches are reclaimed.
It is difficult to know when this should be changed, other than by experimentation. The
slabtop command (part of the package procps) shows top memory objects used by
the kernel. The vfs caches are the "dentry" and the "*_inode_cache" objects. If these are
consuming a large amount of memory in relation to pagecache, it may be worth trying to
increase pressure. Could also help to reduce swapping. The default value is 100 .

/proc/sys/vm/min_free_kbytes

This controls the amount of memory that is kept free for use by special reserves including
“atomic” allocations (those which cannot wait for reclaim). This should not normally be
lowered unless the system is being very carefully tuned for memory usage (normally useful
for embedded rather than server applications). If “page allocation failure” messages and
stack traces are frequently seen in logs, min_free_kbytes could be increased until the errors
disappear. There is no need for concern, if these messages are very infrequent. The default
value depends on the amount of RAM.

154 Writeback Parameters SLES 12 SP1

14.3.2 Writeback Parameters

One important change in writeback behavior since SUSE Linux Enterprise Server 10 is that
modification to file-backed mmap() memory is accounted immediately as dirty memory (and
subject to writeback). Whereas previously it would only be subject to writeback after it was
unmapped, upon an msync() system call, or under heavy memory pressure.

Some applications do not expect mmap modifications to be subject to such writeback behavior,
and performance can be reduced. Berkeley DB (and applications using it) is one known exam-
ple that can cause problems. Increasing writeback ratios and times can improve this type of
slowdown.

/proc/sys/vm/dirty_background_ratio

This is the percentage of the total amount of free and reclaimable memory. When the
amount of dirty pagecache exceeds this percentage, writeback threads start writing back
dirty memory. The default value is 10 (%).

/proc/sys/vm/dirty_background_bytes

This is the percentage of the total amount of dirty memory at which the background ker-
nel flusher threads will start writeback. dirty_background_bytes is the counterpart of
dirty_background_ratio . If one of them is set, the other one will automatically be read
as 0 .

/proc/sys/vm/dirty_ratio

Similar percentage value as for dirty_background_ratio . When this is exceeded, appli-
cations that want to write to the pagecache are blocked and start performing writeback
as well. The default value is 20 (%).

/proc/sys/vm/dirty_bytes

Contains the amount of dirty memory (in percent) at which a process generating disk
writes will itself start writeback. The minimum value allowed for dirty_bytes is two
pages (in bytes); any value lower than this limit will be ignored and the old configuration
will be retained.
dirty_bytes is the counterpart of dirty_ratio .If one of them is set, the other one will
automatically be read as 0 .

155

Timing Differences of I/O Writes between SUSE Linux Enterprise 12 and SUSE Linux Enter-

prise 11 SLES 12 SP1

/proc/sys/vm/dirty_expires

Data which has been dirty in-memory for longer than this interval will be written out next
time a flusher thread wakes up. Expiration is measured based on the modification time
of a file's inode. Therefore, multiple dirtied pages from the same file will all be written
when the interval is exceeded.

dirty_background_ratio and dirty_ratio together determine the pagecache writeback be-
havior. If these values are increased, more dirty memory is kept in the system for a longer
time. With more dirty memory allowed in the system, the chance to improve throughput by
avoiding writeback I/O and to submitting more optimal I/O patterns increases. However, more
dirty memory can either harm latency when memory needs to be reclaimed or at points of data
integrity (“sync points”) when it needs to be written back to disk.

14.3.3 Timing Differences of I/O Writes between SUSE Linux
Enterprise 12 and SUSE Linux Enterprise 11

The system is required to limit what percentage of the system's memory contains file-backed data
that needs writing to disk. This guarantees that the system can always allocate the necessary data
structures to complete I/O. The maximum amount of memory that may be dirty and requires
writing at any given time is controlled by vm.dirty_ratio (/proc/sys/vm/dirty_ratio).
The defaults are:

SLE-11-SP3: vm.dirty_ratio = 40

SLE-12: vm.dirty_ratio = 20

The primary advantage of using the lower ratio in SUSE Linux Enterprise 12 is that page recla-
mation and allocation in low memory situations completes faster as there is a higher probability
that old clean pages will be quickly found and discarded. The secondary advantage is that if
all data on the system must be synchronized, then the time to complete the operation on SUSE
Linux Enterprise 12 will be lower than SUSE Linux Enterprise 11 SP3 by default. Most workloads
will not notice this change as data is synchronized with fsync() by the application or data is
not dirtied quickly enough to hit the limits.

There are exceptions and if your application is affected by this, it will manifest as an unex-
pected stall during writes. To prove it is affected by dirty data rate limiting then monitor /
proc/PID_OF_APPLICATION/stack and it will be observed that the application spends signifi-

156

Timing Differences of I/O Writes between SUSE Linux Enterprise 12 and SUSE Linux Enter-

prise 11 SLES 12 SP1

cant time in balance_dirty_pages_ratelimited . If this is observed and it is a problem, then
increase the value of vm.dirty_ratio to 40 to restore the SUSE Linux Enterprise 11 SP3 be-
havior.

It is important to note that the overall I/O throughput is the same regardless of the setting. The
only difference is the timing of when the I/O is queued.

This is an example of using dd to asynchronously write 30% of memory to disk which would
happen to be affected by the change in vm.dirty_ratio :

root # MEMTOTAL_MBYTES=`free -m | grep Mem: | awk '{print $2}'`

root # sysctl vm.dirty_ratio=40

root # dd if=/dev/zero of=zerofile ibs=1048576 count=$((MEMTOTAL_MBYTES*30/100))

2507145216 bytes (2.5 GB) copied, 8.00153 s, 313 MB/s

root # sysctl vm.dirty_ratio=20

dd if=/dev/zero of=zerofile ibs=1048576 count=$((MEMTOTAL_MBYTES*30/100))

2507145216 bytes (2.5 GB) copied, 10.1593 s, 247 MB/s

Note that the parameter affects the time it takes for the command to complete and the apparent
write speed of the device. With dirty_ratio=40 , more of the data is cached and written to disk
in the background by the kernel. It is very important to note that the speed of I/O is identical
in both cases. To demonstrate, this is the result when dd synchronizes the data before exiting:

root # sysctl vm.dirty_ratio=40

root # dd if=/dev/zero of=zerofile ibs=1048576 count=$((MEMTOTAL_MBYTES*30/100))

 conv=fdatasync

2507145216 bytes (2.5 GB) copied, 21.0663 s, 119 MB/s

root # sysctl vm.dirty_ratio=20

root # dd if=/dev/zero of=zerofile ibs=1048576 count=$((MEMTOTAL_MBYTES*30/100))

 conv=fdatasync

2507145216 bytes (2.5 GB) copied, 21.7286 s, 115 MB/s

Note that dirty_ratio had almost no impact here and is within the natural variability of a
command. Hence, dirty_ratio does not directly impact I/O performance but it may affect the
apparent performance of a workload that writes data asynchronously without synchronizing.

157 Readahead parameters SLES 12 SP1

14.3.4 Readahead parameters

/sys/block/<bdev>/queue/read_ahead_kb

If one or more processes are sequentially reading a file, the kernel reads some data in
advance (ahead) to reduce the amount of time that processes need to wait for data to
be available. The actual amount of data being read in advance is computed dynamically,
based on how much "sequential" the I/O seems to be. This parameter sets the maximum
amount of data that the kernel reads ahead for a single file. If you observe that large se-
quential reads from a file are not fast enough, you can try increasing this value. Increas-
ing it too far may result in readahead thrashing where pagecache used for readahead is
reclaimed before it can be used, or slowdowns because of a large amount of useless I/O.
The default value is 512 (KB).

14.3.5 Further VM Parameters

For the complete list of the VM tunable parameters, see /usr/src/linux/Documenta-

tion/sysctl/vm.txt (available after having installed the kernel-source package).

14.4 Monitoring VM Behavior
Some simple tools that can help monitor VM behavior:

1. vmstat: This tool gives a good overview of what the VM is doing. See Section 2.1.1, “vmstat”

for details.

2. /proc/meminfo : This file gives a detailed breakdown of where memory is being used. See
Section 2.4.2, “Detailed Memory Usage: /proc/meminfo” for details.

3. slabtop : This tool provides detailed information about kernel slab memory usage.
buffer_head, dentry, inode_cache, ext3_inode_cache, etc. are the major caches. This com-
mand is available with the package procps .

158 Tuning the Network SLES 12 SP1

15 Tuning the Network

The network subsystem is rather complex and its tuning highly depends on the system use sce-
nario and also on external factors such as software clients or hardware components (switches,
routers, or gateways) in your network. The Linux kernel aims more at reliability and low laten-
cy than low overhead and high throughput. Other settings can mean less security, but better
performance.

15.1 Configurable Kernel Socket Buffers
Networking is largely based on the TCP/IP protocol and a socket interface for communication;
for more information about TCP/IP, see Book “Administration Guide”, Chapter 19 “Basic Net-
working”. The Linux kernel handles data it receives or sends via the socket interface in socket
buffers. These kernel socket buffers are tunable.

Important: TCP Autotuning
Since kernel version 2.6.17 full autotuning with 4 MB maximum buffer size exists. This
means that manual tuning usually will not improve networking performance consider-
ably. It is often the best not to touch the following variables, or, at least, to check the
outcome of tuning efforts carefully.

If you update from an older kernel, it is recommended to remove manual TCP tunings
in favor of the autotuning feature.

The special files in the /proc file system can modify the size and behavior of kernel socket
buffers; for general information about the /proc file system, see Section 2.6, “The /proc File

System”. Find networking related files in:

/proc/sys/net/core

/proc/sys/net/ipv4

/proc/sys/net/ipv6

General net variables are explained in the kernel documentation (linux/Documenta-
tion/sysctl/net.txt). Special ipv4 variables are explained in linux/Documentation/net-
working/ip-sysctl.txt and linux/Documentation/networking/ipvs-sysctl.txt .

159 Configurable Kernel Socket Buffers SLES 12 SP1

In the /proc file system, for example, it is possible to either set the Maximum Socket Receive
Buffer and Maximum Socket Send Buffer for all protocols, or both these options for the TCP
protocol only (in ipv4) and thus overriding the setting for all protocols (in core).

/proc/sys/net/ipv4/tcp_moderate_rcvbuf

If /proc/sys/net/ipv4/tcp_moderate_rcvbuf is set to 1 , autotuning is active and
buffer size is adjusted dynamically.

/proc/sys/net/ipv4/tcp_rmem

The three values setting the minimum, initial, and maximum size of the Memory Receive
Buffer per connection. They define the actual memory usage, not only TCP window size.

/proc/sys/net/ipv4/tcp_wmem

The same as tcp_rmem , but for Memory Send Buffer per connection.

/proc/sys/net/core/rmem_max

Set to limit the maximum receive buffer size that applications can request.

/proc/sys/net/core/wmem_max

Set to limit the maximum send buffer size that applications can request.

Via /proc it is possible to disable TCP features that you do not need (all TCP features are
switched on by default). For example, check the following files:

/proc/sys/net/ipv4/tcp_timestamps

TCP time stamps are defined in RFC1323.

/proc/sys/net/ipv4/tcp_window_scaling

TCP window scaling is also defined in RFC1323.

/proc/sys/net/ipv4/tcp_sack

Select acknowledgments (SACKS).

Use sysctl to read or write variables of the /proc file system. sysctl is preferable to cat
(for reading) and echo (for writing), because it also reads settings from /etc/sysctl.conf
and, thus, those settings survive reboots reliably. With sysctl you can read all variables and
their values easily; as root use the following command to list TCP related settings:

sysctl -a | grep tcp

160 Detecting Network Bottlenecks and Analyzing Network Traffic SLES 12 SP1

Note: Side-Effects of Tuning Network Variables
Tuning network variables can affect other system resources such as CPU or memory use.

15.2 Detecting Network Bottlenecks and Analyz-
ing Network Traffic
Before starting with network tuning, it is important to isolate network bottlenecks and network
traffic patterns. There are some tools that can help you with detecting those bottlenecks.

The following tools can help analyzing your network traffic: netstat , tcpdump , and wire-
shark . Wireshark is a network traffic analyzer.

15.3 Netfilter
The Linux firewall and masquerading features are provided by the Netfilter kernel modules.
This is a highly configurable rule based framework. If a rule matches a packet, Netfilter accepts
or denies it or takes special action (“target”) as defined by rules such as address translation.

There are quite some properties Netfilter can take into account. Thus, the more rules are de-
fined, the longer packet processing may last. Also advanced connection tracking could be rather
expensive and, thus, slowing down overall networking.

When the kernel queue becomes full, all new packets are dropped, causing existing connec-
tions to fail. The 'fail-open' feature, available since SUSE Linux Enterprise Server 11 SP3, al-
lows a user to temporarily disable the packet inspection and maintain the connectivity under
heavy network traffic. For reference, see https://home.regit.org/netfilter-en/using-nfqueue-and-

libnetfilter_queue/.

For more information, see the home page of the Netfilter and iptables project, http://

www.netfilter.org

https://home.regit.org/netfilter-en/using-nfqueue-and-libnetfilter_queue/
https://home.regit.org/netfilter-en/using-nfqueue-and-libnetfilter_queue/
http://www.netfilter.org
http://www.netfilter.org

161 Improving the Network Performance with Receive Packet Steering (RPS) SLES 12 SP1

15.4 Improving the Network Performance with
Receive Packet Steering (RPS)
Modern network interface devices can move so many packets that the host can become the
limiting factor for achieving maximum performance. In order to keep up, the system must be
able to distribute the work across multiple CPU cores.

Some modern network interfaces can help distribute the work to multiple CPU cores through the
implementation of multiple transmission and multiple receive queues in hardware. However,
others are only equipped with a single queue and the driver must deal with all incoming packets
in a single, serialized stream. To work around this issue, the operating system must "parallelize"
the stream to distribute the work across multiple CPUs. On SUSE Linux Enterprise Server this is
done via Receive Packet Steering (RPS). RPS can also be used in virtual environments.

RPS creates a unique hash for each data stream using IP addresses and port numbers. The use of
this hash ensures that packets for the same data stream are sent to the same CPU, which helps
to increase performance.

RPS is configured per network device receive queue and interface. The configuration file names
match the following scheme:

/sys/class/net/<device>/queues/<rx-queue>/rps_cpus

<device> stands for the network device, such as eth0 , eth1 . <rx-queue> stands for the
receive queue, such as rx-0 , rx-1 .

If the network interface hardware only supports a single receive queue, only rx-0 will exist. If
it supports multiple receive queues, there will be an rx- N directory for each receive queue.

These configuration files contain a comma-delimited list of CPU bitmaps. By default, all bits are
set to 0 . With this setting RPS is disabled and therefore the CPU that handles the interrupt will
also process the packet queue.

To enable RPS and enable specific CPUs to process packets for the receive queue of the interface,
set the value of their positions in the bitmap to 1 . For example, to enable CPUs 0-3 to process
packets for the first receive queue for eth0, set the bit positions 0-3 to 1 in binary: 00001111 .
This representation then needs to be converted to hex—which results in F in this case. Set this
hex value with the following command:

echo "f" > /sys/class/net/eth0/queues/rx-0/rps_cpus

162 For More Information SLES 12 SP1

If you wanted to enable CPUs 8-15:

1111 1111 0000 0000 (binary)

15 15 0 0 (decimal)

F F 0 0 (hex)

The command to set the hex value of ff00 would be:

echo "ff00" > /sys/class/net/eth0/queues/rx-0/rps_cpus

On NUMA machines, best performance can be achieved by configuring RPS to use the CPUs on
the same NUMA node as the interrupt for the interface's receive queue.

On non-NUMA machines, all CPUs can be used. If the interrupt rate is very high, excluding
the CPU handling the network interface can boost performance. The CPU being used for the
network interface can be determined from /proc/interrupts . For example:

root # cat /proc/interrupts

 CPU0 CPU1 CPU2 CPU3

...

 51: 113915241 0 0 0 Phys-fasteoi eth0

...

In this case, CPU 0 is the only CPU processing interrupts for eth0 , since only CPU0 contains
a non-zero value.

On i586 and x86_64 platforms, irqbalance can be used to distribute hardware interrupts across
CPUs. See man 1 irqbalance for more details.

15.5 For More Information
Eduardo Ciliendo, Takechika Kunimasa: “Linux Performance and Tuning Guidelines”
(2007), esp. sections 1.5, 3.5, and 4.7: http://www.redbooks.ibm.com/redpapers/ab-

stracts/redp4285.html

John Heffner, Matt Mathis: “Tuning TCP for Linux 2.4 and 2.6” (2006): http://www.psc.edu/

networking/projects/tcptune/#Linux

http://www.redbooks.ibm.com/redpapers/abstracts/redp4285.html
http://www.redbooks.ibm.com/redpapers/abstracts/redp4285.html
http://www.psc.edu/networking/projects/tcptune/#Linux
http://www.psc.edu/networking/projects/tcptune/#Linux

VI Handling System Dumps

16 Tracing Tools 164

17 Kexec and Kdump 177

164 Tracing Tools SLES 12 SP1

16 Tracing Tools

SUSE Linux Enterprise Server comes with several tools that help you obtain useful information
about your system. You can use the information for various purposes, for example, to debug
and find problems in your program, to discover places causing performance drops, or to trace
a running process to find out what system resources it uses. Most of the tools are part of the
installation media. In some cases, they need to be installed from the SUSE Software Development
Kit, which is a separate download.

Note: Tracing and Impact on Performance
While a running process is being monitored for system or library calls, the performance
of the process is heavily reduced. You are advised to use tracing tools only for the time
you need to collect the data.

16.1 Tracing System Calls with strace
The strace command traces system calls of a process and signals received by the process.
strace can either run a new command and trace its system calls, or you can attach strace
to an already running command. Each line of the command's output contains the system call
name, followed by its arguments in parentheses and its return value.

To run a new command and start tracing its system calls, enter the command to be monitored
as you normally do, and add strace at the beginning of the command line:

tux@mercury:~> strace ls

execve("/bin/ls", ["ls"], [/* 52 vars */]) = 0

brk(0) = 0x618000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \

 = 0x7f9848667000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \

 = 0x7f9848666000

access("/etc/ld.so.preload", R_OK) = -1 ENOENT \

(No such file or directory)

open("/etc/ld.so.cache", O_RDONLY) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=200411, ...}) = 0

165 Tracing System Calls with strace SLES 12 SP1

mmap(NULL, 200411, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f9848635000

close(3) = 0

open("/lib64/librt.so.1", O_RDONLY) = 3

[...]

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \

= 0x7fd780f79000

write(1, "Desktop\nDocuments\nbin\ninst-sys\n", 31Desktop

Documents

bin

inst-sys

) = 31

close(1) = 0

munmap(0x7fd780f79000, 4096) = 0

close(2) = 0

exit_group(0) = ?

To attach strace to an already running process, you need to specify the -p with the process
ID (PID) of the process that you want to monitor:

tux@mercury:~> strace -p `pidof cron`

 Process 1261 attached

 restart_syscall(<... resuming interrupted call ...>) = 0

 stat("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2309, ...}) = 0

 select(5, [4], NULL, NULL, {0, 0}) = 0 (Timeout)

 socket(PF_LOCAL, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0) = 5

 connect(5, {sa_family=AF_LOCAL, sun_path="/var/run/nscd/socket"}, 110) = 0

 sendto(5, "\2\0\0\0\0\0\0\0\5\0\0\0root\0", 17, MSG_NOSIGNAL, NULL, 0) = 17

 poll([{fd=5, events=POLLIN|POLLERR|POLLHUP}], 1, 5000) = 1 ([{fd=5,

 revents=POLLIN|POLLHUP}])

 read(5, "\2\0\0\0\1\0\0\0\5\0\0\0\2\0\0\0\0\0\0\0\0\0\0\0\5\0\0\0\6\0\0\0"..., 36)

 = 36

 read(5, "root\0x\0root\0/root\0/bin/bash\0", 28) = 28

 close(5) = 0

 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

 rt_sigaction(SIGCHLD, NULL, {0x7f772b9ea890, [], SA_RESTORER|SA_RESTART,

 0x7f772adf7880}, 8) = 0

166 Tracing System Calls with strace SLES 12 SP1

 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

 nanosleep({60, 0}, 0x7fff87d8c580) = 0

 stat("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2309, ...}) = 0

 select(5, [4], NULL, NULL, {0, 0}) = 0 (Timeout)

 socket(PF_LOCAL, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0) = 5

 connect(5, {sa_family=AF_LOCAL, sun_path="/var/run/nscd/socket"}, 110) = 0

 sendto(5, "\2\0\0\0\0\0\0\0\5\0\0\0root\0", 17, MSG_NOSIGNAL, NULL, 0) = 17

 poll([{fd=5, events=POLLIN|POLLERR|POLLHUP}], 1, 5000) = 1 ([{fd=5,

 revents=POLLIN|POLLHUP}])

 read(5, "\2\0\0\0\1\0\0\0\5\0\0\0\2\0\0\0\0\0\0\0\0\0\0\0\5\0\0\0\6\0\0\0"..., 36)

 = 36

 read(5, "root\0x\0root\0/root\0/bin/bash\0", 28) = 28

 close(5)

 [...]

The -e option understands several sub-options and arguments. For example, to trace all at-
tempts to open or write to a particular file, use the following:

tux@mercury:~> strace -e trace=open,write ls ~

open("/etc/ld.so.cache", O_RDONLY) = 3

open("/lib64/librt.so.1", O_RDONLY) = 3

open("/lib64/libselinux.so.1", O_RDONLY) = 3

open("/lib64/libacl.so.1", O_RDONLY) = 3

open("/lib64/libc.so.6", O_RDONLY) = 3

open("/lib64/libpthread.so.0", O_RDONLY) = 3

[...]

open("/usr/lib/locale/cs_CZ.utf8/LC_CTYPE", O_RDONLY) = 3

open(".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3

write(1, "addressbook.db.bak\nbin\ncxoffice\n"..., 311) = 311

To trace only network related system calls, use -e trace=network :

tux@mercury:~> strace -e trace=network -p 26520

Process 26520 attached - interrupt to quit

socket(PF_NETLINK, SOCK_RAW, 0) = 50

bind(50, {sa_family=AF_NETLINK, pid=0, groups=00000000}, 12) = 0

getsockname(50, {sa_family=AF_NETLINK, pid=26520, groups=00000000}, \

167 Tracing System Calls with strace SLES 12 SP1

[12]) = 0

sendto(50, "\24\0\0\0\26\0\1\3~p\315K\0\0\0\0\0\0\0\0", 20, 0,

{sa_family=AF_NETLINK, pid=0, groups=00000000}, 12) = 20

[...]

The -c calculates the time the kernel spent on each system call:

tux@mercury:~> strace -c find /etc -name xorg.conf

/etc/X11/xorg.conf

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

 32.38 0.000181 181 1 execve

 22.00 0.000123 0 576 getdents64

 19.50 0.000109 0 917 31 open

 19.14 0.000107 0 888 close

 4.11 0.000023 2 10 mprotect

 0.00 0.000000 0 1 write

[...]

 0.00 0.000000 0 1 getrlimit

 0.00 0.000000 0 1 arch_prctl

 0.00 0.000000 0 3 1 futex

 0.00 0.000000 0 1 set_tid_address

 0.00 0.000000 0 4 fadvise64

 0.00 0.000000 0 1 set_robust_list

------ ----------- ----------- --------- --------- ----------------

100.00 0.000559 3633 33 total

To trace all child processes of a process, use -f :

tux@mercury:~> strace -f rcapache2 status

execve("/usr/sbin/rcapache2", ["rcapache2", "status"], [/* 81 vars */]) = 0

brk(0) = 0x69e000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \

= 0x7f3bb553b000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \

= 0x7f3bb553a000

[...]

168 Tracing System Calls with strace SLES 12 SP1

[pid 4823] rt_sigprocmask(SIG_SETMASK, [], <unfinished ...>

[pid 4822] close(4 <unfinished ...>

[pid 4823] <... rt_sigprocmask resumed> NULL, 8) = 0

[pid 4822] <... close resumed>) = 0

[...]

[pid 4825] mprotect(0x7fc42cbbd000, 16384, PROT_READ) = 0

[pid 4825] mprotect(0x60a000, 4096, PROT_READ) = 0

[pid 4825] mprotect(0x7fc42cde4000, 4096, PROT_READ) = 0

[pid 4825] munmap(0x7fc42cda2000, 261953) = 0

[...]

[pid 4830] munmap(0x7fb1fff10000, 261953) = 0

[pid 4830] rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0

[pid 4830] open("/dev/tty", O_RDWR|O_NONBLOCK) = 3

[pid 4830] close(3)

[...]

read(255, "\n\n# Inform the caller not only v"..., 8192) = 73

rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0

rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0

exit_group(0)

If you need to analyze the output of strace and the output messages are too long to be inspected
directly in the console window, use -o . In that case, unnecessary messages, such as information
about attaching and detaching processes, are suppressed. You can also suppress these messages
(normally printed on the standard output) with -q . To prepend time stamps to each line with
a system call, use -t :

tux@mercury:~> strace -t -o strace_sleep.txt sleep 1; more strace_sleep.txt

08:44:06 execve("/bin/sleep", ["sleep", "1"], [/* 81 vars */]) = 0

08:44:06 brk(0) = 0x606000

08:44:06 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, \

-1, 0) = 0x7f8e78cc5000

[...]

08:44:06 close(3) = 0

08:44:06 nanosleep({1, 0}, NULL) = 0

08:44:07 close(1) = 0

08:44:07 close(2) = 0

169 Tracing Library Calls with ltrace SLES 12 SP1

08:44:07 exit_group(0) = ?

The behavior and output format of strace can be largely controlled. For more information, see
the relevant manual page (man 1 strace).

16.2 Tracing Library Calls with ltrace
ltrace traces dynamic library calls of a process. It is used in a similar way to strace , and most
of their parameters have a very similar or identical meaning. By default, ltrace uses /etc/
ltrace.conf or ~/.ltrace.conf configuration files. You can, however, specify an alternative
one with the -F config_file option.

In addition to library calls, ltrace with the -S option can trace system calls as well:

tux@mercury:~> ltrace -S -o ltrace_find.txt find /etc -name \

xorg.conf; more ltrace_find.txt

SYS_brk(NULL) = 0x00628000

SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7f1327ea1000

SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7f1327ea0000

[...]

fnmatch("xorg.conf", "xorg.conf", 0) = 0

free(0x0062db80) = <void>

__errno_location() = 0x7f1327e5d698

__ctype_get_mb_cur_max(0x7fff25227af0, 8192, 0x62e020, -1, 0) = 6

__ctype_get_mb_cur_max(0x7fff25227af0, 18, 0x7f1327e5d6f0, 0x7fff25227af0,

0x62e031) = 6

__fprintf_chk(0x7f1327821780, 1, 0x420cf7, 0x7fff25227af0, 0x62e031

<unfinished ...>

SYS_fstat(1, 0x7fff25227230) = 0

SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7f1327e72000

SYS_write(1, "/etc/X11/xorg.conf\n", 19) = 19

[...]

You can change the type of traced events with the -e option. The following example prints
library calls related to fnmatch and strlen functions:

tux@mercury:~> ltrace -e fnmatch,strlen find /etc -name xorg.conf

170 Debugging and Profiling with Valgrind SLES 12 SP1

[...]

fnmatch("xorg.conf", "xorg.conf", 0) = 0

strlen("Xresources") = 10

strlen("Xresources") = 10

strlen("Xresources") = 10

fnmatch("xorg.conf", "Xresources", 0) = 1

strlen("xorg.conf.install") = 17

[...]

To display only the symbols included in a specific library, use -l /path/to/library :

tux@mercury:~> ltrace -l /lib64/librt.so.1 sleep 1

clock_gettime(1, 0x7fff4b5c34d0, 0, 0, 0) = 0

clock_gettime(1, 0x7fff4b5c34c0, 0xffffffffff600180, -1, 0) = 0

+++ exited (status 0) +++

You can make the output more readable by indenting each nested call by the specified number
of space with the -n num_of_spaces .

16.3 Debugging and Profiling with Valgrind
Valgrind is a set of tools to debug and profile your programs so that they can run faster and
with less errors. Valgrind can detect problems related to memory management and threading,
or can also serve as a framework for building new debugging tools.

16.3.1 Installation

Valgrind is not shipped with standard SUSE Linux Enterprise Server distribution. To install it on
your system, you need to obtain SUSE Software Development Kit, and either install it and run

zypper install valgrind

or browse through the SUSE Software Development Kit directory tree, locate the Valgrind pack-
age and install it with

rpm -i valgrind- version_architecture .rpm

171 Supported Architectures SLES 12 SP1

The SDK is a module for SUSE Linux Enterprise and is available via an online channel from the
SUSE Customer Center. Alternatively download it from http://download.suse.com/. (Search for
SUSE Linux Enterprise Software Development Kit). Refer to Book “Deployment Guide”,
Chapter 9 “Installing Modules, Extensions, and Third Party Add-On Products” for details.

16.3.2 Supported Architectures

SUSE Linux Enterprise Server supports Valgrind on the following architectures:

x86_64

ppc64

System z

16.3.3 General Information

The main advantage of Valgrind is that it works with existing compiled executables. You do not
need to recompile or modify your programs to use it. Run Valgrind like this:

valgrind valgrind_options your-prog your-program-options

Valgrind consists of several tools, and each provides specific functionality. Information in this
section is general and valid regardless of the used tool. The most important configuration option
is --tool . This option tells Valgrind which tool to run. If you omit this option, memcheck is
selected by default. For example, if you want to run find ~ -name .bashrc with Valgrind's
memcheck tools, enter the following in the command line:

valgrind --tool= memcheck find ~ -name .bashrc

A list of standard Valgrind tools with a brief description follows:

memcheck

Detects memory errors. It helps you tune your programs to behave correctly.

cachegrind

Profiles cache prediction. It helps you tune your programs to run faster.

callgrind

Works in a similar way to cachegrind but also gathers additional cache-profiling infor-
mation.

http://download.suse.com/

172 Default Options SLES 12 SP1

exp-drd

Detects thread errors. It helps you tune your multi-threaded programs to behave correctly.

helgrind

Another thread error detector. Similar to exp-drd but uses different techniques for prob-
lem analysis.

massif

A heap profiler. Heap is an area of memory used for dynamic memory allocation. This tool
helps you tune your program to use less memory.

lackey

An example tool showing instrumentation basics.

16.3.4 Default Options

Valgrind can read options at start-up. There are three places which Valgrind checks:

1. The file .valgrindrc in the home directory of the user who runs Valgrind.

2. The environment variable $VALGRIND_OPTS

3. The file .valgrindrc in the current directory where Valgrind is run from.

These resources are parsed exactly in this order, while later given options take precedence over
earlier processed options. Options specific to a particular Valgrind tool must be prefixed with
the tool name and a colon. For example, if you want cachegrind to always write profile data
to the /tmp/cachegrind_PID.log , add the following line to the .valgrindrc file in your
home directory:

--cachegrind:cachegrind-out-file=/tmp/cachegrind_%p.log

16.3.5 How Valgrind Works

Valgrind takes control of your executable before it starts. It reads debugging information from
the executable and related shared libraries. The executable's code is redirected to the selected
Valgrind tool, and the tool adds its own code to handle its debugging. Then the code is handed
back to the Valgrind core and the execution continues.

173 Messages SLES 12 SP1

For example, memcheck adds its code, which checks every memory access. As a consequence,
the program runs much slower than in the native execution environment.

Valgrind simulates every instruction of your program. Therefore, it not only checks the code of
your program, but also all related libraries (including the C library), libraries used for graphi-
cal environment, and so on. If you try to detect errors with Valgrind, it also detects errors in
associated libraries (like C, X11, or Gtk libraries). Because you probably do not need these er-
rors, Valgrind can selectively, suppress these error messages to suppression files. The --gen-
suppressions=yes tells Valgrind to report these suppressions which you can copy to a file.

You should supply a real executable (machine code) as a Valgrind argument. If your application
is run, for example, from a shell or Perl script, you will by mistake get error reports related to
/bin/sh (or /usr/bin/perl). In such cases, you can use --trace-children=yes to work
around this issue. However, using the executable itself will avoid any confusion over this issue.

16.3.6 Messages

During its runtime, Valgrind reports messages with detailed errors and important events. The
following example explains the messages:

tux@mercury:~> valgrind --tool=memcheck find ~ -name .bashrc

[...]

==6558== Conditional jump or move depends on uninitialised value(s)

==6558== at 0x400AE79: _dl_relocate_object (in /lib64/ld-2.11.1.so)

==6558== by 0x4003868: dl_main (in /lib64/ld-2.11.1.so)

[...]

==6558== Conditional jump or move depends on uninitialised value(s)

==6558== at 0x400AE82: _dl_relocate_object (in /lib64/ld-2.11.1.so)

==6558== by 0x4003868: dl_main (in /lib64/ld-2.11.1.so)

[...]

==6558== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

==6558== malloc/free: in use at exit: 2,228 bytes in 8 blocks.

==6558== malloc/free: 235 allocs, 227 frees, 489,675 bytes allocated.

==6558== For counts of detected errors, rerun with: -v

==6558== searching for pointers to 8 not-freed blocks.

==6558== checked 122,584 bytes.

==6558==

174 Messages SLES 12 SP1

==6558== LEAK SUMMARY:

==6558== definitely lost: 0 bytes in 0 blocks.

==6558== possibly lost: 0 bytes in 0 blocks.

==6558== still reachable: 2,228 bytes in 8 blocks.

==6558== suppressed: 0 bytes in 0 blocks.

==6558== Rerun with --leak-check=full to see details of leaked memory.

The ==6558== introduces Valgrind's messages and contains the process ID number (PID). You
can easily distinguish Valgrind's messages from the output of the program itself, and decide
which messages belong to a particular process.

To make Valgrind's messages more detailed, use -v or even -v -v .

You can make Valgrind send its messages to three different places:

1. By default, Valgrind sends its messages to the file descriptor 2, which is the standard error
output. You can tell Valgrind to send its messages to any other file descriptor with the --
log-fd=file_descriptor_number option.

2. The second and probably more useful way is to send Valgrind's messages to a file with --
log-file=filename . This option accepts several variables, for example, %p gets replaced
with the PID of the currently profiled process. This way you can send messages to different
files based on their PID. %q{env_var} is replaced with the value of the related env_var
environment variable.
The following example checks for possible memory errors during the Apache Web server
restart, while following children processes and writing detailed Valgrind's messages to
separate files distinguished by the current process PID:

tux@mercury:~> valgrind -v --tool=memcheck --trace-children=yes \

--log-file=valgrind_pid_%p.log rcapache2 restart

This process created 52 log files in the testing system, and took 75 seconds instead of the
usual 7 seconds needed to run sudo systemctl restart apache2 without Valgrind,
which is approximately 10 times more.

tux@mercury:~> ls -1 valgrind_pid_*log

valgrind_pid_11780.log

valgrind_pid_11782.log

valgrind_pid_11783.log

175 Error Messages SLES 12 SP1

[...]

valgrind_pid_11860.log

valgrind_pid_11862.log

valgrind_pid_11863.log

3. You may also prefer to send the Valgrind's messages over the network. You need to specify
the aa.bb.cc.dd IP address and port_num port number of the network socket with the
--log-socket=aa.bb.cc.dd:port_num option. If you omit the port number, 1500 will
be used.
It is useless to send Valgrind's messages to a network socket if no application is capable
of receiving them on the remote machine. That is why valgrind-listener , a simple
listener, is shipped together with Valgrind. It accepts connections on the specified port
and copies everything it receives to the standard output.

16.3.7 Error Messages

Valgrind remembers all error messages, and if it detects a new error, the error is compared
against old error messages. This way Valgrind checks for duplicate error messages. In case of
a duplicate error, it is recorded but no message is shown. This mechanism prevents you from
being overwhelmed by millions of duplicate errors.

The -v option will add a summary of all reports (sorted by their total count) to the end of the
Valgrind's execution output. Moreover, Valgrind stops collecting errors if it detects either 1000
different errors, or 10 000 000 errors in total. If you want to suppress this limit and wish to see
all error messages, use --error-limit=no .

Some errors usually cause other ones. Therefore, fix errors in the same order as they appear
and re-check the program continuously.

176 For More Information SLES 12 SP1

16.4 For More Information
For a complete list of options related to the described tracing tools, see the corresponding
man page (man 1 strace , man 1 ltrace , and man 1 valgrind).

To describe advanced usage of Valgrind is beyond the scope of this document. It is very well
documented, see Valgrind User Manual [http://valgrind.org/docs/manual/manual.html].
These pages are indispensable if you need more advanced information on Valgrind or the
usage and purpose of its standard tools.

http://valgrind.org/docs/manual/manual.html
http://valgrind.org/docs/manual/manual.html

177 Kexec and Kdump SLES 12 SP1

17 Kexec and Kdump

Kexec is a tool to boot to another kernel from the currently running one. You can perform faster
system reboots without any hardware initialization. You can also prepare the system to boot to
another kernel if the system crashes.

17.1 Introduction
With Kexec, you can replace the running kernel with another one without a hard reboot. The
tool is useful for several reasons:

Faster system rebooting
If you need to reboot the system frequently, Kexec can save you significant time.

Avoiding unreliable firmware and hardware
Computer hardware is complex and serious problems may occur during the system start-
up. You cannot always replace unreliable hardware immediately. Kexec boots the kernel
to a controlled environment with the hardware already initialized. The risk of unsuccessful
system start is then minimized.

Saving the dump of a crashed kernel
Kexec preserves the contents of the physical memory. After the production kernel fails, the
capture kernel (an additional kernel running in a reserved memory range) saves the state
of the failed kernel. The saved image can help you with the subsequent analysis.

Booting without GRUB 2 or ELILO configuration
When the system boots a kernel with Kexec, it skips the boot loader stage. The normal
booting procedure can fail because of an error in the boot loader configuration. With
Kexec, you do not depend on a working boot loader configuration.

17.2 Required Packages
To use Kexec on SUSE® Linux Enterprise Server to speed up reboots or avoid potential hardware
problems, make sure that the package kexec-tools is installed. It contains a script called
kexec-bootloader , which reads the boot loader configuration and runs Kexec using the same
kernel options as the normal boot loader.

178 Kexec Internals SLES 12 SP1

To set up an environment that helps you obtain debug information in case of a kernel crash,
make sure that the package makedumpfile is installed.

The preferred method of using Kdump in SUSE Linux Enterprise Server is through the YaST
Kdump module. To use the YaST module, make sure that the package yast2-kdump is installed.

17.3 Kexec Internals
The most important component of Kexec is the /sbin/kexec command. You can load a kernel
with Kexec in two different ways:

Load the kernel to the address space of a production kernel for a regular reboot:

root # kexec -l kernel_image

You can later boot to this kernel with kexec -e .

Load the kernel to a reserved area of memory:

root # kexec -p kernel_image

This kernel will be booted automatically when the system crashes.

If you want to boot another kernel and preserve the data of the production kernel when the
system crashes, you need to reserve a dedicated area of the system memory. The production
kernel never loads to this area because it must be always available. It is used for the capture
kernel so that the memory pages of the production kernel can be preserved.

To reserve the area, append the option crashkernel to the boot command line of the produc-
tion kernel. To determine the necessary values for crashkernel , follow the instructions in Sec-

tion 17.4, “Calculating crashkernel Allocation Size”.

Note that this is not a parameter of the capture kernel. The capture kernel does not use Kexec.

The capture kernel is loaded to the reserved area and waits for the kernel to crash. Then, Kdump
tries to invoke the capture kernel because the production kernel is no longer reliable at this
stage. This means that even Kdump can fail.

To load the capture kernel, you need to include the kernel boot parameters. Usually, the initial
RAM file system is used for booting. You can specify it with --initrd = filename . With --
append = cmdline , you append options to the command line of the kernel to boot.

179 Calculating crashkernel Allocation Size SLES 12 SP1

It is helpful to include the command line of the production kernel if these options are necessary
for the kernel to boot. You can simply copy the command line with --append = "$(cat /proc/

cmdline)" or add more options with --append = "$(cat /proc/cmdline) more_options" .

You can always unload the previously loaded kernel. To unload a kernel that was loaded with
the -l option, use the kexec -u command. To unload a crash kernel loaded with the -p
option, use kexec -p -u command.

17.4 Calculating crashkernel Allocation Size
To use Kexec with a capture kernel and to use Kdump in any way, RAM needs to be allocated
for the capture kernel. The allocation size depends on the expected hardware configuration of
the computer, therefore you need to specify it.

The allocation size also depends on the hardware architecture of your computer. Make sure to
follow the procedure intended for your system architecture.

PROCEDURE 17.1: ALLOCATION SIZE ON AMD64/INTEL 64

1. To find out the basis value for the computer, run the following in a terminal:

root # kdumptool calibrate

This command returns a list of values. All values are given in megabytes.

2. Write down the values of Low and High .

Note: Significance of Low and High Values
On AMD64/Intel 64 computers, the High value stands for the memory reservation
for all available memory. The Low value stands for the memory reservation in the
DMA32 zone, that is, all the memory up to the 4 GB mark.

If the computer has less than 4 GB of RAM, the High memory reservation is allo-
cated and the Low memory reservation is ignored. If the computer has more than
4 GB of RAM, the Low memory reservation is allocated additionally.

180 Calculating crashkernel Allocation Size SLES 12 SP1

3. Adapt the High value from the previous step for the number of LUN kernel paths (paths to
storage devices) attached to the computer. A sensible value in megabytes can be calculated
using this formula:

SIZE_HIGH = RECOMMENDATION + (LUNs / 2)

The following parameters are used in this formula:

SIZE_HIGH. The resulting value for High .

RECOMMENDATION. The value recommended by kdumptool calibrate for High .

LUNs. The maximum number of LUN kernel paths that you expect to ever create on
the computer. Exclude multipath devices from this number, as these are ignored.

4. If the drivers for your device make many reservations in the DMA32 zone, the Low value
also needs to be adjusted. However, there is no simple formula to calculate these. Finding
the right size can therefore be a process of trial and error.
For the beginning, use the Low value recommended by kdump calibrate .

5. The values now need to be set in the correct location.

If you are working on the command line

Append the following kernel option to your boot loader configuration:

crashkernel=SIZE_HIGH,high crashkernel=SIZE_LOW,low

Replace the placeholders SIZE_HIGH and SIZE_LOW with the appropriate value
from the previous steps and append the letter M (for megabytes).
As an example, the following is valid:

crashkernel=36M,high crashkernel=72M,low

If you are working in YaST

Set Kdump Low Memory to the determined Low value.
Set Kdump High Memory to the determined High value.

PROCEDURE 17.2: ALLOCATION SIZE ON POWER AND SYSTEM Z

181 Calculating crashkernel Allocation Size SLES 12 SP1

1. To find out the basis value for the computer, run the following in a terminal:

root # kdumptool calibrate

This command returns a list of values. All values are given in megabytes.

2. Write down the value of Low .

3. Adapt the Low value from the previous step for the number of LUN kernel paths (paths to
storage devices) attached to the computer. A sensible value in megabytes can be calculated
using this formula:

SIZE_LOW = RECOMMENDATION + (LUNs / 2)

The following parameters are used in this formula:

SIZE_LOW. The resulting value for Low .

RECOMMENDATION. The value recommended by kdumptool calibrate for Low .

LUNs. The maximum number of LUN kernel paths that you expect to ever create on
the computer. Exclude multipath devices from this number, as these are ignored.

4. The values now need to be set in the correct location.

If you are working on the command line

Append the following kernel option to your boot loader configuration:

crashkernel=SIZE_LOW

Replace the placeholder SIZE_LOW with the appropriate value from the previous step
and append the letter M (for megabytes).
As an example, the following is valid:

crashkernel=108M

If you are working in YaST

Set Kdump Memory to the determined Low value.

182 Basic Kexec Usage SLES 12 SP1

17.5 Basic Kexec Usage
To verify if your Kexec environment works properly, follow these steps:

1. Make sure no users are currently logged in and no important services are running on the
system.

2. Log in as root .

3. Switch to the rescue target with systemctl isolate rescue.target

4. Load the new kernel to the address space of the production kernel with the following
command:

root # kexec -l /boot/vmlinuz --append="$(cat /proc/cmdline)" \

--initrd=/boot/initrd

5. Unmount all mounted file systems except the root file system with:

umount -a

Important: Unmounting the Root File System
Unmounting all file systems will most likely produce a device is busy warning
message. The root file system cannot be unmounted if the system is running. Ignore
the warning.

6. Remount the root file system in read-only mode:

root # mount -o remount,ro /

7. Initiate the reboot of the kernel that you loaded in Step 4 with:

root # kexec -e

It is important to unmount the previously mounted disk volumes in read-write mode. The re-
boot system call acts immediately upon calling. Hard disk volumes mounted in read-write mode
neither synchronize nor unmount automatically. The new kernel may find them “dirty”. Read-
only disk volumes and virtual file systems do not need to be unmounted. Refer to /etc/mtab
to determine which file systems you need to unmount.

183 How to Configure Kexec for Routine Reboots SLES 12 SP1

The new kernel previously loaded to the address space of the older kernel rewrites it and takes
control immediately. It displays the usual start-up messages. When the new kernel boots, it skips
all hardware and firmware checks. Make sure no warning messages appear. All file systems are
supposed to be clean if they had been unmounted.

17.6 How to Configure Kexec for Routine Re-
boots
Kexec is often used for frequent reboots. For example, if it takes a long time to run through the
hardware detection routines or if the start-up is not reliable.

Note that firmware and the boot loader are not used when the system reboots with Kexec. Any
changes you make to the boot loader configuration will be ignored until the computer performs
a hard reboot.

17.7 Basic Kdump Configuration
You can use Kdump to save kernel dumps. If the kernel crashes, it is useful to copy the memory
image of the crashed environment to the file system. You can then debug the dump file to find
the cause of the kernel crash. This is called “core dump”.

Kdump works similarly to Kexec (see Chapter 17, Kexec and Kdump). The capture kernel is ex-
ecuted after the running production kernel crashes. The difference is that Kexec replaces the
production kernel with the capture kernel. With Kdump, you still have access to the memory
space of the crashed production kernel. You can save the memory snapshot of the crashed kernel
in the environment of the Kdump kernel.

Tip: Dumps over Network
In environments with limited local storage, you need to set up kernel dumps over the
network. Kdump supports configuring the specified network interface and bringing it up
via initrd . Both LAN and VLAN interfaces are supported. Specify the network interface
and the mode (DHCP or static) either with YaST, or using the KDUMP_NETCONFIG option
in the /etc/sysconfig/kdump file.

184 Manual Kdump Configuration SLES 12 SP1

Important: Target File System for Kdump Must Be Mounted During
Configuration
When configuring Kdump, you can specify a location to which the dumped images will be
saved (default: /var/crash). This location must be mounted when configuring Kdump,
otherwise the configuration will fail.

17.7.1 Manual Kdump Configuration

Kdump reads its configuration from the /etc/sysconfig/kdump file. To make sure that Kdump
works on your system, its default configuration is sufficient. To use Kdump with the default
settings, follow these steps:

1. Determine the amount of memory needed for Kdump by following the instructions in
Section 17.4, “Calculating crashkernel Allocation Size”. Make sure to set the kernel parameter
crashkernel .

2. Reboot the computer.

3. Enable the Kdump service:

root # systemctl enable kdump

4. You can edit the options in /etc/sysconfig/kdump . Reading the comments will help
you understand the meaning of individual options.

5. Execute the init script once with sudo systemctl start kdump , or reboot the system.

After configuring Kdump with the default values, check if it works as expected. Make sure that
no users are currently logged in and no important services are running on your system. Then
follow these steps:

1. Switch to the rescue target with systemctl isolate rescue.target

2. Unmount all the disk file systems except the root file system with:

root # umount -a

185 YaST Configuration SLES 12 SP1

3. Remount the root file system in read-only mode:

root # mount -o remount,ro /

4. Invoke a “kernel panic” with the procfs interface to Magic SysRq keys:

root # echo c > /proc/sysrq-trigger

Important: Size of Kernel Dumps
The KDUMP_KEEP_OLD_DUMPS option controls the number of preserved kernel dumps (de-
fault is 5). Without compression, the size of the dump can take up to the size of the phys-
ical RAM memory. Make sure you have sufficient space on the /var partition.

The capture kernel boots and the crashed kernel memory snapshot is saved to the file sys-
tem. The save path is given by the KDUMP_SAVEDIR option and it defaults to /var/crash . If
KDUMP_IMMEDIATE_REBOOT is set to yes , the system automatically reboots the production ker-
nel. Log in and check that the dump has been created under /var/crash .

17.7.2 YaST Configuration
To configure Kdump with YaST, you need to install the yast2-kdump package. Then either
start the Kernel Kdump module in the System category of YaST Control Center, or enter yast2
kdump in the command line as root .

FIGURE 17.1: YAST KDUMP MODULE: START-UP PAGE

186 YaST Configuration SLES 12 SP1

In the Start-Up window, select Enable Kdump.

The values for Kdump Memory are automatically generated the first time you open the window.
However, that does not mean that they are always sufficient. To set the right values, follow the
instructions in Section 17.4, “Calculating crashkernel Allocation Size”.

Important: After Hardware Changes, Set Kdump Memory Values
Again
If you have set up Kdump on a computer and later decide to change the amount of RAM or
hard disks available to it, YaST will continue to display and use outdated memory values.

To work around this, determine the necessary memory again, as described in Section 17.4,

“Calculating crashkernel Allocation Size”. Then set it manually in YaST.

Click Dump Filtering in the left pane, and check what pages to include in the dump. You do not
need to include the following memory content to be able to debug kernel problems:

Pages filled with zero

Cache pages

User data pages

Free pages

In the Dump Target window, select the type of the dump target and the URL where you want
to save the dump. If you selected a network protocol, such as FTP or SSH, you need to enter
relevant access information as well.

Tip: Sharing the Dump Directory with Other Applications
It is possible to specify a path for saving Kdump dumps where other applications also
save their dumps. When cleaning its old dump files, Kdump will safely ignore other ap-
plications' dump files.

Fill the Email Notification window information if you want Kdump to inform you about its events
via e-mail and confirm your changes with OK after fine tuning Kdump in the Expert Settings
window. Kdump is now configured.

187 Analyzing the Crash Dump SLES 12 SP1

17.8 Analyzing the Crash Dump
After you obtain the dump, it is time to analyze it. There are several options.

The original tool to analyze the dumps is GDB. You can even use it in the latest environments,
although it has several disadvantages and limitations:

GDB was not specifically designed to debug kernel dumps.

GDB does not support ELF64 binaries on 32-bit platforms.

GDB does not understand other formats than ELF dumps (it cannot debug compressed
dumps).

That is why the crash utility was implemented. It analyzes crash dumps and debugs the running
system as well. It provides functionality specific to debugging the Linux kernel and is much
more suitable for advanced debugging.

If you want to debug the Linux kernel, you need to install its debugging information package
in addition. Check if the package is installed on your system with:

tux > zypper se kernel | grep debug

Important: Repository for Packages with Debugging Information
If you subscribed your system for online updates, you can find “debuginfo” packages in
the *-Debuginfo-Updates online installation repository relevant for SUSE Linux Enter-
prise Server 12 SP1. Use YaST to enable the repository.

To open the captured dump in crash on the machine that produced the dump, use a command
like this:

crash /boot/vmlinux-2.6.32.8-0.1-default.gz \

/var/crash/2010-04-23-11\:17/vmcore

The first parameter represents the kernel image. The second parameter is the dump file captured
by Kdump. You can find this file under /var/crash by default.

188 Kernel Binary Formats SLES 12 SP1

Tip: Getting Basic Information from a Kernel Crash Dump
SUSE Linux Enterprise Server ships with the utility kdumpid (included in a package
with the same name) for identifying unknown kernel dumps. It can be used to extract
basic information such as architecture and kernel release. It supports lkcd, diskdump,
Kdump files and ELF dumps. When called with the -v switch it tries to extract additional
information such as machine type, Kernel banner string and Kernel configuration flavor.

17.8.1 Kernel Binary Formats

The Linux kernel comes in Executable and Linkable Format (ELF). This file is usually called
vmlinux and is directly generated in the compilation process. Not all boot loaders support
ELF binaries, especially on the AMD64/Intel 64 architecture. The following solutions exist on
different architectures supported by SUSE® Linux Enterprise Server.

17.8.1.1 AMD64/Intel 64

Kernel packages for AMD64/Intel 64 from SUSE contain two kernel files: vmlinuz and
vmlinux.gz .

vmlinuz . This is the file executed by the boot loader.
The Linux kernel consists of two parts: the kernel itself (vmlinux) and the setup code
run by the boot loader. These two parts are linked together to create vmlinuz (note the
distinction: z vs. x).
In the kernel source tree, the file is called bzImage .

vmlinux.gz . This is a compressed ELF image that can be used by crash and GDB. The
ELF image is never used by the boot loader itself on AMD64/Intel 64. Therefore, only a
compressed version is shipped.

17.8.1.2 POWER

The yaboot boot loader on POWER also supports loading ELF images, but not compressed ones.
In the POWER kernel package, there is an ELF Linux kernel file vmlinux . Considering crash ,
this is the easiest architecture.

189 Kernel Binary Formats SLES 12 SP1

If you decide to analyze the dump on another machine, you must check both the architecture
of the computer and the files necessary for debugging.

You can analyze the dump on another computer only if it runs a Linux system of the same
architecture. To check the compatibility, use the command uname -i on both computers and
compare the outputs.

If you are going to analyze the dump on another computer, you also need the appropriate files
from the kernel and kernel debug packages.

1. Put the kernel dump, the kernel image from /boot , and its associated debugging info file
from /usr/lib/debug/boot into a single empty directory.

2. Additionally, copy the kernel modules from /lib/modules/$(uname -r)/kernel/ and
the associated debug info files from /usr/lib/debug/lib/modules/$(uname -r)/ker-
nel/ into a subdirectory named modules .

3. In the directory with the dump, the kernel image, its debug info file, and the modules
subdirectory, start the crash utility:

tux > crash vmlinux-version vmcore

Regardless of the computer on which you analyze the dump, the crash utility will produce
output similar to this:

tux > crash /boot/vmlinux-2.6.32.8-0.1-default.gz \

/var/crash/2010-04-23-11\:17/vmcore

crash 4.0-7.6

Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008 Red Hat, Inc.

Copyright (C) 2004, 2005, 2006 IBM Corporation

Copyright (C) 1999-2006 Hewlett-Packard Co

Copyright (C) 2005, 2006 Fujitsu Limited

Copyright (C) 2006, 2007 VA Linux Systems Japan K.K.

Copyright (C) 2005 NEC Corporation

Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc.

Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.

This program is free software, covered by the GNU General Public License,

and you are welcome to change it and/or distribute copies of it under

190 Kernel Binary Formats SLES 12 SP1

certain conditions. Enter "help copying" to see the conditions.

This program has absolutely no warranty. Enter "help warranty" for details.

GNU gdb 6.1

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "x86_64-unknown-linux-gnu"...

 KERNEL: /boot/vmlinux-2.6.32.8-0.1-default.gz

 DEBUGINFO: /usr/lib/debug/boot/vmlinux-2.6.32.8-0.1-default.debug

 DUMPFILE: /var/crash/2009-04-23-11:17/vmcore

 CPUS: 2

 DATE: Thu Apr 23 13:17:01 2010

 UPTIME: 00:10:41

LOAD AVERAGE: 0.01, 0.09, 0.09

 TASKS: 42

 NODENAME: eros

 RELEASE: 2.6.32.8-0.1-default

 VERSION: #1 SMP 2010-03-31 14:50:44 +0200

 MACHINE: x86_64 (2999 Mhz)

 MEMORY: 1 GB

 PANIC: "SysRq : Trigger a crashdump"

 PID: 9446

 COMMAND: "bash"

 TASK: ffff88003a57c3c0 [THREAD_INFO: ffff880037168000]

 CPU: 1

 STATE: TASK_RUNNING (SYSRQ)

crash>

The command output prints first useful data: There were 42 tasks running at the moment of the
kernel crash. The cause of the crash was a SysRq trigger invoked by the task with PID 9446. It
was a Bash process because the echo that has been used is an internal command of the Bash
shell.

191 Kernel Binary Formats SLES 12 SP1

The crash utility builds upon GDB and provides many additional commands. If you enter bt
without any parameters, the backtrace of the task running at the moment of the crash is printed:

crash> bt

PID: 9446 TASK: ffff88003a57c3c0 CPU: 1 COMMAND: "bash"

 #0 [ffff880037169db0] crash_kexec at ffffffff80268fd6

 #1 [ffff880037169e80] __handle_sysrq at ffffffff803d50ed

 #2 [ffff880037169ec0] write_sysrq_trigger at ffffffff802f6fc5

 #3 [ffff880037169ed0] proc_reg_write at ffffffff802f068b

 #4 [ffff880037169f10] vfs_write at ffffffff802b1aba

 #5 [ffff880037169f40] sys_write at ffffffff802b1c1f

 #6 [ffff880037169f80] system_call_fastpath at ffffffff8020bfbb

 RIP: 00007fa958991f60 RSP: 00007fff61330390 RFLAGS: 00010246

 RAX: 0000000000000001 RBX: ffffffff8020bfbb RCX: 0000000000000001

 RDX: 0000000000000002 RSI: 00007fa959284000 RDI: 0000000000000001

 RBP: 0000000000000002 R8: 00007fa9592516f0 R9: 00007fa958c209c0

 R10: 00007fa958c209c0 R11: 0000000000000246 R12: 00007fa958c1f780

 R13: 00007fa959284000 R14: 0000000000000002 R15: 00000000595569d0

 ORIG_RAX: 0000000000000001 CS: 0033 SS: 002b

crash>

Now it is clear what happened: The internal echo command of Bash shell sent a character to
/proc/sysrq-trigger . After the corresponding handler recognized this character, it invoked
the crash_kexec() function. This function called panic() and Kdump saved a dump.

In addition to the basic GDB commands and the extended version of bt , the crash utility de-
fines many other commands related to the structure of the Linux kernel. These commands un-
derstand the internal data structures of the Linux kernel and present their contents in a human
readable format. For example, you can list the tasks running at the moment of the crash with
ps . With sym , you can list all the kernel symbols with the corresponding addresses, or inquire
an individual symbol for its value. With files , you can display all the open file descriptors of
a process. With kmem , you can display details about the kernel memory usage. With vm , you
can inspect the virtual memory of a process, even at the level of individual page mappings. The
list of useful commands is very long and many of these accept a wide range of options.

192 Advanced Kdump Configuration SLES 12 SP1

The commands that we mentioned reflect the functionality of the common Linux commands,
such as ps and lsof . If you want to find out the exact sequence of events with the debugger,
you need to know how to use GDB and to have strong debugging skills. Both of these are out
of the scope of this document. In addition, you need to understand the Linux kernel. Several
useful reference information sources are given at the end of this document.

17.9 Advanced Kdump Configuration
The configuration for Kdump is stored in /etc/sysconfig/kdump . You can also use YaST to
configure it. Kdump configuration options are available under System Kernel Kdump in YaST
Control Center. The following Kdump options may be useful for you.

You can change the directory for the kernel dumps with the KDUMP_SAVEDIR option. Keep in
mind that the size of kernel dumps can be very large. Kdump will refuse to save the dump if the
free disk space, subtracted by the estimated dump size, drops below the value specified by the
KDUMP_FREE_DISK_SIZE option. Note that KDUMP_SAVEDIR understands the URL format pro-
tocol://specification , where protocol is one of file , ftp , sftp , nfs or cifs , and
specification varies for each protocol. For example, to save kernel dump on an FTP serv-
er, use the following URL as a template: ftp://username:password@ftp.example.com:123/
var/crash .

Kernel dumps are usually huge and contain many pages that are not necessary for analysis. With
KDUMP_DUMPLEVEL option, you can omit such pages. The option understands numeric value
between 0 and 31. If you specify 0 , the dump size will be largest. If you specify 31 , it will
produce the smallest dump. For a complete table of possible values, see the manual page of
kdump (man 7 kdump).

Sometimes it is very useful to make the size of the kernel dump smaller. For example, if you
want to transfer the dump over the network, or if you need to save some disk space in the dump
directory. This can be done with KDUMP_DUMPFORMAT set to compressed . The crash utility
supports dynamic decompression of the compressed dumps.

Important: Changes to the Kdump Configuration File
You always need to execute systemctl restart kdump after you make manual changes
to /etc/sysconfig/kdump . Otherwise, these changes will take effect next time you re-
boot the system.

193 For More Information SLES 12 SP1

17.10 For More Information
There is no single comprehensive reference to Kexec and Kdump usage. However, there are
helpful resources that deal with certain aspects:

For the Kexec utility usage, see the manual page of kexec (man 8 kexec).

IBM provides a comprehensive documentation on how to use dump tools
on the System z architecture at http://www.ibm.com/developerworks/linux/lin-

ux390/development_documentation.html.

You can find general information about Kexec at http://www.ibm.com/developerworks/lin-

ux/library/l-kexec.html . Might be slightly outdated.

For more details on Kdump specific to SUSE Linux Enterprise, see http://ftp.suse.com/pub/

people/tiwai/kdump-training/kdump-training.pdf .

An in-depth description of Kdump internals can be found at http://lse.sourceforge.net/

kdump/documentation/ols2oo5-kdump-paper.pdf .

For more details on crash dump analysis and debugging tools, use the following resources:

In addition to the info page of GDB (info gdb), you might want to read the printable
guides at http://sourceware.org/gdb/documentation/ .

A white paper with a comprehensive description of the crash utility usage can be found
at http://people.redhat.com/anderson/crash_whitepaper/.

The crash utility also features a comprehensive online help. Use help command to display
the online help for command .

If you have the necessary Perl skills, you can use Alicia to make the debugging easier. This
Perl-based front-end to the crash utility can be found at http://alicia.sourceforge.net/ .

If you prefer Python instead, you should install Pykdump. This package helps you control
GDB through Python scripts and can be downloaded from http://sf.net/projects/pykdump .

A very comprehensive overview of the Linux kernel internals is given in Understanding the
Linux Kernel by Daniel P. Bovet and Marco Cesati (ISBN 978-0-596-00565-8).

http://www.ibm.com/developerworks/linux/linux390/development_documentation.html
http://www.ibm.com/developerworks/linux/linux390/development_documentation.html
http://www.ibm.com/developerworks/linux/library/l-kexec.html
http://www.ibm.com/developerworks/linux/library/l-kexec.html
http://ftp.suse.com/pub/people/tiwai/kdump-training/kdump-training.pdf
http://ftp.suse.com/pub/people/tiwai/kdump-training/kdump-training.pdf
http://lse.sourceforge.net/kdump/documentation/ols2oo5-kdump-paper.pdf
http://lse.sourceforge.net/kdump/documentation/ols2oo5-kdump-paper.pdf
http://sourceware.org/gdb/documentation/
http://people.redhat.com/anderson/crash_whitepaper/
http://alicia.sourceforge.net/
http://sf.net/projects/pykdump

VII Synchronized Clocks with
Precision Time Protocol

18 Precision Time Protocol 195

195 Precision Time Protocol SLES 12 SP1

18 Precision Time Protocol

For network environments, it is vital to keep the computer and other devices' clocks synchro-
nized and accurate. There are several solutions to achieve this, for example the widely used
Network Time Protocol (NTP) described in Book “Administration Guide”, Chapter 21 “Time Syn-
chronization with NTP”.

The Precision Time Protocol (PTP) is a protocol capable of sub-microsecond accuracy, which
is better than what NTP achieves. PTP support is divided between the kernel and user space.
The kernel in SUSE Linux Enterprise Server includes support for PTP clocks, which are provided
by network drivers.

18.1 Introduction to PTP
The clocks managed by PTP follow a master-slave hierarchy. The slaves are synchronized to
their masters. The hierarchy is updated by the best master clock (BMC) algorithm, which runs on
every clock. The clock with only one port can be either master or slave. Such a clock is called an
ordinary clock (OC). A clock with multiple ports can be master on one port and slave on another.
Such a clock is called a boundary clock (BC). The top-level master is called the grandmaster clock.
The grandmaster clock can be synchronized with a Global Positioning System (GPS). This way
disparate networks can be synchronized with a high degree of accuracy.

The hardware support is the main advantage of PTP. It is supported by various network switches
and network interface controllers (NIC). While it is possible to use non-PTP enabled hardware
within the network, having network components between all PTP clocks PTP hardware enabled
achieves the best possible accuracy.

18.1.1 PTP Linux Implementation

On SUSE Linux Enterprise Server, the implementation of PTP is provided by the linuxptp
package. Install it with zypper install linuxptp . It includes the ptp4l and phc2sys pro-
grams for clock synchronization. ptp4l implements the PTP boundary clock and ordinary clock.
When hardware time stamping is enabled, ptp4l synchronizes the PTP hardware clock to the
master clock. With software time stamping, it synchronizes the system clock to the master clock.
phc2sys is needed only with hardware time stamping to synchronize the system clock to the
PTP hardware clock on the network interface card (NIC).

196 Using PTP SLES 12 SP1

18.2 Using PTP

18.2.1 Network Driver and Hardware Support
PTP requires that the used kernel network driver supports either software or hardware time
stamping. Moreover, the NIC must support time stamping in the physical hardware. You can
verify the driver and NIC time stamping capabilities with ethtool :

ethtool -T eth0

Time stamping parameters for eth0:

Capabilities:

hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)

 software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)

 hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)

 software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)

 software-system-clock (SOF_TIMESTAMPING_SOFTWARE)

 hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)

PTP Hardware Clock: 0

Hardware Transmit Timestamp Modes:

 off (HWTSTAMP_TX_OFF)

 on (HWTSTAMP_TX_ON)

Hardware Receive Filter Modes:

 none (HWTSTAMP_FILTER_NONE)

 all (HWTSTAMP_FILTER_ALL)

Software time stamping requires the following parameters:

SOF_TIMESTAMPING_SOFTWARE

SOF_TIMESTAMPING_TX_SOFTWARE

SOF_TIMESTAMPING_RX_SOFTWARE

Hardware time stamping requires the following parameters:

SOF_TIMESTAMPING_RAW_HARDWARE

SOF_TIMESTAMPING_TX_HARDWARE

SOF_TIMESTAMPING_RX_HARDWARE

197 Using ptp4l SLES 12 SP1

18.2.2 Using ptp4l

ptp4l uses hardware time stamping by default. As root , you need to specify the network
interface capable of hardware time stamping with the -i option. The -m tells ptp4l to print
its output to the standard output instead of the system's logging facility:

ptp4l -m -i eth0

selected eth0 as PTP clock

port 1: INITIALIZING to LISTENING on INITIALIZE

port 0: INITIALIZING to LISTENING on INITIALIZE

port 1: new foreign master 00a152.fffe.0b334d-1

selected best master clock 00a152.fffe.0b334d

port 1: LISTENING to UNCALIBRATED on RS_SLAVE

master offset -25937 s0 freq +0 path delay 12340

master offset -27887 s0 freq +0 path delay 14232

master offset -38802 s0 freq +0 path delay 13847

master offset -36205 s1 freq +0 path delay 10623

master offset -6975 s2 freq -30575 path delay 10286

port 1: UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED

master offset -4284 s2 freq -30135 path delay 9892

The master offset value represents the measured offset from the master (in nanoseconds).

The s0 , s1 , s2 indicators show the different states of the clock servo: s0 is unlocked, s1
is clock step, and s2 is locked. If the servo is in the locked state (s2), the clock will not be
stepped (only slowly adjusted) if the pi_offset_const option is set to a negative value in the
configuration file (see man 8 ptp4l for more information).

The freq value represents the frequency adjustment of the clock (in parts per billion, ppb).

The path delay value represents the estimated delay of the synchronization messages sent
from the master (in nanoseconds).

Port 0 is a Unix domain socket used for local PTP management. Port 1 is the eth0 interface.

INITIALIZING , LISTENING , UNCALIBRATED and SLAVE are examples of port states which
change on INITIALIZE , RS_SLAVE , and MASTER_CLOCK_SELECTED events. When the port state
changes from UNCALIBRATED to SLAVE , the computer has successfully synchronized with a PTP
master clock.

You can enable software time stamping with the -S option.

198 ptp4l Configuration File SLES 12 SP1

ptp4l -m -S -i eth3

You can also run ptp4l as a service:

systemctl start ptp4l

In this case, ptp4l reads its options from the /etc/sysconfig/ptp4l file. By default, this file
tells ptp4l to read the configuration options from /etc/ptp4l.conf . For more information
on ptp4l options and the configuration file settings, see man 8 ptp4l .

To enable the ptp4l service permanently, run the following:

systemctl enable ptp4l

To disable it, run

systemctl disable ptp4l

18.2.3 ptp4l Configuration File

ptp4l can read its configuration from an optional configuration file. As no configuration file
is used by default, you need to specify it with -f .

ptp4l -f /etc/ptp4l.conf

The configuration file is divided into sections. The global section (indicated as [global]) sets
the program options, clock options and default port options. Other sections are port specific, and
they override the default port options. The name of the section is the name of the configured port
—for example, [eth0] . An empty port section can be used to replace the command line option.

[global]

verbose 1

time_stamping software

[eth0]

The example configuration file is an equivalent of the following command's options:

ptp4l -i eth0 -m -S

199 Delay Measurement SLES 12 SP1

For a complete list of ptp4l configuration options, see man 8 ptp4l .

18.2.4 Delay Measurement

ptp4l measures time delay in two different ways: peer-to-peer (P2P) or end-to-end (E2E).

P2P

This method is specified with -P .
It reacts to changes in the network environment faster and is more accurate in measuring
the delay. It is only used in networks where each port exchanges PTP messages with one
other port. P2P needs to be supported by all hardware on the communication path.

E2E

This method is specified with -E . This is the default.

Automatic method selection

This method is specified with -A . The automatic option starts ptp4l in E2E mode, and
changes to P2P mode if a peer delay request is received.

Important
All clocks on a single PTP communication path must use the same method to measure
the time delay. A warning will be printed if either a peer delay request is received on a
port using the E2E mechanism, or an E2E delay request is received on a port using the
P2P mechanism.

18.2.5 PTP Management Client: pmc
You can use the pmc client to obtain more detailed information about ptp41 . It reads from
the standard input—or from the command line—actions specified by name and management
ID. Then it sends the actions over the selected transport, and prints any received replies. There
are three actions supported: GET retrieves the specified information, SET updates the specified
information, and CMD (or COMMAND) initiates the specified event.

By default, the management commands are addressed to all ports. The TARGET command can
be used to select a particular clock and port for the subsequent messages. For a complete list
of management IDs, run pmc help .

200 PTP Management Client: pmc SLES 12 SP1

pmc -u -b 0 'GET TIME_STATUS_NP'

sending: GET TIME_STATUS_NP

 90f2ca.fffe.20d7e9-0 seq 0 RESPONSE MANAGMENT TIME_STATUS_NP

 master_offset 283

 ingress_time 1361569379345936841

 cumulativeScaledRateOffset +1.000000000

 scaledLastGmPhaseChange 0

 gmTimeBaseIndicator 0

 lastGmPhaseChange 0x0000'0000000000000000.0000

 gmPresent true

 gmIdentity 00b058.feef.0b448a

The -b option specifies the boundary hops value in sent messages. Setting it to zero limits the
boundary to the local ptp4l instance. Increasing the value will retrieve the messages also from
PTP nodes that are further from the local instance. The returned information may include:

stepsRemoved

The number of communication nodes to the grandmaster clock.

offsetFromMaster, master_offset

The last measured offset of the clock from the master clock (nanoseconds).

meanPathDelay

The estimated delay of the synchronization messages sent from the master clock (nanosec-
onds).

gmPresent

If true , the PTP clock is synchronized to the master clock; the local clock is not the
grandmaster clock.

gmIdentity

This is the grandmaster's identity.

For a complete list of pmc command line options, see man 8 pmc .

201 Synchronizing the Clocks with phc2sys SLES 12 SP1

18.3 Synchronizing the Clocks with phc2sys
Use phc2sys to synchronize the system clock to the PTP hardware clock (PHC) on the network
card. The system clock is considered a slave, while the network card a master. PHC itself is
synchronized with ptp4l (see Section 18.2, “Using PTP”). Use -s to specify the master clock by
device or network interface. Use -w to wait until ptp4l is in a synchronized state.

phc2sys -s eth0 -w

PTP operates in International Atomic Time (TAI), while the system clock uses Coordinated Uni-
versal Time (UTC). If you do not specify -w to wait for ptp4l synchronization, you can specify
the offset in seconds between TAI and UTC with -O :

phc2sys -s eth0 -O -35

You can run phc2sys as a service as well:

systemctl start phc2sys

In this case, phc2sys reads its options from the /etc/sysconfig/phc2sys file. For more in-
formation on phc2sys options, see man 8 phc2sys .

To enable the phc2sys service permanently, run the following:

systemctl enable phc2sys

To disable it, run

systemctl dosable phc2sys

18.3.1 Verifying Time Synchronization

When PTP time synchronization is working properly and hardware time stamping is used,
ptp4l and phc2sys output messages with time offsets and frequency adjustments periodically
to the system log.

An example of the ptp4l output:

ptp4l[351.358]: selected /dev/ptp0 as PTP clock

202 Verifying Time Synchronization SLES 12 SP1

ptp4l[352.361]: port 1: INITIALIZING to LISTENING on INITIALIZE

ptp4l[352.361]: port 0: INITIALIZING to LISTENING on INITIALIZE

ptp4l[353.210]: port 1: new foreign master 00a069.eefe.0b442d-1

ptp4l[357.214]: selected best master clock 00a069.eefe.0b662d

ptp4l[357.214]: port 1: LISTENING to UNCALIBRATED on RS_SLAVE

ptp4l[359.224]: master offset 3304 s0 freq +0 path delay 9202

ptp4l[360.224]: master offset 3708 s1 freq -28492 path delay 9202

ptp4l[361.224]: master offset -3145 s2 freq -32637 path delay 9202

ptp4l[361.224]: port 1: UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED

ptp4l[362.223]: master offset -145 s2 freq -30580 path delay 9202

ptp4l[363.223]: master offset 1043 s2 freq -28436 path delay 8972

[...]

ptp4l[371.235]: master offset 285 s2 freq -28511 path delay 9199

ptp4l[372.235]: master offset -78 s2 freq -28788 path delay 9204

An example of the phc2sys output:

phc2sys[616.617]: Waiting for ptp4l...

phc2sys[628.628]: phc offset 66341 s0 freq +0 delay 2729

phc2sys[629.628]: phc offset 64668 s1 freq -37690 delay 2726

[...]

phc2sys[646.630]: phc offset -333 s2 freq -37426 delay 2747

phc2sys[646.630]: phc offset 194 s2 freq -36999 delay 2749

ptp4l normally writes messages very frequently. You can reduce the frequency with the
summary_interval directive. Its value is an exponent of the 2^N expression. For example, to
reduce the output to every 1024 (which equals to 2^10) seconds, add the following line to the
/etc/ptp4l.conf file:

summary_interval 10

You can also reduce the frequency of the phc2sys command's updates with the -u summa-
ry-updates option.

203 Examples of Configurations SLES 12 SP1

18.4 Examples of Configurations
This section includes several examples of ptp4l configuration. The examples are not full con-
figuration files but rather minimal list of changes to be done to the specific files. The string
ethX stands for the actual network interface name in your setup.

EXAMPLE 18.1: SLAVE CLOCK USING SOFTWARE TIME STAMPING

/etc/sysconfig/ptp4l :

OPTIONS=”-f /etc/ptp4l.conf -i ethX”

No changes made to the distribution /etc/ptp4l.conf .

EXAMPLE 18.2: SLAVE CLOCK USING HARDWARE TIME STAMPING

/etc/sysconfig/ptp4l :

OPTIONS=”-f /etc/ptp4l.conf -i ethX”

/etc/sysconfig/phc2sys :

OPTIONS=”-s ethX -w”

No changes made to the distribution /etc/ptp4l.conf .

EXAMPLE 18.3: MASTER CLOCK USING HARDWARE TIME STAMPING

/etc/sysconfig/ptp4l :

OPTIONS=”-f /etc/ptp4l.conf -i ethX”

/etc/sysconfig/phc2sys :

OPTIONS=”-s CLOCK_REALTIME -c ethX -w”

/etc/ptp4l.conf :

priority1 127

EXAMPLE 18.4: MASTER CLOCK USING SOFTWARE TIME STAMPING (NOT GENERALLY RECOMMENDED)

/etc/sysconfig/ptp4l :

OPTIONS=”-f /etc/ptp4l.conf -i ethX”

204 PTP and NTP SLES 12 SP1

/etc/ptp4l.conf :

priority1 127

18.5 PTP and NTP
NTP and PTP time synchronization tools can coexist, synchronizing time from one to another
in both directions.

18.5.1 NTP to PTP Synchronization

When ntpd is used to synchronize the local system clock, you can configure the ptp4l to be
the grandmaster clock distributing the time from the local system clock via PTP. Include the
priority1 option in /etc/ptp4l.conf :

[global]

priority1 127

[eth0]

Then run ptp4l :

ptp4l -f /etc/ptp4l.conf

When hardware time stamping is used, you need to synchronize the PTP hardware clock to the
system clock with phc2sys :

phc2sys -c eth0 -s CLOCK_REALTIME -w

18.5.2 PTP to NTP Synchronization

You can configure ntpd to distribute the time from the system clock synchronized by ptp4l
or phc2sys by using the local reference clock driver. Moreover, you need to stop ntpd from
adjusting the system clock—do not specify any remote NTP servers in /etc/ntp.conf :

server 127.127.1.0

205 PTP to NTP Synchronization SLES 12 SP1

fudge 127.127.1.0 stratum 0

Note: NTP and DHCP
When the DHCP client command dhclient receives a list of NTP servers, it adds them
to NTP configuration by default. To prevent this behavior, set

NETCONFIG_NTP_POLICY=""

in the /etc/sysconfig/network/config file.

206 Documentation Updates SLES 12 SP1

A Documentation Updates

This chapter lists content changes for this document.

This manual was updated on the following dates:

Section A.1, “December 2015 (Initial Release of SUSE Linux Enterprise Server 12 SP1)”

Section A.2, “February 2015 (Documentation Maintenance Update)”

Section A.3, “October 2014 (Initial Release of SUSE Linux Enterprise Server 12)”

A.1 December 2015 (Initial Release of SUSE Linux
Enterprise Server 12 SP1)

General

Book “Subscription Management Tool for SLES 12 SP1” is now part of the documenta-
tion for SUSE Linux Enterprise Server.

Add-ons provided by SUSE have been renamed to modules and extensions. The man-
uals have been updated to reflect this change.

Numerous small fixes and additions to the documentation, based on technical feed-
back.

The registration service has been changed from Novell Customer Center to SUSE
Customer Center.

In YaST, you will now reach Network Settings via the System group. Network Devices
is gone (https://bugzilla.suse.com/show_bug.cgi?id=867809).

https://bugzilla.suse.com/show_bug.cgi?id=867809

207 February 2015 (Documentation Maintenance Update) SLES 12 SP1

Chapter 2, System Monitoring Utilities

Added Section 2.5.2, “ Show the Network Usage of Processes: nethogs ” (Fate #313501).

Chapter 6, Hardware-Based Performance Monitoring with Perf

Added Perf chapter, including introductory information about Instruction-Based
Sampling (IBS) (Fate #315868).

Chapter 18, Precision Time Protocol

Added PTP chapter (Fate #316795).

Bugfixes

Removed obsolete acpid.service (https://bugzilla.suse.com/show_bug.cgi?

id=918655).

Section 2.4.2, “Detailed Memory Usage: /proc/meminfo”: Expanded information on /
proc/meminfo (https://bugzilla.suse.com/show_bug.cgi?id=926521).

Chapter 9, Kernel Control Groups: General Update (Fate #312101 and https://

bugzilla.suse.com/show_bug.cgi?id=897313).

Section 12.2.2, “NOOP”: Added recommendation for NOOP in multipathing environ-
ments (Fate #319091).

Section 17.4, “Calculating crashkernel Allocation Size”: Updated crashkernel al-
location recommendations (https://bugzilla.suse.com/show_bug.cgi?id=948565 and
https://bugzilla.suse.com/show_bug.cgi?id=948954).

A.2 February 2015 (Documentation Maintenance
Update)
Bugfixes

Section 12.2, “Available I/O Elevators”: Increasing individual thread throughput using
CFQ on SLE 12 (https://bugzilla.suse.com/show_bug.cgi?id=907506).

Section 14.3.2, “Writeback Parameters”: Important difference in timing of I/O writes in
SLE 12 (https://bugzilla.suse.com/show_bug.cgi?id=907504).

https://bugzilla.suse.com/show_bug.cgi?id=918655
https://bugzilla.suse.com/show_bug.cgi?id=918655
https://bugzilla.suse.com/show_bug.cgi?id=926521
https://bugzilla.suse.com/show_bug.cgi?id=897313
https://bugzilla.suse.com/show_bug.cgi?id=897313
https://bugzilla.suse.com/show_bug.cgi?id=948565
https://bugzilla.suse.com/show_bug.cgi?id=948954
https://bugzilla.suse.com/show_bug.cgi?id=907506
https://bugzilla.suse.com/show_bug.cgi?id=907504

208 October 2014 (Initial Release of SUSE Linux Enterprise Server 12) SLES 12 SP1

A.3 October 2014 (Initial Release of SUSE Linux
Enterprise Server 12)

General

Removed all KDE documentation and references because KDE is no longer shipped.

Removed all references to SuSEconfig, which is no longer supported (Fate #100011).

Move from System V init to systemd (Fate #310421). Updated affected parts of the
documentation.

YaST Runlevel Editor has changed to Services Manager (Fate #312568). Updated
affected parts of the documentation.

Removed all references to ISDN support, as ISDN support has been removed (Fate
#314594).

Removed all references to the YaST DSL module as it is no longer shipped (Fate
#316264).

Removed all references to the YaST Modem module as it is no longer shipped (Fate
#316264).

Btrfs has become the default file system for the root partition (Fate #315901). Up-
dated affected parts of the documentation.

The dmesg now provides human-readable time stamps in ctime() -like format (Fate
#316056). Updated affected parts of the documentation.

syslog and syslog-ng have been replaced by rsyslog (Fate #316175). Updated affected
parts of the documentation.

MariaDB is now shipped as the relational database instead of MySQL (Fate #313595).
Updated affected parts of the documentation.

SUSE-related products are no longer available from http://download.novell.com but
from http://download.suse.com. Adjusted links accordingly.

Novell Customer Center has been replaced with SUSE Customer Center. Updated
affected parts of the documentation.

http://download.novell.com
http://download.suse.com

209 October 2014 (Initial Release of SUSE Linux Enterprise Server 12) SLES 12 SP1

/var/run is mounted as tmpfs (Fate #303793). Updated affected parts of the doc-
umentation.

The following architectures are no longer supported: Itanium and x86. Updated af-
fected parts of the documentation.

The traditional method for setting up the network with ifconfig has been replaced
by wicked . Updated affected parts of the documentation.

A lot of networking commands are deprecated and have been replaced by newer
commands (usually ip). Updated affected parts of the documentation.

arp : ip neighbor
ifconfig : ip addr , ip link
iptunnel : ip tunnel
iwconfig : iw
nameif : ip link , ifrename
netstat : ss , ip route , ip -s link , ip maddr
route : ip route

Numerous small fixes and additions to the documentation, based on technical feed-
back.

Chapter 2, System Monitoring Utilities

Updated command outputs with samples produced with SUSE Linux Enterprise 12.

Corrected the description of si , so and in in Section 2.1.1, “vmstat”.

Corrected the explanation for majflt and the statement about spreading I/O re-
quests over multiple disks in Section 2.1.2.1, “Generating reports with sar”.

Replaced deprecated tools ifconfig and netstat with ip , ethtool and ss in
Section 2.5, “Networking”.

Added documentation about sysctl to Section 2.6.2, “System Control Parameters: /

proc/sys/”.

Added the section Section 2.7.3, “MCELog: Machine Check Exceptions (MCE)”.

Added details on /usr/bin/time to Section 2.10.1, “Time Measurement with time”.

Chapter 4, SystemTap—Filtering and Analyzing System Data

Added a link to the example scripts Web page to Section 4.1.1, “SystemTap Scripts”.

210 October 2014 (Initial Release of SUSE Linux Enterprise Server 12) SLES 12 SP1

Chapter 7, OProfile—System-Wide Profiler

Corrected statements on the effects of sampling rates in Section 7.4.2, “Getting Event Config-

urations”.

Chapter 10, Automatic Non-Uniform Memory Access (NUMA) Balancing

New chapter.

Chapter 13, Tuning the Task Scheduler

Removed section about the outdated O1 task scheduler.

Clarified kernel variables in Section 14.1.5, “Writeback”.

Chapter 14, Tuning the Memory Management Subsystem

Added detailed descriptions on tunable parameters to Section 14.3.2, “Writeback Parameters”.

Chapter 17, Kexec and Kdump

Added a tip on sharing the dump directory in Section 17.7.2, “YaST Configuration” (Fate
#313185).

Added a tip on identifying a Kernel crash dump with kdumpid (Fate #312855) to
Section 17.8, “Analyzing the Crash Dump”.

Obsolete Content

Chapter Monitoring with Nagios has been removed from Part II, “System Monitoring” (Fate
#316136), because Nagios is no longer shipped on SUSE Linux Enterprise 12.

Chapter Perfmon2—Hardware-Based Performance Monitoring has been removed from
Part III, “Kernel Monitoring”, because perfmon2 is no longer shipped on SUSE Linux
Enterprise 12.

Bugfixes

Removed notes about zone_reclaim_mode in Chapter 14, Tuning the Memory Manage-

ment Subsystem (https://bugzilla.suse.com/show_bug.cgi?id=874971).

https://bugzilla.suse.com/show_bug.cgi?id=874971

211 GNU Licenses SLES 12 SP1

B GNU Licenses
This appendix contains the GNU Free Docu-
mentation License version 1.2.

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth
Floor, Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute
verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document "free" in the sense of freedom: to assure everyone the effective free-
dom to copy and redistribute it, with or without modifying it, either commercially or
non-commercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifica-
tions made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals pro-
viding the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Docu-
ment to the Document's overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available draw-

ing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an other-
wise Transparent file format whose markup, or absence of markup, has been arranged
to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy
that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, "Title Page"
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the
Title" of such a section when you modify the Document means that it remains a section
"Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may pub-
licly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed cov-
ers) of the Document, numbering more than 100, and the Document's license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying
in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from

212 GNU Licenses SLES 12 SP1

which the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added ma-
terial. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents or retailers) of
that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the condi-
tions of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this Li-
cense, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modi-
fied Version as given on the Title Page. If there is no section Entitled "Histo-
ry" in the Document, create one stating the title, year, authors, and publish-
er of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on. These
may be placed in the "History" section. You may omit a network location
for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given there-
in.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be in-
cluded in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to con-
flict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version's license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but en-
dorsements of your Modified Version by various parties--for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled "History" in the various
original documents, forming one section Entitled "History"; likewise combine any sec-
tions Entitled "Acknowledgements", and any sections Entitled "Dedications". You must
delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying
of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an "aggregate" if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation's users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

213 GNU Licenses SLES 12 SP1

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Document's
Cover Texts may be placed on covers that bracket the Document within the aggregate,
or the electronic equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "His-
tory", the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" ap-
plies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

 Texts.

A copy of the license is included in the section entitled “GNU

Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the

Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.

http://www.gnu.org/copyleft/

	System Analysis and Tuning Guide
	Contents
	About This Guide
	1. Available Documentation
	2. Feedback
	3. Documentation Conventions

	Part I. Basics
	Chapter 1. General Notes on System Tuning
	1.1. Be Sure What Problem to Solve
	1.2. Rule Out Common Problems
	1.3. Finding the Bottleneck
	1.4. Step-by-step Tuning

	Part II. System Monitoring
	Chapter 2. System Monitoring Utilities
	2.1. Multi-Purpose Tools
	2.1.1. vmstat
	2.1.2. System Activity Information: sar
	2.1.2.1. Generating reports with sar
	2.1.2.1.1. CPU Usage Report: sar
	2.1.2.1.2. Memory Usage Report: sar -r
	2.1.2.1.3. Paging Statistics Report: sar -B
	2.1.2.1.4. Block Device Statistics Report: sar -d
	2.1.2.1.5. Network Statistics Reports: sar -n KEYWORD

	2.1.2.2. Visualizing sar Data

	2.2. System Information
	2.2.1. Device Load Information: iostat
	2.2.2. Processor Activity Monitoring: mpstat
	2.2.3. Task Monitoring: pidstat
	2.2.4. Kernel Ring Buffer: dmesg
	2.2.5. List of Open Files: lsof
	2.2.6. Kernel and udev Event Sequence Viewer: udevadm monitor

	2.3. Processes
	2.3.1. Interprocess Communication: ipcs
	2.3.2. Process List: ps
	2.3.3. Process Tree: pstree
	2.3.4. Table of Processes: top
	2.3.5. System z Hypervisor Monitor: hyptop
	2.3.6. A top-like I/O Monitor: iotop
	2.3.7. Modify a process's niceness: nice and renice

	2.4. Memory
	2.4.1. Memory Usage: free
	2.4.2. Detailed Memory Usage: /proc/meminfo
	2.4.3. Process Memory Usage: smaps

	2.5. Networking
	2.5.1. Basic Network Diagnostics: ip
	2.5.2. Show the Network Usage of Processes: nethogs
	2.5.3. Ethernet Cards in Detail: ethtool
	2.5.4. Show the Network Status: ss

	2.6. The /proc File System
	2.6.1. procinfo
	2.6.2. System Control Parameters: /proc/sys/

	2.7. Hardware Information
	2.7.1. PCI Resources: lspci
	2.7.2. USB Devices: lsusb
	2.7.3. MCELog: Machine Check Exceptions (MCE)

	2.8. Files and File Systems
	2.8.1. Determine the File Type: file
	2.8.2. File Systems and Their Usage: mount, df and du
	2.8.3. Additional Information about ELF Binaries
	2.8.4. File Properties: stat

	2.9. User Information
	2.9.1. User Accessing Files: fuser
	2.9.2. Who Is Doing What: w

	2.10. Time and Date
	2.10.1. Time Measurement with time

	2.11. Graph Your Data: RRDtool
	2.11.1. How RRDtool Works
	2.11.2. A Practical Example
	2.11.2.1. Collecting Data
	2.11.2.2. Creating the Database
	2.11.2.3. Updating Database Values
	2.11.2.4. Viewing Measured Values

	2.11.3. For More Information

	Chapter 3. Analyzing and Managing System Log Files
	3.1. System Log Files in /var/log/
	3.2. Viewing and Parsing Log Files
	3.3. Managing Log Files with logrotate
	3.4. Monitoring Log Files with logwatch
	3.5. Using logger to Make System Log Entries

	Part III. Kernel Monitoring
	Chapter 4. SystemTap—Filtering and Analyzing System Data
	4.1. Conceptual Overview
	4.1.1. SystemTap Scripts
	4.1.2. Tapsets
	4.1.3. Commands and Privileges
	4.1.4. Important Files and Directories

	4.2. Installation and Setup
	4.3. Script Syntax
	4.3.1. Probe Format
	4.3.2. SystemTap Events (Probe Points)
	4.3.3. SystemTap Handlers (Probe Body)
	4.3.3.1. Functions
	4.3.3.2. Other Basic Constructs
	4.3.3.2.1. Variables
	4.3.3.2.2. Conditional Statements

	4.4. Example Script
	4.5. User-Space Probing
	4.6. For More Information

	Chapter 5. Kernel Probes
	5.1. Supported Architectures
	5.2. Types of Kernel Probes
	5.2.1. Kprobes
	5.2.2. Jprobes
	5.2.3. Return Probe

	5.3. Kprobes API
	5.4. debugfs Interface
	5.4.1. Listing Registered Kernel Probes
	5.4.2. How to Switch All Kernel Probes On or Off

	5.5. For More Information

	Chapter 6. Hardware-Based Performance Monitoring with Perf
	6.1. Hardware-Based Monitoring
	6.2. Sampling and Counting
	6.3. Installing Perf
	6.4. Perf Subcommands
	6.5. Counting Particular Types of Event
	6.6. Recording Events Specific to Particular Commands
	6.7. For More Information

	Chapter 7. OProfile—System-Wide Profiler
	7.1. Conceptual Overview
	7.2. Installation and Requirements
	7.3. Available OProfile Utilities
	7.4. Using OProfile
	7.4.1. Creating a Report
	7.4.2. Getting Event Configurations

	7.5. Using OProfile's GUI
	7.6. Generating Reports
	7.7. For More Information

	Part IV. Resource Management
	Chapter 8. General System Resource Management
	8.1. Planning the Installation
	8.1.1. Partitioning
	8.1.2. Installation Scope
	8.1.3. Default Target

	8.2. Disabling Unnecessary Services
	8.3. File Systems and Disk Access
	8.3.1. File Systems
	8.3.1.1. NFS

	8.3.2. Disabling Access Time (atime) Updates
	8.3.3. Prioritizing Disk Access with ionice

	Chapter 9. Kernel Control Groups
	9.1. Technical Overview and Definitions
	9.2. Scenario
	9.3. Control Group Subsystems
	9.4. Using Controller Groups
	9.4.1. Prerequisites
	9.4.2. Example: Cpusets
	9.4.3. Example: cgroups
	9.4.4. Setting Directory and File Permissions

	9.5. For More Information

	Chapter 10. Automatic Non-Uniform Memory Access (NUMA) Balancing
	10.1. Implementation
	10.2. Configuration
	10.3. Monitoring
	10.4. Impact

	Chapter 11. Power Management
	11.1. Power Management at CPU Level
	11.1.1. C-States (Processor Operating States)
	11.1.2. P-States (Processor Performance States)
	11.1.3. Turbo Features

	11.2. In-Kernel Governors
	11.3. The cpupower Tools
	11.3.1. Viewing Current Settings with cpupower
	11.3.2. Viewing Kernel Idle Statistics with cpupower
	11.3.3. Monitoring Kernel and Hardware Statistics with cpupower
	11.3.4. Modifying Current Settings with cpupower

	11.4. Special Tuning Options
	11.4.1. Tuning Options for P-States

	11.5. Troubleshooting
	11.6. For More Information

	Part V. Kernel Tuning
	Chapter 12. Tuning I/O Performance
	12.1. Switching I/O Scheduling
	12.2. Available I/O Elevators
	12.2.1. CFQ (Completely Fair Queuing)
	12.2.2. NOOP
	12.2.3. DEADLINE

	12.3. I/O Barrier Tuning

	Chapter 13. Tuning the Task Scheduler
	13.1. Introduction
	13.1.1. Preemption
	13.1.2. Timeslice
	13.1.3. Process Priority

	13.2. Process Classification
	13.3. Completely Fair Scheduler
	13.3.1. How CFS Works
	13.3.2. Grouping Processes
	13.3.3. Kernel Configuration Options
	13.3.4. Terminology
	13.3.4.1. Scheduling Policies

	13.3.5. Changing Real-time Attributes of Processes with chrt
	13.3.6. Runtime Tuning with sysctl
	13.3.7. Debugging Interface and Scheduler Statistics

	13.4. For More Information

	Chapter 14. Tuning the Memory Management Subsystem
	14.1. Memory Usage
	14.1.1. Anonymous Memory
	14.1.2. Pagecache
	14.1.3. Buffercache
	14.1.4. Buffer Heads
	14.1.5. Writeback
	14.1.6. Readahead
	14.1.7. VFS caches
	14.1.7.1. Inode Cache
	14.1.7.2. Directory Entry Cache

	14.2. Reducing Memory Usage
	14.2.1. Reducing malloc (Anonymous) Usage
	14.2.2. Reducing Kernel Memory Overheads
	14.2.3. Memory Controller (Memory Cgroups)

	14.3. Virtual Memory Manager (VM) Tunable Parameters
	14.3.1. Reclaim Ratios
	14.3.2. Writeback Parameters
	14.3.3. Timing Differences of I/O Writes between SUSE Linux Enterprise 12 and SUSE Linux Enterprise 11
	14.3.4. Readahead parameters
	14.3.5. Further VM Parameters

	14.4. Monitoring VM Behavior

	Chapter 15. Tuning the Network
	15.1. Configurable Kernel Socket Buffers
	15.2. Detecting Network Bottlenecks and Analyzing Network Traffic
	15.3. Netfilter
	15.4. Improving the Network Performance with Receive Packet Steering (RPS)
	15.5. For More Information

	Part VI. Handling System Dumps
	Chapter 16. Tracing Tools
	16.1. Tracing System Calls with strace
	16.2. Tracing Library Calls with ltrace
	16.3. Debugging and Profiling with Valgrind
	16.3.1. Installation
	16.3.2. Supported Architectures
	16.3.3. General Information
	16.3.4. Default Options
	16.3.5. How Valgrind Works
	16.3.6. Messages
	16.3.7. Error Messages

	16.4. For More Information

	Chapter 17. Kexec and Kdump
	17.1. Introduction
	17.2. Required Packages
	17.3. Kexec Internals
	17.4. Calculating crashkernel Allocation Size
	17.5. Basic Kexec Usage
	17.6. How to Configure Kexec for Routine Reboots
	17.7. Basic Kdump Configuration
	17.7.1. Manual Kdump Configuration
	17.7.2. YaST Configuration

	17.8. Analyzing the Crash Dump
	17.8.1. Kernel Binary Formats
	17.8.1.1. AMD64/Intel 64
	17.8.1.2. POWER

	17.9. Advanced Kdump Configuration
	17.10. For More Information

	Part VII. Synchronized Clocks with Precision Time Protocol
	Chapter 18. Precision Time Protocol
	18.1. Introduction to PTP
	18.1.1. PTP Linux Implementation

	18.2. Using PTP
	18.2.1. Network Driver and Hardware Support
	18.2.2. Using ptp4l
	18.2.3. ptp4l Configuration File
	18.2.4. Delay Measurement
	18.2.5. PTP Management Client: pmc

	18.3. Synchronizing the Clocks with phc2sys
	18.3.1. Verifying Time Synchronization

	18.4. Examples of Configurations
	18.5. PTP and NTP
	18.5.1. NTP to PTP Synchronization
	18.5.2. PTP to NTP Synchronization

	Appendix A. Documentation Updates
	A.1. December 2015 (Initial Release of SUSE Linux Enterprise Server 12 SP1)
	A.2. February 2015 (Documentation Maintenance Update)
	A.3. October 2014 (Initial Release of SUSE Linux Enterprise Server 12)

	Appendix B. GNU Licenses
	B.1. GNU Free Documentation License

