GraphDB-Tree: A structure to manage large
graphs in common PCs

Lucas Fonseca Navarro
lucas.navarro@dc.ufscar.br

August 15, 2014

Abstract

The interest about complex networks is growing in the last few years, most
power by the Web expansion with social networks and so on. Thus a lot of
new methods used to extract information on these networks have been develop,
for example counting and finding triangles is a very important task that allows
extracting some characteristics related to communities in complex network. De-
spite of that, for process a large social network is required a lot of computa-
tional resources. Therefore, most of the algorithms assume that large complex
networks fit on main memory which is not true, specially using a personal com-
puter. There are specific architectures, such as MapReduce, but this type of
architectures usually requires a expensive hardware.

This documents presents GraphDB-tree in technical level, a data structure
in secondary memory that support graph mining algorithms such as common
neighbours and allows use a personal computer to store large complex networks
efficiently. A user manual is also presented to show how it can be used.

0.1 Introduction

One common problem when implementing a graph mining algorithm in these
days is to make the performance (execution time) scale well as the graphs vertex
and edge number grows from hundreds to millions and sometimes billions. This
factor was the motivation to the creation of the graph disk structure called
GraphDB-Tree.

The GraphDB-Tree is a structure created for fast storage and recovery of a
graph on secondary memory. The complexity to recover the neighbor list for any
node is O(1), so this structure is very efficient to graph algorithms that uses just
the locality of the nodes (e.g., find graph cliques — such as triangles -, calculting
common neighbors and extra neighbor scores, jaccard and adamic/adar scores,
etc).

To achieve the performance in the node’s locality algorithms, the GraphDB-
Tree stores the graph partitioned in disk pages, and the entire set of nodes being
numeric, sorted and continuous from 1 to |V|. Mostly of the graphs, such as the
NELL’s graph, haven’t this characteristics, so a preprocessing task is necessary
before the storage on GraphDB-Tree.

This report contains an explanation of GraphDB-Tree within an example of
algorithm to count triangles of a graph(see in Section 2), and also a “user
manual for the GraphDB-Tree” (see in Section 3).

A paper about GraphDB-Tree were already published:

L. F. Navarro, A. P. Appel, and E. R. Hruschka Jr., “Graphdb storing large
graphs on secondary memory”, ADBIS Special session on Big Data: New Trends
and Applications (BiDaTA) in conjunction with the 17th East-European Con-
ference on Advances in Databases and Information Systems (ADBIS), vol. 17,
pp. 177-186, 2013.

0.2 The GraphDB-Tree structure

Our intention with GraphDB-Tree was to create and implement a structure to
store large complex network on secondary memory, making possible to applying
graph mining algorithms in a efficient way. There are a lot of ways to represent
a graph on a computer, specially in primary memory, such as adjacency matrix
and list, but for secondary memory there is almost none. We work mostly with
power law graphs, so an adjacency matrix is not a good option, since most all of
complex network are very sparse, wasting a lot of space, besides the searching
algorithms will be very slow.

The Vpages, is the arrays of nodes, each node have: index, degree, pointer
to edge list and the initial position on the edge list. The Epages is the array of
adjacencies, just storing nodes indexes. The Vpages and Epages are of the size
of one disk page, so the operations of write and read have better efficiency.

The PageManager is responsible for managing the file structure, providing
an efficient read and write operations. We read the complex network from a edge
list file, that must be numeric, sorted and the nodes has to have continuous
index from 1 to n, where |V| = n is the number of nodes. With this two
conditions, we can store the nodes in order and we could easily recover any
node by the ID, cause we know exactly where they are in the file, by dividing

Vertice Array Pointer to
(Vpage) next page

[L} LN [
Pointer to
adjacency

page
] ‘

|l -

Adjacency Array
(Epage)

Figure 1: Graphical representation of Vpages and Epages from GraphDB-Tree

Store Graph
Graph on disk

Graph (.txt) structure
-Continuous -PageManager to
-Sorted operate with the graph

— > >

Figure 2: GraphDB-Tree core, which is responsible to store the network, with
the input and the return parameters

the index of de node(id), for the size of VPage(—Vp—), to find the page, and
the rest would give the position. For the triangle query we work only with
undirected networks, so if the network is directed, we convert it before we store
it. To attend these conditions, we have algorithms to pre-process the edge list
of network.

The figure 3 shows an example of an small arbitrary network (a), the re-
spective edges file representing it, sorted and continuous (b), and after being
stored (c), the first Vpages and Epages having 4 and 6 size arrays respectively
(in practice we use the array sizes that makes each list of the size of a disk page,
and this can vary from PC to PC).

0.3 Main Characteristics

To read a edge list and store it on GraphDB-Tree, it must be numeric, continuous
and sorted. This characteristics is what made GraphDB-Tree so fast in execution
time.

The continuity factor, makes searches for specific nodes and the operation
to recover a adjacency list of a given node have complexity O(1). Example:
consider that V Nc AP is size of a VPage, if you want to find a node i VPage,
you can use: m + 1. The position of this node in the page will be:
imodV NgIZE.

Another notable characteristic of GraphDB-Tree is that it just process static
graphs (graphs that doesn’t change in terms of nodes or edges), but this is not
a problem, because it stores a graph too fast that it can process a dynamic
graph statically. Is something like take snapshots of the graph in time intervals,
then each of this snapshots will be stored in GraphDB-Tree as a new graph and
processed.

178 12 [12 2 |14 13|19 3 |22
199 10 [12 6 [156 5 (19 4 |23
3 |9 21 (12 7 [15 12[19 20|23
15(10 9 (12 8 [16 5 |20 1 |23
12 1116 17[20 19|24
12 13|16 18|20 22|24
12 15(17 4 |20 23|24
13 12|17 16|21 1 |25
2(13 1418 5 |21 9
14 6 (18 16121 24

N

e
NNooooans s

N

)

N

o

WWWNN = o =

N

)

-

N

N

ey
SaNwN =

(a) Small synthetic network (b

Vertex Array
(Vpage)

=
3
o,

09
@
0
—
=
0
-+
j==p]
=
@
=
@

k=l
=
@
02
@
=
o
-+
=
©]
=

12| 20| 21| 24 11- N 12'5|11 19 17 | 19

-
Adjacency Array
(Epage)
(¢) Network (a) stored in GraphDB-Tree

Figure 3: GraphDB-Tree example.

0.3.1 Triangle Counting Query

Detecting triangles could be very useful to extract some possible relations or help
to find communities in a social network among other stuff. With GraphDB-tree
present structure and the limitations of a common PC, we can’t bring some
large graphs (with billions of nodes or/and edges) entirely to main memory and
process it, so we have to work locally with one or a limited number of Vpages
at the same time. Because of this factor, we have to create a specific algorithm
to process graphs on our structure.

To find a closed triangle that a node participate in, we need to read at least
2 up to 4 pages, but this can be a bigger number depending on the size and
disposal of the adjacency lists of the node. In the example above, we are trying
to find triangles in an arbitrary node n, so we read this Vpage from disk, and
after that we need to find n’s adjacencies, that is mq, ms, ms (to find that we
had to read an Epage). With this list, we search in each of n’s adjacency nodes,
for a common adjacency with him. We start with m;, so we read the Vpage
to find where to recover his adjacency list, and then we read the correspondent
Epage, recovering < X,Y >. After that, we have to compare if X or Y, is
another node from n’s list. In this example, we have to compare then to mso or
m3 (excluding m; because we do not consider graph loops).

If we assume that X it is ma, above we can see one closed triangle. After that
we continue the search in the rest of n’s adjacency list nodes. Our algorithm
operates basically like this, passing in each node of the graph. Like it was
said before, the graph is stored continuously, so we do not need to do any
page searches, we just have to read the pages from disk. To count all opened

Vertex Array
(Vpage)

g S SR e ST

[

/ \
Adjacency Array v 4 T
(Epage) mt :2 m3l>.4’ H_’
/

/

//
" .‘ mi === Vertex Array
/ T . (Vpage)
// f ‘\
| ,)
\\ . z] | (Epage)
~_

Figure 4: Example of how find a closed triangle in GraphDB-Tree

Figure 5: Example of a triangle during the search in Figure 4

triangles we test if X is equal to mgy as shown in Figure 5, if this is not true
(closed triangle), than it is an open triangle.

Our method does not count each triangles three times. As the nodes are
stored continuously, we have some conditions that makes us pass through each
triangle on the graph just once, while a lot of algorithms count the triangles
three times and divide the number in the end.

0.4 Using the GraphDB-Tree

The current distribution of GraphDB-Tree is implemented in C++.

0.4.1 GraphDB-Tree Input Format

The GraphDB-Tree structure reads graph files in edges list format, by nodes
being numeric, sorted and continuous. The file must contain two nodes id tab-
separated in each line, representing one edge of the graph:

ni Ny
) Toy
Nm ny

With ny < ng < ... < ny,. The GraphDB-Tree also accepts weighted graphs,
so the input edge list will have three elements per line, the third one beign the
weight.

Nm Ny W

Assuming that most of graph files have not the characteristics needed to be
writed in GraphDB-Tree, the most common execution cycle of a graph algorithm
using GraphDB-Tree will be the one presented in the figure above.

Step 1 In this step, the graph file is filtrated lefting only and edge list like in
the examples above, being numeric or textual nodes

Step 2 In this step, the edge list needs to be transformed into numeric (if not),
continuous and also are sorted. A mask file can be created to store the
old labes of the nodes.

Step 3 Here, the edge list will finally be writed on disk via GraphDB-tree. We
explain how to do this process in next subsection.

Step 4 In this step, the user algorithm can be executed, quering GraphDB-tree
when necessary.

Step 4

(Step 5)'}‘3;. Execute your
. .
‘)&2&0 algorithm
(o

Step 3
Write
Grapl

Rotulator

+sort
/

Mask
File

Figure 6: GraphDB-Tree execution diagram

Step 5 This step is optional, in the case of the algorithm of Step 4 output
contains nodes, then this output can be unmasked by the rotulator using
the mask file, recovering the old labes of the nodes.

The steps 1, 2 and 3 will need to be implemented by the user, in the next
subsections we explain how to execute the step 3 and 4, that are part of the of
the GDB-Tree.

0.4.2 Writing a graph in GraphDB-Tree

To write a graph on the GraphDB-Tree, as it was said above, it must be in an
edge-list format file beign numeric, continuous and sorted (by the first column).
After you have this edge list, to write your graph in your disk using GraphDB-
Tree, you just need the following code:

//Create a file manager (PageManager) for the graph

PageManager *pm;

pm = new PageManager(< name_for_graphdb — tree_file >, false); //The
second parameter indicates that you're creating a new file, instead of opening
an existing one.

//Create the graph

Graph gl(< graph_file_-name >, pm);

gl.MakeGraph();

The GraphDB-Tree implementation that we are current distributing have
two rotulators: one to make a already numeric and sorted edge list to continu-
ous, and another that receives a graph and a categorization list and make them
numeric and continuous, needing a sort process later. It can be used by the
following command on linux:

./GraphDB-tree.cpp (-€) -n/-t < graph_file_-name > < name_for_graphdb—
tree_file > (-0 < cat_list_file >)

e The parenthesis represents optional commands.

The -e optional parameter shall be used if you want to store a weighted
graph.

Put -n if the edge-list is numeric, and -t if it is textual.

e Use -o optional parameter and pass a categorization list if your input
graph is ontological.

Examples:

Unweighted, numeric:
./GraphDB-tree.cpp -n myGraph.txt myGraph.dat

Weighted, textual, ontological:
./GraphDB-tree.cpp -e -t myGraph.txt myGraph.dat -o myGraphCategoryList.txt

0.4.3 Querying a graph stored on GraphDB-Tree

To query a graph file in the GraphDB-Tree format, first you have to create a
pagemanager to open you graph file stored on GraphDB-Tree:

//Create a file manager (PageManager) for the graph and page pointers

PageManager *pm = new PageManager(< graphdb — tree_file_name >,
true);

VPage *vp;

Epage *ep;

As it was said in previous sections, the graph will be stored in diskpages,
called VPages (to store nodes) abd EPages (to store adjacency list for each
node). With the Pagemanager you can load this pages using the following func-
tion:

vp=pm— >ReadVPage(vpg-id);
ep=pm— >ReadEPage(epg_id);

It exists two constants (VN_CAP and EN_CAP) that are used to determine
the maximum number of nodes in each page, ajusted to make any VPage or
EPage have the size of a disk page. As the graph is continuous and sequentially
stored, you can retrieve any node and his adjacency list with complexity O(1),
for example I want to print the adjacency list and weight of the edges of the
node with ID 2000 :

vp=pm— >ReadVPage(2000/VN_CAP + 1);
ep=pm— >ReadEPage(vp— >getEpagelD(2000%V N_C AP));

int i=vp-— >getEpagePos(2000%V N_C AP);
int j=vp-— >getGrau(2000%V N_C AP);

for(i;¢ <i+j;i4++)
cout<<ep— >getNodeID(i)<<* " <<ep— >getWt(i)<<endl;

To free the variables with loaded pages you can use:

pm— >freeVPage(vp);
pm— >freeEPage(ep);

A great example of how to query a graph stored in GraphDB-tree, is the
algorithm on the file “TriCounter.cpp* distributed within GraphDB-Tree. It’s
an algorithm to count all triad of a graph.

Another useful methods:

pm— >getNumNodes(); //To get the number of nodes in the graph
pm— >getEPageCount(); //To get the number of total EPage of the graph
pm— >getVPageCount(); //To get the number of total VPage of the graph

0.4.4 Important Notes

e If this manual is not suficient to you, or you are have problems with GDB-
Tree or the implementation of your algorithm please send me and e-mail.
I’ll be pleased to help!

e Part of the code comments of Pagemanager is still in portuguese, I'll be
translating it soon, but if you have any question of some specific part of
the code, send me and e-mail!

e The GraphDB-Tree was implemented and tested just on Linux Ubuntu
systems, we use a kernel function sort to do some sorting tasks on the
scrip (GDBT.sh) within the code. If you want to execute GDB-Tree in
linux you might need to replace this sort function.

e Checkout ”TriCounter.cpp“ to learn how to query on GraphDB-Tree.

0.5 Conclusion

A Paper was already published about the GraphDB-Tree, but this document
has a technical characteristic. Our intention for this document is to help any
one that might want to use the GraphDB-Tree, by explaining the concepts and
intentions behind GraphDB-Tree and also providing an user manual to help
users to pre-process it graph file, write it to GraphDB-Tree and query it later
with its own algorithm.

