
Preemptive Multitasking on Atmel® AVR® Microcontroller

HABIBUR RAHMAN, Senthil Arumugam Muthukumaraswamy

School of Engineering & Physical Sciences

Heriot Watt University Dubai Campus

Dubai International Academic City

UNITED ARAB EMIRATES

hr69@hw.ac.uk; m.senthilarumugam@hw.ac.uk

Abstract: - This paper demonstrates the need for multitasking and scenario where multitasking is the only

solution and how it can be achieved on an 8-bit AVR® microcontroller. This project explains how to create a

simple kernel in a single C file, and execute any number of tasks in a multithreaded fashion. It first explains

how the AVR® engine works and how it switches between different tasks using preemptive scheduling

algorithm with the flexibility of blocking a task to allowing it more execution time based on their priority level.

The code written for this project is basically in C, however the kernel code is mostly assembly functions called

by C. The development environment is Atmel Studio®. The code is in such a way that it can be ported over any

8-bit AVR® microcontroller, however, this project demonstrates the results in both simulation and hardware

chip on device Atmega8A.

Key-Words: - AVR®, Microcontroller, Threading, Preemptive Scheduling, Multitasking.

1 Introduction
Microcontroller development has been

exponential over the past two decades. Development

in terms of speed, transistor density, multi-core

embedding as well as number of peripheral

subsystem on SoC(System on Chip) is common, and

development tools and compilers have been created

that allows writing code for microcontroller on

higher level of abstraction layer an easy task. The

problem here laid out is that programmers working

on low level language such as assembly have

excellent understanding of the processor

architecture but is limited to smart utilization of it

capacities if they lack knowledge on high level

language such as C/C++. On the other hand,

programmers programming on high level language

have to rely on toolchain libraries, unless they have

understanding of the architecture and programming

on low level assembly.

When it comes to writing different functions which

can be multitasked, an understanding of the

architecture is very important since the kernel, and

scheduling algorithm can be different for different

microcontroller engines. The easy solution to this

problem is to look for commercial or open source

RTOS (Real Time Operating System) , but again,

the this will require research and understanding of

the operating system, not the microcontroller

architecture and will eventually lead to downloading

and compiling hundreds of files according to the

provided operating system instructions and also

spend time learning how to use it.

But if the user who has basic understanding of C

language and very good understanding on

microcontroller wants to implement multitasking for

the written functions, this is possible by writing a

simple scheduling algorithm which can switch back

and forth different functions, (here on threads) .

This paper will first describe the two types of task

execution, single thread and multithread and also

demonstrate scenario where multi-thread is the only

solution. It will then explain in general how the

processor switches between the tasks, and what is

the hardware and time cost of using this scheduling

method and also explain the scheduling model used.

Then it will focus on the AVR® architecture, and

how it can schedule task switching.

2 Problem Formulation

What is single threaded function?

Functions written in a single infinite loop executed

in a linear fashion.

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 196

mailto:hr69@hw.ac.uk
mailto:m.senthilarumugam@hw.ac.uk

int main(void)

{

 while(1)

 {

 function_1();

 function_2();

 function_3();

 }

}

In the above code, function_1() is executed followed

by function 2, then function 3 after when the infinity

loop ends, it goes back to function_1(). Here the

functions are executed in a linear fashion.

2.1 Single Thread Delay Problem

If in the above example code of single thread, in any

function consists of a delay, then the delay will be

sum of delays in all the other functions as well.

Taking an example of a sample program consisting

of 3 LEDs namely Red, Green and Blue. Function_1

toggles red led every 3 second, function_2, toggles

green led every 5 second and function_3 toggles

blue led every 1 second.

The execution in single thread, hence on function

can be executed at a time, hence the sequence of sub

functions will be as table below. (Note that

execution of functions will also have certain delay,

but so small so its negligible in this example).

Table 1 : table showing the different statements and

delays in the functions executed in a single thread

 RED GREEN BLUE

function_1();

red_led_on(); ON

delay_sec(3); 3 3 3

red_led_off(); OFF

delay_sec(3); 3 3 3

function_2();

green_led_on(); ON

delay_sec(5); 5 5 5

green_led_off(); OFF

delay_sec(5); 5 5 5

function_3();

blue_led_on(); ON

delay_sec(1); 1 1 1

blue_led_off(); OFF

delay_sec(1); 1 1 1

As a result, the blink in the LEDs will be as shown

in Table 2.

Table 2 : The pattern in which the LEDs will blink if the

code is written in a single thread.

 Delay(sec) Delay

RED ON 3 OFF 15

GREEN ON 5 OFF 13

BLUE ON 1 OFF 17

It can be observed that red led is intended to toggle

every 3 seconds; however, it will toggle from on

state to off state after 3 seconds, but from off state to

on state every 15 seconds. (3+5+5+2+2 = 15, all

delays after the red_led_off() function and until the

infinite loop ends) Same goes for the green and blue

led. This is the underlying problem of single linear

execution.

As it can be observed that the number of functions

inside an infinite loop will affect the time after

which the function will get its execution. Worse

case is when another function is stuck inside a loop

waiting for a resource to be available. For example,

what if function_2 was written to wait infinitely

until a data becomes available through a serial mode

of communication. In that case, function_2 would

keep waiting, increasing delays for toggling the

LEDs.

Function_2()

Function_1()

Function_3()

Start

Stop

While(1)

Figure 1 : flowchart showing how three functions are

executed in an infinite loop in a single thread

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 197

This kind of problem cannot be eradicated even with

the use of fast processor because here the delay is

event related, such as time, or wait until event, etc.

Each column represents execution cycle and the

blue cell represents the function being executed.

After each execution cycle, the processor is given

up and the function to be executed changes. The

Execution time is determined by hardware timer

interrupt as shall be explained later in the Scheduler

Design Section.

3 Problem Solution

Each function should work independently therefore

they are placed in a separate while(1) loop:

The solution to this problem is to create an

algorithm by which each function is allocated

certain time to execute after which, the processor

switches to the next function. This method is called

multi-threading, where functions execution time is

sliced.

The following diagram will describe how time is

sliced and certain execution time is allocated for the

functions.

Figure 2: Time slicing of different tasks due to the

termination of execution cycle

It can be seen that in cycle 1, task_1() was being

executed, however, in cycle 2, task_2() began

executing leaving the task_1() incomplete. task_1()

will get its turn to continue later in cycle 4, and

continue exactly where it had left. But after at the

end of cycle 1, before switching to cycle 2, there has

to be some sort of memory to remember where and

in which state the task_1() was terminated and left

incomplete and recall this information in cycle 4 to

return exactly how task_1() was left abandoned.

3.1 How Does the Processor remember the point

of return?

The AVR® CPU machine has 4 information to back

up, to remember the point of return of each function.

This information is called the ‘context’ of the task

and it includes.

PC (Program Counter)

Location where the task is abandoned so it can

return later.

SREG (Status Register)

the state of the ALU result , such as carry flag, zero

flag, etc.,

GPR(General Purpose Registers) (R0 to R31)

The AVR® uses 32 general puspose registers for it

arithmetic operations. These needs to be backed up.

Stack Pointer Backup (for each task at the

kernel)

This stores the address of where the stack should

point in the space for each task. This usually is the

address of the stack pointer right after storing the

context. So when the context is to be restored,

reloading this stack pointer will be followed by

restoring the GPR, SREG and PC.

The PC, SREG and GPR for each task are backed

up in dedicated mapped data space for

corresponding task and the Stack Pointer for each

task is backed at the kernel space.

task_2
(SP)

 task_1
(SP)

R31:R0

 R31:R0

task_3

(SP)

R31:R0

SREG

SREG

PC(L)

PC(L)

PC(H)

SREG

PC(H)

 user
data

space

PC(L)

user
data

space

PC(H)

user
data

space

task_1()
stack

task_1()
stack

task_1()
stack

Figure 3 : the stack structure of each task in the data

space

 1 2 3 4 5 6 7 8 9 10

task_1()

task_2()

task_3()

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 198

The user data space should be pre-defined, as how

much data in the stack the task will need. This needs

user’s estimation or calculation. Assigning extra

space will render the space useless, and assigning

less space will result in data of one task to overlap

and corrupt that of another. The stack size for each

task is defined as,

user defined data space per task + 32 (for GPR) + 1

register for SREG +2 register for PC.

Summing up to

= (user defined data space per task + 35)

task_3 (SP)

task_2 (SP)

task_1 (SP)

Kernel Space

Figure 4 : the data in the kernel space which stores the

most recent stack pointer address for each task.

3.2 How does the task Switching Work?

The scheduling algorithm used in this project is

preemptive scheduling. In this scheduling method,

execution cycle is determined by the use of an

interrupt. The interrupt is timer based and is a

hardware feature for the AVR® microcontroller.

The timer is an 8-bit counter, which increments

every CPU clock frequency. Since the frequency

used in this project is 1Mhz, the increment in the

timer occurs every 1/1Mhz = 1us.

The timer increments from 0 to 255, and then

returns back to zero but before that, it executes and

interrupt service routine, due to its overflow. This

interrupt is the Overflow Interrupt and will occur

every 265 * 1us = 256 us.

This is the execution time that shall be allocated to

the tasks. Hence Each task will be given 256us time

to execute before its control is take over and given

to the next task in queue.

Figure-5: Timer causing overflow every 256 CPU cycle.

The green flag shows the overflow flag triggering

interrupt.

3.3 The Scheduling Process

Whenever the overflow triggers the interrupt, there

is when the scheduling and task switching occurs.

Hence we can safely say that the scheduling occurs

every 256us at the overflow interrupt.

The scheduling has 6 basic steps:

1. Save the context of current task

2. Back up the stack pointer of current task in the

kernel

3. Decrement corresponding task timer variable

4. Change to next task

5. Load the stack pointer of the next task from

kernel

6. Restore the context of the next task

3.4 How Does the Stack Pointer Work?

Stack Pointer for Register Data

The stack pointer works exactly like a stack

following Last in First Out (LIFO). Data can be

pushed into the stack and popped out from the stack

using the instructions PUSH and POP respectively.

Every time the data byte is pushed in, the address of

the stack pointer decrements by 1, and when data is

popped out, stacks pointer increments by 1.

Stack Pointer for Program Counters Data

Storage

When a function/subroutine is called using the

RCALL instruction or jumping to ISR(interrupt

service routine) , the stack pointer pushes the

current PC address (Program Counter) automatically

which stacks 2 bytes into the stack i.e. PC (High)

and PC(Low), hence the stack pointer decrements

by two.

The return from a function/subroutine using RET

instruction, or return from interrupt using the RETI

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 199

instruction will jump to the loaded PC, and

increment the Stack Pointer address by 2.

The example below shows the execution of the

following code and the effect on the stack and

change in address of the stack pointer.

The Red Block shows how the stack pointer

increments and decrements based on the instructions

PUSH R16;

RCALL label;

RET;

POP R16;

Figure 6 : The stack pointer address incrementing on and

decrementing on different instructions and how data and

program counter is pushed and returned

Note that the stack address starts from 0 at the top

and increments on the way down. So when the stack

pointer moves up means it is decremented and vice

versa.

As can be observed, PUSH instruction pushed the

R16 register (yellow) value onto the stack and

decrements the stack pointer by one. On the use of

RCALL instruction (same happens when interrupt

being called), the Program Counter (green) is

pushed onto the stack the stack pointer decrements

by 2. The RET/RETI instruction will increment the

counter and load the two bytes of Program Counter

(green) and hence jump back to where it had left

before the RCALL instruction, and finally restore

the R16 register using the POP instruction which

pops the yellow byte from the stack into R16 and

increments the counter by one .

4. Task Switching

Since each task has its own data space to back up

the context, and the SP pointing to the the top of the

context ready, it’s only a matter of loading the

backed up stack address of the corresponding task,

into the stack pointer followed by the restoring the

context which will restore all the GPR, SREG and

finally jump to the PC of that task where it had left

off. Since the kernel backs up the stack address of

each task as an array, it can be loaded easily.

If first task’s sp backup at the kernel is stored at

address x, then the nth task’s sp backup will be at

x+2*n.

Here the n is multiplied by 2 since the stack pointer

uses 2 registers in the stack.

5. The Tick Delay

The scheduler interrupts the delay function and

switching to different task. Since each task has its

own infinite loop, if they want to implement a wait

function, it can no longer be associated with the

main CPU clock. For example, if a delay for 1

second is used in a task, then when the execution

cycle is over and the CPU switches to another task,

even the delay function of that task is halted and

continued when its turn in the queue comes back

again hence the delay will not be 1 and accurate one

second.

This solution to this is to create a timer variable for

each task at the kernel level. This timer is

decremented every time the overflow interrupt

triggers the scheduler.

Since the execution time is knowns to use 256us, the

timer variable of each task will decrement the timer

variable until it reaches down to zero. Then at the

task the delay function can safely rely on its

corresponding timer variable.

Example, if a delay of 1 second is required, 1 sec =

1000000us, which means 1000000/256 = 3906.25

execution cycles. Therefore the timer variable

should be set to 3906 which will start decrementing

every execution cycle, regardless of which task is

being executed. Whenever the task gets its turn in

the execution cycle, it will check to see if its timer

variable has reached zero, so it can continue to the

next code statement or else execute not instruction.

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 200

5.1 Priority levelling of the tasks

The scheduler dedicates one execution cycle per

task. However, biasing the number of execution

cycle before switching can dedicate more time to

one task than another. Hence the priority level of

each task can be modified based on a variable that

loads the priority level value of the current task and

starts decrementing until it reaches zero. Once it

reaches zero, only then it will switch task, otherwise

load the same task.

5.2 Code Fragment for the Scheduler

ISR(TIMER0_OVF_vect,__attribute__((naked)))
{

backup_context();
current_task_sp_backup();

//task_timer_variable_decrementer
for(int i=0;i<total_tasks;i++)

 {
task_tick_delay_timer[i]--;

 }

task_switch();

next_task_sp_restore();
restore_context();

asm volatile ("reti");

}

5.3. Task Switch Timing Cost

Switching between tasks will call the scheduler

every time and execute the scheduler code to backup

context, change task, and restore task. But

scheduling itself will consume a lot of CPU cycles.

As tested in the project by using the Atmel Studio ®

simulation tool, by inserting breakpoint at the first

statement i.e. backup_context();and another at

the last statement, i.e. asm volatile ("reti");
the number of CPU cycle can be simulated. Once

the simulation reaches the first breakpoint, the cycle

counter can be resettled.

Therefore currently 220 CPU cycles are used for the

scheduling, which on a 1 MHz Clock frequency will

consume 220us. This is the time cost of preemptive

multithreading. However faster CPU clock will

result in faster task switch time.

6. Writing the Code Preemptive Multi-

tasking

Figure 7: the flowchart of the main Program initializing

the variables, timer, and stack pointer of each task.

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 201

init_kernel_task_sp_backup();

Figure 8 : this flowchart shows how the stack pointer is

initialized and backed up in the kernel for the first call of

the tasks. Notice tasks2 and task3 has stack pointer

shifted up by 35. This is because when the task is first

called after the switch from task 1 to task 2, it will restore

context, but it was never backed up before.

Task_delay_cycles(int cycles);

Figure 9 : The flow chart for the tick delay. The

delay timer for each task follows its own specific

corresponding timer variable.

The Tasks:

void task0(void)
{
 DDRB|= (1<<PINB0);

while(1)
 {
 PORTB^=(1<<PINB0);
 task_delay_cycles(3906);
 }
}

void task1(void)
{
 DDRB|= (1<<PINB1);

while(1)
 {
 PORTB^=(1<<PINB1);
 task_delay_cycles(1953);
 }
}

void task2(void)
{
 DDRB|= (1<<PINB2);
 while(1)
 {
 PORTB^=(1<<PINB2);
 task_delay_cycles(977);
 }
}

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 202

For this example, 3 tasks are created and the

purpose for task0, task1 and task2 is to toggle

PINB0, PINB1 and PINB2 respectively at intervals

of 1 second, 0.5 seconds, and 0.25 seconds

respectively.

The task delay cycle for 1 sec = 3906.

(1000000us/256us = 3906.)

The task delay cycle for 0.5 sec = 1953.

500000us/256us = 1953

The task delay cycle for 025 sec = 977.

250000us/256us = 977

7. Results on Proteus ISIS simulation

The simulation on the cad software includes

device atmega8 where its PINB0 toggles every

1 second, PINB1 toggles every 0.5 seconds and

PINB2 toggles every 0.25 seconds. All the three

pins are connected to a simulated oscilloscope

with grid size of 0.2 seconds. The

microcontroller is running at 1 MHz as decided

for this testing purpose.

The simulation CAD connection can be seen as

Figure 10. The Oscilloscope results are shown

in figure 11.

Figure 10 : Oscilloscope connection of the

corresponding pins on the AVR microcontroller atmega8.

Yellow graph for PINB0 which toggles every 5

grids = 5* 0.2 = 1 seconds, just as expected.

Blue graph for PINB1 which toggles every 2.5

grids = 2.5* 0.2 = 0.5 seconds.

Red graph for PINB2 which toggles every 1.25

grids = 1.25* 0.2 = 0.25 seconds.

8 Conclusions

As seen in the results, the paper demonstrates how

to create a simple kernel in a single C file, and

execute any number of tasks in a multithreaded

fashion. The Scheduler in the ISR switches tasks

effectively with 220 clock cycles and each task

having its own timer variable can implement real

time delays which follows the timer clock regardless

of which task is running. The results are exactly as

expected as seen on the simulation.

References:

[1] Atmel® Corporation, ATmega8A datasheet

Rev.: 8159E–AVR–02/2013.

[2] Atmel® Corporation, AVR Instruction Set, Rev:

0856I–AVR–07/10.
[3] Han-Way Huang, The Atmel AVR

Microcontroller Mega and XMega in
Assembly and C

[4] Elliot Williams, Make: AVR Programming,
First Release

Figure 11 : The oscilloscope result as seen when the

simulation is run. The Yellow signal represents PINB0,

Blue represents PINB1 and red represents PINB2.

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 203

[5] Avr-libc user manual [online] :
http://www.nongnu.org/avr-libc/user-

manual/index.html .

[6] FreeRTOS® website [online]:

http://www.freertos.org/implementation/a0000

9.html .

[7] AVRFreaks® website [online]

http://www.avrfreaks.net/

[8] CSC560: Design and Analysis of Real Time

Systems, Nithin Goyal, Rayhan Rahman

website [online]

http://web.uvic.ca/~rayhan/csc560/projects/proj

ect3/context_switch.html

[9] Wikipedia : Thread (Computing) [online]

http://en.wikipedia.org/wiki/Thread_%28comp

uting%29 .

[10] Wikipedia : Preemption (computing) [online]

http://en.wikipedia.org/wiki/Preemption_%28c

omputing%29

[11] Proteus® ISIS® software :

http://www.labcenter.com .

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 204

http://www.nongnu.org/avr-libc/user-manual/index.html
http://www.nongnu.org/avr-libc/user-manual/index.html
http://www.freertos.org/implementation/a00009.html
http://www.freertos.org/implementation/a00009.html
http://www.avrfreaks.net/
http://web.uvic.ca/~rayhan/csc560/projects/project3/context_switch.html
http://web.uvic.ca/~rayhan/csc560/projects/project3/context_switch.html
http://en.wikipedia.org/wiki/Thread_%28computing%29
http://en.wikipedia.org/wiki/Thread_%28computing%29
http://en.wikipedia.org/wiki/Preemption_%28computing%29
http://en.wikipedia.org/wiki/Preemption_%28computing%29
http://www.labcenter.com/

