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Abstract: - This paper demonstrates the need for multitasking and scenario where multitasking is the only 

solution and how it can be achieved on an 8-bit AVR® microcontroller. This project explains how to create a 

simple kernel in a single C file, and execute any number of tasks in a multithreaded fashion. It first explains 

how the AVR® engine works and how it switches between different tasks using preemptive scheduling 

algorithm with the flexibility of blocking a task to allowing it more execution time based on their priority level. 

The code written for this project is basically in C, however the kernel code is mostly assembly functions called 

by C. The development environment is Atmel Studio®. The code is in such a way that it can be ported over any 

8-bit AVR® microcontroller, however, this project demonstrates the results in both simulation and hardware 

chip on device Atmega8A. 
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1 Introduction 
Microcontroller development has been 

exponential over the past two decades. Development 

in terms of speed, transistor density, multi-core 

embedding as well as number of peripheral 

subsystem on SoC(System on Chip) is common, and 

development tools and compilers have been created 

that allows writing code for microcontroller on 

higher level of abstraction layer an easy task. The 

problem here laid out is that programmers working 

on low level language such as assembly have 

excellent understanding of the processor 

architecture but is limited to smart utilization of it 

capacities if they lack knowledge on high level 

language such as C/C++. On the other hand, 

programmers programming on high level language 

have to rely on toolchain libraries, unless they have 

understanding of the architecture and programming 

on low level assembly. 

 

When it comes to writing different functions which 

can be multitasked, an understanding of the 

architecture is very important since the kernel, and 

scheduling algorithm can be different for different 

microcontroller engines. The easy solution to this 

problem is to look for commercial or open source 

RTOS (Real Time Operating System) , but again, 

the this will require research and understanding of 

the operating system, not the microcontroller 

architecture and will eventually lead to downloading 

and compiling hundreds of files according to the 

provided operating system instructions and also 

spend time learning how to use it.  

 

But if the user who has basic understanding of C 

language and very good understanding on 

microcontroller wants to implement multitasking for 

the written functions, this is possible by writing a 

simple scheduling algorithm which can switch back 

and forth different functions, (here on threads) . 

 

This paper will first describe the two types of task 

execution, single thread and multithread and also 

demonstrate scenario where multi-thread is the only 

solution. It will then explain in general how the 

processor switches between the tasks, and what is 

the hardware and time cost of using this scheduling 

method and also explain the scheduling model used. 

Then it will focus on the AVR® architecture, and 

how it can schedule task switching. 

 

 

2 Problem Formulation 
 

What is single threaded function? 

Functions written in a single infinite loop executed 

in a linear fashion. 
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int main(void) 

{ 

 while(1) 

 { 

  function_1(); 

  function_2(); 

  function_3(); 

 } 

} 

 

In the above code, function_1() is executed followed 

by function 2, then function 3 after when the infinity 

loop ends, it goes back to function_1(). Here the 

functions are executed in a linear fashion.  

 

 
 

2.1 Single Thread Delay Problem 

 
 

If in the above example code of single thread, in any 

function consists of a delay, then the delay will be 

sum of delays in all the other functions as well. 

 

Taking an example of a sample program consisting 

of 3 LEDs namely Red, Green and Blue. Function_1 

toggles red led every 3 second, function_2, toggles 

green led every 5 second and function_3 toggles 

blue led every 1 second.  

 

The execution in single thread, hence on function 

can be executed at a time, hence the sequence of sub 

functions will be as table below. (Note that 

execution of functions will also have certain delay, 

but so small so its negligible in this example). 

 
Table 1 : table showing the different statements and 

delays in the functions executed in a single thread 

    RED GREEN BLUE 

function_1(); 

red_led_on(); ON     

delay_sec(3); 3 3 3 

red_led_off(); OFF     

delay_sec(3); 3 3 3 

function_2(); 

green_led_on();   ON   

delay_sec(5); 5 5 5 

green_led_off();   OFF   

delay_sec(5); 5 5 5 

function_3(); 

blue_led_on();     ON 

delay_sec(1); 1 1 1 

blue_led_off();     OFF 

delay_sec(1); 1 1 1 
 

 

As a result, the blink in the LEDs will be as shown 

in Table 2. 

 
Table 2 : The pattern in which the LEDs will blink if the 

code is written in a single thread. 

    Delay(sec)   Delay 

RED ON 3 OFF 15 

GREEN ON 5 OFF 13 

BLUE ON 1 OFF 17 
 

It can be observed that red led is intended to toggle 

every 3 seconds; however, it will toggle from on 

state to off state after 3 seconds, but from off state to 

on state every 15 seconds.  (3+5+5+2+2 = 15, all 

delays after the red_led_off() function and until the 

infinite loop ends) Same goes for the green and blue 

led. This is the underlying problem of single linear 

execution. 

As it can be observed that the number of functions 

inside an infinite loop will affect the time after 

which the function will get its execution. Worse 

case is when another function is stuck inside a loop 

waiting for a resource to be available. For example, 

what if function_2 was written to wait infinitely 

until a data becomes available through a serial mode 

of communication. In that case, function_2 would 

keep waiting, increasing delays for toggling the 

LEDs. 

 

Function_2() 

 

Function_1() 

Function_3() 

 

Start 

Stop 

While(1) 

Figure 1 : flowchart showing how three functions are 

executed in an infinite loop in a single thread 
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This kind of problem cannot be eradicated even with 

the use of fast processor because here the delay is 

event related, such as time, or wait until event, etc.  

 

Each column represents execution cycle and the 

blue cell represents the function being executed. 

After each execution cycle, the processor is given 

up and the function to be executed changes. The 

Execution time is determined by hardware timer 

interrupt as shall be explained later in the Scheduler 

Design Section. 

 

 

 

3 Problem Solution 
 

Each function should work independently therefore 

they are placed in a separate while(1) loop: 

 

The solution to this problem is to create an 

algorithm by which each function is allocated 

certain time to execute after which, the processor 

switches to the next function. This method is called 

multi-threading, where functions execution time is 

sliced.  

 

The following diagram will describe how time is 

sliced and certain execution time is allocated for the 

functions. 

 
Figure 2: Time slicing of different tasks due to the 

termination of execution cycle 

 
It can be seen that in cycle 1, task_1() was being 

executed, however, in cycle 2, task_2() began 

executing leaving the task_1() incomplete. task_1() 

will get its turn to continue later in cycle 4, and 

continue exactly where it had left. But after at the 

end of cycle 1, before switching to cycle 2, there has 

to be some sort of memory to remember where and 

in which state the task_1() was terminated and left 

incomplete and recall this information in cycle 4 to 

return exactly how task_1() was left abandoned. 

 

3.1 How Does the Processor remember the point 

of return? 

 

The AVR® CPU machine has 4 information to back 

up, to remember the point of return of each function.  

This information is called the ‘context’ of the task 

and it includes.  

 

PC (Program Counter) 

Location where the task is abandoned so it can 

return later. 

 

SREG (Status Register) 

the state of the ALU result , such as carry flag, zero 

flag, etc., 

 

GPR(General Purpose Registers) (R0 to R31) 

The AVR® uses 32 general puspose registers for it 

arithmetic operations. These needs to be backed up. 

 

Stack Pointer Backup (for each task at the 

kernel) 

 

This stores the address of where the stack should 

point in the space for each task. This usually is the 

address of the stack pointer right after storing the 

context. So when the context is to be restored, 

reloading this stack pointer will be followed by 

restoring the GPR, SREG and PC. 

 

The PC, SREG and GPR for each task are backed 

up in dedicated mapped data space for 

corresponding task and the Stack Pointer for each 

task is backed at the kernel space.  
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Figure 3 : the stack structure of each task in the data 

space 

 

  1 2 3 4 5 6 7 8 9 10 

task_1()                     

task_2()                     

task_3()                     
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The user data space should be pre-defined, as how 

much data in the stack the task will need. This needs 

user’s estimation or calculation. Assigning extra 

space will render the space useless, and assigning 

less space will result in data of one task to overlap 

and corrupt that of another. The stack size for each 

task is defined as, 

 

user defined data space per task + 32 (for GPR) + 1 

register for SREG +2 register for PC. 

  

Summing up to  

= (user defined data space per task + 35) 

 

 

task_3 (SP) 

task_2 (SP) 

task_1  (SP) 

 
Kernel Space 

 
Figure 4 : the data in the kernel space which stores the 

most recent stack pointer address for each task. 

 

 

3.2 How does the task Switching Work? 

 

The scheduling algorithm used in this project is 

preemptive scheduling. In this scheduling method, 

execution cycle is determined by the use of an 

interrupt. The interrupt is timer based and is a 

hardware feature for the AVR® microcontroller.  

 

The timer is an 8-bit counter, which increments 

every CPU clock frequency. Since the frequency 

used in this project is 1Mhz, the increment in the 

timer occurs every 1/1Mhz = 1us. 

 

The timer increments from 0 to 255, and then 

returns back to zero but before that, it executes and 

interrupt service routine, due to its overflow. This 

interrupt is the Overflow Interrupt and will occur 

every 265 * 1us = 256 us.  

 

This is the execution time that shall be allocated to 

the tasks. Hence Each task will be given 256us time 

to execute before its control is take over and given 

to the next task in queue.  

 

 
Figure-5: Timer causing overflow every 256 CPU cycle. 

The green flag shows the overflow flag triggering 

interrupt. 

 
3.3 The Scheduling Process 

 

Whenever the overflow triggers the interrupt, there 

is when the scheduling and task switching occurs. 

Hence we can safely say that the scheduling occurs 

every 256us at the overflow interrupt. 

 

The scheduling has 6 basic steps: 

 

1. Save the context of current task 

2. Back up the stack pointer of current task in the 

kernel 

3. Decrement corresponding task timer variable 

4. Change to next task 

5. Load the stack pointer of the next task from 

kernel 

6. Restore the context of the next task 

 

3.4 How Does the Stack Pointer Work? 

 

Stack Pointer for Register Data 

The stack pointer works exactly like a stack 

following Last in First Out (LIFO). Data can be 

pushed into the stack and popped out from the stack 

using the instructions PUSH and POP respectively. 

Every time the data byte is pushed in, the address of 

the stack pointer decrements by 1, and when data is 

popped out, stacks pointer increments by 1. 

 

Stack Pointer for Program Counters Data 

Storage 

When a function/subroutine is called using the 

RCALL instruction or jumping to ISR(interrupt 

service routine) , the stack pointer pushes the 

current PC address (Program Counter) automatically 

which stacks 2 bytes into the stack i.e. PC (High) 

and PC(Low), hence the stack pointer decrements 

by two.  

 

The return from a function/subroutine using RET 

instruction, or return from interrupt using the RETI 
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instruction will jump to the loaded PC, and 

increment the Stack Pointer address by 2.  

 

The example below shows the execution of the 

following code and the effect on the stack and 

change in address of the stack pointer. 

 

The Red Block shows how the stack pointer 

increments and decrements based on the instructions 

 

PUSH R16;  

RCALL label; 

RET; 

POP R16; 

 

 
 

Figure 6 : The stack pointer address incrementing on and 

decrementing on different instructions and how data and 

program counter is pushed and returned 

 
Note that the stack address starts from 0 at the top 

and increments on the way down. So when the stack 

pointer moves up means it is decremented and vice 

versa. 

 

As can be observed, PUSH instruction pushed the 

R16 register (yellow) value onto the stack and 

decrements the stack pointer by one. On the use of 

RCALL instruction (same happens when interrupt 

being called), the Program Counter (green) is 

pushed onto the stack the stack pointer decrements 

by 2. The RET/RETI instruction will increment the 

counter and load the two bytes of Program Counter 

(green) and hence jump back to where it had left 

before the RCALL instruction, and finally restore 

the R16 register using the POP instruction which 

pops the yellow byte from the stack into R16 and 

increments the counter by one . 

4. Task Switching 

 
Since each task has its own data space to back up 

the context, and the SP pointing to the the top of the 

context ready, it’s only a matter of loading the 

backed up stack address of the corresponding task, 

into the stack pointer followed by the restoring the 

context which will restore all the GPR, SREG and 

finally jump to the PC of that task where it had left 

off. Since the kernel backs up the stack address of 

each task as an array, it can be loaded easily. 

 

If first task’s sp backup at the kernel is stored at 

address x, then the nth task’s sp backup will be at 

x+2*n. 

 

Here the n is multiplied by 2 since the stack pointer 

uses 2 registers in the stack.  

 

5. The Tick Delay 

 
The scheduler interrupts the delay function and 

switching to different task. Since each task has its 

own infinite loop, if they want to implement a wait 

function, it can no longer be associated with the 

main CPU clock. For example, if a delay for 1 

second is used in a task, then when the execution 

cycle is over and the CPU switches to another task, 

even the delay function of that task is halted and 

continued when its turn in the queue comes back 

again hence the delay will not be 1 and accurate one 

second.  

 

This solution to this is to create a timer variable for 

each task at the kernel level. This timer is 

decremented every time the overflow interrupt 

triggers the scheduler.  

 

Since the execution time is knowns to use 256us, the 

timer variable of each task will decrement the timer 

variable until it reaches down to zero. Then at the 

task the delay function can safely rely on its 

corresponding timer variable. 

 

Example, if a delay of 1 second is required, 1 sec = 

1000000us, which means 1000000/256 = 3906.25 

execution cycles. Therefore the timer variable 

should be set to 3906 which will start decrementing 

every execution cycle, regardless of which task is 

being executed. Whenever the task gets its turn in 

the execution cycle, it will check to see if its timer 

variable has reached zero, so it can continue to the 

next code statement or else execute not instruction. 

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 200



 

5.1 Priority levelling of the tasks 

 
The scheduler dedicates one execution cycle per 

task. However, biasing the number of execution 

cycle before switching can dedicate more time to 

one task than another. Hence the priority level of 

each task can be modified based on a variable that 

loads the priority level value of the current task and 

starts decrementing until it reaches zero. Once it 

reaches zero, only then it will switch task, otherwise 

load the same task.  

 

5.2 Code Fragment for the Scheduler 

 
ISR(TIMER0_OVF_vect,__attribute__((naked))) 
{ 

backup_context(); 
current_task_sp_backup(); 
 
//task_timer_variable_decrementer 
for(int i=0;i<total_tasks;i++) 

 { 
task_tick_delay_timer[i]--; 

 } 
 
task_switch(); 
 
next_task_sp_restore(); 
restore_context(); 

   
asm volatile ( "reti" ); 

} 
 

5.3. Task Switch Timing Cost 

 
Switching between tasks will call the scheduler 

every time and execute the scheduler code to backup 

context, change task, and restore task. But 

scheduling itself will consume a lot of CPU cycles. 

As tested in the project by using the Atmel Studio ® 

simulation tool, by inserting breakpoint at the first 

statement i.e. backup_context();and another at 

the last statement, i.e. asm volatile ("reti"); 
the number of CPU cycle can be simulated. Once 

the simulation reaches the first breakpoint, the cycle 

counter can be resettled.  
 

 
 

 

 

Therefore currently 220 CPU cycles are used for the 

scheduling, which on a 1 MHz Clock frequency will 

consume 220us. This is the time cost of preemptive 

multithreading. However faster CPU clock will 

result in faster task switch time. 

 

6. Writing the Code Preemptive Multi-

tasking 

 

 

 
Figure 7: the flowchart of the main Program initializing 

the variables, timer, and stack pointer of each task. 
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init_kernel_task_sp_backup(); 

 

 

 
Figure 8 : this flowchart shows how the stack pointer is 

initialized and backed up in the kernel for the first call of 

the tasks. Notice tasks2 and task3 has stack pointer 

shifted up by 35. This is because when the task is first 

called after the switch from task 1 to task 2, it will restore 

context, but it was never backed up before. 

 

 

 

 

 

Task_delay_cycles(int cycles); 

 

 
Figure 9 : The flow chart for the tick delay. The 

delay timer for each task follows its own specific 

corresponding timer variable. 
 

The Tasks: 
 

 
void task0(void) 
{ 
 DDRB|= (1<<PINB0); 

while(1) 
 { 
  PORTB^=(1<<PINB0); 
  task_delay_cycles(3906); 
 } 
} 
 
void task1(void) 
{ 
 DDRB|= (1<<PINB1); 

while(1) 
 { 
  PORTB^=(1<<PINB1); 
  task_delay_cycles(1953); 
 } 
} 
 
void task2(void) 
{ 
 DDRB|= (1<<PINB2); 
 while(1) 
 { 
  PORTB^=(1<<PINB2); 
  task_delay_cycles(977); 
 } 
} 
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For this example, 3 tasks are created and the 

purpose for task0, task1 and task2 is to toggle 

PINB0, PINB1 and PINB2 respectively at intervals 

of 1 second, 0.5 seconds, and 0.25 seconds 

respectively. 

 

The task delay cycle for 1 sec = 3906. 

(1000000us/256us = 3906.) 

 

The task delay cycle for 0.5 sec = 1953. 

500000us/256us = 1953 

 

The task delay cycle for 025 sec = 977. 

250000us/256us = 977 

 

7. Results on Proteus ISIS simulation 
 

The simulation on the cad software includes 

device atmega8 where its PINB0 toggles every 

1 second, PINB1 toggles every 0.5 seconds and 

PINB2 toggles every 0.25 seconds. All the three 

pins are connected to a simulated oscilloscope 

with grid size of 0.2 seconds. The 

microcontroller is running at 1 MHz as decided 

for this testing purpose.  

 

The simulation CAD connection can be seen as 

Figure 10. The Oscilloscope results are shown 

in figure 11. 

 

 

 
 

Figure 10 : Oscilloscope  connection of the 

corresponding pins on the AVR microcontroller atmega8. 

 

 

 
Yellow graph for PINB0 which toggles every 5 

grids = 5* 0.2 = 1 seconds, just as expected. 

 

Blue graph for PINB1 which toggles every 2.5 

grids = 2.5* 0.2 = 0.5 seconds. 

 

Red graph for PINB2 which toggles every 1.25 

grids = 1.25* 0.2 = 0.25 seconds.  

 

 

8 Conclusions 

 
As seen in the results, the paper demonstrates how 

to create a simple kernel in a single C file, and 

execute any number of tasks in a multithreaded 

fashion. The Scheduler in the ISR switches tasks 

effectively with 220 clock cycles and each task 

having its own timer variable can implement real 

time delays which follows the timer clock regardless 

of which task is running. The results are exactly as 

expected as seen on the simulation.  
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