

Operating Manual

GM420

Loop monitor
to monitor the PE conductor in AC systems
Software version: D268 V1.0x

Bender Inc.

USA:

700 Fox Chase
Coatesville, PA 19320
Toll Free: 800-356-4266
Phone: 610-383-9200
Fax: 610-383-7100
E-mail: info@bender.org

Canada:

5810 Ambler Drive, Unit 1
Mississauga, ON L4W 4J5
Toll Free: 800-243-2438
Phone: 905-602-9990
Fax: 905-602-9960
E-mail: info@bender-ca.com

© Bender Inc.

Web: <http://www.bender.org>

BENDER Group

All rights reserved.
Content subject to change.

Table of Contents

1. Effective use of this manual	5
1.1 Notes for the user	5
1.2 Intended use	5
1.3 Fast commissioning of the loop monitor in AC systems	6
2. Safety information	7
2.1 Safety instructions	7
2.2 Work activities on electrical installations	7
3. Function	9
3.1 Device features	9
3.2 Function	9
3.2.1 Preset function	10
3.2.2 Protected measuring circuit	11
3.2.3 Automatic self test	12
3.2.4 Manual self test	12
3.2.5 Functional faults	12
3.2.6 Fault memory	12
3.2.7 Assigning alarms to the alarm relays K1/K2	12
3.2.8 Time delays t , t_{on} and t_{off}	12
3.2.9 Start-up delay t	13
3.2.10 Response delay t_{on}	13
3.2.11 Delay on release t_{off}	13
3.2.12 Password protection (on, OFF)	13
3.2.13 Factory setting FAC	13
3.2.14 Erasable history memory	13
4. Installation and connection	15
5. Operation and setting	17

5.1	Display elements in use	17
5.2	Function of the operating elements	18
5.3	Menu structure	19
5.4	Display in standard mode	21
5.5	Display in menu mode	22
5.5.1	Parameter query and setting: Overview	22
5.5.2	Setting the response values for loop resistance and the associated hysteresis	25
5.5.3	Setting the response values for extraneous voltage and hysteresis	26
5.5.4	Setting the fault memory and operating mode of the alarm relays	27
5.5.5	Assigning alarm categories to the alarm relays	28
5.5.6	Setting time delays	31
5.5.7	Factory setting and password protection	32
5.5.8	Restoring factory setting	33
5.5.9	Manual activation of the preset function	34
5.5.10	Device information query	34
5.5.11	History memory query	34
5.6	Preset function/factory setting	35
5.7	Commissioning	35
6.	Technical data GM420...	37
6.1	Standards, approvals and certifications	40
6.2	Ordering information	40

1. Effective use of this manual

1.1 Notes for the user

This manual is intended for experts in electrical engineering and electronics!

In order to make it easier for you to find specific text passages or references in this manual and for reasons of comprehensibility, important information is emphasized by symbols. The meaning of these symbols is explained below:

Information calling attention to hazards are marked with this warning symbol.

Information intended to assist the user to make optimum use of the product are marked with the Info symbol.

1.2 Intended use

The loop monitor of the GM420 series is designed to monitor the PE conductor in AC systems. The extraneous voltage U_f between the terminals E and KE must not exceed AC 12 V. The ohmic resistance of the conductor loop and the existing extraneous AC voltage U_f will be indicated on the display.

Measurement results can be adversely affected by DC extraneous voltage U_f occurring during the resistance measurement process.

Separate supply voltage U_s is required.

1.3 Fast commissioning of the loop monitor in AC systems

If you are already familiar with the function of loop monitoring, you can reduce the time for commissioning and connection using this brief description.

1. Check that the PE conductor to be monitored is operated in an AC system. In addition, check that the resistance of the conductor loop is $\leq 66 \Omega$ and that the extraneous voltage is $U_f < 12 \text{ V}$. This is the precondition for an automatic setting of the response values (Preset) after the first connection to the supply voltage.

When the loop resistance is $> 66 \Omega$, a response value of 100Ω will automatically be set.

2. Make sure that the loop monitor is in the delivery status (factory setting has not been changed). In case of doubt, restore the factory setting (page 33).
3. When the conditions 1 and 2 are satisfied, you can connect the loop monitor according to the wiring diagram (page 16). Once the device is connected to the supply voltage, the device determines the loop resistance R_m and automatically sets the response value $> R$ for the loop resistance R_m :

$$\text{Response value } (> R) = (R_m + 0.5 \Omega) \times 1.5$$

Example:

$$R_m = 2.5 \Omega$$

$$\text{Resulting response value: } (2.5 \Omega + 0.5 \Omega) \times 1.5 = 4.5 \Omega$$

4. The currently measured loop resistance between the terminals E and KE appears on the display. In addition, you can query the existing extraneous voltage U_f using the UP and DOWN keys.

For detailed information about the preset function refer to page 10.

Page 35 provides a summary of all factory settings.

If you want to reset the loop monitor to its factory settings, refer to the description on page 33.

2. Safety information

2.1 Safety instructions

In addition to this data sheet, the documentation of the device includes a sheet entitled "Important safety instructions for BENDER products".

2.2 Work activities on electrical installations

- All work activities necessary for installation, commissioning or work activities during operation of electrical devices or systems are to be carried out by adequately skilled personnel.
- Observe the relevant regulations applying to work on electrical installations, in particular DIN EN 50110 or its subsequent regulation.

*Unprofessional work activities on electrical installations
may result in a threat of danger to life and limb!*

- If the equipment is used outside the Federal Republic of Germany, the respective national standards and regulations are to be observed. The European standard EN 50110 is recommended to be used as a directive.

3. Function

3.1 Device features

- Loop monitoring of the PE conductor in AC systems
- Loop resistance measurement and indication in the range of 0...100 Ω . The extraneous voltage U_f must not exceed A 12 V.
- Measurement and indication of an existing extraneous voltage U_f of AC 0...50V, even when the resistance measuring circuit has been disconnected to provide protection.
- Measuring current I_m = DC 20 mA
- Preset function:
Automatic setting of the response value for the loop resistance R_m ($> R$)
- r.m.s. value measurement of the extraneous AC voltage U_f ($> U$)
- Start-up delay, response delay and delay on release
- Adjustable switching hysteresis for R and U
- Measured value display via multi-functional LC display
- Alarm indication via LEDs (AL1, AL2) and changeover contacts (K1, K2)
- N/C or N/O operation selectable
- Password protection against unauthorized parameter changing
- Fault memory can be deactivated

3.2 Function

Once the supply voltage is applied, the start-up delay t is activated. Measured resistance and voltage values changing during this time do not influence the switching state of the alarm relays.

The devices provide two individually adjustable measuring channels (loop resistance / extraneous voltage U_f). When the measuring quantity exceeds the response value (Alarm 1) or falls below the response value (Alarm 2), the time of the response delays $t_{on\ 1/2}$ begins. When the response delay has elapsed, the alarm relays switch and the alarm LEDs

light. When the measuring value exceeds or falls below the release value (response value plus hysteresis) after the alarm relays have switched, the selected release delay t_{off} begins. When t_{off} has elapsed, the alarm relays switch back to their original state. With the fault memory activated, the alarm relays do not change their actual state until the reset button R is pressed.

3.2.1 Preset function

After connecting the device for the first time, the response value for the loop resistance (Alarm 1) is automatically set once only to the following value:

Response value loop resistance

$$(> R) = (R_m + 0.5\Omega) \times 1.5$$

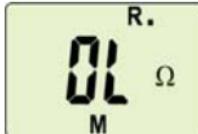
GM420		
Extraneous voltage > U (U _f)	Preset operating range	Response value > R
AC 25 V	0 Ω...∞ Ω	(R _m + 0.5 Ω) × 1.5 max. 100 Ω

If the measured resistance value is $> 66 \Omega$, the response value will automatically be set to 100Ω .

If loop resistances of approx. $\geq 1 \text{ k}\Omega$ exist, the preset function will be ineffective. Hence, the previous response value will remain. The message "AL not SEt" appears on the display. If you exit "AL not SEt" with Enter, the response value will be set to 100Ω .

For details on how to change the response value manually refer to page 25.

After restoring the factory settings, the preset function is automatically active again. Also refer to page 33.


During operation, the preset function can be started manually via the menu SEt. Also refer to page 34.

3.2.2 Protected measuring circuit

During the loop resistance measurement, the existing extraneous voltage must not exceed specified values. If the extraneous voltage exceeds the limit values, the measuring circuit will be disconnected (Overload OL). This protective mechanism will also be activated when the loop resistance values are too high.

A separate measuring circuit ensures that extraneous voltages $U_f (> U)$ of 1...50 V will be monitored!

The table below shows the respective switching thresholds and the corresponding messages shown on the display:

$U_f (> U)$ $R_m (> R)$	Display	Meaning:
$\geq 12 \text{ V} /$ $\geq \text{ca. } 1 \text{ k}\Omega$		The measuring circuit has been deactivated by the device software.
$\geq 15 \text{ V} /$ $\geq \text{approx. } 5 \text{ k}\Omega$		The measuring circuit has been additionally deactivated by the device hardware. (additional R).

If the extraneous voltage U_f falls below values $\leq 10 \text{ V}$, the loop resistance measuring circuit will be activated again, provided that the measured loop resistance does not exceed the limit of approx. $1 \text{ k}\Omega$.

3.2.3 Automatic self test

The device automatically carries out a self test after connecting to the system to be monitored and later every hour. During the self test internal functional faults are detected and will appear in form of an error code on the display. The alarm relays are not checked during this test. By default, K1 signals the faults detected.

3.2.4 Manual self test

After pressing the internal test button for > 1.5 s, a self test is performed by the device. During this test, functional faults will be determined and appear in form of an error code on the display. The alarm relays are not checked during this test.

While the test button T is pressed and held down, all device-related display elements are indicated on the display.

3.2.5 Functional faults

If an internal functional fault occurs, all three LEDs flash. An error code will appear on the display (E01...E32).

For example, E08 means: Incorrect internal calibration. In such a case please contact the Bender Service.

3.2.6 Fault memory

The fault memory can be deactivated. A stored fault can be deleted by pressing the reset button "R".

3.2.7 Assigning alarms to the alarm relays K1/K2

Different alarm categories can be assigned to the alarm relays K1/K2 via the menu "out".

3.2.8 Time delays t , t_{on} and t_{off}

The times t , t_{on} and t_{off} , described below, delay the output of alarms via LEDs and relays.

3.2.9 Start-up delay t

After connection to the supply voltage, the alarm indication is delayed by the preset time t (0...99 s).

3.2.10 Response delay ton

When the response value is reached, the loop monitor requires the response time t_{an} until the alarm is activated.

A preset response delay t_{on} (0...99 s) adds up to the device-related operating time t_{ae} and delays alarm signalling (total delay time $t_{an} = t_{ae} + t_{on}$).

If the fault does not continue to exist before the time of the response delay has elapsed, an alarm will not be signalled.

3.2.11 Delay on release t_{off}

When no alarm exists after deactivating the fault memory, the alarm LEDs go out and the alarm relays switch back to their original state. The release delay (0...99 s) allow to maintain the alarm state for the selected period.

3.2.12 Password protection (on, OFF)

After activating the password protection (on), settings are only possible when the correct password (0...999) has been entered. If you cannot operate your device because you cannot remember your password, please contact info@bender-service.com.

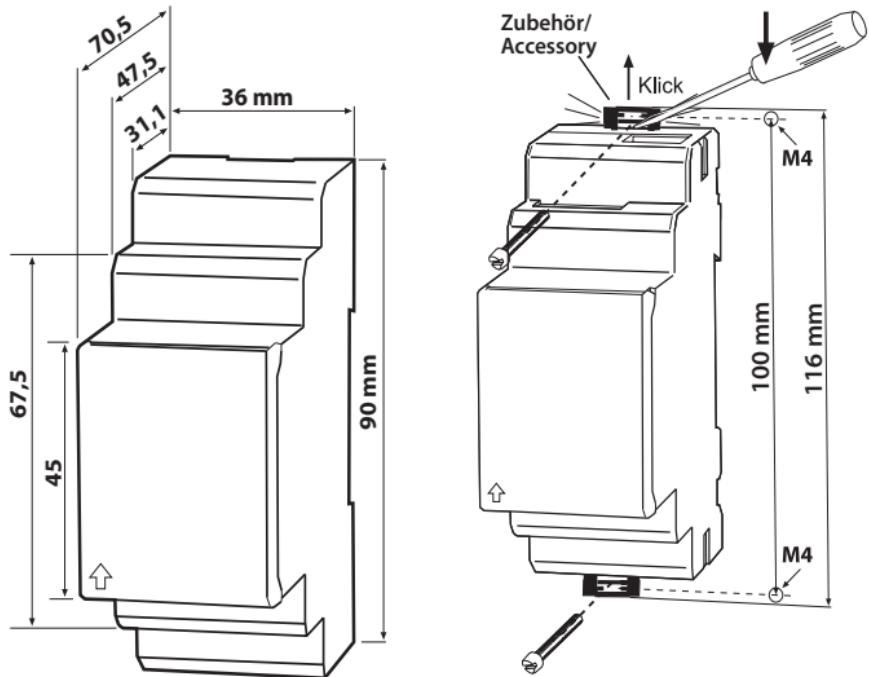
3.2.13 Factory setting FAC

After activating the factory setting, all settings previously changed are reset to delivery status. In addition, the preset function allows automatic adaptation of the response value in relation to the loop resistance.

3.2.14 Erasable history memory

The first alarm value that occurs will be stored in this memory.

Subsequent alarms do not overwrite this "old" value. The memory can be cleared using the Clr key in the menu HiS.



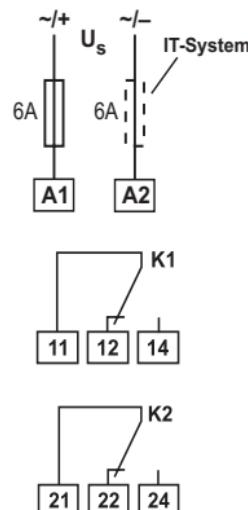
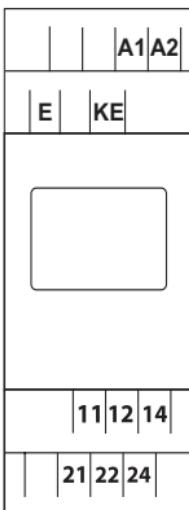
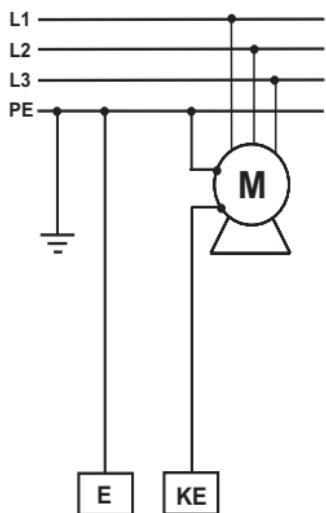
4. Installation and connection

Ensure safe isolation from supply in the installation area. Observe the installation rules for live working.

General dimension diagram and drawing for screw fixing

The front plate cover is easy to open at the lower part marked by an arrow.

1. DIN rail mounting:




Snap the rear mounting clip of the device into place in such a way that a safe and tight fit is ensured.

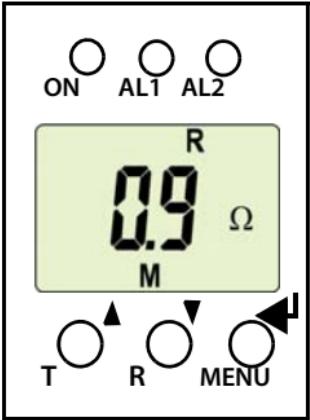
Screw fixing:

Use a tool to move the rear mounting clips (a second mounting clip is required, see ordering information) to a position that it projects beyond the enclosure. Then fix the device using two M4 screws.

2. Wiring

Connect the device according the wiring diagram.

Terminal	Connections
A1, A2	Connection to supply voltage U_s
E KE	Connection to PE conductor (equivalent to functional earth) Connection to monitoring conductor E.
11, 12, 14	Alarm relay K1
21, 22, 24	Alarm relay K2


5. Operation and setting

5.1 Display elements in use

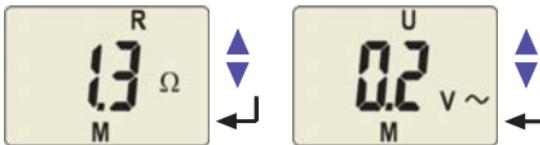
A detailed description of the meaning of the display elements is given in the table below.

Element	Function
> R > U~	Loop resistance (Alarm 1) Extraneous voltage (Alarm 2)
1, r1 R2, r2	Alarm relay K1 Alarm relay K2
R, U Hys %	Response value hysteresis as %
OL	Response value (that is non-adjustable) is exceeded (Overload)
ton1 ton2 t toff	Response delay t_{on1} (K1) Response delay t_{on2} (K2) Start-up delay t Delay on release t_{off} K1, K2
M	Fault memory active
	Operating mode of the relays K1, K2
	Password protection activated

5.2 Function of the operating elements

Device front	Element	Function
	ON	Power On LED, green
	AL1	LED Alarm 1 lights (yellow): Response value > R exceeded
	AL2	LED Alarm 2 lights (yellow): Response value > U reached
	0.9 Ω	Display in standard mode: $R_m = 0.9 \Omega$;
	M	Fault memory active
	t	Test button (> 1.5 s): To indicate the available display elements, to start a self test; Up key (< 1.5 s): Menu items/values
	R	Reset button (> 1.5 s): Deleting the fault memory; Down key (< 1.5 s): Menu items/values
	MENU	MENU key (> 1.5 s): Starting the menu mode; Enter key (< 1.5 s): Confirm menu item, submenu item and value. Enter key (> 1.5 s): Back to the next higher menu level

5.3 Menu structure

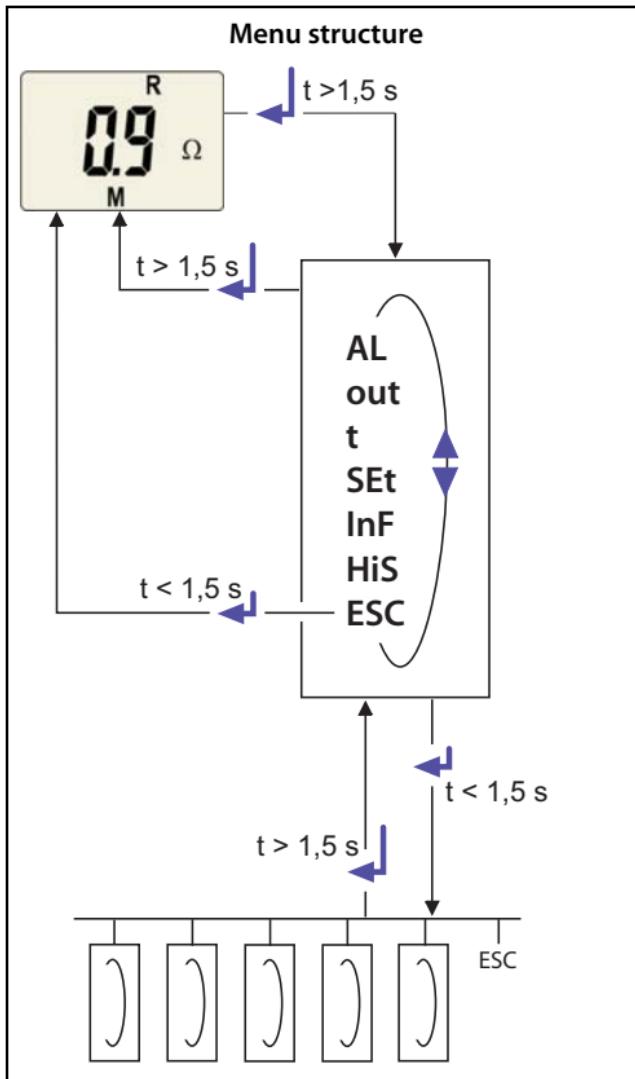

All adjustable parameters are listed in the columns "menu item" and "adjustable parameters". A display-like representation is used to illustrate the parameters in the column menu item. Different alarm categories can be assigned to the alarm relays K1, K2 via the submenus r1, r2. This is done by activation or deactivation of the respective function.

Menu	Submenu:	Menu item	Activation	Adjustable parameter
AL (response values)	→	> R	-	Loop resist. in Ω (Alarm 1)
		R Hys	-	Hysteresis, > R
		> U	-	Extran. voltage (Alarm 2)
		U Hys	-	Hysteresis, extran. voltage
out (output control)	→	M	ON	Fault memory (on, off)
		— 1	-	Operating mode K1 (n.o.)
		— 2	-	Operating mode K2 (n.o.)
		1 Err	ON	Device error at K1
	r1 (K1: (assignment alarm category))	r1 > R	ON	Loop resistance at K1 too high
		1 OL	ON	Measuring current disconnection at K1
		r1 > U	off	Extran. voltage at K1
		1 tES	off	Manual device test at K1
		2 Err	off	Device error at K2
	r2 (K2: (assignment alarm category))	r2 > R	off	Loop resistance at K2 too high
		2 OL	off	Measuring current disconnection at K2
		r2 > U	ON	Extraneous voltage K2
		2 tES	off	Manual device test at K2

t (timing check)	→	t on 1		Response delay K1
		t on 2		Response delay K2
		t		Start-up delay
		t off		Delay on release K1/K2
Set (device control)	→			Parameter setting via pass- word
		FAC		Restore factory settings
		PrE		Manual preset
		SYS		Function blocked
InF	→			Display hard / software ver- sion
HiS	→	Clr		History memory for the first alarm value, erasable

5.4 Display in standard mode

By default, the resistance between the terminals E and KE is indicated on the display.


In the standard mode, the currently measured values of the loop resistance or extraneous voltage can be displayed by using the Up and Down keys.

In order to change the default display, confirm your choice with Enter.

5.5 Display in menu mode

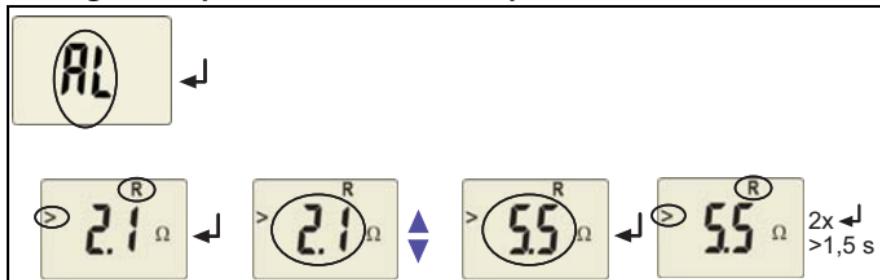
5.5.1 Parameter query and setting: Overview

Menu item	Adjustable parameter
AL	Response values query and setting: <ul style="list-style-type: none">– Loop resistance: > R (AL1)– Hysteresis of the response value: Hys > R– Extraneous voltage: > U (AL2)– Hysteresis of the response value: Hys > U
out	Configuration of the fault memory and the alarm relay: <ul style="list-style-type: none">– Activating/deactivating the fault memory– Select N/O operation (n.o.) or N/C operation (n.c.) individually for each K1/K2– Assign the alarm categories loop resistance, extraneous voltage or device error individually to each K1/K2 (1, r1 / 2, r2).
t	Setting delays: <ul style="list-style-type: none">– Response delay t_{on1}/t_{on2}– Start-up delay t– Delay on release t_{off} (LED, relay)
Set	Device control parameter setting: <ul style="list-style-type: none">– Enable or disable password protection, change the password– Restore factory setting;– Starting preset function PrE;– Service menu SyS blocked
InF	Query hard and software version
HiS	Query the first stored alarm value
ESC	Move to the next higher menu level (back)

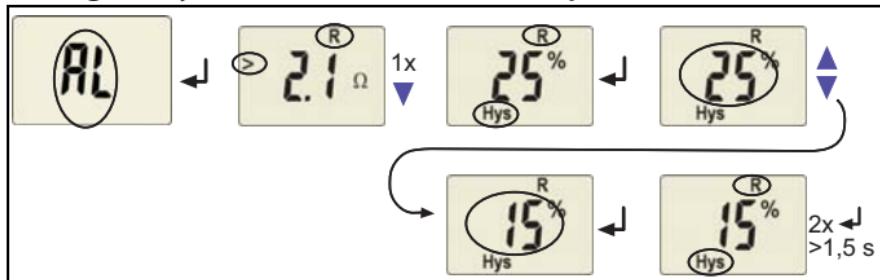
Parameter settings

An example is given below on how to change the alarm response value for the loop resistance > R. Proceed as follows:

1. Press the MENU/Enter key for more than 1.5 seconds. The flashing short symbol AL appears on the display.
2. Confirm with Enter. The symbols > R flash.
3. Confirm with Enter. the current value for Ω flashes.
4. Use the Up or Down key to set the appropriate response value. Confirm with Enter. > R flashes.
5. **You can exit the menu by:**
 - Pressing the Enter key for more than 1.5 seconds to reach the next higher level or
 - selecting the menu item ESC and confirming with Enter to reach the next higher level.

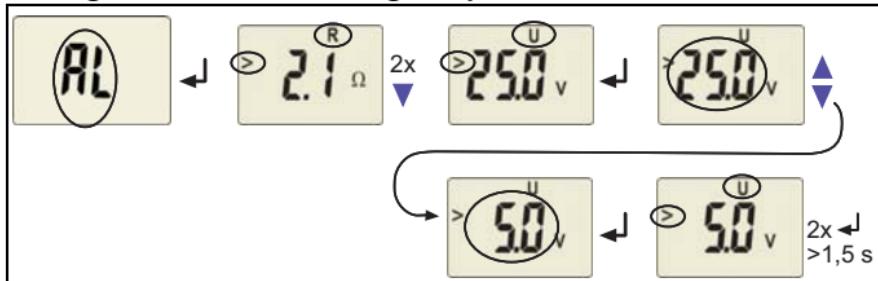

The currently active segments are flashing! In the figures below, the segments where device settings can be carried out are highlighted by an oval.

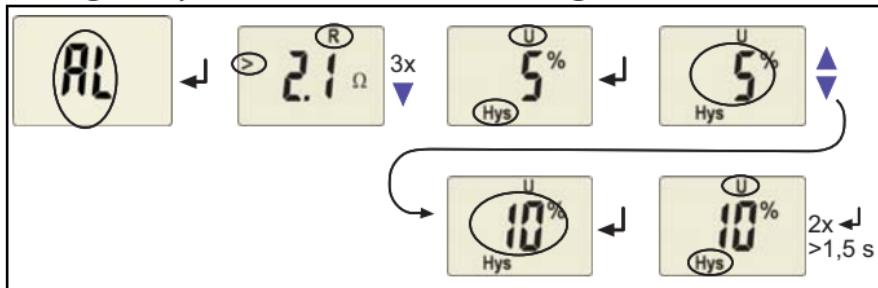
The menu mode can be reached by pressing the MENU key for more than 1.5 seconds.


5.5.2 Setting the response values for loop resistance and the associated hysteresis

Set the resistance value at which an alarm is to be signalled.

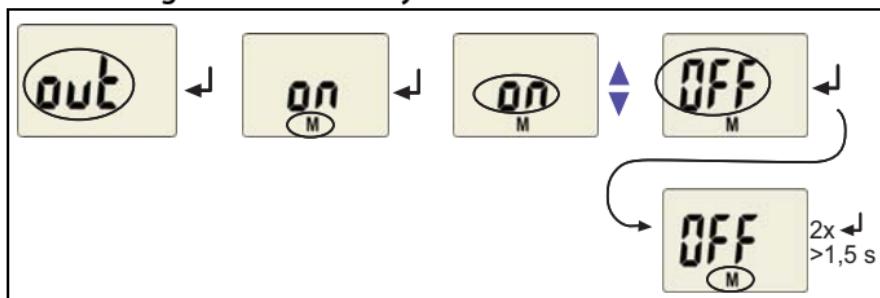
Setting the response value for the loop resistance


Setting the hysteresis of the resistance response value

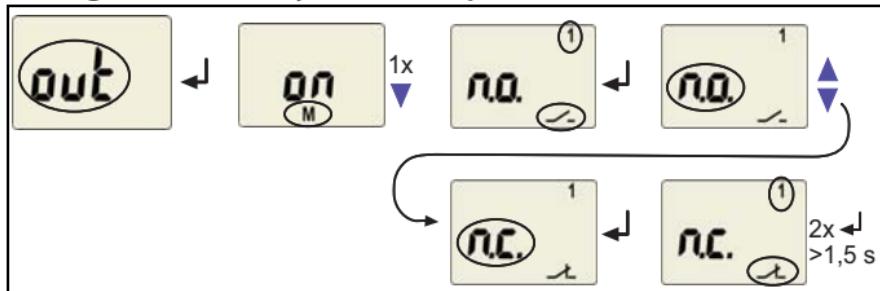

5.5.3 Setting the response values for extraneous voltage and hysteresis

Set the extraneous voltage response value at which an alarm is to be signalled.

Setting the extraneous voltage response value (> U)



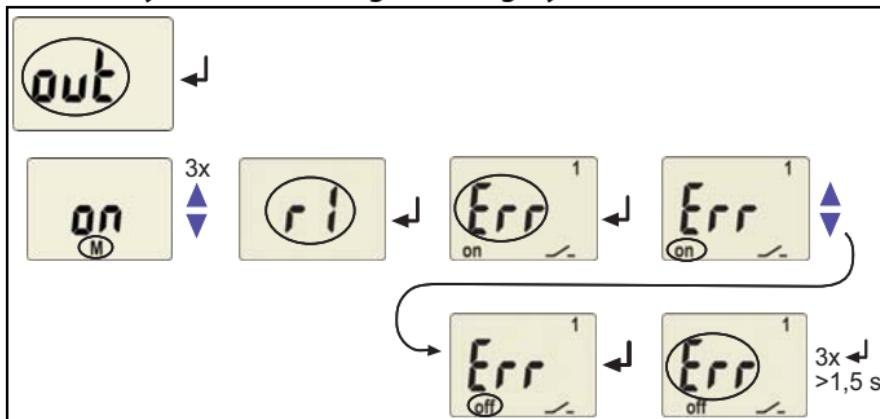
Setting the hysteresis for extraneous voltage



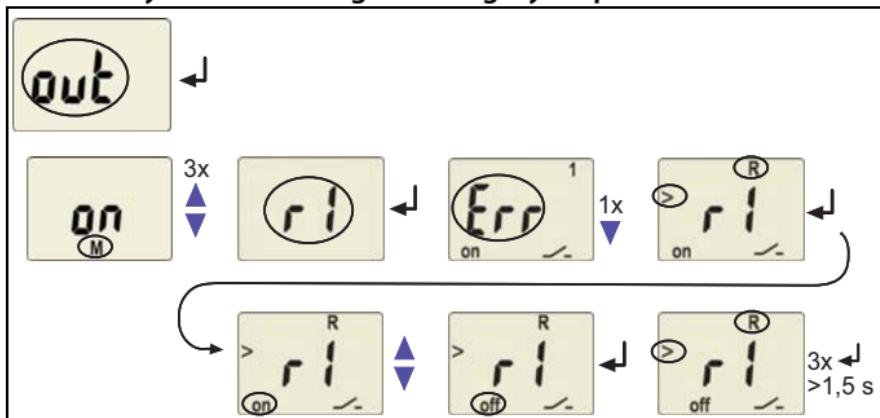
5.5.4 Setting the fault memory and operating mode of the alarm relays

Deactivating the fault memory

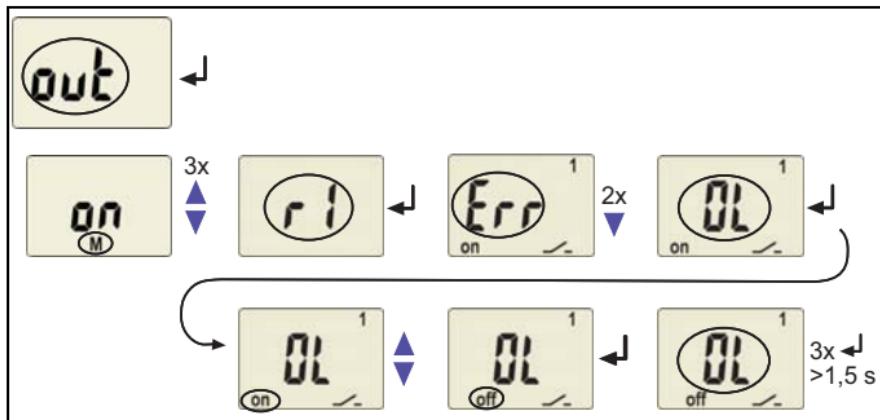
Setting the alarm relay K1 to N/C operation (n.c.)

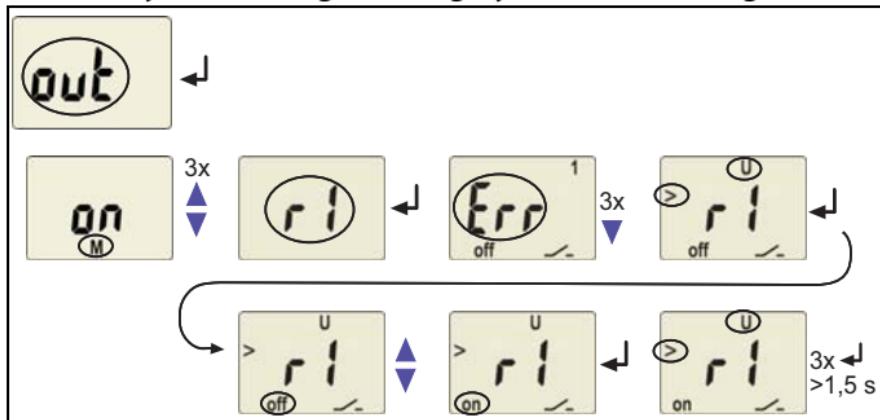


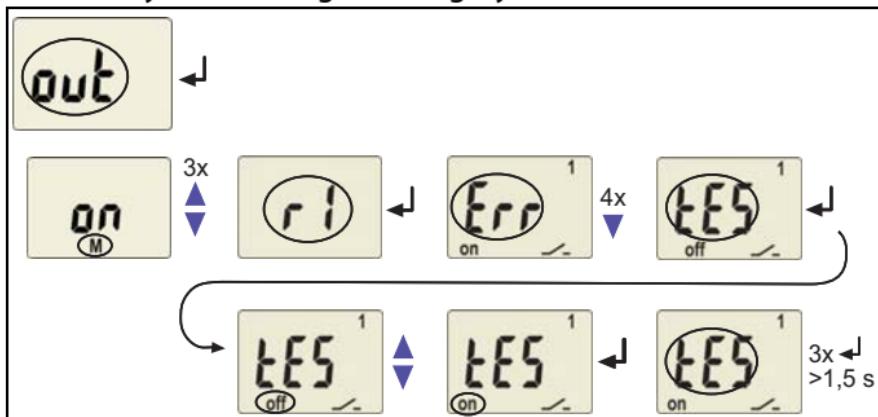
5.5.5 Assigning alarm categories to the alarm relays


Loop resistance, extraneous voltage and device-related errors can be assigned to the alarm relays K1 (r1, 1) and K2 (r2, 2). By default, K1 signals an alarm in case of too high loop resistance. K2 signals an alarm in case of too high extraneous voltage U_f .

A few assignment examples for alarm relay K1 are illustrated below:

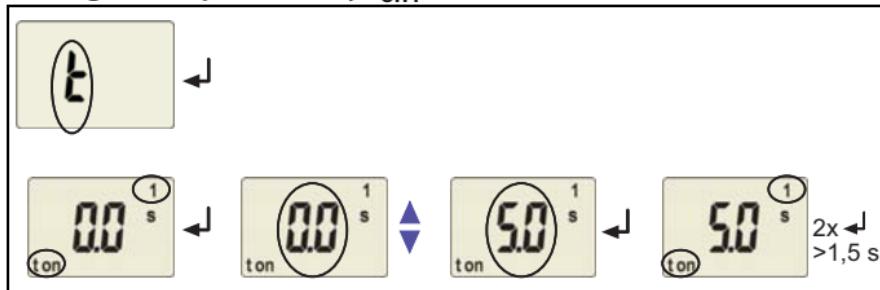

Alarm relay K1: Deactivating the category device error


Alarm relay 1: Deactivating the category loop resistance

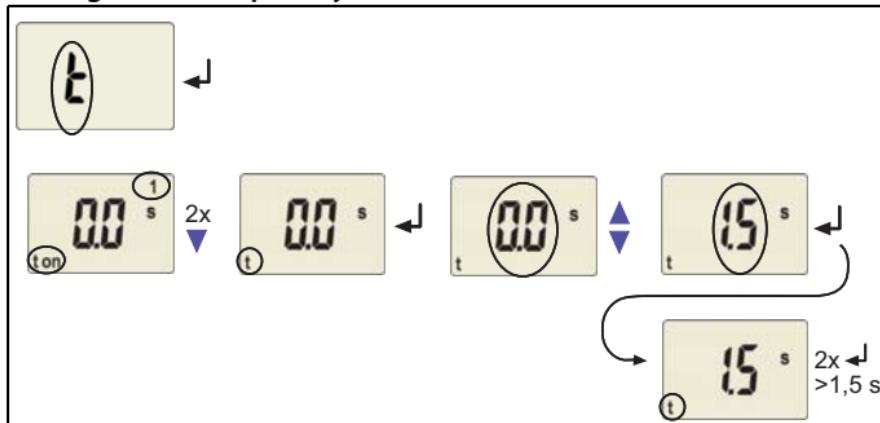

Alarm relay 1: Deactivating the category measuring current disconnection

Alarm relay 1: Activating the category extraneous voltage

Alarm relay 1: Activating the category manual self test

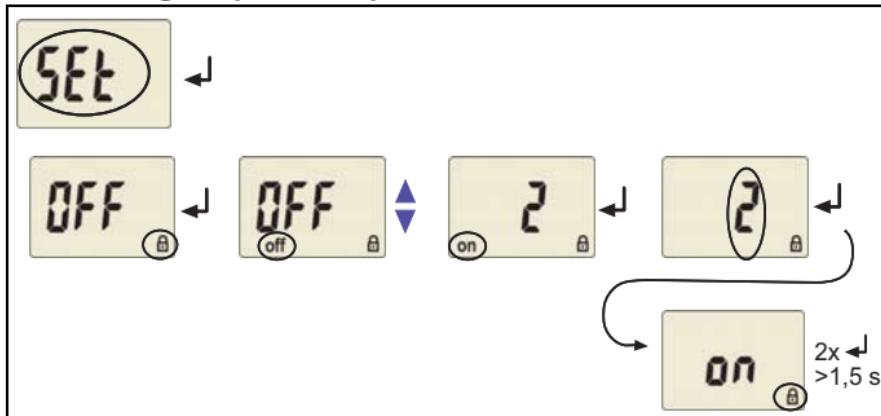

When an alarm relay (K1/K2) has been deactivated in the menu, an alarm will not be signalled by the respective changeover contact! An alarm will only be indicated by the respective alarm LED (AL1/AL2)!

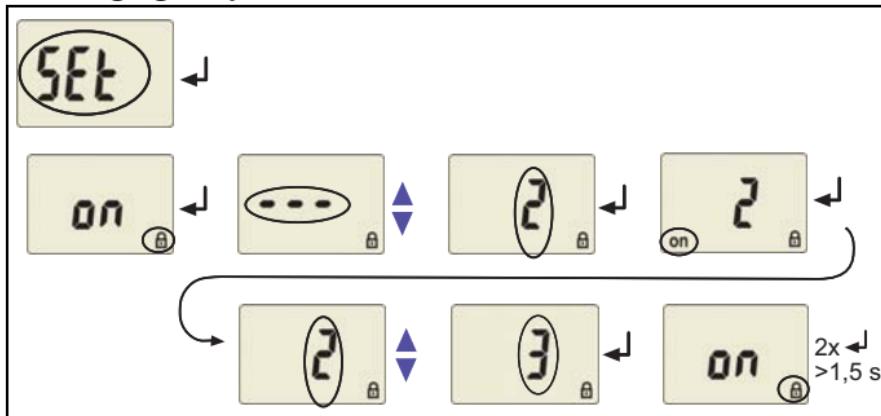
5.5.6 Setting time delays


Use this segment to set a response delay t_{on1} (0...99 s) for K1, t_{on2} (0...99 s) for K2, a starting delay t (0...99 s) when starting the device, as well as a common release delay t_{off} (0...99 s) for K1, K2. This setting is only relevant when the fault memory M is deactivated.

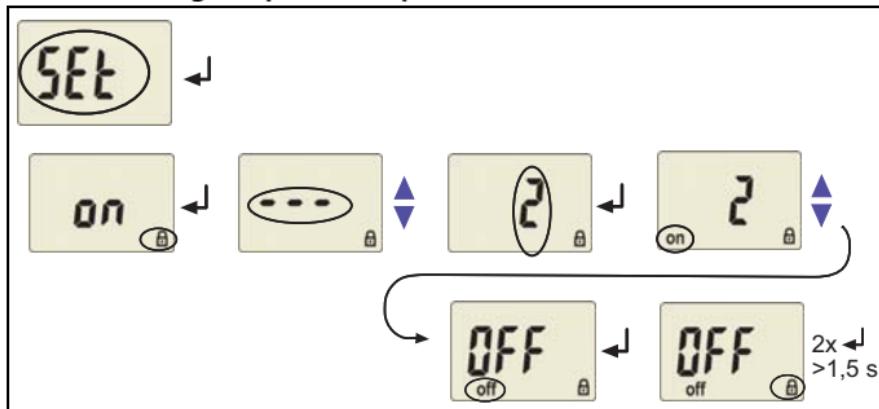
The operating steps for the setting of the response delay t_{on1} and the start-up delay t are illustrated by way of example.

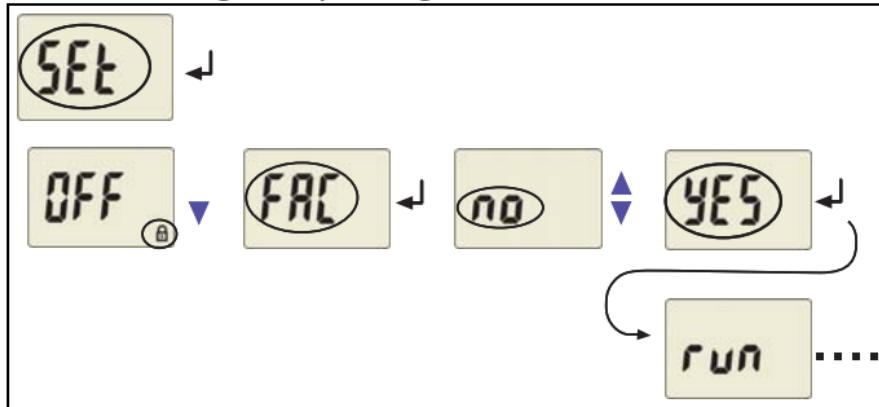
Setting the response delay t_{on1}

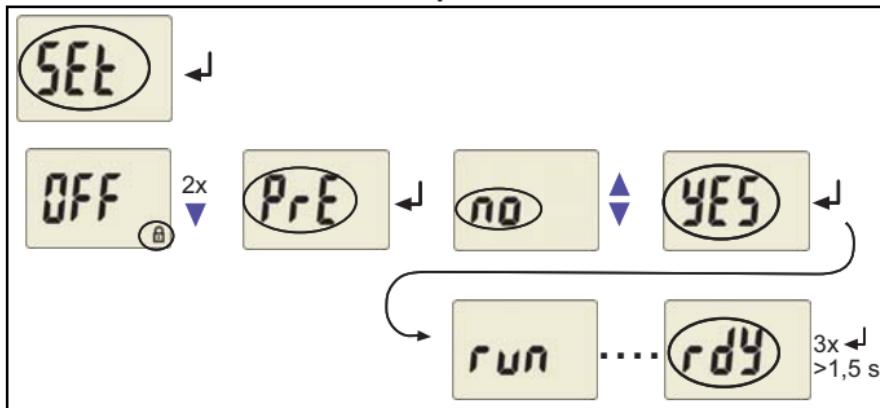

Setting the start-up delay t


5.5.7 Factory setting and password protection

Use this menu to activate the password protection, to change the password or to deactivate the password protection. In addition, you can reset the device to its factory settings.


a) Activating the password protection

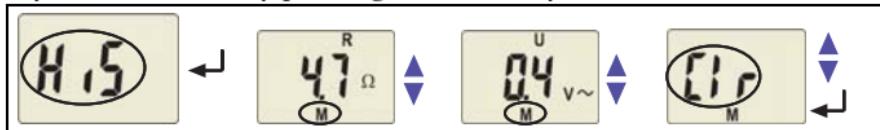

b) Changing the password


c) Deactivating the password protection

5.5.8 Restoring factory setting


5.5.9 Manual activation of the preset function

If loop resistances of approx. $\geq 1 \text{ k}\Omega$ exist, the preset function will be ineffective. The message "AL not SET" appears on the display.


5.5.10 Device information query

This function is used to query the hardware (d...) and software (1.xx) versions. After activating this function, data will be displayed as a scrolling text. Once one pass is completed you can select individual data sections using the Up/Down keys.

5.5.11 History memory query

The history memory can be selected via the menu HiS. Use the Up and Down keys to view the next display. If Clr is flashing, the history memory can be cleared by pressing the Enter key.

5.6 Preset function/ factory setting

On initial commissioning, a pre-defined response value in relation to the measured resistance value R_m is automatically set:
Response value loop resistance: $(> R) = (R_m + 0,5 \Omega) \times 1.5$

<i>Hysteresis (R Hys):</i>	<i>25 %</i>
<i>Extraneous voltage (> U)</i>	<i>25 V</i>
<i>Hysteresis (U Hys):</i>	<i>5 %</i>
<i>Fault memory M:</i>	<i>ON</i>
<i>Operating mode K1 (> R):</i>	<i>N/O operation (n.o.)</i>
<i>Operating mode K2 (> U):</i>	<i>N/O operation (n.o.)</i>
<i>Start-up delay:</i>	<i>$t = 0 \text{ s}$</i>
<i>Response delay:</i>	<i>$t_{on1} = 0 \text{ s}$</i> <i>$t_{on2} = 0 \text{ s}$</i>
<i>Delay on release:</i>	<i>$t_{off} = 0.5 \text{ s}$</i>
<i>Password:</i>	<i>0, Off</i>

5.7 Commissioning

Prior to commissioning, check proper connection of the GM420.

After connecting a brand-new GM420 to the supply voltage, the loop resistance response value is automatically set by the internal preset function:

$$(> R) = (R_m + 0,5 \Omega) \times 1.5$$

(R_m = measured loop resistance)

6. Technical data GM420...

()* = factory setting

Insulation coordination acc. to IEC 60664-1 / IEC 60664-3

Rated insulation voltage	400 V
Rated impulse voltage/pollution degree	4 kV / III
Protective separation (reinforced insulation) between	(A1, A2) - (E, KE) - (11-12-14) - (21-22-24)
Voltage test acc. to IEC 61010-1:	
(E, KE) - [(A1-A2), (11-12-14)]	3.32 kV
(E, KE) - (21-22-24)	2.21 kV
(A1- A2) - (11-12-14) - (21-22-24)	2.21 kV

Supply voltage

GM420-D-1:

Supply voltage U_s	AC 16...72 V / DC 9.6...94 V
Frequency range U_s	15...460 Hz

GM420-D-2:

Supply voltage U_s	AC/DC 70...300 V
Frequency range U_s	15...460 Hz
Power consumption	≤ 3.5 VA

Measuring circuit

Loop resistance R_m :

Measuring range R_m	0...100 Ω
Measuring current I_m	DC 20 mA
Measuring voltage U_m	\leq DC 24 V

Extraneous voltage U_f :

Measuring range U_f	AC 0...50 V
Nominal frequency f_n	42...460 Hz
Disconnection of the measuring loop U_f	≥ 12 V
Reclosing of the measuring loop	≤ 10 V
Permissible extraneous voltage U_f	≤ 440 V
Permissible extraneous DC voltage, without influence on the measurement	DC 0 V

Response values

Loop resistance ($> R$) (Alarm 1)	0.1...100 Ω
Resolution of setting R 0.1...10 Ω	0.1 Ω
Resolution of setting R 10...100 Ω	1 Ω
Preset function:	
Loop resistance ($> R$)	$= ((R_m + 0.5 \Omega) \times 1.5) *$
Relative percentage error 0...1 Ω	$\pm 20\%$, ± 1 digit
Relative percentage error 1...10 Ω	$\pm 5\%$, ± 1 digit
Relative percentage error 10...100 Ω	$\pm 5\%$, ± 1 digit
Hysteresis ($> R$)	1...40 % (25 %)*
Extraneous voltage U_f ($> U$) (Alarm 2)	1...50 V (25 V)*
Resolution of setting U_f 1...50 V	0.5 V
Relative percentage error U_f ($> U$) in the range 50/60 Hz	$\pm 2\%$, ± 1 digit
Relative percentage error U_f ($> U$) in the range 42...460 Hz	$\pm 10\%$, ± 1 digit
Hysteresis $> U$	1...40 % (5 %)*

Specified time

Start-up delay	0...99 s (0 s)*
Response delay $t_{on1/2}$	0...99 s (0 s)*
Release delay t_{off}	0...99 s (0.5 s)*
Operating time t_{ae} when the loop is open ($R > 50 \text{ k}\Omega$)	≤ 40 ms
Operating time t_{ae} when the loop is closed ($> R$)	≤ 500 ms
Operating time t_{ae} if extraneous voltage U_f ($> U$) and overload (OL) exist	≤ 100 ms
Response time t_{an}	$t_{an} = t_{ae} + t_{on1/2}$
Recovery time t_b	≤ 300 ms
Recovery time t_b after protective disconnection	≤ 1 s

Displays, memory

Display	LC display, multi-functional, not illuminated
Display range, measured value R_m	0...100 Ω
Display range, measured value U_f	AC 0...50 V
Operating error, loop resistance 0...1 Ω	$\pm 20\%$, ± 1 digit
Operating error, loop resistance 1...100 Ω	$\pm 5\%$, ± 1 digit
Operating error, voltage in the range 50/60 Hz	$\pm 2\%$, ± 1 digit
Operating error, voltage in the range 42...460 Hz	$\pm 10\%$, ± 1 digit
History memory (HiS) for the first alarm value	data record measured values

Password	off / 0...999 (off)*
Fault memory (M) alarm relay	on / off (on)*

Switching elements

Number of changeover contacts	2 x 1 (K1, K2)
Operating principle	N/C operation / N/O operation
.. K1: Err, > R, OL, > U, tES (device error, loop resistance, measuring current disconnection: N/O operation n.o.)*	
..... K2: Err, > R, OL, > U, tES (overvoltage: N/O operation n.o.)*	
Electrical service life under rated operating conditions,	
number of cycles	10000
Contact data acc. to IEC 60947-5-1:	
Utilization category	AC 13 AC 14 DC-12 DC-12 DC-12
Rated operational voltage	230 V 230 V 24 V 110 V 220 V
Rated operational current	5 A 3 A 1 A 0.2 A 0.1 A
Minimum contact load	1 mA at AC / DC \geq 10 V

Environment / EMC

EMC	IEC 61326
Operating temperature	-25 °C...+55 °C
Classification of climatic conditions acc. to IEC 60721:	
Stationary use (IEC 60721-3-3)	3K5 (except condensation and formation of ice)
Transportation (IEC 60721-3-2)	2K3 (except condensation and formation of ice)
Storage (IEC 60721-3-1)	1K4 (except condensation and formation of ice)
Classification of mechanical conditions acc. to IEC 60721:	
Stationary use (IEC 60721-3-3)	3M4
Transportation (IEC 60721-3-2)	2M2
Storage (IEC 60721-3-1)	1M3

Connection

Connection	screw terminals
Connection properties:	
rigid/ flexible/ conductor sizes	0.2...4 / 0.2...2.5 mm ² / AWG 24...12
Multi-conductor connection (2 conductors with the same cross section):	
rigid/ flexible	0.2...1.5 mm ² / 0.2...1.5 mm ²
Stripping length	8...9 mm
Tightening torque	0.5...0.6 Nm

Other

Operating mode	continuous operation
Mounting	any position
Degree of protection, internal components (IEC 60529)	IP30
Degree of protection, terminals (IEC 60529)	IP20
Enclosure material	polycarbonate
Flammability class	UL94 V-0
DIN rail mounting acc. to	IEC 60715
Screw fixing	2 x M4 with mounting clip
Software version	D268 V1.0x
Weight	≤ 150 g

()* = Factory setting

6.1 Standards, approvals and certifications

6.2 Ordering information

Device type	Measuring range Loop resistance	Measuring range extraneous voltage U_f	Supply voltage U_s	Art. No.
GM420-D-1	0...100 Ω	AC 0...50 V	DC 9.6 V...94 V / AC 15...460 Hz, 16...72 V	B 9308 2001
GM420-D-2	0...100 Ω	AC 0...50 V	DC 70...300 V / AC 15...460 Hz, 70...300 V	B 9308 2002
Mounting clip for screw fixing (1 piece per device, accessories)				B 9806 0008

INDEX

A

Adjustable parameters, list 19
Automatic self test 12

C

currently measured values
- Extraneous voltage 21
- Loop resistance 21

D

Delay on release toff 13
Deleting the fault alarms 18
Device features 9
Display elements in use 17
Display in menu mode 22
Display in standard mode 21

E

ENTER key 18
Example of parameter setting 24

F

factory 35
factory setting 13, 35
Fast commissioning 6
Fault memory 12
Function 9
Functional faults 12

I

Installation and connection 15

K

K1: assignment alarm category 19
K2: assignment alarm category 19

L

LED Alarm 1 lights 18
LED Alarm 2 lights 18

M

Manual self test 12
Manual, target group 5
Menu
- AL (response values) 19
- HiS (history memory for the
first alarm value) 20
- InF (hard and software ver-
sion) 20
- out (output control) 19
- Set (device control) 20
- t (timing check) 20

Menu structure 19

Mounting clip for screw fixing 40

N

Notes for the user 5

O

Operating elements, function 18

Operation and setting 17

Ordering information 40

P

Parameter query and setting

- 22

Parameter setting

- Activating or deactivating the password protection 32
- Assigning alarm categories to the alarm relays 28
- Deactivating the fault memory 27
- Manual activation of the preset function 34
- Setting response values 25
- Setting the operating principle of the alarm relays 27
- Setting time delays 31

Password protection 13

Preset function 10

Protected measuring circuit 11

R

Reset button 18

Response delay ton 13, 31

S

Setting response values

- Extraneous voltage (> U) 26

- Hysteresis extraneous voltage

26

- Loop resistance > R 25

- Loop resistance hysteresis 25

Starting delay t 31

Starting the menu mode 18

Start-up delay t 13

T

Technical data 37

Test button 18

Time delays 9, 12

W

Wiring diagram 16

Work activities on electrical installations 7

Bender Inc.

USA:

700 Fox Chase
Coatesville, PA 19320
Toll Free: 800-356-4266
Phone: 610-383-9200
Fax: 610-383-7100
E-mail: info@bender.org

Canada:

5810 Ambler Drive, Unit 1
Mississauga, ON L4W 4J5
Toll Free: 800-243-2438
Phone: 905-602-9990
Fax: 905-602-9960
E-mail: info@bender-ca.com

Web: <http://www.bender.org>

