TaqMan[®] Allelic Discrimination

Demonstration Kit

Protocol

© Copyright 2008, 2010 Applied Biosystems. All rights reserved.

For Research Use Only. Not for use in diagnostic procedures.

Information in this document is subject to change without notice. Applied Biosystems assumes no responsibility for any errors that may appear in this document.

APPLIED BIOSYSTEMS DISCLAIMS ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL APPLIED BIOSYSTEMS BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF.

Notice to Purchaser: Limited License

Use of this TaqMan® Allelic Discrimination Demonstration Kit (P/N 4303263) is covered by US patent claims and patent claims outside the US. The purchase of this product includes a limited, nontransferable immunity from suit under the foregoing patent claims for using only this amount of product for the purchaser's own internal research. No right under any other patent claim (such as apparatus or system claims for real-time PCR) and no right to perform commercial services of any kind, including without limitation reporting the results of purchaser's activities for a fee or other commercial consideration, is conveyed expressly, by implication, or by estoppel. This product is for research use only. Diagnostic uses under Roche patents require a separate license from Roche. Further information on purchasing licenses may be obtained from the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA.

Probes labeled at the 5' and 3' end, and their use in the 5' nuclease assay, are covered by patents, issued and pending, owned by Applied Biosystems.

TRADEMARKS

Applied Biosystems, AB (Design), ABI PRISM and MicroAmp are registered trademarks and ABI, and Primer Express are trademarks of Applied Biosystems or its subsidiaries in the U.S. and/or certain other countries.

AmpErase, AmpliTaq Gold, GeneAmp, and TaqMan are registered trademarks of Roche Molecular Systems, Inc.

All other trademarks are the sole property of their respective owners.

Contents

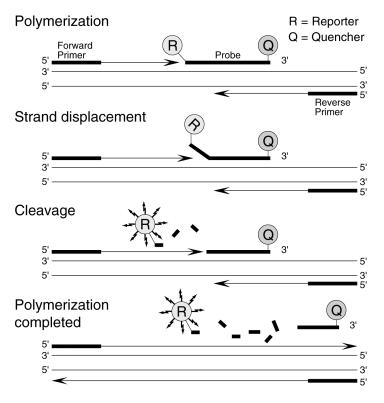
Introduction	1
Overview	1
5´ Nuclease Assay	1
Sequence Detection	3
Allelic Discrimination	3
System Performance Guarantee	3
Demonstrated Performance	3
Materials and Equipment	4
Kit Contents	4
Storage and Stability	4
Instruments Required	5
User-Supplied Materials	5
Technical Support	6
To Reach Us On the Web	6
Hours for Telephone Technical Support	6
To Reach Us by Telephone or Fax in North America	6
jDocuments on Demand	9
To Reach Us by E-Mail	6
Regional Offices Sales and Service	7
Preventing Contamination	13
Overview	13
Prevention of PCR Product Carryover	13
General PCR Practices	
Fluorescent Contaminants	14
Preparing Control Reactions and Control DNA Samples	15
Overview	15
Prepare Controls and Unknowns	16

PCR Amplification	18
Thermal Cycling Parameters	18
Real Time Run on the ABI PRISM 7700	19
Performing PCR on the GeneAmp 9600 and 9700	19
Allelic Discrimination on the ABI PRISM 7700 and 7200	20
Overview	20
Analysis on the ABI PRISM 7700 or 7200	20
Allelic Discrimination on the LS-50B	22
LS-50B Settings	22
Measure Fluorescence	22
Appendix A. Guidelines for Custom Applications	24
Nine-Step Program.	24
Identify Target Sequence	24
Design TaqMan Probe	24
Design Primers	25
Order Reagents	25
Quantitate Probes and Primers	25
Optimize Primer Concentrations	26
Optimize Probe Concentrations	29
Set Up and Run an Allelic Discrimination Plate	34
Appendix B. Real Time Detection on the ABI PRISM 7700	40
Threshold Cycle	40
Appendix C. References	41

Introduction

Overview

The TaqMan® Allelic Discrimination Demonstration Kit is a model assay to show the allelic discrimination capabilities of the Applied Biosystems Sequence Detection Systems. It has been optimized for use with TaqMan Universal PCR Master Mix (P/N 4304437).


Direct detection of polymerase chain reaction (PCR) product with no downstream processing is accomplished within minutes of PCR completion by measuring the increase in fluorescence of dye-labeled DNA probes. This method permits the analysis of thousands of samples per day with high sample-to-sample reproducibility.

5' Nuclease Assav

The TaqMan Allelic Discrimination Demonstration Kit employs a probe technology that exploits the 5´-3´ nuclease activity of AmpliTaq Gold® DNA Polymerase to allow direct detection of the PCR product by the release of a fluorescent reporter as a result of PCR. This PCR system is optimized for yield. AmpErase® UNG is required for the prevention of PCR product carryover (Longo *et al.*, 1990). For more information on the 5´ nuclease assay, refer to Lawyer *et al.*, 1989, Holland *et al.*, 1991, and Lyamichev *et al.*, 1993.

Two TaqMan probes are used in this allelic discrimination assay, one probe for each allele in a two-allele system. Each probe consists of an oligonucleotide with a 5´-reporter dye and a 3´-quencher dye. TET (6-carboxy-4,7,2´,7´-tetrachlorofluorescein) is covalently linked to the 5´ end of the probe for the detection of Allele 1. FAM (6-carboxyfluorescein) is covalently linked to the 5´ end of the probe for the detection of Allele 2. Each of the reporters is quenched by TAMRA (6-carboxy-N,N,N´,N´-tetramethylrhodamine) attached via a linker arm located at the 3´ end of each probe.

When the probe is intact, the proximity of the reporter dye to the quencher dye results in suppression of the reporter fluorescence, primarily by Förster-type energy transfer (Förster, 1948; Lakowicz, 1983). During PCR, forward and reverse primers hybridize to a specific sequence of the target DNA. The TaqMan probe hybridizes to a target sequence within the PCR product. The AmpliTaq Gold enzyme cleaves the TaqMan probe with its 5´-3´ nuclease activity. The reporter dye and quencher dye are separated upon cleavage, resulting in increased fluorescence of the reporter (Figure 1 on page 2). The 3´ end of the TaqMan probe is blocked to prevent extension of the probe during PCR.

Figure 1 The fork-like-structure-dependent, polymerization-associated, 5´–3´ nuclease activity of AmpliTaq Gold DNA Polymerase during one extension phase of PCR (Lyamichev *et al.*, 1993)

This process occurs in every cycle and does not interfere with the exponential accumulation of product. The separation of the reporter dyes from the quencher dye results in increase in fluorescence for each of the FAM and TET reporters. The increase in fluorescence is measured, and is a direct consequence of target amplification during PCR.

Both primer and probe must hybridize to their targets for amplification and cleavage to occur. The fluorescence signals are generated only if the target sequences for the probes are amplified during PCR. Because of these requirements, non-specific amplification is not detected. For information on release of a fluorescent reporter during the PCR, refer to Lee *et al.*, 1993, and Livak *et al.*, 1995.

Detection

Sequence The Sequence Detection Systems from Applied Biosystems are used to measure the increase of reporter fluorescence following PCR. Reporter signals are normalized to the emission of a passive reference:

> R_n Emission Intensity of Allele 1 Reporter Emission Intensity of Passive Reference (AL1)

> R_n Emission Intensity of Allele 2 Reporter (AL2) Emission Intensity of Passive Reference

These parameters are used in the Allelic Discrimination analysis software described on pages 19-21.

Allelic The TagMan Allelic Discrimination Demonstration Kit illustrates **Discrimination** discrimination between the alleles of a two-allele system. It contains enough PCR reagents for up to 200 reactions of 50 µL each. During amplification, the Plasmid Allele 1 and Plasmid Allele 2 standards supplied with the kit generate reporter fluorescent signals such that allele calls may be made on unknown samples.

> Allele 1 and Allele 2 probes supplied in the Probe and Primer Mix with the TagMan Allelic Discrimination Demonstration Kit can be used with the specific Genomic Control DNA included in the kit. Custom probes must be designed for detection of any other templates. See Appendix A, "Guidelines for Custom Applications," on page 23.

Guarantee

System Using the Genomic Control DNA and protocol for the TagMan Allelic **Performance** Discrimination Demonstration Kit, automated allele calls will be reported by the Sequence Detection System with a 99.7% confidence level.

Demonstrated The minimum and maximum detection range is from 10–100 ng of Performance Genomic Control DNA, which is approximately 10⁴–10⁵ copies of a single copy gene.

Materials and Equipment

Kit Contents The TagMan Allelic Discrimination Demonstration Kit (P/N 4303263) has been designed to provide 200 reactions of 50 µL each. Experiments have been performed with the ABI PRISM® 7700 and ABI PRISM 7200 Sequence Detectors showing that a 25-µL final reaction volume will provide the same precision for TagMan allelic discrimination assays. We do not recommend final reaction volumes lower than 25 µL.

> The contents of the TagMan Allelic Discrimination Demonstration Kit are listed in Table 1.

Table 1. Kit Components

Component	Volume	Description	
TaqMan Universal PCR Master Mix	5.75 mL	One bottle, sufficient for 200 reactions of 50 µL each	
Probe and Primer Mix	3.45 mL	Two tubes, sufficient for 200 reactions of 50 µL each, containing the following:	
		♦ Forward primer: 5´-CAG TGG TGC CAG CTC AGC A-3´	
		Reverse primer: 5´-GGT GAG GCT GTG GCT GAA CA-3´	
		◆ TaqMan Plasmid Allele 1 probe: 5′-TET-CCA GCA ACC AAT GAT GCC CGT T-TAMRA-3′	
		◆ TaqMan Plasmid Allele 2 probe: 5′-FAM-CCA GCA AGC ACT GAT GCC TGT TC-TAMRA-3′	
Plasmid Allele 1 standard	250 µL	One tube (10 fg/µL), sufficient for 100 reactions	
Plasmid Allele 2 standard	250 µL	One tube (10 fg/µL), sufficient for 100 reactions	
Genomic Control DNA (human)	1.0 mL	Two tubes (10 ng/μL), sufficient for 200 reactions	

Stability

Storage and Store the TaqMan Allelic Discrimination Demonstration Kit or its components at 2–6 °C. If stored under the recommended conditions, the product will maintain performance through the control date printed on the label.

Required

Instruments One of the following instrument systems in Table 2 is required.

Table 2. Instrument Platforms for Allelic Discrimination

Eq	uipment Item	Source
+	ABI PRISM® 7700 Sequence Detector	Applied Biosystems (call your regional sales office for the
•	ABI PRISM® 7200 Sequence Detector and GeneAmp® PCR System 9600 or GeneAmp® PCR System 9700 in 9600 Emulation Mode	instrument best suited your needs)
•	TaqMan® LS-50B PCR Detection System and GeneAmp PCR System 9600 or GeneAmp PCR System 9700 in 9600 Emulation Mode	

Materials

User-Supplied The following items in Table 3 may be required in addition to the reagents supplied in the TagMan Allelic Discrimination Demonstration Kit.

Table 3. User-supplied Materials

Reagent/Equipment Item	Source
Deionized water or TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0)	Major laboratory suppliers (MLS)
TaqMan Universal PCR Master Mix	Applied Biosystems (P/N 4304437)
MicroAmp® Optical 96-Well Reaction Plate and Optical Caps	Applied Biosystems (P/N 403012)
96-Well Microplate (Portvair)	Applied Biosystems (P/N L225-1692)
Primer Express [™] software	Applied Biosystems (P/N 402089)

The ABI PRISM 7700 and ABI PRISM 7200 Sequence Detectors use the MicroAmp Optical 96-Well Reaction Plate and MicroAmp Optical Caps. The LS-50B PCR Detection System uses the 96-Well Microplate (Portvair).

Technical Support

To Reach Us on the Web

Applied Biosystems web site address is:

http://www.appliedbiosystems.com/techsupport

We strongly encourage you to visit our web site for answers to frequently asked questions, and to learn more about our products. You can also order technical documents and/or an index of available documents and have them faxed or e-mailed to you through our site (see the "Documents on Demand" section below).

Hours for Telephone Technical Support

In the United States and Canada, technical support is available at the following times.

Product	Hours
Chemiluminescence	9:00 a.m. to 5:00 p.m. Eastern Time
LC/MS	9:00 a.m. to 5:00 p.m. Pacific Time
All Other Products	5:30 a.m. to 5:00 p.m. Pacific Time

See the "Regional Offices Sales and Service" section below for how to contact local service representatives outside of the United States and Canada.

To Reach Us by Telephone or Fax in North America

Call Technical Support at 1-800-831-6844, and select the appropriate option (below) for support on the product of your choice at any time during the call. (To open a service call for other support needs, or in case of an emergency, press 1 after dialing 1-800-831-6844.)

For Support On This Product	Dial 1-800-831-	6844, and
ABI PRISM [®] 3700 DNA Analyzer	Press	FAX
	8	650-638-5981
ABI PRISM® 3100 Genetic Analyzer	Press	FAX
	26	650-638-5891
DNA Synthesis	Press	FAX
	21	650-638-5981

For Support On This Product	Dial 1-800-831-6844	, and
Fluorescent DNA	Press	FAX
Sequencing	22	650-638-5891
Fluorescent Fragment Analysis (includes	Press	FAX
GeneScan® applications)	23	650-638-5891
Integrated Thermal Cyclers	Press	FAX
	24	650-638-5891
BioInformatics (includes BioLIMS™, BioMerge™, and	Press	FAX
SQL GT™ applications)	25	505-982-7690
PCR and Sequence	Press	FAX
Detection	5, or call 1-800-762-4001, and press 1 for PCR, or 2 for Sequence Detection	240-453-4613
FMAT	Telephone	FAX
	1-800-899-5858, and press 1, then press 6	508-383-7855
Peptide and Organic Synthesis	Press	FAX
Synthesis	31	650-638-5981
Protein Sequencing	Press	FAX
	32	650-638-5981
Chemiluminescence	Telephone	FAX
	1-800-542-2369 (U.S. only), or	781-275-8581 (Tropix)
	1-781-271-0045 (Tropix)	9:00 a.m. to 5:00 p.m. ET

For Support On This Product	Dial 1-800-831-6844, and	
LC/MS	Telephone	FAX
	1-800-952-4716	650-638-6223
		9:00 a.m. to 5:00 p.m. PT

Documents on Free 24-hour access to Applied Biosystems technical documents, **Demand** including MSDSs, is available by fax or e-mail.

> You can access Documents on Demand through the internet or by telephone:

If you want to	
order	Then
through the	Use http://www.appliedbiosystems.com/techsupport
internet	You can search for documents to order using keywords.
	Up to five documents can be faxed or e-mailed to you by title.
by phone from the United States or	a. Call 1-800-487-6809 from a touch-tone phone. Have your fax number ready.
Canada	 b. Press 1 to order an index of available documents and have it faxed to you. Each document in the index has an ID number. (Use this as your order number in step "d" below.)
	c. Call 1-800-487-6809 from a touch-tone phone a second time.
	d. Press 2 to order up to five documents and have them faxed to you.
by phone from outside the	a. Dial your international access code, then 1-858-712-0317, from a touch-tone phone.
United States or Canada	Have your complete fax number and country code ready (011 precedes the country code).
	 b. Press 1 to order an index of available documents and have it faxed to you. Each document in the index has an ID number. (Use this as your order number in step "d" below.)
	c. Call 1-858-712-0317 from a touch-tone phone a second time.
	d. Press 2 to order up to five documents and have them faxed to you.

E-Mail areas.

To Reach Us by Contact technical support by e-mail for help in the following product

For this product area	Use this e-mail address
Chemiluminescence	info@appliedbiosystems.com
Genetic Analysis	galab@appliedbiosystems.com
LC/MS	apisupport@sciex.com
PCR and Sequence Detection	pcrlab@appliedbiosystems.com
Protein Sequencing, Peptide and DNA Synthesis	corelab@appliedbiosystems.com

Regional Offices If you are outside the United States and Canada, you should contact Sales and Service your local Applied Biosystems service representative.

The Americas	
United States Applied Biosystems 850 Lincoln Centre Drive	Latin America (Del.A. Obregon, Mexico)
Foster City, California 94404	Tel:(305) 670-4350 Fax: (305) 670-4349
Tel: (650) 570-6667 (800) 345-5224	
Fax: (650) 572-2743	

Europe	Europe				
Austria	(Wien)	Hungary (Budapest)			
Tel:	43 (0)1 867 35 75 0	Tel:	\ /		
Fax:	43 (0)1 867 35 75 11	Fax:	36 (0)1 270 8288		
Belgiur	n	Italy (N	filano)		
Tel: Fax:	32 (0)2 712 5555 32 (0)2 712 5516	Tel: Fax:	39 (0)39 83891 39 (0)39 838 9492		
1	Czech Republic and Slovakia (Praha)		The Netherlands (Nieuwerkerk a/d IJssel)		
1	420 2 61 222 164 420 2 61 222 168	Tel: Fax:	31 (0)180 331400 31 (0)180 331409		
Denma	Denmark (Naerum)		y (Oslo)		
_	45 45 58 60 00 45 45 58 60 01	1	47 23 12 06 05 47 23 12 05 75		

Europ	e				
	Finland (Espoo) Tel: 358 (0)9 251 24 250		Poland, Lithuania, Latvia, and Estonia (Warszawa)		
Fax:	* *	Tel: Fax:	48 (22) 866 40 10 48 (22) 866 40 20		
France	e (Paris)	Portug	al (Lisboa)		
Tel: Fax:	33 (0)1 69 59 85 85 33 (0)1 69 59 85 00	Tel: Fax:	351 (0)22 605 33 14 351 (0)22 605 33 15		
Germa	any (Weiterstadt)	Russia	a (Moskva)		
Tel: Fax:	49 (0) 6150 101 0 49 (0) 6150 101 101	Tel: Fax:	7 095 935 8888 7 095 564 8787		
Spain	(Tres Cantos)	South	Africa (Johannesburg)		
Tel: Fax:	34 (0)91 806 1210 34 (0)91 806 1206	Tel: Fax:	27 11 478 0411 27 11 478 0349		
Swede	Sweden (Stockholm) Tel: 46 (0)8 619 4400		United Kingdom (Warrington, Cheshire)		
Fax:	` '	Tel: Fax:	44 (0)1925 825650 44 (0)1925 282502		
Switze	rland (Rotkreuz)	South East Europe (Zagreb, Croatia)			
Tel: Fax:	(-)	Tel: Fax:	385 1 34 91 927 385 1 34 91 840		
	Middle Eastern Countries and North Africa (Monza, Italia)		(English Speaking) and West Fairlands, South Africa)		
Tel: Fax:	39 (0)39 8389 481 39 (0)39 8389 493	Tel: Fax:	27 11 478 0411 27 11 478 0349		
	All Other Countries Not Listed (Warrington, UK)				
Tel: Fax:	44 (0)1925 282481 44 (0)1925 282509				

Japan

Japan (Hatchobori, Chuo-Ku, Tokyo)

Tel: 81 3 5566 6100 Fax: 81 3 5566 6501

Easter	Eastern Asia, China, Oceania				
Australi	a (Scoresby, Victoria)	Malaysia (Petaling Jaya)			
	61 3 9730 8600 61 3 9730 8799	_	60 3 758 8268 60 3 754 9043		
China (Beijing)		Singap	oore		
	86 10 6238 1156 86 10 6238 1162	_	65 896 2168 65 896 2147		
Hong K	ong	Taiwan (Taipei Hsien)			
	852 2756 6928 852 2756 6968	_	886 2 2698 3505 886 2 2698 3405		
Korea (Seoul)		Thailar	nd (Bangkok)		
	82 2 593 6470/6471 82 2 593 6472	Tel: Fax:	66 2 719 6405 66 2 319 9788		

Preventing Contamination

Overview

The DNA amplification capability of the PCR process makes special laboratory practices necessary. Small levels of DNA carryover from samples with high DNA concentrations, from the Genomic Control DNA, or from previous PCR amplifications can result in product even in the absence of added template DNA.

See the references in Appendix C on page 40 for more information on PCR and laboratory practices for preventing contamination.

Prevention of PCR Product Carryover

Treatment with uracil-N-glycosylase (UNG, EC 3.2.2–) can prevent the reamplification of carryover PCR products. This method involves substituting dUTP for dTTP in the Reagent Master Mix and adding AmpErase UNG to the mix prior to amplification (Kwok and Higuchi, 1989; Longo *et al.*, 1990). PCR products from previous amplifications are not reamplified. Misprimed, nonspecific PCR products created before thermal cycling are degraded, but native DNA template is not affected.

When dUTP replaces dTTP as a dNTP substrate in PCR, AmpErase UNG treatment can remove up to 100,000 copies of contaminating amplicon per 25–µL reaction.

The 2-minute hold cycle at 50 °C is necessary for optimum AmpErase UNG cleavage of the uracil-deoxyribose linkage. The 10-minute hold cycle at 95 °C necessary to activate AmpliTaq Gold DNA Polymerase also cleaves the phosphate ester backbone of the PCR products that contained uracil nucleotides and reduces the AmpErase UNG activity substantially. Because UNG is not completely deactivated during the 95 °C incubation, it is important to keep the reaction temperatures greater than 55 °C to prevent amplicon degradation.

Do not use AmpErase UNG in subsequent amplification of dU-containing PCR template, such as in nested-PCR protocols. The UNG will degrade the dU-containing PCR product, preventing further amplification.

General PCR Although the protocol and reagents described above are capable of **Practices** degrading or eliminating large numbers of carried-over PCR products, we encourage users to use the following precautions and those referenced in Appendix C on page 40 to minimize sample crosscontamination and PCR product carryover:

- Wear a clean lab coat (not previously worn while handling amplified PCR products or used during sample preparation) and clean gloves when preparing samples for PCR amplification.
- Change gloves whenever you suspect that they are contaminated.
- Maintain separate areas and dedicated equipment and supplies for sample preparation, for PCR setup, and for PCR amplification and analysis of PCR products.
- Never bring amplified PCR products into the PCR setup area.
- Open and close all sample tubes carefully. Try not to splash or spray PCR samples.
- Use positive-displacement or air-displacement pipettors with filter-plugged tips. Change tips after each use.
- Keep reactions and components capped as much as possible.
- Clean lab benches and equipment periodically with 10% bleach solution.

Fluorescent Because sample protein and fluorescent contaminants may interfere Contaminants with this assay and give false positive results, it may be necessary to include a No Amplification Control tube that contains the sample and no enzyme. If the absolute fluorescence of the No Amplification Control is greater than that of the No Template Control after PCR, fluorescent contaminants may be present in the sample.

Preparing Control Reactions and Control DNA Samples

Overview

This procedure involves PCR amplification of the target DNA followed by fluorescence analysis. When performing allelic discrimination using the Plasmid Allele 1 and Plasmid Allele 2 standards, the analysis requires that the controls and samples shown below in Figure 2 be run. For custom applications, see Appendix A on page 23.

Note The TaqMan LS-50B PCR Detection System uses a Buffer well, which must be placed in position A1. The ABI PRISM 7700 and 7200 Sequence Detectors do not use Buffer wells.

- ♦ Eight No Template Control wells (NTC)
- ♦ Eight Plasmid Allele 1 wells (AL1)
- ♦ Eight Plasmid Allele 2 wells (AL2)
- ♦ Seventy-two Genomic Control DNA wells (UNKN)

IMPORTANT Eight replicates of No Template Control, Plasmid Allele 1, and Plasmid Allele 2 must be run to make allele calls at a 99.7% confidence level using the automated allele calling routine. Manual allele calling with less than eight replicates is possible. Refer to Chapter 4 of the ABI PRISM 7200 Sequence Detector User's Manual.

NTC	AL1	AL1	AL1	AL1							
A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
AL1	AL1	AL1	AL1	AL2							
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
UNKN											
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
UNKN											
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
UNKN											
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
UNKN											
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
UNKN											
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
UNKN											
H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12

Figure 2 Plate diagram showing placement of control and sample reactions

Prepare Controls Prepare reactions in a MicroAmp Optical 96-Well Reaction Plate. The and Unknowns plate wells should contain the following:

Table 4. Plate Well Setup

Well	If preparing	Then	
A1–A8	NTC	Combine the following and deliver 50 µL of the mixture to each of the 8 wells:	
		♦ 220 μL of 2X Master Mix	
		♦ 132 μL of Probe and Primer Mix	
		♦ 88 µL of TE ^a buffer	
A9–A12 B1–B4	AL1	Combine the following and deliver 50 µL of the mixture to each of the 8 wells:	
B1 B4		♦ 220 μL of 2X Master Mix	
		♦ 132 μL of Probe and Primer Mix	
		♦ 44 µL of Plasmid Allele 1 standard	
		♦ 44 µL of TE buffer	
B5-B12	AL2	Combine the following and deliver 50 µL of the mixture to each of the 8 wells:	
		♦ 220 μL of 2X Master Mix	
		♦ 132 μL of Probe and Primer Mix	
		♦ 44 µL of Plasmid Allele 2 standard	
		♦ 44 µL of TE buffer	
C1-H12	Unknowns (UNKN)	Combine the following and deliver 50 µL of the mixture to each of the 72 wells:	
		♦ 2000 μL of 2X Master Mix	
		♦ 1200 μL of Probe and Primer Mix	
		♦ 400 μL of Genomic Control DNA	
		♦ 400 μL of TE buffer	

a. TE buffer = 10 mM Tris-HCl, 1 mM EDTA, pH 8.0

IMPORTANT With the ABI PRISM 7700 and ABI PRISM 7200 Sequence Detectors, you must use MicroAmp Optical disposables. Do not use MicroAmp Optical Tubes with the ABI PRISM 7200.

PCR Amplification

Thermal Cycling Parameters

The thermal cycling parameters in Table 5 are used for the TaqMan Allelic Discrimination Demonstration Kit control reactions on the GeneAmp PCR Systems 9600 and 9700 and the ABI PRISM 7700 Sequence Detector. The GeneAmp PCR System 9600 or GeneAmp PCR System 9700 in 9600 Emulation Mode is used to perform PCR amplification when the TaqMan LS-50B PCR Detection System or ABI PRISM 7200 Sequence Detector is used for fluorescence analysis.

IMPORTANT All reaction volumes are 50 μ L. The 2-minute, 50 °C step is required for optimal AmpErase UNG activity. The 10-minute, 95 °C step is required to activate AmpliTaq Gold DNA Polymerase.

Table 5. Thermal Cycling Conditions

Thermal Cycler	Times and Temperatures				
	Initial Steps		Each of 4	10 Cycles	
			Melt	Anneal/ Extend	
GeneAmp PCR	HOLD	HOLD	CYCLE		
System 9600 or 9700	2 min 50 °C	10 min 95 °C	15 sec 95 °C	1 min 62 °C	
ABI PRISM 7700	HOLD	HOLD	CYCLE		
Sequence Detector	2 min 50 °C	10 min 95 °C	15 sec 95 °C	1 min 62 °C	

Real Time Run Use the following procedure to perform a Real Time run on the on the ABI PRISM 7700 Sequence Detector. Refer to the ABI PRISM 7700 ABI PRISM 7700 Sequence Detector User's Manual for more information.

Step	Action
1	Create a Real Time plate document. Refer to the ABI PRISM 7700 Sequence Detector User's Manual for details.
2	Place the MicroAmp Optical 96-Well Reaction Plate in the ABI PRISM 7700 Sequence Detector.
3	Perform a Real Time run using the thermal cycling conditions shown in Table 5.
4	Save the Real Time plate results.
5	Close the Sequence Detection Systems software.
6	Leave the MicroAmp Optical 96-Well Reaction Plate in the ABI PRISM 7700 Sequence Detector.

GeneAmp 9600 and 9700

Performing PCR Use the following procedure to amplify samples in the GeneAmp PCR System 9600 or GeneAmp PCR System 9700 in 9600 Emulation Mode.

Step	Action
1	Place the MicroAmp Optical 96-Well Reaction Plate in the GeneAmp PCR System 9600 or GeneAmp PCR System 9700 in 9600 Emulation Mode.
2	Program the thermal cycler with the parameters shown in Table 5 on page 17.
3	Perform PCR amplification.
4	Store the PCR products at 2–6 °C until you are ready to analyze them in the ABI PRISM 7200 Sequence Detector or TaqMan LS-50B PCR Detection System.

Allelic Discrimination on the ABI PRISM 7700 and 7200

Overview

The TaqMan Allelic Discrimination Demonstration Kit is designed for Plate Read (end point) detection. Plate Read detection collects one fluorescence scan per tube after PCR is completed and can be used to perform the allelic discrimination assay on either the ABI PRISM 7700 or ABI PRISM 7200 Sequence Detector.

Analysis on the ABI PRISM 7700 or 7200

The ABI PRISM 7700 or ABI PRISM 7200 Sequence Detector performs the Plate Read and generates multicomponented columns for No DNA, Allele 1, and Allele 2. The data is then normalized for each allele and a genotype call is made for Allele 1 (homozygote 1), Allele 2 (homozygote 2), or Allele 1/2 (heterozygote). Samples run from the Genomic Control DNA included in this kit should all receive Allele 1/2 calls. Refer to your instrument user's manual for more information.

To perform allelic discrimination:

Step	Action					
1	Launch the Sequence Detection Systems software.					
2	If the untitled plate that opens is not the correct Allelic Discrimination plate for your instrument:					
	a. Close the untitled plate.					
	b. From the File menu, choose New Plate (光 N).					
	c. In the New Plate dialog box, choose Allelic Discrimination from the Plate Type pop-up menu. (The Run pop-up menu will disappear.)					
	d. Choose the correct instrument from the Instrument pop-up menu.					
	Note The correct plate type and instrument can be set in Preferences under the Edit menu.					
3	Set up the plate as shown in Figure 2 on page 15.					
	Note See your instrument user's manual for more information.					
4	Click the Show Analysis button.					
5	Click the Post PCR Read button. The software will perform the Plate Read.					
6	From the File menu, choose Save as to save the plate.					
7	Click the Show Analysis button.					

To perform allelic discrimination: (continued)

Step	Action
8	From the Analysis menu, choose Analyze (\mathbb{H} L). The computer analyzes the data.
9	From the Analysis menu, choose Allelic Discrimination (策 K). The Allelic Discrimination Viewer appears.
10	Examine data to confirm that allele calls have been made.

Allelic Discrimination on the LS-50B

LS-50B Settings The excitation and emission settings for the TaqMan LS-50B PCR Detection System are summarized in Table 6.

Table 6. TaqMan LS-50B PCR Detection System Settings

Dye	Excitation λ (nm)	Excitation Slit (nm)	Emission λ (nm)	Emission Slit (nm)	Emission Filter (nm)
FAM	488	4	518	8	515
TET	488	4	538	8	515
TAMRA	488	4	582	8	515

Measure To perform allelic discrimination, use the following procedure. Refer to Fluorescence the LS-50B Luminescence Spectrometer User's Manual for details.

> The macro receives data from your output file and generates multicomponented data. The data is then normalized for each allele and a genotype call is made for Homo 1 (homozygote 1), Homo 2 (homozygote 2), or Hetero 1-2 (heterozygote). Samples run from the Genomic Control DNA included in this kit should all receive Hetero 1-2 calls.

Step	Action
1	Transfer the contents of each optical tube from the PCR amplification reactions into the corresponding well of a 96-Well Microplate (Portvair). Be sure to follow the allelic discrimination plate configuration shown in Figure 2 on page 15.
2	Under the Setup Instrument tab, configure the TaqMan LS-50B PCR Detection System as shown in Table 6.
3	Run the plate read. Name and store the output file.
4	Double-click on the Standard WPR Multicomponenting Macro.
5	When prompted for the spreadsheet name, type gtypewpr.xls.
6	Select the location and name of your output file. The macro analyzes the data and makes genotype calls.
7	Name and save your spreadsheet.

Troubleshooting on the TaqMan LS-50B PCR Detection System

Observation	Outcome	Probable Cause	Solution
Diffuse distribution of heterozygote normalized results in plotted data	Incorrect allele calls	Weak PCR amplifications	Repeat reactions, paying particular attention to pipetting technique and pipet calibration. Use fresh reagents and prepare a master mix. You can also try a larger reaction volume.
Distorted distribution (vertically or horizontally elongated) of	Incorrect allele calls	Poor reproducibility of NTC, AL1, or AL2 reactions	Allow spreadsheet to recalculate distributions and calls in the absence of the replicate value(s) farthest from the mean.
heterozygote normalized results in plotted data		Weak PCR amplifications for AL1 or AL2	Repeat reactions, paying particular attention to pipetting technique and pipet calibration. Use fresh reagents and prepare a Master Mix. You can also try a larger reaction volume.

Appendix A. Guidelines for Custom Applications

Program

Nine-Step We recommend the following steps for the development of custom 5' nuclease assays for allelic discrimination applications:

Step	Action	See page
1	Install and use Primer Express software	-
2	Identify target sequence	23
3	Design TaqMan probe	23
4	Design primers	24
5	Order reagents	24
6	Quantitate probe and primers	24
7	Optimize primer concentrations	25
8	Optimize probe concentrations	28
9	Set up and run an Allelic Discrimination plate	33

Sequence

Identify Target A target is a nucleotide sequence, two primers, and a probe.

- For allelic discrimination, each allele associated with a target has a probe labeled with its own fluorescent reporter dye.
- The shortest amplicons work the best. Consistent results are obtained for amplicon ranges from 50-150 bp.
- Primers are common and have complete homology for both alleles.

Design TaqMan **Probe**

Use the following guidelines:

- Keep the G-C content in the 20–80% range (if possible).
- Avoid runs of an identical nucleotide. This is especially true for quanine, where runs of four or more Gs should be avoided.
- Do not put a G on the 5' end.
- Using Primer Express[™] software, the melting temperature (T_m) should be 65-67 °C.
- Select the strand that gives the probe with more Cs than Gs.
- Position the polymorphic site approximately in the middle third of the sequence.
- Adjust the probe lengths so that both probes have the same T_m.

Design Primers Use the following guidelines:

- Keep the G-C content in 30-80% range.
- Avoid runs of an identical nucleotide. This is especially true for guanine, where runs of four or more Gs should be avoided.
- Using Primer Express software, the T_m should be 58–60 °C.
- The five nucleotides at the 3' end should have no more than two G and/or C bases.
- Place the forward and reverse primers as close as possible to the probe without overlapping the probe.

Order Reagents

Refer to "User-Supplied Materials" on page 5 for a list of required reagents and equipment.

Quantitate Probes

Use a spectrophotometric method to determine the concentrations of and Primers the probes and primers received:

- Measure the absorbance at 260 nm of a 1:100 dilution of each oligonucleotide in TE buffer.
- Calculate the oligonucleotide concentration (C) in µM using the method shown in the table below.

Chromophore	Extinction Coefficient	Number	Extinction Coefficient Contribution
А	15,200	1	15,200
С	7,050	6	42,300
G	12,010	5	60,050
Т	8,400	6	50,400
FAM	20,958	1	20,958
TAMRA	31,980	1	31,980
TET	16,255	0	-
Total	_	-	220,888

Absorbance (260 nm) = sum of extinction coefficient contributions × cuvette pathlength × oligonucleotide concentration/100

 $0.13 = 220.888 \, M^{-1} cm^{-1} \times 0.3 \, cm \times C/100$

 $C = 196 \, \mu M$

Optimize Primer Concentrations

The purpose of this procedure is to determine the minimum primer concentrations that give the maximum R_n . The ABI PRISM 7700 Sequence Detector can provide additional data for optimization using the minimum threshold cycle (C_T). See Appendix B on page 39 for more information regarding C_T .

- ♦ Use the TagMan Universal PCR Master Mix.
- ♦ Use the thermal cycler conditions in the table below.

	Times and Temperatures				
Thermal Cycler	Initial Steps		Each o	Each of 40 Cycles	
	IIIIIIai	Sieps	Melt Anneal/Exten		
GeneAmp PCR	HOLD	HOLD	CYCLE		
System 9600 or 9700 in 9600 Emulation Mode	2 min 50 °C	10 min 95 °C	15 sec 95 °C	1 min 62 °C	
ABI PRISM 7700	HOLD	HOLD	C	YCLE	
Sequence Detector	2 min 50 °C	10 min 95 °C	15 sec 95 °C	1 min 62 °C	

IMPORTANT The two-minute, 50 °C step is required for optimal AmpErase UNG activity. The 10-minute, 95 °C step is required to activate AmpliTaq Gold DNA Polymerase.

- Use one of the allelic discrimination probes with its target at a concentration of 100 nM.
- Run at least four replicates of each of the nine conditions defined by the 3 × 3 matrix below, as well as four No Template Control (NTC) and four No Amplification Control (NAC) replicates. The NTC and NAC replicates should be run at 900 nM forward and reverse primer concentrations.

	Forward Primer (nM)						
Reverse Primer (nM)	50	300	900				
50	50/50	300/50	900/50				
300	50/300	300/300	900/300				
900	50/900	300/900	900/900				

Wells	Universal PCR Master Mix (µL)	10 μM FAM Probe (μL)	FAM Template Target (µL)	20 μM Forward Primer (μL)	20 μM Reverse Primer (μL)	Deionized Water	Total Volume/ Well (µL)
A1-A4	25	0.5	5.0	0.125	0.125	19.25	50
A5–A8	25	0.5	5.0	0.125	0.75	18.625	50
A9-A12	25	0.5	5.0	0.125	2.25	17.125	50
B1-B4	25	0.5	5.0	0.75	0.125	18.625	50
B5-B8	25	0.5	5.0	0.75	0.75	18.0	50
B9-B12	25	0.5	5.0	0.75	2.25	16.5	50
C1-C4	25	0.5	5.0	2.25	0.125	17.125	50
C5-C8	25	0.5	5.0	2.25	0.75	16.5	50
C9-C12	25	0.5	5.0	2.25	2.25	15.0	50
D1-D4 (NTC)	25	0.5	0	2.25	2.25	20.0	50
D5–D8 (NAC) ^a	25	0.5	5.0	2.25	2.25	14	50 ^a

a. Add 1 μ L of 0.5% sodium dodecyl sulfate (SDS) to each of the four NAC wells to inhibit any enzyme activity in those wells.

To optimize primer concentrations:

Step	Action				
1	Launch the Sequence Detection Systems software.				
2	If the untitled plate that opens is not a Single Reporter Plate Read document for your instrument:				
	a. Close the untitled plate.				
	b. From the File menu, choose New Plate (光 N).				
	c. In the New Plate dialog box, choose Single Reporter from the Plate Type pop-up menu and Plate Read from the Run pop-up menu.				
	d. Choose the correct instrument from the Instrument pop-up menu.				
3	Select wells as follows:				
	♦ A1–C12, unknowns (UNKN)				
	♦ D1-D4, No Template Controls (NTC)				
	◆ D5–D8, No Amplification Controls (NAC)				

To optimize primer concentrations: (continued)

Step	Action
4	Click the Show Analysis button.
5	Click the Post PCR Read button. The software will perform the Plate Read.
6	From the File menu, choose Save as to save the plate.
7	From the Diagnostics submenu under the Instrument menu, choose Advanced Options Under Miscellaneous Options, deselect the Use Spectral Compensation for Endpoint checkbox. Rdvanced Options
8	From the Analysis menu, choose Analyze (業 L).
9	From the Export submenu under the File menu, choose Results Export the Results file.
10	Quit the Sequence Detection Systems software.
11	Open the Results file exported from the Sequence Detection Systems software.

To optimize primer concentrations: *(continued)*

Step	Action
12	Tabulate the results for R_n (and C_T if using the ABI PRISM 7700 instrument). Choose the minimum forward and reverse primer concentrations that yield the maximum R_n (and minimum C_T).
13	Use these primer concentrations in your allelic discrimination assay.
14	If wells D1–D4 are different from wells D5–D8, check for sources of contamination.
	If a run with fresh reagents still shows significant differences between these wells, remove possible interactions between primers and probes by redesigning one of the primers.

Optimize Probe The purpose of this procedure is to determine the probe concentrations Concentrations that give the most reliable autocalls.

- The initial fluorescence signals from the two probes are matched approximately.
- Fluorescence is measured directly. No thermal cycling is required.
- The procedure is instrument-dependent, reflecting the optical differences between the ABI PRISM 7200 Sequence Detector (page 28) and the ABI PRISM 7700 Sequence Detector (page 31).

ABI PRISM 7200 Sequence Detector

Prepare the plate shown in the table below. Use 50 µL of the indicated solution in each well.

Wells	Universal PCR Master Mix (µL)	1 μM FAM Probe (μL)	1 μM TET Probe (μL)	Deionized Water (µL)	Total Volume/ Well (µL)	Final FAM Probe Conc. (nM)	FinalTET Probe Conc. (nM)
A1-A4	25	2.5	2.5	20	50	50	50
A5–A8	25	2.5	5.0	17.5	50	50	100
A9-A12	25	2.5	7.5	15	50	50	150
B1-B4	25	2.5	10	12.5	50	50	200
B5-B8	25	2.5	12.5	10	50	50	250
B9-B12	25	2.5	15	7.5	50	50	300
C1-C4	25	2.5	17.5	5	50	50	350

To optimize probe concentrations on the 7200:

Step	Action				
1	Launch the Sequence Detection Systems software.				
2	If the untitled plate that opens is not the correct Allelic Discrimination plate for your instrument:				
	a. Close the untitled plate.				
	b. From the File menu, choose New Plate (黑 N).				
	c. In the New Plate dialog box, choose Allelic Discrimination from the Plate Type pop-up menu. (The Run pop-up menu will disappear.)				
	d. Choose the correct instrument from the Instrument pop-up menu.				
	Note The correct plate type and instrument can be set in Preferences under the Edit menu.				
3	Select wells A1–C12 as unknowns (UNKN).				
4	Click the Show Analysis button.				
5	Click the Post PCR Read button. The software will perform the Plate Read.				
6	From the File menu, choose Save as to save the plate.				

To optimize probe concentrations on the 7200: (continued)

Step	Action
7	From the Diagnostics submenu under the Instrument menu, choose Advanced Options Under Miscellaneous Options, deselect the Use Spectral Compensation for Endpoint checkbox.
	Advanced Options
	Use Spectral Compensation for Endpoint ⊠ Reference ROX ▼
	If you change the option, a dialog box will appear telling you to quit
	the application and restart it to use the changes.
8	From the Analysis menu, choose Analyze (黑 L).
9	From the Analysis menu, choose Allelic Discrimination (策 K).
10	From the Export submenu under the File menu, choose Multicomponent Export the Multicomponent file.
11	Quit the SDS software.
12	Open the Multicomponent file exported from the SDS software.
13	Identify the probe ratio at which the FAM and TET multicomponent values are closest to each other. Use this probe ratio in your allelic discrimination assay.
14	If the probes are not well balanced at any ratio, use the TET probe at 350 nM.

ABI PRISM 7700 Sequence Detector

Prepare the plate shown in the table below. Use 50 μL of the indicated solution in each well.

Wells	Universal PCR Master Mix (µL)	1 μM FAM Probe (μL)	1 μM TET Probe (μL)	Deionized Water (μL)	Total Volume (μL)	Final FAM Probe Conc. (nM)	Final TET Probe Conc. (nM)
A1-A4	125	12.5	50	62.5	250	50	200
A5-A8	125	25	50	50	250	100	200
A9-A12	125	25	25	75	250	100	100
B1-B4	125	50	25	50	250	200	100
B5-B8	125	50	12.5	62.5	250	200	50

To optimize probe concentrations on the 7700:

Step	Action					
1	Launch the Sequence Detection Systems software.					
2	If the untitled plate that opens is not the correct Allelic Discrimination plate for your instrument:					
	a. Close the untitled plate.					
	b. From the File menu, choose New Plate (黑 N).					
	c. In the New Plate dialog box, choose Allelic Discrimination from the Plate Type pop-up menu. (The Run pop-up menu will disappear.)					
	d. Choose the correct instrument from the Instrument pop-up menu.					
	Note The correct plate type and instrument can be set in Preferences under the Edit menu.					
3	Select wells A1-B8 as unknowns (UNKN).					
4	Click the Show Analysis button.					
5	Click the Post PCR Read button. The software will perform the Plate Read.					
6	From the File menu, choose Save as to save the plate.					

To optimize probe concentrations on the 7700: (continued)

•							
Step	Action						
7	From the Diagnostics submenu under the Instrument menu, choose Advanced Options Under Miscellaneous Options, select the Use Spectral Compensation for Endpoint checkbox as shown below.						
	Advanced Options						
	─ Yiewer □ Display mse in Multicomponent View □ Display best fit in Raw Spectra View						
	Analysis: Spectra Components Use background in "Spectra Components" folder Use pure spectra in "Spectra Components" folder						
	Miscellaneous Options Set 7700 Exposure Time 25 Use Spectral Compensation for Real Time Use Spectral Compensation for Endpoint						
	Reference ROX ▼ Cancel OK						
	Note If you change the option, a dialog box will appear telling you to quit the application and restart it to use the changes.						
8	From the Analysis menu, choose Analyze (黑 L).						
9	From the Analysis menu, choose Allelic Discrimination (\mathbb{H} K).						
10	From the Export submenu under the File menu, choose Multicomponent Export the Multicomponent file.						
11	Quit the Sequence Detection Systems software.						
12	Open the Multicomponent file exported from the Sequence Detection Systems software.						
13	Identify the probe ratio at which the FAM and TET multicomponent values are closest to each other.						
14	Use this probe ratio in your allelic discrimination assay.						

Set Up and Run an Allelic Discrimination Plate

This procedure involves PCR amplification of the target DNA followed by fluorescence analysis. When performing allelic discrimination using your Allele 1 and Allele 2 standards, the analysis requires that the controls and samples be run (Figure 3).

- ♦ Eight No Template Control wells (NTC)
- ♦ Eight Allele 1 standard wells (AL1)
- ♦ Eight Allele 2 standard wells (AL2)
- ♦ Seventy-two Genomic Control DNA wells (UNKN)

IMPORTANT Eight replicates of No Template Control, Allele 1 standard, and Allele 2 standard must be run to make allele calls at a 99.7% confidence level using the automated allele calling routine. Manual allele calling with less than eight replicates is possible. Refer to Chapter 4 of the ABI PRISM 7200 Sequence Detector User's Manual.

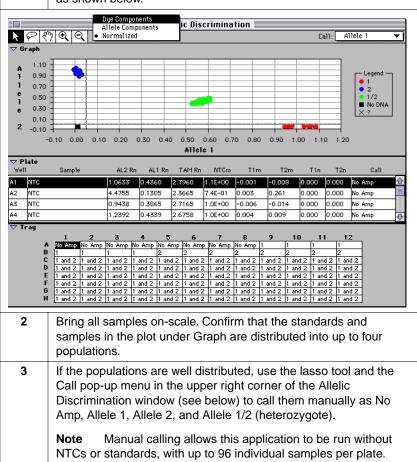
NTC	AL1	AL1	AL1	AL1							
A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
AL1	AL1	AL1	AL1	AL2							
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
UNKN											
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
UNKN											
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
UNKN											
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
UNKN											
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
UNKN											
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
UNKN											
H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12

Figure 3 Plate diagram showing placement of control and sample reactions

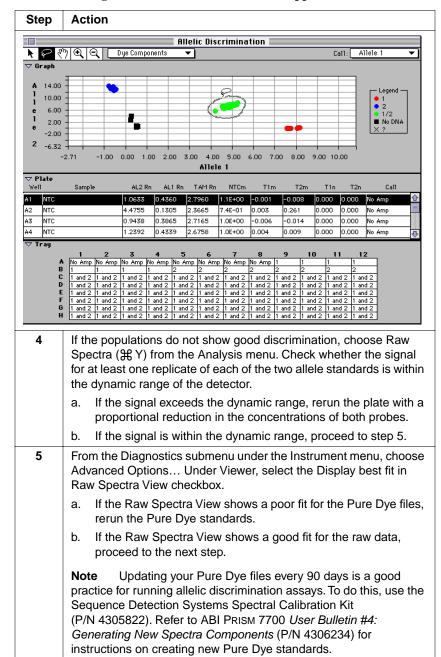
Prepare Controls and Unknowns

Step	Action					
1	Prepare 575 µL of a solution that contains your optimized primers and probes in concentrations 10X the optimal values you determined.					
2	Combine the following:					
	◆ TaqMan Universal PCR Master Mix for 115 reactions (2.875 mL) in 1.725 mL of water.					
	♦ 575 μL of 10X Primer and Probe Solution					
3	Deliver 45 µL of this mixture to each of the 96 wells in the plate.					
4	If preparing	Then add				
	NTC	5 μL of TE buffer to wells A1–A8				
	AL1	5 μL of Allele 1 (TET) standard to wells A9–A1 and B1–B4				
	AL2	5 μL of Allele 2 (FAM) standard to wells B5–B12				
	UNKN	5 μL of each unknown sample to wells C1–B12				
5	Close the plate with MicroAmp Optical Caps.					
6	Centrifuge the plate to collect the liquid at the bottom of the tubes and remove the air bubbles.					

Thermal Cycling


Use the thermal cycler conditions in "Optimize Primer Concentrations" on page 25.

Run Allelic Discrimination Plate


Step	Action				
1	Launch the Sequence Detection Systems software.				
2	If the untitled plate that opens is not the correct Allelic Discrimination plate for your instrument:				
	a. Close the untitled plate.				
	b. From the File menu, choose New Plate (黑 N).				
	c. In the New Plate dialog box, choose Allelic Discrimination from the Plate Type pop-up menu. (The Run pop-up menu will disappear.)				
	d. Choose the correct instrument from the Instrument pop-up menu.				
	Note The correct plate type and instrument can be set in Preferences under the Edit menu.				
3	Define the plate wells as shown in "Set Up and Run an Allelic Discrimination Plate" on page 33.				
4	Click the Show Analysis button.				
5	Click the Post PCR Read button. The software will perform the Plate Read.				
6	From the File menu, choose Save as to save the plate.				
7	From the Analysis menu, choose Analyze (発 L). The computer analyzes the data.				
	IMPORTANT Spectral Compensation for Endpoint must be on for the ABI PRISM 7700 Sequence Detector and off for the ABI PRISM 7200 Sequence Detector.				
8	From the Analysis menu, choose Allelic Discrimination (策 K). The Allelic Discrimination window appears.				
9	Check the Allelic Discrimination window and confirm that the No Amp (NTC), 1 (Allele 1 standard), 2 (Allele 2 standard), and 1 and 2 (heterozygote) calls have been made. If these calls are correct, the custom application is running under optimal conditions.				

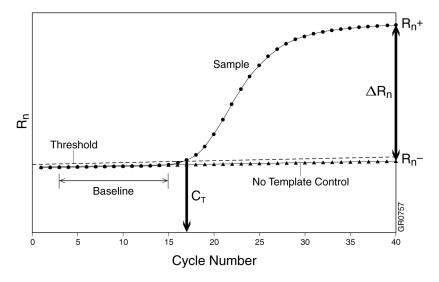
Troubleshooting Custom Allelic Discrimination Applications

Step	Action
1	If the Allelic Discrimination window does not show autocalls, select Dye Components from the pop-up menu to the right of the toolbar as shown below.

Troubleshooting Custom Allelic Discrimination Applications (continued)

Troubleshooting Custom Allelic Discrimination Applications (continued)

Step	Action
6	Rerun the reaction using an extension temperature of 64 °C to improve the separation between populations.
7	If the separation between populations still does not allow them to be called manually, reinspect the probe sequences and samples to confirm that they have been labeled and run correctly.


Appendix B. Real Time Detection on the ABI PRISM 7700

Threshold Cycle

Real Time detection on the ABI PRISM 7700 Sequence Detector monitors fluorescence and calculates R_n during each PCR cycle. The threshold cycle or C_T value is the cycle at which a statistically significant increase in ΔR_n , the difference between reporter fluorescence in the sample and that in the No Template Control, is first detected (Figure 4).

On the graph of $R_{\rm n}$ versus cycle number, the threshold cycle occurs when the Sequence Detection Application begins to detect the increase in signal associated with an exponential growth of PCR product.

For example, in a series of similar reactions where primer concentrations are varied, the optimum conditions are those that give the lowest C_{T} value.

Figure 4 Amplification plot, R_n versus cycle number

Appendix C. References

Ausubel, F.M., Brent, R., Kingstin, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K., eds. 1987. *Current Protocols in Molecular Biology*, Greene Publishing Associates and Wiley-Interscience, John Wiley and Sons, New York.

Delort, A.-M., Duplaa, A.-M., Molko, D., and Teoule, R. 1985. Excision of uracil residues in DNA: mechanism of action of *Escherichia coli* and *Micrococcus luteus* uracil-DNA glycosylases. *Nucleic Acids Res.* 13: 319–335.

Förster, V.Th. 1948. Zwischenmolekulare Energiewanderung und Fluoreszenz. *Ann. Phys. (Leipzig)* 2: 55–75.

Gelfand, D.H., and White, T.J. 1990. Thermostable DNA Polymerases. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J., eds. *PCR Protocols. A Guide to Methods and Applications*, Academic Press, Inc., San Diego, CA, pp. 129–141.

Holland, P.M., Abramson, R.D., Watson, R., and Gelfand, D.H. 1991. Detection of specific polymerase chain reaction product by utilizing the 5' to 3' exonuclease activity of *Thermus aquaticus* DNA polymerase. *PNAS (USA)* 88: 7276–7280.

Kwok, S. 1990. Procedures to minimize PCR-product carry-over. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J., eds. *PCR Protocols. A Guide to Methods and Applications*, Academic Press, Inc., San Diego, CA, pp. 142–145.

Kwok, S., and Higuchi, R. 1989. Avoiding false positives with PCR. *Nature* 339: 237–238.

Lakowicz, J.R. 1983. Energy Transfer. In: *Principles of Fluorescent Spectroscopy*, Plenum Press, N.Y., pp. 303–339.

Lawyer, F.C., Stoffel, S., Saiki, R.K., Myambo, K.B., Drummond, R., and Gelfand, D.H. 1989. Isolation, characterization, and expression in *Escherichia coli* of the DNA polymerase gene from the extreme thermophile, *Thermus aquaticus*. *J. Biol. Chem.* 264: 6427–6437.

Lee, L.G., Connell, C.R., and Bloch, W. 1993. Allelic discrimination by nick-translation PCR with fluorogenic probes. *Nucleic Acids Res.* 21: 3761–3766.

Livak, K.J., Flood, S.J.A., Marmaro, J., Giusti, W., and Deetz, K. 1995. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. *PCR Meth. Appl.* 4: 357–362.

Longo, N., Berninger, N.S., and Hartley, J.L. 1990. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. *Gene* 93: 125–128.

Lyamichev, V., Brow, M.A.D., and Dahlberg, J.E. 1993. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. *Science* 260: 778–783.

Mullis, K.B., and Faloona, F.A. 1987. Specific synthesis of DNA *in vitro* via a polymerase-catalyzed chain reaction. In: Wu, R., ed. *Methods in Enzymology*, Vol. 155, Academic Press, Inc., San Diego, CA, pp. 335–350.

Orrego, C. 1990. Organizing a laboratory for PCR work. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J., eds. *PCR Protocols. A Guide to Methods and Applications*, Academic Press, Inc., San Diego, CA, pp. 447–454.

PCR Technical Information. 1996. In: *Perkin-Elmer Systems, Reagents & Consumables.* 1996-1997, Foster City, CA.

Saiki, R.K., Scharf, S.J., Faloona, F.A., Mullis, K.B., Horn, G.T., Erlich, H.A., and Amheim, N. 1985. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. *Science* 230: 1350–1354.

Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science* 239: 487–491.

Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Press.

Worldwide Sales Offices

Applied Biosystems vast distribution and service network, composed of highly trained support and applications personnel, reaches into 150 countries on six continents. For international office locations, please call our local office or refer to our web site at www.appliedbiosystems.com.

Headquarters

850 Lincoln Centre Drive Foster City, CA 94404 USA Phone: +1 650.638.5800 Toll Free: +1 800.345.5224 Fax: +1 650.638.5884

Technical Support

For technical support:

Toll Free: +1 800.831.6844 ext 23

Fax: +1 650.638.5891

www.appliedbiosystems.com

Printed in the USA, 09/2010 Part Number 4303267E