
User Manual for the SPARK Parallelizing

High-Level Synthesis Framework

Version 1.1

Sumit Gupta

Center for Embedded Computer Systems

University of California at San Diego and Irvine

sumitg@cecs.uci.edu

http://mesl.ucsd.edu/spark

Copyright c© 2003-2004 The Regents of the University of California.

All Rights Reserved.

April 14, 2004

Contents

1 About this Manual 3

1.1 Copyright . 3

1.2 Disclaimer. 4

1.3 Reporting Bugs. 4

1.4 Acknowledgments . 4

1.5 Change Log. 5

2 Introduction to the SparkHigh-Level Synthesis Framework 6

2.1 Inferring Hardware Intent from C. 8

2.2 Restrictions on “C” Accepted as Input. 9

3 Quick Start Guide 11

3.1 Downloading and InstallingSpark . 11

3.2 Files Required and Directory Setup. 12

3.3 Recommended Command-line Options for InvokingSpark . 12

3.4 Options for Synthesizing Microprocessor Blocks. 13

4 Detailed Instructions 14

4.1 Command Line Interface. .14

4.2 Viewing Output Graphs. .15

4.3 Hardware Description File Format: default.spark. 15

4.3.1 Timing Information. .16

4.3.2 Data Type Information. .16

4.3.3 Hardware Resource Information. 17

4.3.4 Specifying Function Calls as Resources in the Hardware Description File. 18

4.3.5 Loop Unrolling and Pipelining Parameters. 19

4.3.6 Other Sections in .spark files. 19

4.4 VHDL Output Generated bySpark . 19

4.4.1 Generating VHDL bound to Synopsys DesignWare Foundation Libraries. 20

4.4.2 Generating VHDL Synthesizable by Other Logic Synthesis tools. 21

1

4.5 Scripting Options for Controlling Transformations and Heuristics: Priority.rules. 21

4.5.1 Scheduler Functions. .21

4.5.2 List of Allowed Code Motion . 21

4.5.3 Cost of Code Motions. .22

A Sample default.spark Hardware Description file 24

B Recommended Priority.rules Synthesis Script file 26

C Modifying Input Code to be Synthesizable bySpark 28

C.1 Input Code with Structs. .28

C.2 Input Code with Pointers. .29

C.3 Input Code with Breaks. .30

C.4 Input Code with Continues. .31

C.5 Input Code in which an Argument is Modified. 32

C.6 Input Code with “?” if-then-else. 33

C.7 Input Code with Multi-Dimensional Arrays. 33

2

Chapter 1

About this Manual

This is a user manual for theSparkparallelizing high-level synthesis software tool. In this manual, we document

the various command-line flags and formats for hardware resource library file and the script file.

The manual is organized in the following manner: in the next chapter, we give an overview of theSparkmethod-

ology and framework. In Chapter3, we present a quick start guide to get the user up and running immediately. For

more details about the command-line flags and the way the scripts and hardware description files can be modified,

the user is directed to Chapter4. AppendicesA andB list a sample hardware description file and a scheduling

script file respectively.

1.1 Copyright

The Sparksoftware is Copyrightc©2003-2004 The Regents of the University of California. All Rights Re-

served.

Permission to use, copy, modify, and distribute this software and its documentation for educational, research

and non-profit purposes, without fee, and without a written agreement is hereby granted, provided that the above

copyright notice, this paragraph and the following three paragraphs appear in all copies.

Permission to incorporate this software into commercial products or for use in a commercial setting may be

obtained by contacting:

Technology Transfer Office

9500 Gilman Drive, Mail Code 0910

University of California

La Jolla, CA 92093-0910

(858) 534-5815

invent@ucsd.edu

3

1.2 Disclaimer

❐ The Sparksoftware program and the documentation is copyrighted by the Regents of the University of

California. The following terms apply to all files associated with the software unless explicitly disclaimed

in individual files.

❐ The software program and documentation are supplied ”as is”, without any accompanying services from

The Regents. The Regents does not warrant that the operation of the program will be uninterrupted or error-

free. The end-user understands that the program was developed for research purposes and is advised not to

rely exclusively on the program for any reason.

❐ In no event shall the University of California be liable to any party for direct, indirect, special, incidental, or

consequential damages, including lost profits, arising out of the use of this software and its documentation,

even if the University of California has been advised of the possibility of such damage. The University

of California specifically disclaims any warranties, including, but not limited to, the implied warranties of

merchantability and fitness for a particular purpose. the software provided hereunder is on an ”as is” basis,

and the University of California has no obligations to provide maintenance, support, updates, enhancements,

or modifications.

1.3 Reporting Bugs

The Sparkdistribution comes with no official bug fixing support or maintenance and we are not obliged to

provide any updates or modifications. However, you may report bugs to:

spark@ics.uci.edu

Subject: BUG: Brief description of bug

1.4 Acknowledgments

TheSparkframework was developed by Sumit Gupta with major contributions to the underlying framework by

Nick Savoiu. Mehrdad Reshadi and Sunwoo Kim also contributed to the code base. Professor Rajesh Gupta, Nikil

Dutt and Alex Nicolau led theSparkproject. This project was funded by Semiconductor Research Corporation

and Intel Incorporated.

4

1.5 Change Log

Date Changes

1/12/04 Introduced documentation for the newly introduced Windows version of SPARK. Also, some

additional notes in the VHDL section since output VHDL is now synthesizable by Xilinx XST

12/24/03 Clarified how ordering of resources in [Resources] section affects scheduling

Added an example to clarify the difference between resource bound and unbound code

12/23/03 Added an example of how to make arrays one-dimensional in Appendix

11/11/03 Added clarifications and details to restrictions on input “C” code section.

Added more examples in the Appendix that demonstrate how to modify code to make it synthesizable.

09/1/03 First release of document

5

Chapter 2

Introduction to the SparkHigh-Level

Synthesis Framework

Sparkis a parallelizing high-level synthesisframework that synthesizes a behavioral description using a set of

aggressive compiler, parallelizing compiler and synthesis techniques [1, 2, 3]. An overview of theSparkframe-

work is shown in Figure2.1. Sparktakes a behavioral description in ANSI-C as input albeit with no support for

pointers, function recursion and gotos. The output ofSparkis synthesizable register-transfer level (RTL) VHDL.

As shown in Figure2.1, Sparkalso takes as input additional information such as a hardware resource library,

resource and timing constraints, data type information, and user controlled scripts that guide the various heuristics

and transformations.

The code parallelization and transformation techniques inSparkhave been grouped into pre-synthesis, schedul-

ing, dynamic, and basic compiler optimizations – this grouping improves controllability over the transformations

applied to the input description. Thepre-synthesistransformations are applied at a source-level, whereas the

scheduling and dynamic transformations are applied during scheduling. The basic compiler transformations are

applied at each stage of synthesis – during pre-synthesis, scheduling and post-scheduling.

The pre-synthesis transformations include coarse-level transformations such as loop unrolling and compiler

transformations such as common sub-expression elimination (CSE), copy propagation, dead code elimination,

loop-invariant code motion and so on. These compiler transformations aim to remove unnecessary and redundant

operations and reduce the number of operations within loops.

The pre-synthesis phase is followed by theschedulingphase (see Figure2.1). Resource allocation and module

selection are done by the designer and are given as input to the synthesis tool through a hardware resource library.

The transformations toolboxin the scheduler contains the Percolation and Trailblazing code motion techniques,

dynamic renaming of variables, and several compiler, parallelizing compiler and synthesis transformations. The

synthesis transformations include chaining operations across conditional blocks, scheduling on multi-cycle opera-

tions and resource sharing.

The core parallelizing compiler transformations are a set ofspeculative code motionsthat not only move op-

erations out of conditionals but sometimes duplicate operations into the branches of conditional blocks [4, 5].

6

 Task Graphs
(HTGs)

+
Data Flow

Graphs

Hierarchical

Speculative Code Motions
 Chaining Across Conditions

Percolation/Trailblazing

Loop Pipelining

Transformation ToolboxHeuristics
Scheduling and Allocation

PreSynthesis Optimizations

Code Generation BackEnd

SPARK IR

Operation/Variable Binding FSM Generation/Optimiz.

Loop Unrolling, Loop Fusion, Loop Invariant Code Motion
CSE, IVA, Copy Propagation, Inlining, Dead Code Elim

Parser Front End

Resource Binding & Control Synthesis

Synthesizable RTL VHDL, Behavioral C

C Input

SPARK HLS
Framework

Scheduling Heuristic
Code Motion Heuristic

CSE & Copy Propagation
Dynamic Transformations

Constraints, Scripts &
Resource Library

Figure 2.1.An overview of our High-Level Synthesis Framework

The scheduler also employs several compiler transformations applieddynamicallyduring scheduling. These dy-

namic transformations, such as dynamic CSE, dynamic copy propagation et cetera exploit the new opportunities

created by code motions [6]. A dynamic branch balancing technique dynamically adds scheduling steps in condi-

tional branches to enable code motions – specifically those code motions that duplicate operations in conditional

branches [7, 8].

The scheduling phase is followed by aresource binding and control synthesisphase. This phase binds op-

erations to functional units, ties the functional units together (interconnect binding), allocates and binds storage

(registers), generates the steering logic and generates the control circuits to implement the schedule. We employ

an interconnect minimizing resource binding methodology by which operations are mapped to functional units

and variables are mapped to registers in a way that minimizes the number of inputs to the multiplexers connected

to the functional units [5, 9]. This reduces the complexity and size of the multiplexers and the associated control

logic.

After resource binding, a control unit is generated using the finite state machine (FSM) controller style. We use

7

aglobal slicingapproach to FSM generation, whereby operations in mutually exclusive control paths that execute

in the same cycle are assigned the same state [1]. This reduces the number of states in the controller and also, gives

more information to the logic synthesis tool about the control generation for the mutually exclusive operations.

Finally, a back-end code generation pass generates register-transfer level (RTL) VHDL. This RTL VHDL be-

longs to the subset of VHDL that is synthesizable by commercial logic synthesis tools. This enables our synthesis

framework to complete the design flow path from architectural design to final design netlist. Note that, the out-

put VHDL is structural with all operations bound to resources (components in VHDL) and variables bound to

registers.

Sparkalso has back-end code generation passes that generate ANSI-C and behavioral VHDL. These behavioral

output codes represent the scheduled and optimized design. The output “C” can be used in conjunction with the

input “C” to perform functional verification and also, to improve visualization for the designer on the affects of

the transformations applied bySparkon the design.

The synthesis framework is organized as a toolbox of transformations guided by heuristics that are fairly inde-

pendent of the transformations. We instrumented our synthesis framework with a scripting ability that provides

the designer with knobs to experiment and tune the heuristics and to identify the transformations that are useful in

optimizing overall circuit quality.

2.1 Inferring Hardware Intent from C

As mentioned above, theSparksynthesis framework accepts input in ANSI-C, but does not support the syn-

thesis of pointers (arrays are supported) and code with function recursion and irregular jumps (see next Chapter

for details). The input “C” description is a sequential description of statements. Statements may be operation

expressions, conditional constructs (if-then-else, switch-case) and loop constructs (for, while, do-while loops).

Besides the operations supported by “C”, we also support Boolean conditional checks; these Boolean checks are

producedby comparison or relational tests such as<, ==, ≥, 6=, et cetera. We decompose complex expressions

into three-address expressions (of type a=b+c) [10], since hardware functional units are modeled in our framework

as 2-input, 1-output resources. Each three-address expression is then called anoperationin our representation.

Each function in the input description is mapped to a (concurrent) hardware block. If one function calls another

function, then the called function is instantiated as a component in the calling function. We enable the designer

to specify the range (bit-widths) of the various data types supported by C as a table in a hardware description file.

This table has three columns: the data type, lower data range and upper data range. Hence, we can specify that

an “integer” ranges from -32767 to 32768; this corresponds to a 16 bit boolean in hardware. Also, this same table

can be used to make entries for specific variables from the input description. Hence, a designer can specify that a

variable “myVariable” in the design description can have a range of only 0 to 15. This enables the designer to use

his or her knowledge of the design to provide constraints.

The back-end code generator uses this table of data types to generate a structural hardware representation of the

scheduled design in VHDL [11]. To be synthesizable, hardware descriptions require the exact range of data types

8

used in the design. Furthermore, high-level synthesis transformations can take advantage of the designer provided

range constraints for specific variables to improve synthesis results [12].

The structure of the input description in terms of control and loop constructs are retained by our framework using

a hierarchical intermediate representation (IR) [2]. This hierarchical IR consists of basic blocks1 encapsulated

in Hierarchical Task Graphs(HTGs) [13, 14]. HTG nodes can be of three types:single or non-hierarchical

nodes,compoundor nodes that have sub-nodes), andloop nodes that encapsulate loops. Hence, basic blocks are

encapsulated into compound HTG nodes to form hierarchical structures such as if-then-else blocks, switch-case

blocks, loop nodes or a series of HTG nodes.

In addition to HTGs, we also maintain control flow graphs (CFGs) that capture the flow of control between

basic blocks and data flow graphs (DFGs) that capture the data dependencies between operations. Whereas HTGs

are useful for hierarchical code motions and applying coarse-grain transformations, CFGs are used for design

traversal during scheduling.

There is currently no support for providing specific timing information toSpark. Hence,Sparkassumes that all

input variables/signals are available at the start of execution of a hardware block and stay available for the duration

of its execution.

2.2 Restrictions on “C” Accepted as Input

Sparkuses the EDG [15] C/C++ front-end.Sparktakes pure ANSI-C with no special constructs. Although the

front-end is a complete ANSI-C parser, however, there are some features of the “C” language thatSparkdoes not

currently support because of fundamental problems or unresolved issues in synthesizability. These are:

❐ No support for pointers. However, arrays and array accesses of the type arr[index variable expression] are

supported. Also, passing arguments by reference to a function is also supported.

❐ No support for function recursion.

❐ No support for irregular jumps throughgoto. Some of these can be resolved in a state machine, but they

adversely affect our ability to apply transformations.

Besides these, the following features ofC are not supported because they have not yet been implemented in the

Sparkframework:

❐ No support for break and continue. In general, it is possible to convert a program with breaks and continues

into a program without them [14].

❐ No support for multi-dimension arrays. Multi-dimensional arrays can be reduced manually to single-

dimensional arrays. For example: consider an array a[N][M]. This can be re-declared as a[N*M]. Any

access to a[i][j] then becomes a[i*M+j].

1A basic block is a sequence of statements in the input code with no control flow between them.

9

❐ Poor/no support for structs and unions. In general, structs arecurrentlynot synthesizable. Also, no VHDL

generation for user-defined data types.

❐ Poor support for expressions of type (a ? b : c). We advise changing this expression to the following

statement:

if (a) b

else c

We discuss code modifications that can serve as workarounds for unimplemented features in AppendixC.

10

Chapter 3

Quick Start Guide

In this chapter, we explain how to download, install and start usingSpark. We also present the files and directory

setup required to runSpark.

3.1 Downloading and InstallingSpark

Sparkcan be obtained from the download page at:

http://mesl.ucsd.edu/spark

Choose the appropriate distribution based on the operating system you want to work on. The distribution will

be named “spark-[OS]-[Version].tar.gz”. So let us say you are interested the 1.1 version for the Linux platform,

you will download the file “spark-linux-1.1.tar.gz”. For the Windows distribution, we ship a ZIP archive named

“spark-win32-[Version].zip”.

After downloading this file, gunzip and untar the file as follows:

gunzip spark-linux-1.1.tar.gz

tar xvf spark-linux-1.1.tar.gz

OR

unzip spark-win32-1.1.zip

Uncompressing (gunzip and untar) the distribution will create the following directory structure:

spark-[OS]-[Version]/

bin/

include/

tutorial/

spark-setup.csh

spark-setup.sh

where [OS] is the operating system for which you downloaded the distribution and [Version] is theSpark

version. The “bin” directory contains theSparkbinary and other files required to executeSpark. The “tutorial”

directory contains the tutorial shipped with this distribution and described in theSpark Tutorialdocument. The

11

“include” directory contains standard “C” include files such as stdio.h et cetera that are included by some input

applications. However, note that for the Windows distribution, these include files are not useful. If you do want to

include system files such as “stdio.h” et cetera, please specify the path to these files using the environment variable

SPARK INCLUDES or using the command-line flag “-I /path/to/include”.

To begin with source the “spark-setup.csh/sh” script as follows:

source spark-setup.csh # if you are using csh/tcsh shell

. spark-setup.sh # if you are using sh/bash shell

For the Windows distribution, if you are usingSparkunder CYGWIN or MSYS/MINGW, then you can source

the spark-setup.sh file, else for native Windows, you can run the batch file “spark-setup.bat”.

The “spark-setup” script sets up the path to theSparkexecutable, along with some environment variables

required bySpark. You are now ready to useSpark. In the next section, we describe the files and directory setup

required forSparkto run. Details on the how to run the tutorial can be found in a separate document also available

on theSparkdownload website.

3.2 Files Required and Directory Setup

To run theSparkexecutable, you require:

❐ default.sparkor filename.spark: This file is the hardware description file that contains the resource allo-

cation, bit-widths of various data types, et cetera (see Section4.3). A sample default.spark is listed in

AppendixA.

❐ Priority.rules or any file specified under the “[SchedulerRules]” section of the default.spark file. This file

contains all the rules and switches controlling the scheduling heuristic, branch balancing heuristic, code

motions et cetera (see Section4.5). A sample Priority.rules is listed in AppendixB.

❐ ./outputdirectory: This is the directory in which all the output files, including thedottygraphs, VHDL and

C output, et cetera are generated.

Sample default.spark and Priority.rules files are included with theSparkdistribution in the “spark-[OS]-[Version]/bin”

directory.

3.3 Recommended Command-line Options for InvokingSpark

We recommend the following command-line options for invokingSpark:

spark -hli -hcs -hcp -hdc -hs -hvf -hb -hec filename.c

The command-line options that are enabled are: loop-invariant code motion (-hli), common sub-expression

elimination (-hcs), copy and constant propagation (-hcp), dead code elimination (-hdc), scheduling (-hs), gen-

eration of synthesizable RTL VHDL (-hvf), interconnect-minimizing resource binding (-hb) and generation of

statistics about cycle count (-hec).

12

3.4 Options for Synthesizing Microprocessor Blocks

To synthesize microprocessor blocks [16], we have to enable operation chaining across conditional boundaries

by using the command-line option−hch and we have to increase the clock period to a large number so that all

the operations can be packed into one clock cycle. We arbitrarily increase clock period to 10000ns: this enables

up to 1000 additions to be chained together (if each addition takes 10ns). The clock period can be set in the

“[GeneralInfo]” section of the default.spark file (see Section4.3.1) and the timing of each operation in the design

can be set in the “[Resources]” section (see Section4.3.3).

Also, we have to enable full loop unrolling. This can be done by setting the number of unrolls in the “[RDLP-

Params]” section of the default.spark file to the number of iterations of the loop to be unrolled (see Section4.3.5).

Hence, for synthesizing microprocessor blocks, we recommend the following command-line options for invok-

ing Spark:

spark -hch -hli -hcs -hcp -hdc -hs -hvf -hb -hec filename.c

13

Chapter 4

Detailed Instructions

4.1 Command Line Interface

Sparkcan be invoked on the command-line by the command:

spark [command-line flags] filename.c

filename.c is the name of the input file with the behavioral code to be synthesized. We can also specify multiple

files on the command-line.

Some of the important command-line flags are:

Flag Purpose

-h Prints help

-hs Schedule Design

-hvf Generate RTL VHDL (output file is ./output/f ilenamespark rtl .vhd)

-hb Do all Resource Binding (operation to functional unit and variable to registers)

-hec Some statistics about states, path lengths are printed into the backend VHDL file

-hcc Generate output C file of scheduled design (output file is ./output/f ilenamesparkout.c)

-hch Chain operations across Conditional Boundaries

-hcp Do Copy and Constant Propagation

-hdc Do Dead Code Elimination

-hcs Do Common Sub-Expression Elimination

-hli Do Loop Invariant Code Motion

-hg Generate graphs (output files are in directory ./output).

Graphs are generated by default if scheduling is done, as:f ilenamesched.dotty

-hcg Generate function call graph (./output/CG f ilename.dotty)

-hq Run quietly; no debug messages

Sparkwrites out several files such as the output graphs (see next section) and the backend VHDL and C files.

All these files are written out to the subdirectory “output” of the directory from whichSparkis invoked. This

14

directory has to be created before executingSpark.

Some useful EDG command-line flags are given below. These flags are useful when the style of C does not

completely conform to ANSI-C.

Flag Purpose

-m For old style C (see below)

-c99 For C conforming to the C99 specification

For example, use the “-m” command-line flag for input code in which functions are specified in the following

format:

void myfunction(variableA, variableB)

int variableA;

int variableB;

{

..

}

4.2 Viewing Output Graphs

The format thatSparkuses for the output graphs is that of AT&TsGraphviztool [17]. Output graphs are created for each

function in the “C” input file. The output graphs generated are listed in Table4.1. The key to the nomenclature used in

naming the graphs is given in Table4.2

Graphs representing the original input file Graphs representing the scheduled design

CFG f ilenamec f unctionName.dotty CFG f ilenamec f unctionNamesched.dotty

HTG f ilenamec f unctionName.dotty HTG f ilenamec f unctionNamesched.dotty

DFG f ilenamec f unctionName.dotty DFG f ilenamec f unctionNamesched.dotty

CDFG f ilenamec f unctionName.dotty CDFG f ilenamec f unctionNamesched.dotty

CG f ilenamec f unctionName.dotty -

CG DFG f ilenamec f unctionName.dotty -

Table 4.1.Output Dotty graphs generated bySpark

To view these output graphs, we use theGraphvizcommand line tooldotty, as follows:

dotty out put/graph f ilename.dotty

4.3 Hardware Description File Format: default.spark

Sparkrequires as input a hardware description file that has information on timing, range of the various data types, and

the list of resources allocated to schedule the design (resource library). This file has to be named “filename.spark”, where

15

Abbreviation Explanation

CFG Control Flow Graph: Basic blocks with control flow between them

HTG Hierarchical Task Graph: Hierarchical structure of basic blocks

DFG Data Flow Graph: data flow between operations

CDFG Control-Data Flow Graph: Resource-utilization based view of the CFG

CG Call Graph showing control flow between functions

CG DFG Call Graph with data dependencies and control flow between functions

filename The name of “C” input file

functionName The name of the function in input file

Table 4.2.Key to abbreviations used in Dotty graph naming

filename.c is name of the “C” input file. If a filename.spark does not exist, then theSparkexecutable looks for “default.spark”.

One of these fileshas to existfor Sparkto execute.

The various have sections in the .spark files are described in the next few sections. Note that, comments can be included

in the .spark files by preceding them with “//”.

4.3.1 Timing Information

The timing section of the .spark file has the following format:

// ClockPeriod NumOfCycles TimeConstrained Pipelined

[GeneralInfo]

10 0 0 0

Of these parameters, only the clock period is used by the scheduler to schedule the design. The rest of the parameters

have been included for future development and are not used currently. They correspond to the number of cycles to schedule

the design in (timing constraint), whether the design should be scheduled by a time constrained scheduling heuristic, and

whether the design should be pipelined.

4.3.2 Data Type Information

Each data type used in the “C” input file has to have an entry in the “[TypeInfo]” section of the .spark file, as shown below:

//typeName lowerRange upperRange

//or variableName lowerRange upperRange

[TypeInfo]

int -32767 32768

myVar 0 16

This section specifies the range of the various data types that can be specified in a C description (such as int, char, float,

unsigned int, signed int, long, double et cetera). The format is data type, lower bound range, and upper bound range. Also,

the data value range of specific variables from the input C description can be specified in this section, as variable name, lower

range, upper range. This is shown in the table above my the example of a variable “myVar” whose range is from 0 to 16.

16

4.3.3 Hardware Resource Information

This section parameterizes each resource allocated to schedule the design as shown by the example below:

//name type inpsType inputs outputs number cost cycles ns

[Resources]

CMP ==,<,!= i 2 1 1 10 1 10

The example given in the first line above is:

❐ A resource called CMP (comparator).

❐ The operations==,<, ! = can be mapped to this resource.

❐ It handles inputs of type integer (i).

❐ It has 2 inputs.

❐ It has 1 output.

❐ There is one CMP allocated to schedule the design.

❐ Its cost is 10. The cost, although not used currently, can be integrated into module selection heuristics while selecting

a resource for scheduling from among multiple resources.

❐ The CMP resource executes in 1 cycle.

❐ It takes 10 nanoseconds to execute.

We can define resources of every type supported by the “C” language in the [Resources] section of the hardware description

file. A detailed example is given in AppendixA. Note that although we allow specifying multi-cycle resources in the resource

description section, we do not currently support structurally pipelined resources.

A list of all basic operators/resources recognized bySparkis given in Table4.1. The columns in this table list the resource

type as specified in the .spark file, the corresponding operator in C, the operation name, and the number of inputs this resource

accepts (number of outputs is currently one for all the resources). Complex resources can be made using these basic operators

as shown in the example above for the “CMP” resource.

If the Sparkexecutable reports an error that says “All ss in StatementNum are not scheduled”, then look at the operators

in the expressions reported after this error and add them to the hardware description file (.spark file).

Note that: The order of resources in the [Resources] section is the order in which operations from the input code will be

mapped to the resources. So, if there are two resources that do additions:

//name type inpsType inputs outputs number cost cycles ns

[Resources]

ALU +,- i 2 1 1 10 1 10

ADD + i 2 1 1 10 1 10

Then, the scheduler will first try to schedule addition operations to theALU resource and then try to schedule to theADD

resource.

17

Resource Operator Operation Number of
Type in C Inputs

+ + add 2
- - subtract 2
∗ * multiply 2
/ / divide 2

!= != compare 2
== == compare 2
> > compare 2
< < compare 2

>= >= compare 2
<= <= compare 2
<< << shift 2
>> >> shift 2
[] [] array access 1
∼ ∼ complement 1
! ! logical not 1

&& && logical and 2
|| || logical or 2

b& & Boolean and 2
b| | Boolean or 2

call - function call -

Figure 4.1.List of all resource types, corresponding C operators, operation name, and number of inputs

4.3.4 Specifying Function Calls as Resources in the Hardware Description File

A hardware resource has to be specified for each function call in the code. Hence, for a function call with the name

“myfunction”, we have to declare a hardware resource as follows:

//name type inpsType inputs outputs number cost cycles ns

[Resources]

myfunction call i 0 0 2 10 1 10

This line specifies a function call with name “myfunction” with integer input types that takes 1 cycle and 10 ns to execute.

The number of inputs and outputs is determined bySparkfrom the declaration of the function in the input code. If the

function “myfunction” is defined in the input code,Sparkperforms an analysis of the function and determines the actual

execution cycles and time of the function and uses this information for scheduling the calling function.

To generate correct and synthesizable VHDL, you have to specify a resource specifically for each function call. The

number of components instantiated for function calls to the same function is determined by the number of resources specified

above. Hence, in the example for “myfunction”, we specified two resources; thus, there will be two component instantiations

in the VHDL code.

The keyword “ALLCALLS” is used to match all function calls in the input code as follows:

//name type inpsType inputs outputs number cost cycles ns

[Resources]

ALLCALLS call i 0 0 1 10 1 10

18

This may be useful to capture calls to functions such asprintf that may have been used in theC code. Note that: the

ALLCALLS resource should be putat the endof the [Resources] section, otherwise all the function calls will be mapped to

this resource.

4.3.5 Loop Unrolling and Pipelining Parameters

// variable maxNumUnrolls maxNumShifts percentageThreshold ThruputCycles

[RDLPParams]

* 0 0 70 0

i 0 2 70 0

This section presents the parameters for loop unrolling and loop pipelining.

❐ Variable is the loop index variable to operate on (“*” means all loops)

❐ The second parameter specifies the number of times to unroll the loop.

❐ Number of times the loop should be shifted by the loop pipelining heuristic.

❐ Percentage threshold and throughput cycles are parameters used by the resource-directed loop pipelining (RDLP)

heuristic implemented in our system.

The example in the second line of the “[RDLPParams]” section shown above says that the loop with loop index variable

“i” should be shifted twice. To fully unroll a loop, specify number of loop unrolls to be equal to or more than the maximum

number of iterations of the loop.

4.3.6 Other Sections in .spark files

The other sections in the .spark files are:

❐ [RDLPMetrics]: Controls the various parameters of the resource-directed loop pipelining (RDLP) heuristic.

❐ [SchedulerRules]: The file thatSparkshould read to get the scheduling scripts (rules and parameters). Default is:

Priority.rules.

❐ [SchedulerScript]: The scheduling script to use: different scheduling heuristics can be employed by changing this

entry. Default is “genericSchedulerScript”.

❐ [Verification]: Specifies the number of test vectors that should be generated for functional verification of output C with

input C.

❐ [OutputVHDLRules]: Specifies the VHDL generation rules; this is covered in more detail in Section4.4.

4.4 VHDL Output Generated by Spark

Sparkgenerates synthesizable register-transfer level VHDL code (by specifying the -hvf command-line flag). If the -hb

command-line flag is also given, then the VHDL code is generated after operation and variable binding [5]. In resource-bound

code, an entity-architecture pair is generated for each resource in the hardware description file (.spark file) and a component

is instantiated for each instance of the resource (as specified by the number of resources in the .spark file). Processes are

19

created to generate multiplexers at the input of each functional unit/resource and variables are bound to registers that are

explicitly declared.

In contrast, when the resource binding flag (-hb) is not specified, then only operation expressions are generated in the

VHDL code. This code looks more like:a <= b+ c and so on. Hence, the unbound code is easier to read and understand

and also, has clearer relation with inputC code since variables from the input code are used in the VHDL. However, from

a logic synthesis point of view, unbound VHDL code allows the logic synthesis tool to decide the number of resources and

registers that are allocated to the synthesize the final netlist.

The following is an example of the same VHDL code in the data path process for the bound and unbound case respectively.

if CURRENT_STATE(0) = ’1’ then

regNum0 <= res_ALU_1_out;

regNum5 <= 0;

elsif CURRENT_STATE(1) = ’1’ then

regNum1 <= res_ALU_0_out;

regNum2 <= res_ALU_1_out;

hT0 <= res_CMP_2_out;

if CURRENT_STATE(0) = ’1’ then

hT5 <= (x + 2);

col <= 0;

elsif CURRENT_STATE(1) = ’1’ then

hT14 <= (col + bytes);

hT15 <= (col - x);

hT0 <= (col < 10);

(a) (b)

Figure 4.2. (a) Bound VHDL code (b) Corresponding unbound VHDL code

Note that, from release version 1.1 on, the output VHDL file generated bySparkhas the extension “.vhd” versus the

earlier “.vhdl”. This is for compatibility with Windows based tools such as Xilinx XST that look for .vhd VHDL files by

default.

4.4.1 Generating VHDL bound to Synopsys DesignWare Foundation Libraries

The default.spark (or filename.spark) file contains a section for controlling the type of VHDL output generated bySpark.

This is shown below:

[OutputVHDLRules]

PrintSynopsysVHDL=true

By setting the “PrintSynopsysVHDL” totrue in the “[OutputVHDLRules]” section of the default.spark (or filename.spark)

file, we can generate VHDL that is Synopsys specific. This means that the VHDL code generated bySparkis synthesizable

by Synopsys logic synthesis tools (Design Compiler). Hence, the VHDL code uses Synopsys libraries and components from

the Synopsys DesignWare Foundation library (specifically for the multiplier and divider).

The VHDL code also generates a SPARK package and stores this package in a SPARK library and this library is then used

in the code. Hence, this SPARK library has to be mapped to your work directory. For Synopsys tools, this is done using the

.synopsysvss.setupfile.

20

4.4.2 Generating VHDL Synthesizable by Other Logic Synthesis tools

If you are using logic synthesis tools from another vendor (besides Synopsys), then set the “PrintSynopsysVHDL” tofalse

in the “[OutputVHDLRules]” section of the default.spark (or filename.spark). This can be done as follows:

[OutputVHDLRules]

PrintSynopsysVHDL=false

Also, the VHDL uses the SPARK package (use work.sparkpkg.all;) that is stored in the SPARK library. Thus, you have

to edit your setup files to map the SPARK library to the work directory. Additionally, You will have to explicitly instantiate

multi-cycle components such as the multiplier and divider from the standard cell library of your technology vendor. This has

to be done in the architecture description ofres MUL andres DIV in the VHDL code.

From release version 1.1 on, when the “PrintSynopsysVHDL” is false,Sparkresets the conditional variables in the data

path process (DP: Process) rather than the SYNC process. This is for ensuring synthesizability by Xilinx XST.

4.5 Scripting Options for Controlling Transformations and Heuristics: Priority.rules

Sparkallows the designer to control the transformations applied to the design description by way of synthesis scripts. In

this section, we discuss the scripting options available to the designer.

The scripting options can be specified in the file given by the “[SchedulerRules]” section of the .spark file (see previous

section). The default script fileSparklooks for is “Priority.Rules”. This file has three main sections: the scheduler functions,

the list of allowed code motions (code motion rules) and the cost of code motions. We discuss each of these in the next three

sections. Note that in this file, ”//” denotes that the rest of the line is a comment.

4.5.1 Scheduler Functions

An example of the scheduler functions section from a samplePriority.rulesfile is given in Figure4.3. An entry in this

section is of type “FunctionType=FunctionName”. We have given explanations for each function type in comments on each

line in this figure.

Of these we use the following flags for the experiments presented in this thesis:DynamicCSE, PriorityType, BranchBal-

ancingDuringCMsandBranchBalancingDuringTraversal.

4.5.2 List of Allowed Code Motion

This section of the “Priority.rules” file has the list of code motions that can be employed by the scheduler. Each code

motion can be enabled or disabled by setting the flag corresponding to it to “true” or “false”. An example of the list of

allowed code motions sections is as given below.

// all the following can take values true or false

[CodeMotionRules]

RenamingAllowed=true // Variable Renaming allowed or not

AcrossHTGCodeMotionAllowed=true // Across HTG code motion allowed or not

SpeculationAllowed=true // Speculation allowed allowed or not

ReverseSpeculationAllowed=true // Reverse Speculation allowed or not

EarlyCondExecAllowed=true // Early Condition Execution allowed or not

ConditionalSpeculationAllowed=true // Condition Speculation allowed or not

21

//line format: functiontype=functionvalue

[SchedulerFunctions]

CandidateValidatorFunction=candidateValidatorPriority // Candidate Validation Algorithm

CandidateMoverFunction=TbzMover // Use Trailblazing for code motions

CandidateRegionWalkerFunction=topDownGlobal // Design traversal for candidate operations

ScheduleRegionWalkerFunction=topDownBasicBlock // Design traversal for scheduling

PreSchedulingFunction=initPriorities // Calculate priorities of operations before scheduling

PriorityType=max // Calculate priority as max or sum of dependent

operations data dependencies

PostSchedulingStepFunction=postSchedulingPriority // Reverse speculate all unscheduled operations at each

time step of scheduling

PreSchedulingStepFunction=preSchedPriority // Do early condition execution before each time step

of scheduling

LoopSchedulingFunction=RDLP // Loop unrolling is done by RDLP

PreLoopSchedulingFunction=prepareForRDLP // Initialization functions for loops

PostLoopSchedulingFunction=constantPropagation // Optional post loop scheduling pass

ReDoHTGsForDupUp=false // Whether to reschedule HTGs for possible

duplication-up true or false

ReassignPriorityForCS=true // Reassign priorities to favor operations

within basic blocks

RestrictDupUpType=targetBBUnsched // Restrict duplication-up

DynamicCSE=true // Whether Dynamic CSE is enabled or not

BranchBalancingDuringCMs=true // Enable branch balancing during code motions

BranchBalancingDuringTraversal=true // Enable branch balancing during design traversal

Figure 4.3.The scheduler functions section in a sample Priority.rules file.

4.5.3 Cost of Code Motions

This section was developed to experiment with incorporating costs of code motions into the cost function based on which

the operation to schedule is chosen. An example of this section is given below. Here all the code motions are assigned a cost

of 1.

[CodeMotionCosts]

WithinBB 1

AcrossHTGCodeMotion 1

Speculation 1

DuplicationUp 1

The total cost of scheduling an operation is determined as:

Total Cost = - Basic Cost of operation * Cost Of Each Code Motion required to schedule the operation

22

where basic cost of the operation is the priority of the operation [2] and cost of each code motion is as given in the “[Code-

MotionCosts]” section of the Priority.rules file. Since this function generates a negative total cost, the operation with the

lowest cost is chosen as the operation to be scheduled.

23

Appendix A

Sample default.spark Hardware Description

file

//NOTE: do no put any comments within a section

// Currently NumOfCycles, TimeConstrained and Pipelined are not used

// ClockPeriod NumOfCycles TimeConstrained Pipelined

[GeneralInfo]

10 1 1 0

//typeName lowerRange upperRange

//or variableName lowerRange upperRange

[TypeInfo]

char 0 8

signed_char 0 8

unsigned_char 0 8

short 0 16

int -32767 32768

unsigned_short 0 16

unsigned_int 0 32

long 0 64

unsigned_long 0 64

long_long 0 128

unsigned_long_long 0 128

float 0 32

double 0 64

long_double 0 128

myVariableFromInput 0 4

// all cycles in resources have to be ns/ClockPeriod = cycles

//name type inpsType inputs outputs number cost cycles ns

24

[Resources]

ALU +,- i 2 1 1 10 1 10

MUL * i 2 1 1 20 2 20

CMP ==,< i 2 1 1 10 1 10

SHFT << i 2 1 2 10 1 10

ARR [] i 1 1 5 10 1 10

LOGIC &&,|| i 2 1 5 10 0 0

GATE b&,b| i 2 1 5 10 0 0

UNARY ˜,! i 1 1 5 10 0 0

ALLCALLS call i 0 0 2 10 1 10

// variable maxNumUnrolls maxNumShifts percentageThreshold cycleThruput

[RDLPParams]

* 0 0 70 0

//unroll, shift, resetUnroll, and resetShift metrics

[RDLPMetrics]

UnrollMetric=RDLPGenericUnrollMetric

ShiftMetric=RDLPGenericShiftMetric

ResetUnrollMetric=RDLPGenericResetUnrollMetric

ResetShiftMetric=RDLPGenericResetShiftMetric

//lists file that has scheduler rules/functions

[SchedulerRules]

Priority.rules

//function that drives scheduler

[SchedulerScript]

genericSchedulerScript

// numOfTestVectors

[Verification]

20

[OutputVHDLRules]

PrintSynopsysVHDL=true

25

Appendix B

Recommended Priority.rules Synthesis Script

file

We found the following choice of options in the synthesis script produces the best synthesis results for data-intensive designs

with complex control flow.

//line format: <functiontype>=<functionvalue>

[SchedulerFunctions]

ScheduleRegionWalkerFunction=topDownBasicBlockNoEmpty

CandidateValidatorFunction=candidateValidatorPriority

CandidateMoverFunction=TbzMover

LoopSchedulingFunction=RDLP

CandidateRegionWalkerFunction=topDownGlobal

PreSchedulingStepFunction=preSchedulingPriority

PostSchedulingStepFunction=postSchedulingPriority

PreLoopSchedulingFunction=prepareForRDLP

PostLoopSchedulingFunction=constantPropagation

PreSchedulingFunction=initPriorities

ReDoHTGsForDupUp=false // true or false - false is better

ReassignPriorityForCS=true // true or false - true is better

PriorityType=max // max, sum, maxNoCond - max is best

RestrictDupUpType=targetBBUnsched // none, afterSchedOnce, targetBBUnsched

BranchBalancingDuringCMs=true // true or false - true is better

BranchBalancingDuringTraversal=true // true or false - true is better

DynamicCSE=true

[CodeMotionRules]

RenamingAllowed=true

AcrossHTGCodeMotionAllowed=true

SpeculationAllowed=true

ReverseSpeculationAllowed=true

26

EarlyCondExecAllowed=true

ConditionalSpeculationAllowed=true

// the higher the cost, the more profitable a code motion is

// total cost = basicCost * CostOfEachCodeMotion

[CodeMotionCosts]

WithinBB 1

AcrossHTGCodeMotion 1

Speculation 1

DuplicationUp 1

27

Appendix C

Modifying Input Code to be Synthesizable by

Spark

C.1 Input Code with Structs

Consider the input source code shown in FigureC.1(a) and consider that we want to synthesize the function “structEx”.

SinceSparkdoes not currently support structures, we can split this function into two and rewrite the code as shown in Figure

C.1(b). Now we can put the function “structEx” in a separate file and executeSparkon that file.

struct myStruct {

int fir;

int sec;

};

void structEx(myStruct a, int *b)

{

*b = a->fir + a->sec;

}

struct myStruct {

int fir;

int sec;

};

void callStructCode(myStruct a, int *b)

{

structEx(a->fir, a->sec, b);

}

void structEx(int A_fir, int A_sec, int *b)

{

*b = A_fir + A_sec;

}

Figure C.1.(a) Input code that uses a structure (myStruct). (b) The function can be split into a calling function

and a called function. The calling function calls the called function after enumerating the elements of the

structure that are processed by the called function. The called function (structEx) is now synthesizable.

28

C.2 Input Code with Pointers

/* arr is an array that has been

declared outside this function */

void pointerCode(int *arr, int *b)

{

int *ptr;

int i;

ptr = arr;

for (i = 0; i < 10; i++)

{

*b += *ptr;

ptr++;

}

}

/* arr is an array that has been

declared outside this function */

void pointerCode(int *arr, int *b)

{

int i;

int arr_index;

arr_index = 0;

for (i = 0; i < 10; i++)

{

*b += arr[arr_index];

arr_index++;

}

}

Figure C.2.(a) Input code that uses a pointer to address an array. (b) The pointer can be replaced by a array

index variable (arr index) that determines which array element to access.

Consider the input source code shown in FigureC.2(a) and consider that we want to synthesize the function “pointerCode”.

In this case, it is straight forward to replace the pointerptr with the array variablearr. The code can, hence, be rewritten as

shown in FigureC.2(b). We have replaced the pointer with an array index variable instead. The code is now synthesizable by

Spark.

29

C.3 Input Code with Breaks

void breakCode(int a, int *b)

{

int i;

for (i = 0; i < N; i++)

{

*b += a;

if (*b > 100)

break;

}

}

void breakCode(int a, int *b)

{

int i;

int breakFlag;

breakFlag = 0;

for (i = 0; i < N; i++)

{

if (breakFlag == 0)

{

*b += a;

if (*b > 100)

breakFlag = 1;

}

}

}

Figure C.3.(a) Input code with a breakinside a for-loop. (b) Thebreakcan be replaced by a flag (breakFlag)

that determines if future iterations of the loop body are executed or not.

Consider the input source code shown in FigureC.3(a). Consider that we want to synthesize the function “breakCode”.

We can remove thebreak in this code by creating a flag that is checked for each iteration of the loop as shown in Figure

C.3(b). If thebreakFlagis set, then the statements in the loop body are not executed.

30

C.4 Input Code with Continues

void continueCode(int a, int *b)

{

int i;

for (i = 0; i < N; i++)

{

*b += a;

if (*b < 100)

continue;

b = b/2;

}

}

void continueCode(int a, int *b)

{

int i;

int continueFlag;

for (i = 0; i < N; i++)

{

continueFlag = 0;

*b += a;

if (*b < 100)

continueFlag = 1;

if (continueFlag == 0)

{

b = b/2;

}

}

}

Figure C.4.(a) Input code with a continueinside a for-loop. (b) The continuecan be replaced by a flag

(continueFlag) that determines if the rest of the code in the loop is executed or not.

Consider the input source code shown in FigureC.4(a). Consider that we want to synthesize the function “continueCode”.

We can remove thecontinuein this code by creating a flag that is checked for each iteration of the loop as shown in Figure

C.4(b).

In the modified code, whenb is less than 100, then thecontinueFlagis set and hence, theb = b/2 code does not execute.

ThecontinueFlaghas to be reset to zero at the beginning of each loop iteration to retain the semantics of the original code.

31

C.5 Input Code in which an Argument is Modified

void argumentCode(int a, int *b)

{

int i;

for (i = 0; i < N; i++)

{

*b += a;

a = a/2;

}

}

void argumentCode(int a, int *b)

{

int i;

int temp;

temp = a;

for (i = 0; i < N; i++)

{

*b += a;

temp = temp/2;

}

}

Figure C.5.(a) “C” code with input variable a being modified in the function body. (b) Variablea is stored in

a local variable tempand all instances ofa are replaced bytemp. This is done because VHDL semantics do

not allow an input variable to be modified in the body of the code.

The “C” language allows a function to modify a variable that has been passed as an argument to the function. For example,

consider the code in FigureC.5(a). The modifications to the variablea are local to the functionargumentCodesince variable

a has not been passed by reference.

WhenSparkgenerates VHDL code from this input C code, variablea will be declared asinput in the VHDL code and

there will be a statement updatinga in the process body. However, VHDL semantics do not allow an input variable to be

updated in the architecture body. Hence, to make this input code synthesizable, we have to modify the C code to store variable

a in a temporary variable and update the temporary variable. The modified code is shown in FigureC.5(b).

32

C.6 Input Code with “?” if-then-else

Consider this code with an if-then-else written in a question format:

d = (a > 10) ? (a + b) : (a + c);

This code has to be converted explicitly into if-then-else as shown below:

if (a > 10)

d = a + b;

else

d = a + c;

C.7 Input Code with Multi-Dimensional Arrays

Input code that contains multi-dimensional arrays can be modified by making the arrays single-dimensional. Consider the

following example:

int myArray[N][M];

...

temp = myArray[i][j]

The two-dimensional array “myArray” can be converted into a single-dimensional array as follows

int myArray[N * M];

...

temp = myArray[i*M + j]

33

Bibliography

[1] S. Gupta.Coordinated Coarse-Grain and Fine-Grain Optimizations for High-Level Synthesis. PhD thesis, University

of California, Irvine, 2003.

[2] S. Gupta, N.D. Dutt, R.K. Gupta, and A. Nicolau. SPARK: A high-level synthesis framework for applying parallelizing

compiler transformations. InInternational Conference on VLSI Design, 2003.

[3] SPARK parallelizing high-level synthesis framework website.http://www.cecs.uci.edu/˜spark .

[4] S. Gupta, N. Savoiu, S. Kim, N.D. Dutt, R.K. Gupta, and A. Nicolau. Speculation techniques for high level synthesis

of control intensive designs. InDesign Automation Conference, 2001.

[5] S. Gupta, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nicolau. Conditional speculation and its effects on performance

and area for high-level synthesis. InInternational Symposium on System Synthesis, 2001.

[6] S. Gupta, M. Reshadi, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nicolau. Dynamic common sub-expression elimination

during scheduling in high-level synthesis. InInternational Symposium on System Synthesis, 2002.

[7] S. Gupta, N.D. Dutt, R.K. Gupta, and A. Nicolau. Dynamic conditional branch balancing during the high-level synthesis

of control-intensive designs. InDesign, Automation and Test Conference, 2003.

[8] S. Gupta, N.D. Dutt, R.K. Gupta, and A. Nicolau. Dynamically increasing the scope of code motions during the high-

level synthesis of digital circuits.Invited Paper in Special Issue of IEE Proceedings: Computers and Digital Technique:

Best of DATE 2003, 150(5), September 2003.

[9] S. Gupta, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nicolau. Using global code motions to improve the quality of

results for high-level synthesis. Technical Report CECS-TR-02-29, Center for Embedded Computer Systems, Univ. of

California, Irvine, 2002.

[10] A. Aho, R. Sethi, and J. Ullman.Compilers: Principles and Techniques and Tools. Addison-Wesley, 1986.

[11] Z. Navabi.VHDL: Analysis and Modeling of Digital Systems. McGraw-Hill, 1993.

[12] M. Molina, J. Mendias, and R. Hermida. High-level allocation to minimize internal hardware wastage. InDesign,

Automation and Test in Europe, 2003.

[13] A. Nicolau and S. Novack. Trailblazing: A hierarchical approach to Percolation Scheduling. InInternational Confer-

ence on Parallel Processing, 1993.

[14] M. Girkar and C.D. Polychronopoulos. Automatic extraction of functional parallelism from ordinary programs.IEEE

Trans. on Parallel & Distributed Systems, Mar. 1992.

[15] Edison Design Group (edg) compiler frontends.http://www.edg.com .

34

http://www.cecs.uci.edu/~spark
http://www.edg.com

[16] S. Gupta, T. Kam, M. Kishinevsky, S. Rotem, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nicolau. Coordinated trans-

formations for high-level synthesis of high performance microprocessor blocks. InDesign Automation Conference,

2002.

[17] AT&T Research Labs. Graphviz - Open source graph drawing software.http://www.research.att.com/sw/

tools/graphviz/ .

35

http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/

	About this Manual
	Copyright
	Disclaimer
	Reporting Bugs
	Acknowledgments
	Change Log

	Introduction to the Spark High-Level Synthesis Framework
	Inferring Hardware Intent from C
	Restrictions on ``C'' Accepted as Input

	Quick Start Guide
	Downloading and Installing Spark
	Files Required and Directory Setup
	Recommended Command-line Options for Invoking Spark
	Options for Synthesizing Microprocessor Blocks

	Detailed Instructions
	Command Line Interface
	Viewing Output Graphs
	Hardware Description File Format: default.spark
	Timing Information
	Data Type Information
	Hardware Resource Information
	Specifying Function Calls as Resources in the Hardware Description File
	Loop Unrolling and Pipelining Parameters
	Other Sections in .spark files

	VHDL Output Generated by Spark
	Generating VHDL bound to Synopsys DesignWare Foundation Libraries
	Generating VHDL Synthesizable by Other Logic Synthesis tools

	Scripting Options for Controlling Transformations and Heuristics: Priority.rules
	Scheduler Functions
	List of Allowed Code Motion
	Cost of Code Motions

	Sample default.spark Hardware Description file
	Recommended Priority.rules Synthesis Script file
	Modifying Input Code to be Synthesizable by Spark
	Input Code with Structs
	Input Code with Pointers
	Input Code with Breaks
	Input Code with Continues
	Input Code in which an Argument is Modified
	Input Code with ``?'' if-then-else
	Input Code with Multi-Dimensional Arrays

