
eProsima Fast RPC

User Manual
Version 0.3.3

The Middleware Experts
eProsima © 2014

1

eProsima
Proyectos y Sistemas de Mantenimiento SL
Ronda del poniente 16 – Bajo K
28760 Tres Cantos Madrid
Tel: + 34 91 804 34 48
info@eProsima.com – www.eProsima.com

Trademarks

eProsima is a trademark of Proyectos y Sistemas de Mantenimiento SL. All other
trademarks used in this document are the property of their respective owners.

License

eProsima Fast RPC is licensed under the terms described in the FASTRPC_LICENSE file
included in this distribution.

Technical Support

 Phone: +34 91 804 34 48

 Email: support@eProsima.com

2

mailto:info@eProsima.com
mailto:support@eProsima.com
http://www.eProsima.com/

Table of Contents
1 Introduction..4

1.1 Remote Procedure Calls (RPC)...4

1.2 A quick example...5

1.3 Main Features..6

2 Building an application...7

2.1 Defining a set of remote procedures...8

2.1.1 IDL Syntax and mapping to C++...9

2.1.2 Example...15

2.2 Generating specific remote procedure call support code.....................................15

2.2.1 FASTRPCGEN Command Syntax:..15

2.2.2 Server side...16

2.2.3 Client side..16

2.3 Server implementation..16

2.3.1 API...17

2.3.2 Exceptions...17

2.3.3 Example...18

2.4 Client implementation...18

2.4.1 API...18

2.4.2 Exceptions...19

2.4.3 Example...19

3 Advanced concepts...20

3.1 Network transports..20

3.1.1 TCP Transport..20

3.2 One-way calls...22

3.3 Threading Server strategies...22

3.3.1 Single thread strategy..22

3.3.2 Thread Pool strategy...23

3.3.3 Thread per request strategy..23

4 HelloWorld example...24

4.1 Writing the IDL file...24

4.2 Generating specific code..24

4.3 Client implementation...25

4.4 Server implementation..25

4.5 Build and execute...26

3

1 Introduction
eProsima Fast RPC is a high performance remote procedure call (RPC) framework. It
combines a software stack with a code generation engine to build efficient services for
several platforms and programming languages.

eProsima Fast RPC uses a high performance serialization mechanism over a lightweight
communication layer.

1.1 Remote Procedure Calls (RPC)
There are three main communication patterns used in distributed systems:

 Publish-Subscribe
 Request-Reply
 Point to Point

One example of Request-Reply pattern is the Remote Procedure Call (RPC). RPC allows
an application to call a subroutine or procedure in another address space (commonly in
another computer on a shared network).

eProsima Fast RPC provides an implementation of this general concept enabling
developers to build distributed applications with minimal effort.

The framework generates the Request-Reply code from the procedure definition using
an Interface Definition Language (IDL), allowing the developer to focus in the
application logic without bothering about the networking details.

4

1.2 A quick example
You write an IDL file like this:

interface Example
{
 void exampleMethod();
};

Then you process the file with the fastrpcgen compiler to generate C++ code.
Afterwards, you use that code to invoke remote procedures with the client proxy:

TCPProxyTransport *transport = new TCPProxyTransport(”127.0.0.1:8080”);
ExampleProtocol *protocol = new ExampleProtocol();
ExampleProxy *proxy = new ExampleProxy(*transport, *protocol);
...
proxy->exampleMethod();

or to implement a server using the generated skeleton:

TCPServerTransport *transport = new TCPServerTransport(”127.0.0.1:8080”);
ExampleProtocol *protocol = new ExampleProtocol();
SingleThreadStrategy *single = new SingleThreadStrategy();
ExampleServerImpl servant;
ExampleServer *server =

new ExampleServer(*single, *transport, *protocol, servant);
...
server->serve();

See section 4 (HelloWorld example) for a complete step by step example.

5

1.3 Main Features

 Synchronous and one-way invocations.
o The synchronous invocation is the most common one. It blocks the

client’s thread until the reply is received from the server.
o The one-way invocation is a fire-and-forget invocation where the client

does not care about the result of the procedure. It does not wait for any
reply from the server.

 Different threading strategies for the server. These strategies define how the
server acts when a new request is received. The currently supported strategies
are:

o Single-thread strategy: Uses only one thread for every incoming
request.

o Thread-pool strategy: Uses a fixed amount of threads to process the
incoming requests.

o Thread-per-request strategy: Creates a new thread for processing each
new incoming request.

 High performance: The framework uses a fast serialization mechanism that
increases the performance.

6

2 Building an application
eProsima Fast RPC allows the developer to easily implement a distributed application
using remote procedure invocations.

In client/server paradigm, a server offers a set of remote procedures that the client can
remotely call. How the client calls these procedures should be transparent. The proxy
object represents the remote server, and this object offers the remote procedures
implemented by the server.

In the same way, how the server obtains a request from the network and how it sends
the reply should also be transparent. The developer just writes the behavior of the
remote procedures using the generated skeleton.

Steps to build an application:
 Define a set of remote procedures, using the Interface Definition Language.
 Using the provided IDL compiler, generate the specific remote procedure call

support code (a Client Proxy and a Server Skeleton)
 Implement the server, filling the server skeleton with the behavior of the

procedures.
 Implement the client, using the client proxy to invoke the remote procedures.

This section will describe the basic concepts of these four steps that a developer has to
follow to implement a distributed application. The advanced concepts are described in
section 3 (Advanced concepts).

7

2.1 Defining a set of remote procedures
An Interface Definition Language (IDL) is used to define the remote procedures the
server will offer. Data Types used as parameter types in these remote procedures are
also defined in the IDL file. The IDL structure is based in OMG IDL and it is described in
the following schema:

IDL File

eProsima Fast RPC includes a Java application named fastrpcgen. This application parses
the IDL file and generates C++ code for the defined set of remote procedures.
fastrpcgen application will be described in the section 2.2 (Generating specific remote
procedure call support code).

8

Procedure definitions

Interface definition

Data Type definitions

2.1.1 IDL Syntax and mapping to C++
User types defined through the IDL file are mapped to C++11 native types. In this
section this mapping is shown.

2.1.1.1 Simple types
eProsima Fast RPC supports a variety of simple types that the developer can use as
parameters, returned values and members of complex types. The following table shows
the supported simple types, how they are defined in the IDL file and what the
fastrpcgen generates in C++11 language.

TABLE 1: SPECIFYING SIMPLE TYPES IN IDL FOR C++ USING C++11 NATIVE TYPES
IDL Type Sample in IDL File Sample Output Generated by

fastrpcgen
char char char_member char char_member
wchar wchar wchar_member wchar_t wchar_member
octet octet octet_member uint8_t octet_member
short short short_member int16_t short_member
unsigned
short

unsigned short ushort_member uint16_t ushort_member

long long long_member int32_t long_member
unsigned
long

unsigned long ulong_member uint32_t ulong_member

long long long long llong_member int64_t llong_member
unsigned
long long

unsigned long long
ullong_member

uint64_t ullong_member

float float float_member float float_member
double double double_member double double_member
boolean boolean boolean_member bool boolean_member
bounded
string

string<20> string_member std::string string_member
/* maximum length = (20) */

unbounded
string

string string_member std::string string_member
/* maximum length = (255) */

9

2.1.1.2 Complex types
Complex types can be created combining simple types. These complex types can be
used as parameters or returned values. The following table shows the supported
complex types, how they are defined in the IDL file and what fastrpcgen generates in C+
+11 language.

TABLE 2: SPECIFYING COMPLEX TYPES IN IDL FOR C++ USING C++11 NATIVE TYPES
IDL Type Sample in IDL File Sample Output Generated by

fastrpcgen
enum enum PrimitiveEnum {

 ENUM1,
 ENUM2,
 ENUM3
};
enum PrimitiveEnum {
 ENUM1 = 10,
 ENUM2 = 20,
 ENUM3 = 30
};

enum PrimitiveEnum : uint32_t {
 ENUM1,
 ENUM2,
 ENUM3
};
enum PrimitiveEnum : uint32_t {
 ENUM1 = 10,
 ENUM2 = 20,
 ENUM3 = 30
};

struct struct PrimitiveStruct {
 char char_member;
};

class PrimitiveStruct {
public:
 /** Constructors **/
 PrimitiveStruct();
 ...

 /** Getter and Setters **/
 char char_member();
 void char_member(char x);
 ...

private:
 char m_char_member;
};

union union PrimitiveUnion
switch(long) {
 case 1:
 short short_member;
 default:
 long long_member;
};

class PrimitiveUnion {
public:
 /** Constructors **/
 PrimitiveStruct();
 ...

 /** Discriminator **/
 int32_t _d();
 void _d(int32_t x);
 ...

 /** Getter and Setters **/
 int16_t short_member();
 int32_t long_member();
 ...

private:
 int32_t m__d;
 int16_t m_short_member;
 int32_t m_long_member;
};

typedef typedef short TypedefShort; typedef int16_t TypedefShort;

10

array
(See note
below)

struct OneDArrayStruct {
 short short_array[2];
};

struct TwoDArrayStruct {
 short short_array[1][2];
};

class OneDArrayStruct {
 ...

private:
 std::array<int16_t, 2>
 m_short_array;
};

class TwoDArrayStruct {
 ...

private:

std::array<std::array<int16_t,
2>, 1> m_short_array;
};

bounded
sequence
(See note
below)

struct SequenceStruct {
 sequence<short,4>
 short_sequence;
};

class SequenceStruct {
 ...

private:
 std::vector<int16_t>
 m_short_sequence;
};

unbounded
sequence
(See note
below)

struct SequenceStruct {
 sequence<short>
 short_sequence;
};

class SequenceStruct {
 ...

private:
 std::vector<int16_t>
 m_short_sequence;
};

Note: These complex types cannot be used directly as procedure’s parameters. In these cases, use a
typedef to redefine them.

11

2.1.1.3 Parameter definition
There are three reserved words used in the procedure’s parameter definitions. It is
mandatory to use one of them in each procedure’s parameter definition. The following
table shows these reserved words and their meanings:

Reserved word Meaning
in The parameter is an input parameter.
inout The parameter acts as an input and output parameter.
output The parameter is an output parameter.

Suppose the type T is defined as the type of the parameter. If the parameter uses the
reserved word in and the type T is a simple type or an enumeration, then the type is
mapped in C++ as T. In the case the type T is a complex type, the type is mapped in C++
as const T&. If the parameter uses the reserved word inout or out, then the type is
mapped in C++ as T&.
As it was commented in section 2.1.1.2 (Complex types), array and sequence types
cannot be directly defined as parameter types. To do so, they have to be previously
redefined using a typedef. This redefinition can be used as a parameter.

2.1.1.4 Function definition
A procedure’s definition is composed of two or more elements:

 The type of the returned value. void type is allowed.
 The name of the procedure.
 A list of parameters. This list could be empty.

An example of how a procedure should be defined is shown below:
long funcName(in short param1, inout long param2);

fastrpcgen application maps the functions following these rules:
 The type of the C++ returned value is the same as the one defined in the IDL

file, using the tables described in sections 2.1.1.1 (Simple types) and 2.1.1.2
(Complex types) for the mapping.

 The name of the C++ function is the same as the name of the defined function
in the IDL file.

 The order of the parameters in the C++ function is the same as the order in the
IDL file. The parameters are mapped in C++ as it was described in section
2.1.1.3 (Parameter definition).

Following these rules, the previous example would generate the following C++
functions:

int32_t funcName(int16_t param1, int32_t& param2);

12

2.1.1.5 Exception definition
IDL functions can raise user-defined exceptions to indicate the occurrence of an error.
An exception is a structure that may contain several fields. An example of how to
define an exception is shown below:
exception ExceptionExample
{
 long count;
 string msg;
};

This example would generate the following C++ exception:

class ExceptionExample: public eprosima::rpc::exception::UserException
{
public:
 ExceptionExample();
 ExceptionExample(const ExceptionExample &ex);
 ExceptionExample(ExceptionExample&& ex);
 ExceptionExample& operator=(const ExceptionExample &ex);
 ExceptionExample& operator=(ExceptionExample&& ex);
 virtual ~ExceptionExample() throw();
 virtual void raise() const;

 /** Getters and Setters **/
 int32_t count() const;
 int32_t& count();
 void count(int32_t _count);
 ...

private:
 /** Exception members **/
 int32_t m_count;
 std::string m_msg;
};

To specify that an operation can raise one or more user-defined exceptions, first define
the exception and then add an IDL raises clause to the operation definition, like the
following example:

exception Exception1
{
 long count;
};

exception Exception2
{
 string msg;
};

void exceptionFunction()
 raises(Exception1, Exception2);

13

2.1.1.6 Interface definition
The remote procedures that the server will offer have to be defined in an IDL interface.
An example of how an interface should be defined is shown:

interface InterfaceExample
{
 // Set of remote procedures.
};

The IDL interface will be mapped in three classes:
 InterfaceExampleProxy: A local server’s proxy that offers the remote procedures

to the client application. Client application must create an object of this class
and call the remote procedures.

 InterfaceExampleServerImpl: This class contains the remote procedures
definitions. These definitions must be implemented by the developer. eProsima
Fast RPC creates one object of this class. It is used by the server.

 InterfaceExampleServer: The server implementation. This class executes a server
instance.

2.1.1.7 Module definition
To group related definitions, such as complex types, exceptions, functions and
interfaces, a developer can use modules:

module ModuleExample
{
 // Set of definitions
};

A module will be mapped into a C++ namespace, and every definition inside it will be
defined within the generated namespace in C++.

2.1.1.8 Limitations
fastrpcgen application has some limitations concerning IDL syntax:

 Two procedures cannot have the same name.
 Complex types (arrays and sequences) used in procedure definitions must be

previously named using typedef keyword, as CORBA IDL 2.0 specification
enforces.

14

2.1.2 Example
This example will be used as a base to other examples in the following sections. It
shows the IDL syntax described in the previous subsection:

// file Bank.idl

enum ReturnCode
{
 SYSTEM_ERROR,
 ACCOUNT_NOT_FOUND,
 AUTHORIZATION_ERROR,
 NOT_MONEY_ENOUGH,
 OPERATION_SUCCESS
};

struct Account
{

string AccountNumber;
string Username;
string Password;

};

interface Bank
{

ReturnCode deposit(in Account ac, in long money);
};

2.2 Generating specific remote procedure call support code
Once the API is defined in a IDL file, we need to generate code for a client proxy and a
server skeleton. eProsima Fast RPC provides the fastrpcgen tool for this purpose: it
parses the IDL file and generates the corresponding supporting code.

2.2.1 FASTRPCGEN Command Syntax:
The general syntax is:
fastrpcgen [options] <IDL file> <IDL file> ...

Options:
Option Description
-help Shows help information.
-version Shows the current version of eProsima Fast RPC
-ppPath <directory> Location of the C/C++ preprocessor.
-ppDisable Disables the C/C++ preprocessor. Useful when macros or

includes are not used.
-replace Replaces existing generated files.
-example <platform> Creates a solution for a specific platform. This solution

will be used by the developer to compile both client and
server.
Possible values: i86Win32VS2010, x64Win64VS2010,
i86Linux2.6gcc4.4.5, x64Linux2.6gcc4.4.5

-d <path> Sets an output directory for generated files
-t <temp dir> Sets a specific directory as a temporary directory

15

The fastrpcgen application generates several files that will be described in this section.
Their names are generated using the IDL file name. The <IDLName> tag has to be
substituted by the file name.

2.2.2 Server side
fastrpcgen generates C++ header and source files with the declarations and the
definitions of the remote procedures. These files are the skeletons of the servants that
implement the defined interfaces. The developer can use each definition in the source
files to implement the behavior of the remote procedures. These files are
<IDLName>ServerImpl.h and <IDLName>ServerImpl.cxx. fastrpcgen also generates a C++
source file with an example of a server application and a server instance. This file is
<IDLName>ServerExample.cxx.

2.2.3 Client side
fastrpcgen generates a C++ source file with an example of a client application and how
this client application can call a remote procedure from the server. This file is
<IDLName>ClientExample.cxx.

2.3 Server implementation
After the execution of fastrpcgen, two files named <IDLName>ServerImpl.cxx and
<IDLName>ServerImpl.h will be generated. These files are the skeleton of the interfaces
offered by the server. All the remote procedures are defined in these files, and the
behavior of each one has to be implemented by the developer. For the remote
procedure deposit seen in our Example, the possible generated definition is:

ReturnCode BankServerImpl::deposit(/*in*/const Account& ac, /*in*/ int32_t
money)
{
 ReturnCode returnedValue = SYSTEM_ERROR;

 return returnedValue;
}

Keep in mind a few things when this servant is implemented.
 in parameters can be used by the developer, but their allocated memory cannot

be freed, either any of their members.
 inout parameters can be modified by the developer, but before allocate

memory in their members, old allocated memory has to be freed.
 out parameters are not initialized. The developer has to initialize them.

The code generated by fastrpcgen also contains the server classes. These classes are
implemented in the files <IDLName>Server.h and <IDLName>Server.cxx. They offer the
resources implemented by the servants.

When an object of the class <IDLName>Server is created, proxies can establish a
connection with it. How this connection is created and how the proxies find the server
depends on the selected network transport. These transports are described in section
3.1 (Network transports).

16

2.3.1 API
Using the suggested IDL example, the API created for this class is:

class BankServer: public eprosima::rpc::server::Server
{
public:
 BankServer(
 eprosima::rpc::strategy::ServerStrategy &strategy,
 eprosima::rpc::transport::ServerTransport &transport,
 eprosima::rpc::protocol::BankProtocol &protocol,
 account_accountNumberResourceServerImpl &servant
);

 virtual ~BankServer();
 ...
};

The server provides a constructor with four parameters. The strategy parameter
expects a server’s strategy that defines how the server has to manage incoming
requests. Server strategies are described in the section 3.3 (Threading Server
strategies).

The second parameter expects the network transport that will be used to establish
connections with proxies. The third parameter is the protocol. It's generated by
fastrpcgen and it's the class that deserializes received data and gives it to the user
implementation. Finally, the fourth parameter is the server skeleton implemented by
the user, for example by filling the empty example given.

2.3.2 Exceptions
In the server side, developers can inform about an error in the execution of the remote
procedures. The exception eprosima::rpc::exception::ServerInternalException can be
caught in the developer’s code. This exception will be delivered to the proxy and will be
thrown in the proxy’s side. An example of how this exception can be thrown is shown
below:

ReturnCode BankServerImpl::deposit(/*in*/const Account& ac, /*in*/ int32_t
money)
{
 ReturnCode returnedValue = SYSTEM_ERROR;

 throw eprosima::rpc::exception::ServerInternalException(“Error in deposit
procedure”);

 return returnedValue;
}

17

2.3.3 Example
Using the suggested IDL Example, the developer can create a server in the following
way:
unsigned int threadPoolSize = 5;
ThreadPoolStrategy *pool = NULL;
BankProtocol *protocol = NULL;
TCPServerTransport *transport = NULL;
BankServer *server = NULL;
BankServerImplExample servant;

try
{
 pool = new ThreadPoolStrategy(threadPoolSize);
 transport = new TCPServerTransport("127.0.0.1:8080");
 protocol = new BankProtocol();
 server = new BankServer(*pool, *transport, *protocol, servant);
 server->serve();
}
catch(eprosima::rpc::exception::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

2.4 Client implementation
The code generated by fastrpcgen contains classes that act like proxies of the remote
servers. These classes are implemented in the files <IDLName>Proxy.h and
<IDLName>Proxy.cxx. The proxies offer the server resources and the developer can
directly invoke its remote procedure.

2.4.1 API
Using the suggested IDL example the API of this class is:

class BankProxy : public eprosima::rpc::proxy::Proxy
{
 public:

 BankProxy(eprosima::rpc::transport::ProxyTransport &transport,
 eprosima::rpc::protocol::BankProtocol &protocol);

 virtual ~BankProxy();

 ReturnCode deposit(/*in*/ const Account& ac, /*in*/ int32_t money);

};

The proxy provides a constructor. It expects the network transport that will be used to
establish the connection with the server as a parameter. The second parameter is the
protocol. Again, it is generated by fastrpcgen and its duty is to serialize and deserialize
protocol data.

The proxy provides the remote procedures to the developer. Using the suggested IDL,
our proxy will provide the remote procedure deposit.

18

2.4.2 Exceptions
While a remote procedure call is executed, an error can occur. In these cases,
exceptions are used to report errors. Following exceptions can be thrown when a
remote procedure is called:

Exception Description
eprosima::rpc::exception::Cli
entInternalException

This exception is thrown when there is a problem in
the client side.

eprosima::rpc::exception::Ser
verTimeoutException

This exception is thrown when the maximum time was
exceeded waiting the server’s reply.

eprosima::rpc::exception::Ser
verInternalException

This exception is thrown when there is a problem in
the server side.

eprosima::rpc::exception::Ser
verNotFoundException

This exception is thrown when the proxy cannot find
any server.

All exceptions have the same base class: eprosima::rpc::exception::Exception.

2.4.3 Example
Using the suggested IDL the developer can access to deposit procedure the following
way:

BankProtocol *protocol = NULL;
TCPProxyTransport *transport = NULL;
BankProxy *proxy = NULL;

try {
 protocol = new BankProtocol();
 transport = new TPCProxyTransport("127.0.0.1:8080");
 proxy = new BankProxy(*transport, *protocol);
}
catch(eprosima::rpc::exception::InitializeException &ex) {
 std::cout << ex.what() << std::endl;
}

Account ac;
int32_t money;
ReturnCode depositRetValue;

try {
 depositRetValue = proxy->deposit(ac, money);
}
catch(eprosima::rpc::exception::Exception &ex) {
 std::cout << ex.what() << std::endl;
}

19

3 Advanced concepts

3.1 Network transports
eProsima Fast RPC provides one network transport, a TCP transport.

3.1.1 TCP Transport
The purpose of this transport is to create a connection between a proxy and a server
that will communicate through TCP. This transport is implemented by two classes. One
is used by proxies and the other is used by servers.

TCPProxyTransport
TCPProxyTransport class implements a TCP transport that should be used by proxies:

class TCPProxyTransport : public ProxyTransport

{

 public:

 TCPProxyTransport(const std::string &serverAddress);

 virtual ~TCPProxyTransport();

};

The constructor has a parameter that receives the server URL to connect to.

Using the suggested IDL example, the developer could create a proxy to connect with a
server located in the public IP address 192.168.1.123 and port 8080.

BankProtocol *protocol = NULL;
TCPProxyTransport *transport = NULL;
BankProxy *proxy = NULL;

try
{
 protocol = new BankProtocol();
 transport = new TCPProxyTransport("192.168.1.123:8080");
 proxy = new BankProxy(*transport, *protocol);
}
catch(eprosima::rpc::exception::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

Account ac;
int32_t money ;
ReturnCode depositRetValue;

try
{
 depositRetValue = proxy->deposit(ac, money);
}
catch(eprosima::rpc::exception::Exception &ex)
{

20

 std::cout << ex.what() << std::endl;
}

TCPServerTransport
TCPServerTransport class implements a TCP transport that should be used by servers.

class TCPServerTransport : public ServerTransport

{

 public:

 TCPServerTransport(const std::string &to_connect);

 virtual ~TCPServerTransport();

};

The constructor receives a parameter representing the IP address and port that the
server will use to read incoming requests.

Using the suggested IDL example, the developer could create a server that will be
listening in the network interface with address 192.168.1.123 and port 8080.

unsigned int threadPoolSize = 5;
ThreadPoolStrategy *pool = NULL;
BankProtocol *protocol = NULL;
TCPServerTransport *transport = NULL;
BankServer *server = NULL;
BankServerImplExample servant;

try
{
 pool = new ThreadPoolStrategy(threadPoolSize);
 tcptransport = new TCPServerTransport("192.168.1.123:8080");
 protocol = new BankProtocol();
 server = new BankServer(*pool, *transport, *protocol, servant);
 server->serve();
}
catch(eprosima::rpc::exception::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

21

3.2 One-way calls
Sometimes a remote procedure doesn’t need the reply from the server. For these
cases, eProsima Fast RPC supports one-way calls.

A developer can define a remote procedure as one-way, and when the client
application calls the remote procedure, the thread does not wait for any reply from the
server.

To create a one-way call, the remote procedure has to be defined in the IDL file with
the following rules:

 The oneway reserved word must be used before the method definition.
 The returned value of the method must be void.
 The method cannot have any inout or out parameter.

An example of how a one-way procedure has to be defined using IDL is shown below:
interface Bank
{

oneway void deposit(in Account ac, in long money);
};

3.3 Threading Server strategies
eProsima Fast RPC library offers several threading strategies that the server may use
when a request arrives. This subsection describes these strategies.

3.3.1 Single thread strategy
This is the simplest strategy, in which the server only uses one thread for doing the
request management. In this case, the server only executes one request at a given
time. The thread used by the server to handle the request is the reception thread. To
use Single Thread Strategy, create the server providing the constructor with a
SingleThreadStrategy object.

SingleThreadStrategy *single = NULL;
BankProtocol *protocol = NULL;
TPCServerTransport *transport = NULL;
BankServer *server = NULL;
BankServerImplExample servant;

try
{
 single = new SingleThreadStrategy();
 transport = new TCPServerTransport("127.0.0.1:8080");
 protocol = new BankProtocol();
 server = new BankServer(*single, *transport, *protocol, servant);
 server->serve();
}
catch(eprosima::rpc::exception::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

22

3.3.2 Thread Pool strategy
In this case, the server manages a thread pool that will be used to process the
incoming requests. Every time a request arrives, the server assigns it to a free thread
located in the thread pool.

To use the Thread Pool Strategy, create the server providing the constructor with a
ThreadPoolStrategy object.

unsigned int threadPoolSize = 5;
ThreadPoolStrategy *pool = NULL;
BankProtocol *protocol = NULL;
TCPServerTransport *transport = NULL;
BankServer *server = NULL;
BankServerImplExample servant;

try
{
 pool = new ThreadPoolStrategy(threadPoolSize);
 transport = new TCPServerTransport("127.0.0.1:8080");
 protocol = new BankProtocol();
 server = new BankServer(*pool, *transport, *protocol, servant);
 server->serve();
}
catch(eprosima::rpc::exception::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

3.3.3 Thread per request strategy
In this case, the server will create a new thread for each new incoming request.

To use the Thread per request Strategy, create the server providing it with a
ThreadPerRequestStrategy object in the constructor method.

ThreadPerRequestStrategy *perRequest = NULL;
BankProtocol *protocol = NULL;
TCPerverTransport *transport = NULL;
BankServer *server = NULL;
BankServerImplExample servant;

try
{
 perRequest = new ThreadPerRequestStrategy();
 transport = new TCPServerTransport("127.0.0.1:8080");
 protocol = new BankProtocol();
 server = new BankServer(*perRequest, *transport, *protocol, servant);
 server->serve();
}
catch(eprosima::rpc::exception::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

23

4 HelloWorld example
In this section a simple example is shown step by step. This example only has one
remote procedure. A client can invoke this procedure by passing a string with a name
as parameter. The server returns a new string that appends the name to a greeting
sentence.

4.1 Writing the IDL file
Write a simple interface named HelloWorld that has a hello method. Store this IDL
definition in a file named HelloWorld.idl
// HelloWorld.idl

interface HelloWorld
{

string hello(in string name);
};

4.2 Generating specific code
Open a command prompt and go to the directory containing HelloWorld.idl file. If you
are running this example in Windows, type in and execute the following line:

fastrpcgen -example x64Win64VS2010 HelloWorld.idl

If you are running it in Linux, execute this one:

fastrpcgen -example x64Linux2.6gcc4.4.5 HelloWorld.idl

Note that if you are running this example in a 32-bit operating system you have to use
-example i86Win32VS2010 or -example i86Linux2.6gcc4.4.5 instead.

This command generates the client stub and the server skeletons, as well as some
project files designed to build your HelloWorld example.

In Windows, a Visual Studio 2010 solution will be generated, named rpcsolution-
<target>.sln, being <target> the chosen example platform. This solution is composed
by five projects:

- HelloWorld, with the common classes of the client and the server, like the
defined types and the specific communication protocol

- HelloWorldServer, with the server code

- HelloWorldClient, with the client code.

- HelloWorldServerExample, with a usage example of the server, and the
implementation skeleton of the RPCs.

- HelloWorldClientExample, with a usage example of the client

In Linux, on the other hand, it generates a makefile with all the required information to
compile the solution.

24

4.3 Client implementation
Edit the file named HelloWorldClientExample.cxx. In this file, the code for invoking the
hello RPC using the generated proxy is generated. You have to add two more
statements: one to set a value to the remote procedure parameter and another to
print the returned value. This is shown in the following example:

int main(int argc, char **argv)
{
 HelloWorldProtocol *protocol = NULL;
 TCPProxyTransport *transport = NULL;
 HelloWorldProxy *proxy = NULL;

 // Creation of the proxy for interface "HelloWorld".
 try
 {
 protocol = new HelloWorldProtocol();
 transport = new TCPProxyTransport("127.0.0.1:8080");
 proxy = new HelloWorldProxy(*transport, *protocol);
 }
 catch(InitializeException &ex)
 {
 std::cout << ex.what() << std::endl;
 return -1;
 }

 // Create and initialize parameters.
 std::string name = "Richard";

 // Create and initialize return value.
 std::string hello_ret = "";

 // Call to remote procedure "hello".
 try
 {
 hello_ret = proxy->hello(name);
 }
 catch(SystemException &ex)
 {
 std::cout << ex.what() << std::endl;
 }

 std::cout << hello_ret << std::endl;

 delete proxy;
 delete transport;
 delete protocol;

 return 0;
}

4.4 Server implementation
fastrpcgen creates the server skeleton in the file HelloWorldServerImplExample.cxx. The
remote procedure is defined in this file and it has to be implemented.

In this example, the procedure returns a new string appending with a greeting
sentence. Open the file and copy this code for implementing that behavior:

25

#include "HelloWorldServerImpl.h"

std::string HelloWorldServerImpl::hello(/*in*/ const std::string &name)
{
 std::string hello_ret;

 // Create the greeting sentence.
 hello_ret = “Hello “ + name;

 return hello_ret;
}

4.5 Build and execute
To build your code using Visual Studio 2010, make sure you are in the Debug (or
Release) profile, and then build it (F7). Now go to <example_dir>\bin\x64Win64VS2010
directory and execute HelloWorldServerExample.exe. You will get the message:
INFO<eprosima::rpc::server::Server::server>: Server is running

Then launch HelloWorldClientExample.exe. You will see the result of the remote
procedure call:
Hello Richard!

This example was created statically. To create a set of DLLs containing the protocol and
the structures, select the Debug DLL (or Release DLL) profile and build it (F7). Now, to
get your DLL and LIB files, go to <example_dir>\objs\x64Win64VS2010 directory. You can
now run the same application dynamically using the .exe files generated in
<example_dir>\bin\x64Win64VS2010, but first you have to make sure your .dll location
directory is appended to the PATH environment variable.

To build your code in Linux use this command:

make -f makefile_x64Linux2.6gcc4.4.5

No go to <example_dir>\bin\x64Linux2.6gcc4.4.5 directory and execute the binaries as it
has been described for Windows.

26

	1 Introduction
	1.1 Remote Procedure Calls (RPC)
	1.2 A quick example
	1.3 Main Features

	2 Building an application
	2.1 Defining a set of remote procedures
	2.1.1 IDL Syntax and mapping to C++
	2.1.1.1 Simple types
	2.1.1.2 Complex types
	2.1.1.3 Parameter definition
	2.1.1.4 Function definition
	2.1.1.5 Exception definition
	2.1.1.6 Interface definition
	2.1.1.7 Module definition
	2.1.1.8 Limitations

	2.1.2 Example

	2.2 Generating specific remote procedure call support code
	2.2.1 FASTRPCGEN Command Syntax:
	2.2.2 Server side
	2.2.3 Client side

	2.3 Server implementation
	2.3.1 API
	2.3.2 Exceptions
	2.3.3 Example

	2.4 Client implementation
	2.4.1 API
	2.4.2 Exceptions
	2.4.3 Example

	3 Advanced concepts
	3.1 Network transports
	3.1.1 TCP Transport

	3.2 One-way calls
	3.3 Threading Server strategies
	3.3.1 Single thread strategy
	3.3.2 Thread Pool strategy
	3.3.3 Thread per request strategy

	4 HelloWorld example
	4.1 Writing the IDL file
	4.2 Generating specific code
	4.3 Client implementation
	4.4 Server implementation
	4.5 Build and execute

