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Introduction to PowerPC System Software 1

This chapter is a general introduction to the system software provided on PowerPC 
processor-based Macintosh computers. It describes the mixed environment provided by 
the 68LC040 Emulator and the Mixed Mode Manager. These two new system software 
services work together to allow existing 680x0 applications, extensions, drivers, and 
other software to execute without modification on PowerPC processor-based Macintosh 
computers. The 68LC040 Emulator and the Mixed Mode Manager also make it possible 
for parts of the system software to remain as 680x0 code, while other parts of the system 
software are reimplemented (primarily for reasons of speed) as native PowerPC code.

This chapter also describes the native PowerPC execution environment. Although the 
process-scheduling mechanism used for both native and emulated applications has not 
changed, the run-time environment for PowerPC applications is significantly different 
from the run-time environment used for 680x0-based Macintosh applications. In cases 
where your application (or other software) relies on features of the 680x0 run-time 
environment, you’ll need to modify your application before recompiling it as a PowerPC 
application. For example, if your application directly accesses information stored in low 
memory (such as system global variables) or in its A5 world, you might need to rewrite 
parts of your application to remove the dependence on that information. See “The 
PowerPC Native Environment” beginning on page 1-19 for complete instructions on 
doing this.

You should read this chapter if you want your application to run on PowerPC processor-
based Macintosh computers, either under the 68LC040 Emulator or in the PowerPC 
native environment. If you choose not to rebuild your application for the PowerPC 
environment, you should at least make certain that it doesn’t violate any of the known 
restrictions on the emulator. See “Emulator Limitations” on page 1-8 for specific informa-
tion about the known operational differences between the 68LC040 Emulator and a 
680x0 microprocessor.

You should also read this chapter for information about the PowerPC execution environ-
ment. Although the existing software development tools build your source code into 
executable PowerPC code that conforms to the requirements of this new environment, 
you might need to know about the native run-time environment for debugging purposes 
or if your application uses external code modules. Otherwise, the new execution environ-
ment should be completely transparent to your application.

You should be able to accomplish much of the work involved in porting your application 
from the 680x0 platform to the PowerPC platform using the information in this chapter. 
If your application installs callback routines with nonstandard calling conventions, 
however, you might need to read the chapter “Mixed Mode Manager” in this book. In 
addition, if your application explicitly loads external code modules (such as file trans-
lators or custom definition procedures), you might need to read the chapter “Code 
Fragment Manager” in this book. Read the chapter “Exception Manager” if you want 
your native application to handle any exceptions that arise while it is executing.

To use this chapter, you should already be generally familiar with the Macintosh 
Operating System. See the books Inside Macintosh: Processes and Inside Macintosh: Memory 
for information about the run-time environment of 680x0-based Macintosh computers.
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This chapter begins with a description of the mixed environment provided by the 
PowerPC system software. Then it gives information about the native PowerPC run-time 
environment. This chapter ends by explaining how to perform a number of specific 
tasks in the PowerPC environment, such as patching system software traps.

Note
For ease of exposition, this book occasionally focuses on porting 
applications from the 680x0 environment to the PowerPC environment. 
In general, however, any changes required for applications are required 
also for all other kinds of software. ◆

Overview of the PowerPC System Software 1

The system software for PowerPC processor-based Macintosh computers is System 7.1, 
with suitable changes made to support the mixed environment that allows both 680x0 
software and PowerPC software to execute on a computer. The mixed environment 
provides virtually complete compatibility for existing 680x0 software, as well as vastly 
increased performance for applications and other software that are built to use the native 
instruction set of the PowerPC microprocessor.

Because the system software for PowerPC processor-based Macintosh computers is 
derived from System 7.1 for 680x0-based Macintosh computers, your application—
whether 680x0 or PowerPC—must conform to the basic requirements imposed by 
system software versions 7.0 and later. In particular, your application (or other software) 
must be

■ 32-bit clean

■ compatible with the operations of the Virtual Memory Manager

■ able to operate smoothly in the cooperative multitasking environment maintained by 
the Process Manager

If your 680x0 software conforms to these specific requirements and to the general 
requirements for Macintosh software documented throughout Inside Macintosh, it is 
highly probable that it will execute without problems on PowerPC processor-based 
Macintosh computers. This is because the system software for PowerPC processor-based 
Macintosh computers includes a very efficient 68LC040 Emulator that emulates 680x0 
instructions with PowerPC instructions. In addition, the system software includes the 
Mixed Mode Manager, which is responsible for handling any necessary mode switches 
between the native PowerPC environment and the 680x0 environment.

Figure 1-1 shows a general overview of the system software for PowerPC processor-
based Macintosh computers. A small kernel, called the nanokernel, communicates 
directly with the PowerPC processor and provides very low-level services (such as 
interrupt handling and memory management).
1-4 Overview of the PowerPC System Software
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Figure 1-1 The system software for PowerPC processor-based Macintosh computers

Even applications written entirely in 680x0 code might cause mode switches while they 
are executing, because some portions of the Macintosh Operating System have been 
rewritten in PowerPC code for increased performance. For example, the Memory 
Manager has been rewritten in C and recompiled into PowerPC code. In general, 
however, mode switches occur completely transparently to 680x0 software. Only native 
PowerPC software needs to worry about mode switches. See “Mixed Mode” beginning 
on page 1-13 for details.

As you would expect, the emulation environment provided by the 68LC040 Emulator 
uses the standard 680x0 run-time model. The organization of an application partition 
and the run-time behavior of emulated software are identical to what is provided on 
680x0-based Macintosh computers. However, the execution environment for native 
PowerPC software is significantly different from the standard 680x0 run-time environ-
ment. The PowerPC environment provides a much simpler and easier-to-use run-time 
model based on fragments. A fragment is any block of executable PowerPC code and its 
associated data. Fragments are created by your development system’s linker.
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Note
The term fragment is not intended to suggest that the block of code and 
data is in any way either small, detached, or incomplete. Fragments can 
be of virtually any size, and they are complete, executable entities. The 
term fragment was chosen to avoid confusion with the terms already 
used in Inside Macintosh to describe executable code (such as component 
and module). ◆

Fragments use a method of addressing the data they contain that is different and more 
general than the A5-relative method that 680x0 applications use to address their global 
data. One important consequence is that any PowerPC software packaged as a fragment 
has easy access to global data. In the 680x0-based system software, it was sometimes 
difficult to use global data within types of software other than applications.

In addition, it was often complicated for a routine installed by some code to gain 
access to the code’s global variables. For example, you cannot—in the current 680x0 
environment—write a VBL task that uses your application’s global variables without 
somehow passing your application’s A5 value to the VBL task. (A VBL task is a task that 
executes during a vertical blanking interrupt.) In the PowerPC environment, any routine 
contained in an application has automatic access to the application’s global variables. 
You do not need to devise special ways to pass the address of your application’s A5 
world to the installed routine. More generally, any routine executing in the PowerPC 
environment has access to the global data of the fragment it’s contained in.

The new run-time model used for native PowerPC software incorporates other 
important simplifications as well. In native applications, there is no segmentation of 
the executable code. The existing compilers that produce PowerPC code ignore any 
segmentation directives you include in your source code. In addition, any calls you make 
to the Segment Manager’s UnloadSeg procedure are simply ignored by the PowerPC 
system software. The task of keeping required code in memory is handled completely by 
the Virtual Memory Manager or the Process Manager, not by your application.

The remaining sections in this chapter describe in greater detail the mixed environment 
of PowerPC processor-based Macintosh computers and the new native run-time 
environment. If you’re interested mainly in rebuilding your application as native 
PowerPC code, you can skip to the section “Mixed Mode” beginning on page 1-13, 
which describes the ways in which you might need to use the Mixed Mode Manager 
to make your native application compatible with the mixed environment.

The 68LC040 Emulator 1

The 68LC040 Emulator is the part of the PowerPC system software that allows 680x0 
applications and other software to execute on PowerPC processor-based Macintosh 
computers. This emulator provides an execution environment that is virtually identical 
to the execution environment found on 680x0-based Macintosh computers. The emulator 
converts 680x0 instructions into PowerPC instructions, issues those instructions to the 
PowerPC microprocessor, and updates the emulated environment (such as the emulated 
680x0 registers) in response to the operations of the PowerPC microprocessor.
1-6 The 68LC040 Emulator
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In general, the 680x0 emulation environment supports all existing 680x0 applications 
that already work correctly on all Macintosh computers containing a Motorola 68020, 
68030, or 68040 microprocessor. There are, however, some differences between the 
operation of the 68LC040 Emulator and an actual 68040 microprocessor. The following 
two sections provide some information on the general operation and limitations of the 
68LC040 Emulator.

Note
Unless you are programming in assembly language or doing very 
low-level debugging, you’re not likely to need the information in 
the following two sections. ◆

Emulator Operation 1
The 68LC040 Emulator implements the basic Motorola 68040 user mode instruction set. 
It does not, however, support any of the instructions from the optional 68881 or 68882 
floating-point coprocessors. Moreover, although the emulator supports the operations of 
the Virtual Memory Manager, it does not support instructions from the 68851 Paged 
Memory Management Unit (PMMU). The 680x0-based Macintosh computer whose 
hardware configuration most closely resembles the software configuration of the 
68LC040 Emulator is the Macintosh Centris 610, which contains the Motorola 68LC040 
microprocessor. (The 68LC040 microprocessor is identical to the 68040 microprocessor 
except that it has no floating-point unit.) As a result, if your application or other software 
runs without problems on the Macintosh Centris 610, it is very likely to run without 
problems under the 68LC040 Emulator.

Note
For the complete specification of how you can expect both a 
real 68040 and the 68LC040 Emulator to behave, see the 
MC68040 32-Bit Microprocessor User’s Manual. ◆

The Gestalt function returns the value gestalt68020 when you pass it the selector 
gestaltProcessorType and the calling software is executing under the emulator. 
This return value is intended to highlight the two ways in which the 68LC040 Emulator 
more closely resembles a 68020 processor than a 68040 processor:

■ The emulated environment does not support either the FPU or the MMU contained in 
an actual 68040 processor.

■ The emulated environment creates exception stack frames in accordance with the 
68020 exception frame model.

The 68LC040 Emulator consists of two main parts, a main dispatch table and a block of 
additional code called by entries in the main dispatch table. The main dispatch table 
contains two native PowerPC instructions for each recognized 680x0 operation code (or 
opcode). In cases where a 680x0 opcode can be handled by a single PowerPC instruction, 
the first native instruction in the dispatch table is enough to complete the requested 
operation. In most cases, however, the handling of a 680x0 opcode requires more than 
one PowerPC instruction. In that case, the first native instruction in the main dispatch 
table simply begins the emulation process.
The 68LC040 Emulator 1-7
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The second native instruction in the emulator’s main dispatch table is usually a 
PC-relative branch into the block of additional code. The additional code continues 
the emulation of the 680x0 opcode begun by the first instruction.

The emulator’s main dispatch table also includes entries that support private opcodes 
reserved for use by the system software, including both A-line and F-line instructions. 
For example, the Mixed Mode Manager communicates with the 68LC040 Emulator using 
A-line instructions embedded in routine descriptors. (See “Routine Descriptors” 
beginning on page 1-15 for details.) Other system software services, including the Virtual 
Memory Manager, also issue reserved opcodes to the emulator.

When the emulator is active, it maps all 680x0 registers to the registers on the PowerPC 
microprocessor, including the 680x0 program counter (PC) and Status Register (SR). The 
general-purpose register GPR1 serves as both the 680x0 and native stack pointer. The 
emulator also dedicates a native register to point to the 680x0 context block, a block 
of data containing information that needs to be preserved across mode switches. The 
context block contains all the 680x0 registers, the addresses of the main dispatch table 
and the block of additional code, and other information used internally by the emulator. 
The emulator saves information into the context block when it is about to exit (for 
example, when a 680x0 application calls a piece of native code) and restores the 
information from the block when it is subsequently activated.

▲ W A R N I N G

You should not rely on any specific information about the 68LC040 
Emulator’s private data structures or opcodes. ▲

Emulator Limitations 1
Largely because it is a purely software implementation of a hardware microprocessor, 
the 68LC040 Emulator sometimes exhibits behavior that differs from that of an actual 
680x0 microprocessor. These operational differences can lead to problems, ranging from 
the obvious (for example, using the floating-point coprocessor instruction set, which is 
not supported by the 68LC040 Emulator) to the subtle (for example, depending upon a 
value in an undefined condition code bit). If your application or other software depends 
on 680x0 behavior that is not reproduced exactly by the 68LC040 Emulator, your product 
might have problems when executing under the emulator. The known exceptions to the 
documented 680x0 specifications concern

■ coprocessors and instruction sets

■ instruction timings

■ deleted instructions

■ unsupported instruction features

■ instruction caches

■ address error exceptions

■ bus error exceptions

■ memory-mapped I/O locations
1-8 The 68LC040 Emulator
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The following sections describe these limitations in greater detail.

Coprocessors 1

As previously indicated, the 68LC040 Emulator does not support the instruction sets of 
either the 68881 or the 68882 floating-point coprocessor or of the 68851 PMMU. Any 
software that uses floating-point instructions is therefore not compatible with the 
68LC040 Emulator. Because there are several 680x0-based Macintosh computers that 
do not contain floating-point coprocessors, this restriction is not likely to cause new 
compatibility problems for your software. It’s possible that you have used SANE to 
perform hardware-independent floating-point arithmetic. If so, you’ll probably notice 
that floating-point calculations are performed even faster under the 68LC040 Emulator 
than on a real 680x0-based Macintosh computer. This is because PowerPC processor-
based Macintosh computers include an accelerated version of SANE written in native 
PowerPC code.

The 68LC040 Emulator does not support the 68851 PMMU instruction set (which also 
includes the 68030 and 68040 internal PMMUs). The Virtual Memory Manager is still 
supported, but using a different mechanism. Very few applications address the PMMU 
directly, so this restriction is not likely to affect many developers. Those applications that 
do address the PMMU directly are very likely already incompatible with A/UX and with 
the Virtual Memory Manager.

More generally, the 68LC040 Emulator does not support the coprocessor bus interface. 
As a result, the emulator does not support any externally connected hardware 
coprocessors.

Instruction Timings 1

The 68LC040 Emulator executes 680x0 instructions as fast as possible, making no 
attempt to maintain the same number of clock counts as on a real 68040 microprocessor. 
There are classes of instructions that execute in the same number of cycles whether 
on a real 68040 or under the 68LC040 Emulator, but you should not depend on this. 
In general, of course, your 680x0 application is most likely already independent of 
instruction timing, because it should run without problem on a wide range of 680x0 
microprocessors having quite different clock rates.

Deleted Instructions 1

Several instructions included in the instruction set of the 68020 microprocessor were 
removed from the instruction sets of the 68030 and 68040 microprocessors. The deleted 
instructions are the CALLM and RTM instructions, which were intended for use in module 
calls. These instructions are not supported by the 68LC040 Emulator, and any attempt 
to execute them will result in an illegal instruction exception. However, because these 
instructions are not present in any 680x0 microprocessor either before or after the 68020, 
this restriction is not likely to present compatibility problems for your software.
The 68LC040 Emulator 1-9
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Unsupported Instruction Features 1

Several instruction or addressing mode fields and encodings are documented by 
Motorola as reserved. In addition, many instructions are documented as producing 
undefined condition code result bits or undefined register results. Accordingly, the 
behavior of these reserved fields and undefined results differs across the various 
members of the 680x0 family of microprocessors and under the 68LC040 Emulator. It is 
unlikely that any existing software intentionally depends on either reserved fields or 
undefined results. It is, however, remotely possible that through a programming error 
some software might be depending on these results and hence might behave differently 
under the emulator than on an actual 680x0.

Instruction Caches 1

The operation of the instruction cache in the 68040 microprocessor is not supported by 
the 68LC040 Emulator, although all of the bits in the Cache Control Register (CACR) and 
Cache Address Register (CAAR) related to the instruction cache are supported. In 
general, of course, your code should not address the cache registers directly.

Because both emulated code and data reside in the PowerPC data cache, the performance 
benefits associated with caching are still present. Indeed, the caching scheme used 
transparently by the 68LC040 Emulator results in a higher level of software compatibility 
than is found on actual 680x0 microprocessors. Some older versions of software that 
are incompatible with the 68040 cache mechanism can run without problem under 
the emulator.

Requests to invalidate the 68040 instruction cache are ignored by the 68LC040 Emulator. 
However, you should continue to issue those calls in order to remain compatible with 
680x0-based Macintosh computers. Moreover, all cache flushing required for PowerPC 
code fragments is performed automatically by the Code Fragment Manager.

Note
For details on invalidating the 680x0 instruction cache, see the chapter 
“Memory Management Utilities” in Inside Macintosh: Memory. ◆

It is possible, although unlikely, that an application depends on the ability of the 68040 
instruction cache to retain a stale copy of instructions after the RAM copy of them has 
been changed. Such applications do not work correctly with 68000-based Macintosh 
computers (for example, the Macintosh Plus, SE, Classic®, or PowerBook 100) and any 
68040-based computers (for example, the Macintosh Quadra 950) when the Cache CDEV 
is used to disable caching. As a result, this nonemulated behavior should not present any 
new compatibility problems.

Address Error Exceptions 1

To improve the performance of branch instructions, the 68LC040 Emulator is not 
completely compatible with an actual 68040 microprocessor when detecting and 
reporting address error exceptions. A 680x0 microprocessor checks for address errors 
before completing the execution of a branch instruction; if it finds an address error, the 
microprocessor reports (in an address error exception frame that it creates on the stack) 
1-10 The 68LC040 Emulator
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the PC at the beginning of the branch instruction. By contrast, the 68LC040 Emulator 
checks for address errors after executing a branch instruction; as a result, it reports the 
odd branch address as the PC in the exception frame. Because the PC of the instruction 
that caused the branch is not reported, you might find it more difficult to debug an 
application that commits address errors. You might also have compatibility problems if 
you install an address error exception handler.

Bus Error Exceptions 1

The 68LC040 Emulator handles bus error exceptions slightly differently than does a real 
680x0 microprocessor. If you install a bus error handler, you might need to be aware of 
these differences. You also need to be aware of these differences when debugging your 
software, because most debuggers need to handle bus error exceptions.

The 68LC040 Emulator creates format $B exception frames when generating and 
handling bus errors. However, several fields within the exception frame are documented 
by Motorola as internal fields, and the contents of those fields are very likely to differ 
between the 68LC040 Emulator exception stack frame and the exception stack frame 
created by a 680x0 microprocessor. You should not rely on these reserved fields. To avoid 
any possible confusion that the internal state information in the emulated exception 
frame is compatible with the internal state information created by the 680x0 micro-
processors, the exception frame created by the emulator intentionally uses a value in the 
Version Number field of the exception frame that is different from the value put there by 
any 680x0 microprocessor.

In addition, there are several documented fields of the bus error exception frame that 
have slightly different values in the emulator than on a 680x0-based Macintosh 
computer. As long as bus error exception handlers do not modify these fields, it is still 
possible to use the RTE instruction to continue execution of the instruction that caused 
the exception. In particular, the PC field of the exception frame might not point to the 
exact beginning of the instruction that generated the exception. Instead, it might point to 
some location near the beginning of that instruction. Also, the Stage B address field and 
the Stage B and Stage C instruction pipe fields might not contain valid information.

Finally, the Special Status Word (SSW) differs under the 68LC040 Emulator. The 68LC040 
Emulator does not distinguish between instruction space and data space accesses; 
instead, it converts instruction fetches to data space reads. As a result, the FC2–FC0 field 
always indicates either a supervisor or a user data space reference. In addition, the 
emulator never sets the FC, FB, or RM bits, and it ignores the RC and RB bits. The DF bit 
is fully supported, however, allowing both program completion of bus cycles and 
rerunning of bus cycles with the RTE instruction. The 68LC040 Emulator also puts valid 
values in the RM and SIZ bits.

Memory-Mapped I/O Locations 1

In general, most applications do not directly access memory-mapped I/O locations. 
Instead, they call device drivers or other system software routines to perform the 
requested I/O operations. For code (such as a device driver) that does directly access 
memory-mapped I/O locations, there are a number of compatibility issues. In some 
The 68LC040 Emulator 1-11
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cases, the 680x0 emulation environment might not perform some write operations that a 
real 680x0 performs: 

■ The BSET and BCLR instructions might not write back an operand if none of the bits 
were changed as a result of the operation.

■ Some memory-to-memory MOVE instructions might not write to memory if the source 
and destination addresses are the same.

You might need to modify your application to use different sequences of instructions to 
perform the operations if an I/O device was expecting these write bus cycles.

The TAS, CAS, and CAS2 instructions in the 68040 instruction set perform indivisible read, 
modify, and write memory operations. The 68040 bus architecture provides a special 
locked bus cycle for a read-and-write operation without allowing any other devices to 
request the bus between them. These indivisible bus cycles cannot be emulated. As a 
result, an alternate bus master type of I/O device might be allowed to modify a memory 
location between the read and the write operations.

The 68020 and 68030 bus interface supports a feature called dynamic bus sizing that 
allows 8- or 16-bit-wide I/O devices to work with the 32-bit-wide data bus. If the 
processor has a memory request for a data width that was larger than the data width of 
the device connected to the bus, the memory interface breaks the request into multiple 
requests that are the width of the device. For example, if a 32-bit read request is made to 
an 8-bit device, the memory interface actually performs four separate 8-bit reads to 
assemble the 32-bit data. This feature cannot be emulated. Any application or other 
software that depends upon this feature must to be modified to use separate instructions 
to access and assemble each piece of data.

The 68020 and 68030 bus interface also supports a feature called byte smearing that 
allows 8- or 16-bit data to be duplicated on a write operation across all 32 bits of the 
data bus. The 68040 processor does not support this feature. This feature cannot be 
emulated, but solutions that were used for the 68040 should be compatible with the 
68LC040 Emulator.

The 68020, 68030, and 68040 microprocessors define the NOP instruction as having the 
effect of synchronizing the pipeline and waiting for all prior bus operations to complete. 
The 68020 and 68030 have a very small pipeline, and bus operations normally finish 
soon after they are issued. However, the 68040 and the PowerPC architecture let memory 
operations be queued and issued out of order. Because of this, the NOP instruction 
might be needed to ensure that accesses to memory-mapped I/O devices occur in the 
proper order. The 68LC040 Emulator supports the features of the NOP instruction. 
Any application that includes NOP instructions should be compatible with all Macintosh 
computers.

If an I/O device causes a bus timeout that results in a bus error exception, it might not 
be possible for the PowerPC microprocessor—and therefore the 68LC040 Emulator—
to determine the memory address that was accessed. If all locations within a 4 KB 
I/O page consistently time out, this problem might not occur, but if accesses to some 
locations within a page sometimes succeed, it is possible for this situation to occur. 
A bus error exception is generated in that case, but the Data Fault Address field in 
the exception frame will not be accurate and the DF bit in the SSW will not be set.
1-12 The 68LC040 Emulator
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Mixed Mode 1

An instruction set architecture is the set of instructions recognized by a particular 
processor or family of processors. The Mixed Mode Manager is the part of the 
Macintosh system software that manages mode switches between code in different 
instruction set architectures, switching the execution context between the CPU’s native 
PowerPC context and the 68LC040 Emulator. The 68LC040 Emulator is responsible for 
handling all code in the 680x0 instruction set. This includes existing 680x0 applications, 
device drivers, system extensions, and even parts of the system software itself that have 
not yet been rewritten to use the PowerPC instruction set.

Mode switches are required not only when the user switches from an emulated to a 
native application (or vice versa), but also when any application calls a system software 
routine or any other code that exists in a different instruction set. For example, the 
Memory Manager has been reimplemented in the first version of system software for 
PowerPC processor-based Macintosh computers as native PowerPC code. When an 
existing 680x0 application running under the 68LC040 Emulator calls a Memory 
Manager routine such as NewHandle, a mode switch is required to move out of the 
emulator and into the native PowerPC environment. Then, once the Memory Manager 
routine completes, another mode switch is required to return to the 68LC040 Emulator 
and to allow the 680x0 application to continue executing.

Similarly, PowerPC applications cause mode switches whenever they invoke routines 
that exist only as 680x0 code. For example, if a PowerPC application calls a part of 
the Macintosh Toolbox or Operating System that has not been ported native, a mode 
switch is required to move from the native environment to the environment of the 
68LC040 Emulator.

The Mixed Mode Manager exists solely to manage these kinds of mode switches. It 
makes it possible for the execution environment of PowerPC processor-based Macintosh 
computers to accommodate a mixture of 680x0 applications, PowerPC applications, 
680x0 system software, PowerPC system software, 680x0 executable resources, PowerPC 
executable resources, 680x0 device drivers, PowerPC device drivers, and so forth. The 
68LC040 Emulator and the Mixed Mode Manager together allow both 680x0 code and 
PowerPC code to execute on the PowerPC microprocessor.

The Mixed Mode Manager is designed to hide, as much as possible, the hybrid nature of 
the mixed environment supported on PowerPC processor-based Macintosh computers. 
Occasionally, however, some executable code needs to interact directly with the Mixed 
Mode Manager to ensure that a mode switch occurs at the correct time. Because the 
68LC040 Emulator is designed to allow existing 680x0 applications and system software 
to execute without modification, it’s always the responsibility of native applications 
and system software to implement any changes necessary to interact with the Mixed 
Mode Manager.

This section describes the basic operation of the Mixed Mode Manager. It shows you 
how, if you’re writing a native application, you might need to modify your application to 
Mixed Mode 1-13
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make it compatible with the mixed environment of the system software for PowerPC 
processor-based Macintosh computers. If you use fairly simple techniques for calling 
code external to your application and use only the standard types of callback routines, 
the information in this section might be sufficient for your needs. If not, see the chapter 
“Mixed Mode Manager” in this book for complete information about the Mixed 
Mode Manager.

Cross-Mode Calls 1
The Mixed Mode Manager is intended to operate transparently to most applications and 
other kinds of software. This means, in particular, that most cross-mode calls (calls 
to code in a different instruction set from the caller’s instruction set) are detected 
automatically by the Mixed Mode Manager and handled without explicit intervention by 
the calling software. For instance, when a 680x0 application calls a Memory Manager 
routine—which, as you have already learned, exists as PowerPC code in the system 
software for PowerPC processor-based Macintosh computers—the Trap Manager 
dispatches to the code pointed to by the appropriate entry in the trap dispatch table. For 
routines that are implemented as native code, the entry in the trap dispatch table is a 
pointer to a routine descriptor, a data structure used by the Mixed Mode Manager to 
encapsulate information about a routine. The first field in a routine descriptor is an 
executable 680x0 instruction that invokes the Mixed Mode Manager. The Mixed Mode 
Manager handles all the details of switching to the native mode, calling the native code, 
and then returning to the 68LC040 Emulator. The calling application is completely 
unaware that any mode switches have occurred.

The operation of the Mixed Mode Manager is also completely transparent when a 
PowerPC application calls a system software routine that exists as 680x0 code, although 
the exact details are slightly different. When a native application calls a system soft-
ware routine, the Operating System executes some glue code in an import library of 
executable code. The glue code inspects the trap dispatch table for the address of the 
called routine. If the called routine exists only as 680x0 code, the Mixed Mode Manager 
switches modes and calls the 680x0 routine. When the 680x0 code returns, the Mixed 
Mode Manager switches back to the native PowerPC environment and the execution of 
the PowerPC application continues.

Note
See “The PowerPC Native Environment” beginning on page 1-19 
for information about the native execution environment, including 
import libraries. ◆

When writing PowerPC code, you need to explicitly intervene in the mode-switching 
process only when you execute code (or have code executed on your behalf) whose 
instruction set architecture might be different from that of the calling code. For example, 
whenever you pass the address of a callback routine to the Operating System or Toolbox, 
it’s possible that the instruction set architecture of the code whose address you are 
passing is different from the instruction set architecture of the routine you’re passing 
it to. In such cases, you need to explicitly signal the type of code you’re passing and its 
calling conventions. Otherwise, the Mixed Mode Manager might not be called to make a 
required mode switch.
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To see this a bit more clearly, suppose that you are writing a native PowerPC application 
that calls the Control Manager procedure TrackControl. TrackControl accepts as 
one of its parameters the address of an action procedure that is called repeatedly while 
the user holds down the mouse button in a control. TrackControl has no way of 
determining in advance the instruction set architecture of the code whose address you 
will pass it. Moreover, you have no way of determining in advance the instruction set 
architecture of the TrackControl procedure, so you cannot know whether your action 
procedure and the TrackControl procedure are of the same instruction set architecture. 
As a result, you must explicitly indicate the instruction set architecture of any callback 
routines whose addresses you pass to the system software.

Routine Descriptors 1
You indicate the instruction set architecture of a particular routine by creating a routine 
descriptor for that routine. Here is the structure of a routine descriptor.

struct RoutineDescriptor {
unsigned short goMixedModeTrap; /*mixed-mode A-trap*/
char version; /*routine descriptor version*/
RDFlagsType routineDescriptorFlags;

/*routine descriptor flags*/
unsigned long reserved1; /*reserved*/
unsigned char reserved2; /*reserved*/
unsigned char selectorInfo; /*selector information*/
short routineCount; /*index of last RR in this RD*/
RoutineRecord routineRecords[1];/*the individual routines*/

};
typedef struct RoutineDescriptor RoutineDescriptor;

As you can see, the first field of a routine descriptor is an executable 680x0 instruction that 
invokes the Mixed Mode Manager. When the Mixed Mode Manager is called, it inspects 
the remaining fields of the routine descriptor—in particular the routineRecords 
field—to determine whether a mode switch is required. The routineRecords field is 
an array of routine records, each element of which describes a single routine. In the 
simplest case, the array of routine records contains a single element. Here is the structure 
of a routine record.

struct RoutineRecord {
ProcInfoType procInfo; /*calling conventions*/
unsigned char reserved1; /*reserved*/
ISAType ISA; /*instruction set architecture*/
RoutineFlagsType routineFlags; /*flags for each routine*/
ProcPtr procDescriptor; /*the thing we're calling*/
unsigned long reserved2; /*reserved*/
unsigned long selector; /*selector for dispatched calls*/

};
typedef struct RoutineRecord RoutineRecord;
typedef RoutineRecord *RoutineRecordPtr, **RoutineRecordHandle;
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The most important fields in a routine record are the procInfo field and the ISA field. 
The ISA field encodes the instruction set architecture of the routine being described. It 
must always contain one of these two constants:

enum {

kM68kISA = (ISAType)0, /*MC680x0 architecture*/

kPowerPCISA = (ISAType)1 /*PowerPC architecture*/};

The procInfo field contains the routine’s procedure information, which encodes 
the routine’s calling conventions and information about the number and location of 
the routine’s parameters. For the standard kinds of callback procedures and other 
types of “detached” code, the universal interface files include definitions of procedure 
information. For example, the C language interface file Controls.h includes 
this definition:

enum {

uppControlActionProcInfo = kPascalStackBased

 | STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(ControlHandle)))

 | STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(short)))

};

This procedure information specification indicates that a control action procedure 
follows standard Pascal calling conventions and takes two stack-based parameters, 
a control handle and a part code; the action procedure returns no result. Similarly, the 
file Controls.h defines the procedure information for a control definition function 
as follows:

enum {

uppControlDefProcInfo = kPascalStackBased

 | RESULT_SIZE(SIZE_CODE(sizeof(long)))

 | STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(short)))

 | STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(ControlHandle)))

 | STACK_ROUTINE_PARAMETER(3, SIZE_CODE(sizeof(short)))

 | STACK_ROUTINE_PARAMETER(4, SIZE_CODE(sizeof(long)))

};
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You can create a routine descriptor by calling the Mixed Mode Manager function 
NewRoutineDescriptor, as shown in Listing 1-1.

Listing 1-1 Creating a routine descriptor

UniversalProcPtr myActionProc;

myActionProc = NewRoutineDescriptor((ProcPtr)MyAction, 

uppControlActionProcInfo, 

GetCurrentISA());

Here, MyAction is the address of your control action procedure and GetCurrentISA 
is a C language macro that returns the current instruction set architecture. When 
executed in the PowerPC environment, the NewRoutineDescriptor function creates 
a routine descriptor in your application heap and returns the address of that routine 
descriptor. When executed in the 680x0 environment, the NewRoutineDescriptor 
function simply returns its first parameter. Notice that the result returned by 
the NewRoutineDescriptor function is of type UniversalProcPtr. A universal 
procedure pointer is defined to be either a 680x0 procedure pointer or a pointer to a 
routine descriptor, essentially as follows:

#if !USESROUTINEDESCRIPTORS

typedef ProcPtr UniversalProcPtr, *UniversalProcHandle;

#else

typedef RoutineDescriptor *UniversalProcPtr, **UniversalProcHandle;

#endif

Once you’ve executed the code in Listing 1-1 (probably at application launch time), you 
can later call TrackControl like this:

TrackControl(myControl, myPoint, myActionProc);

If your application is a PowerPC application, the value passed in the gActionProc 
parameter is not the address of your action procedure itself, but the address of the 
routine descriptor created in Listing 1-1. When a 680x0 version of TrackControl 
executes your action procedure, it begins by executing the instruction contained in the 
first field of the routine descriptor. That instruction invokes the Mixed Mode Manager, 
which inspects the instruction set architecture of the action routine (contained in the ISA 
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field of the routine record contained in the routine descriptor). If that instruction set 
architecture differs from the instruction set architecture of the TrackControl routine, 
the Mixed Mode Manager causes a mode switch. Otherwise, if the two instruction set 
architectures are identical, the Mixed Mode Manager simply executes the action 
procedure without switching modes.

In short, you solve the general problem of indicating a routine’s instruction set archi-
tecture by creating routine descriptors and by using the addresses of those routine 
descriptors where you would have used procedure pointers in the 680x0 programming 
environment. You have to do this, however, only when you need to pass the address of a 
routine to some external piece of code (such as the Toolbox or Operating System or some 
other application) that might be in a different instruction set architecture from that of the 
routine. There are quite a number of cases in which you pass procedure pointers to the 
system software and which therefore require you to use the techniques illustrated above 
for Control Manager action procedures. Some of the typical routines you need to create 
routine descriptors for include

■ grow-zone functions

■ control action procedures

■ event filter functions

■ VBL tasks

■ Time Manager tasks

■ trap patches

■ completion routines

The interface files for the PowerPC system software have been revised to change 
all references to parameters or fields of type ProcPtr to references of type 
UniversalProcPtr. In addition, these new universal interface files contain procedure 
information definitions for all the standard kinds of callback routines. Moreover, the 
universal interface files define new routines that you can use in place of the more general 
code shown in Listing 1-1 on page 1-17. For example, the interface file Controls.h 
contains the definition shown in Listing 1-2 for the NewControlActionProc function.

Listing 1-2 The definition of the NewControlActionProc routine

typedef UniversalProcPtr ControlActionUPP;

#define NewControlActionProc(userRoutine) \

(ControlActionUPP) NewRoutineDescriptor((ProcPtr)userRoutine, \

uppControlActionProcInfo, GetCurrentISA())

Because this routine is defined in the universal header files, you can replace the code in 
Listing 1-1 with the simpler code shown in Listing 1-3.
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Listing 1-3 Creating a routine descriptor for a control action procedure

ControlActionUPP myActionProc;

myActionProc = NewControlActionProc((ProcPtr)MyAction);

In general, you should use the specific routines defined throughout the universal header 
files instead of the general technique illustrated in Listing 1-1.

IMPORTANT

You do not need to create routine descriptors for routines that are called 
only by your application. More generally, if you know for certain that a 
routine is always called by code of the same instruction set architecture, 
you can and should continue to use procedure pointers instead of 
universal procedure pointers. If, however, the address of one of your 
application’s routines might be passed to a Toolbox or Operating System 
routine, you should make sure to use a routine descriptor. ▲

Memory Considerations 1
The technique described in the previous section for using routine descriptors is by far the 
simplest and easiest to implement: any routine descriptors needed by an application are 
allocated in the application heap at application launch time. The descriptors remain 
allocated until the application terminates, at which time the entire application heap is 
reclaimed by the Process Manager. As a result, you don’t have to dispose of any routine 
descriptors created in this way.

If, in some case, you know that you won’t be needing a routine descriptor any more 
during the execution of your application, you can explicitly dispose of it by calling 
the DisposeRoutineDescriptor function. This is most useful when you allocate a 
routine descriptor for temporary use only. For example, you might call some code that 
uses a callback procedure only very infrequently. In that case you can allocate the routine 
descriptor when the code is called and then release it when the code is done.

Finally, you can create a routine descriptor on the stack if you intend to use it only within 
a single procedure. The Mixed Mode Manager interface file MixedMode.h defines the C 
language macro BUILD_ROUTINE_DESCRIPTOR that you can use for this purpose, as 
well as for initializing static routine descriptors. For details, see “Using Static Routine 
Descriptors” on page 2-22 in the chapter “Mixed Mode Manager” in this book.

The PowerPC Native Environment 1

A run-time environment is a set of conventions that determine how code is loaded into 
memory, where data is stored and how it is addressed, and how functions call other 
functions and system software routines. The run-time environment available on a 
specific Macintosh computer is determined jointly by the Macintosh system software 
(which manages the loading and scheduling of executable code) and your software 
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development system (which generates code to conform to the documented run-time 
conventions).

The run-time environment for native PowerPC code is significantly different from the 
run-time environment for 680x0 code with which you are probably already familiar. 
In general, however, the PowerPC run-time environment is both simpler and more 
powerful than the 680x0 run-time environment. This increased simplicity and power 
are due primarily to the use of fragments as the standard way of organizing executable 
code and data in memory. In the native PowerPC run-time environment, all discrete 
collections of executable code—including applications, code resources, extensions, and 
even the system software itself—are organized as fragments when loaded into memory. 
Accordingly, all executable code shares the benefits that derive from the organization of 
fragments, including

■ a uniform set of calling conventions

■ the ability to store code called by many applications or other software in 
import libraries

■ a simplified means of addressing global data

■ the ability to execute special initialization and termination routines when the 
fragment is loaded into and unloaded from memory

This section describes the run-time environment for applications and other software 
executing on PowerPC processor-based Macintosh computers. It describes in detail

■ the structure of fragments

■ how to address global code and data

■ subroutine invocation

■ PowerPC stack frames

■ import libraries

■ the organization of memory

IMPORTANT

Keep in mind that the run-time environment defined by the use of 
fragments might in the future be available on 680x0-based Macintosh 
computers (and not solely on PowerPC processor-based Macintosh 
computers). The new run-time environment based on fragments is 
intended to be as processor independent as possible. ▲

Fragments 1
In the run-time environment introduced in the first version of the system software for 
PowerPC processor-based Macintosh computers, the basic unit of executable code and 
its associated data is a fragment. All fragments share a number of fundamental 
properties, such as their basic structure and their method of accessing code or data 
contained in themselves or in other fragments. There are, however, different uses for 
fragments, just as there are different uses for executable code in the 680x0 environment. 
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Fragments can be loosely differentiated into three categories, based on how they 
are used.

■ An application is a fragment that can be launched by the user from the Finder (which 
calls the Process Manager to do the actual launching), typically to process documents 
or other collections of information. An application almost always has a user interface 
and uses standard event-driven programming techniques to control its execution.

■ An import library is a fragment that contains code and data accessed by some other 
fragment or fragments. The Macintosh system software, for instance, is an import 
library that contains the code (and data) implementing the Macintosh Toolbox and 
Operating System routines. When you link an import library with your application, 
the import library’s code is not copied into your application. Instead, your application 
contains symbols known as imports that refer to some code or data in the import 
library. When your application is launched, the system software automatically 
resolves any imports your application contains and creates a connection to the 
appropriate import libraries.

■ An extension is a fragment that extends the capabilities of some other fragment. For 
example, your application might use external code modules like menu definition 
functions, control definition functions, or data-conversion filters. Unlike import 
libraries, extensions must be explicitly connected to your application during its 
execution. There are two types of extensions: application extensions and system 
extensions. An application extension is an extension that is used by a single 
application. A system extension is an extension that is used by the Operating System 
or by multiple applications; it is usually installed at system startup time from a 
resource of type 'INIT', 'DRVR', or 'CDEV'.

Import libraries and system extensions are sometimes called shared libraries, because 
the code and data they contain can be shared by multiple clients. Import libraries and 
system extensions are also called dynamically linked libraries, because the link between 
your application and the external code or data it references occurs dynamically at 
application launch time.

The physical storage for a fragment is a container, which can be any kind of object 
accessible by the Operating System. The system software import library, for example, is 
stored in the ROM of a Macintosh computer. Other import libraries are typically stored 
in files of type 'shlb'. The fragment containing an application’s executable code is 
stored in the application’s data fork, which is a file of type 'APPL'. An extension can 
be stored in a data file or in a resource in some file’s resource fork.

IMPORTANT

In general, it’s best to put an application extension into the data fork of 
some file (possibly even the application’s data fork itself), not into a 
resource. There is, however, one notable exception to this rule, namely 
when the extension is PowerPC code that is intended to operate in the 
same way as a 680x0 stand-alone code module. See “Executable 
Resources” on page 1-34 for more information. ▲

Before the code or data in a fragment can be used, it must be loaded into memory from 
its container and prepared for execution. This process is usually handled automatically 
by the Code Fragment Manager, the part of the Macintosh Operating System responsible 
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for loading and preparing fragments. Fragment preparation consists mainly in resolving 
any imports in the fragment; the Code Fragment Manager searches for another fragment 
(an import library) that exports the symbols imported by the fragment being loaded. Of 
course, the import library containing the code or data imported by the first fragment 
might itself contain imported symbols from yet a third fragment. If so, the Code 
Fragment Manager needs to load and prepare the third fragment, then the second 
fragment, and finally the first fragment.

IMPORTANT

In general, the Code Fragment Manager is called by the Operating 
System in response to a request to load some specific fragment (for 
example, when the user launches an application). The import libraries 
used by that fragment are loaded automatically, if the Code Fragment 
Manager can find them. The Code Fragment Manager usually operates 
completely transparently, just like the 680x0-based Segment Manager. 
You need to use the Code Fragment Manager only if your application 
uses custom application extensions. See the beginning of the chapter 
“Code Fragment Manager” in this book for details. ▲

To load fragments into memory from the containers they are stored in, the Code 
Fragment Manager uses the Code Fragment Loader, a set of low-level services called 
mainly by the Code Fragment Manager. The Code Fragment Loader is responsible for 
knowing about container formats, such as PEF and XCOFF. Unless you need to design a 
new container format, you do not need to use the Code Fragment Loader. Currently, 
however, the application programming interface to the Code Fragment Loader is private.

The following sections describe the organization and operation of fragments in 
greater detail.

The Structure of Fragments 1

Once a fragment has been loaded into memory and prepared for execution, the code and 
data it contains are available to itself and to any fragments that import parts of that code 
and data. The code and data of a particular fragment are loaded into separate sections 
or regions of memory. In general, the code and data sections of a loaded fragment are 
not contiguous with one another in memory. Instead, the data section of a fragment is 
loaded either into your application’s heap or into the system heap. The code section of a 
fragment is usually loaded elsewhere in memory. (See “File Mapping” beginning on 
page 1-53 for details on the location of the code sections of a fragment.) Regardless of 
where it is loaded, there is no segmentation within a code section of a fragment.

Because every fragment contains both code and data sections, it follows that any code 
executing in a fragment-based run-time environment—not just application code—can 
have global variables. (In the 680x0 run-time environment, it’s difficult for some kinds of 
code to have global variables.) In addition, there is no practical limit on the size of a 
fragment’s data section. By contrast, the total size of an application’s global variables 
in the 680x0 environment is 32 KB, unless your development system provides special 
capabilities to exceed that limit.
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Fragments created by the currently available linkers contain one section of code and one 
section of static data (although it’s theoretically possible to have more than one of each 
type of section). A fragment’s code section must contain pure executable code, that is, 
code that is independent of the location in memory where it is loaded. Pure code can be 
loaded anywhere in memory. As a result, it cannot contain any absolute branches. In 
addition, any references to the fragment’s data must be position-independent: there can 
be no absolute data addresses in the code. Because the code contained in a fragment’s 
code section must be pure and position-independent, and because a code section is 
always read-only, a fragment can be put into ROM or paged directly from an application 
file. In addition, it’s much easier to share pure code than it is to share impure code. This 
makes it very easy to implement import libraries as fragments.

A fragment’s data section contains the static data defined by the fragment. An applica-
tion’s data section is typically loaded into the application’s heap. An import library’s 
data section can be loaded into the system heap or into the heap of any application that 
uses the import library. Indeed, it’s possible for an import library’s data section to be 
loaded into memory at multiple locations, thereby creating more than one copy of the 
data. This is especially useful for providing different applications with their own copy of 
a library’s data. See “Import Libraries” beginning on page 1-50 for more details on this.

Even though a fragment’s code and data sections can be loaded anywhere in memory, 
those sections cannot be moved within memory once they’ve been loaded. Part of the 
process of loading a fragment into memory is to resolve any dependencies it might have 
upon other fragments. This preparation involves inserting into part of the fragment’s 
data section a number of pointers to data and code imported by the fragment from 
other fragments, as described in the following section. To avoid having to perform 
this fragment preparation more than once, the Operating System requires that a loaded 
fragment remain stationary in memory for as long as it is loaded.

Note
In the 680x0 environment, an application’s code can be unloaded (by the 
Memory Manager) and later reloaded into a different place in memory. 
This difference in run-time behavior leads to some important restrictions 
on stand-alone PowerPC code resources (called accelerated resources) 
that mimic the behavior of existing kinds of 680x0 code resources. See 
“Executable Resources” beginning on page 1-34 for details. ◆

Imports and Exports 1

As you’ve seen, a fragment (for example, an application) can access the code and data 
contained in some other fragment (typically an import library) by importing that code 
and data. Conversely, an import library can export code and data for use by other 
fragments (applications, extensions, or even other import libraries). It’s the responsibility 
of the linker to resolve any imports in your application (or other code fragment) to 
exports in some import library. The linker generates symbols that contain the name of 
the exporting library and the name of the exported symbol and inserts those symbols 
into your linked application.
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Figure 1-2 illustrates how the linker resolves imports in an application. The SurfWriter 
object module contains a number of unresolved symbols. Some of the symbols reference 
code that is part of the system software contained in the InterfaceLib import library. 
Other unresolved symbols reference code in the SurfTool import library. The linker 
resolves those symbols and creates the SurfWriter application, which contains the names 
of the appropriate import library and function.

Figure 1-2 Creating imports in a fragment

When your application is launched, the Code Fragment Manager searches for the 
linker-generated import symbols and replaces them with the addresses of the imported 
code or data. To do this successfully, the Code Fragment Manager needs to find the 
appropriate import library and load it into memory if it isn’t already in memory. Then, it 
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needs to bind the imported symbols in your application to the actual addresses, in the 
import library, of the imported code or data. Once the loading and binding of import 
libraries are complete, your application can execute.

Note
When binding imported symbols to external code and data, the Code 
Fragment Manager ensures that the version of the import library 
used at link time to resolve external symbols is compatible with the 
version used at fragment loading time. See the chapter “Code Fragment 
Manager” in this book for a description of this version-checking 
capability. In general, this all happens transparently to your application 
or other code. ◆

It’s possible to designate some of the imports in your application (or other software) as 
soft. A soft import is an imported symbol whose corresponding code or data might not 
be available in any import library on the host machine and which is therefore undefined 
at run time. For example, a particular system software component such as QuickTime 
might not be available on all Macintosh computers. As a result, if you call QuickTime 
routines, you should mark all those imports as soft. When the Code Fragment Manager 
loads and prepares your application, it resolves the soft imports if the QuickTime code 
and data are available. If the QuickTime code and data aren’t available, the Code 
Fragment Manager inserts an invalid address (namely, kUnresolvedSymbolAddress) 
into your fragment’s table of contents entry for any QuickTime routines or data items.

▲ W A R N I N G

You should always check to see that any imports declared as soft by 
your software were successfully resolved at load time. Trying to access 
code or data referenced by an unresolved soft import will cause your 
software to crash. ▲

For most system software services, you can use the Gestalt function to determine if the 
necessary code or data is available in the current operating environment. Note that this 
is not a new requirement and should not cause you to change your existing source 
code; existing 680x0 software should also call Gestalt to ensure that needed system 
software services are available. When no Gestalt selector exists to test for the existence 
of a particular routine or data item, you can check for unresolved soft imports by 
comparing the address of the import to kUnresolvedSymbolAddress. Listing 1-4 
illustrates this technique.

Listing 1-4 Testing for unresolved soft imports

extern int printf (char *, ...);

...

if (printf == kUnresolvedSymbolAddress)

DebugStr("\printf is not available.");

else

printf("Hello, world!\n");
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See the description of the MakePEF tool in the book Building Programs for Macintosh With 
PowerPC for exact details on how to specify imports as soft.

The Table of Contents 1

The imported symbols in a fragment are contained in a special area in the fragment’s 
data section known as the table of contents (TOC). Prior to preparation by the Code 
Fragment Manager, a table of contents contains unresolved references to code and data 
in some other fragment. After preparation, the table of contents contains a pointer to 
each routine or data item that is imported from some other fragment. This provides a 
means of global addressing whereby a fragment can locate the code or data it has 
imported from other fragments.

Note
As you can see, the phrase “table of contents” is a slight misnomer, 
because a fragment’s table of contents does not supply a list of the 
addresses of routines or data in the fragment itself. Rather, a fragment’s 
table of contents consists (in part) of the addresses of code and data that 
the fragment imports, which reside in some other fragment. The table of 
contents is more akin to a personal address book. A fragment’s table of 
contents is private to the fragment itself and exists solely to provide 
external linkage for the code in the fragment. ◆

A fragment’s table of contents also contains pointers to the fragment’s own static data. 
Because the code and data sections of a fragment are usually loaded into different 
locations in memory, and because they must both be position-independent, the code 
section needs a method of finding its own data, such as data addressed by global 
variables. Global variables are addressed through the fragment’s table of contents. 
Within the compiled code of your application, references to global variables appear as 
indirect references via offsets into the table of contents.

Of course, for this scheme to work, the code section of a fragment needs to know where in 
memory its TOC begins. The address of the TOC cannot be compiled into the fragment; 
instead, the address of the TOC of the currently executing fragment is maintained in a 
register on the microprocessor. Currently, the general-purpose register GPR2 is dedicated 
to serve as the Table of Contents Register (RTOC). It contains the address in memory of 
the beginning of the TOC of the currently executing fragment.

It’s easy to see how a code fragment can find its own global data. It simply adds the 
compiled-in offset of a global variable within the TOC to the address of the TOC 
contained in the RTOC. The result is the address of a pointer to the desired data.

It’s slightly more complicated to see how a code fragment can execute an external piece 
of code. As it does with global data, the linker accesses external code via an offset into 
the TOC. The corresponding address in the TOC, however, is not the address of the piece 
of external code itself. Instead, the TOC of the calling fragment contains the address—in 
the static data section of the called fragment—of a transition vector, a data structure that 
contains two pointers: the address of the routine being called and the address of the 
called fragment’s TOC. The basic structure of a transition vector is shown in Figure 1-3.
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Figure 1-3 A transition vector

Note
Strictly speaking, a transition vector can contain any number of pointers, 
as long as there are at least two. The first pointer is always the address of 
the routine being called, and the second pointer is always a value to be 
loaded into GPR2 prior to the execution of that routine. The second 
pointer in a transition vector can serve any purpose appropriate to the 
called routine. In the PowerPC environment for Macintosh computers, 
the second pointer is almost always the TOC address of the fragment 
containing the called routine. However, the callee is free to use the 
second pointer in other ways, if this is deemed useful. Your development 
system’s compiler ultimately determines the size and contents of a 
transition vector. ◆

A TOC entry for an external routine points to a transition vector largely so that the 
calling routine can set up an RTOC with the called fragment’s TOC value. Then, when 
the called routine exits, the caller restores the RTOC to its original value, pointing to the 
TOC of the calling fragment. This kind of function call is known as a cross-TOC call. 
During a cross-TOC call, GPR12 is assumed to point to the transition vector itself; this 
convention allows the called routine to access any additional fields in the transition 
vector beyond the first two.
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To access data stored in another fragment, there is no need for the caller to install the 
TOC address of the other fragment in the RTOC. Instead, the TOC entry of the calling 
fragment contains a pointer to the external data, in exactly the same way that a TOC 
entry for global data in the same fragment contains a pointer to that data.

In short, a fragment’s table of contents contains

■ one pointer for each imported routine called by the fragment; this pointer is the 
address of a transition vector in the data section of the import library.

■ one pointer for each external data item used by the fragment; this pointer is the 
address of the data in the data section of the import library.

■ one pointer for each global variable.

■ one pointer for each pool of C static data internal to the fragment.

Note
Compilers and assembly-language programmers may place additional 
items in a fragment’s table of contents. ◆

The size of a fragment’s TOC is determined at the time your source code is compiled 
and linked, but the actual values in the TOC cannot be determined until the fragment 
is loaded and prepared for execution. When the Code Fragment Manager loads a 
fragment, it also loads any fragments that contain exports used by that fragment; at that 
time, the addresses of those exports can be determined and placed into the original 
fragment’s TOC.

The TOC provides the means whereby a routine in a given fragment can find its own 
static data and any external routines it calls. In providing access to a fragment’s own 
data, the TOC is analogous to the A5 world in applications created for the 680x0 run-
time environment. The TOC is more general than the A5 world, however, at least insofar 
as it allows stand-alone code to have global data; in the 680x0 environment, only 
applications have an A5 world and its resulting easy access to global data.

The Code Fragment Manager is responsible for dynamically resolving symbols in an 
unprepared TOC by binding them with their referents. This process involves finding 
unresolved imported symbols in the TOC, searching for the code or data they refer to, 
and replacing the symbols with the relevant addresses. This indirection through the TOC 
gives rise to a number of useful features.

■ Routines external to a fragment can be specified by name, not by address. This allows 
routines to be grouped into import libraries.

■ Data can be specified by name, not by address.

■ Callback routines can be specified by name, not by address.

■ Initialization and termination routines can be included in a fragment and are executed 
automatically by the Code Fragment Manager when the fragment is connected and 
disconnected, respectively.

■ A fragment’s data can be either shared among multiple applications or instantiated 
separately for each application that uses the fragment. This feature is especially useful 
for fragments that are import libraries.
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■ The Code Fragment Manager can treat two import libraries as a single import library 
for the purposes of symbol resolution. This feature is especially useful for creating an 
update library—an import library that contains enhancements or bug fixes for an 
existing import library.

■ A fragment’s code and data can be loaded anywhere in memory, because the address 
of a routine or a piece of data is always relative to the address contained in the RTOC.

Notice that TOC entries that point into another fragment always point into the data 
section of that fragment. This is a consequence of the fact that code is exported only 
through a transition vector in the fragment’s data section. Code symbols are never 
exported directly, but only via data symbols.

Because entries in a TOC are addressed using a register value plus an offset, and because 
offsets are signed 16-bit quantities, a table of contents can be at most 64 KB in size, with 
at most 16,384 entries. As already noted, current compilers and linkers create only one 
TOC per fragment. If you need to work with more than 16,384 pointers, you can create 
one or more import libraries, each of which can itself contain up to 16,384 pointers. As a 
practical matter, this is not a serious limitation.

Note
Future development tools might not create a TOC at all. The method 
of collecting a fragment’s imported symbols and global data references 
into a table of contents is independent of the method of packaging code 
and data into a fragment. A fragment doesn’t need to have a table of 
contents, but all current development systems that create fragments do 
in fact create a single table of contents in each fragment. ◆

Although transition vectors are used primarily for cross-TOC calls (as described above), 
they are also used for pointer-based function calls. Whenever your application takes the 
address of a function (even one inside the same fragment), a transition vector is allocated 
to point to that function. Indeed, all function pointers in PowerPC code are actually 
pointers to transition vectors. If you are writing in assembly language, you need to be 
sure to export pointers to transition vectors instead of to actual code.

Special Routines 1

A fragment can define three special symbols that are separate from the list of symbols 
exported by the fragment. These symbols define an initialization routine, a termination 
routine, and a main routine (or block of data). These routines, if present, are called at 
specific times during the loading, unloading, or normal execution of a fragment. A 
fragment that is an application must define a main symbol that is the application’s entry 
point. Import libraries and extensions may or may not define any of these symbols.

A fragment’s initialization routine is called as part of the process of loading and 
preparing the fragment. You can use the initialization routine to perform any actions that 
should be performed before any of the fragment’s other code or static data is accessed. 
When a fragment’s initialization routine is executed, it is passed a pointer to a fragment 
initialization block, a data structure that contains information about the fragment. In 
particular, the initialization block contains information about the location of the 
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fragment’s container. (For example, if an import library’s code fragment is contained in 
some file’s data fork, you can use that information to find the file’s resource fork.)

It’s important to know when the initialization routine for a fragment is executed. If the 
loading and preparation of a fragment cause a (currently unloaded) import library to be 
loaded in order to resolve imports in the first fragment, the initialization routine of the 
import library is executed before that of the first fragment. This is obviously what you 
would expect to happen, because the initialization routine of the first fragment might 
need to use code or data in the import library. In case there are two import libraries that 
depend upon each other, their developer may specify which should be initialized first.

A fragment’s termination routine is executed as part of the process of unloading a 
fragment. You can use the termination routine to undo the actions of the initialization 
routine or, more generally, to release any resources or memory allocated by the fragment.

Note
See “Fragment-Defined Routines” beginning on page 3-26 in the chapter 
“Code Fragment Manager” in this book for more information about a 
fragment’s initialization and termination routines. ◆

The use of a fragment’s main symbol depends upon the type of fragment containing it. 
For applications, the main symbol refers to the main routine, which is simply the usual 
entry point. The main routine typically performs any necessary application initialization 
not already performed by the initialization routine and then jumps into the application’s 
main event loop. For import libraries, the main symbol (if it exists) is ignored. For 
extensions having a single entry point, a main routine can be used instead of an exported 
symbol to avoid having to standardize on a particular name.

IMPORTANT

In fact, the main symbol exported by a fragment does not have to refer 
to a routine at all; it can refer instead to a block of data. You can use this 
fact to good effect with application extensions, where the block of data 
referenced by the main symbol can contain essential information about 
the extension. For instance, a loadable tool contained in a fragment 
might store its name, icon, and other information in that block. The 
Code Fragment Manager returns the address of the main symbol when 
you programmatically load and prepare a fragment. ▲

Fragment Storage 1

As you’ve learned, the physical storage for a fragment is a container. A container can be 
any logically contiguous piece of storage, such as the data fork of a file (or some portion 
thereof), the Macintosh ROM, or a resource. In the first version of the system software 
for PowerPC processor-based Macintosh computers, the Code Fragment Loader can 
recognize two kinds of container formats, the Extended Common Object File Format 
(XCOFF) and the Preferred Executable Format (PEF).

XCOFF is a refinement of the Common Object File Format (COFF), the standard 
executable file format on many UNIX®-based computers. XCOFF is supported on 
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Macintosh computers primarily because the early development tools produce executable 
code in the XCOFF format.

IMPORTANT

Not all object code in the XCOFF format will execute on Macintosh 
computers. Any XCOFF code that uses UNIX-style memory services or 
that otherwise depends on UNIX features will not execute correctly on 
Macintosh computers. ▲

PEF is an object file format defined by Apple Computer. A container in the PEF format is 
dramatically smaller than the corresponding container in the XCOFF format. This 
smaller size reduces both the disk space occupied by the container and the time needed 
to load the container’s code and data into memory. More importantly, PEF provides 
support for a fragment’s optional initialization and termination routines and for the 
version checking performed by the Code Fragment Manager when an import library is 
connected to a fragment.

As you know, the mixed environment provided by the first version of the system 
software for PowerPC processor-based Macintosh computers allows the user to run 
both 680x0 and PowerPC applications. The Process Manager needs some method of 
determining, at the time the user launches an application, what kind of application it is. 
Because the mixed environment is intended to support existing 680x0 applications 
unmodified, the Process Manager assumes that an application is a 680x0 application, 
unless you specifically indicate otherwise. You do this by including, in the resource fork 
of your PowerPC application, a code fragment resource. This resource (of type 'cfrg' 
and ID 0) indicates the instruction set architecture of your application’s executable code, 
as well as the location of the code’s container. Typically, the code and data for a PowerPC 
application are contained in your application’s data fork, as shown in Figure 1-4.

Figure 1-4 The structure of a PowerPC application
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The PowerPC Native Environment 1-31



C H A P T E R  1

Introduction to PowerPC System Software
If your application contains a code fragment resource, the Process Manager calls the 
Code Fragment Manager to load and prepare your application’s code and data. If, on the 
other hand, your application does not contain a code fragment resource, the Process 
Manager assumes that your application is a 680x0 application; in this case, the Process 
Manager calls the Segment Manager to load your application’s executable code from 
resources of type 'CODE' in your application’s resource fork, as illustrated in Figure 1-5.

Figure 1-5 The structure of a 680x0 application

Listing 1-5 shows the Rez input for a sample code fragment resource.

Listing 1-5 The Rez input for a sample 'cfrg' resource

#include "CodeFragmentTypes.r"

resource 'cfrg' (0) {

{

kPowerPC, /*instruction set architecture*/

kFullLib, /*no update level for apps*/

kNoVersionNum, /*no implementation version number*/

kNoVersionNum, /*no definition version number*/

kDefaultStackSize, /*use default stack size*/

kNoAppSubFolder, /*no library directory*/

kIsApp, /*fragment is an application*/

kOnDiskFlat, /*fragment is on disk*/

kZeroOffset, /*fragment starts at fork start*/

kWholeFork, /*fragment occupies entire fork*/

Data fork Resource fork

'CODE' 0

'CODE' 1

'CODE' n

'DITL'

'DLOG'

'WIND'

etc.

'SIZE' –1
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"SurfWriter" /*name of the application*/

}

};

The 'cfrg' resource specification in Listing 1-5 indicates, among other things, that the 
application consists of PowerPC code, that the code is contained in the application’s data 
fork, and that the code container occupies the entire data fork. It’s possible to have the 
container occupy only part of the data fork, if you need to put other information in 
the data fork as well. (Some applications, for instance, put copyright or serial number 
information in their data fork.) You do this by specifying a nonzero offset for the begin-
ning of the code fragment. Alternatively, you can move the information previously 
contained in the data fork into one or more resources in your application’s resource fork, 
thereby reserving the entire data fork for the PowerPC code fragment.

Note
For information about the other fields in a code fragment resource, 
see the chapter “Code Fragment Manager” in this book. ◆

This recommended placement of an application’s PowerPC code in the data fork makes 
it easy to create fat applications that contain both PowerPC and 680x0 executable code. 
A fat application contains 680x0 code in 'CODE' resources in the resource fork and 
PowerPC code in the data fork, as shown in Figure 1-6.

Figure 1-6 The structure of a fat application

The advantage of a fat application is that it can be executed on either 680x0-based or 
PowerPC processor-based Macintosh computers. The Process Manager on 680x0-based 
Macintosh computers knows nothing about 'cfrg' resources. As a result, it ignores the 
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code contained in the data fork and uses the code contained in the application’s 'CODE' 
resources. The Process Manager on PowerPC processor-based Macintosh computers, 
however, reads the 'cfrg' resource and uses the code in the specified location (usually, 
the data fork); the 680x0 'CODE' resources in the resource fork are ignored.

Ideally, you should package your application as a fat application, to give your users 
maximum flexibility in how they manage their working environment. For example, a 
user might move a storage device (such as a hard disk) containing your application from 
a 680x0-based Macintosh computer to a PowerPC processor-based Macintosh computer. 
If your application is fat, it can be launched successfully in either environment.

For various reasons, however, you might decide not to package your application as a 
fat application. If so, you should at the very least include an executable 680x0 'CODE' 
resource that displays an alert box informing the user that your application runs only on 
PowerPC processor-based Macintosh computers.

Note
Import libraries also need a code fragment resource, to indicate the 
location of the container and the appropriate version information. 
See the chapter “Code Fragment Manager” in this book for information 
about creating a 'cfrg' resource for an import library. ◆

Executable Resources 1

The Code Fragment Manager is extremely flexible in where it allows fragments to be 
stored. As you’ve seen, an application’s executable code and global data are typically 
stored in a container in the application’s data fork. Import libraries supplied as part of 
the Macintosh system software are often stored in ROM, while import libraries created 
by third-party developers are usually stored in the data forks of files on disk. It’s also 
possible to use resources as containers for executable PowerPC code. This section 
describes how to work with executable resources in the PowerPC environment.

There are two kinds of executable resources you can create that contain PowerPC code: 
resources whose behavior is defined by the system software (or by some other software) 
and those whose behavior is defined by your application alone. For present purposes, 
these two kinds of resources are called accelerated and private resources, respectively.

Note
The terms accelerated and private are used here simply to help distinguish 
these two kinds of executable resources containing PowerPC code. They 
are not used elsewhere in this book or in Inside Macintosh. ◆

First, you can put an executable PowerPC code fragment into a resource to obtain 
a PowerPC version of a 680x0 stand-alone code module. For example, you might 
recompile an existing menu definition procedure (which is stored in a resource of type 
'MDEF') into PowerPC code. Because the Menu Manager code that calls your menu 
definition procedure might be 680x0 code, a mode switch to the PowerPC environment 
might be required before your definition procedure can be executed. As a result, you 
need to prepend a routine descriptor onto the beginning of the resource, as shown in 
Figure 1-7. These kinds of resources are called accelerated resources because they are 
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faster implementations of existing kinds of resources. You can transparently replace 
680x0 code resources by accelerated PowerPC code resources without having to change 
the software (for example, the application) that uses them.

Figure 1-7 The structure of an accelerated resource

Sometimes it’s useful to keep the executable code of a definition function in some 
location other than a resource. To do this, you need to create a stub definition resource 
that is of the type expected by the system software and that simply jumps to your code. 
For example, Listing 1-6 shows the Rez input for a stub list definition resource.

Listing 1-6 Rez input for a list definition procedure stub

data 'LDEF' (128, "MyCustomLDEF", preload, locked) {

/*need to fill in destination address before using this stub*/

$"41FA 0006" /*LEA PC+8, A0 ;A0 <- ptr to destination address*/

$"2050" /*MOVEA.L (A0), A0 ;AO <- destination address*/

$"4ED0" /*JMP (A0) ;jump to destination address*/

$"00000000" /*destination address*/

};

Your application (or other software) is responsible for filling in the destination address 
before the list definition procedure is called by the List Manager. For 680x0 code, the 
destination address should be the address of the list definition procedure itself. For 

Routine

descriptor

PowerPC

code fragment
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PowerPC code, the destination address should be a universal procedure pointer (that is, 
the address of a routine descriptor for the list definition procedure).

By contrast, you can create a resource containing executable PowerPC code solely for the 
purposes of your application (perhaps on analogy with the standard kinds of code-
bearing resources used by the system software). Because these kinds of executable 
resources do not conform to a calling interface defined by the system software (or by some 
other widely available software, such as HyperCard), they are called private resources. 
The code in private resources is called only by your application, not by any other external 
code. As a result, there is no need to put a routine descriptor onto the beginning of the 
executable code. Figure 1-8 shows the general structure of a private resource.

Figure 1-8 The structure of a private resource

It’s important to understand the distinction between accelerated and private resources, 
so that you know when to create them and how to load and execute the code they 
contain. An accelerated resource is any resource containing PowerPC code that has a 
single entry point at the top (the routine descriptor) and that models the traditional 
behavior of a 680x0 stand-alone code resource. There are many examples, including menu 
definition procedures (stored in resources of type 'MDEF'), control definition functions 
(stored in resources of type 'CDEF'), window definition functions (stored in resources of 
type 'WDEF'), list definition procedures (stored in resources of type 'LDEF'), HyperCard 
extensions (stored in resources of type 'XCMD'), and so forth. A private resource is any 
other kind of executable resource whose code is called directly by your application.

PowerPC

code fragment
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IMPORTANT

For several reasons, it’s generally best to avoid using private resources 
unless you absolutely must put some code into a resource. As you’ll see 
later (in “File Mapping” on page 1-53), the executable code of a private 
resource is loaded into your application’s heap and is not eligible for 
file mapping. Whenever possible, you should put executable PowerPC 
code into your application’s data fork or create your own application-
specific files. ▲

In most cases, you don’t need to do anything special to get the system software to 
recognize your accelerated resource and to call it at the appropriate time. For 
example, the Menu Manager automatically loads a custom menu definition procedure 
into memory when you call GetMenu for a menu whose 'MENU' resource specifies 
that menu definition procedure. Similarly, HyperCard calls code like that shown in 
Listing 1-7 to load a resource of type 'XCMD' into memory and execute the code 
it contains.

Listing 1-7 Using an accelerated resource

Handle myHandle;

XCmdBlock myParamBlock;

myHandle = Get1NamedResource('XCMD', '\pMyXCMD');

HLock(myHandle);

/*Fill in the fields of myParamBlock here.*/

CallXCMD(&myParamBlock, myHandle);

HUnlock(myHandle);

The caller of an accelerated resource executes the code either by jumping to the code (if 
the caller is 680x0 code) or by calling the Mixed Mode Manager CallUniversalProc 
function (if the caller is PowerPC code). In either case, the Mixed Mode Manager calls 
the Code Fragment Manager to prepare the fragment, which is already loaded into 
memory. With accelerated resources, you don’t need to call the Code Fragment Manager 
yourself. In fact, you don’t need to do anything special at all for the system software 
to recognize and use your accelerated resource, if you’ve built it correctly. This is 
because the system software is designed to look for, load, and execute those resources 
in the appropriate circumstances. In many cases, your application passes to the system 
software just a resource type and resource ID. The resource must begin with a routine 
descriptor, so that the dereferenced handle to the resource is a universal procedure 
pointer.
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IMPORTANT

The MPW interface file MixedMode.r contains Rez templates that you 
can use to create the routine descriptor that appears at the beginning 
of an accelerated resource. If you want to build the routine descriptor 
yourself or if you want to build a fat accelerated resource (which 
contains both PowerPC and 680x0 code), see the section “Executing 
Resource-Based Code” beginning on page 2-24 in the chapter “Mixed 
Mode Manager” in this book. ▲

The code shown in Listing 1-7—or similar code for any other accelerated resource—can 
be executed multiple times with no appreciable performance loss. If the code resource 
remains in memory, the only overhead incurred by Listing 1-7 is to lock the code, fill in 
the parameter block, jump to the code, and then unlock it. However, because of the way 
in which the system software manages your accelerated resources, there are several key 
restrictions on their operation:

■ An accelerated resource cannot contain a termination routine, largely because the 
Operating System doesn’t know when the resource is no longer needed and hence 
when the resource can be unloaded. The Code Fragment Manager effectively forgets 
about the connection to your resource as soon as it has prepared the resource for 
execution.

■ An accelerated resource must contain a main symbol, which must be a procedure. For 
example, in an accelerated 'MDEF' resource, the main procedure should be the menu 
definition procedure itself (which typically dispatches to other routines contained in 
the resource).

■ You cannot call the Code Fragment Manager routine FindSymbol to get information 
about the exported symbols in an accelerated resource. More generally, you cannot 
call any Code Fragment Manager routine that requires a connection ID as a parameter. 
The connection ID is maintained internally by the Operating System and is not 
available to your application.

■ The fragment’s data section is instantiated in place (that is, within the block of 
memory into which the resource itself is loaded). For in-place instantiation, you 
need to build an accelerated resource using an option that specifies that the data 
section of the fragment not be compressed. See the documentation for your soft-
ware development system for instructions on doing this.

Note
If you use the MakePEF tool to help build an accelerated resource, you 
should specify the -b option to suppress data section compression. ◆

You might have noticed that the code shown in Listing 1-7 unlocks the 'XCMD' resource 
after executing it. By unlocking the resource, the caller is allowing it to be moved around 
in memory or purged from memory altogether. This behavior—which is perfectly 
acceptable in the 680x0 environment—contradicts the general rule that fragments are not 
allowed to move in memory after they’ve been loaded and prepared (see page 1-23). To 
allow accelerated PowerPC resources to be manipulated just like 680x0 code resources, 
the Mixed Mode Manager and the Code Fragment Manager cooperate to make sure that 
the code is ready to be executed when it is called. If the resource code hasn’t been moved 
since it was prepared for execution, then no further action is necessary. If, however, the 
1-38 The PowerPC Native Environment



C H A P T E R  1

Introduction to PowerPC System Software

1
Introduction to P

ow
erP

C
 S

ystem
 S

oftw
are
code resource has moved or been reloaded elsewhere in memory, some of the global data 
in the resource might have become invalid. For example, a global pointer might become 
dangling if the code or data it points to has moved. To help avoid dangling pointers, the 
Code Fragment Manager updates any pointers in the fragment’s data section that are 
initialized at compile time and not modified at run time. However, the Code Fragment 
Manager cannot update all global data references in an accelerated resource that has 
moved in memory. There is, therefore, an important restriction on using global data in 
accelerated resources:

■ An accelerated resource must not use global pointers (in C code, pointers declared as 
extern or static) that are either initialized at run time or contained in dynamically 
allocated data structures to point to code or data contained in the resource itself. An 
accelerated resource can use uninitialized global data to point to objects in the heap. 
In addition, an accelerated resource can use global pointers that are initialized at 
compile time to point to functions, other global data, and literal strings, but these 
pointers cannot be modified at run time.

Listing 1-8 shows some declarations that can be used in an accelerated resource, 
provided that the resource code does not change the values of the initialized variables.

Listing 1-8 Some acceptable global declarations in an accelerated resource

int a; /*uninitialized; not modified if resource moves*/

Ptr myPtr; /*uninitialized; not modified if resource moves; */

/* can be assigned at run time to point to heap object*/

Handle *h; /*uninitialized; not modified if resource moves; */

/* can be assigned at run time to point to heap object*/

int *b = &a; /*updated each time resource moves*/

char *myStr = "Hello, world!"; /*updated each time resource moves*/

extern int myProcA(), myProcB();

struct {

int (*one)();

int (*two)();

char *str;

} myRec = {myProcA, myProcB, "Hello again!"};

/*all three pointers are updated each time resource moves*/

Listing 1-9 shows some data declarations and code that will not work in an accelerated 
resource that is moved or purged.

Listing 1-9 Some unacceptable global declarations and code in an accelerated resource

int a;

int *b;

int *c = &a;

Ptr (*myPtr) (long) = NewPtr;
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static Ptr MyNewPtr();

struct myHeapStruct {

int *b;

Ptr (myPtr) (long);

} *hs;

b = &a; /*b does not contain &a after resource is moved*/

c = NULL; /*c does not contain NULL after resource is moved*/

c = (int *) NewPtr(4); /*dangling pointer after resource is moved*/

myPtr = MyNewPtr; /*dangling pointer after resource is moved*/

hs = NewPtr(sizeof(myHeapStruct));

/*hs still points to nonrelocatable heap block after move*/

hs->b = &a; /*hs->b will not point to global a after move*/

hs->myPtr = MyNewPtr;

/*hs->myPtr will not point to MyNewPtr after move*/

Note that a code fragment stored as an accelerated resource can import both code and 
data from an import library. The code and data in the import library do not move in 
memory. As a result, you can sidestep the restrictions on global data in an accelerated 
resource by putting the global data used by the accelerated resource into an import 
library. The import library is unloaded only when your application terminates, not when 
the accelerated resource is purged.

To load and prepare a private resource, you need to call the Resource Manager, Memory 
Manager, and Code Fragment Manager explicitly, as shown in Listing 1-10.

Listing 1-10 Using a private resource

Handle myHandle;

OSErr myErr;

ConnectionID myConnID;

Ptr myMainAddr;

Str255 myErrName;

myHandle = Get1NamedResource('RULE', '\pDeM');

HLock(myHandle);

myErr = GetMemFragment(*myHandle, GetHandleSize(myHandle), 

'\pDeM', kLoadNewCopy, &myConnID, (Ptr*)&myMainAddr, 

myErrName);

/*Call the code in here.*/

myErr = CloseConnection(myConnID);

HUnlock(myHandle);
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None of the restrictions on accelerated resources listed above applies to your own 
private code-bearing resources. For instance, you do have access to the connection ID 
to the resource-based fragment (as you can see in Listing 1-10), so you can call Code 
Fragment Manager routines like CloseConnection and FindSymbol. However, the 
overhead involved in loading the code fragment and later unloading it is nontrivial, 
so you should avoid closing the connection to a private resource (that is, calling 
CloseConnection) until you’re done using it.

Because a private resource is just a fragment stored in a resource, it’s preferable to 
avoid using private resources, whenever possible, by putting that code and data into 
some file. By doing this, you gain the benefits afforded by the system software to file-
based fragments (such as file mapping directly from the file’s data fork). You should use 
private executable resources only in cases where your code absolutely must be packaged 
in a resource.

Calling Conventions 1
The software development tools and the system software for PowerPC processor-based 
Macintosh computers dictate a set of calling conventions that are significantly different 
from those you might be used to in the 680x0 execution environment. The new calling 
conventions are designed to reduce the amount of time required to call another piece of 
code and to simplify the entire code-calling process. In the 680x0 environment, there are 
many ways for one routine to call another, depending on whether the called routine 
conforms to Pascal, C, Operating System, or other calling conventions. In the PowerPC 
environment, there is only one standard calling convention, having these features:

■ Most parameters are passed in registers dedicated for that purpose. The large number 
of general-purpose and floating-point registers makes this goal quite easy to achieve. 
Parameters are passed on the stack only when they cannot be put into registers.

■ The size of a stack frame is determined at compile time, not dynamically at run time.

■ Stack frames are subject to a strict set of rules governing their structure. The new 
run-time architecture reserves specific areas of a stack frame for saved registers, local 
variables, parameters, and stack frame linkage information (such as the return 
address and the beginning of the previous stack frame).

The following sections describe these differences in greater detail. They begin by 
reviewing the procedure calling conventions that exist on 680x0-based Macintosh 
computers. Then they describe the calling conventions adopted for PowerPC 
processor-based Macintosh computers and show how those conventions affect the 
organization of the stack.

IMPORTANT

The information in the following sections is provided primarily for 
debugging purposes or for compiler writers and assembly-language 
programmers, who need to conform to the new calling conventions. 
Because generating code conforming to these conventions is handled 
automatically by your compiler, you might not need this information 
for writing applications in a high-level language. ▲
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The 680x0 Calling Conventions 1

To appreciate how different the PowerPC calling conventions are from the 680x0 calling 
conventions, it’s useful to review the model used on 680x0-based Macintosh computers. 
On 680x0-based computers, there is a conventional grow-down stack whose parts are 
delimited by two pointers: a stack pointer and a frame pointer. Figure 1-9 illustrates a 
typical 680x0 stack frame.

Figure 1-9 A 680x0 stack frame

Note
By convention, the stack grows from high memory addresses toward 
low memory addresses. The end of the stack that grows or shrinks is 
usually referred to as the “top” of the stack, even though it’s actually at 
the lower end of memory occupied by the stack. ◆

The stack pointer (SP) points to the top of the stack and defines its current downward 
limit. All operations that push data onto the stack or pop data off it do so by reading and 
then modifying the stack pointer. The Operating System uses the 680x0 register A7 as the 
stack pointer.

The frame pointer (FP) points to the base in memory of the current stack frame, the area 
of the stack used by a routine for its parameters, return address, local variables, and 
temporary storage. Because the Operating System maintains the frame pointer, it can 
easily find the beginning of the stack frame when it’s time to pop it off the stack. The 
Operating System uses the 680x0 register A6 as the frame pointer.

A routine’s parameters are always placed on the stack above the frame pointer, and its 
local variables are always placed below the frame pointer. The 680x0 hardware enforces 
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16-bit alignment for parameters on the stack. So, for example, if you push a single byte 
onto the stack, the stack pointer is decremented by 2 bytes rather than 1.

The order of the parameters on the stack differs according to the language type of the 
called routine. When you call a C routine on a 680x0-based Macintosh computer, the 
parameters are pushed onto the stack in order from right to left. This order is dictated by 
the fact that the C language allows routines with a variable number of parameters. The 
first parameter (which often indicates how many parameters are being passed) must 
always be pushed onto the stack last, so that it resides at a fixed offset from the frame 
pointer. Moreover, because only the caller knows how many parameters it pushed onto 
the stack, it is always the caller’s responsibility to pop the parameters off the stack. 
Finally, with C routines, a function result is returned in register D0 (or, for floating-point 
results, in register FPR0). However, structures and other large values are handled 
differently: the caller allocates space for the result and passes a pointer to that storage as 
the first (that is, leftmost) parameter.

The calling conventions for Pascal routines are different from those for C routines. For 
Pascal routines, the caller pushes space for the return result onto the stack before 
pushing the parameters. The caller pushes parameters onto the stack from left to right. 
Because Pascal does not allow routines with a variable number of parameters, the size of 
a stack frame can be determined at compile time. It is therefore the responsibility of the 
called routine to remove the parameters from the stack before returning.

Note
These differences between C and Pascal are due entirely to 
historical factors, not to any requirements of the 680x0 
environment. It would have been possible for Pascal routines 
to follow the C calling conventions. ◆

There are still other calling conventions followed on 680x0-based Macintosh computers. 
Macintosh Toolbox managers generally follow Pascal conventions, although some of the 
most recent additions to the Toolbox follow C conventions. More importantly, the 
Macintosh Operating System typically ignores the stack altogether. Instead, Operating 
System calls generally pass parameters and return results in registers.

The PowerPC Calling Conventions 1

The native run-time environment on PowerPC processor-based Macintosh computers 
uses a set of uniform calling conventions:

■ Parameters are processed from left to right and are placed into general-purpose 
registers GPR3 through GPR10 and (when necessary) floating-point registers FPR1 
through FPR13.

■ Function results are returned in GPR3, FPR1, or by passing a pointer to a structure as 
the implicit leftmost parameter (as in the 680x0 C implementation).

■ Any parameters that do not fit into the designated registers are passed on the stack. In 
addition, enough space is allocated on the stack to hold all parameters, whether they 
are passed in registers or not.
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Like the 680x0 run-time environment, the PowerPC run-time environment uses a grow-
down stack that contains areas for a routine’s parameters, for linkage information, and 
for local variables. However, the organization of the stack in the PowerPC environment 
is significantly different from that in the 680x0 environment. The PowerPC run-time 
environment uses a single stack pointer and no frame pointer. To achieve this simplifica-
tion, the PowerPC stack has a much more rigidly defined structure than does the stack in 
the 680x0 environment. Figure 1-10 illustrates the general structure of the stack in the 
PowerPC environment.

Figure 1-10 The PowerPC stack

The caller’s stack frame includes a parameter area and some linkage information. The 
parameter area in each stack frame is used by the caller to hold the parameters of any 
routines the caller calls (not the parameters of the caller itself). Of course, a given routine 
might in turn call several other routines; if so, the parameter area in the caller’s stack 
frame is made large enough to accommodate the largest parameter list of all routines the 
caller calls. It is the caller’s responsibility to set up the parameter area before each call to 
some other routine, and the callee’s responsibility to access its parameters from that 
parameter area. See the following section, “Parameter Passing” on page 1-47, for details 
on the structure of a routine’s parameter area.

Once the caller has set up the parameters for a call to some other routine, it then stores 
its own RTOC value in its linkage area, an area of the caller’s stack frame that holds the 
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saved stack pointer, Condition Register (CR), Link Register (LR), and RTOC values. It is 
necessary to save the caller’s RTOC value because the callee might reside in another 
fragment, a situation that would require that the callee’s RTOC value be installed in the 
RTOC. The caller always restores its RTOC value immediately upon return from the 
callee. The callee’s prolog writes the saved Condition Register and Link Register into the 
caller’s linkage area. The structure of a linkage area is illustrated in Figure 1-11.

IMPORTANT

The RTOC value is saved and restored only for two kinds of subroutine 
calls: cross-TOC calls and pointer-based calls. In all other cases, the 
RTOC field of the caller’s linkage area is ignored. ▲

Figure 1-11 The structure of a stack frame’s linkage area

Notice that the linkage area always appears at the “top” of the stack, adjacent to the 
stack pointer. This positioning is necessary to allow the caller to find and restore the 
values saved there, and to allow the callee to find the caller’s parameter area. One 
consequence of this requirement, however, is that a routine cannot push and pop 
arbitrary values on the stack after a stack frame is set up.

A PowerPC stack frame also includes space for the callee’s local variables. In general, the 
general-purpose registers GPR13 through GPR31 and the floating-point registers FPR14 
through FPR31 are reserved for a routine’s local variables. If a particular routine has 
more local variables than fit entirely into the registers reserved for them, it uses addi-
tional space on the stack. The size of the area used for local variables is determined at 
compile time; once a stack frame is allocated, the area for local variables cannot grow 
or shrink.

The callee is responsible for allocating its own stack frame, making sure to preserve 
8-byte alignment on the stack. The callee allocates its stack frame by decrementing the 
stack pointer, then writes the previous stack pointer into its own linkage area and saves 
all nonvolatile general-purpose and floating-point registers into the saved registers area 
of its stack frame. All of these actions are performed by a standard piece of 
compiler-generated code called the prolog.
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Note
The order in which the callee’s prolog performs these actions is 
determined by convention, not by any requirements of the PowerPC 
run-time architecture. Also, the callee saves only those nonvolatile 
registers it uses; if the callee doesn’t change a particular nonvolatile 
register, it doesn’t bother to save and restore it. ◆

When the callee exits, its epilog code restores the nonvolatile registers that its prolog 
previously saved. The Link Register and Condition Register are restored from the 
linkage area in the caller’s stack frame. The nonvolatile general-purpose registers 
(namely, GPR13 through GPR31) and floating-point registers (namely, FPR14 through 
FPR31) are restored from the saved register area in the callee’s stack frame. The RTOC 
value of the caller is, however, restored by the caller immediately upon return from the 
called routine.

There is one special case in which a callee’s stack usage does not conform to the structure 
shown in Figure 1-10—namely, when the callee is a leaf procedure. A leaf procedure 
is a procedure that calls no other procedures. Because it doesn’t call any procedures, 
it doesn’t need to allocate a parameter area on the stack. If, in addition, a leaf procedure 
doesn’t need to use the stack for any local variables, it needs to save and restore only 
those nonvolatile registers that it uses for local parameters.

Leaf procedures, due to their limited stack requirements, can use a special area on the 
stack called the Red Zone. The Red Zone is the area just below the stack pointer, in the 
area where a new stack frame normally would be allocated (see Figure 1-12). Because by 
definition only one leaf procedure can be active at any time, there is no possibility of 
multiple leaf procedures competing for the same Red Zone space.

Figure 1-12 The Red Zone

It’s important to realize that a leaf procedure doesn’t actually allocate a stack frame for 
itself and that it doesn’t decrement the stack pointer. Instead, it stores its LR and CR 
values in the linkage area of the routine that calls it (if necessary) and stores the values 
of any nonvolatile registers it uses in the Red Zone. As a result, the epilog of a leaf 
procedure doesn’t need to tear down a stack frame. Instead, the epilog needs at most to 
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restore the calling routine’s LR and CR values. This allows leaf procedures to execute 
faster than they would if they had to set up and later tear down a complete stack frame.

Note
A leaf procedure uses the Red Zone in place of a stack frame only when 
your code is compiled with speed optimization enabled. ◆

Using the Red Zone in this way can, however, cause problems for native exception 
handlers, because an exception handler cannot know in advance if a leaf procedure is 
executing at the time the exception occurs (and hence cannot know if the Red Zone 
contains information that should be preserved). A native exception handler must 
therefore decrement the stack pointer by 224 bytes (the largest possible register save 
area) before using the stack, to skip over any Red Zone that might currently be in use.

Note
The value 224 is the space occupied by nineteen 32-bit general-purpose 
registers plus eighteen 64-bit floating-point registers, rounded up to the 
nearest 8-byte boundary. If a leaf procedure’s Red Zone usage would 
exceed 224 bytes, then the leaf procedure is forced to use a stack frame, 
like any other procedure. ◆

In general, you should use the new Exception Manager to install any native exception 
handlers your application or other software defines. The Exception Manager automati-
cally adjusts the stack pointer before calling your exception handler and then restores it 
after your handler exits. See the chapter “Exception Manager” in this book for complete 
details on writing and installing a native exception handler.

IMPORTANT

The calling conventions and stack usage described in this section are 
those of the PPCC compiler and the Macintosh Operating System. Other 
compilers may employ different calling conventions. ▲

Parameter Passing 1

In the PowerPC run-time environment, as you’ve already learned, parameters are 
usually passed from a caller to a callee in registers. The fact that there are many general-
purpose and floating-point registers dedicated for parameter passing makes it extremely 
likely that all of a subroutine’s parameters can be passed in registers. Passing parameters 
in registers reduces the number of memory accesses required (namely, to read the stack 
frame) and thereby increases the performance of your software.

Any parameters that cannot be passed in registers are instead passed in the parameter 
area of the caller’s stack frame. This section describes the way in which a caller prepares 
the registers and the parameter area for the callee.

IMPORTANT

You need the information in this section only for machine-level 
debugging purposes, to understand the contents of the general-purpose 
and floating-point registers and the structure of the parameter area in a 
caller’s stack frame. ▲
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The compiler assigns parameters to registers and to the parameter area in the caller’s 
stack frame according to this algorithm:

■ The parameters are arranged in order as if they were fields of a record.
n The leftmost parameter is the first field.
n Each field is aligned on a 32-bit word boundary.
n Integer parameters occupying less than 32 bits are extended to 32 bits.

■ Some parameter values are passed in registers.
n The first 8 words are passed in GPR3 through GPR10.
n However, the first 13 floating-point parameters are passed in FPR1 through FPR13.

■ Simple function results are returned in GPR3 or FPR1.

■ Composite data (that is, custom data structures such as Pascal records or C structures) 
are passed intact, without expanding the fields to achieve word alignment. When 
composite data is returned, the caller leaves enough room to hold the result on the 
stack, puts the address of the result into GPR3, and starts the parameters in GPR4.

■ Any parameters that do not fit into the available registers are passed in the parameter 
area of the caller’s stack frame.

The compiler generates a parameter area in the caller’s stack frame that is large enough 
to hold all parameters passed to the callee, regardless of how many of the parameters are 
actually passed in registers. There are several reasons for this scheme. First of all, it 
provides the callee with space to store a register-based parameter if it wants to use one of 
the parameter registers for some other purpose (for instance, to pass parameters to a 
subroutine). In addition, routines with variable-length parameter lists must access their 
parameters from RAM, not from registers. Finally, code that is built to allow debugging 
automatically writes parameters from the parameter registers into the parameter area in 
the stack frame; this allows you to see all the parameters by looking only at that 
parameter area.

Consider, for example, a function MyFunction with this declaration:

void MyFunction (int i1, float f1, double d1, short s1, double d2, 

unsigned char c1, unsigned short s2, float f2, int i2);

Note
On the PowerPC processor, integers and long integers are both 32 bits 
long and short integers are 16 bits long. Variables of type float are 
32 bits long; variables of type double are 64 bits long. ◆

To see how the parameters of MyFunction are arranged in the parameter area on the 
stack, first convert the parameter list into a structure, as follows:

struct params {

int pi1;

float pf1;

double pd1;

short ps1;
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double pd2;

unsigned char pc1;

unsigned short ps2;

float pf2;

int pi2;

};

This structure serves as a template for constructing the parameter area on the stack. 
(Remember that, in actual practice, many of these variables are passed in registers; 
nonetheless, the compiler still allocates space for all of them on the stack, for the reasons 
just mentioned.)

The “top” position on the stack is for the field pi1 (the structure field corresponding to 
parameter i1). The floating-point field pf1 is assigned to the next word in the parameter 
area. The 64-bit double field pd1 is assigned to the next two words in the parameter 
area. Next, the short integer field ps1 is placed into the following 32-bit word; the 
original value of ps1 is in the lower half of the word, and the padding is in the upper 
half. The remaining fields of the param structure are assigned space on the stack in 
exactly the same way, with unsigned values being extended to fill each field to a 32-bit 
word. The final arrangement of the stack is illustrated in Figure 1-13. (Because the stack 
grows down, it looks as though the fields of the params structure are upside down.)

Figure 1-13 The organization of the parameter area on the stack
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To see which parameters are passed in registers and which are passed on the stack, you 
need to map the stack, as illustrated in Figure 1-13, to the available general-purpose and 
floating-point registers. Registers GPR0 through GPR2, and register FPR0, are reserved 
for other uses. Therefore, the parameter i1 is passed in GPR3, the first available 
general-purpose register. The floating-point parameter f1 is passed in FPR1, the first 
available floating-point register.

Placing a floating-point parameter into a floating-point register also reserves one or two 
general-purpose registers, depending on whether the parameter is 32 or 64 bits long. 
This behavior is dictated in order to support the ability of a C function to call another 
function without knowing the number or types of the callee’s parameters—that is, 
without knowing the callee’s prototype. When no function prototype for the callee is 
available to the caller, the compiler cannot know whether to pass a given parameter 
in the general-purpose (that is, fixed-point) registers or in the floating-point registers. 
As a result, the compiler passes the parameter in both the floating-point and the general-
purpose registers.

Even when the caller knows the function prototype of the callee, it still reserves one or 
two general-purpose registers for each floating-point register it fills. The only difference 
between cases in which the prototype is available and cases in which the prototype isn’t 
available is that the floating-point parameters are copied into the general-purpose 
register(s) in the latter cases but not in the former.

The parameter d1 is placed into FPR2 and the corresponding general-purpose registers 
GPR5 and GPR6 are masked out. The parameter s1 is placed into the next available 
general-purpose register, GPR7. Parameter d2 is placed into FPR3, with GPR8 and GPR9 
masked out. Parameter c1 is placed into GPR10, thereby exhausting all available general-
purpose registers. However, parameter f2 is passed in FPR4, which is still available. 
Notice that there are no general-purpose registers that can be masked out for FPR4; as a 
result, the parameter f2 is passed both in FPR4 and on the stack. Finally, parameters s2 
and i2 must be passed on the stack, because there are no more general-purpose registers 
to hold them.

Note
It would have been possible to pass all the fixed-point values in registers 
if the floating-point parameters had been grouped at the end of the 
parameter list. ◆

There is a special case that applies to routines that take a variable number of parameters 
(for example, the C language function printf). The callee doesn’t know how many 
parameters are being passed to it on any given call. As a result, the callee saves registers 
GPR3 through GPR10 into the parameter area and then walks through the parameter 
area to access its parameters. This means that the parameter area must contain at least 
8 words.

Import Libraries 1
You’ve already learned (in “Fragments” beginning on page 1-20) how a fragment can 
import code and data from some other fragment, which is always an import library. 
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Because the code or data that your application references from an import library is not 
actually contained in your application—but is only linked to it dynamically at application 
launch time—the executable code of your application is generally much smaller than it 
otherwise would be. This is one of the main advantages of using import libraries.

Of course, there’s no particular advantage simply to moving code out of your application 
and into an import library, because the code in the import library, unless contained in 
ROM, must be loaded into RAM before it can be used. The real advantages accrue only 
when two or more applications use the same import library. The library’s code is loaded 
into RAM only once, and all those applications reference that single code base. If you are 
developing several PowerPC applications that have parts of their source code in common, 
you should consider packaging all the shared code into an import library.

Another important advantage of using import libraries is that it’s easy to update code 
contained in an import library. You can issue an updated version of your import library 
and have the changes propagate to all the applications that use that library. You don’t 
need to update each individual application that uses the import library.

You can use shared libraries in other useful ways. You can, for instance, create a shared 
library that holds optional or infrequently executed code. For example, if you’re writing 
a word-processing application, you might package its spell-checking module as a 
separate shared library. Because the Code Fragment Manager doesn’t load the library at 
application launch time, your application uses less RAM and launches more quickly. 
When the user wants to execute the spelling checker, your application must explicitly 
load and prepare the shared library by calling Code Fragment Manager routines.

You can also use shared libraries as a way to allow other developers to add capabilities, 
such as optional tools, to your application. If you document the format of the parameters 
passed to an external routine and any other data that you expect to find in an optional 
tool, other developers can create shared libraries that conform to those specifications.

As you know, the principal advantage of using import libraries is that the code in the 
import library is loaded only once in memory, whence it is addressed by all applications 
(or other fragments) that import that code. The handling of an import library’s data, 
however, is more complicated. The Code Fragment Manager supports two methods of 
allocating and using the static data (that is, global variables) in an import library:

■ Global instantiation. The Code Fragment Manager allocates a single copy of the 
library’s global data, no matter how many clients use that data.

■ Per-context instantiation. The Code Fragment Manager allocates one copy of the 
library’s global data for each separate application (and all other fragments in the 
application’s context) that uses that data. Each application can access only its own 
copy of the data. The Operating System automatically keeps track of which copy of 
the library’s global data is in use by which context. If a given application attempts to 
load the same import library more than once, it always accesses the same copy of the 
library’s global data.

The method of allocating and handling a library’s global data is determined at link time. 
The library developer can indicate either global or per-context data instantiation for each 
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separate data section in a library. The method selected by the library developer for a 
particular data section is recorded by the linker in the library itself. In general, it’s best to 
use one copy of the global data per application.

It’s also possible to allocate one copy of an extension’s global data for each request to 
load the extension, even if the same application issues multiple load requests. This type 
of data instantiation, called per-load instantiation, is available only when you explicitly 
load a shared library by calling a Code Fragment Manager routine (for example, the 
GetSharedLibrary function). For example, a communications application might use a 
shared library to implement a tool for connecting to a serial port. By requesting per-load 
data instantiation, you can ensure that your tool can connect to two or more serial ports 
simultaneously by maintaining separate copies of the tool’s data. The tool itself can then 
be ignorant of how many connections it’s handling.

The Code Fragment Manager honors the data allocation method recorded in the library 
for all import libraries that it loads automatically. This method must be either global or 
per context. To achieve a per-load instantiation of a library’s data or to override the 
instantiation method recorded in the library, you must load and prepare the library 
programmatically by calling Code Fragment Manager routines.

The Organization of Memory 1
The organization of memory in the PowerPC run-time environment is reasonably similar 
to the organization of memory in the 680x0 run-time environment. The system partition 
occupies the lowest memory addresses, with most of the remaining space allocated to 
the Process Manager, which creates a partition for each opened application. Moreover, 
the organization of an application partition in the PowerPC run-time environment is 
reasonably similar to the organization of an application partition in the 680x0 run-time 
environment. In each application partition, there are a stack and a heap, as well as space 
for the application’s global variables.

There are, however, a number of important differences between the PowerPC and 680x0 
environments in regard to how memory is organized, both globally and in each applica-
tion’s partition. This section describes these differences. It also describes the different 
data alignment conventions used in each environment and the steps you might need to 
take to align data so that it can be exchanged between the two environments.

IMPORTANT

In general, you need the information in this section only for debugging 
purposes (for example, to understand where in memory your 
application’s code section is loaded). You might also need this 
information to help you determine how large to make your application 
partition (as specified in your application’s 'SIZE' resource). ▲

The two main differences between the 680x0 memory organization and the PowerPC 
memory organization concern the location of an application’s code section and the 
location of an application’s global variables. In addition, you need to pay attention to 
the differing data alignment rules in each environment. 
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File Mapping 1

As you know, a PowerPC application’s executable code and global data are typically 
stored in a fragment container in the application’s data fork. When the application is 
launched, the code and data sections of that fragment are loaded into memory. The data 
section is loaded into the application’s heap, as described more fully in the following 
section. The location of the application’s code section varies, depending on whether or 
not virtual memory is enabled.

If virtual memory is enabled, the Virtual Memory Manager uses a scheme called file 
mapping to map your application’s fragment into memory: the Virtual Memory 
Manager uses the data fork of your application as the paging file for your application’s 
code section. In the 680x0 environment, all unused pages of memory are written into a 
single systemwide backing-store file and reread from there when needed. This often 
results in a prolonged application launch, because an application’s code is loaded into 
memory and then sometimes immediately written out to the backing-store file. In the 
PowerPC environment, this “thrashing” at application launch time is avoided; although 
the entire code fragment is mapped into the logical address space, only the needed 
portions of code are actually loaded into physical memory.

File mapping has additional benefits as well. The Operating System assumes that your 
application’s code section is always read-only. This means that, when it’s time to remove 
some of your application’s code from memory (to page other code or data in), the Virtual 
Memory Manager doesn’t need to write the pages back to the paging file. Instead, it 
simply purges the code from the needed pages, because it can always read the file-
mapped code back from the paging file (your application’s data fork).

IMPORTANT

Because your application’s code section is marked read-only when 
virtual memory is enabled, it’s not possible to write self-modifying code 
that will work on all PowerPC processor-based Macintosh computers. ▲

The virtual addresses occupied by the file-mapped pages of an application’s (or an 
import library’s) code are located outside both the system heap and the Process 
Manager’s heap. As a result, an application’s file-mapped code is never located in 
the application heap itself.

Figure 1-14 illustrates the general organization of memory when virtual memory is 
enabled. Application partitions (including the application’s stack, heap, and global 
variables) are loaded into the Process Manager heap, which is paged to and from the 
systemwide backing-store file. Code sections of applications and import libraries are 
paged directly from the data fork of the application or import library file. Data sections 
of import libraries are put into an application’s heap for any per-context instantiations 
and into the system heap for any global instantiations.
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Figure 1-14 Organization of memory when virtual memory is enabled
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Sometimes, however, parts of your application’s executable code are loaded into your 
application partition, not into the file-mapped space. This happens, for example, when 
you store an application extension (like a filter or a tool) as a resource in your applica-
tion’s resource fork. To make the code in that extension available, you need to call the 
Resource Manager to load it into your application heap. Then you need to call the Code 
Fragment Manager to prepare the extension for execution. (See the chapter “Code 
Fragment Manager” in this book for a more detailed description of this way of executing 
resource-based code.) Because that code is loaded into your application heap, it isn’t 
eligible for file mapping (although it is still eligible for normal paging).

If virtual memory is not enabled, the code section of an application is loaded into the 
application heap. The Finder and Process Manager automatically expand your applica-
tion partition as necessary to hold that code section. The code sections of other fragments 
are put into part of the Process Manager’s heap known as temporary memory. If no 
temporary memory is available, code sections are loaded into the system heap.

IMPORTANT

It’s possible for a fragment’s code section to be loaded into the Process 
Manager’s heap even when virtual memory is enabled. This happens 
whenever the fragment resides on a device that cannot be used as a 
paging device. For example, applications that are located on floppy 
disks, AppleShare servers, and compact discs cannot be file mapped. ▲

Figure 1-15 illustrates the general organization of memory when virtual memory is not 
enabled. Application partitions (including the application’s stack, heap, and global 
variables) are loaded into the Process Manager heap. Code sections of applications and 
import libraries are loaded either into the Process Manager partition or (less commonly) 
into the system heap. No paging occurs.
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Figure 1-15 Organization of memory when virtual memory is not enabled
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nents use and maintain the system global variables. However, some undocumented 
system global variables have moved, and some have been eliminated altogether.

The universal header files contain declarations for routines that you can use to access 
virtually all of the documented system global variables. For example, you can use the 
routines LMGetCurDirStore and LMSetCurDirStore to get and set the value of the 
system global variable CurDirStore (which contains the directory ID of the current 
directory). LMGetCurDirStore is declared essentially as follows:

#if USESCODEFRAGMENTS

extern long LMGetCurDirStore(void);

#else

#define LMGetCurDirStore() (* (long *) 0x0398)

#endif

In any environment that uses code fragments, the function LMGetCurDirStore is 
defined in the system software import library that is contained in ROM. In all other 
environments, the function LMGetCurDirStore is defined as a macro that reads the 
value of the appropriate low-memory address.

By using the routines provided by the system software, you can insulate your application 
or other software module from any future changes in the arrangement of low memory.

Note
See the MPW interface files for a complete listing of the routines you can 
use to access the system global variables. You should not use the 
compiler flag USESCODEFRAGMENTS in your source code; if you need to 
know whether the Code Fragment Manager is available, you can call the 
Gestalt function with the selector gestaltCFMAttr. ◆

The only other case in which your application might be affected by changes to the 
system partition concerns the method you use to install exception handlers. In the 680x0 
environment, there is no programmatic way to install an exception handler; instead, 
you simply write the address of your exception handler into the appropriate location 
in memory (as determined jointly by the kind of exception you want to handle and 
the value in the microprocessor’s vector base register). A PowerPC application cannot 
employ this method of installing exception handlers. Instead, the system software for 
PowerPC processor-based Macintosh computers includes the new Exception Manager, 
which you should use to install native PowerPC exception handlers. See the chapter 
“Exception Manager” in this book for details.

Application Partitions 1

The organization of an application partition in the PowerPC environment is substantially 
simpler than in the 680x0 environment. In particular, the application partition for a 
PowerPC application consists only of a stack and a heap. The A5 world that occupies 
part of a 680x0 application partition largely is absent from the PowerPC environment. 
The information that is maintained in the A5 world for 680x0 applications is either no 
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longer needed by PowerPC applications or is maintained elsewhere (usually in the 
application heap).

IMPORTANT

Any software that makes assumptions about the organization of an 
application’s A5 world will not work with PowerPC applications. For 
example, any 680x0 system extensions that modify an application’s jump 
table will need to be rewritten to work with PowerPC applications. ▲

This section describes the new locations for the information in a 680x0 A5 world. 
Although in general the arrangement of your PowerPC application partition is trans-
parent to your application, there are some instances (for example, while debugging) 
in which you might need to know where in your partition information is located. In 
addition, if your application previously depended on some information being in its 
A5 world (that is, accessed through the address in the A5 register), you will need to 
revise it to remove that dependence if you want to recompile your source code into 
a PowerPC application. More generally, you might need to rewrite any parts of your 
source code that depend on information being in any of the 680x0 registers.

Note
For a more complete explanation of a 680x0 application’s A5 world, 
see Inside Macintosh: Memory. ◆

The A5 world of a 680x0 application contains four kinds of data:

■ application global variables

■ application QuickDraw global variables

■ application parameters

■ the application’s jump table

Your 680x0 application’s jump table contains an entry for each of the application’s 
routines that is called by code in another segment. Because the executable code of a 
PowerPC application is not segmented, there is no need for a jump table in a PowerPC 
application partition.

IMPORTANT

The available PowerPC compilers ignore any segmentation directives 
in your source code. In addition, the Segment Manager treats the 
UnloadSeg procedure as nonoperative. ▲

In PowerPC applications, the application global variables are part of the fragment’s data 
section, which the Code Fragment Manager loads into the application’s heap. The 
application global variables are always allocated in a single nonrelocatable block and are 
addressed through a pointer in the fragment’s table of contents.

The application parameters are 32 bytes of memory located above the application global 
variables that are reserved for use by the Operating System. The first 4 bytes of those 
parameters are a pointer to the application’s QuickDraw global variables, which 
contain information about the application’s drawing environment. For PowerPC 
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applications, the application parameters are maintained privately by the Operating 
System. In addition, an application’s QuickDraw global variables are stored as part of 
the application’s global variables (in a nonrelocatable block in the application’s heap).

Because the PowerPC run-time libraries don’t implicitly define the QuickDraw global 
variable qd for native applications (as they do in the 680x0 environment), you’ll need to 
reserve space for them globally in your application and then pass the address of that 
memory to the InitGraf routine. You can do this by using the code shown in Listing 
1-11. The data type QDGlobals is defined in the QuickDraw header files.

Listing 1-11 Declaring an application’s QuickDraw global variables

#ifndef MAC68K

# define MAC68K 0 /*for PowerPC code*/

#else

# define MAC68K 1 /*for 680x0 code*/

#endif

#if !MAC68K

QDGlobals qd;

#endif

void DoInitManagers() /*initialize Toolbox managers*/

{

InitGraf(&qd.thePort);

InitFonts();

InitWindows();

InitMenus();

TEInit();

InitDialogs(nil);

InitCursor();

}

QuickDraw is one of the system software services that has been ported to native 
PowerPC code. It accesses the QuickDraw global variables of a 680x0 application by 
reading the application’s A5 value that is stored in the 680x0 context block. That value 
points to the boundary between the application’s global variables and the application 
parameters. As you’ve seen, the address of the QuickDraw global variables is the first 
4 bytes of the application parameters.

Even for applications that have themselves been ported to native PowerPC code, there 
must be a minimal A5 world to support some nonported system software—as well as 
some system software patches that exist as 680x0 code—that accesses the QuickDraw 
global variables relative to the application’s A5 value. This mini-A5 world contains only 
a pointer to the application’s QuickDraw global variables, which reside in the applica-
tion’s global data section (in the application heap). The Process Manager creates a 
mini-A5 world for each native application at application launch time and installs its 
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address in the 680x0 context block. As a result, the native QuickDraw can access the 
QuickDraw global variables of a native application in precisely the same way that it 
accesses the QuickDraw global variables of a 680x0 application (namely, by reading the 
value of the A5 register in the 680x0 context block and then finding the address of the 
QuickDraw global variables relative to the address of the A5 world).

The general structure of a PowerPC application partition is illustrated in Figure 1-16.

Figure 1-16 The structure of a PowerPC application partition
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global variables or QuickDraw global variables from within some piece of “detached” 
code installed by your application (such as a Time Manager task or a VBL task) and (2) to 
create a 680x0 context for some other piece of code (such as a HyperCard XCMD).

In the first case, when you need to set up the A5 register for some piece of 680x0 code 
whose address you passed to the system software, there is no need for ported PowerPC 
code to set and restore the A5 register. The RTOC always points to the table of contents 
for the currently executing code, through which the application’s global variables can be 
addressed. As a result, your application’s global variables are transparently available to 
any code compiled into your application. To maintain a single source code base for both 
the 680x0 and the PowerPC environment, you can use conditional compilation. Consider 
the simple 680x0 VBL task defined in Listing 1-12.

Note
See the chapter “Vertical Retrace Manager” in Inside Macintosh: Processes 
for a complete explanation of the techniques used in Listing 1-12. ◆

Listing 1-12 A sample 680x0 VBL task definition

VBLRecPtr GetVBLRec (void)

= 0x2008; /*MOVE.L A0,D0*/

void DoVBL (VBLRecPtr recPtr)

{

gCounter++; /*modify a global variable*/

/*Reset vblCount so that this procedure executes again.*/

recPtr->myVBLTask.vblCount = kInterval;

}

void StartVBL (void)

{

long curA5; /*stored value of A5*/

VBLRecPtr recPtr; /*pointer to task record*/

recPtr = GetVBLRec(); /*get address of task record*/

/*Set our application's A5 and store old A5 in curA5.*/

curA5 = SetA5(recPtr->vblA5);

DoVBL(recPtr);

recPtr->myVBLTask.vblCount = kInterval;

(void) SetA5(curA5); /*restore the old A5 value*/

}
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The procedure StartVBL defined in Listing 1-12 installs the A5 value of the application 
by calling SetA5, passing in a value that it retrieves from an expanded VBL task record. 
In addition, StartVBL restores the previous A5 value immediately before exiting. For 
VBL tasks written as PowerPC code, both of these steps are unnecessary. You can rewrite 
the procedure DoVBL to include those steps only conditionally, as shown in Listing 1-13. 
Moreover, in the 680x0 environment, the address of the VBL task record is passed in 
register A0. If you need that address in a high-level language, you need to retrieve it 
immediately upon entry to your VBL task (as is done using the GetVBLRec function in 
Listing 1-12). In the PowerPC environment, however, the address of the VBL task record 
is passed to the task as an explicit parameter. Listing 1-13 illustrates how to conditionally 
select the appropriate task declaration.

Listing 1-13 A conditionalized VBL task definition

#if MAC68K

VBLRecPtr GetVBLRec (void) = 0x2008; /*MOVE.L A0,D0*/

#endif

void DoVBL (VBLRecPtr recPtr)

{

gCounter++; /*modify a global variable*/

/*Reset vblCount so that this procedure executes again.*/

recPtr->myVBLTask.vblCount = kInterval;

}

#if MAC68K

void StartVBL (void)

#else

void StartVBL (VBLTaskPtr recPtr)

#endif

{

#if MAC68K

long curA5; /*stored value of A5*/

VBLRecPtr recPtr; /*pointer to task record*/

recPtr = GetVBLRec(); /*get address of task record*/

/*Set our application's A5 and store old A5 in curA5.*/

curA5 = SetA5(recPtr->vblA5);

#endif

DoVBL(recPtr);

#if MAC68K

(void) SetA5(curA5); /*restore the old A5 value*/

#endif

}
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Listing 1-13 also removes the dependence on the inline assembly-language code that 
retrieves a pointer to the VBL task record from register A0. In the PowerPC environment, 
information is passed to interrupt tasks as explicit parameters.

The second main case in which you need to set up and restore the A5 register is to create 
a 680x0 context for some existing 680x0 code (such as a stand-alone code module). To do 
this, you can call the SetA5 and SetCurrentA5 routines.

Note
See the book Inside Macintosh: Memory for more information on calling 
SetA5 and SetCurrentA5. ◆

Data Alignment 1

The PowerPC and 680x0 compilers follow different conventions concerning the alignment 
of data in memory. Unless told to do otherwise, a compiler arranges a data structure 
in memory so as to minimize the amount of time required to access the fields of the 
structure. In general, this is what you’d like to have happen. In some cases, however, the 
processor’s preferred method of aligning data might lead to problems. Suppose, for 
example, that a PowerPC version of your application writes some data from memory into 
a file. The data is arranged in the file in exactly the same order that it was arranged 
in memory, including any pad bytes that were required to achieve the desired data 
alignment in memory. It’s likely, however, that the resulting file will not be readable by 
a 680x0 version of your application. That’s because the data will be read from the file 
into a structure whose fields are very likely laid out slightly differently in memory. This 
section describes how this can happen, and provides some easy remedies for this kind 
of problem.

A 680x0 processor places very few restrictions on the alignment of data in memory. The 
processor can read or write a byte, word, or long word value at any even address in 
memory. In addition, the processor can read byte values at any address in memory. As a 
result, the only padding required might be a single byte to align 2-byte or larger fields to 
even boundaries or to make the size of an entire data structure an even number of bytes.

Note
Remember that a word on 680x0 processors is 2 bytes; 
on PowerPC processors, a word is 4 bytes. ◆

By contrast, the PowerPC processor prefers to access data in memory according to its 
natural alignment, which depends on the size of the data. A 1-byte value is always 
aligned in memory. A 2-byte value is aligned on any even address. A 4-byte value is 
aligned on any address that is divisible by 4, and so on. A PowerPC processor can access 
data that is not aligned on its natural boundary, but it performs aligned memory accesses 
more efficiently. As a result, PowerPC compilers usually insert pad bytes into data 
structures to enforce the preferred data alignment.
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For example, consider the following data structure:

struct SampleStruct {

short version;

long address;

short count;

}

This structure occupies 8 bytes of memory in the 680x0 environment. To achieve the 
desired alignment of the address field in the PowerPC environment onto a 4-byte 
boundary, however, 2 bytes of padding are inserted after the version field. In addition, 
the structure itself is padded to a word boundary. As a result, the structure occupies 
12 bytes of memory in the PowerPC environment.

In general, the different data alignment conventions of the 680x0 and PowerPC 
environments should be transparent to your application. You need to worry about the 
differences only when you need to transfer data between the two environments. This can 
happen in a number of ways:

■ Your application creates files containing data structures and the user copies those files 
from a PowerPC processor-based Macintosh computer to a 680x0-based Macintosh 
computer (or vice versa).

■ Your PowerPC application creates a data structure and passes it to some code running 
under the 68LC040 Emulator.

■ Your application—running in either environment—customizes a Toolbox or Operating 
System data structure and passes it to the system software.

■ Your PowerPC application sends data across a network connection to a 680x0-based 
Macintosh computer.

To ensure that data can be transferred successfully in all of these cases, it’s sufficient 
simply to instruct the PowerPC compiler to use the 680x0 data alignment conventions. 
You can do this by using a compiler pragma statement, as follows:

#pragma option align=mac68k

struct SampleStruct {

short version;

long address;

short count;

}

#pragma option align=reset

You should make sure, however, that you use 680x0 alignment only when absolutely 
necessary. The PowerPC processor is less efficient when accessing misaligned data than 
when accessing aligned data.

Alternatively, instead of forcing the compiler to use 680x0 alignment in the PowerPC 
environment, you can try to rearrange your data structures to promote natural 
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alignment in both environments. For example, you can change the declaration of the 
SampleStruct structure to be as follows:

struct SampleStruct {
long address;
short count;
short version;

}

A PowerPC compiler does not insert any pad bytes into the SampleStruct structure 
in this new arrangement, because the fields are already aligned along the desired 
memory boundaries.

Note
Your PowerPC compiler may use slightly different alignment methods 
than those described here. Consult your development system’s 
documentation for complete information. For more details on specifying 
alignment methods with the PPCC compiler, see the book Macintosh on 
PowerPC C Compiler. ◆

You also need to be careful when passing floating-point data between the 680x0 and 
PowerPC environments. The most efficient floating-point data type in the 680x0 environ-
ment is the 80-bit (or 96-bit) extended data type. The most efficient data types in the 
PowerPC environment are single, double, and long double, which are 32, 64, and 
128 bits, respectively. The PowerPC Numerics library includes routines you can use to 
convert among these various data types. See Inside Macintosh: PowerPC Numerics for 
complete details.

Compatibility and Performance 1

In general, it’s relatively easy to modify existing ANSI-compliant C or C++ source code 
that successfully compiles and runs on 680x0-based Macintosh computers so that it can 
be compiled and run on PowerPC processor-based Macintosh computers. Most of the 
intricate work required to make your application compatible with the new PowerPC 
run-time environment is performed automatically by your development system’s 
compiler and linker and by the Code Fragment Manager. As you’ve seen, the changes 
you need to make in your application’s source code are fairly straightforward. You need 
to make these changes:

■ Create routine descriptors for any routines whose addresses you pass to code of an 
unknown type.

■ Minimize any dependencies on system global variables by using the new set of 
accessor routines defined in the MPW interface files.

■ Isolate and conditionalize any dependencies on specific features of the 680x0 A5 
world or the 680x0 run-time environment.

■ Isolate and conditionalize any dependencies on information being passed in specific 
680x0 registers.
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■ Use 680x0 alignment for any data that is passed between environments, or declare 
your data structures so that their fields are aligned identically in both the 680x0 and 
PowerPC environments.

This section discusses several additional topics that relate more generally to the 
compatibility and performance of your PowerPC application.

Patches 1
Some applications or other kinds of software patch the Operating System’s trap dispatch 
tables to augment or replace the capabilities of certain system software routines. In 
general, however, there is much less need to patch the system software now than there 
previously was, and you should avoid doing so if at all possible. One very good reason 
to avoid unnecessary patching is that you can incur a substantial performance reduction 
if your patch causes a mode switch. For example, when a PowerPC application calls 
a system software routine that is implemented as PowerPC code, the dispatching to 
the PowerPC code occurs fairly quickly. However, if you patch the PowerPC code 
with 680x0 code, the Mixed Mode Manager needs to intervene to switch the execution 
environments both when entering and when exiting your patch code. This switching 
results in a considerable overhead (approximately 15 microseconds on a 60 MHz 
PowerPC processor per round-trip mode switch, the equivalent of about fifty 680x0 
instructions).

Note
The precise number of instructions or microseconds of overhead 
required to switch from one environment to the other and back is subject 
to change in future system software versions and on different hardware 
configurations. The important point to keep in mind is that switching 
modes is a reasonably expensive activity and you should avoid it 
whenever possible. ◆

The same situation occurs if you use PowerPC code to patch a system software routine 
that is implemented as 680x0 code. Once again, a mode switch is required before 
entering your patch code and after exiting it.

The ideal solution is simply to avoid patching the system software entirely. In the few 
cases in which you absolutely cannot avoid patching some system software routine, you 
can avoid the kind of mode switching just described by making sure to patch PowerPC 
code with a PowerPC patch and 680x0 code with a 680x0 patch. Because you cannot in 
general know what kind of code implements a particular system software routine, you 
should install a fat patch, which addresses both PowerPC and 680x0 versions of your 
code. To install a fat patch, you need to create a routine descriptor with two embedded 
routine records, one record describing the PowerPC routine and one record describing 
the 680x0 routine. Then you pass the address of that routine descriptor—that is, a 
universal procedure pointer—to an appropriate Trap Manager routine, which installs 
that universal procedure pointer into the trap dispatch table. When the patched routine 
is called, the Mixed Mode Manager inspects the routine descriptor addressed by the 
universal procedure pointer and selects the patch code that has the smallest impact on 
performance.
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IMPORTANT

To install patches, you can use one of the Trap Manager routines 
SetToolTrapAddress, SetOSTrapAddress, and 
NSetTrapAddress. You should not use the obsolete routine 
SetTrapAddress. See the chapter “Trap Manager” in Inside Macintosh: 
Operating System Utilities for a more complete description of the 
recommended way to patch system software routines. You should never 
manipulate the trap dispatch tables directly. ▲

Your patch code should, of course, make sure to call through to the code originally 
addressed by the entry in the trap dispatch table. You can retrieve that address by calling 
GetToolTrapAddress, GetOSTrapAddress, or NGetTrapAddress before you install 
your patch. In the 680x0 patch code, you can simply jump to that address. In the 
PowerPC patch code, you execute the original code by calling the Mixed Mode Manager 
routine CallUniversalProc (for Toolbox traps) or CallOSTrapUniversalProc (for 
Operating System traps).

The CallOSTrapUniversalProc function behaves just like the CallUniversalProc 
function except that it preserves additional 680x0 registers around the execution of 
the called procedure. In addition, you need to pass it a value specifying the trap word. 
Operating System traps expect a 2-byte parameter in register D1; this parameter 
represents the actual A-trap word used to call the routine. (Some traps use bits in the 
trap word to dispatch to different code.) Any Operating System trap patches you install 
should accept that parameter in register D1 and pass it through when calling the original 
trap code. Listing 1-14 shows how to patch the NewPtr function using PowerPC code.

Listing 1-14 Patching an Operating System trap

enum { /*procedure information for NewPtr function*/

kNewPtrProcInfo = kRegisterBased |

RESULT_SIZE(kFourByteCode) |

REGISTER_RESULT_LOCATION(kRegisterA0) |

REGISTER_ROUTINE_PARAMETER(1, kRegisterD1, kTwoByteCode) |

REGISTER_ROUTINE_PARAMETER(2, kRegisterD0, kFourByteCode)

};

pascal Ptr MyNewPtrPatch(unsigned short trapWord, Size byteCount)

{

/*Your patch code goes here.*/

return (long) CallOSTrapUniversalProc(gOriginalNewPtr,

kNewPtrProcInfo, trapWord, byteCount);

}

Because CallUniversalProc and CallOSTrapUniversalProc are called as 
subroutines and return control to the calling code, all PowerPC patches are both 
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head patches and tail patches (that is, your patch has control both before and after 
the code originally pointed to by the trap dispatch table).

Notice that the address you call through to might be the address of someone else’s patch. 
As a result, it’s still possible for mode switches to occur, if at least one link in the patch 
daisy chain is not a fat patch. These mode switches are unavoidable.

Note also that the system software includes a small number of split traps, system 
software routines that are implemented with 680x0 code (usually in ROM) and as 
PowerPC code in an import library. Because the PowerPC code is contained directly 
in the import library, you cannot patch the PowerPC portion of a split trap. In general, 
however, only those routines are implemented as split traps that are not likely candi-
dates for patching. For example, a number of very small utility routines like AddPt and 
SetRect are implemented as split traps.

The biggest restriction on patching is that you cannot patch any selector-based traps 
(system software routines that are dispatched through a selector code) with either pure 
PowerPC or fat patches. In the 680x0 environment, you can patch one or more selectors 
belonging to a dispatched trap and pass all others through to the original code. In the 
PowerPC environment, however, this is not possible. As a result, when patching with 
PowerPC code, you must patch all the routines selected by a single trap if you patch any 
of them. However, you cannot in general determine how many selectors are supported 
by a given selector-based trap. You cannot therefore safely patch selector-based traps in a 
way that is likely to remain compatible with future system software versions. For now, 
you should use 680x0 code if you need to patch selector-based traps.

The Memory Manager 1
As you’ve already learned, the Memory Manager has been rewritten for PowerPC 
processor-based Macintosh computers. The new Memory Manager, written in C and 
compiled into native PowerPC code, offers much better performance than the previous 
680x0 assembly-language version, both because it runs in the native PowerPC environ-
ment and because it uses substantially improved algorithms to manage heaps. In 
general, however, the application programming interface has not changed. As a result, 
you’ll benefit from the new version completely transparently, whether your application 
runs under the 68LC040 Emulator or in the native PowerPC environment.

The Memory control panel (shown in Figure 1-17) includes controls that allow the user 
to select whether applications and other software use the new Memory Manager or the 
original Memory Manager. By default, the new (or “Modern”) Memory Manager is used.
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Figure 1-17 The Memory control panel for PowerPC processor-based Macintosh computers

There are, however, several restrictions imposed by the new Memory Manager that 
might cause compatibility problems for your application. If you’ve followed the advice 
and warnings in the book Inside Macintosh: Memory, your application should run without 
problems. However, the new Memory Manager is generally much less forgiving toward 
code that fails to heed those warnings. Here are some areas to watch out for.

■ Don’t dispose of blocks more than once. When you dispose of a block, whether 
relocatable or nonrelocatable, the Memory Manager immediately takes control of that 
block. Any future attempt to operate on the block (even simply to dispose of it) is 
likely to cause problems. Note that it’s possible to dispose of a block twice in rather 
subtle ways. For example, you might call GetPicture to display a picture stored in a 
resource and then inadvertently call KillPicture or DisposeHandle to remove it. 
This way of disposing of the block of memory leaves the 'PICT' resource in the 
resource map. When your application quits, the resource is disposed of once again. 
(The proper way to dispose of a picture loaded from a resource is to call 
ReleaseResource.)

■ Don’t manipulate the Memory Manager’s private data structures, including block 
headers for both relocatable and nonrelocatable blocks, zone headers, and any unused 
master pointers. The sizes and formats of some of these structures have changed.

■ Don’t access any system global variables maintained by the Memory Manager. 
Whenever possible, use the documented application programming interface (such 
as the SetApplLimit and SetGrowZone procedures) to avoid manipulating 
those variables.
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■ Don’t modify free blocks of data or rely on the integrity of any data in free blocks. The 
new Memory Manager assumes control of all unallocated memory in your heap and 
may overwrite any information in free blocks.

■ Don’t close a resource file without first detaching any resources in that file that you 
want to continue using. To detach a resource, call the DetachResource procedure.

■ Don’t use fake handles or pointers. You should call Memory Manager routines 
only on blocks that were created by the Memory Manager itself. Remember that 
the Memory Manager is fundamentally a heap managing tool. You should not, 
for example, call DisposePtr on data in your stack or in your application global 
variable space.

■ Don’t call Memory Manager routines at interrupt time. Except for the BlockMove 
procedure, all Memory Manager routines either move memory or manipulate system 
global variables. These operations must not occur at interrupt time.

■ Make sure to flush the instruction cache whenever necessary. Because it’s much 
harder to treat data as executable code in the PowerPC environment, the new Memory 
Manager flushes the instruction cache only when it moves blocks around in memory.

■ Don’t make assumptions about the relative positions of the stack and heap in your 
application partition. You should adjust the size of the stack, if necessary, by calling 
GetApplLimit and SetApplLimit.

To repeat, you shouldn’t encounter any of these problems if you’ve used the routines 
and programming techniques documented in Inside Macintosh: Memory.

Performance Tuning 1
Once you’ve gotten your application or other software to execute correctly on a 
PowerPC processor-based Macintosh computer, you’ll want to spend some time 
tuning it for maximum performance. Many factors affect the speed at which code 
executes, including

■ how often you cause mode switches from one environment to another

■ how you pass parameters to subroutines

■ whether you use compiler-specific optimizations

The easiest way to increase the performance of your application is to use the compiler’s 
optimization capabilities. It’s not uncommon for compiler speed optimizations to 
improve your code’s execution by as much as 50 percent. See the book Macintosh on 
PowerPC C Compiler for more information on compiler optimizations.

This section provides some preliminary discussion of the overhead associated with 
mode switches and parameter passing. In general, you’ll need to combine the informa-
tion presented here with empirical observations you obtain when using a performance-
measurement tool, such as the Adaptive Sampling Profiler (ASP) built into the debugger. 
See the book Macintosh Debugger Reference for complete information about using the ASP.
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Mode Switches 1

You’ve already learned (in “Patches” on page 1-66) that it’s important to avoid mode 
switches whenever possible. The Mixed Mode Manager requires the equivalent of 
approximately fifty 680x0 instructions to switch from one environment to another. 
As a result, you might want to minimize the number of times your code invokes a 
mode switch.

Some mode switches are entirely avoidable. For example, if you need to patch a system 
software routine, you can avoid at least some mode switching by installing a fat patch 
(a patch that includes both 680x0 and PowerPC versions of the patching code). Similarly, 
if your application calls any resource-based code (for example, dynamically loadable 
filters), you can create fat resources: code resources that include both 680x0 and 
PowerPC versions of the executable code. Once again, the Mixed Mode Manager will 
select the code that minimizes mode switching.

Some mode switches, however, are entirely unavoidable. Any time your PowerPC 
application calls a system software routine that has not yet been ported to use the native 
PowerPC instruction set, the Mixed Mode Manager must switch to the 680x0 environ-
ment to execute the routine and then switch back to the PowerPC environment to allow 
your application to continue. This sometimes means that parts of your application might 
execute more slowly on a PowerPC processor-based Macintosh computer than on a 
680x0-based Macintosh computer.

A good example of this behavior concerns calling Event Manager routines, which remain 
as 680x0 code in the first release of the system software for PowerPC processor-based 
Macintosh computers. Suppose that during a lengthy calculation your application calls 
WaitNextEvent or EventAvail to scan the event queue for a Command-period event 
(which typically indicates that the user wants to cancel the lengthy operation) and to 
give time to other applications. Each time you call the Event Manager, two mode 
switches occur (from your code to the emulated code and back). Moreover, because your 
code is native PowerPC code, it executes more quickly between Event Manager calls 
than it did in the 680x0 environment. The result is that your application is switching 
modes more often than it absolutely has to.

Although you cannot avoid the mode switches entirely when calling the Event Manager, 
you can lessen the overall impact of those switches on your application’s performance by 
doing more work between successive Event Manager calls. One simple way to do this is 
to perform more than one iteration of a loop between calls to WaitNextEvent. Another 
simple way is to call WaitNextEvent only after a certain amount of time has elapsed. 
Listing 1-15 shows how you can rewrite a part of your main event loop to incorporate 
this feature.
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Listing 1-15 Waiting to call the WaitNextEvent function

static unsigned long gWNEDelay = 5; /*adjust this value as needed*/

void MainEventLoop(void)

{

EventRecord myEvent;

unsigned long nextTimeToCheckForEvents = 0;

while (!gDone) {

if ((gWNEDelay == 0) || (TickCount() > nextTimeToCheckForEvents)) {

nextTimeToCheckForEvents = TickCount() + gWNEDelay;

if (WaitNextEvent(everyEvent, &myEvent, 

MyGetSleep(), (RgnHandle) nil))

HandleEvent(&myEvent);

}

DoIdle();

}

}

As you can see, this code continues in the event loop only when a certain amount of time 
has elapsed. This method of adjusting the frequency of calls to WaitNextEvent works 
on any available Macintosh computer and doesn’t require any conditional compilation.

Routine Parameters 1

You’ve already learned (in “Parameter Passing” beginning on page 1-47) that PowerPC 
compilers attempt to pass as many parameters as possible in the processor’s registers, 
thereby minimizing the number of memory accesses that are required for a routine call. 
You can, however, help the compiler minimize memory accesses by following a few 
simple guidelines:

■ Use function prototypes. A compiler can generate more efficient code if you include 
prototypes for any functions that accept floating-point parameters. The compiler then 
knows to use the floating-point registers to store those parameters. If no function 
prototype is available for a function taking floating-point parameters, the compiler 
needs to pass the same information in both general-purpose and floating-point 
parameters. (For more information, see the description of PowerPC calling conventions 
beginning on page 1-47.)

■ Put floating-point parameters at the end of the parameter list. A PowerPC compiler 
reserves space for floating-point parameters not only in the floating-point registers 
but also either in the general-purpose registers or in a stack frame. (This is necessary 
to support passing floating-point parameters to a function for which no prototype 
is available.) It’s best to let any non-floating-point parameters use the available 
general-purpose register, so you should move floating-point parameters to the end of 
the routine’s parameter list.
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■ Minimize the use of variable parameter lists. For many reasons, it’s inefficient to 
use variable parameter lists in the PowerPC environment. Use them only when 
absolutely necessary.

IMPORTANT

These floating-point parameter-passing optimizations are highly 
dependent on specific features of the PowerPC run-time environment. 
You should implement these guidelines only in those parts of your code 
where maximum efficiency is necessary. ▲
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