Multiple
Target
Development
Tool

Verson 3.41

User Manual

Developed by John Diener, Andrew Klumpp, Keith Kroeker, Michael Schwager,
and Tony Zabinski.

Edited by Margaret Frances.

Stan Ostrum, Richard Soja, and Mike Pauwels of Freescale, Inc. contributed
ideasfor key features, asdid Marc Petersfrom Mot-Consulting GmbH.

Walter Banks of Byte Craft Limited provided the critical companion technology
intheeTPU " C" Compiler.

ASH WARE Inc.
2610 NW 147th Place
Beaverton, OR 97006

www.ashwar e.com

TABLE OF CONTENTS

TABLE OF CONTENTS

FOREWORD

ACKNOWLEDGEMENTS

ON-LINE HELP CONTENTS

OVERVIEW

Targets and Products

Concurrently Developing Code for Multiple Targets
The FreescaleeTPU and TPU

Script Commands Files

Test Vector Files

Sharing Memory between Multiple Targets
Miscellaneous Capabilities

SOFTWARE DEPLOYMENT, UPGRADES, AND TECHNICAL SUPPORT

World Wide Web Softwar e Deployment

World Wide Web Softwar e Upgrades

Hearing about Software Releases

Technical Support Contact I nformation

Overview of Version 3.41, 3.40, 3.20, 3.10, 3.00, 2.1, and 2.0 Enhancements

PROJECT SESSIONS

SOURCE CODE FILES

Theory of Operation

Sour ce Code Search Rules
Absolute and Relative Paths

Supported Compilers and Assemblers

SCRIPT COMMANDSFILES

Overview
Types of Script Commands Files

10

11

12

13

13
13
13
14
14
14
14

15

15
15
15
16
16

19

20

20

20
21

21

22
22

Similarities to the C Programming Language
The Primary Script Commands File

ISR Script Commands Files

Startup Script Commands Files

The MtDt Build Script Commands File

MtDt Build Script Commands File Naming Conventions
Script Commands File Format and Features

Script Commands Format

Multiple-Target Scripts

Directives

The #define directive

The#include <FileName.h> directive

The #ifdef, #ifndef, #else, #endif directives
Enumerated Data Types in Script Commands Files
Integer Data Typesin Script Commands Files
Referenced Memory in Script Commands Files
Assignments in Script Commands Files

Operators and Expressionsin Script Commands Files
Comments

Decimal, Hexadecimal, and Floating Point Notation
String Notation

Script Commands Groupings

All Target Types Script Commands

New

3.41 eTPU/TPU Script Commands
eTPU Script Commands

TPU Script Commands

Build Script Commands

Clock Control Script Commands
Timing Script Commands

Modify Memory Script Commands
Verify Memory Script Commands
Write Register Script Commands
Verify Register Script Commands
Write Symbol Value Script Command
Verify Symbol Value Script Conmands
System Script Commands

File Script Commands

Trace Script Commands

*'41 Code Coverage Script Commands
RAM Test Script Commands

32

eTPU/TPU Channel Function Select Register Script Commands
eTPU/TPU Channel Priority Register Script Commands
eTPU/TPU Pin Control and Verification Script Commands
eTPU Topics

TPU Topics

eTPU/TPU Pin Transition Behavior Script Commands

New

341 eTPU/TPU Resizing the Pin Transition Buffer

M4 Thread Script Commands

Disable Messages Script Commands

eTPU System Configuration Script Commands
eTPU Time Base Configuration Script Commands

New

3.41 €TPU Channel Data Script Commands
eTPU Channel Base Address Script Commands

585 GEGRER RSBV V/VAE YUEBBRRRRBELK

eTPU Channel Function Mode (FM) Script Command
eTPU Event Vector Script Commands

eTPU Interrupt Script Commands

TPU Parameter RAM Script Commands

eTPU/TPU Host Service Request Register Script Commands
TPU Channel Interrupt Service Register Script Commands
TPU Host Sequence Request Register Script Commands
TPU Clock Control Script Commands

TPU3-Specific Script Commands

TPU Bank and Mode Control Script Commands

Setting the TPU Code Bank

TPU Match, Transition, and Link Script Commands
eTPU/TPU Interrupt Association Script Commands
eTPU/TPU External Logic Commands

eTPU Considerations

TPU Considerations

Build Script Commands

Automatic and Pre-Defined Define Dir ectives

Target-Specific Scripts

Determining the Auto-Run Mode
Determining the Interrupt Number

Passing Defines from the Command Line
TPU Target Pre-Defined Define Directives

Pre-Defined Enumerated Data Types

Script FILE_TY PE Enumerated Data Type

Script DUMP_FILE_OPTIONS Enumerated Data Type
Save Trace File Enumerated Data Types

Base Time Enumerated Data Type

Script TARGET_TY PE Enumerated Data Type
Build Script ADDR_SPACE Enumerated Data Type
Build Script READ_WRITE Enumerated Data Type
Register Enumerated Data Type

eTPU Register Enumerated Data Types

TPU Register Enumerated Data Types

CPU32 Register Enumerated Data Types

CPU16 Register Enumerated Data Types

TRACE BUFFER AND FILES

Overview

Generating Viewable Files
Generating Parseable Files
Parsing the Trace File

Trace Buffer Size Considerations

TEST VECTOR FILES

Overview
Test Vector Generation Functional Model
Command Reference

Comments
Test Vector "Node" Command
Test Vector "Group” Command

Test Vector "State” Command

Master Test Vector Clock "Frequency" Command
Test Vector "Wave" Command

Test Vector Engine Waveform Example

FUNCTIONAL VERIFICATION

Overview
A Full Life-Cycle Verification Per spective
Data Flow Verification

Pin Transition Behavior Verification
Pin Transition Buffers

Code Coverage Analysis
Code Coverage Visua Interface
Code Coverage Verification Commands
Code Coverage Report Files

Regression Testing
M41 Command Line Parameters
Test Termination
Regression Test Example
M'41 Cumulative Logged Regression Testing
File Location Considerations

EXTERNAL LOGIC SIMULATION

Example 1: Driving the TCR2 Pin
Example 2: Multi-Drop Communications

INTEGRATED TIMERS

Virtual Timersin Hardware Targets

WORKSHOPS

OPERATIONAL STATUSWINDOWS

Overview

Window Groups
Source Code File Windows
Script Commands File Windows
Watches Window
Local Variables Window
Call Stack Window

New

3.41 Thread Window
Trace Window
Complex Breakpoint Window
Memory Dump Window
Timers Window
eTPU Channel Function Frame Window
eTPU Configuration Window

71
71
71
72

75

75
75
76
76

78
78
78
78

80

81

81
82

83

& &

85
85

86

100
101
101

eTPU Global Timer and Angle Counters Window
eTPU Host Interface Window

eTPU Channel Window

eTPU Scheduler Window

eTPU Execution Unit Registers Window

TPU Configuration Window

TPU Host Interface Window

TPU Scheduler Window

TPU Microsequencer Registers Window

TPU Execution Unit Window

TPU Channel Window

TPU Parameter RAM Window

683xx Hardware Debugger Configuration Window
SIM Main Window

SIM Ports Window

SIM Chip Selects Window

QSM Main Window

QSM Port Window

QSM QSPI Window

QSM SCI (UART) Window

Masked ROM Window

Standby RAM Submodule Window (68336/68376)
Static RAM Submodule Window (68338)

TPU Emulation RAM Window (68332, 68336, 68376)
TPU Main Window

TPU Host Interface Window

TPU Parameter RAM Window

GPT Main Window

GPT Input Captures Window

GPT Output Compares Window

GPT Pulse Accumulate Window

GPT Pulse Width Modulation Window
CTM4/CTM6 Bus Interface and Clocks Window
CTM4/CTM®6 Free-Running Counter Submodule Window
CTM4/CTM6 Modulus Counter Submodule Window
CTM4 Double-Action Submodule Window

CTM4 Pulse Width Modulation Submodule Window
CTM6 Single-Action Submodule Window

CTM6 Double-Action Submodule - Modes Window
CTM®6 Double-Action Submodule - Bits Window
Real Time Clock Window

Parallel Port 1/0O Submodule Window

TouCAN Main Window

TouCAN Buffers Window

QADC Main Window

QADC Ports Window

QADC Channels Window

683xx ASH WARE Hardware Window

CPU32 Simulator Configuration Window

CPU32 Simulator Busses Window

CPU32 Simulator Interrupt Window

CPU32 Registers Window

CPU32 Disassembly Dump Window

CPU16 Simulator Configuration Window

CPU16 Register Window

CPU16 Disassembly Dump Window

102
103
104
105
105
106
108
108
109
109
110
112
112
113
114
115
116
116
116
117
118
118
119
119
119
119
120
120
121
121
122
122
123
123
123
124
124
124
125
125
126
126
126
127
128
128
129
130
130
131
131
132
132
132
133
133

Unsupported Window 134

LOGIC ANALYZER 135
Overview 135
Executing to a Precise Time 135
View Waveform Selection 136
The Active Waveform 137
The Left and Right Cursors 137
#L eft, Right, and Delta Cursor Time Indicators 138
Mouse Functionality 138
The Vertical Yellow Context Time Cursor 139
Context Time Indicator 139
Scroll Bars 139
Waveform Boundary Time Indicators 140
Buffer Data Start Indicator 140
Current Time Indicator 140
Auto-Scroll the Waveform Display as the Target Executes 140
Button Controls 140
Timing Display 141
Data Storage Buffer 141

DIALOG BOXES 142
File Open, Save, and Save As Dialog Boxes 142
Load Executable Dialog Box 142
Open Primary Script File Dialog Box 142
Save Primary Script Commands Report File Dialog Box 143
Open Startup Script Commands File Dialog Box 143
Open Test Vector File Dialog Box 143
Project Open and Project Save As Dialog Boxes 143
Run MtDt Build Script Dialog Box 143
Save Behavior Verification Dialog Box 144
Save Coverage Statistics Dialog Box 144
Auto-Build Batch File Options Dialog Box 144
Goto Time Dialog Box 145
Occupy Workshop Dialog Box 145
IDE Options Dialog Box 146
All Targets Settings 146
TPU Simulator Target Only 147
Active Target Settings 147
Workshops Options Dialog Box 147
M essage Options Dialog Box 148
All Targets Messages 148
TPU Messages 148
Source Code Search Options Dialog Box 149
Reset Options Dialog Box 150
Logic Analyzer Options Dialog Box 150
Channel Group Options Dialog Box 151
Complex Breakpoint Conditional Dialog Box 151
Trace Options Dialog Box 152
Trace Window and Trace Buffer Considerations 152
Multiple Target Considerations 152
Local Variable Options Dialog Box 153
License Options Dialog Box 153
BDM Options Dialog Box 153
Memory Tool Dialog Box 154

Insert Watch Dialog Box
Watch Options Dialog Box

About ASH WARE's Multiple Target Development Tool

BDM Port Dialog Box

MENUS

FilesMenu

Step Menu

Run Menu
Breakpoints Menu
Activate Menu
View Menu
Window Menu
OptionsMenu
Help Menu

HOT KEYS, TOOLBAR, AND STATUSINDICATORS

SUPPORTED TARGETS AND AVAILABLE PRODUCTS

eT PU/CPU System Simulator
TPU/CPU32 System Simulator
TPU/CPU16 System Simulator
eTPU Stand-Alone Simulator
TPU Stand-Alone Simulator
TPU Standard Mask Simulator
CPU32 Stand-Alone Simulator
CPU16 Stand-Alone Simulator
683xx Hardware Debugger

el PU Simulation Engine

TPU Simulation Engine
The Time Processor Unit (TPU)
Support for TPU3

CPU32 Simulation Engine

CPU32 Hardware acrossa BDM Port

CPU16 Simulation Engine

FULL-SYSTEM SIMULATION

Theory of Operation
Debugging Capabilities
Building the MtDt Environment
MtDt Simulated Memory

154
155
155
155

156

156
158
159
159
160
160
160
161
162

163

164

164
165
165
165
165
165
166
166
166
166

166

167
168

169
169
169

170

170
170
171
171

Memory Block

Address Spaces

Memory Block Size

Memory Block Access Control
Read/Write Control

Clocks per Access Control

Address Fault Control

Bus Fault Control

Sharing Memory

Shared Memory Address Space Transformation
Shared Memory Address Offset
Shared Memory Timing

A Complete Shared Memory Example
Simulating Mirrored Memory
Computer Memory Considerations

171
172
173
174
174
175
175
175
175
176
177
177
177
179
180

FOREWORD

This User Manual is a superset of the On-line Help program. The On-line Help program is invoked
within the IDE in various ways, such as when the <F1> function key is pressed. The differences
between the User Manual and the On-line Help program are listed below.

?

?

?

The On-line Help program is an electronic file. The Windows help program uses this
file. The User Manual is abook.

The On-line Help program contains special codes that allow the user to dectronically
browse through and jump from topic to topic. These codes are stripped from the User
Manual.

The User Manual has page numbers, while the On-line Help program does not.
The User Manual contains a Table of Contents while the On-line Help program does not.

The User Manual contains this Foreword while the On-line Help does not.

There are both advantages and disadvantages of the similarities between the User Manual and the
On-line Help program. The most important advantage is that by becoming familiar with either
medium, the user automatically becomes familiar with both media. The primary disadvantage is that
the constraints imposed on the On-line Help program are also imposed on the User Manual and visa
versa. For instance, the On-line Help program imposes the constraint that the different browse
sequences may not be intermixed. This forces the organization of the manual to be by browse
sequence rather than by subject, although the latter would be preferable.

10

ACKNOWLEDGEMENTS

The story of ASH WARE must necessarily begin with the TPU so thank you Vernon for your
wonderful invention, and Celso & Co. for bringing it to the next level!

The last few years have been particularly rewarding with the development of the Enhanced Time
Processing Unit (eTPU) and the emergence of "Los Tres Amigos,” Mike, Walter and Me. You two
have been a particularly dear part of my experience as your roles have extended well beyond the
purely technical. Thank you!

To the entire team here at ASH WARE including Keith, Michael, and Tony, who make to happen,
to Barbara, who makes us look good, to Margaret who makes us sound good and (hopefully)
profitable, and to Amy who makesit clear!

Thank you users, too humerous to mention, but certainly Stan and Josef stand out from the rest.
Thank you Freescae and Metrowerks, and Richard, the great idea man, Sharon, Munir, Robert,
Dave, Clint, Samantha, and all the others too humerous to be mentioned individually, but do not be
offended if you are not, because, yes, | do mean you, too!

Thank you John, the great brain behind our products: our best and most useful features are always
yours! Back at Allied when you first became involved with the original TPU you disappeared and
did not ask me for the help which | offered and which chagrined me at first since nobody can
understand the TPU without benefit of the course, or the book, or a colleague. But of course Y OU
could!

And thank you Suzanne, who stands by me.

Andy Klumpp
Technical Director, ASH WARE Inc.

11

ON-LINE HELP CONTENTS

The following help topics are available.

?
?

?

Overview

Software Deployment, Upgrades, and Technical Support
Version 3.41, 3.40, 3.20, 3.10, 3.00, 2.1, and 2.0 Enhancements
Supported Targets and Available Products

Full-System Simulation

Project Sessions

Source Code Files

Script Commands Files

Script Commands Groups

Test Vector Files

Functional Verification

External Logic Simulation

Integrated Timers

Workshops

Operational Status Windows

Dialog Boxes

Menus

Hot Keys, Toolbar, Status Window

12

OVERVIEW

Multiple Target Development Tool (MtDt) is a technology from which a variety of products are
derived. This manual covers al the current MtDt products. These products include single and
multiple target simulators and hardware debuggers.

MtDt has been developed using an object orientated and layered approach such that the bulk of the
code within MtDt can be applied to any target. It matters little if the target is big endian or little
endian; 8, 16, 32, or 64 hits; hardware debugger or simulation engine. This allows usto quickly and
inexpensively provide support for additional targets.

Targetsand Products

From a tools development standpoint there is very little to differentiate one target from another.
CPUs execute code while peripherals have a host interface and wiggle and respond to I/O pins.
Hardware interfaces provide different means to the same end. Current MtDt targets include a eTPU
simulation engine, a TPU simulation engine, a CPU32 simulation engine, a CPU16 simulation
engine, and a CPU32 acrossaBDM port. Support for additional targets will soon be added.

But from a customer's standpoint there are specific requirements that must be met. Individual
products are therefore derived from MtDt to meet these customer requirements. As single target
products we offer a eTPU Sand-Alone Simulator, a TPU Stand-Alone Simulator, a CPU32 Stand-
Alone Simulator a CPU16 Stand-Alone Simulator, and a 683xx Hardware Debugger. As full

system simulation products we offer a CPU32/TPU System Simulator and a CPU16/TPU System
Simulator.

Although not offered as a specific product, MtDt supports mixing hardware and simulated targets.
This would alow, for instance, a software model of a new CPU to be linked to a real peripheral
across a BDM Port. Driver code could be developed for a CPU that exists only as a software model
but controlsreal hardware.

Concurrently Developing Code for Multiple Targets

Code for multiple targets can be developed, and debugged, concurrently. Interactions between and
among multiple targets are modeled precisely and accurately. All the normal debugging techniques
such as single stepping, setting breakpoints, stepping into functions, etc., are available for each
target. The IDE supports instantaneous target switching such that it is possible, for example, to run
to a CPU32 breakpoint, and then switch to a TPU and single step it. All the while, all targets are
kept fully synchronized.

The Freescale eTPU and TPU

Of special interest is the Enhanced Time Processor Unit (eTPU) and TPU from Freescale. For those
wishing more information on the eTPU, refer to the Freescale user manuals. For those wishing to
develop their own TPU microcode, it is imperative that you obtain the book TPU Microcoding for

Beginners from AMT Publishing. Do not be misled by the title. This book & essential for
beginners and experts alike. The eTPU and TPU training seminars are also highly recommended.

13

Script Commands Files

MtDt script commands files have several purposes. Each target has a primary script file used to
automate things like loading code, initialization, and functional verification. 1SR script files can be
associated with specific interrupts and execute only when that interrupt is activated. Startup script
commands files are executed following an MtDt-controlled reset or when the application is initially
launched. The primary purposes of the startup script commands file is initialization and getting the
target into the correct state for loading code when MtDt is launched. MtDt build script files
instantiate and connect targets. For most users no knowledge of MtDt build script files is required
because the standard build script files provided by ASH WARE provide all the required features.
But power users may tailor the MtDt build script files to take advantage of MtDt's advanced full-
system simulation capabilities.

Test Vector Files

Test vector files provide the user with one means of exercising TPU simulation targets with
complex test vectors. While a script commands file functionally represents the CPU interface, a test
vector file represents the external interface. And whereas a script commands file provides a broad
range of functions, the test vector file provides the narrow but powerful capability of driving nodes
to "high" or "low" states and assigning application-specific names to nodes and node groups.

A second method of exercising the TPU simulation target isto create amodel of the external system
using a dedicated modeling CPU target. Using this method the user need not necessarily use test
vector files.

Sharing Memory between Multiple Targets

The key ingredient to the full system simulation capability is shared memory. Targets expose their
address spaces to other targets. Two levels of address space exposure are possible: extrinsic and
intrinsic.

Extrinsic exposure is the most powerful but is not supported by all targets. Extrinsically mapped
address spaces allow memory accesses to that section of the memory map to occur in a target
different from the one in which the access originated. For example, asimulated TPU might perform
a write to data memory. The section of data memory could be extrinsically mapped to a CPU32
across a BDM port. The access would be transferred across the BDM port and would actually occur
inthe CPU32's address space.

Intrinsic exposure is less powerful but is supported by all targets. A target that cannot redirect a
memory access to another target is said to be intrinsic. For example a CPU32 hardware such as a
68332 exposed across a BDM port is intrinsic. All memory accesses initiated by the CPU32 must
occur within the address space of that CPU32, and cannot, for example, be redirected to memory
owned by asimulated TPU.

Miscellaneous Capabilities

MtDt has a number of additional features not yet mentioned. These include project sessions, source
code files, functional verification, external logic simulation, integrated timers, multiple workshops,
arich set of dialog boxes, a standard Windows-style menu system, and a Windows-style IDE with
hot keys, atoolbar, and target statusindicators.

14

SOFTWARE DEPLOYMENT, UPGRADES,
AND TECHNICAL SUPPORT

World Wide Web Softwar e Deployment

All ASH WARE software is now deployed directly from the World Wide Web. Thisis done using
the following procedure.

? Download and install a demo version of the desired software product. All software
products supported by MtDt are available at ademonstration level.

? Purchase the software product(s) either from ASH WARE or one of our distributors.

? E-mail to ASH WARE thelicensefile, named "AshWareComputerK ey.ack”, found in the
installation directory.

? Wait until you receive an email notification that the information from your license file
has been added to the MtDt installation utility.

? Download and re-install MtDt again. The software product(s) you purchased are now
fully functional. All other software products are still available at a demonstration level.

World Wide Web Softwar e Upgrades

All versions since 2.1 can be upgraded directly through the World Wide Web. The following
procedure is required when performing this upgrade. Note that versions prior to 2.1 cannot be
upgraded viathe World Wide Web.

? Upon receiving notification from ASH WARE that a new version of MtDt is available,
download and re-install MtDt.

After theinitial software upgrade, ASH WARE no longer requires anew software key.

Hearing about Softwar e Releases

In order to be notified about ASH WARE's software releases, be sure to provide your e-mail address
to ASH WARE. Thiswill ensure that you are automatically alerted to production and beta software
releases. Otherwise you will have to periodically check the ASH WARE Web site to find out about
new software releases. Note that your email address and other contact information will never be
released outside of ASH WARE. Further, ASH WARE will only add you to our email list if you
specifically request usto do so.

MtDt automatically displays an informational message when your software subscription is close to
expiration. Note that the software license has no expiration so it is legal to use the TPU Simulator
beyond the software subscription expiration date. The software subscription entitles you to free
technical support and Web-based software upgrades.

15

Technical Support Contact Information

With the purchase of this product comes a one-year software subscription and free technical support.
This technical support is available through Email, the World Wide Web, and telephone. Contact
information islisted below.

? (503) 533-0271 (phone)
? www.ashware.com

? support@ashware.com

Overview of Version 3.41, 3.40, 3.20, 3.10, 3.00, 2.1, and 2.0
Enhancements

M8t The following isalist of the features that are new to the M tDt version 3.41.
2 ™% Extended eTPU code coverage to include event vectors
2 "% Inferred event vector coverage

2 ™% Accumulate coverage over multiple tests
2 ™% View channel nodes
2 "% Writeand verify chan_datal6(); commands

2 ™% View critical thread execution indices

New

? 341 Clear Worst Case Thread | ndices Commands
2 41 Resizing the Pin Transition Buffer Testing

2 ™% cumulative Logged Regression Testing

Thefollowing isalist of the features that are new to the MtDt version 3.40 and 3.30.
? Complex Breakpoint Window
? eTPU Stand-Alone Simulator Product
? €TPU/CPU System Simulator Product
? Multipletarget scripting
? Added ability to view thread group activity in the logic analyzer window
? Improved Regression Testing section
? Added the #include directive to script commands files
? Added #ifdef, #ifndef, #€else, #endif preprocessing to script command files

? Added automatic definesto script command files

Thefollowing isalist of the featuresthat are new to the MtDt version 3.20.
? Testing automation viacommand line capabilities

? Verification and modification of symbolic data

16

Superior Logic Analyzer Window including precise event timing measurement
Improved simulation speed by between 2x and 2.6x depending on loading conditions

Superior tracing including pin transitions, parameter RAM 1/0O, and capture/match events
saved to the trace buffer

Trace data can be saved to afile.

The application-wide font can be specified.

Thefollowing isalist of the featuresthat are new to the MtDt version 3.10.

?
?

?

Replaced the set_cpu_frequency(); command with the set_clk_period(); script command
Additional script commands

New call stack window

Improved local variables window

Improved trace window

Additional 683xx Hardware Debugger support for 68331, 68336, 68338, and 68376
New TPU Standard Mask Simulator supports 683xx and MPC5xx

New local variable options dialog box

Additional IDE options

Additional operation status windows

Thefollowing isalist of the featuresthat are new to the MtDt version 3.00.

?
?

?

?

?

Source code search rules

Enhanced script files

Definitions using #define declaration
Enumerated types

Simple expressions

Improved assignment operators
Breakpoints

Complete grammar check at load-time
Editable register style windows
Integrated timers

Watch, local variable, and memory dump windows

Workshops

The following is a list of the features that are new to MtDt version 2.1. Note that in this version
MtDt was known as the TPU Simulator.

?
?

?

TPU3 support
Association of ISR script commands files with interrupts.
Web-based software upgrades

17

The following is a list of the features that are new to MtDt version 2.0.

MtDt was known as the TPU Simulator.

?
?

?

TPU2 support

Functional verification

Pin transition behavior verification
Code coverage analysis

External logic simulation

Auto-build

18

Note that in this version

PROJECT SESSIONS

The Project Open and Project Save As dialog boxes allow association of the MtDt configuration
with an MtDt project file. Various global settings are stored in this file, including the active
microcode, test vector, script, and auto-build files.

To open an existing MtDt project file, either double click on te file from Microsoft Windows
Explorer or, from the Files menu, select the Project Open submenu. Then select the name and
existing MtDt project file. Various settings from the just-opened MtDt project file are loaded into
MtDt. Note that before opening the new project file, you are given the option to save the currently-
active settings to the currently -active project file.

To create anew MtDt project file, from the Files menu, select the Save As submenu. Then specify a
new file name.

At startup, global settings are retrieved from the last-active MtDt project file, assuming that no MtDt
project file was passed on the command line. Otherwise, the MtDt project file passed on the
command line is opened.

The paths to all other files are stored and retrieved relative to the MtDt project file. This allows the
entire set of project files to be bundled and moved together as a group.

Whenever the MtDt application is exited, the configuration is automatically written to the active
MtDt project file.

19

SOURCE CODEFILES

User executable files are generated from source code using compilers, assemblers, and linkers. For
TPU simulation engines Freescale’s TPU Microcode Assembler can be used, though this will soon
be replaced with ASH WARE's own integrated assembler linker. For other targets, industry
standard compilers such as Introl, Diab-Data, or GNU can be used.

These executable files are loaded into the target's memory space. MtDt also loads the associated
source code files and displays them in source code windows, highlighting the line associated with
the instruction being executed. Several hot keys allow the user to set breakpoints, execute to a
specific line of code, or execute until apoint in time.

The executable code is |oaded by selecting the Executable, Open submenu from the Files menu and
following the instructions of the Load Executable dialog box. The loaded source code file is then
displayed in a context window. The window can be scrolled, re-sized, minimized, etc. Help is
available for the source code file window and is accessed by depressing the <F1> function key when
the window is active.

Theory of Operation
MtDt associates the user’s source code with the executable code generated by the compiler,
assembler, and linker. This ability provides the following important MtDt functionality.
? Highlight the active instruction
? Set/toggle breakpoints

? Execute to cursor

In order for MtDt to read the executable code, the source code must be compiled, assembled, and
linked. The resulting executable file can then loaded into MtDt. The name of the executable file
varies quite a bit from one vendor and tool to another. Generally, TPU microcode executable files
have a.L ST suffix while a compiler/linker might produce afile named A.OUT.

Sour ce Code Search Rules

Source code files may be contained in multiple directories. In order to provide source-level
debugging, MtDt must be able to locate these files. Source code search rules provide the
mechanism for these files to be located by the MtDt.

The search rules are as shown below. These rules are performed in the order listed. If multiplefiles
with the same name are located in different directories the first encountered instance of that file, per

the search rules, will be used.
? Searchrelativeto the directory where the main build file, such as A.OUT islocated.

? Search relative to the directories established for the specific target associated with the
source code.

? Searchrelativeto the global directories established for all targets.

In the search rules listed above the phrase "search relative to the directory . . ." isused. What does
this mean? It means that if the file is specified as ".\Dirl\Dir2FileName.xyz", start at the base

20

directory and go up one, then look down in directory "Dir2" and search in this directory for the file,
"FileName.xyz".

Note that the search rules apply only to source code files in which an exact path is not available. |If
an exact path is available, the source code file will be searched only at that exact path. If an exact
path is provided and thefileis not located at that exact path, the search will fail.

The Source Code Search Options dialog box allows the user to specify the global directories search
list aswell asthe search lists associated with each individual target.

Absolute and Relative Paths

MtDt accepts both absolute and relative paths.
An absolute path is one in which the file can be precisely located based solely that path. The
following is an absolute path.

C:\Compiler\Libary

A relative path is one in which the resolution of the full path requires a starting point. The
following isan example of arelative path.

.\ControlL aws\

Relative paths are internally converted to absolute paths using the main build file as the starting
point. As an example, suppose the main build file named A.OUT is located at the following
location.

C:\MainBuild TopL evel\A.out
Now assume that in the search rules the following relative path has been established.
.\ControlLaws\

Now assume that file Spark.C is referenced from the build file A.OUT. Where would the MtDt
search for this file? The following location would be searched first because this is where the main
build file, A.OUT, islocated.

C:\MainBuild TopL evel\

If file Spark.C were not located at the above location, then the following bcation would be
searched. This location is established by using the location of the main build file as the starting
location for the ..\ ControlLaws\ relative path.

C:\MainBuild ControlL aws\

Supported Compilersand Assemblers

We will be adding support for compilers and assemblers based on customer demand. A list of these
can be found on our Web site.

21

SCRIPT COMMANDSFILES

Overview

Script commands files provide a number of important capabilities to the user. In some cases, script
commands files provide a mechanism whereby actions available within the GUI can be automated.
In other cases they are used by MtDt to build a full system out of various targets. They also can be
used in place of missing-but-required pieces of a complete system such as in a TPU Sand-Alone
Simulator project in which script commands files take the place of the host CPU.

We have created a single universal scripting language rather than a distinct scripting language for
each application and target. The basic program construction is used for each. Only the predefined
symbol tablethat is available differentiates the language for each application.

Each file is arranged as a sequential array of commands, i.e., MtDt executes the script commands in
sequential order. This allows MtDt to know when to execute the commands. Timing commands
cause MtDt to cease executing commands until a particular point in time. At that point in time,
MtDt begins executing subsequent script commands until it reaches the next timing script command.
Timing commands are not allowed in startup or MtDt build script files.
The following script help topics are found later in this section.

? Script Commands File Format

? Script Command Groups

? Multiple Target Scripts

? Automatic and Predefined #define Directives

? Predefined Enumerated Data Types
Types of Script Commands Files
There arefour types of script commandsfiles. These are listed below, and a description of each can
be found later in this section.

? ThePrimary Script Commands Files

? ISR Script Commands Files

? The Startup Script Commands File

? TheMtDt Build Commands File
MtDt can have only a single active MtDt build batch file. Each target may have only a single
primary script commands file and a single startup scripts commands file active at any onetime. ISR
script commands files are associated with interrupts. Although each interrupt may have only a

single associated ISR script commands file, it is important to note that each script commands file
may be associated with multiple interrupts.

Similaritiesto the C Programming L anguage

The script commands files are intended to be a subset of the "C" programming language. In fact,
with very little modification these files will compile under C. The Script2C.exe. utility is included

22

for making the required conversionsto compile script filesin C.
The Primary Script Commands File

MtDt automatically executes a primary script commands file if one is open. A new or alternate
script commands file must be opened beforeit is available to MtDt for execution. The desired script
commands file is opened via the Files menu by selecting the Scripts, Open submenu and providing
the appropriate responses in the Open Primary Script File dialog box. MtDt displays the open or
active script commands file in the target's configuration window. Only one primary script
commands file may be active at one time. Help is available for this window when it is active and
can be accessed by depressing the <F1> function key.

ISR Script Commands Files

Currently, the ability to associate a script commands file with an interrupt is limited to the eTPU and
TPU simulation targets.

Script commands files can be associated with interrupts. When the interrupt associated with a
particular eTPU/TPU channel becomes asserted the ISR script commands file associated with that
channel gets executed.

In the eTPU, ISR script commands files can be associated with channel and data interrupts as well
aswith the global exceptions.

There are some differences between the primary script commands file and ISR script commands
files. Someimportant considerations are listed below.

? ISR script commands files are associated with channels using the load isr, and similar
script commands.

? The primary script commands file begins execution after a Simulator reset whereas ISR
script commands files execute when the associated interrupt becomes both asserted and
enabled.

? Theprimary script commandsfile is preempted by the I SR script commands files.

? ISR script commands files are not preempted, even by other ISR script commands files
and even if the (discouraged) use of timing commands with these | SR script commands
filesis adapted.

? Only a single primary script commands file can be active at any given time. Each
interrupt source can have only asingle | SR script commands file associated with it.

? Within the interrupt service routine the ISR script commands file should clear the
interrupt. This is accomplished using the clear_cisr(X), the clear_this_cisr(), or similar
script command. Failureto clear the interrupt request causes an infinite loop.

? A single ISR script commands file can be associated with multiple interrupt sources such
as eTPU/TPU channels. To make the ISR script commands file portable across multiple
channels be sure to use the clear_this_cisr() or similar script command.

? Do not use the clear_this _cisr() script command in the primary script commands file
because the primary script commands file does not have an eTPU/TPU channel context.

? Use of timing commands within an ISR script commands file is discouraged. This would
be analogous to putting delays in a CPU’s ISR routine. Such a delay would have a
detrimental effect on CPU latency and in the case of the eTPU/TPU Simulator would be
considered somewhat poor form.

23

? eTPU/TPU channels need not have an association with an | SR script commandsfile.

There is a automatic define that can be used to determine which channel the script command is
associated with. This script command appears as follows.

#define _ASH_WARE_<TargetName> ISR_ X

Where TargetName is the name of the target (generally TpuSim, eTPU1, or eTPU2), and X is the
number of the channel associated with the executing script. The following shows a couple examples
of itsuse.

#ifdef _ASH_WARE_TPUSIM_ISR_

print("thisisan ISR script running on a target named TPUSIM");
#else

print("thisisnot both an ISR running on TPUSIM");

#endif

write par_ram(_ASH_WARE_TPUSIM_ISR_,2,0x41);
write par_ram(_ASH_WARE_TPUSIM_ISR_,3,8);
clear_this cisr();

Startup Script Commands Files

Startup scripts provide the capability to get the target into a known state following an MtDt-
controlled reset. It is particularly useful for the case in which MtDt is configured to load an
executable image when MtDt is launched. In the 683xx Hardware Debugger, for instance, startup

scripts can be used to configure the SIM registers so that the executable image can be immediately
|oaded when MtDt is launched.

Each target can have an associated startup script. Make sure the desired target is active. From the
Files menu select the Scripts, Startup submenu.

A report file is generated each time the startup script is executed. Thisfile has the same name asthe
startup script; its extensionis "report.”
There are some restrictions to startup scripts. These are listed below.

? Nowindows are supported.

? Fow control, such as breakpoints and single step, is not supported.

? Certain script commands are not supported. Restricted commands are noted as such in
the reference section.

The MtDt Build Script CommandsFile

MtDt supports both debugging and simulation of avariety of targets. Since the single MtDt
application can both simulate and debug a variety of simulation and hardware targets, how does
MtDt know what to do?

Build batch files provide the instructions that MtDt requires to create and glue together the various
copies of hardware and simulation targets. Although the user is encouraged to modify copies of
these files when required, in many cases the standard build batch files loaded during MtDt
installation will suffice.

Typical build script files might instantiate a CPU32 and a TPU3, then instantiate RAM and ROM
for the CPU32, and then cause the TPU's memory to reside in the CPU's address space.

24

MtDt Build Script Commands File Naming Conventions

In order to prevent future installations of ASH WARE software from overwriting build script files
that you have created or modified, ASH WARE recommends that you follow the following naming
convention.

? Build script filesfrom ASH WARE begin with "zzz."
? Build script filesnot from ASH WARE don't begin with "zzz."

The string "zzz" was chosen so that these files would appear at the end of a directory listing sorted
by file name. ASH WARE recommends that when you modify a build batch file you remove the
letters "zzz" from the file name. When you create a new file, ASH WARE recommends that the file
name not begin with the string "zzz." The following is alist of some of the build batch files loaded
by the ASH WARE installation utility.

? zzz_1TpuSim.MtDtBuild

? zzz 2Sim32_1TpuSim.MtDtBuild
? zzz_1Sim32.MtDtBuild

? zzz_1Bdm32.MtDtBuild

How would you modify the zzz_1Sim32.MtDtBuild file to create a larger RAM? ASH WARE
recommends the following procedure.

? Copy file zzz_1Sim32.MtDtBuild to file BigRamSim32.BuildScript
? Moaodify file BigRamSim32.BuildScript

Script Commands File Format and Features

The script commands file must be ASCII text. It may be generated using any editor or word
processor (such as WordPerfect or Microsoft Word) that supports an ASCI| file storage and retrieval
capability.
Thefollowing isalist of script command features.

? Multiple-target scripts

? Directives

? Enumerated datatypes

? Integer datatypes

? Referenced memory

? Assignment operators

? Operators and expressions

? Comments

? Numeric Notation

? String notation

25

Script Commands For mat

The command is case insensitive and, in general, has the following format:
command([datal,][data2,][data3]);

The contents within the parenthesis, datal, data2, and data3, are command parameters. The actual
number of such data parameters varies with each particular command. Data parameters may be
integers, floating point numbers, or strings. Integers are specified using either hexadecimal or
decimal notation. Floating point parameters are specified using floating point notation, and strings
are specified using string notation. Hexadecimal and decimal are fully interchangeable.

Multiple-Target Scripts

In amultiple target environment each target has its own script commands file, and each of these files
runs independently. As such, the scripts in each of these files acts by default on its own target. For
example a script that modifies memory will do so in the memory space of the target in which that
script commands file is executing. But there are situations in which it is convenient to be able to
have a script command within a single script commands file act on the various other targets in the
system besides the one in which that script commandsfileis executing.

<TargetName>.<ScriptCommand>
The specific target for which a script command will run is specified as shown above.

etpu2.write_chan_hsrr (LAST_CHAN, 1);

wait_time(10);

verify_mem_u32(ETPU_DATA_SPACE, SLAVE_SIGNATURE_ADDR, OxfffffF,
DATA_TRANSFER_INTR_SIGNATURE);

etpu2.verify_data intr(LAST_CHAN, 1);

etpul.verify_data intr(LAST_CHAN, 0);

In this example, a host service request is applied to target etpul. Ten microseconds later script
commands verify that the host service request generated a datainterrupt on etpul but not etpu?2.

Directives
The #define directive

Script commands files may contain the C-style define directive. The define directive starts with the
pound character "#" followed by the word "define" followed by an identifier and optional
replacement text. When the identifier is encountered subseguently in the script file, the identifier
text is replaced by the replacement text. The following example shows the define directive in use.

#define THIS CHANNEL 8
#define THIS_FUNC 4
set_chan_func(THIS_ CHANNEL, THIS FUNC);

Since the define directive uses a straight text replacement, more complicated replacements are also
possible asfollows.

#define THIS SETUP 84
set_chan_func(THIS_SETUP);

There are a number of automatic and predefined define directive as described in the like-named
section.

26

The #include <FileName.h> directive

Allows inclusion of multiple files within a single script file. Note that included files do not support
things like script breakpoints, script stepping, etc.

#include" AngleM ode.h"

In thisexample, file AngleMode.h isincluded into the script commands file that included it.

The #ifdef, #ifndef, #else, #endif directives

These directives support conditional parsing of the text between the directives.

/[|[m7========= That isall shewrote!!
#ifdef ASH_WARE_AUTO_RUN_
exit();

#else

print(" All testsare donel!");
#endif // _ASH_WARE_AUTO_RUN_

The above directive is commonly found at the very end of a script commands file that is part of an
automated test suite. It allows behavior dependent on the test conditions. Note that
_ASH_WARE_AUTO_RUN _is automatically defined when the simulator/debugger is launched in
such away that it runs without user input. In this case, upon reaching the end of the script file the
application (simulator or debugger) is closed when it is part of an automated test suite and otherwise
amessage isissued to the user.

Enumerated Data Typesin Script Commands Files

Enumerated types are only indirectly available to the user. Many defined functions have arguments
that require specific enumerated data as arguments. Since the user cannot currently prototype new
functions or recast enumerated data, this discussion is only indirectly germane. Despite these
limitations, internally enumerated data types are defined for many script commands and the tighter
checking and version independence provided by enumerated data types make them an important
aspect of script files.

In general, the enumerated data types are defined for each specific target or script file application.

enum TARGET_TYPE {

TPU_SIM, ETPU_SIM, // eTPU/TPU Targets

SIM32, BDM 32, /I CPU32 tar gets

/I *** END OF PARTIAL LISTING ***

|8
Note that in C++ it would be possible to pass an integer as the first argument and at worst a warning
would be generated. In fact, in C++, even the warning could be avoided by casting the integer as
the proper enumerated data type. Thisis not possible in a script file because of tighter checking and
because casting is not supported.

Integer Data Typesin Script Commands Files

In order to maximize load-time checking, script command files support a large number of integer
data types. This alows "constant overflow" warnings to be identified at load-time rather than at
run-time. In addition, since the scripting language supports a variety of CPUs with different
fundamental data sizes, the script command data types are designed to be target independent. This
allows use of the same script files on any target without the possibility of datatype errors related to
different data sizes.

27

Thefollowing isalist of the supported data types along with the minimum and maximum value.
? UlvadidrangeisOtol
? UWU2vaidrangeisOto 3
? U3 vaidrangeisOto7
? Ul vaidrangeis0to 15
? UbAvalidrangeis0to 16
? USBvalidrangeisOto 31
? U8 valid rangeis0to OxFF
? Ul6validrangeis0to OxFFFF
? U32valid rangeis 0 to OXFFFFFFFF
? U64validrangeis 0 to OxFFFFFFFFFFFFFFFF

Referenced Memory in Script Commands Files

Memory can be directly accessed by referencing an address. Two parameters must be available for
this construct: an address and a memory access size. In addition, there is an implied address space,
which for most targets is supervisor data. For some targets the address space may be explicitly
overridden.

? (U8*) ADDRESS // References an 8-bit memory location

? (U16*) ADDRESS /I References a 16-bit memory location

? (U32*) ADDRESS /I References a 32-bit memory |ocation

? (Ub4*) ADDRESS /I References a 64-bit memory location

? (U128*) ADDRESS // Referencesa128-bit memory location
The following are examples of referenced memory constructs. Note that these examples do not
form compl ete script commands and therefore in this form would cause load errors.

((U8) 0x20 /I Refersto an 8-bit byte at address 0x20
((U32) 0x40 /I Referstoa 32-bit word at address0x40

Assgnmentsin Script Commands Files

Assignments can be used to modify the value of referenced memory, a practice commonly referred
to as "bit wiggling." Using this it is possible to set, clear, and toggle specific groups of bits at
referenced memory. The followingisalist of supported assignment operators.

? = Assignment

? 4=,-= Arithmetic assignment of addition and subtraction

? *= /=, %= Arithmetic assignment multiply, divide, and remainder
? <<=, >>= Bitwise assignment of shift right and shift left

? &=, |5 M= Bitwise assignment of "and," "or," and "exclusive or"
? <<=, >>= Bitwise assignment of "shift left" and "shift right"

The following examples perform assignments on memory.

28

/I Writes a 44 decimal to the 8 bit byte at address 17
((U8) Ox17) = 44,

/I Setsbits 31 and 15 of the 32-hit word at address 0x200
((U32) 0x200) |= 0x10001000;

/I Increments by one the 16-bit word at address 0x3300
((U16) 0x3300) += 1;

Using an optional memory space qualifier, memory from a specific address space can be modified.
See the Build Script ADDR_SPACE Enumerated Data Type section for a listing of the various
available address spaces.

/I Setsthe TPU 1/O pinsfor channel 15 and channel 3
*((TPU_PINS_SPACE U16 *) 0x0) |= ((1<<15) + (1<<3));
/] Setsthe TPU’'s HSQR bits such that channel 7’sisa 11b
*((TPU_DATA_SPACE U32 *) 0x14) |= (3<<(7*2));

/I I njects a new opcode into the TPU’s code space
*((TPU_CODE_SPACE U32 *) 0x20) = 0x12345678;

Operatorsand Expressionsin Script Commands Files

Operators can be used to create simple expressions in script commands files. Note that these simple
expressions must be fully resolved at load time. The precedence and ordering is the same asin the
Clanguage. Thefollowingisalist of the supported operators.

? o+ - Arithmetic addition and subtraction.

? * 1,% Arithmetic multiply, divide and remainder.

? &,|,",~Bitwise AND, OR, EXCLUSIVE OR, and INVERSE.
? <<, >> Bitwiseshift left and shift right.

The following example makes use of simple expressions to specify the channel base.

#define PARAMETER_RAM 0x100

#defineBYTES_PER_CHANNEL 16

#define SPARK_CHANNEL_BASE PARAMETER_RAM +BYTES_PER_CHANNEL * 5
/I Write a 77 hexadecimal byte to address 150 hexadecimal

((U8) SPARK_CHANNEL _BASE) = 0x22+0x55;

The normal C precedence rules can be overridden using brackets as follows.

write_chan_func(l, 3+4*2); // Setschannel 1tofunction 11
write_chan_func(l, (3+4)*2); // Setschannel 1 to function 14

Comments

Legacy "C" and the new "C++" style comments are supported, as follows.
/I Thisisa comment.
set_tdI(3);

/* Thisisalegacy C-style comment.
Thisisalso acomment.

Thisisthe end of the multiple-line comment. */
set_tdl(/* more comment */ 3);

Decimal, Hexadecimal, and Floating Point Notation

Decimal and Hexadecimal notation are interchangeable.

29

357 /I Decimal Notation
0x200 // Hexadecimal Notation

In certain cases floating point notation is also supported.
3.3e5 // Floating Point

String Notation

Thefollowing isthe accepted string notation.
"STRING"
The characters between the first quote and the second quote are interpreted as a string.
"File.dat"
This denotes a string with eight characters and termination character as follows, 'F', 'i', 'I', '€, ", 'd,
‘a, ', \0.
Concatenation

It is often desirable to concatenate stings. The following example illustrates a case in which thisis
particularly useful.

#define TEST_DIR ".\\TestDataFiles\\"
read_behavior_file (TEST_DIR " Test.bv");
vector (TEST_DIR " Example");

C-Style Escape Sequences

In the C language, special characters are specified within a string using the backslash character, \'.
For instance, a new-line character is specified with the backslash character followed by the letter
"n", or \n'. The character following the backslash character is treated as a specia character. The
following special characters are supported.

?2 W\ References a backslash character
" \\Filedat"
Planned Obsolescence of Single Backslash within Strings

In previous versions of this software a Gstyle escape sequence was not supported and a single
backslash character was treated as a just that, a single backslash character. In anticipation of future
software versions supporting enhanced GCstyle escape sequences, the single backslash character
within a string now causes a warning. ASH WARE recommends using a double-backslash to
ensure compatibility with future versions of this software.

/IThefollowing string causes a war ning.
".\File.dat"

Script Commands Groupings

Listed below are the available script command functional groups. Clicking on the desired command
functional group will access the command listing for that group.

All Target Types Script Commands
? Clock control script commands
? Timing script commands

? Modify memory script commands

30

? Verify memory script commands

? Register write script commands

? Register verification script commands

? Symbol value write script commands

? Symbol value verification script commands
? Systemscript commands

? Filescript commands

? Trace script commands

? Code coverage script commands

? RAM test script commands

"% eTPU/TPU Script Commands

? Channel function select register script commands
? Channel priority register script commands

? Host service request register script commands

? Interrupt association script commands

? External boolean logic script commands

? Pincontrol and verification script commands

? Pintransition behavior script commands

2 ™% Pin transition buffer script commands

? Disable messages script commands

New

? 341 Clear Worst Case Thread | ndices Commands

el PU Script Commands

? System configuration commands

? Timing configuration commands

? Channel datacommands

? Channel base address commands

? Channel function mode (FM) commands

2 "% Channel event vector entry commands

? Interrupt script commands

TPU Script Commands

? TPU parameter RAM script commands
? TPU channel interrupt service register script commands

? TPU host sequence request register script commands

31

? TPU clock control script commands
? TPU bank and mode control script commands

? TPU match, transition, and link script commands

Build Script Commands

? Build script commands

Clock Control Script Commands

The script commands described in this section provide control over the clock and frequency settings.

The set_cpu_frequency(); script command has been deprecated. Instead, use the set_clk_period()
script command described in this section. A warning message is generated when this command is
used. This message can be disabled from the M essage Options dialog box.

set_clk_period(femtoSecondPer CIkTick);

The script command listed above sets the target’s clock period in femto-seconds per clock tick.
Note that one femto second is 1le-15 of a second or one billionth of a micro-second. A simple
conversion isto invert the desired MHz and multiply by abillion.

/1 1€9/16.778 = 59601860 femto-seconds
set_clk_period(59601860);

In this example the CPU clock frequency is set to 59,601,860 femto-seconds, which is 16.778 MHz.

Many Freescale MC683xx microcontrollers use an external low-frequency crystal to generate the
CPU’s clock source. This crystal generally has a frequency of 32.768 KHz or 2 to the 15" cycles
per second. A crystal of this frequency is known as a "watch" crystal because a simple 15-bit ripple
counter can be used to generate a one second clock tick. A phase lock loop within the 683xx
microcontroller uses this to synthesize the main CPU clock.

The 683xx Hardware Debugger assumes that this external crystal oscillates at 32768 cycles per
second and a number of calculations (such as TPU frequency, QSM frequency, etc.) are based on
this assumption. Unfortunately, the 683xx Hardware Debugger has no way of verifying that thisis,
in fact, the correct crystal frequency so the following script command allows the user to override the
default.

set_crystal_frequency(cylesPer Second);

This code sets the assumed external clock frequency to cyclesPerSecond. Note that the
cyclesPerSecond must be adecimal or hexadecimal number. A floating point number will not work.

set_crystal_frequency(34000);

The code in this example overrides the default external clock crystal value and sets it instead to 34
KHz.

Timing Script Commands
at_code_tag(TagString);

This command prevents subsequent commands from executing until the target hits the sourcecode
that contains the string, <TagString>. Note that all source code files are searched and that the string
should be unique so that it isfound at just one location (for otherwise the command will fail).

at_code tag(" $$MyTest1$$");
verify val("failFlag", "==","0");

32

In the example above, the target executes until it gets to the point in the source code that contains
the text, $$MyTest1$$ and then verifies that the variable named failFlag is equal to zero. It is
important to note that the variable could be local to the function that contains the tag string such that
it may be only briefly in scope. The only scoping requirement is that the variable is valid right
when the target is paused to examine this variable.

at_time(T);

When this command is reached, no subsequent commands are executed until T microseconds from
the simulation’s start time. At that time the script commands following the at_time statement are
executed.

wait_time(T);
No script commands are executed until the simulation’ s current time plus the T microseconds.

wait_time(33.5); // (assume current time=50 microseconds)

set_link(5.0);
wait_time(100.0);
set_link(2.0);

In this example at 83.5 microseconds (from the start of the simulation) channel 5’'s Link Service
Latch (LSL) will be set. No script commands are executed for an additional 100 microseconds. At
183.5 microseconds (from the start of the simulation) channel 2's LSL will be set.

Modify Memory Script Commands

Memory is modified within script commands using the assignment operator. See the Assignments
in Script Commands Files section for a description.

Verify Memory Script Commands

Verify memory script commands provide the mechanism for verifying the values of the target
memory. The first argument is an address space-enumerated type. The second argument is the
address at which the value should be verified. The third argument is a mask that allows certain bits
within the memory bcation to be ignored. The fourth argument is the value that the memory
location must equal.

verify_mem_u8(enum ADDR_SPACE, U32 address, U8 mask, U8 val);
verify_mem_ul6(enum ADDR_SPACE, U32 address, U16 mask, U16 val);
verify_mem_u32(enum ADDR_SPACE, U32 address, U32 mask, U32 val);

This command uses the following algorithm.
? Read the memory location in the specified address space and address.
? Performalogical "and" of the mask with the value that was read from memory.
? Compare the result to the expected value.

? If the expected value is not equal to the masked value, generate a verification error.

The following example verifies register values of a CPU32 target.
verify_mem_u8(CPU32_SUPV_DATA_SPACE, 0x7, 0xc0, 0x80);

In the example above, a script file, which is acting on a CPU32 target, verifies that the two most
significant bits found at address 0x7 are equal to 10b. The lower 14 bits are ignored. If the bits are
not equal to 10b, a script failure message is generated and the target's script failure count is
incremented.

verify_mem_ul6(CPU32_SUPV_DATA_SPACE, 0x100, Oxffff, Ox55aa);

33

In the example above, a 16-bit (two-byte) memory at address 100h is verified to equal Ox55aa. By
using amask of FFFFh, the entire word is verified.

verify_mem_u32(CPU32_SUPV_DATA_SPACE, 0x200, 1<<27, 1<<27);

In the example above, bit 27 of a 32-bit (four-byte) memory location at address 200h is verified to
be set. All other bits except bit 27 are ignored.

Write Register Script Commands

Write register script commands provide the mechanism for changing the values of the target
registers. The first argument is a register-enumerated type with a definition that depends on the
specific target and register width on which the script command is acting. The second argument is
the value to which the register will be set.

write_reg4(U4, enum REGISTERS_U4);
write_reg8(U8, enum REGISTERS U8);
write regl6(U16, enum REGISTERS U16);
write_reg32(U32, enum REGISTERS _U32);
write_reg64(U64, enum REGISTERS _U64);

The following example modifies register values of a CPU16 target.

write reg4(0x12, REG_ZK);
write regl6(0x5557, REG_PC);

In the example above, a script file, which is acting on a CPU16 target, writes 12 hexadecimal to the
index register Z's address extension register and writes 5557 hexadecimal to the program counter.

Verify Register Script Commands

Verify register script commands provide the mechanism for verifying the values of the target
registers. The first argument is a register-enumerated type with a definition that depends on the
specific target and register width on which the script command is acting. The second argument is
the value against which the register will be verified.

verify_regl(enum REGISTERS U1, Ul);
verify_regd(enum REGISTERS U4, U4);
verify_reg5(enum REGISTERS U5, U5);
verify_reg8(enum REGISTERS U8, U8);
verify regl6(enum REGISTERS U16, U16);
verify reg24(enum REGISTERS U24, U24);
verify reg32(enum REGISTERS U32, U32);
verify_reg64(enum REGISTERS U64, U64);

Thefollowing example verifies register values of a CPU16 target.

verify_reg4(REG_ZK, 0x12);
verify_regl6(REG_PC, 0x5557);

In the example above, ascript file, which is acting on a CPU16 target, verifiesthat the index register
Z's address extension register is equal to 12 hexadecimal and verifies that the program counter is
equal to 5557 hexadecimal. If either of these conditions fails to verify, a script failure message is
generated and the target's script failure count isincremented.

Write Symbol Value Script Command

Write symbol value script commands provide the mechanism for writing the values of symbolic data
for both variables as well as strings. Symbols are variables and strings defined within the user's

34

code.

A key concept is that of symbol scope. A variable defined within a particular function goes out of
scope if that function is not being executed. To get around this, a script command can be set to
execute when the function becomes active using the at_code tag(); script command. See the
Timing Script Commands section for a description.

write_val(symbolExpr String, expr String);
write_str(symbolExpr String, valueString);

The expression string (ExprString) can be a numerical constant or a simple symbolic expression.
Constants can be supplied as decimal signed integers, unsigned hexadecimal numbers (prepended
with 0x), or floating point numbers. A symbolic expression can be just a local/global symbol or a
simple expression such as *V (de-reference), V[constant], V.member or V->member, where V is a
symbol of the appropriate type. "Symbol ExprString” must be a symbolic expression as described
above, an "lI-value" in compiler parlance. The write_str command is provided as a shorthand way to
write astring into the memory pointed to by a symbolic expression.

Use write_str with caution; no effort is made to check that the destination buffer has sufficient
space available, and the resulting bug induced by such a buffer overflow can be extremely difficult
to debug.

Symbol is defined within the user's code and is determined from the debugging information
associated with the executable image. Value isthe value to which the symbol will be set.

at_code tag(" & & TestlHere& &");
write val(" FailFlag","0");

In the above example the target is run until it gets to the address associated with the source code that
contains the text & & TestlHere& & . Once this address is reached, symbol FailFlag is set equa to
zero.

at_code tag(" & & Test23Here& &");
write_val(" Player Buffer", " Michael Jordan");

In this case the string "Michael Jordan" is written to the buffer named "PlayerBuffer”. If the buffer
has insufficient space to hold this string, a bug that is difficult to identify would result.

Verify Symbol Value Script Commands

These verify symbol value commands have the same limitations as those commands described in the
Write Symbol Value Script Command section.

verify_val(" ExprString”, " TestOpString", " ExprString");

The expression string (ExprString) can be numerical constants or simple symbolic expressions.
Constants can be supplied as decimal signed integers, unsigned hexadecimal numbers (prepended
with 0x), or floating point numbers. A symbolic expression can be just a local/global symbol, or a
simple expression such as *V (de-reference), V[constant], V.member or V->member, where V is a
symbol of the appropriate type.

"TestOpString” isa C test operator. Supported operators are ==, I=, >, >=, <, <=, &&, and ||.

If the result of the specified operation on the expressions is O, or false, a verification error is
generated.

at_code tag(" & & TestlHere& &");
verify val(" FailFlag", "==","0");

In the exanple above, the target is run until it gets to the address associated with the source code

35

that contains the text & & Test1Here& & . Once this address is reached, the value of symbol FailFlag
isread and a verification error is generated if it does not equal zero.

verify_str(SymbolString, TestOpString, CheckString);

If a character pointer is resolved from "Symbol ExprString”, then the string at that location is
compared to "CheckString" using the comparator specified in "TestOpString”. If the outcome of
this is true (non-zero), the verification test passes; otherwise a failure is reported. Supported
comparator operators are ==, !=, >, and <. Greater-than and less-than operations follow the same
rules as the strcmp() standard library function.

at_code tag(" "M StringTest1nM");
verify str("somePtr"," ==","HelloWorld");

In the example above, the target is run until it gets to the address associated with the source code
that contains the text A StringTest1™. Once this address is reached, the ASCII values are read until
the terminating character, a byte of value zero, is reached. The resulting string is compared, case
sensitively, with the string "Hello World". If the two strings are not equal, a verification error is
generated.

System Script Commands

system(commandString);
verify_system(commandString, returnVal);

These commands invoke the operating system command processor to execute an operating system
command, batch file, or other program named by the string, <commandString>. The first command,
system, ignores the return value, while the second command, verify_system, verifies that the value
returned is equal to the expected value, returnVal. If the returned value is not equal to the expected
value than a script verification error is generated.

system(" copy c:\templreport.txt check.txt");
verify_system(" fc check.txt expected.txt" , 0);

In this example the operating system is invoked to generate a file named check.txt from afile named
report.txt. The file check.txt is then compared to file expected.txt using the fc utility. A script
verification error is generated if the files do not match.

exit();

This shuts down the application and sets the error level to non-zero if any verification testsfailed. If
al tests pass, the error level is set to zero. The aror level can be examined by a batch file that
launched MtDt, thereby supported automated testing. See the Regression Testing section for a
detailed explanation of and examples showing how this command can be used as part of an
automated test suite.

print(messageString);

This command is geared toward promoting camaraderie between coworkers. This command causes
a dialog box to open that contains the string, <messageString>. The truly devious practical joker
will find away to combine this script command with sound effects.

print(" Hit any key to fuse all P-wellswith all N-substratesin your target silicon™);

In the example above, your coworker at the adjacent lab bench pauses for a certain amount of
healthy introspection. A well-placed and timed bzilch-chord can significantly enhance its effect.

File Script Commands

These commands support loading and saving files via script commands.

load_executable(" filename.executable™");

36

This example |loads the executable image and related source files found in file filename.executable.
Any open source files in the previously-active image are closed. The file path is resolved relative to
the directory in which the project fileislocated.

load_executable(" A.Out");

This example loads the executable found in file A.Out in the same directory where the project file is
located.

vector (" filename.Vector");

The TPU test vectors found in file filename.Vector are loaded by this script command. This
command is available only for the TPU Simulator target. Test vector files normally have a"vector"
suffix. Note that the "vector" suffix is preferable. Test vector files can also be loaded via the Open
Test Vector File dialog box which is opened from the Files menu by selecting the Vector, Open
submenu.

vector (" UART .Vector");

This example loads the test vectors found in file UART.Vector in the directory where the project file
islocated. Thefile pathisresolved relativeto the directory in which the project file islocated.

dump_file(startAddress, stopAddress, enum ADDR_SPACE,
"filename.dump", enum FILE_TYPE,
enum DUMP_FILE_OPTIONS);

This command creates the file filename.dump of type FILE_TY PE, using the options specified by
DUMP_FILE_OPTIONS. The file is created from the image located between startAddress and
stopAddress, out of the address space ADDR_SPACE.

dump_file(0, Oxffff, CPU32_SUPV_DATA_SPACE, " Dump.S19",
SRECORD, DUMP_FILE_DEFAULT);

#define MY_OPTIONS NO_ADDR + NO_SYMBOLS

dump_file(0, Oxffff, CPU32_SUPV_CODE_SPACE, "Dump.dat",
DIS ASM, MY_OPTIONS);

This example creates a Motorola SRECORD file, Dump.S19, from the first 64K of the CPU32's
supervisor data space. The default options are used for this dump. An assembly file, Dump.dat, is
also created from the first 64K of supervisor code space and both address mode and symbolic
information are excluded. Assuming the target processor is a CPU32, the generated assembly code
isfor the CPU32.

Trace Script Commands

start_trace stream(" FileName.Trace", enum TRACE_EVENT_OPTIONS,
enum TRACE_FILE_OPTIONS, enum BASE_TIME,
U32 numTrailingDigits, U32 isResetTime);

This command saves the target’s trace buffer to file FileName.trace with the options set by
TRACE_EVENT_OPTIONS., TRACE_FILE_OPTION , and BASE_TIME_OPTIONS. Thetime
field has numTrailingDigits trailing digits, and the initial time can be set to the time at which the
trace fileis executed by setting the isResetTime field to non-zero.

Note that all events specified in the script command must be currently enabled within MtDt for the
command to succeed.

Note aso that the BASE TIME and numTrailingDigits digits apply ONLY if the
TRACE_FILE_OPTION is set to "PARSEABLE". If the specified file typeis "VIEWABLE" than
these options are taken from the trace window settings so that the trace file looks like the trace
window.

end_trace_stream();

37

This command stops tracing to a stream and closes the file so that it can be opened by a text viewer
that requires write permission on the file.

print_to_trace(M essage)

This command prints the string Message to the trace assuming it is enabled in the Trace Options ...
dialog box.

at_time(400);
start_trace stream(" Stream.Trace", ALL-DIVIDER - MEM_READ,
PARSEABLE, US, 3,1);

prlnt_IO_IraceC'**\n"

"xxxxk START OF TEST \n"
"**\nx
wait_time(1500);
end_trace_stream();

The above example begins streaming all trace data except dividers and memory reads to a trace file
named "Stream.Trace". Time is recorded in micro-seconds with three trailing digits following the
period such that the least significant digit represents nano-seconds. The isResetTime field is set to
"true" so that script execution time of 400 micro-seconds is subtracted from the time and the clocks
field.

save_trace buffer (" FileName.trace", enum TRACE_EVENT_OPTIONS,
enum TRACE_FILE_OPTION, enum BASE_TIME,
U32 numTrailingDigits);

This command is the same as the start_trace_stream command except that the current trace buffer is
savedto afile.

save_trace buffer (" ThisTraceFile.Trace",
STEP + MEM_READ, VIEWABLE,
Us, 3);

In this example a file named ThisTraceFile.trace is generated. Only step events and memory read
events are saved. The selected file format is optimized for viewing rather than parsing. Because
thisisa"VIEWABLE" file, the base_time and numTrailingDigitsfields are ignored.

"4 Code Coverage Script Commands

An important index of test suite completeness is the coverage percentage that a test suite achieves.
MtDt provides several script commands that aid in the determination of coverage percentages. In
addition, script commands provide the capability to verify that minimum coverage percentages have
been achieved. A discussion of this topic is found in the Code Coverage Analysis section. The
following are the script commands that provide these capabilities.

write_coverage file(" Report.Coverage");
verify file _coverage(" MyFile.uc" ,instPct,braPct);
verify_all_coverage(instPct,braPct);

/I eTPU-Only

M1 verify file_coverage ex(" MyFile.c" instPct,braPct,entPct);

N1 verify all_coverage Ex(instPct,braPct,entPct):
The write _coverage file(...) command generates a report file that lists the coverage statistics.
Statistics for individual files are listed as well as acumulative file for the entire loaded code.

The verify_file_coverage(...); and verify file coverage ex(...); commands are used as part of
automation testing of a specific source file. The instPct and braPct parameters are the minimum
required branch and coverage percentages in order for the test to pass. The entPct parameter is the

38

minimum require entry percentage and is available only in the eTPU simulator. These parameters
are both expressed in floating point notation. The valid range of coverage percentage is zero to 100.
Note that for each branch instruction there are two possible branch paths: the branch can either be
taken or not taken. Therefore, in order to achieve full branch coverage, each branch instruction
must be encountered at |east twice and the branch must both be taken and not taken.

The verify all_coverage(...); and verify_all_coverage ex(...); ae similar to the
verify_file_coverage commands except these commands focus on the entire build rather than
specific source code modules. As such, they are less useful as a successful testing strategy will
focus on specific modules rather than on the entire build.

Note that this capability is also available directly from the file menu.

wait_time(100);

verify file_coverage(" toggle.uc" ,92.5,66.5);
verify_all_coverage(33.3,47.5);
write_coverage file(" record.Coverage");

The code in this example waits 100 microseconds and then verifies that at least 92.5 percent of the
instructions associated with file toggle.uc have been executed and 66.5 percent of the possible
branch paths associated with file toggle.uc have been traversed. In addition, the example verifies
that at least 33.3 percent of all instructions have been executed and that 47.5 percent of all branch
paths have been traversed. A complete report of instruction and branch coverage is written to file
record.

M1 Inferred Event Vector Coverage

In eTPU applications it is often difficult to get complete (100%) event vector coverage. There are
two situations in difficulties may be encountered.

The first situation would be a valid and expected thread that is difficult to reproduce in a simulation
environment. For example when measuring the time at which a rising edge occurs, it may be
difficult to generate a test case for when the input pin is a zero, because a thread handler will
normally execute immediately such that the pinisstill high.

But an event vector handling the case of arising edge and alow pinisvalid. For instance, arising
edge followed by afalling edge could occur before a thread executing in another channel compl etes.
Now the thread handling this rising edge executes with a low pin state. It is therefore important to
test this case, but how? The solution to achieving event vector coverage for this case is to be clever
in designing atest. For example, you might inject two very short pulses into two channels running
the same function. The channels will be serviced sequentially, so if you keep the pulse width
shorter than the thread length than the second thread will execute with the input pin low.

The second situation in which it may be difficult to achieve complete event vector coverage is when
there are multiple event vectors that handle an invalid cases. For instance, all functions must handle
links, even when a link is not part of the functions normal operation. Such a link could occur if
there was a bug in another function. Since there are number of such invalid situations, the are
typically grouped. Assuch, it may be justified to bundle these together using the following script
command. This command allows coverage of a single event vector to count as coverage for other
(inferred) event vectors.

Ney s infer_entry_coverage(FuncNum, FromEntrylndex, ToEntrylndex);

Consider the following thread labeled, "invalid flagQ'. This thread is never expected to occur
because the function clears flag0 at initialization, and flag0 is never set. So thus state which handles
amatch or transition event in which the flag0 condition is set should never execute.

39

WX e Tpui: Source; MeasurePeriod.c =l0lx

wliw EF([lsMatchdbr Traacitisadfwint () &6 (Flagl==1) }}) ;l
0sE; fekiFg Std Embry 13, Sabie Depil, EmsbleMatches, p==[[relstive B28 =) Ox0), dish-=((relstive B2 =) Oxk) [0]
H Eifee 000 LEsleell Habohd/Trisfe-0 HabohE/ Tridde-1 [ogutFidee0 CSaaflegl=-=-X ~CSafLaegl=-=-1
OOSE; MekiFg Std Embry 15, Sabie Depil, EmshleMatches, pe=[[relstiwe B28 =) Ox0), dieb-=((relstiwe W2k =) Oxk) [0]
H Bl 00l Ciakee0 Hybchd/Trag@e-0 Habchl/Trasb=-1 lapgaifid-=1 Choaflegi=--I Chaaflegi=-=1
g Mckiss Std Emtwy H, Sl Mehil, EmpbleHatcbes, p=sf {relstive B2E =) =), diekh- H: (relaties BFe =) HBxk) [0]
H il 000 Lidk-=0 H¥Eeha/ Tridl-=1 HitchE/ Tridl==-1 lapatFid-=0 CRAFLPY1==1 ChaaFLagl=-=1
ABEE: MwkiFg Frd Emtey 73, Salie 0rTRC, EmshleMatches, pes| (relstiwe B2k =] Bx0), died- Fl; [relatiee WZke =) Hwk) [0]
e 000 Lidk=e0 H3Tchl/Traae=1 HaDCRE/Trable=1 lopaiFide=1 CR2FLlagie=I ChaFLagl==1

invalid_flagl:
FF Wark inwalid Flagl stabe to make sboervable
i nln-g P ...

Flesr(Fl i

Laglls: Fernafld 5]]

EslitateFanlt = OxlRedE; J
TR i asETEEEn s Fo= okbebtd;; Fernatsl [4]
)
e nafFEFEEE Fal wiirelatioe B2k =) Qulj = p_FF 0 FermatER (0]
i InAFFFFEER L2] [Format®F [&] =
i | H

A test has been written to excersize this thread, and one can see that Event vector 15 has been
covered because the box on the left is white. But entries 13, 21, and 23 have not been executed
because the boxes on the left are still black. Since thisis an invalid case that actually should never
execute, it is considered sufficient to infer coverage of entries 13, 21, and 23, aslong asevent vector
15iscovered. Thisisdone using the following script command.

infer_entry_coverage(MEASURE_PERIOD_FUNC, 15, 13);
infer_entry_coverage(MEASURE_PERIOD_FUNC, 15, 21);
infer_entry_coverage(M EASURE_PERIOD_FUNC, 15, 23);

Although there are a number of restrictions listed below that are enforced by the simulator, the most
important restriction is not enforced. Namely, that this coverage by inference should only used for
invalid cases where the thread exists purely as Built In Test (BIT) and would not h normal
operation be expected to execute. In fact, when testing to the very highest software testing
standards, 100 event vector coverage should be achieved without the use of this script command.

- Execution of an event vector that is covered by inference resultsin a verification failure
- The FromEntrylndex’ s thread and the ToEntrylndexthread thread must be the same.

N .
%41 Cumulative Coverage

To produce the highest quality software it is imperative that testing cover 100% of instructions,
branches, and event vectors (for eTPU targets). Additionally, for quality control purposes, this
coverage should be proven using the verify _coverage scripts. But most test suites consist of
multiple tests, such that the coverage is achieved only after al tests have run. The cumulative
coverage scripts provide the ability to prove that the entire test suite cumulatively has achieved
100% coverage.

The typical testing procedure might work as follows. A series of testsis run, and at the end of each
test the coverage datais stored. At the end of the very last test, the coverage data from all previous
tests are loaded such that the resulting coverage is an accumulation of the coverage of all previous
tests. Then the verify_coverage script command is run proving that all tests have passed. The
following illustrates this process.

..RunTest A.
save_cumulative_file_coverage(" MyFunc.c", " TestA.CoverageData");

.. Run Test B.
save_cumulative_file_coverage(" MyFunc.c', " TestB.CoverageData");

..Run Test M.
save_cumulative file_coverage(" MyFunc.c", " TestM.CoverageData");

.. Run Test N.
load_cumulative file_coverage(" MyFunc.c", " TestA.CoverageData");

40

load_cumulative file_coverage(" MyFunc.c", " TestB.CoverageData");

load_cumulative file_coverage(" MyFunc.c", " TestM.CoverageData");
verify_file_coverage(" MyFunc.c",100,100,100);

RAM Test Script Commands

RAM test script commands provide a method for verifying internal or external RAM. These tests
provide both a verification and a diagnostic capability.

test_address lines(startAddress, stopAddress, enum ADDR_SPACE,
numlterations);

This command runs the address line RAM test between stopAddress and startAddress in the address
space ADDR_SPACE, for the number of iterations specified by numiterations. The test attempts to
provide diagnostics on any errors. For instance it will attempt to isolate specific address lines as
stuck high or stuck low, and, if successful, will report the suspected problem. Note that this test
verifies only those address lines that are dynamic within memory range being tested. For instance,
address bit 16, which selects between 64K blocks, will not be tested unless the memory block
straddles a 64K block boundary.

test_data_lines(startAddress, stopAddress,
enum ADDR_SPACE, numlterations);

This command runs the data line RAM test between stopAddress and startAddress in the address
space ADDR_SPACE, for the number of iterations specified by numlterations. The test attempts to
provide diagnostics on any errors. For instance it will attempt to isolate specific data lines as stuck
high or stuck low, and, if successful, will report the suspected problem.

test_random(startAddress, stopAddress,
enum ADDR_SPACE, numlterations);

This command runs the data line RAM test between stopAddress and startAddress in the address
space ADDR_SPACE, for the number of iterations specified by numiterations. This is the most
robust test but it provides no diagnostic capabilities. It writes a pseudo-random number sequence to
the entire memory device and then verifies that it reads back correctly. The most difficult-to-detect
errorswill generally be detected by thistest.

test_increment(startAddress, stopAddress, startVal,
enum ADDR_SPACE, numlterations);

This command runs the block increment RAM test between stopAddress and startAddress in the
address space ADDR_SPACE, for the number of iterations specified by numilterations, using the
start value startVal astheinitial value from which to increment. Thisisthe least robust test, but it is
excellent for human-factors purposes. Folks like you and | are generally quite good at picking out
breaks-in-patterns. For atypical memory error this test sets the memory to a convenient pattern so
that we can easily spot errors by scrolling down through a memory dump window.

test_seam(address, enum ADDR_SPACE, numlterations);

This command runs the seam RAM test at address in the address space ADDR_SPACE, for the
number of iterations specified by numlterations. This was developed to verify proper functionality
of all read and write accesses at the boundary between two memory devices. All combinations of
even, odd, and double-odd addresses and 8-, 16-, and 32-bit wide accesses are exercised. Note that
the test assumes that all these access combinations are supported; the test will fail if thisis not a
valid assumption.

test_byte order(address, enum ADDR_SPACE, numlterations);

This command runs the byte order RAM test at address <address> in the address space
ADDR_SPACE, for the number of iterations specified by numlterations. It verifies the byte order
of the target processor. This was developed to verify proper functionality of shared memory

41

between two targets that have different byte orders. A shared memory between two targets that do
not have the same byte ordering can be tricky.

el PU/TPU Channel Function Select Register Script Commands

write_chan_func(ChanNum,Val);
This command sets channel CHANNUM to function Val.

#defineMY_FUN_NUM 0x10
write_chan_func(7, 0x10);

In this example channel 7 is set to function 10 (decimal). All other channel function selections
remain unchanged.

In the Byte Craft eTPU "C" compiler the function number can be automatically generated using the
following macro.

#pragmawriteh, (#defineMY_FUNC_NUM ::ETPUfunctionnumber (Pwm));
eT PU/TPU Channd Priority Register Script Commands

write_chan_cpr(ChanNum,Val);
This command writes the priority assignment Val to the CPR for channel ChanNum.
write_chan_cpr(6,2);

In this example a middle priority level (2=middle priority) is assigned to channel 6 by writing a two
to the CPR bitsfor channel 6. All other TPU channel priority assignments remain unchanged.

el PU/TPU Pin Control and Verification Script Commands

eTPU input pins and TPU 1/O pins configured as inputs are normally controlled using test vector
files. eTPU output pins and TPU 1/O pins configured as outputs are normally controlled by the
eTPU/TPU and are verified using master behavior verification test files described in the Functional
Verification section. Therefore, these commands are not the primary method for controlling and
verifying pin states. Instead, these commands serve as a secondary capability for pin state control
and verification.

el PU Topics

write_chan_input_pin(ChanNum, Val);
write_tcrclk_pin(Val);
verify_chan_output_pin(ChanNum, Val);
verify_ouput_buffer_disabled();
verify_ouput_buffer_enabled();

These commands write either ChanNum's or the TCRCLK pin to value Val, verify that ChanNum's
pinisequal to Val, or verify that an output buffer is enabled or disabled.

write_chan_input_pin(25, 0);
write_terclk_pin(1);
In this example, channel 25'sinput pinis cleared to alow, and the TCRCLK pin is set high.
verify _chan_output_pin(5, 1);
verify_ouput_buffer_disabled();
wait_time(5);
verify_chan_output_pin(5, 0);
verify _ouput_buffer_enabled();

42

In this example channel 5's output pin isverified to have afalling transition within a 5-micro-second
window. Itisalso verifying that the pin isacting like an open-drain (active low, passive high.)

TPU Topics

pin_hi(chanNum);
pin_lo(chanNum);
ter2_hi();
ter2_lo();

These commands sets either channel chanNums's (or the TCR2's) pin hi (logical 1) or lo (logical 0.)

pin_hi(0xC);
pin_lo(5);
ter2_lo();

In this example channel 12’spinis set to aone, channel 5's and the TCR2 pin are set lo.
verify_pin(chanNumber, pinState);

This command verifies that channel chanNumbers's pin is equal to pinState (logical one or zero). If
the verification fails a verification failure messages is printed to the screen. This verification failure
message can be disabled from the M essage Options dial og box.

verify _pin(3, 1);

In this example channel 3's pin is inspected and if it not a one a verification failure message is
printed to the screen and the verification failure count is incremented.

el PU/TPU Pin Transition Behavior Script Commands

The pin transition behavior capabilities allow the user to generate behavioral models of the source
code and to verify the source code against these saved behavioral models. The script commands
allow the user to automate this second verification process. Script command capabilitiesinclude the
ability to load pin transition behavior files, the ability to enable continuous verification against these
models, and the ability to perform a complete verification of all recorded behavior at once.

A more complete discussion of functional verification is given in the Functional Verification
chapter while a discussion of the specifics of pin transition behavioral modeling is given in the Pin
Transition Behavior Verification section.

read_behavior_file(" filename.bv");

This command loads the pin transition behavior file into the master pin transition behavior buffer.
This buffer forms a behavioral model of the pin transition behavior of the source code.

verify_all_behavior();

This command verifies all recorded pin transition behavior against the master pin transition behavior
buffer. It generates a behavior verification error message and increments the behavior failure count
for each deviation from the behavioral model.

enable_continuous_behavior ();

This command enables continuous verification of pin transition behavior against the master pin
transition behavior buffer. During source code simulation each functional deviation generates a
behavior verification error message and causes the behavior verification failure count to be
incremented. This is useful for identifying the specific areas in which the microcode behavior has

changed.
disable_continuous_behavior();

This command disables continuous verification of pin transition behavior against the master pin

43

transition behavior buffer. Note that pin transition behavior is still recorded in the pin transition
behavior buffer.

"4 eT PU/TPU Resizing the Pin Transition Buffer

resize pin_buffer(<NumPinTransitions>);
This command resizes the pin transition buffer. The default sizeis 100K transitions.
resize pin_buffer (500000);

In this example the pin transition buffer size is changed such that it can hold 500K pin transitions.
This script command should only be executed at time zero.

Note that resizing the pin transition buffer can have serious affects on performance. For instance it
can cause along delay when the simulator is reset. It can aso significantly slow down the logic
analyzer redraw rate, such that the simulation speed is bound by the redraw rate. Simulation speed
reductions can be obviated by hiding or minimizing the logic analyzer while the simulator runs,
such that redraws are not required, thereby improving simulation speed.

The effective pin transition buffer size can also be increased in other ways. This is discussed in the
the Logic Analyzer Options Dialog Box section.

"4 Thread Script Commands

The simulator stores worst-case latency information for each channel. This is very useful for
optimizing system performance. But in some applications the initialization code, which generally
does not contribute to worst case latency, experiences the worst case thread length. Inthiscase, itis
best to ignore the initialization threads when considering the worst case thread length for a function.
This command ignoring the initialization threads.

/I Initialize the channels.
write chan_hsrr (RCV_15 A, ETPU_ARINC_RX_INIT);
write chan_hsrr (RCV_15 B, ETPU_ARINC_RX_INIT);

/I Wait for initialization to complete,

/I then reset thewor st casethread indces.
wait_time(100);

clear_worst_case _threads();

In this example the channels are issued a host service request, then after 100 microseconds
(presumably sufficient timeto initialize) the threads indices are reset.

Disable M essages Script Commands

Pin transition verification failures and script command verification failures result in a non-zero
return code when the application exits, as well as display of a dialog box to inform the user of the
failure. Thisdialog box can be disabled in the Messages dialog box, but this must be done manually
each time the application is launched. In certain cases, such as tool qualification under DO178B, it
is desirable to disable display of the dialog box such that the test of the verification test can be
automated. Thisisdone asfollows.

disable_message(PIN_TRANSITION_FAILURE);
disable_message(SCRIPT_FAILURE);

THESE COMMANDS SHOULD BE USED WITH EXTREME CAUTION! They remove
observe-ability from verification failures.

In all cases except automation of test of the verification tests, it is preferable to disable the display of
the verification messages manually from within the Messages dialog box.

el PU System Configuration Script Commands
write_entry table base addr(Addr);

This command writes the Event Vector Table's address. It writes a value into the ETPUECR
register's ETB field that corresponds to address Addr.

#defineMY_ENTRY_TABLE_BASE_ADDR 0x800
write_entry_table base addr(MY_ENTRY_TABLE_BASE_ADDR);

In the above example the event vector tableis placed at address 0x800.
write_global_time_base enable();

The command enables the time bases for all the eTPUs.
write_entry_table base addr(Addr);

In the Byte Craft eTPU "C" Compiler the event vector table base address can be automatically
generated using the following macro.

#pragmawriteh, (#defineMY_ENTRY_TABLE_BASE_ADDR ::ETPUentrybase(0));
In the Byte Craft eTPU "C" Compiler the event vector table base addressis specified as follows:
#pragma entryaddr 0x800;

el PU Time Base Configuration Script Commands

write_angle mode(Val);
write_tcrl_control(Val);
write_tcr2_control(Val);

These commands write their respective field valuesin the ETPUT BCR register.

write_tcrl_prescaler (Prescaler);
write_tcr2_prescaler (Prescaler);

These commands write the prescaler Prescaler to the ETPUTBCR register. Valid values for TCR1
are1..256 and for TCR2 are 1..64.

write_angle_mode(0); // Disable

write_tcr1l control(1); /I System clock/2
write_tcr2_control(4); /I System clock/8

write tcrl prescaler(l); // Fastest ... divideby 1
write_tcr2_prescaler(64); // Slowest ... divide by 64

In this example angle mode is disabled, the TCR1 counter is programmed to be equal to the system
clock divide by two (system clock divided by two, prescaler is divides by one), and TCR2 is
programmed to be the system clock divided by 512 (system clock divided by 8 with a 64 prescaler.)

set_angle_indices(<DegreesPer Cycle>, <TeethPer Cycle>);

This command supports specification of angle indices required to display current angular
information in various portions of the visual interface including the, "Global Time and Angle
Counters™ window. In atypical automotive application the angle hardware is used as a PLL on the
actual engine. Typically two engine revolutions is defined as a "cycle" so a cycle is defined as 720
degrees. Also, atypical crank has 36 teeth and rotates twice per engine revolution. The following
script command generates this configuration.

/I This configuresthe visualization of the crank
#define DEGREES PER_CYCLE 720

#define TEETH_PER_CYCLE 72
set_angle indicest DEGREES_PER_CYCLE, TEETH_PER_CYCLE);

These command configures an angle visualization for a cycle of 720 degrees, and a crank with 36
teeth which rotates twice per cycle yielding 72 teeth per cycle.

"4 €T PU Channel Data Script Commands

write_chan_data32(ChanNum, AddrOffset, Val);
write_chan_data24(ChanNum, AddrOffset, Val);
write_chan_datal6(ChanNum, AddrOffset, Val); 541
write_chan_data8 (ChanNum, Addr Offset, Val);
verify_chan_data32(ChanNum, Addr Offset, Val);
verify _chan_data24(ChanNum, Addr Offset, Val);

New

verify_chan_datal6(ChanNum, AddrOffset, Val); 341
verify_chan_data8 (ChanNum, Addr Offset, Val);

This command writes channel ChanNum’ s data at address AddrOffset to value Val. Note that 32-bit
numbers must be located on a double even address boundary (0, 4, 8, ...,) that 24-bit numbers must
be located on a single-odd boundary (1, 5, 9, ...), that 16-bit accesses must be located on even
boundaries (0,2,4,...) and that 8-bit numbers can be on any address boundary.

#define UART_CHAN 12

write_chan_data32 (UART_CHAN, 0x20, OXC6E2024A);
verify_chan_data32(UART_CHAN, 0x20, OxC6E2024A);
verify_chan_data24(UART_CHAN, 0x21, OxE2024A);
verify_chan_datal6(UART_CHAN, 0x20, OxC6E2);
verify_chan_datal6(UART_CHAN, 0x22, 0x024A);
verify_chan_data8 (UART_CHAN, 0x20, 0xC6);
verify_chan_data8 (UART_CHAN, 0x21, OxE2);
verify_chan_data8 (UART_CHAN, 0x22, 0x02);
verify_chan_data8 (UART_CHAN, 0x23, O0x4A);

In this example channel 12's data d& an address offset of 0x20 (relative to that channel's base
address) word is written with a 32-bit value OXC6E2024A (hex). The written value is then verified

as 32-, 24-, and 8-bit sizes.

In the Byte Craft eTPU "C" Compiler the address offset can be automatically generated using the
following macro.

#pragmawrite h, (#defineMY_ADDR_OFFSET ::ETPUlocation(Pwm, MyFuncVar));
el PU Channe Base Address Script Commands

write_chan_base addr(ChanNum, Addr);

This command writes channel ChanNum’s address Addr. Note that this writes the CPBA register
value.

#define PWM1 CHAN 3

#define PWM2_CHAN 4

#define PWM1 CHAN_ADDR 0x300

#define PWM2_CHAN_ADDR (PWM1_CHAN_ADDR + PWM_RAM)
write_chan_base addr(PWM1 CHAN, PWM1_CHAN_ADDR);
write_chan_base addr(PWM2_CHAN, PWM2_CHAN_ADDR);

In this example channel 3's data will start at address 0x300. Note function variables and static local
variables use this. Each channel should be givenitsown

In the Byte Craft eTPU "C" Compiler the amount of parameter RAM that needs to be allocated to

46

each channel for that eTPU function is determined as follows.
#pragmawrite h, (#define PWM_RAM ::ETPUram(Pwm));

el PU Channé Function Mode (FM) Script Command

write_chan_mode(ChanNum, ModeVal);

This command writes channel ChanNum'’s to function mode ModeVal. Note that this modifies the
FM field of the CxSCR register. Thisisatwo-bit field so valid valuesare 0, 1, 2, and 3.

#define PWM1 CHAN 17
write_chan_mode(PWM1 CHAN, 3);

In this example, channel 17’ s function mode is set to 3

el PU Event Vector Script Commands

write_chan_entry_condition(ChanNum, Val);

This command writes channel ChanNum’s event vector (entry) condition to Val. Note that this
writes the CxCR register's ETCS field. A value of 0 designates the standard table and 1 designates
aternate. Note that each function has a set value and that this value MUST match that of the eTPU
function to which the channel is set.

#define UART_STANDARD_ENTRY_VAL 0
#definePWM_ALTERNATE_ENTRY_VAL 1

write_chan_entry_condition(UART1 CHAN, UART_STANDARD_ENTRY_VAL);
write_chan_entry_condition(UART2 CHAN, UART_STANDARD_ENTRY_VAL);

write_chan_entry_condition(PWM1 CHAN, PWM_ALTERNATE_ENTRY_VAL);
write_chan_entry_condition(PWM2_CHAN, PWM_ALTERNATE_ENTRY_VAL);

? System configuration commands

In this example the UART channels are programmed to use the standard event vector table and the
PWM channels are programmed to use the alternate event vector table.

In the Byte Craft eTPU "C" Compiler the event vector condition (alternate/standard) for the eTPU
functionis specified asfollows.

#pragma ETPU_function Pwm, alter nate;

void Pwm (int24 Period, int24 PulseWidth')
{

In the Byte Craft eTPU "C" Compiler the event vector mode can be automatically generated using
the following macro.

#pragmawrite h, (#definePWM_ALTERNATE_ENTRY_VAL ::ETPUentrytype(Pwm));

Note that setting of the event vector table's base address is covered in the System configuration
commands section.

write_chan_entry pin_direction(ChanNum, Val);

This command writes channel ChanNum’s event vector pin direction to Val. Note that this writes
the CxCR register's ETPD field. A value of 0 uses the channel’s input pin and a value of 1 uses the
output pin.

#define ETPD_PIN_DIRECTION_INPUT 0
#define ETPD_PIN_DIRECTION_OUTPUT 1

write_chan_entry pin_direction(UART1_CHAN, ETPD_PIN_DIRECTION_INPUT);
write_chan_entry_pin_direction(UART2_CHAN, ETPD_PIN_DIRECTION_OUTPUT);

47

In this example the UART1 chan event vector table thread selection is based on the input pin, and
UART?2 event vector thread selection is based on the output pin.

el PU Interrupt Script Commands

Interrupts can cause special script ISR file to execute as described in the Script | SR section.

clear_chan_intr(ChanNum);
clear_chan_overflow_intr(ChanNum);
clear_data_intr(ChanNum);
clear_data_overflow_intr (ChanNum);

These commands clear the interrupts for channel ChanNum. It is equivalent to setting the bit
associated with the channel in the CICX, DTRC, CIOC, or DTROC fields.

verify_chan_intr(ChanNum, Val);
verify_chan_over flow_intr (ChanNum, Val);
verify_data_intr ChanNum, Val);
verify_data_overflow_intr(ChanNum, Val);
verify_illegal_instruction(ChanNum, Val);
verify_microcode_exception(ChanNum, Val);

These commands verify that the respective interrupts are either asserted (Val==1) or de-asserted

clear_global _exception();

This command clears the global exception along with the exception status bits. It is equivalent to
setting the GEC field in the ETPUMCR field.

disable_chan_intr(ChanNum);
enable_chan_intr(ChanNum);
disable _data_intr (ChanNum);
enable_data_intr(ChanNum);

These commands enable/disable the interrupt for channel ChanNum. Note that if you associate a
script ISR file with an interrupt, these commands alow or prevent that file from running on
assertion of the interrupt

clear_this intr();

This command can only be run from within a script ISR file. It clears the interrupt that caused the
command to execute.

TPU Parameter RAM Script Commands

write_par_ram(ChanNum,ParamNum,Val)

This command writes channel ChanNum’s (16-bit) parameter ParamNum to value Val.
write_par_ram(3,1,0x2222);

In this example channel 3's parameter one RAM word iswritten to value 2222 (hex).
verify_ram_word(ChanNum,ParamNum,Val);

This command verifies that channel ChanNum’s RAM word nunber ParamNum is equal to Val. If
the verification fails a verification failure messages is printed to the screen. This verification failure
message can be disabled from the Message Options dialog box. The accumulated count of

verification failuresis available in the Configuration Window.

verify_ram_word(0xa,3,0x1324);
In this example channel 10’'s parameter RAM word three is verified to be equal to 0x1324 (hex). If

48

the value is indeed equal to 0x1324 (hex) then the simulation continues. If the value is not equal to
0x1324 (hex) an error message is printed to the screen.

verify_ram_bit(ChanNum,ParamNum,BitNum,vVal);

This command verifies that channel ChanNum’s RAM word number ParamNum bit BitNumis
equal to Val. Bit 15 is defined as the most significant while bit O is defined as the least significant.
Val must be between zero and one inclusive. If the verification fails a verification failure messages
is printed to the screen. This verification failure message can be disabled from the M essage Options
dialog box. The accumulated count of verification failures is available in the Configuration
Window.

verify_ram_bit(0Oxa,3,14,1);

In this example channel 10's parameter RAM word 3 bit 14 is verified to be equal to 1. If the value
is indeed equal to 1 then the simulation continues. If the bit is instead a zero an error message is
printed to the screen. For instance if channel 10's RAM word three is equal to 4000 (hex) the
verification would pass whileif it were instead equal to zero the test would fail and an error message
would be displayed.

eTPU/TPU Host Service Request Register Script Commands

write_chan_hsrr(ChanNum,Val);
This command writes channel ChanNum’s HSRR bitsto value Val.
write_chan_hsrr(4,0);

In this example channel 4’'s HSRR hits are written to zero. If channel 4 had a pending host service
request, it would be cleared.

TPU Channd Interrupt Service Register Script Commands

clear_cisr(ChanNum);

This command clears a Channel Interrupt Service Request (CISR) from channel ChanNum. This
command accepts a single argument.

clear_cisr(7);
In this example the CISR is cleared from channel 7.
clear_this cisr();

This command clears the CISR of the active channel from within an ISR script commands file.
Note that in the primary script commands file there is no channel context so this command cannot
be used and use of this command generates a warning message. No arguments are required with
this command.

clear_this cisr();

Assume in this example that an ISR script commands file that is associated with TPU channel 3
executes this command. This file gets executed upon assertion of channel 3's interrupt. When this
command is executed channel 3'sinterrupt request bit is cleared.

verify_cisr(ChanNum,Val);

This command verifies that the CISR bit from channel ChanNum is equal to Val. This command
accepts a pair of arguments. Argument Va must be between zero and one inclusive. If the
verification fails a verification failure message is printed to the screen. This verification failure
message can be disabled from the Message Options dialog box. The count of verification failuresis
available in the Configuration Window.

verify cisr(5,1);

49

In this example channel 5's CISR bit isverified to bea 1. If the bit isindeed a 1 then the simulation
continues. If the Lt is instead a O a verification failure message is printed to the screen. The
accumulated count of verification failuresis available in the Configuration Window.

TPU Host Sequence Request Register Script Commands
write_chan_hsgr(ChanNum,Val);

This command writes channel ChanNum’s HSQR bits to value Val. The HSQR bits of all other
registers remain unchanged.

write_chan_hsqr(8,0x2);

In this example two iswritten to channel 8's HSQR bits.
TPU Clock Control Script Commands

These commands control the TCR1 counter, the TCR2 input pin frequency, and the TCR2 counter.
See the Clock Control Script Command section for information on how to set the clock period.

The set_cpu_frequency(); script command has been deprecated. Instead, use the set_clk_period()
script command described in the Clock Control Script Command section. A message is generated
when this command is used. This message can be disabled from the Message Options Dialog Box.

write_psck(Val);

This command writes the prescaler clock source bit. Only 0 and 1 are allowed values. A 1 selects
the system clock divided by 4. A zero selects the system clock divided by 32.

write_div2(Vval);

Thisis available in TPU2 mode only. Writes the divide-by-2 control bit. Only 0 and 1 are allowed
values. A 1 selects the system clock divided by 2 and bypasses the prescaler. A 0 selects the clock
source specified in the PSCK bit.

write_tcrl prescaler(Val);

This command writes the TCR1 prescaler. Valid Val valuesare 0, 1, 2, or 3. A 0 causes a division
by 1 (no prescaler). A 1 causesadivision by 2. A two causesadivision by 4. A 3 causesadivision
by 8.

write_psck(1);
write_div2(0); /I Availablein TPU2 mode only
write_tcrl prescaler(2);

The two commands in this example set the TCR1 counter to increment & 1.0486 MHz, assuming
the CPU clock is set to 16.778 MHz.

write _t2cg(Val);
This command writes the TCR2 configuration bit. Valid Val values are zero and one.
write_t2csl(Val);

This is available in TPU2 mode only. It writes the TCR2 counter clock source edge control bit.
Only 0 and 1 are allowed values. This control bit along with the T2CG control bit specify the
source for the TCR2 counter. With both control bits at 0, the TCR2 counter is clocked on a rising
edge. With both control bits at one the TCR2 counter is clocked on both the rising and falling
edges, thus effectively doubling the counter frequency. With T2CSL at 0 and T2CG at 1 the clock
source is the gated system clock. With T2CSL at 1 and T2CG at 0 the TCR2 counter is clocked on
thefaling edge.

50

write_tcr2_prescaler(Val);

This command writes the TCR2 prescaler. Valid Val valuesare 0, 1, 2, or 3. A 0 causes a division
by 1 (no prescaler). A 1 causesadivisionby 2. A 2 causes adivision by 4. A 3 causes adivision
by 8.

write_t2cg(0);
write t2csl(0) // Availablein TPU2 mode only
write_tcr2_prescaler (3);

The commands in this example set the external pin to be the TCR2 counter clock source and set the
TCR2 prescaler to divide by 8. The TCR2 counter is setup to be clocked on the rising edge. These
commands together set the TCR2 counter to increment on every eighth rising edge of the signal at
the TCR2 input pin.

TPU3-Specific Script Commands
write_epscke(Val);

This command writes the TCR1 enhanced prescaler enable bit. Only 0 and 1 ae allowed values.
This control bit determines whether the TPU3's new and enhanced prescaler is used or the standard
prescaler is used. With the enhanced prescaler the resolution of the clock period is controllable in
3% increments of the longest clock period.

write_epsckv(Val);

This command writes the TCR1 enhanced prescaler value. Only values between 1 and 31 are
alowed. Assuming the EPSCKE bit is set, the clock frequency fed to the TCR1 prescaler is the
system clock divided by the TCR1 enhanced prescler where the enhanced prescaler is equal to
EPSCKYV plus1times2.

write_epscke(1);
write_epsckv(20);
write_tcrl prescaler(2); // Availablein all TPUs

The three commands in this example set the TCR1 counter to increment at 99.87 KHz, assuming the
CPU clock isset to 16.778 MHz.

write _tcr2psck2(Val);
This command writes the TCR2 pre-divider prescaler. The only allowed valuesare 0 and 1.

/I This, with the next command, select the system clock/8
write_t2cg(1);

write_t2csl(0)

/I Set the TCR2 prescaler to divideby 8
write_tcr2_prescaler (3);

/I Set the pre-divider prescaler to divide by 2
write_tcr2psck2(1);

The above script command sequence sets the TCR2 counter to be clocked at the system clock
frequency divided by 128.

TPU Bank and Mode Control Script Commands

set_tpu_type(X,Y);

MtDt automatically determines the TPU type from the source TPU microcode, so this command is
not normally required, except for the TPU3 in which TPU2 should be specified because bug in the
Freescale TPU assembler prevents selection of TPU3 so this script command is required to specify a
TPUS3 target. In addition, there are subtle differences among the TPU1, TPU2, and TPU3 that the
TPU assembler hides from the user. Use of this instruction can cause significant behavioral

51

deviations between MtDt and the actual TPU hardware.

This command sets the TPU type and the instruction space size. Valid types are 1 through 3, which
correspond to TPU1 through TPU3, respectively. The instruction space size is expressed in 32-bit
long-words. Supported combinations of types and instruction space sizes are asfollows.

TPU1, 256
TPU1, 512
TPU2,512
TPU2, 1024
TPU2, 2048
TPUS, 1024
TPUS, 2048
write_entry_bank(X);

This command writes the TPU entry bank. Valid values depend on the instruction space size. Each
bank consists of 512 32-bit long-words, so the number of valid banks is equal to the instruction
space size divided by 512. For the common size of 1024 there are two valid banks so the maximum
valid entry bank is1. Zeroisalwaysavalid entry bank.

set_tpu_type(1,1024);
write_entry_bank(1);

The commands in this example set the TPU type to TPU1, the instruction space size to 1024 32-bit
long-words, and the entry bank to 1.

Setting the TPU Code Bank

The following code bank discussion is applicable only to TPU2 and TPU3.

There are no script commands for setting the code bank. At run-time the active code bank is
determined during each time slot transition. Bits 10 and 9 from the entry table determine the code
bank. The TPU assembler generally handles this field by determining the bank in which the code is
located. The user has control over which bank the code is located from within the source TPU
microcode. One method of specifying the bank in which the code will reside is the ORG statement.
This and other methods are described in the TPU assembler literature.

TPU Match, Transtion, and Link Script Commands

set_mrl(ChanNum);
set_tdl(ChanNum);
set_link(ChanNum);

These commands directly sets the Match Recognition Latch (MRL,) the Transition Detection Latch
(TDL) or aLink Service Request (L SR) of channel ChanNum.

set_mrl(5);
set_tdI(3);
set_link(8);

In this example channel 5’s MRL is set, channel 3's TDL is set, and alink is generated on channel 8.

el PU/TPU Interrupt Association Script Commands

Interrupt association script commands associate a script commands file with the firing of interrupts
such that when the interrupt is both enabled and active, the script commands file executes. See the
Script Commands Files chapter for a description of the use of | SR script commands files

load_chan_isr (" filename.eTpuCommand" , ChanNum); // €T PU-Only

52

load_data isr(" filename.eTpuCommand” , ChanNum); // €T PU-Only
load_exception_isr (" filename.eTpuCommand"); // eTPU-Only
load_isr (" filename.TpuCommand" , ChanNum); // TPU-Only

In order for the ISR script to actually execute the ISR must be enabled. The following script
commands enable and disable | SRs for both the eTPU and TPU.

enable_chan_intr(chanNum); /l eTPU Only

disable _chan_intr(chanNum); // eTPU Only

enable data_intr(chanNum); // €eTPU Only

disable data intr(chanNum); // eTPU Only

write_chan_cier(chanNum, isEnable); // TPU Only

This commands loads ISR script commands file filename.TpuCommand (or
filename.eTpuCommand) and associates them with the various types of interrupts from channel
ChanNum.

close_chan_isr(ChanNum); // €TPU only

close data isr(ChanNum); // eTPU only

close_exception_isr(); // €TPU only
close_isr(ChanNum); /I TPU only

These commands close the | SR script command that is associated with the channel ChanNum.

load_isr(" I1SR_5.TpuCommand", 5);
write_chan_cier(5, 1); // Enablethe TPU interrupt
wait_time(2000);

close isr(5);

write_chan_cier(5, 0); // Disablethe TPU interrupt

This TPU example loads the file ISR_5.TpuCommand and associates it with the interrupt from
channel 5. Any asserted and enabled interrupt on channel 5 during that 2ms window will cause the
script commandsin thefileto berun.

load_data_isr(" |SR_22.eTpuCommand", 22);
enable data_intr(22);

wait_time(5000);

close _data isr(22);

disable data intr(22);

ThiseTPU DATA isr example loads the file ISR_22.eTpuCommand and associates it with the data
interrupt from channel 22. If the interrupt for channel 22 is both asserted and enabled within the
first 5ms, then the script commands in the file will run.

load_exception_isr (" GlobalExc.eTpuCommand"); // eTPU-Only

This eTPU example loads the file GlobalExc.eTpuCommand and associates it with the global
interrupt.

el PU/TPU External Logic Commands

Boolean logic that is external to the eTPU/TPU is instantiated in MtDt through the use of place x
script commands. Several types of external logic are available. The script command used to
instantiate each type of logic is listed below. See the External Logic Smulation chapter for a
detailed description of the use of external Boolean logic gates.

? place_buffer(X,Y) Instantiates a buffer follower
? place_inverter(X,Y) Instantiates an inverter

? place_and_gate(X,Y,Z) Instantiatesan"and" gate

? place_or_gate(X,Y,Z) Instantiatesan "or" gate

? place xor_gate(X,Y,Z) Instantiatesan"exclusiveor" gate

53

? place_nand gate(X,Y,Z) Instantiatesa"nand" gate
? place_nor_gate(X,Y,Z) Instantiatesa"nor" gate
? place_nxor_gate(X,Y,Z) Instantiatesan "inverting exclusiveor" gate

? remove_gate(Z); Removes the gate whose output drives channel Z
el PU Considerations

The eTPU has up to two pins per channel which (depending on the specific device) may or may not
actually be connected together or to from outside of the microcontroller. In any case, indexes are
defined asfollowsfor the eTPU.

? 0to31 ChannelsO0 through 31 inputs, respectively
? 32to 63 Channels 0 through 31 outputs, respectively
? o4 TCRCLK pin

place_and_gate(5,33,64);

This example places an "and" gate with eTPU channels 5's input pin and eTPU channel 2's output
pin asinputs and the TCRCLK pin as the output.

TPU Consderations

Note that for the TPU, 16 istheindex used for the TCR2 pin.
place buffer(5,16);

This exampleinstantiates a buffer follower with TPU channel 5 as the input and the TCR2 pin asthe
output.

Build Script Commands

instantiate_target(enum TARGET_TYPE , "TargetName");
instantiate target_ex1l(enum TARGET_TYPE, enum_TARGET_SUB_TYPE,
"TargetName");

These commands instantiate a target enum TARGET_TY PE and assigns it the name TargetName.
Subsequent references to this target use the target name specified in this command. The second
(extended) version of this command supports sub-targets.

instantiate_target_ex1(TPU_SIM, TPU_MASK, "MyTpu");
instantate_target(CPU32_SIM, " MyCpu");

This example instantiates two simulation models, a TPU and a CPU32. The name MyTpu is
assigned to the TPU and the name MyCpu is assigned to the CPU32. A special "standard mask"
style of TPU is generated that will load only the Standard Mask TPU microcode. Subseguent build
script commands use these names when referring to these targets. These names are also referenced
in avariety of other places such asin workshops and the menu system.

add_mem_bl ock(" TargetName", StartAddress, StopAddress,
"BlockName", enum ADDR_SPACE);

This command adds a memory block to a range of simulated memory. The memory appears
between stopAddress and startAddress in the memory space ADDR_SPACE. The name BlockName
is assigned to this block and is used by other script commands when referencing this block. The
block name must be unique within its target, but other targets can have a block with this same block
name. The size of the memory block is equal to one plus stopAddress minus startAddress. Only a
single copy of thismemory is created, regardless of how many address spaces the block occupies.

54

add_mem_block(" MyCpu" , 0, 0XFFFF, "RAM 1", ALL_SPACES);

In this example a 64K block of simulated memory is created and the name "RAM1" is assigned to
this memory block. This memory is accessible from all of the CPU's address spaces.

add_non_mem_block (" TargetName", StartAddress, StopAddress,
enum ADDR_SPACE);

This command adds a blank block of simulated memory to the target TargetName. It indicates that
no physical memory exists in the specified memory range and specified address spaces,
ADDR_SPACE. The name BlockName is assigned to this block and is used by other script
commands when referencing this block. The block name must be unique within its target, but other
targets can have ablock with this same block name.

Since no memory is actually modeled by this command, it effectively uses ailmost none of your
computer’s virtual memory. This is important since the entire four GB address space must be
represented by memory blocks, regardiess of whether or not the simulation target actually supports
thislarge of an address space.

#define DATA_SPACE CPU32 SUPV_DATA_SPACE + CPU32 USER_DATA_SPACE
add_non_mem_block (" MyCpu", 0x1000, Oxffffffff,
"Empty", DATA_SPACE);

This example specifies that no physical memory exists above the first 64K for both user and
supervisor data spaces. Data space is defined by the define declaration as consisting of a
combination of the supervisor data space and the user data space.

set_block_to off(" TargetName", " BlockName", enum ADDR_SPACE,
enum READ_WRITE);

This command allows accesses of a simulated memory blocks can be turned off using this script
command. Using this command a read-only memory device such as a ROM can be created.

Accesses to target TargetName within the block BlockName and specified address spaces
ADDR_SPACE and read and/or write cycles <enum READ_WRITE> are turned off. A turned-off
write access behaves exactly like a normal write access except the actual memory is not written. A
turned-off read cycle behaves exactly like a regular read cycle except that the value returned is the
OFF_DATA constant defined for the entire block. The affected address spaces and read and/or
write cycles must be subsets of those of the referenced memory block.

add_mem_block(" MyCpy" , 0, OXFFFF, "ROM", ALL_SPACES);
#define ALL_WRITES RW_WRITE8 + RW_WRITE16+RW_WRITE32
set_block_to_off("MyCpu", "ROM", ALL_SPACES, ALL_WRITES);

This example creates a 64K memory device and configures it to be a read-only or "ROM" memory
device.

set_block_off_data(" TargetName", " BlockName" , enum ADDR_SPACE,
OFF_DATA);

This command specifies that read cycles to the target TargetName within the block BlockName
return the data<OFF_DATA> but only if the block is either a"non_mem" block or ablock in which
the read cycles have been set to off. The affected address spaces must be a subset of the address
spaces to which the referenced memory block applies.

add_non_mem_block(" MyCpy", OXFFFF, OXFFFFFFFF, " Unused" ,
ALL_SPACES);
set_block_off_data(" MyCpu", " Unused", OX5A);

In this example the address space between FFFF and FFFFFFFF hexadecimal is specified to contain
no memory. Read cycles to this block will return the specified off data, 5A hexadecimal, at every
address. For instance, a 32-bit read in this block returns 5A5A5A5A hexadecimal.

set_block_to bus fault(" TargetName", " BlockName" ,

55

enum ADDR_SPACE, enum READ_WRITE);

This command results in bus faults for accesses to the target TargetName within the block
BlockName for the applicable address spaces, ADDR_SPACE, and read and/or write cycles enum
READ_WRITE. The effected address spaces must be a subset of the spaces to which the referenced
memory block applies.

add_mem_block(" MyCpu32", 0x10000,0xFFFFFFFF, " Unused",
ALL_SPACES);
set_block_to bus fault("MyCpu32", "Unused", ALL_SPACES, RW_ALL);

In this example, a memory block has been added to represent the unused address space above 64K.
Any access to this memory block resultsin abus fault.

set_block_to_priv_viol(" TargetName", " BlockName",
enum ADDR_SPACE, enum READ_WRITE);

This command results in privilege violations for accesses to the target TargetName for the memory
block BlockName for the applicable address spaces ADDR_SPACE, and read and/or write cycles
enum READ_WRITE. The affected address spaces must be a subset of the address spaces to which
the referenced memory block applies.

#define ALL_DATA_SPACE CPU32 SUPV_DATA_SPACE +\
CPU32_USER_DATA_SPACE
add_mem_block(" MyCpu32", 0x10000,0x1FFFF, " Protected",
ALL_DATA_SPACE);
set_block_to priv_viol("MyCpu32", " Protected" ,
CPU32_USER_DATA_SPACE, RW_ALL);

In this example, data space accesses to the simulated memory while at the supervisor privilege level
will succeed whereas accesses at the user privilege level will result in a privilege violation.

set_block_to_addrs fault(" TargetName", " BlockName",
enum ADDR_SPACE, enum READ_WRITE);

This command results in address faults for odd accesses to the target TargetName within the block
BlockName for the applicable address spaces ADDR_SPACE, and read and/or write cycles enum
READ_WRITE. The affected address spaces must be a subset of the address spaces to which the
referenced memory block applies. Even accesseswill not result in an address fault.

set_block_to_addrs fault("MyCpul6", " EvenMem",
CPU16_CODE_SPACE, RW_ALL);

In this exampl e code space accesses to odd addresses are configured to result in an address fault.

set_block_timing(" TargetName", " BlockName", enum ADDR_SPACE,
enum READ_WRITE, ClockPer EvenAccess,
ClocksPer OddAccess);

This command sets the timing for the target TargetName in the block BlockName. This command
applies only to menory spaces ADDR_SPACE, and for the read and/or write cycles enum
READ_WRITE. Even accesses are set to ClocksPerEvenAccess while odd accesses are set to
ClocksPerOddA ccess.

#define NOT_DATA_SPACE ALL_SPACES- CPU16_DATA_SPACE

add_mem_block(" MyCpul6", 0, OXFFFF, " SlowMem", ALL_SPACES);

set_block_timing("MyCpul6", " SlowMem", CPU16 DATA_SPACE,
RW_READ, 4, 8);

set_block_timing(" MyCpul6"," SlowMem", CPU16 DATA_SPACE,
RW_WRITE, 2, 3);

set_block_timing("MyCpul6"," SlowMem", NOT_DATA_SPACE, RW_ALL,
5, 6);

56

In this example the even data reads are set to take four clocks while odd data reads are set to take
eight clock cycles. Even data writes take two clock cycles while odd accesses take three. All non-
data even reads and writes take five clocks while odd take six.

This example illustrates an important aspect of timing design. A separate copy of the timing datais
kept for each address space and for both read and write cycles. So even though only a single
memory block was created in this example, timing data for each address space is able to be
individually specified.

set_block_to _dock(" FromTargetName", " BlockName" ,
enum ADDR_SPACE, "ToTargetName",
AddressOffset);

This script establishes a memory share between a docking target FromTargetName and a "docked-
to" second target ToTargetName. Memory accesses for the docking target actually occur in the
second target, while this command has no effect on the second target's accesses.

Docking target accesses within the block BlockName in the address space ADDR_SPACE are
projected to the "docked-to" target at on offset address AddressOffset.

The address range corresponds exactly to a previously defined block within the docking target.
Thereis no such requirement for the "docked-to" target.

add_mem_block (" Cpu_A", 0x0, OXFFFF, " Shared", ALL_SPACEYS);

add_non_mem_block (" Cpu_B", 0x600, Ox6FF, " ShareRange" ,
ALL_SPACES);

set_block_to _dock(" Cpu_B", " ShareRange", ALL_SPACES,
"Cpu_A", 0x250);

In this example a memory share is setup between targets Cpu_A and Cpu_B. The memory that is
shared resides in Cpu_A. The shared block is accessed by Cpu_B between addresses 600 and 6FF
hexadecimal. An offset of 250 hexadecimal is applied to the address of each of Cpu_B's accesses
such that from the perspective of Cpu_A the accesses occur between 850 and 94F hexadecimal.

Note that, as required, the set_block_to_dock script command has the identical address range & a
previous add_non_mem_block script command. Interestingly, there is no such restriction on the
Cpu_A target.

set_block_dock_space(” TargetName", " BlockName",
enum ADDR_SPACE DockFromSpace,
enum READ_WRITE,
enum ADDR_SPACE DockToSpace);

This command supports an address space transformation for a docked memory access. Read and/or
write cycles enum READ_WRITE from target TargetName between within the block BlockName in
the address spaces enumADDR_SPACE DockFromSpace are transformed to occur in address space
enum ADDR_SPACE DockToSpace. The DockToSpace argument must specify a single space.

It isimportant to fully specify all shared memory accesses between dissimilar targets. Docks with
unspecified address space transformations result in indeterminate results. For instance, a CPU16
sharing memory with a CPU32 could easily result in a opcode being fetched out of data space, even
though both targets have both code and data spaces. Assumptions about similarity of address spaces
between dissimilar targets simply should not be made.

add_non_mem_block(" MyCpu", 0x1000, 0x1003, " ShareRange" ,
ALL_SPACES);

set_block_to_dock("MyCpu", " ShareRange", ALL_SPACES, "MyTpu",
0-0x1000);

set_block_dock_space(" MyCpu", " ShareRange", ALL_SPACES, RW_ALL,

57

TPU_PINS_SPACE);

In this example a target MyCpu is docked to target MyTpu. An address space transformation is
specified such that accesses to any of the CPU's address spaces occur in the TPU's PINS address
space.

check(" TargetName", " ReportFileName");

This command does a check on the simulated memory for atarget TargetName and creates a report
file ReportFileName. The check invoked by this command occurs vhether or not this script
command is included in the script file. Use of this command allows you to specify the name of the
report file and limit the scope of the check to asingle target.

check(" MyCpu", " C:\\Temp\\CpuBuildReport.txt");
check("MyTpu", " TpuBuildReport.txt");

In this example report files named C:\\Temp\\CpuBuildReport.txt and TpuBuildReport.txt are
generated for the MyCpu and MyT pu targets, respectively. Note that C-style double backslashes are
required when separating directory names.

Automatic and Pre-Defined Define Directives
Tar get-Specific Scripts

It is often desirable to have a single script commands file run on multiple targets. In this case target-
dependent behavior is accomplished using the target define. Thetarget defineis generated using the
target name asfollows.

#define_ ASH_ WARE_<TargetName>_ 1

TargetName is defined in the build batch file and is found in a pull-down menu in the upper right
hand side of the simulator.

#ifdef _ASH_WARE_DBG32_
set_crystal_frequency(32768);
#endif // _ASH WARE_DBG32_

In the this example the set_crystal_frequency(); script command executes only if the script
command is running under atarget named DBG32.

Deter mining the Auto-Run Mode

The Simulator/Debugger is often launched as part of an automated test suite. Under these
conditions the test starts running and executes to completion (assuming no failures) with no user
intervention. The following is automatically defined when the application is launched in auto-run
mode.

_ASH_WARE_AUTO_RUN_
Thefollowing istypically found at the end of an script file used as part of an automated test suite.

#ifdef _ASH_WARE_AUTO_RUN_
exit();

#else

print(" All testsare donel!");

#endif // _ASH_WARE_AUTO_RUN_

58

Deter mining the Interrupt Number

ISR script commands execute in response to an enabled and asserted interrupt as described in the
ISR Script Commands Files section. On the eTPU/TPU each of these script commands has a unique
number, asfollows.

eTPU Targets
? Channel interrupts for channels0...31 are numbered 0...31.

? Datainterruptsfor channels0...31 are numbered 31...63.

? Theglobal exception interrupt number is 64.

TPU Targets
? Channel interruptsfor channels 0...15 are numbered 0...15.

The define is formed using the target name, as follows.
_ASH_WARE_<TargetName>_ISR_

When running under a target named, "ETPU", the ISR script loaded for channel 25's channel
interrupt is automatically defined asfollows.

#define_ASH_WARE_ETPU_ISR_ 25

If this same script command file is also loaded for the DATA interrupt, then the automatic define
would be asfollows.

#define ASH_WARE_ETPU_ISR_ 57

An example of how this can be used isas follows

#define THIS ISR_NUM (_ASH_WARE_ETPU_ISR))

#defineTHIS CHAN_NUM (_ASH_WARE_ETPU_ISR_ & Ox1F)
clear_this_intr();

/I Writeasignatureto indicatethat thisI SR ran

write_chan_data24 (THIS CHAN_NUM, OxD, 0xFD12A4 + THIS_ISR_NUM);

Passing Defines from the Command Line

When launching the simulator or debugger application it is often useful to pass #define directives to
the primary script commands file from the command line. This is explained in detail in the
Regression Testing section.

The following command line is found in the batch files used as part of the automated testing of the
eTPU simulator

echo Running ALUOP ADD NORMAL Tests ...
eTpuSim -pAutoRun.ETpuSysSimProject -AutoRun -1 AcceptLicense-d_AUTO_TEST_AU_ALUOP_ADD_NORMAL _
if %ERRORLEVEL% NEQ O (gotoerrors)

In the primary script file that is part of this project the following command is used to load the
executablefile that is specific to thistest.

#ifdef AUTO _TEST_AU_ALUOP_ADD_NORMAL _
load_executable(" AuAluopAddNormal.gxs');
#endif // _AUTO_TEST_AU_ALUOPI_ADD_NORMAL _

TPU Target Pre-Defined Define Directives

The following define directives are automatically loaded and available for both TPU Simulator and
TPU Debugger targets.

59

? #define CFSRO ((U16 *) 0xOC)
? #define CFSR1 ((U16 *) OXOE)
? #define CFSR2 ((U16 *) 0x10)
? #define CFSR3 ((U16 *) 0x12)
? #defineHSQ ((U32*) 0x014)

? #define HSQO ((U16 *) 0x014)
? #define HSQ1 ((U16 *) 0x016)
? #define HSRR ((U32 *) 0x018)
? #define HSRRO ((U16 *) 0x018)
? #define HSRR1 ((U16 *) OX01A)
? #define CPR ((U32 *) Ox01C)
? #define CPRO ((U16 *) 0x01C)
? #define CPR1 ((U16 *) Ox01e)

Pre-Defined Enumer ated Data Types
Listed below are the predefined enunmerated data types used on a variety of script commands.
Clicking on the desired enumerated data type will access alisting.

? Script FILE_TYPE enumerated data type

? Script FILE_OPTIONS enumerated data type

? Script BASE_TIME enumerated data type

? Script TRACE_OPTIONS enumerated data type
? Script TARGET_TY PE enumerated datatype

? Script ADDR_SPACE enumerated datatype

? Build Script READ_WRITE enumerated data type
? Build script Register enumerated data type

? eTPU Register enumerated data types

? TPU Register enumerated data types

? CPU32 Register enumerated data types

? CPU16 Register enumerated data types

Script FILE_TYPE Enumerated Data Type

The following enumerated data type is used to specify the file type used in various script commands.
This specifies adis-assembly, Freescale S Record, Intel Hexadecimal, or C data structure file type.

enum FILE_TYPE {DIS ASM, SRECORD, IHEX, IMAGE, C_STRUCT,}

60

Script DUMP_FILE_OPTIONS Enumerated Data Type

The following enumerated data type is used to specify the options when dumping data to afile. The
available options depend on the type of file being dumped.

enum FILE_OPTIONS{

/I Disables listing of addressinformation in dis-assembly
/l'and " C" data structurefiles:

NO_ADDR,

/I Disableslisting of hexadecimal dump, addressing mode,
/I and symbol data

/l'in dis-assembly files:

NO_HEX, NO_ADDR_MODE, NO_SYMBOLS,

/I Adds a #pragma format " val" to each dis-assembly line
/I Thisis helpful for non-deter ministic assembly languages
/I to cause the assembler to generate a deter ministic opcode
YES PRAGMA,

/I Selectstheendian ordering for image

/l'and " C" data structurefiles:

ENDIAN_MSB_L SB, ENDIAN_LSB_MSB,

/I Selectsdata sizein image and " C" data structurefiles:
DATAS, DATA16, DATA32,

/I Selects decimal data instead of hexadecimal

/I for " C" data structurefiles:

OUT_DEC,

/I Specifies default options:

DUMP_FILE _DEFAULT,

|3
Save Trace File Enumerated Data Types

The following enumerated data type is used to specify the event options when saving a trace buffer
to afile.

enum TRACE_EVENT_OPTIONS{

STEP, EXCEPTION, MEM_READ, MEM_WRITE, DIVIDER,
/I TPU Targets, only

TPU_TIME_SLOT, TPU_NOP, TPU_PIN_TOGGLE,
TPU_STATE_END,

/l Hardwar e debugger only options

FREE_RUN,

/I All options

ALL,

}

The following enumerated data type is used to specify the file format options when saving a trace
buffer to afile.

enum TRACE_FILE_OPTIONS{
VIEWABLE, // Thisformat is optimized for viewing
PARSEABLE, // Thisformat is optimized for parsing

}

Base Time Enumerated Data Type

Thefollowing enumerated datatype is used to specify the base time for various script commands.

61

enum BASE_TIME {
US, NS, PS,

}

Script TARGET _TYPE Enumerated Data Type

The following enumerated data type is used to specify the target type. No mathematical
manipulation of this datatypeisvalid.

enum TARGET_TYPE { TPU_SIM, TPU_DBG, SIM32, BDM32, SIM16, SIM32, }
Build Script ADDR_SPACE Enumerated Data Type

This enumerated data type is used when specifying the applicable address spaces for various build
script commands.

enum ADDR_SPACE {

I TPU

TPU_CODE_SPACE, TPU_DATA_SPACE, TPU_PINS_SPACE,
TPU_UNUSED_SPACE,

/1 eTPU

ETPU_CODE_SPACE, ETPU_CTRL_SPACE, ETPU_DATA_SPACE,
ETPU_DATA_24 SPACE, ETPU_NODE_SPACE, ETPU_UNUSED_SPACE,
/I CPU16 & CPU32

CPU16_CODE_SPACE, CPU16_DATA_SPACE, CPU16_UNUSED_SPACE,
CPU32_USER_CODE_SPACE, CPU32_SUPV_CODE_SPACE,
CPU32_USER_DATA_SPACE, CPU32_SUPV_DATA_SPACE,
CPU32_UNUSED_SPACE,

ALL_SPACES,};

In the following very specific cases, mathematical manipulation of this enumerated data type is
allowed.

? Single instances of values referencing the same target may be added to each other.
? Single instances of values referencing the same target may be subtracted from
ALL_SPACES.
The following are some valid mathematical manipulations of this data type.

/I Thefollowing referencesa CPU32's USER and SUPERVISOR code spaces
CPU32_USER_CODE_SPACE + CPU32 SUPV_CODE_SPACE

/I Thefollowing references all used CPU32 addr ess spaces

ALL_SPACES- CPU32_UNUSED_SPACE

The following are some invalid valid mathematical manipulations of this data type.

/I M"INVALID!! CPU32 and CPU16 cannot be inter mixed

CPU32 USER_CODE_SPACE + CPU16 DATA_SPACE

/I MINVALID!" The samevalue cannot be added or subtracted to itself
TPU_PINS SPACE + TPU_PINS SPACE

Build Script READ_WRITE Enumerated Data Type

This enumerated data type is used when specifying the applicable read and/or write cycles for
various build script commands.

enum READ_WRITE {

62

RW_READS8, RW_READ16, RW_READ32,

RW_WRITE8, RW_WRITE16, RW_WRITE32,

RW_ALL,

|8
Some mathematical manipulations are allowed. Single instances of all but the RW_ALL values can
be added together and single instances of each value may be subtracted from RW_ALL.

#define ALL_READS RW_READS + RW_READ16 + RW_READ32
#define NON_ACCESS32S - RW_WRITE32+ RW_READ32

In this example, ALL_READS is defined as any read access, be it an 8-, 16-, or a 32-bit read cycle.
NON_ACCESS32Sis defined as all 8- and 16-bit read and write cycles.
Register Enumerated Data Type
Each target has its own enumerated data types for its own registers. The following is alist of the
enumerated registers for each target.

? €TPU Enumerated Registers

? TPU Enumerated Registers

? CPU32 Enumerated Registers

? CPU16 Enumerated Registers

el PU Register Enumerated Data Types

The eTPU register enumerated data types provide the mechanism for referencing the eTPU registers.
These enumerated data types are used in commands that reference the TPU registers such as the
register write commands that are defined in the Write Register Script Commandssection.

The following enumeration provides the mechanism for referencing the eTPU's registers.
enum REGISTERS U32{
REG_P, };

enum REGISTERS U24 {
REG_A, REG_B, REG_C, REG_D, REG_DIOB, REG_SR, REG_ERTA, REG_ERTB,
REG_TCR1, REG_TCR2, REG_TICK_RATE, REG_MACH, REG_MACL,REG_P,};

enum REGISTERS U16{
REG_TOOTH_PROGRAM, REG_RETURN_ADDR, },

enum REGISTERS U8/{
REG_LINK},

enum REGISTERS U5/{
REG_CHAN, },

enum REGISTERS U1 {
REG_Z, REG_C, REG_N, REG_V,
REG_MZ,REG_MC,REG_MN, REG_MV, },

Thefollowing are examples of how the enumerated register types are used.

63

write_reg32(0x12345678, REG_P);

verify reg32(REG_P, 0x12345678);

write reg24(0x123456, REG_A);

verify_reg24(REG_A, 0x123456);

write regl6(0x1234, REG_RETURN_ADDR);
verify regl6(REG_RETURN_ADDR, 0x1234);
write reg5 (0x12, REG_CHAN);

verify regs (REG_CHAN, 0x12);

write regl (0x1, REG_Z);

verify regl(REG_Z, 0Ox1);

TPU Register Enumerated Data Types

The TPU register enumerated data types provide the mechanism for referencing some of the TPU
registers. These enumerated data types are used in commands that reference the TPU registers such
asthe register write commands that are defined in the Write Register Script Commandssection.

There are no enumerated types for the TPU's 8-bit registers, and the TPU has no 32-bit registers.

The following enumeration provides the mechanism for referencing the TPU's 16-bit registers. Note
that this covers only those TPU registers that are newly accessible with this software version.
Future software versions will make greater use of this enumerated data type.

enum REGISTERS U16{
REG_TCR1, REG_TCR2, // Counter registers

|3
CPU32 Register Enumerated Data Types

The CPU32 register enumerated data types provide the mechanism for referencing the CPU32
registers. These enumerated data types are used in commands that reference the CPU32 registers
such as the register write commands that are defined in the Write Register Script Commandssection.

The following enumeration provides the mechanism for referencing the CPU32's 8-hit registers.

enum REGISTERS U8/{
REG_CCR, // Condition Code Register
|3

The following enumeration provides the mechanism for referencing the CPU32's 16-bit registers.

enum REGISTERS_U16 {
REG_SR /I StatusRegister

|8
The following enumeration provides the mechanism for referencing the CPU32's 32-bit registers.

enum REGISTERS U32 {

REG_PC, REG_VBR, /I Program Counter, Vector Base Register
REG_USP, REG_SSP, // User and Supervisor Stack Pointers
REG_SFC, REG_DFC, /I Alternate Function Code Registers
REG_DO, REG_D1, REG_D2, REG_D3, /I Dataregister DOto D3
REG_D4, REG_D5, REG_D6, REG_D7, /I Dataregister D4to D7
REG_AO, REG_A1, REG_A2, REG_A3, // Addr register AOto A3
REG_A4, REG_A5, REG_A6, REG_AY7, // Addr register Adto A7

3

CPU16 Register Enumerated Data Types

The CPU16 register enumerated data types provide the mechanisms for referencing the CPU16
registers. These enumerated data types are used in commands that reference the CPU16 registers
such as the register write commands that are defined in the Write Register Script Commandssection.

The following enumeration provides the mechanism for referencing the CPU16's 4-hit registers.
enum REGISTERS U4 {
REG_XK, REG_YK, REG_ZK,REG_SK , REG_PK,REG_EK
|3
The following enumeration provides the mechanism for referencing the CPU16's 8-hit registers.
enum REGISTERS U8 {
REG_A, REG_B,REG_XMSK, REG_YMSK,
|8
The following enumeration provides the mechanism for referencing the CPU16's 16-bit registers.
enum REGISTERS_U16{
REG_D, REG_E, REG_IX, REG_lY, REG_IZ,

REG_SP, REG_PC, REG_CCR,
REG_HR, REG_IR, REG_AMLO,

|3
The following enumeration provides the mechanism for referencing the CPU16's 32-bit register.

enum REGISTERS U32{
REG_AMHI, // MAC Accumulator M SB, bits[35:16]

65

TRACE BUFFER AND FILES

Overview

Trace files have two primary purposes; they are useful for generation of afile that appears identical
to the trace window but can be loaded into afile viewer to access advanced search capabilities, and
they are used to load into a post-processing facility for advanced trace analyses. The various
capabilities and settings are focused on these two purposes.

Generating Viewable Files

Viewable trace files can be generated by selecting the Trace buffer, Save As ... submenu from the
Files menu. Note that the trace buffer is about five times larger than what appears in the trace
window. A viewable trace file can also be generated using script commands. See the File Script
Commands section.

Because viewable files are appropriate only for things like advanced search capabilities, no error or
warning is generated if the underlying trace buffer has overflowed.

Generating Par seable Files

Parseable files can be generated only by using the script commands described in the File Script
Commands section. To ensure generation of deterministic parseable trace files, these files can be
generated only if the selected trace events are enabled within MtDt and the trace buffer has not
overflowed when generating atrace file from the buffer.

For large trace files it is best to use the streaming capability, thereby avoiding possible trace buffer
overflow issues.

Parsing the Trace File

All post processing on the trace files should be done on files generated using the "parseable” option.

Although the file format is intended to be self-explanatory, it is purposely left undocumented to
retain flexibility for future enhancements. Instead, it is recommended that those wishing to post-
process the trace files use the free trace file parse source code available from ASH WARE. The
public methods in the TraceParser class are fully documented and will remain stable for all future
releases.

The trace file parser's source code is released to the public domain under the GNU licensing
agreement. You should familiarize yourself with the restrictions imposed by the GNU license
before using the source code.

ASH WARE intends to provide as a service the generation of parser file post processing
capabilities. For instance, TPU latency calculations such as minimum, maximum, average, and

standard deviation would be one excellent application. All such utilities will remain in the public
domain.

Trace Buffer Size Consider ations

The trace buffer is a set size. To increase the effective size it is often desirable to disable certain

66

types of events. Disabling and enabling of trace events is accomplished by selecting the Trace
submenu from the Options menu.

67

TEST VECTOR FILES

Overview

Test vector files are currently available only for TPU and eTPU targets and are target centric in that
they can act only on the specific target into which they have been loaded. Future versions of this
software will globalize test vector files so that they can act on multiple targets and on any

addressable bit in any target's address space.

The TPU simulation engine provides a complex test vector generation capability. This allows the
user to exercise the simulated TPU with signals similar to those found in a typical TPU

environment. Test vector scripts are read from user-supplied test vector files and normally have a
"vector" extension. Test vector files are used for creation of "high" or "low" states, typically at the
TPU’s /O pins. Note that this capability is available only for the TPU simulation engine.

It is helpful to compare test vector files to primary and ISR script commands files. Roughly, test
vector files represent the external interface to the TPU, while script commands files represent the
CPU interface. Test vector files are treated quite differently from script commands files. While
script commands file lines are executed sequentially and at specific simulated times, test vector files
are loaded al at once. Test vector files are used solely to generate complex test vectors on
particular TPU Simulator nodes. As MtDt executes, these test vectors are driven unto the specified
nodes.

Test Vector Generation Functional M odel

| [TPy

Master Wave

Test Form | I_ Channel 7

vector Generator
Clock

Wave

Form _I_I_ Channel 2

Generator

]

Wave

Form _I_I_ T2 Clock

Generator

The test vector generation model consists of a single master test vector clock and a number of wave
form generators. The same master test vector clock clocks all wave form generators. The wave
form generators cannot produce waveforms whose frequencies exceed that of the master test vector
clock.

A wave form might consist of aloop in which a node is driven high for 10 master test vector clock
periodsthen low for 15. Theloop could be set up to run forever.

68

Test vector files provide the following functionality.
? Themastertest vector clock frequency is specified.
? Thewave form generators are created and defined.
? Waveform outputs are connected to TPU nodes.

? Descriptive names are assigned to TPU nodes (i.e.,, TPU channel 7's pin is named
UART_RCV).

? Multiple TPU nodes are grouped (i.e., group COMM consists of UART_RCV1 and
UART_RCV2).

? Complex Boolean states are defined.

Command Reference

The following test vector commands are available.

? Node

? Group

? State

? Frequency
? Wave

In addition there is an example of the waveforms generated for an automobile engine monitor
system.

Comments

Test vector files may contain the object-oriented, C-style double backslash comments. A comment
field is started with two sequential backslash characters, //. All text starting from the backslashes
and continuing to the end of the line is interpreted as comment. In the following example the first
lineisacomment while the second is an acceptabl e test vector command.

/I Thisisa comment.
define UART CH5

Test Vector " Node' Command

node <Name> <Node>

The node commands assign the user defined name Name to a node Node. Note that depending on
the microcontroller, the input and output from each channel may (or may not) be brought to external
pins. Pleaserefer to the Freescale literature for the specific microcontroller being used.

Standard eTPU Nodes

- chQ.in Channel O'sinput pin

- chO.out Channel 0’soutput pin
- chlin Channel 1'sinput pin

- chl.out Channel 0’soutput pin
- ch31.in Channel 31'sinput pin
- ch31.out Channel 31’ soutput pin

69

- terclk

eTPU external clock input pin

I'n the example shown below the name A429Rcv is assigned to the eTPU’ s channel 5 input pin.

node A429Rcv ch4.in
Standard TPU Nodes

- CHO Channel 0's1/O pin
- CH1 Channel 1's1/0O pin
- CH 15 Channel 15's 1/O pin
- TCR2

TPU Counter 2 gate/clock input pin

In the example shown below the name UART is assigned to the TPU’ s channel 5 1/O pin.

define UART CH5
Thread Activity Nodes

Thread activity can be extremely useful in both understanding and debugging eTPU and TPU
functions. The simulator providesthe following thread activity nodes.

- ThreadsGroupA
- ThreadsGroupB
- ThreadsGroupC
- ThreadsGroupD
- ThreadsGroupE
- ThreadsGroupF
- ThreadsGroupG
- ThreadsGroupH

These nodes can be renamed. In the following example, the ThreadsGroupB node is assigned the
name A429RcvThreads. Note that the primary purpose of renaming these nodes is to provide a
more intuitive picture in the logic analyzer window, as shown below. See the Logic Analyzer
Options Dialog section for more information on how to specify groups for monitoring of TPU and

eTPU thread activity.
node RcvThreads ThreadsGroupB

QeTpul: Logi

IRm-A vl """"""""__"""_"__""""_"__"""“""""""""15 2
RevB =
[RevThreats -] | | l | | !'

¥ Auto-Seroll = 4]] v | =

ﬁ_ﬂ g 1.846,820.1 n8 Mouss: 1.959.751.4 n8

o5 &

Data Start: 000,000.0 nS Context: 000,000.0 nS Current Time: 3,382.000.0 n8
& | 5'3‘| Laft Cursor: 1,848,531.2 n§ Delta Cursor: 109,509.2 n§ Right Cursor: 1,958,040.3 nS

Test Vector " Group" Command

group <GROUP_NAME> <NODE 1> [NODE 2] ... [NODE N]

The group command assigns multiple nodes NODEs to a group name GROUP_NAME. These
nodes can be referred to later by this group name. The group name may contain any ASCII
printable text. These group names are case insensitive. Up to 30 nodes may be grouped.

define ADDRESS1 ch5
define ADDRESS2 ch7
define DATA ch3

70

group PORT1 ADDRESS1 ADDRESS2 DATA
In this example a group with the name PORT1 is associated with TPU channel pins 5, 7, and 3.

Test Vector " State' Command

state <STATE_NAME> <BIT_VALUE>

The state command assigns a bit value BIT_VALUE to a user-defined state name STATE_NAME.
State names may contain any ASCII printable text. These state names are case insensitive. Bit
values must consist of a sequence zeros and ones. The total number of zeros and ones must be
between one and 30.

state NULL 0110
In this example a user-defined state NULL is associated with the bit pattern 0110.

Master Test Vector Clock " Frequency" Command

frequency <FREQUENCY>

The frequency command sets the master test vector clock to FREQUENCY which is afloating point
number whose terms are million cycles per second (MHZz). All test vectors are set by this frequency.
Since the entire test vector file is loaded at once, if a test vector file contains multiple frequency
commands, only the last frequency command is used and all previous frequency commands are
ignored.

frequency 1

In this example the master test vector generation frequency is set to one MHz. Thisis a convenient
test vector frequency because its period of one microsecond makes timing easy to calculate.

Test Vector "Wave' Command

The wave command creates and defines a new wave form generator. There is no limit to the
number of wave commands that may be used in a test vector file. The number of wave form
generatorsis equal to the number of wave commands found in the test vector file.

wave <GROUP> <STATE REPEAT> <(STATE REPEAT <...>) REPEAT> end

The wave command causes the nodes of GROUP to be stimulated by the state and repeat count pairs
STATE REPEAT. Multiple states and repeat counts are allowed. A special infinite repeat count, *,
generates an infinite repeat count. This command may span multiple lines. An end statement must
terminate the command.

wave OUTPUTS
(OFF 5 DRIVE_A 1 DRIVE_B 2)3
OFF *

end

The resulting wave form from this example is shown below. The wave form begins with signal A
and signal B being off for five master test vector clock periods. Signa A is then driven for one
period. Then signal B is driven for two periods. These three states constitute a loop which executes
three times. After the loop has executed three times the OFF state is driven forever. Note that the
NODE, GROUP, STATE, and FREQUENCY commands are omitted from this example for
simplification purposes.

71

a [JL 1]
S I s e

Test Vector Engine Waveform Example

/I File: ENGINE.Vector

/[AUTHOR: Andrew M. Klumpp, ASH WARE.

/[DATE: 950404

1

// DESCRIPTION:

/I This generates the test vectors associated with afour cylinder

/I car. Thefour spark plugsfirein the order 1,3,2,4. For convenience

/I an engine frequency is chosen such that one degree corresponds to

/I 10 microseconds (10 microseconds will be written as 10us). A test vector
/I frequency is chosen such that one degree corresponds to one time-step. The
/I test vector frequency is MtDt'sinternal test vector timebase.

/I Within each engine revolution two spark plugsfire.

/I ASSIGN NAMES TO PINS
/I Assign the descriptive names to the synch and spark plug signals.

node Synch ch3
node Spark1 ch8
node Spark2 chll
node Spark3 ch6
node Spark4 ch4

/I ASSOCIATE PINSWITH A GROUP

/I Make agroup named SYNCH with only the SYNCH TPU channel asamember
group SYNCH Synch

I/ Make agroup named SPARK S that consists of the four spark plug signals
group SPARKS Spark4 Spark3 Spark2 Spark1

// DEFINE THE SYNCH STATES

/I The synch signal can be either pulsing (1) or waiting (0).
state synch_pulse 1

state synch_wait 0

// DEFINE THE SPARK FIRE STATES

/I There are five states:

/I Thereisone state for each of the four spark plugsfiring.
/I Thereisone state for none of the spark plugsfiring.
state FIRE4 1000

state FIRE3 0100

state FIRE2 0010

state FIRE1 0001

state NO_FIRE 0000

/l SET THE TEST VECTOR BASE FREQUENCY

/I Inorder to have a convenient relationship between time and degrees
/I an engine revolution is made to be 3600us such that one degree corresponds

72

//'to 10us. Thus a convenient test vector time-step period of 10usis chosen.

/I frequency = 1/period = 1/10us = 0.1MhZ

/I (Frequency is expressed in MHz; thisis amodification of a previous version
/I of the User Manual.)

frequency 0.1

/l CREATE/DEFINE THE SYNCH WAVE FORM
/I This generates a one degree (10us) pulse every 360 degrees (3600us).
wave SYNCH (synch_pulsel synch_wait 364) * end

/| CREATE/DEFINE THE SPARK WAVE FORM
/I Each spark is equally spaced every 1/2 revolution or 180 degrees (1800us).
/I Each spark plug triple fires and each fire lasts one degree (10us).
1
/l'In addition thereis a 17 degree (170us) lag of thiswave form
[l relative to the synch wave form.
wave SPARKS
no_fire17 // Thiscreatesa 17 degreelag

(/I Enclose the following in a bracket to generate aloop/
/I Thefirst plug fire cycle lasts five degrees (50us).
/I The spark plug firesthree times.
firel 1 no firel firel1 no_firel firel 1
/I The delay between fire cyclesis 180 degrees
/l'lessthe five degree fire cycle.
/1 180-5=175 degrees
no_fire 175

/I Thethird plug fires next.
fire31 no firel fire31 no firel fire31

/I Give another 175 degree delay.
no_fire 175

/I The second plug fires next.
fire21 no_firel fire21 no_firel fire21

/I Give another 175 degree delay.
no_fire 175

/I The fourth plug fires next.
fired 1 no firel fired1 no firel fired 1

/I Give another 175 degree delay.
no_fire 175

) * I/ Enclose the loop and put the infinity character, *.
end

Thefollowing wave form is generated from the above example.

73

SPRRE 4

SPARE 3

SPARK 2
Il seark 1
| SYNCH

74

FUNCTIONAL VERIFICATION

Overview

The functional verification capabilities are currently intended solely for the eTPU/TPU Stand-Alone
Simulators. Future versions of this software will extend these capabilities so they are useful for
other targets and in a multiple target environment.

Version 2.0 of MtDt has an increased emphasis on functional verification and especially the
automation of these functional verification capabilities using script commands. These capabilities
can be grouped as data flow verification, pin transition behavior verification, and code coverage
verification. The following diagram shows a hardware perspective of functional verification.

Data Flow Pin Transition
Verification Behavior Verification
= TPU
CPU Interface Pin External
Registers TPU Microcode Transitions Hardware
Code Coverage
Verification

Data flows between the TPU and the CPU via interface registers. Data flow verification provides
the capability of verifying this dataflow.

Pin transitions are generated by the TPU or by externa hardware. Pin transition verification
capabilities allow the user to verify this pin transition behavior.

Code coverage provides the capability to determine the thoroughness of a test suite. Code coverage
verification allows the user to verify that atest suite thoroughly exercises the microcode.

A Full Life-Cycle Verification Per spective

The following describes a typical software life-cycle. Initially, a set of requirements is established.
Then the code is designed to meet these requirements. Following design, the code is written and
debugged. A set of formal tests is then developed to verify that the software meets the
requirements. The softwareisthen released.

Now the software enters a maintenance stage. In the maintenance stage, changes must be made to
support new features and perhaps to fix bugs. Along with this, the formal tests must be modified
and rerun. Then the software must be re-rel eased.

Thislife-cycle can be described as having three stages: development, verification, and maintenance.

While version 1.0 of MtDt was primarily a development tool, version 2.0 has an increased emphasis

75

on capabilities that address the verification and maintenance stages. As such, while version 1.0
answers the development question of "What is the TPU doing?' version 2.0 answers the verification
question of "Are the tests complete?' and the maintenance question of "What has changed?"

Version 2.0 also emphasizes the automation of these tests and the generalization of results in terms
of simple pass/fail criteria. Infact, two pass/fail criteria can be defined for an entire test suite.

Data Flow Verification

Data flow verification is one of the verification capabilities for which an overview is given in the
Functional Verification chapter. Data flows between the TPU and the CPU primarily across the
Channel Interrupt Service Regquest (CISR) register and the parameter RAM. The data flow
verification capabilities address data flow across these registers.

The parameter RAM data flow is verified using the verify_ram_word(X,Y,Z) and
verify _ram_bit(X,Y,Z,V) script commands described in the TPU Parameter RAM Script Commands
section.

The data flow across the CISR register is verified using the verify_cisr(X,Y) script command
described in the TPU Channel Interrupt Service Register Script Commands section.

In the following example data flow across channel 10's CISR and parameter RAM is verified at a
simulated time of 100 microseconds and again at 250 microseconds.

/ Wait until MtDt hasrun 100 micro-seconds.
at_time(100);

/I Verify that channel 10's CISR is set.
verify_cisr(0xa,l);

/I Verify that channel 10’s parameter 2 bit14 isset.
verify_ram_bit(0xa,2,14,1);

/I Verify that channel 10's parameter 3is 1000 hex.
verify_ram_wor d(0xa,3,0x1000);

/I Verify that channel 10's parameter 5is 1500 hex.
verify_ram_wor d(0xa,5,0x1500);

/I Clear channel 10'sCISR.

clear_cisr(0xa);

/[Wait until MtDt runs an additional 150 microseconds.
wait_time(150);

/' Verify that channel 10's CISR is set.
verify_cisr(0xa,l);

/I Verify that channel 10's parameter 2 bit 14 iscleared.
verify_ram_bit(0Oxa,2,14,0);

/I Verify that channel 10's parameter 3 is 3000 hex.
verify_ram_wor d(0xa,3,0x3000);

/I Verify that channel 10’'s parameter 5is 3500 hex.
verify_ram_wor d(0xa,5,0x3500);

Pin Transition Behavior Verification

Pin transition behavior verification is one of the verification capabilities for which an overview is
given in the Functional Verification chapter. Pin transition behavior verification capabilitiesinclude
the ahility to save recorded pin transition behavior to pin transition behavior (.bv) files, the ability to
load saved pin transition behavior files into MtDt, and the ability to verify that the most current pin

76

transition behavior matches the saved behavior.
From a behavioral model perspective these capahilities correlate to the ability to create behavioral
models and the ability to compare source microcode against these behavioral models. The emphasis

in MtDt is on the automation of these modeling capabilities through script commands, athough the
capabilities are also available directly from the menus.

Pin Transition Buffers

There are two pin transition storage buffersin MtDt as shown in the following diagram.

Loaded as Simulator Runs Read from File

¥ ¥

Running Buffer | Master Buffer
of Recorded Pin Compare of Pin Transition
Transition Behavior| e==> Behavior
Saved to File

The running buffer is filled as MtDt runs. Whenever a pin transition occurs information regarding
this transition is stored in this buffer. This buffer can then be saved by selecting the Behavior
Verification, Save submenu from the File menu.

The master buffer can be loaded only with pin transition behavior data from a previously saved file.
This file forms a behavioral model of the source microcode. Changes can be made in the source
microcode and the changed microcode can be verified against these behavioral models. These files
are generated by selecting the Behavior Verification, Open submenu from the File menu, or by the
read_behavior_file("filename.bv") script command.

There are two options for verifying pin transition behavior against the previously-generated
behavioral model. The first option is to continuously check the running pin transition behavior
buffer against the master pin transition behavior buffer. This is selected either by the
enable_continuous_behavior() script command or from the Enable Continuous Verification
submenu from the Options menu. The second option is to perform a complete check of the running
buffer against the master buffer all at once. This is selected using the verify_all_behavior() script
command or from the Options menu.

A count of failuresis displayed in the Configuration window. This count isincremented whenever a
behavior verification failure occurs.

There are several considerations regarding these behavioral models. The first is buffer size. The
maximum behavioral buffer size is currently set at 100,000 records, though this may increase in
future releases. If the number of recorded pin transitions equals or exceeds this buffer size then the
buffer rolls over and verification against this buffer is not possible. A warning is generated if the
user attempts to save a master behavior verification file when the buffer hasrolled over.

The second consideration is TCR2 pin recording. Normally TCR2 pin transitions are not written in
these buffers. This is because the recording of TCR2 pin transitions very quickly fills up the buffer
and causes the buffer to quickly roll over. When the buffer rolls over verification is not possible.

77

Code Coverage Analysis

Code coverage analysis is one of the verification capabilities for which an overview is given in the
Functional Verification chapter.

There are two aspects to code coverage. The first aspect is the code coverage visual interface while
the second aspect is the coverage verification commands.

Code Coverage Visual Interface

The visual interface is enabled and disabled using within the IDE Options dialog box. When thisis
enabled, black boxes appear as the first character of each source code line that is associated with a
microinstruction. As the code executes, and the instruction coverage changes, these black boxes
changeto reflect the changein the coverage. Thisis summarized below.

I A black box indicates a non-branch instruction that has not been executed.

I A blue box indicates a branch instruction that has not been executed.

D A green box indicates a branch instruction where the branch path has been traversed.
I A red box indicates a branch instruction where the non-branch path has been traversed.
D A white box indicates afully covered instruction.

Code Coverage Verification Commands

The code coverage verification commands, described in the Code Coverage Script Commands
section provide the capability to verify both instruction and branch coverage percentages on both an
individual file basis and a complete microcode build. [If the required coverage has not been

achieved then a verification error message is generated and the count of script failures found in the
configuration window isincremented.

Code Coverage Report Files

Code coverage report files can be generated using the write_coverage file("filename.Coverage")
script command described in the Code Coverage Script Commands section. Code coverage report
files can also be generated directly from the File menu by selecting the Coverage submenu. Thisis
described in the Files Menu section.

The top of the code coverage report file contains a title line, a copyright declaration line, and atime
stamp line.

Following this generic information is a series of sections. The first section provides coverage data
on the entire microcode build. Succeeding sections provide coverage information on each file used
to create the microcode build.

Each section contains a number of lines that provide the following information. The instruction line
lists the total nurber of instructions. Both regular and branch instructions are counted, but entry
table information is not. The instruction hits line lists the number of instructions that have been
fully covered. The instruction coverage percent line lists the percent of instructions that have been
covered. The branches line lists the total number of branch paths. This is always an even number
because for each branch instruction there are two possible paths (branch taken and branch not
taken.) If the branch path has been traversed then this counts as a single branch hit. Conversely if
the non-branch path has been traversed then this also counts as a single branch hit. The branch
instruction is considered fully covered when both the branch-path and the non-branch-path have

78

been traversed. The branch coverage percent line contains the percentage of branch paths that have
been traversed.

Flushed instructions for which a NOP has been executed are not counted as having been covered.

An example of such afilefollows.

/11l Code coverage analysisfile.
/11l Copyright 1996-1997 ASH WARE Inc.
/111 Sun June 02 09:30:30 1996

Total
Instructions: 135
Instruction Hits:. 57
Instruction Coverage Percent: 42.2

Branches: 60

Branch Hits: 16

Branch Coverage Percent: 26.7
MAKE.ASC

Instructions: 2

Instruction Hits: 0
Instruction Coverage Percent: 0.0

Branches: 0

Branch Hits: 0

Branch Coverage Percent: 100.0
toggleUC

Instructions:; 5

Instruction Hits: 5
Instruction Coverage Percent: 100.0

Branches: 0

Branch Hits: 0

Branch Coverage Percent: 100.0
pwm.UC

Instructions: 24

Instruction Hits: 14
Instruction Coverage Percent: 58.3

Branches: 12

Branch Hits: 3

Branch Coverage Percent: 25.0
linkchan.uc

Instructions: 8

Instruction Hits: 0
Instruction Coverage Percent: 0.0

Branches: 0

Branch Hits: 0

Branch Coverage Percent: 100.0
uart.UC

Instructions: 58

Instruction Hits: 38

Instruction Coverage Percent: 65.5
Branches: 30

Branch Hits: 13

Branch Coverage Percent: 43.3

79

Regression Testing

Regression Testing supports the ability to launch MtDt from a DOS command line shell. Command
line parameters allow specific teststo be run. From the command line the project file that is run and
the primary script file(s) that are loaded into each target are specified. Command line parameters
also are used to specify that the target system automatically start running with no user intervention,
and to accept the license agreement thereby bypassing the dialog box that would otherwise open up
and require user intervention. A script command is used to terminate MtDt once all the tests have
been run.

Upon termination, MtDt setsthe error level to zero if no verification tests failed, and otherwise error
level is set to be non zero. This error level is the application’s termination code and can be queried
within abatch file running under the operating system’s DOS shell. By launching MtDt multiple
times, each time with a different set of tests specified, and by checking the error level each time
MtDt terminates, multiple tests can be run automatically and a single pass (meaning all tests passed)
or fail (meaning one or more tests failed) result can be determined.

Note that this only works in operating systems that support access to exit codes from a batch file.
Windows 98 does not support this. True operating systems such as Windows XP Professional,
Windows 2000 Professional, and Windows NT 4.0. do support automation.

%4 Command Line Parameters
When launching any MtDt application, such as a debugger or simulator, the following command
line options support Regression Testing.

? -h Printsalist of all the command line options

? -p<ProjectFileName> L oads the specified project file

? -s<ScriptFileName> L oads the specified script file (single target)

? -s<TargetName>@@<ScriptFileName> Loads ascript file into a specific target

? -d<DefinedText>In script commands file, #define DefinedText

? -If5<LogFileName.log> Logsmessagesto end of thisfile.

? -tn<TestName> Assignsanameto atest (usedin logfile.)

? -Quite Disables display of dialog boxes
? -lAcceptLicense Skipsthe startup license agreement dialog box
? -AutoRun Setsthe target system to running

Test Termination

Termination of MtDt and the passing of the test results to the command line batch file is a key
element of Regression Testing. At the conclusion of a script file, MtDt can be shut down using the
exit script command, as described in the System Commands section. This command causes the
application's termination error level to be set to be non-zero if any verification tests failed, or zero if
all the tests passed.

The overall strategy in ensuring that a zero error level truly represents that all tests have run error
free and to completion is to treat any unusual situation as afailure. Specifically, a failing non-zero
termination code will result unless the following set of conditions have been met.

? Noverification tests are allowed to fail in any target.

80

? All targets must have executed al their script commands.

? MtDt must terminate through the exit(); script command. Abnormal termination such as
detection of afatal internal diagnostic error resultsin a non-zero error level.

If the user closes the application manually, for instance by selecting "close" from the system menu,
then the error level is set to non-zero.

Regression Test Example

The keys to successful Regression Testing is the ability to launch MtDt multiple times within a
batch file that runs in a DOS command line shell and to verify within this batch file that the tests
that were automatically run had no errors. These multiple launches of MtDt, and the tests contained
therein, form atest suite.

The following is a batch file used to launch the TPU Simulator multiple times. Note that there is
only asingle target such that no target must be specified on the command line. Had this been a test
running in a multiple-target environment, the target name would have to be specified along with
each script file.

echo off
path=%path%;" C:\\Program Files\ASH WARETPU Simulaton;"

TpuSimulator.exe —pTest1l. TpuSimProject —sTest1. TpuCommand -AutoRun -l AcceptLicense
if %ERRORLEVEL% NEQ 0 (goto errors)

TpuSimulator.exe —pTest2.TpuSimProject —sTest2. TpuCommand -AutoRun -1 AcceptLicense
if %ERRORLEVEL% NEQ O (goto errors)

echo EEEE SRR SR RS RS EEEEEEEEEEEREEEEEEEEEREEEEREREEEEEES

echo SUCCESS, ALL TESTSPASS

eChO khkkkkhkhhhhkhkhkkkkkhkhhhhhhhhhdhdxdddddhhddhhhhkhxxxrrrxdx*

goto end

.errors

echo khkkkhkhkhhkhkhkhkhkkkkhkhkhkhhhhhhhhhhhkhkhkhhhhhhhhhhkrrkrhkhhdd

echo YIKES, WE GOT ERRORS!!

echo khkkkhkhkhkhkhkhkhhkkkkhkhhhhhhhhhdkhhhdddhhhrkhkhkhdhhhrxxxx

:end

If the above test were named TestAll.bat then the test would be run by opening a DOS shell and
typing the following command

C\TestDinTestAll

"4 Cumulative Logged Regression Testing

Cumulative logged regression testing supports the ability to run an entire test suite without user
intervention, even if one or more of the testsfail. This capability overcomes the problem inwhich a
failure halts the entire test suite until acknowledged by the user. Using this capability, the aert is
logged to afilerather than being displayed in a dialog box.

Test completion occurs when the exit() script command is encountered. At this time, a PASS or

FAIL indicator is appended to the end of the log file. Because it is appended to the end of the log
file, the normal usage would be do delete the log file prior to beginning the test suite. Then, upon

81

completion of atest run, the log file grows. At the end of the test suite, the log file can be perused,
and any failing tests are quickly identified.

Note that only certain types of failures bypass the normal message dialog box. For instance, if the
failure log file itself cannot be written, then this generates a failure message in a dialog box which
must be manually acknowledged.

This capability is envoked using a combination of two command line options, shown below.
? -LF5MyLogFilelog -Quite

The first command, -L5MyL ogFile.log specifies that message are appended to the end of alog file
named, "MyLogFile.log."

The second command, -Quite, specifies that the dialog boxes that normally carry test errors or
warnings are not displayed. Note that this command only works in conjunction with —AutoRun, —
I AcceptLicense and —L F5<L ogFileName.log.> If any of these optionsis not selected, then this —
Quite command is ignored. Note also that if the user halts the simulation, then this option is
disabled such that messages shown in dialog boxes will require manual acknowledgement.

It is convenient to name each test run. That is, when MtDt is launched, the command line parameter
shown below applies a name the test run. This name shows up in the log file. This allows the
particular test run that is causing any failuresto be easily identified when perusing the log file.

? -tn<TestName>
Note that command line parameters do not handle spaces will. To include spaces in the name,

enclose the parameter in quotes, as shown below. In the following example, the name, "Angle
Mode" isspecified.

? "-tnAngle Mode"
File Location Consider ations

Although this discussion is equally applicable to the MtDt as a whole it is important to point out
how MtDt locates files within the context of Regression Testing.

MtDt uses a "project file relative" approach to searching and finding almost al files. This means
that the user should generally locate the project files near the source code and script files within the
directory structure. Consider the following directory structure.

C:\BaseDir\SubDirA\Test.Sim32Project
C:\BaseDir\SubDirB\Test.Cpu32Command

To load the script command file, Test.Cpu32Command, the following option could be used
-s..\SubDirB\Test.Cpu32Command

By employing this "project file relative" approach the testing environment can be moved around
without having to modify the tests and therefore the files names can be smaller and easier to use.

Note that this does NOT apply to the log file. The log file is written to the "current working
directory” which is to say, in the directory from which the tests are launched. This exception to the
normal directory locations is used so that multiple project files can exist in different sub-directories,
and the test results can all belogged to the same log file.

82

EXTERNAL LOGIC SIMULATION

External logic simulation is TPU centric since it may be used solely on the I/O pins of TPU targets
and only on an intra-TPU basis. Future versions of the software will extend this capability to work
between any addressable bitsin any target's address space.

Boolean logic that is external to the TPU can be incorporated in a simulation. The logic is simulated
with a single pass per step (each step is two CPU clocks). Logic is placed via the script commands
files using external logic commands.

There are anumber of limitations to the Boolean logic.
? Thereareonly two logic states, one and zero.

? Thelogicissimulated with asingle pass per step (each step istwo CPU clocks).

? All output states are calculated before they are written, and therefore all calculations are
based on the pre-calculated states. Thus it takes multiple passes for state changes to
ripple through sequentially connected logic.

? All Boolean logic inputs and outputs must be TPU channel /O pins.

? Behavior of connected Boolean logic outputs and TPU channel pins configured as
outputsis undefined.

? Behavior of pins connected to Boolean logic outputs and also driven by test vectors is
undefined.

A typical and appropriate use of Boolean logic in conjunction with test vectors is to connect a TPU
channel pin that is configured as an input to the input of the Boolean logic. This pin is then driven
by atest vector file.

Example 1: Driving the TCR2 Pin

In the following example a TPU channel drives the TCR2 pin. The buffer is instantiated from
within a script commands file using the place buffer(X,Y) script command. The buffer’s input is
connected to the TPU channel's pin and the buffer’s output to the TCR2 pin. The X variableis set to
five to make TPU channel five the buffer’sinput. TheY variableis set to 16 asthisisthe index that
MtDt uses for the TCR2 pin.

place_buffer(5,16);

Buffer created by
R place_buffer(x,y);
script command

TPU 7

XMIT #

TCR2 ¢

Example 2: Multi-Drop Communications

In the following multi-drop communications example TPU channel 5 is a communications channel
output. TPU channel 7 is used as a gate to enable and disable the output. Channel 1 is the
communications input. An idle line is low. An AND gate is instantiated using the

83

place_and_gate(X,Y,Z) script command. The gate pin causes an idle (LOW) state on the input by
going low. By going high the gate pin causes the state on the output channel to be driven unto the
input channel.

place_and_gate(5,7,1);

Buffer created by
— place_and_gate(X,Y,2);
script command

TPU /

OUTPUT
GATE
INPUT p:

INTEGRATED TIMERS

Integrated timers measure the amount of time that code takes to execute. This capability isavailable
for all simulated targets aswell asfor hardware targets outfitted with the requisite support hardware.

Integrated timers work with a combination of a special Timers window as well as the source code
windows. Specific timer stop and timer start addresses are specified from within the source code
windows. Completed timing measurements are viewable within the Timers window.

The timer number within a green circle on the far |eft side of the source code window identifies the
start address. Similarly, the timer number within a red circle on the far left side of the window
identifies the stop address. It is possible for the same line of source code to contain multiple timer
start and stop addresses. In this case, only a single circle/timer number will be displayed though all
timers still continue to function.

MtDt supports 16 timers. Each timer has the following states. armed, started, finished, overrun, and
disabled. The state of each timer is displayed in the Timers window. Each timer can be armed in
several ways. Specification of a new start or stop address within a source code window
automatically arms the timer. The timer can also be armed from within the timer window by
clicking on the state field or placing the cursor in the state field and typing the letter ‘A,

When the target hits the start address of an armed timer, the timer state changes to started. When
the target hits the stop address the timer state changes to finished. MtDt then computes the amount
of time it took to get from the timer start address to the timer stop address, and this information is
displayed in both clock ticks and micro-seconds in the timer’ s window.

An overrun occurs when atimer exceeds the capacity of the timing device. For the simulated timers
the limitation is IE96 femto seconds of simulated time. This corresponds to 1E72 years of
simulated time. Thisissignificantly less ominousthan Y 2K.

Virtual Timersin Hardware Targets

For targets that do not support the full number of timers that MtDt supports, the concept of virtual
timers is introduced. MtDt remembers the start and stop addresses of all 16 virtual timers. The
arming of any virtual timer causes a hardware timer to be assigned to that virtual timer. If more
virtual timers are armed than are actually supported by the target hardware's timing device then the
last-armed virtual timer is automatically disabled.

85

WORKSHOPS

Workshops bring order to a chaotic situation. The problem is that with multiple targets, each of
which have many windows, the number of windows may become overwhelming. In fact, it may
become so overwhel ming that without workshops, the multiple target simulator would be unusable.

Workshops allow you to group windows together and view only those windows belonging to that
group. Generally it is best to group by target, so that each workshop is associated with a specific
target, though this is completely configurable by the user. Some windows, such as watch windows
and the logic analyzer windows, are often made visible in multiple workshops. Menus and toolbar
buttons allow instantaneous switching between workshops and selection of the active target. The
name of the active target is also prominently displayed in the top-right toolbar button.

Closely coupled with workshops is the concept of the active target. It is generally best to associate
targets with workshops. Thusly, when the workshop is switched, the active target is aso
automatically switched to the one associated with the newly activated workshop. The active target
is important in that MtDt acts on the active target in a variety of situations. For instance, if the user
commands a single step, the active target is the one that gets single stepped and all other targets are
treated as slave devices and are stepped however much is required in order to cause the active
target's simulation to progress by one step. MtDt makes use of the active target when a new
executable code image is loaded. Clearly the user needs to have the ability to select a new
executable image into a single specific target. But which target should this be? MtDt automatically
selects the active target as the one into which the executable code image is to be |oaded.

To associate workshops with targets, see the Workshops Options Dialog Box section. In that
section there are descriptions of putting workshop buttons on the toolbar, renaming workshops or
automatically giving a workshop the same name of its associated target, and associating workshops
with targets.

When atarget is assigned to a workshop, the windows associated with that target are automatically
made visible within the assigned workshop. It is often desirable to override this, either to make
individual windows visible in multiple workshops or to remove window from specific targets. See
the Occupy Workshop Dialog Box section for a detailed description of how thisis done.

86

OPERATIONAL STATUSWINDOWS

Overview

The target state is displayed in various operational status windows. These windows correspond to
the various functional blocks associated with the specific target. Each of these windows can be re-
sized, scrolled, iconized, minimized, and maximized. Multiple instances of each window may be
opened. Below isalisting of all operational status windows.

Window Groups

Common Windows
The following windows are available on multiple target.
2 "% Threads Window
? Source Code File Windows
? Script Commands File Windows
? Watch Window
? Local Variables Window
? Call Stack Window
? Trace Window
? Complex Breakpoint
? Memory Dump Window
? Timers Window

? Logic Analyzer

eTPU Specific Windows
The following windows are available on eTPU Simulator targets.
? eTPU Channel Function Frame
? €TPU Configuration Window
? eTPU Global Timer and Angle Counters Window
? eTPU Host Interface Window
? eTPU Channel Window
? eTPU Scheduler Window
? €TPU Execution Unit Registers Window

TPU Simulator Specific Windows

The following windows are available on TPU Simulator targets.

87

? TPU Configuration Window

? TPU Host Interface Window

? TPU Scheduler Window

? TPU Microsequencer Registers Window
? TPU Execution Unit Registers Window
? TPU Channel Window

? TPU Parameter RAM Window

? Logic Analyzer

683xx Hardwar e Debugger Windows
The following windows are available for 683xx Hardware Debugger targets.
? 683xx Hardware Debugger Configuration Window
? 683xx ASH WARE Hardware Window
System Integration Module Windows
? SIM Main Window
? SIM PortsWindow
? SIM Chip Selectswindow
Queued Serial Module Windows
? QSM Main Window
? QSM Port Window
? QSM QSPI Window
? QSM SCI (UART) Window
RAM and ROM Windows
? Masked ROM Submodule Window (68336/68376)
? Standby RAM Submodule Window (68336/68376)
? Static RAM Submodule Window (68338)
? TPU Emulation RAM Window (68332, 68336, 68376)
Timer Processor Unit Windows
? TPU Main Window
? TPU Host Interface Window
? TPU Parameter RAM Window
General-Purpose Timer Windows
? GPT Main Window
? GPT Input Captures Window
? GPT Output Compares Window

? GPT Pulse Accumulation Window

88

? GPT Pulse Width Modul ation Window
Counter Timer Module 4 and 6 Windows
? CTM4/CTM6 Bus Interface and Clocks Window
? CTM4/CTM6 Free-Running Counter Submodule Window
? CTM4/CTM6 Modulus Counter Submodule Window
? CTM4 Double-Action Submodule Window
? CTM4 Pulse Width Modulation Submodule Window
? CTM®6 Single-Action Submodule Window
? CTM®6 Double-Action Submodule — Modes Window
? CTM®6 Double-Action Submodule — Bits Window
Miscellaneous Windows
? Real Time Clock Window
? Pardlel Port I/O Submodule Window
TouCAN Windows
? TouCAN Main Window
? TouCAN Buffers Window
Queued Analog to Digital Converter Windows
? QADC Main Window
? QADC Ports Window
? QADC Channels Window

CPU32 Simulator Specific Windows

Thefollowing window is available for CPU32 Simulator targets.
? CPU32 Simulator Configuration Window
? CPU32 Simulator Busses Window
? CPU32 Simulator Interrupt Window

Universal CPU32 Windows

The following windows are available for both the CPU32 hardware and the CPU32 Simulator
targets.

? CPU32 Registers Window
? CPU32 Disassembly Dump Window

CPU16 Simulator Windows

The following windows are available for CPU16 Simulator targets.
? CPU16 Simulator Configuration Window
? CPU16 Register Window
? CPU16 Disassembly Dump Window

89

Sour ce CodeFileWindows

T 5]
Ll TpuSim: Source: toggle.UC] S |
cond hsr1=1,hsrB8=8. =
Init TOGELE :
R -]
| | ram diob <{- @TOGGLE_HI.
au ert := tcr1 + diob;
chan neg_tdl, neg _mrl, neg_1s1, pac := high_low, pin:=high,
write_mer;
| | end.
{ 3 Host16: Source: HostMain.c H=lE
(= . Béch: fa B3DE JSR 3deh EXT28 [4] A
(* STATE : low write chan _cpr{i4,3);
(= [B6ca: 37b5 BEBA LDD #3h THH16 [4]
(* PRELOAD PARAMETER ' ‘gsce: 34 o1 PSHH d IHH8 [2]
(=] 86dB: 37b5 BOOE LDD #t@eh IMH16 [4]
E* ENTER WHEN = 10t gean: ra p2sa JSR 25ah EXT20 [4]
*
E* ACTION : 1 /7 Setup channel 13 to Function 12 (UART) il
* -
(* 2.
(= | Béde: 34 81 PSHH d IHHB [2]
{ | @sde: 37b5 BOGD LDD #8dh IHH16 [&]
%entry start_address | ggop: fa 9312 JSR 312h EXT20 [4]
name = T"fﬁLE—lu'ﬁ'—hl! write_chan_hsrr(13,3);
cond hsr1=8,hsr8=8,M gsag: 3705 8083 LDD #3h IHH16 [4]
. B6ea: 34 01 PSHH d IMH8 [2]
] B6ec: 37b5 BAGD LDD #8dh IHH16 [&] -
e [

These windows display the executable source code that is currently loaded in the target. Each
window displays one sourcefile.

The executable source code is loaded into the target's memory via the Files menu. To load the
executable source code, select the Executable, Open submenu and follow the instructions of the
Load Executable dialog box.

As the executable source code is executed the source line corresponding to the active instruction is
highlighted.

Usually the source file is too large to be displayed in its entirety. The user can use the scroll bars to
view different sections of thefile. Asthe codeis executed the source code line corresponding to the
active instruction appears highlighted in the window.

The user can move the cursor within the file using the Home, End, up arrow, down arrow, Page Up,
and Page Down keys. When adding or toggling breakpoints, and using the Goto-Cursor function,
the cursor location is an important reference. MtDt searches first down, then up, starting from the
cursor, to find a source line corresponding to an instruction.

The executable source code can be quickly reloaded from the Files menu by selecting the
Executable, Fast submenu. This is normally required when the user has made a change to the
executable source code and has re-built it

Mixed Assembly View

To make visible the dis-assembled instructions associated with each line of source code, select the
Toggle, Assembly Mixed submenu from the Options menu. For TPU targets, the 32-bit

90

hexadecimal equivalent of the micro-instruction is displayed. For CPU targets, the actual
disassembly is displayed.

Coverage I ndicators

The little black, green, red, and white indicators on the left side of the source code window are
graphical indications of code coverage as explained in the Code Coverage Analyses section.

Script Commands File Windows

[@ Model16: Scrnpt: Demo_Cpul6Command
/7 Script File -

£/ Dump an image to a disassembly dump file |

dump_file{8x22, Ox4n44, CPU16_CODE_SPACE, "DumpFile.DisAsm",
DIS_ASHM, INCLUDE_ADRS + INCLUDE_HEX);
/7 Write registers

write regd({@xC,REG_ZK);
/7 Write and verify memory
FrIL]
#((U8 =) Bx7008) = Ox92; =
verify_mem_u8{0x7008, 0x92);

-

Al 2P

Although there are several types of script commands windows, only two styles can be viewed within
awindow: primary and ISR. The primary script commands file window displays the open or active
primary script commands file whereas an ISR script commands file window displays a script
commands file that is associated with a TPU channel interrupt. See the Script ISR section. for an
explanation of these two types of script commandsfiles.

A list of the available script commands functional groups is given in the Script Commands
Groupingssection.

The primary script commands file is loaded from the Files menu by selecting the Scripts, Open
submenu and following the instructions of the Open Primary Script File dialog box.

The primary script commands file can be reread at anytime. This is done from the Files menu by
selecting the Script, Fast submenu. MtDt re-executes the file, starting from the first command.
When the primary script commandsfileisreread, MtDt state is not modified.

When MtDt is reset, the user has the option of re-initializing the primary script commands file,
opening a new or modified primary script commands file, or taking no action. If no action is taken,
primary script commands file execution will continue from where it left off before the reset. The
user selects the desired option via the Reset submenu in the Options menu. This submenu activates
the Reset Options dialog box.

When the primary script commands file is reread, its execution starts back at the first line. This
allows the user to modify and then rerun a series of script commands without exiting MtDt.

Only one primary script commands file may be active at atime. Multiple ISR script commands files
may be open at once, but only a single ISR script commands can be associated with each TPU
channel. Note that each | SR script commands file can be associated with multiple TPU channels.

Debugging Capabilitiesin Script Command Windows

These capabilities are available starting in version 3.20. Script commands file windows support
breakpoints. Similar to source code windows, breakpoints can be set, cleared, enabled, and

91

disabled. Seethe Breakpoints Menu section for acompl ete explanation.

A goto line capability is supported within the script commands file windows. Although this can be
activated from the Run menu as described in the Run Menu section, a more convenient method is to
right-click on the desired line. Either method causes the target execution to continue until the
desired script command is executed. Note that if the active line in the script file is beyond the
selected "goto” line the target is reset and then runs to the desired line.

A single step capability is also provided in script commands files. See the Step Menu section for a
detailed explanation.

Watches Window

52M_dem32: Watches M= &3
global data u 2004318071 Qx77777777
global array[7] o 7z By
packet_size u 13 Oxd
i ﬂ 1z Oxd [register DEZ]
ol
ol
Al ja

The Watches window displays symbolic data specified by the user. Both local and global variables
can be displayed within this window. See the Local Variable window to automatically display local
variables.

The watches window consists of a series of lines of text used to display user-specified watches.
Watches can be removed, moved up or moved down. New watches can also be inserted before any
current watch, or at the bottom of the list. The Insert Watch function accesses the Insert Watch
dialog box which allows you to select and/or modify previously defined watches. These functions
are accessed from the Options Menu by selecting an action listed in the Watch submenu. An
equivalent of the Watch submenu is also accessible by right-clicking the mouse from within a
Watches window.

The Watches window has a user-specified symbol on the far left. Thisisthe symbol whose resolved
value the user wishes to be displayed. To the right of the user-defined symbol is an options button.
This button accesses the Watch Options dialog box. In future versions of this software, this dialog
box will allow individual settings for the watch to be specified.

To the right of the options button is a vertical separator bar. You can drag the vertical separator bar
left or right using the cursor. To the right of the vertical separator bar is the symbol resolution field.
If MtDt can resolve a value from the user-specified symbol, MtDt automatically displays it in this
field. Otherwise, MtDt displays a message indicating that the user-specified symbol could not be
resolved.

The user can edit the user-resolution field. In future versions of this software, this will cause the
actual variable values within the targets to be modified.

Symbolic Data Options

The Watches window supports both global and local variables. Variables are resolved by looking at
the innermost local scope first, followed by any outer scopes, in order, then followed by any static
variables, and finally the global scope.

Currently, asubset of C syntax is supported for the left-hand side symbol input:

? Pointers can be dereferenced with the * operator.

92

? Array elements can be accessed withthe [] operator, where the subscript is an integer.
? Structure members can be accessed viathe . or -> operators.
In the current release, only a single operator per watch is supported. Future versions will support a

more full-feature C syntax. Note that code must be compiled with symbolic debug information for
this functionality to be available.

Local VariablesWindow

52M_l,lem32: Local Variables Hi=] B
Function watchExample{) in watchExample.c -
data = 2084318071 BRITITITIY
[cnt =3 THREE | &
packet = BxZFF5h

packet.size =13 Bxd

packet . buffer = Bx20832 "ABCDEFGHI JKLM™

=packet .buffer = 65 ‘A’
= = 78 'H' [register D3]
i = 13 8xd [register D2]

-

A A

The Local Variables window automatically displays all local variables in the current context, along
with their current values. Variable names are listed in a column on the left-hand side of the
window. Values are displayed in a matching column on the right-hand side. The displayed format
is relevant to the variable type. Additionally, if the variable is assigned a register, the register is
output.

Based upon type, variables are automatically expanded. For example, if avariable is of type int*,
the dereferenced pointer is displayed on the next line as an integer. Default expansion is up to three
levels deep, with pointers, arrays, and structures/uniong/bitfields supported. An alternative
expansion level can be specified. See the Local Variable Options Dialog Box section for more
information.

Future enhancements will give the user control over expansion and collapse of variables. Note that
in order for this feature to be available, code must be compiled with symbolic debug information.

In order for this window to correctly identify and display local variables, the proper options for each
compiler must be chosen. For instance, debugging information needs to be included and certain
stack frame requirements must be met. In certain cases, highly optimized code may cause erratic
behavior in this window. See the ASH WARE Web page for a detailed explanation of the correct
compiler settings for each target, and limitations when using certain specific compiler settings.

Note that as the target executes, the contents of the Local Variables window will usually change
quite a bit. This is because each function generally has a unique set of local variables that are
displayed. As the target moves from function to function, only the local variables of the currently
executed function are displayed.

Global variables are not displayed within this window. See the description of the Watches window
for information on how to display global variables.

Local Variable Window Automation

In conjunction with the Call Stack window the Local Variables window can display the local
variables of functions that have been pushed unto the call stack. In a Call Stack window, move the
cursor to a line associated with a function that has been pushed onto the call stack. This causes the
local variables from that function’scontext to be displayed in the Local Variables window.

93

Occasionally it is desirable to lock the local variable to display the local variables of a particular
function. To do this, you must disable the automation. This is done within a Local Variables
window by opening the Local Variable Options Dialog Box and selecting the "lock the local
variables ..." option. Locking and unlocking of the current function’s context can also be done
more quickly by selecting either the "lock" or the "unlock™ options from the popup menu that
appears when you right-click the mouse within a Local Variable window.

Call Stack Window

52Host: Call Stack o] 4|

PTA_DemolInit in platformbDemo.c at line 298, address = Bxb94, frame = Bxffch :J

platformbemoInit{) in platformDemo.c at line 122, address = Bxa%a, frame = Bxffd8,
ash_main() in main.c at line 56, address = Bx&4d2, frame = OxfffA,

-

A | 2y

The Call Stack window displays the function, source code file name and line number, address, and
stack frame pointer associated with stacked functions as shown above.

Call Stack, Local Variables, and Source Window Automation

It is often not sufficient to simply view the functions on the call stack. The Call Stack window
works in conjunction with the source code and the local variable window to show both the source
code line and the stacked local variables associated with any stacked function.

For instance, the second line of the above Call Stack has been selected. This line is associated with
the PTA_Demolnit function. When you move the cursor to this line the source code file shown
below automatically pops into view and the source code line scrolls into view and is highlighted
with yellow.

52 Host: Source: platformDemo.c - Ol =l
-

void PTA_DemoInit(U32 tpuBasefddr, U16 vecBase)

{
const int PTAFuncHum = 8%f;

write chan_func{tpuBaseAddr,8,PTAFuncHum} ;
write_chan_hsrr{tpuBasefddr,8,3);
write_chan_func{tpuBasefddr,1,PTAFuncHum) ;
write rchan hseritnuRasefAdde 1.3 =

Upon selection of the Call Stack window’s second line, the Local Variables window is also affected
as shown below. The highlighted function, PTA_Demolnit had several local variables that were
stored on the stack. The values of these local variables are automatically displayed in the Local
Variables window.

52Hnst: Local Yariable Window - Automatic Tra] 3|
Function PTA DemoInit{) in platformDemo.c i’
[EpuBasefAddr = 16776784 Bxfffedn]
vecBase = 64 BxuB

PTAFuncHum = 15 Bxf

Al M

My Thread Window

This window has a number of user-selectable views and options. The window shown above has
been configured to track all instances of the function, "ARINC_RX." Since multiple channels can

94

run this particular function, the data shown by this window is an accurrulation of al the channels
that have been assigned this function.

O eTpul: ThreadStats _ =
[— THREAD --——- |-- STEPS -|
| Addr Cow Cnt | WC Tot | WC Time
[§] az2pc 141 2 18 36 368 nS IMITIALIZE
1 B2FC 154 2 2 i} 848 nS RE_INIT_INTERRUPT
2 a3ey 174 216 25 4365 588 n5 RECEIVED_DATA_BIT_8_23
3 8368 154 72 23 1538 48 n5 RECEIVED_DATA_BIT_24 31
4 B3EA 154 18 27 3608 548 n5 VUALID_GAP_RAND_DATA
5 Bu78 174 1 8 8 168 n5 VALID GAP_HO_DATA
G ay98 as2 a - a ——— T00 HAHY BITS FAULT
F B84By4 B/2 a - 5] ——— BIT DETECTED IM GAP_HUNY
8 B4EL Bfh a - a -—— LIHE_WEHWT_IDLE_FAULT
9 azea as3 a - a ——— THUALID_THREAD_FAULT
Bl [

TPU and eTPU code executes in response to events. This event-response code is known as athread.
Individual threads are assigned to each event and event combination. A key performance index of
your code is the amount of time each thread takes to execute. Therefore, this thread window is an
important tool for determining the performance of your code.

Two important columns are "WC Steps and "WC Time." These display the worst case number of
execution steps (including flushes) and execution time (also including flushes) for that thread. Note
that this thread will normally execute many, many times in the course of a simulation run, and each
time the thread executes it may take a different path, such that the execution time may vary. The
worst case number shows the very worst (longest) amount of time that the thread takes to execute
through the entire simulation run.

Finding a Thread’ s Source Code

To find the line of source code for each thread, move the cursor within the thread window. The first
source code line of that thread automatically popsinto view and turns yellow, as shown below.

G eTpul: Source: ..\eTP -|3] x|
i + |
// Received an expected data bit, bits 24...31

else if (IsTransitionfAEvent() && (flag@==08) && {(flagl==1}))
[{ |
RECEIVED DATA_BIT 24 31:

[ClearTransLatch{); iy

0 shift_reg.dataf.data31_24>>=1;

0 shift_reg.dataB.data31_31 = chan_keg.dataC.datad_o;

| T (N eTpul: ThreadStats: ARING._RX [func=1] =|O] x|

U { |-—-—- THREAD -—--- |-- STEPS} -|
o | | Addr Cov cnt | uc Tok | WC Time

[§] @z2pc 171 2 18 3 368 nS INITIALIZE
1 B2FC 1/4 2 2 848 n5 RE_IHIT_IHTERRUPT
2 384 1/4 216 25 4365 588 n5 RECEIVED DATA_BIT_ A 23
[3 8268 1/4 72 23 15399&63 nS RECEIUED_DATA_BIT_ 24 31|
L B3E8 1/4 18 27 3608 548 n5 VALID_GAP_AHD_DATA
5 aa78 1/4 1 8 8 168 n5 VALID_GAP_HO_DATA
G 408 B/2 i) - a —-—— TOOD_MANY_BITS_FAULT
7 B4BL 8/2 3] - a -—— BIT_DETECTED_IH_GAP_HUHT
8 B4E4 8/4 a - a ——— LINE_WENHT_IDLE_FRAULT
o ase8 8/3 i) - a ——— TNUALID_THREAD_FAULT
IRE /R [

Re-Executing the Worst Case Thread
If the thread has executed at least once, such that there is aworst case thread time available, then the

95

time at which the thread occurs appears as a yellow vertical line in the logic analyzer window, and
the time at which the thread occurred is shown as the "context time" in the logic analyzer window,
as shown below. To re-execute this thread, "grab" this context time by moving the cursor over the
context time (such that an open hand appears) and depressing the left mouse button (such that a
closed hand appears). With the left mouse button depressed, move the closed-hand cursor to the
right. Position the cursor over the field labeled, "current time," and then release the left mouse
button. The simulation will reset, then run until it reaches the " context time," which was the time at
which the worst-case thread executed.

S| | I [-

'7 Auto-Scroll H 4 I / I 3 I*{
‘@ E"'] 3.280,361.8 n8 Mlomss: 33932931 n8
Data Start: 000,000.0 n3 Context: 3 332.040.0 n§ Current Time: 3,382,000.0 n8
? | Set | Laft Corsor: 112.931.3 n8 Delta Corsor: 31674305 n8 Rizht Cursor: 3.280.361.8 nS

The window shown below is similar to the window set to the ARINC_FX function, except that it is
configured to show only the information from the channel named, "RcvA." Note that this name has
been assigned to this channel in the test vector file using the NODE command, as defined in the test
vector file section. Because it displays only the information from a single channel, it may not reflect
the true worst case.

O eTpul: Thre : =10 x]
STEPS —|
| Addr Cow Cnt | WC Tot | WC Time

a g2pc 141 1 18 18 368 n3 INITIALIZE

1 B2FC 1/4 2 2 L 848 n3 RE_IHIT_INTERRUPT

2 azah 154 15 25 233m8 588 n§ RECEIVED DATA _BIT 8 23

] B368 174 25 23 529 468 nS RECETUVED DATA_BIT_24 31

4 BIEA 174 9 16 123 328 nS UALID_GAP_AHD_DATA

5 a478 B/4 8 - a --- UALID_GAP_HO_DATA

i] au98 B8/2 a - a -—— TOO_MAHY_BIT3_FAULT

¥ BuBhy B/2 a - a -—— BIT_DETECTED_IH GAP_HUNT
8 BREL 854 a - 3] -—— LIHE_WEHWT_IDLE_FAULT

9 asea a8/3 a - 3] -—— TIHUALID_ THREAD_FAULT
£ | 2

One issue with this window is that the worst case threads during initialization are often much worse
that is seen during execution of the function. Since these initialization threads are not normally an
issue it is helpful to be able to clear out al thread data following initialization. This is done using
the script commands described in the Thread Script Commands section

Note that in the above window the Cov (coverage) column shows ¥4 for most of the threads. Thisis
because each of these threads has been configured to respond to four different event vector
combinations, yet the simulation run to this point has covered only one of these. Which of these
event vector combinations has been covered? Select the "ungroup” option to see.

96

%.

Table |-- THREAD --|-- STEPS -|
Addr | Addr Cnt | WC

Tot | WC Time

=10l x]

a8 aa4a B2FC 2 2 L 848 nS RE_INIT_INTERRUPT

1 0042 82FC a - i} —== RE_INIT_INTERRUPT

2 aa4y B2FC a - 8 ---— RE_INIT_INTERRUPT

3 0046 B82FC a - a8 -== RE_INIT_INTERRUPT

L 0048 azpc 1 18 18 360 n§ INITIALIZE

5 aaun a5 88 a - 8 --- INUALID_THREAD_FAULT

i} a84c a5 88 a - a8 --- INUALID_THREAD_FAULT

7 004E a5 00 5} - i} -== INUALID_THREAD_FAULT

8 aasa B4EL a - 8 --— LIME_WENT_IDLE_FAULT

2 8852 8478 a - a8 --- UALID_GAP_NO_DATA

[e eesy B4EY a - 1] ——— LIHE_UWEHT_IDLE_FRULT

11 8856 B3E@ 9 16 123 328 nS VUALID_GAP_AND_DATA

12 80858 B4EY a - a8 -=- LINE_WENT_IDLE_FAULT

13 885a Bu78 a - 8 --- UALID_GAP_HNO_DATA

14 8asc B4EY a - a8 --— LIME_WENT_IDLE_FAULT

15 @O5E 83E0 a - i} --- UALID_GAP_AND_DATA

16 80608 83 84 a - 8 --- RECEIUED_DATA_BIT_@ 23
17 BO62 BuBy4 a - a8 --- BIT_DETECTED_IM GAP_HUNT
18 0064 8368 a - i} --— RECEIUVED_DATA_BIT_24 31
19 8066 8498 a - 8 -—-- TOO_MANY_BITS_FAULT

28 Bo68 83 64 115 25 2338 588 nS RECEIVED _DATA_BIT_@A_23
21 006A auBy 5} - i} --— BIT_DETECTED_IH_GAP_HUNT
22 Be6cC 8368 25 23 529 468 nS RECEIUED_DATA_BIT_24 31
23 B8O6E 8498 a - a8 --- TOO_MANY_BITS_FAULT

24 @o7a 0304 5} - i} --- RECEIVED_DATA_BIT_@ 23
25 Bov2 Bu78 a - 8 --- UALID_GAP_NO_DATA

26 8074 8368 a - a8 --- RECEIUED_DATA_BIT_2Z24 31
27 0076 03E0 5} - i} -=- UALID_GAP_AND_DATA

28 @o78 83 64 a - 8 --- RECEIUED_DATA_BIT_@ 23
29 807A Bu78 a - a8 --- VUALID_GAP_NO_DATA

38 @esc 8368 a - 8 --- RECEIUED_DATA_BIT_24 31
31 867E B3E@ a - a8 --- UALID_GAP_AND_DATA

2l

The "group" and "ungroup" commands allow the same threads from different event vector response
combinations to be grouped together. The window shown has this option set to ungroup. Note that
To get good testing coverage all of these event
combinations should be tested. By setting the window to show all event response combinations it
becomes clear that the simulation run on this window is not fully excersizing the function, and as
such the event vector coverageis poor.

there are 32-event vector combinations.

Trace Window

& —
i -
BESE ** EXCEPTION ** External Interrupt 887,472.0 600882D9B1
16-Bit Write using Supervisor Data Space at address FFCE, 0x1080 (256) 067,472.0 00062D9B1
32-Bit Write using Supervisor Data Space at address FFCA, BxeSe (2678) 007,472.2 00002D9B4
16-Bit Write using Supervisor Data Space at address FFCS8, 0x2004 (8196) 007,472_4 00002D9BA
32-Bit Read using Supervisor Data Space at address 2588, Ax598 (1424) 807 ,472.5 B806862D9BD
I
16-Bit Read using Supervisor Program Space at address 8598, Bx48e7 (18663) B67,472.8 0008682D9C3
16-Bit Read using Supervisor Program Space at address 8592, Bxfffe (-2) BO7,472.9 BOBO2DOCH
B598: 48E7 FFFE MOVEM.L a6/a5/ahfa3/a2/a1/a8/d7/d6/d5/dy/d3/d2/d1/d8,-(A7) Move HMultiple Registers
32-Bit Write using Supervisor Data Space at address FFCY, 0xfFdB (65488) 007 ,473.0 00002D9CY
32-Bit Write using Supervisor Data Space at address FFCA, 0x0 (@) 607,473.2 00002D9CF
32-Bit Write using Supervisor Data Space at address FFBC, 0x0 (@) 607,473.5 00002D9D5
32-Bit Write using Supervisor Data Space at address FFES, 8x8 (@) BA7 . 473.7 BAAAZDODR]
32-Bit Write using Supervisor Data Space at address FFBY4, Bx8 (8) 867,474.8 B0002D9E1
32-Bit Write using Supervisor Data Space at address FFBES, @xfffele (16776734) @87 ,474.2 BABA2DOE7 _
32-Bit Write using Supervisor Data Space at address

2?-Rit Weite ncinn Suneruicne
A

nata

snare

atr

arddrecs

FFAC, Oxfffele (16776734) 007,474.4 00002D9ED
FFag Ay0 @Y OA7 u7h 7 OAAAPNOF3 _J:J
»

97

: : =10l x|
Step 8 067,181.98 000802B576 0078 N
Negate SGL's 8 067,181.1 0008 0O0G@ 0OAB2B578

16-Bit Read using Program Space at address B7ES8, Bx4B82a (16426) 087,110.0 0008Z2B656

16-Bit Read using Data Space at address 8184, Bx6cBa (27658) 067,110.0 00862B656

Time Slot 8 867,118.8 @861 6861 iLs]s 15 g

32-Bit Read using Program Space at address @0A8, Bxacifffff (-1487188993) 867 ,1160_4 A0OAZB6GA
[Step 0 007,118.4 00002B660_00AS |

32-Bit Read using Program Space at address @OAC, BxalBdfFfFf (-1542586369) 067 ,110.5 00082B662

Step 8 887,118.5 808002B662 ABAC

32-Bit Read using Program Space at address BOBS, Bx673bFFFF (1731985407) 007,110.6 00002B66L
b -
N .z

The Trace window displays information relating to the instructions that were executed. The Trace
window displays all information that has been stored in the trace buffer. See the Trace Options
Dialog Box section for information on how to modify the information that is stored in this buffer.

For most simulation models, the data flow between processor and memory can be displayed.
Timing information is included but it should be noted that the most ASH WARE simulation models
use an intuitive rather than a true timing model so these will vary slightly relative to the real CPU,
TPU, or other target model type.

Note that in hardware targets, like the 683xx Hardware Debugger, this window will not function
correctly because many hardware targets do not contain trace buffers. Therefore, MtDt does not
know which instructions executed last. The instructions that are displayed are those from previous
single-steps of the target. Gaps in the trace buffer are noted, and the displayed execution times are
an approximation based on the real time clock of the PC.

Saving Trace Datato a File

The trace data can be saved to a file either directly through the GJI or from within a script
commandsfile. Thisisexplained inthe TRACE BUFFER AND FILES section

TPU Simulation Consider ations

The TPU simulation model provides several additional events that can be viewed in the Trace
window. These are in addition to the normal data flow between TPU and memory and opcode
execution, etc., that are available for most targets. These events include execution steps, time state
transitions, active channel transitions, and four CPU clock NOPs. This window serves two
purposes. It shows the thread of execution, and it can be used to analyze channel service timing.

When the TPU services a particular channel, a 10-clock time slot transition occurs. The states of the
Service Request Latch (SRL) and Service Grant Latch (SGL), as well as a timestamp and a channel
number, are displayed for each time slot transition. The SRL is the fourth field from the left, while
the SGL field is displayed to the right of the SRL field.

When all pending service requests from a particular priority level have been serviced, the TPU
negates the service grant bits associated with those channels. This requires four CPU clocks. For
this event MtDt displays the timestamp and the states of the SRL and the SGL .

Trace/Source Code Automation

The trace window and the Source Code window(s) can be used together. Select aline in the Source
Code Window associated with an instruction execution. The source code file associated with this
line automatically pops into view and the associated line scrolls into view and is highlighted in
yellow. In the TPU trace window shown above, the seventh line has been selected. The line is
automatically displayed and highlighted yellow as shown below.

98

E TpuSim: Source: pta.uc = | jm] |5|

neq_trans@ :
[| if @BPeriod_Heasure then goto next_matchi_pta, flush. (*UB8.3 R.Soja, 6/5/93%)
[| if EMatch then goto accum _time pta, flush. (= Can only be Low Pulse x)
au chan_req := chan_req; (* It's D.K. to update PSL here since =)
chan neg_tdl. (* there are no more Match states. *)
(=UB8.3 R.Soja, Start)
{)
{* Extra code to check for short pulses during flagB=8 states =) =]
(= in High and Low Pulse measurement functions. %)
{)
A1 17

Complex Breakpoint Window

1] T
4N eTpul: Complex Breakpoints | - O] x|

= ComplexBreakpaint
: o (O OutpUt Pin, ¢ UART _WMT, Set
: ! hannel Flag, : UART_#MT, Flagl, Set
= ComplexEreakpoint
i W Program Counter, ; UART_=MT, UART_WRAP, UART_RCY, addr=05x100

Complex breakpoints are added, removed, and modified from within the complex breakpoint
window. Complex breakpoints support the ability to halt the target on the occurrence of one or
more combinations of conditions. Each complex breakpoint operates independently of all other
complex breakpoints.

Each complex breakpoint can have one or more conditionals. When multiple conditionals are added

to the same breakpoint then all conditionals must simultaneously resolve to "true" in order for the
complex breakpoint to halt the target(s). Conditionals are added and modified using the Complex
Breakpoint Conditional dialog box.

Depending on the target, conditionals can include input/output and clock pins, thread activity, host
service requests, and program counter value, variable values or tests, etc.

Memory Dump Window

LN TpuSim: Memory. Program Space = O]

0000: YFFFFEFE 3FFFFFFE BFFFFFF8 1FFFF807 GS8BS8FU/E SCS5C35FA S5C5C33FA E1ELBICT ﬂ

@820: BEOBFEFS 7859FEFF 7AS9FEFF 3CYFF807Y DA4BEFFFF 525CBS5FA 163FFOOB 101DF8OF
@AhG- SAICEEEE AAFCOA42 37ECWEEE Qh4ACEEE NOFFAEEE CLEME484 CHEPEAht 6hAREEEE

E [@Hosﬂ 6: Memory, Data Space M= E3
0t [TTE: o0 60 60 90 52 36 080 60 00 B6 00 B6 00 B6 00 B6 |R6.......... =]
0t pE16: 08 B6 08 B6 00 B6 G0 B6 00 B6 00 B6 60 B6 80 Bé6 | .. _............ -

Ot peze: 88 B6 00 B6 060 B6 80 B6 B8 B6 BB B6 OO B6 BB B6 |i.a....
8t @go3e: 008 B6 00 B6 00 B6 00 Bo 00 B6 DO B6 OO0 B6 GO B6 |-iaa....
81 @gouo: 0@ B6 00 B6 00 BG6 00 B6 00 B6 DO B6 OO0 B6 OB B6 |i.a....
LI_ 08508: 068 B6 OO0 B6 00 B6 060 B6 f8 B6 BB B6 O B6 BB B6 |
. B060: B0 B6 B0 B6 0O B6 60 B6 BB B6 AB B6 BA B6 BAB6 | hd

A H

The Memory Dump Window displays memory. A number of options are available. To change a
viewing option, activate a memory window and from the Options menu by select the desired option
from the Memory submenu.

99

? Memory isviewablein 8-, 16-, or 32-bit mode.
? The ASCIl-equivalent text on the right side can be turned off or on.
? Theaddress space can be specified.

? Thebase address of the window can be specified.

A common development tool deficiency is that the vertical scroll bar is unusable because it causes
too much memory to be traversed. MtDt addresses this problem by limiting the scroll range of the
vertical scroll bar. A memory dump window displays only a small amount of the total address
space. The portion of memory that the memory window displays is specified by the base address
parameter.

TimersWindow

[fz]Model18: Timers [_ [O]x]
Start Stop This Last Last Time

1D State Address Address Ticks Ticks micro-seconds
a AL EEAlli| A0OAAG19@ @AAAR194 OO0AOA2E O0OODGOR2E Aea,n18.
1 Disabled ©0061008 00002000 - FFFFFFFF aee8,000.
2 Finished 00008148 @00A016A OO000Z2A72 00002A73 ae2 ,931.
3 Disabhled G0061088 00682000 - FFFFFFFF aea, 8008,
L] Disabled ©0ODO1000 00002000 - FFFFFFFF a@e,e008.
5 Disabled @00B108A GO0AA2000 - FFFFFFFF a0a8,8008.
[i] Dicabled ©OO0001000 00002000 - FFFFFFFF aea8,000.
¥ Dicahled @OOA1008 A00A2000 - FFFFFFFF aae, 800,
8 Finished @A00AGA98 @0AAA164 OOOB2AFT 0OOB2AE3 ae2,957.
9 Started a0668813a 000000A0 - FFFFFFFF aee8,000.
A Disabled @OOA1008 A00A2000 - FFFFFFFF aae, 800,
B Disabhled G0061088 00682000 - FFFFFFFF aea, 8008,
[H Disabled ©0ODO1000 00002000 - FFFFFFFF a@e,e008.
D Disabled @00B108A GO0AA2000 - FFFFFFFF a0a8,8008.
E Finished 00000092 000000AE 00000007 00000007 aea,881.
F Disahled @OOA1008 A00A2000 - FFFFFFFF aae, 800,

SFfooooofoooootoom

The Timers window displays the state of the 16 ASH WARE timers. See the Integrated Timers
chapter for a detailed explanation.

Each row of the window contains information regarding a single timer. The ID field on the far left
indicates which of the 16 timers the row represents. The State field is to the right of the ID field.
This field indicates the current state of the timer. The possible states are generally disabled, armed,
started, finished, and overrun. Double-clicking with the left mouse button forces the timer into the
next state. The timer can also be forced into a specific state by typing the first letter of the desired
State.

The Start Address and Stop Address fields are to theright of the State field. These fields contain the
addresses that, when accessed by the target, cause the state to change. For instance, atimer in the
armed state changes to the started state when the start address is executed. Then, when the stopped
state is executed, the timer progresses to the finished state.

The This Ticks and the Last Ticks fields are to the right of the Stop Address field. These fields
indicate how many clock ticks of the target have occurred for any timer calculation. Why are these
split into two fields? This allows the last calculated timing to be retained while a new timer
calculation is underway. When atimer is re-armed, the This Ticks field goes blank, while the Last
Ticksfield retains the previous val ue.

To the right of the Last Ticks field is the Last Time field. The Last Time field is identical to the
Last Ticksfield except that the timer result is displayed in micro-seconds instead of clock ticks.

100

Note that the Last Ticks and This Ticksfields use the target's current clock period in the calculation.
Only the start time and stop time are retained by the timers. This means that if the clock period
changes during the course of a calculation, these clock tick calculations will not be correct. Note
also that the time calculation on simulated targets does not use the clock period so this field will be
correct even if the clock period is changed.

eTPU Chann€ Function Frame Window

T 3
W8 eTpu1: channel 0 Context Window 10 x|

Context Frame Window Line 1 :I
Context Frame Window Line 2
Context Frame Window Line 3
[Context Frame Window Line &4 | =

Al AW

The Channel Frame window shows the channel function and static local variables belonging to a
particular channel. Right click the mouse in the window to change the channel.

el PU Configuration Window

:t.‘_:eTpul: Configuration
General
CPU Frequency: 180.888 HHz
CPU Clock: aaaEe0e198
Latest thread is 2 steps (4 clocks)
Active=87.187%, Threads=3, Steps=18
Entry Table Base Addr: 28088 [ETB=85]
TCRCLK Input Pin: High
Active Channel T[B]..T[-4]: 8, 8, 8, @A
Address: 87CA, Rtn: FFFC
ETPU Phase: Hot Supported
Interrupts
Microcode Global Exception: clv
I1legal Instruction: clr
Verification:
Continuous Behavior = OfF
Behavior Failures: 008066888
Script Failures: aeeeanen
Versions:
ETPU: 1, Size: 12 K SCHM, 3 K PRAH.
Simulator: 3.308, Build R
Code: ByteCraft COD, BCLETPUC, @.91.7.987
Files:
Application C:\Mtdt\GUiAvTESTFILES\HEDE .exe
Project: C:\Htdt\TestDataFiles\ETpuCode\AutoRunOregon1ETpu.ETpusimProject
MtDt Build: C:\Mtdt\Bui\TESTFILES%BuildScriptsizzz_1ETpuSim.HtDtBuild
Source Code: CompilerTest.cod
Script: IsrTestPrimary.ETpuCommand
Script Report: IsrTestPrimary.Report
Script Startup: -Ho File Open-
Test UVector: -Ho File Open-
Build: -Ho File Open-
Master Behavior: -Ho File Open-
Semaphores:
Semaphore @ Free -
Semaphore 1 Free -
Semaphore 2 by eTpui
Semaphore 3 Free -

=0l

The CPU frequency is displayed. The eTPU executes at half of this CPU frequency in that a single
eTPU instruction takes two CPU clocks to execute. The CPU clocks shows the number of CPU
clock ticks that have occurred since the last reset. The latest thread in both steps (opcode execution)
and NOPs and CPU clocksisdisplayed. The execution unit activity level sincereset is shown. This
is the total number of CPU clocks divided by the number in which the eTPU was either in a Time
Slot Transition or in athread. The current execution unit address and the address to which the unit

101

will begin executing should areturn statement be encountered are displayed.

The state of the Microcode Global Exception (MGEL/MGE?2) and the Illegal Instruction Flag
(ILFY/ILF2) are displayed which are both part of the ETPUMCR register.

The state of continuous verification (enabled or disabled) is displayed as well as the number of pin
transition behavior and script command failures are displayed.

The eTPU version, size of its Shared Code Memory (SCM), and parameter RAM are shown. The
eTPU simulation engine build are shown. The code generation (generally the Byte Craft eTPU "C"
compiler and version numbers are shown, when available.

The simulator executable with full path, project file, and MtDt build file, eTPU source code file are
displayed. The primary script file along with its parse report file are displayed. The startup script
file is a special file that runs to completion immediately following reset. It is generally not used.
The test vector file and build batch file and any master behavior verification file names (gold file)
are displayed.

The state (locked or free) of each of the four semaphores, along with an indicator of which eTPU is
locking the semaphore, is displayed.

eTPU Global Timer and Angle Counters Window

:":eTpul: Counters ;IEIEI

—————————————— Hodule Configuration Register (HCR) --—-—--
MCR [ELECELE] | GTBE 8..8 | Time bases in both engines are EMABLED
—————————————— Time Base Configuration (TBGR)----—-—--—---

TBCR 42018004 TCR2ZCTL 31..29 | TCR2 Clock source is falling external TCRCLK Signal

| Physical tooth detection on falling TCRCLK pin edge
TCRF 28..27 | External TCRCLK signal is filtered by system clock/2, 2-sample mode
AM 25..25 | ETPU ANGLE mode (EAC) is EMABLED
TCR2P 21..16 | TCR2 prescaler divides by 2 [TCR2P=81]
TCR1CTL 15..14 | TCR1 prescaler clock source is system clock/2
TCR1P 7..8 | TCR1 prescaler divides by 5 [TCR1P=84]

| TCR1 Period: 1688.8 n$

77777777777777 Tooth Program Register (TPR) ——-—-———-
TPR 8838 | LAST 15..15 | Hot the last tooth

| MISSCHT 14..13 | @ missing teeth
| IPH 12..12 | Ho operation
|

| HOLD 1.1 Hormal operation

| TICKS 9..8 838 + 1 Angle ticks in the current physical tooth

| | 68 {dec) angle ticks in each tooth tick
77777777777777 Tick Rate Register (TRR) —————-———————

TRR B5F788 | INT 17..9 | 82FB Integer part of TCR1 clocks in one angle tick
| FRAC 8..0 188 Fractional part of TCR1 clocks in one angle tick
77777777777777 Timer Counter 2 (TCR2) ——————————————
TCR2 88028F | Rotations | 8 Current Rotations/Tooth Count Resets
| Tooth Ticks | 34 Current tooth tick counts
| Angle Ticks | 55 Current angle tick counts
| Angle | 349.17 Current Angle
—————————————— Analyses

Mode: Hormal (PLL operating, next physical tooth not yet detected)

TCRCLK Physical Tooth Detection Window:

Open, a physical pin transition can be detected
TCRCLK Last Tooth

Open, a physical pin transition can be detected

The Module Configuration Registers (MCR) Global Time Base Enable (GTBE) field indicates if the
time bases in the eTPU(s) are enabled.

The Time Base Configuration Register's (TBCR) TCR1CTL and TCR2CTL fields displays the
configuration of the TCR1 and TCR2 counters. The TCR1P and TCR2P fields show both the field
value and the actual divisor of the prescaler. The TCRF displays the filtering options though these
are not simulated by the eTPU Simulation engine. The Angle Mode (AM) bit indicates if angle
mode is enabled.

The Tooth Program Register (TPR) is only used in angle mode. This register may be written only
by the eTPU code. The LAST hit indicates that angle mode should be reset on the next tooth. The

102

MISSCNT field indicates how many incoming teeth are expected to be missing such that the angle
mode PLL will continue to count synthesized teeth and not wait for incoming physical tooth signals.
The Insert Physical tooth (IPH) field allows the eTPU code to tell the angle mode hardware to
proceed as if an incoming physical tooth had been detected. The HOLD field forces the angle
mode logic to halt as if more incoming physical teeth had been detected than were expected. The
TICKS field specifies the number of angle ticks (TCR2 increments) that are in each physical tooth.
As such, this is effectively the PLL multiplier for the difference between the frequency of the
incoming teeth, and the frequency of the synthesized angle ticks.

The Tick Rate Register should be updated by the eTPU code on each incoming physical tooth. Itis
calculated based on the time difference between the last two incoming physical teeth and specifies
the time of each angle tick in TCR2 ticks. In order to reduce error, both an integer (INT) and
fractional (FRAC) portion of the ratio of TCR1 counter ticksto TCR2 ticksis supported.

In angle mode the TCR2's tick rate is proportional to angle instead of time. As such the TCR2
counter may be reset when it completes a rotation, which is every 720 degrees in a typical car. The
number of such rotations since the last reset is shown, as are the number of PLL-synthesized teeth
and the number of synthesized angle ticks. Additionally, the current angle is shown which is based
on 720 degrees per rotation.

Some analysis is provided of the operational state of angle mode. Angle mode isin normal, wait, or
high speed depending on whether the PLL is on track, ahead, or behind. Channel 0 can be
programmed to form a sampling window and the open or closed state of this window is displayed.
The edge which the angle mode hardware is displayed, and it should be noted that this edge must be
programmed to correspond the edge that is also shown which is the edge being detected by channel
0 and which forms a detection window. Spurious operation could result if these do not correspond.
Also, channel 0 can be programmed to form a detection window and the state of this detection
window (closed, opened) is displayed.

eTPU Host I nterface Window

EeTpul: Host Interface i =] |
1F 1E 1D 41C 1B 1A 19 18 17 16 15 14 13 12 11 16 F EDCEBEOAM 9 8 ¥ 6 5 4 3 2 1 @
CFSR: [oo 6o 00 06 60 66 @0 68 G0 06 85 05 85 65 05 64 64 04 04 04 04 00 B3 63 63 63 63 B3 00 62 01

CPR: - - - - - - - - - = — HI HI HI HI HI HI HI HI HI HI HI HI HI HI HI HI HI HI - HI HI
HSRR: 8 8 8 8 & 8 0 @ 8 8 8 6 8 B 8 @ 8 8 8 8 8 8 8 8 8 8 8 B B 8 B 8
FH: 668 00 00 09 G0 60 60 B8 60 00 60 00 OO 6O 0O 6@ 60 00 60 B0 GO 00 68 B0 OO0 OO B0 0P 6O 00 00 6@
Entry: § 8 8§ 8 § 5 5§ % $ 8 § § § § §8 § § 8 8 § 8 § 8 5§ £ 8§ § 58 § 5 8 %
CISR: 8 8 8 8 8 8 0 @ 8 8 8 6 8 8 0 @ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 @0 1
CIER: 8 8 8 8 8 8 0 @ 8 8 8 6 8 8 0 @ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 8
CIOR: 8 8 8 8 8 8 0 @ g 8 8 8 8 @8 8 @ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 1
COTRSR: ® 8 @8 8 8 8 8 @ g 8 8 8 8 @8 8 @ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 8
COTRER: ® 8 8 8 8 @8 8 @ 8 8 8 8 8 @ 8 @ 8 8 8 8 8 8 8 8 8 8 8 8B 8 8 8 8
COTROSR: 8 8 8 8 8 8 8 @ 8 8 8 8 8 @ 8 @ 8 8 8 8 8 8 8 8 8 8 8 8B 8 8 8 8

For each channel the following information is shown. The Channel Function Select Register
(CFSR) shows the eTPU Function, the Channel Priority Register (CPR) shows the priority for that
channel, the Host Service Request Register (HSRR) shows the state of the service request. The
Function Mode (FM) shows the state of these two bits, the Entry shows if the event vector (entry)
table for that channel is being treated as the standard or alternate event vector table.

The Channel Interrupt Status Register (CISR) shows if this interrupt has been issued by the eTPU,
the CIER indicates if the interrupt is enabled and the CIOR indicates if an attempt to set the
interrupt when it was already set occurred and therefore there was an overflow.

The Channel Data Transfer Request Status Register (CDTRSR) shows if this interrupt has been
issued by the eTPU, the CDTRER indicates if the interrupt is enabled and the CDTROSR indicates
if an attempt to set the interrupt when it was already set occurred and therefore there was an
overflow.

103

Note that in response to these enabled and asserted interrupts, specia ISR script command files can
execute as described in the Script | SR section.

eTPU Channd Window

WeTpui:ch3 B - 0] x|
;] B

Hatch: ao1144
TCR2 TCR2

Capture: 16DCES 13C997
TCR1 TCR1

n-le: SET SET

ml: clr clr

tdl: clr clr

EHABLE Hatch and transition servicing
1sr: clr

During thread, EHABLE matches

Input Pin: Low

Output Pin: Low

Output Buffer: Disabled

Output: Hot Delayed

IPAC A: Do not detect transitions

IPAC B: Do not detect transitions

OPAC A: HMatch sets output signal high

OPAC B: Do not change output signal

Either Hatch, Hon-Blocking, Double Transition
Flags: @=clr, 1=clr

Frame Addr: 6589

Active=80.086%, Threads=11, Steps=551

Longest Thread: 89 steps, 8908.88 n3, Addr BABA

There are two versions of the eTPU Channel window. The active channel version displays
information on the active channel (or previously active channel, if noneis currently active) while the
fixed channel version displays information on a particular channel. The following information is
displayed. Right click the mouse when inside this window to specify or change the window flavor.

The value of the 24-bit Match and Capture registers for both action units are displayed. The global
counter (either TCR1 or TCR2) that is used for the match comparison and also for the capture are
displayed. The match comparators condition (either equals only or greater than and equals) is
displayed.

The states of Match Recognition Latch Enable (MRLE,) Match Recognition Latch (MRL), and
Transition Detection Latch (TDL) are displayed. These are the latches in the channel hardware and
may not necessarily match the value in the execution unit window since those in the execution unit
window are sampled at the beginning of each thread. Whether or not matches and transitions result
in aservice request is displayed.

The LSR field shows if there is a pending link into this channel. During a thread matches for the
channel being serviced can be enabled or disabled and thisis displayed.

The input and output pin states are displayed as is the state of the output buffer. Although the
simulator tracks the state of this buffer, thereis no other affect in the simulation engine.

The input detection and output action fields show how the IPACs and OPACs have been configured.
The Predefined Channel Mode (PDCM) is shown. Each channel has two flags and these are shown.
Each channel can have its own private variables within the Channel Function Frame and the
Channel Parameter Base Address (CPBA) of the channel within this frame is shown.

The channel's bandwidth is shown. Bandwidth is defined as the number of clocks in which either a
thread or a Time Slot Transition (TST) for this channel was active divided by the total number of

104

clocks since the last reset. Additionally, the number of threads and the number of steps (instruction
or NOPs) is displayed. The longest thread in both steps (instructions plus NOPs) plus the longest
thread time is displayed.

Click on the longest thread address to display this location in the source code window and to show
thistime in the Logic Analyzer window.

eTPU Scheduler Window

:t.:eTpul: Scheduler ::":;i:\; J =] 3]

1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 18 F EDCB A 9 8 ¥ 6 5 4% 3 2 1 @8
Prty: H ——————— - = — HI HI HI HI HI HI HI HI HI HI HI HI HI HI HI HI HI HI - HI HI
Srl: 8 8 8 8 8 8 0 @ 8 8 8 8 8 B8 8 @ 8 8 8 8 8 8 8 8 8 8 8 8B B8 1 8 8
Sgl: 8 8 8 8 8 8 0 @ 8 8 8 8 8 68 6 @ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 8
HSRR: B8 8 @8 8 8 B8 8 @& 8 8 8 8 8 8 8 @ a 8 8 8 8 8 8 8 a8 8 8 8 8 B 8 8
LSR: a8 8 8 8 8 8 B 8 A 8 a8 8 B B 0 a 8 8 B 8 B B B 8 8 8 B B B B B
M/TSR: 8 8 8 &8 8 8 @ @ 8 8 8 8 8 68 8 @ 8 8 8 8 8 8 8 8 8 8 8 B8 B 1 8 1
Time Slot Assignments: Hed Hi Lo Hi Hed Hi Hi ...

The eTPU’ s microengine responds to the various channels based on a round robin scheduler. The
scheduler bases its servicing decisions on the Channel Priority Register (CPR), the Service Request
Latch (SRL), and the Service Grant Latch (SGL). These latches are affected by the Host Service
Request Register (HSRR), the Link Service Requests (LSRs), and the Match or Transition Service
Requests (M/TSRs), which are also displayed.

The M/TSR is generated from the Match Recognition Latch (MRL), Transition Detection Latch
(TDL), and the Match/Transition Service Request Inhibit (SRI) latch. The M/TSR is formed from
the following logical expression: [MRL and TDL] or SRI.

Each register is broken down by eTPU channel so that the value for each channel is easily found.
Most of these registers can be modified only by the eTPU

€T PU Execution Unit Registers Window
~-10] x|

ter: BLEELEDL fo0888
ert: 0DOBOO pABOBO

p: 64 C3226C
diob: C22ABD
Sr: 4E1ECAH

a,b: 84317h 3BLAGZ
c,d: 3E23D1 DS676F

rar: aaaa
link: [5[5]
chan: aa

Bus: 080008 fo0068
Result: O866889
MAC: FDB6F3,3E7DED
BRAHCH PLA FLAGS
SET, HZ SET
SET, HC SET
SET, HH clr
clr, HU clyr
LSR clr, MBsy clr
HMRLA clr, HRLB clr
TDLA clr, TDLB clr
FM1 c¢lr, FHB clr
PSS clr, PST clr
FPB118 8188

czx o

The Timer Counter Global Registers (TCRL/TCR2) are displayed. The Event Register Timers for
action units A and B are displayed (ERTA/ERTB.) The standard register, P, DIOB, SR, A, B, C, D
are displayed. The Return Address Register (RAR), link, chan are displayed.

105

The execution unit’'s A Bus source, B Bus source, and result bus are shown. These are the buses
internal to the execution unit.

The Multiply Accumulate register (MACH/MACL) are shown. The Zero, Carry, Negative, and
overflow flags for both the execution unit and the MAC unit are shown (Z, C, N, V, MZ, MC, MN,
M,) asisthe Mac Busy flag (MBSY.)

Conditionals are displayed, as seen by the execution unit in that these are the versions of these flags
that are sampled at the beginning of the thread. These include the Link Service Request (LSR),
Match Recognition Latch, and Transition Detection Latch for both action units (MRLA/MRLB,
TDLA/TDLB), the Function Mode Bits (FM1/FMO0), the sampled and current input pin states (PSS,
PST). The upper 8 bits of the P register which are treated as conditionals by the execution unit are
also displayed.

TPU Configuration Window

Availability: TPU Simulation Target

HTpuSim: Configuration H=lE
Clocks, Counters
CPU Frequency:
Prescalers: TCR1 8, TCR2 8@
PSCK 1, DIUZ -, ESPCKE -, ESPCK -
T2CG A, T2CSL -, TCRZPSCKZ -
Verification:
Continuous Behavior = OFF
Behavior Failures: 80800000
Script Failures: goeBag0ee
Uersions:
Device: TPU 1, 512 Instructions
TPU Simulator: 99.98, Build 2
TPU Assembler: 5.8

Files:
Project: E:\Mtdt\TargetCode\HelpWindows\DenoEngine .HtDtProject
MtDt Build: E:\MEdE\GUINTESTFILES\BuildScripts\2Sim16_1TpuSim.HtDtBuild
Source Code: make.asc
Script: -Ho File Open-
Script Report: -Ho File Open-
Script Startup: -Ho File Open-
Test Uector: Example _Uector
Build: -Ho File Open-
Master Behavior: -Ho File Open-
ISR Files
Isr B: -Ho File Open-
Isr 1: -Ho File Open-
Isr 2: -MNo File Open-
Isr 3: -Ho File Open-
Isr 4: -Ho File Open-
Isr 52 -Ho File Open-
Isr 6: -HNo File Open-
Isr 7: -HNo File Open-
Isr 8: -MNo File Open-
Isr 9: -MNo File Open-
Isr Az -Ho File Open-
Isr B: -Ho File Open-
Isr C: -Ho File Open-
Isr D: -Ho File Open-
Isr Ex -MNo File Open-
Isr F: -MNo File Open-

Clocks, Counters

The (simulated) CPU clock frequency is displayed. The TCR1 prescaler, TCR2 prescaler, PSCK
control bit, and T2CG control bit are displayed.

When MtDt isin TPU2 mode the DIV2 and T2CSL control bits are displayed. These control bits,

106

which are new to the TPU2, add capabilities to the TCR1 and TCR2 counters. These control bits
are automatically hidden when in TPU1 mode since they apply only to the TPU2. These bits are
controlled using script commands described in the TPU Clock Control Script Commandssection.

When MtDt is in TPU3 mode the enhanced prescaler enable bit (ESPCKE) the enhanced prescaler
bit (ESPCK), and the TCR2 pre-divider prescaler enable bit (TCR2PSCK?2) are displayed. These
control bits, which are new to the TPU3, add capabilities to the TCR1 and TCR2 counters. These
control bits are automatically hidden when in TPU1 or TPU2 mode since they apply only to the
TPU3. These hits are controlled using script commands described in the TPU Clock Control Script
Commands section.

Verification

An indication of whether behavior verification is enabled or disabled is displayed. The count of the
number of behavior verification errors that have occurred is displayed. See the Pin Transition
Behavior Verification section.

The count of the number of user-defined verification tests that have failed since the last MtDt reset
is displayed. User-defined tests are part of script commands files. See the Script Commands
Groupingssection for a description of the various script commands that support user-defined tests

Versions

Version information on the device being simulated (TPU1, TPU2, TPU3), the Simulator, and the
microcode assembler is listed.

Files

The name of the project fileis displayed. Seethe Project Sessionschapter for a detailed explanation
of this capability.

The name of the MtDt build script file is displayed. See the Full-System Smulation chapter and the
MtDt Build Script Commands File chapter for detailed explanations of the available capabilities and
format of thisfile.

The names of the open source microcode, primary script, primary script report, startup script, and
test vector filesare displayed. Thesefilesare listed relative to the path of the open project file.

The auto-build file name is displayed. The auto-build file allows direct building of the executable
image from within MtDt and is covered in the Auto-Build Batch File Options Dialog Box section.

The pin transition behavior verification file name is displayed. This new feature supports the
verification of TPU behavior against previously-saved pin transition behavior files. This allows the
user to make changes to atest suite and automatically determine which pin transition behaviors have
changed and which behaviors have stayed the same. See the Pin Transition Behavior Verification
section.

ISR Files

The currently loaded script commands ISR files associated with each TPU interrupt are listed.
Script commands files can be associated with TPU interrupts. When the interrupt associated with a
particular TPU channel becomes asserted the ISR script commands file associated with that channel
gets executed. Script commands ISR files are loaded using script commands. See the ISR Script
Commands Files section for adescription.

107

TPU Host Interface Window

Availability: TPU Simulation Target

22 MyBdm32: TPU - Host I/F _[O] =]
F EDCBOAG®9 8 7 6 5 4 3 2 1 8

CFsR: £ 8 8 8 @ @ @ 8 8 @8 8 8 8 B8 0 @ 0000, 0000, 0000, 6000
CPR: 0@ 00 60 0P 60 60 AO A0 A0 PO 0O 60 A9 0A A0 0@ 6008, 0088

HSRR: 0@ 60 69 0P 60 60 AO A0 A0 PO 0P 60 A9 0A A0 0@ 6008, 0088

HSQR: PG B0 09 0P 0O GO AO 00 A0 OO 0D 60 @9 0O 0O 0@ 8008, 0080

CISR: @ # 8 @ 0 O @8 8 @ @ B O @ 0 @0 @ LTS

CIER: @ 6 @ # 0 6 0 8@ @ @ B O 8@ 0 0 @ 8008

This window displays common TPU/CPU registers whose function is primarily to control. These
registers include the Channel Function Select Registers (CFSRs), Channel Priority Registers
(CPRs), the Host Service Request Register (HSRR), the Host Sequence Registers (HSQRs), and the
Channel Interrupt Service Request Register (CISR).

Each register is broken down by TPU channel so that the value for each channel is easily found. All
register values are displayed in both binary and hexadecimal formats.

The user can modify the value of each of these registers in a repeatable fashion via the script
commands file. Alternatively, these registers @n be modified directly using the keyboard and
mouse. Seethe Script Commands File Window section for an explanation of this capability.

The TPU affects the states of the registers in the normal execution of its microcode. For example,
the HSRR bitsfor a TPU channel are cleared when the microengine services that channel.

TPU Scheduler Window

Availability: TPU Simulation Target

HTpuSim: Scheduler =] E2
F EDCEBOAO9 S8 7 6 5 4 3 2 18
Prty: @ H H - - - - - - - - H H H HH
srl 8 8 1 8 8 & B 8 B B A & B B B A
Sgl: 8 8 1 8 8 & B 8 B B A & B B B A
HSRR: 6@ B8 00 A0 6@ 00 G0 A0 0O OO B0 A0 OO OO B0 08
LSR: 6 8 b @ B ® B B B B B O B B8 B 9
M/TSR: 8 & 1 8 8 8 8 8 8 8 &9 8 8 8 9 8
Time Slot Assignments: Med Hi Hi Hed Hi Lo HiI ...

The TPU’s microengine responds to the various channels based on a round robin scheduler. The
scheduler bases its servicing decisions on the Channel Priority Register (CPR), the Service Request
Latch (SRL), and the Service Grant Latch (SGL). These latches are affected by the Host Service
Request Register (HSRR), the Link Service Requests (LSRs), and the Match or Transition Service
Requests (M/TSRs), which are also displayed.

The M/TSR is generated from the Match Recognition Latch (MRL), Transition Detection Latch
(TDL), and the Match/Transition Service Reguest Inhibit (SRI) latch. The M/TSR is formed from
the following logical expression: [MRL and TDL] or SRI.

Each register is broken down by TPU channel such that the value for each channel is easily found.
Most of these registers can be modified only by the TPU.

108

TPU Microsequencer Registers Window

Availability: TPU Simulation Target

H TpuSim: Microzequencer =]

Time: [[UMSERMS us

CPU Clock: 888811282

TCR1: 1D8A, TCR2: 8828

TCR2 Input Pin: High

Active Channel T[8]..T[-4]:

b, b, D,

Address: BOFA, Rtn: BA34
Prefetch: 88F4

Prefetch Opcode: 9445FFFF

Dec Inactive

Banks: Code -, Entry -

The TPU Microsequencer Registers window displays miscellaneous information generally applying
to the microsequencer. Thiswindow is something of acatch all.

The current Simulator timeis displayed. Thetimeisexpressed in microseconds. The count of CPU
clocks since the last Simulator reset is also displayed.

The TCR1 and TCR2 counter values are displayed. These 16-bit counters are displayed in
hexadecimal. The TCR2 input pin'svalueis also displayed.

The active channel number is displayed. Since the active channel can be changed via the microcode
when the CHAN register is modified, the active channel numbers corresponding to the current,
previous, and second-most-previous microcycles are displayed. The last channel number is that of
the channel that was initially being serviced after the time slot transition. This allows the user to
calculate which channel a particular parameter is associated with for those parameters that take
multiple microcyclesto adjust after the CHAN register is changed.

The current opcode and prefetch opcode are displayed in this window. Sequencing
microinstructions that affect program flow may flush the prefetch opcode causing a NOP to be
executed. Loading a OxFFFFFFFF as the current opcode simulates this situation.

The DEC register is used for various purposes such & loop indexing and subroutine termination.
The current DEC usage is displayed.

When MtDt isin TPU2 or TPU3 mode the two bank fields are displayed. The code bank is the bank
in which code is being executed. The entry bank is the bank from which the active entry table is

stored. Inthereal TPU the entry bank is specified viathe TPUMCR?2 register at bit positions 5 and
6. In MtDt thisentry bank register is modified by the write_entry _bank() script command.

TPU Execution Unit Window

Availability: TPU Simulation Tar get

109

= TpuSim: Exec Unit, AU [B[=] E3

tori: 1D 85
tcr2: aeza
a: a188
diob: 81B4
Stk: 1A99
ert: 1EAF
p: 088 B8 080088
dec: F

link: a

chan: D

A Bus: aaa9
B Bus: aaag
Result: @068
BRAMCH PLA FLAGS
cly, Flagz -
cly, Flag1l SET
clr, Flag@ SET
clr, H3IQ1 clr
HRL SET, H3(Q8 clr
TDL clv, PSL cly
LSL clr, PIH -

SZXTOMN

Thiswindow displays the information associated with the microengine registers and the branch PLA
flags.

The A bus source, B bus source, and result (before any shifting) are also displayed.

The ERT register isthat of the active channel.

An important consideration is that the branch PLA flags are, for the most part, latched on atime slot
transition. Therefore, they do not necessarily match the values displayed in the channel windows.
The following list shows those branch PLA flags that may change during a channel service routine.

? The four execution unit flags, Z, C, N, and V, are latched whenever the CCL is specified
on an AU subcommand.

? The Pin State Latch (PSL) gets latched two microinstructions after the CHAN_REG is
written.

? FLAG2, FLAG], and FLAGO are alwaysinput directly to the branch PLA. (They are not
latched at al.) Two microinstructions after the CHAN_REG is changed these flags
reflect the new channel.

When MtDt isin TPU2 or TPU3 mode the FLAG2 flag and PIN branch conditional are displayed.
FLAG?2 is an additional TPU2 flag similar to the existing FLAG1 and FLAGO flags. PIN branch
conditional is a new branch condition available in the TPU2 that is similar to the PSL latch. But
whereas the PSL reflects the pin state on the last time slot transition or channel register change, the
PIN reflects the current pin state. Both the FLAG2 flag and the PIN branch conditional are features
of the TPU2 that do not exist in the TPU1 and therefore are not displayed when in TPU1 mode.

TPU Channd Window

Availability: TPU Simulation Target

110

Match Reg:
Capture Reg: 4399

:23?5 HTpuSim: Channel 3 [H[=] E3

Match Reqg: 5123

HTpuSim: Channel [Active] I [=] B3
4699

i}:g?; Capture Req: 8809
Flag2: HSQ@: SET
mrle- HSQ1: SET
mrl: Flag@: clr
tdl: Flag1: clr
Sri: Flagz:

1s51: mrle: SET
Match: mrl:z clr
Captur td}: clr
Match | S¥i: clr
Direct 1s1: clr

Match: EMNABLE
. Capture TCR1
High «
Magch Match TCR1
Direction: Output

Pin State: Low
High on HMatch
Match on -

There are two versions of the TPU Channel window. The active channel version displays
information on the active channel (or previously active channel, if noneis currently active) while the
fixed channel version displays information on a particular channel. The following information is
displayed.

Pin st

? Thematch and capture registers;
? Thechannel’s bits from the Host Sequence Request (HSQR) register;
? Flag2 (TPU2 and TPU3 mode only), Flagl, and FlagQ;

? The states of the Match Request Latch Enable (MRLE), Match Recognition Latch
(MRL), Transition Detection Latch (TDL), Match/Transition Service Request Inhibit
(SRI), and Link Service Latch (LSL);

? The disable match bit from the entry point. This bit controls whether a match is inhibited
during channel servicing;

? Theactive counter for capture and match (TCR1 or TCR2);
? Thepindirection (input or output);
? Thecurrent pin state (high or low);

? ThePAC setting, which determines the pin action on amatch if the pinisan output or the
transition to be detected if the pinisan input;

? The effective match condition, greater-than-or-equal-to, or greater-than. Since this field
appliesto TPU2 and TPU3 only, when in TPU1 mode thisfield is not displayed;

Unlike previous versions of this software, the active channel is not specified directly from the menu
when the window is opened. Instead, the active channel is specified from within the window by
accessing the popup menu. To do this, right-click the mouse and select the desired channel number
from the menu. This makesit easier to view the various channel settings without having to have lots
of channel windows open.

During channel servicing the active channel can be changed by the microcode. The microcode
changes the active channel by writing to the CHAN register (found in the TPU Execution Unit
window). When the active channel is changed by the microcode the effective active channel is
somewhat murky. Some channel parameters migrate, after a number of instructions, to the new
channel, while other parameters remain attached to the channel that originally caused the channel

111

servicing. How does MtDt handle this situation since the active channel version of the channel
window is intended to show channel information of the active channel? This is answered in the
following paragraph.

The active channel version of the channel window shows the channel information corresponding to
the active parameters. For instance, the effective flag changes from the old channel to the new

channel two microcycles after the CHAN register is changed. MtDt also switches the displayed flag
two microcycles later. Inthisway, the user always views the affective channel.

TPU Parameter RAM Window

Availability: TPU Simulation Target

g 2830 7866 066066 6666 6666 662C - - ;I
9 6631 222C 2841 4CAC 5F53 5841 - -

A 3BBA 7365 TFuUSF 6260 6F63 6BSF - -

B 6F63 6B28 2248 6F73 Tu31 3622 - -

G 5855 SF4h 6174 6122 2C20 41uc - -

b 8881 81B4 086C 6088 8886 188D - -

E 0089F 8208 6368 3830 2938 BA73 6574 SF62

F 8891 4299 @168 6486 4699 6C6F A4B2 AAAE -

The parameter RAM is accessible by both the CPU and the TPU. It typically is used to pass
information between the CPU and TPU and is used by the TPU for scratch and storage. For
instance, the CPU might store the number of signal edges the TPU should measure in one parameter
RAM location. The TPU would then keep a running count of the current number of edges measured
in another parameter RAM location.

MtDt displays all existing RAM parameters in this window. The window is arranged in rows and
columns. Each row displays the six or eight parameter words (each word is 16-bits wide)

corresponding to a particular channel. Across each row are the six or eight parameters belonging to
that channel.

In the TPU1 design, Freescale apparently ran out of room to provide the full eight parameters for all
16 channels. In fact, of the 16 channels, the lower 14 contain six parameters while only the final
two channels contain the full complement of eight parameters. While MtDt is in TPU1 mode the
un-implemented parameter RAM locations are not displayed.

In TPU2 and TPU3 (and in MtDt while in TPU2 and TPU3 mode) al parameter locations are
implemented. Whilein TPU2 and TPU3 mode MtDt displays all parameter locations.

How do the TPU and MtDt deal with accesses to the missing locations in TPU1 mode? It behooves
the TPU microcoder to assume that new TPU versions will most likely have a full complement of
parameter RAM. For both the TPU and MtDt, writes to these locations are ignored while the data
returned fromreads is always zero.

During reset it has been observed that the parameter RAM of the actual TPU remains unchanged as
long as power is not lost, though this behavior is apparently not documented. MtDt allows the user
to specify whether the parameter RAM is cleared to all zeros, or remains unchanged after a reset.

Thisis specified in the Reset Options dialog box.

683xx Hardwar e Debugger Configuration Window

Availability: 683xx Hardware Debugger Target

112

52Mdem32: Configuration Hi=] E3
Files:
Project:
MtDt Build: C:ATESTFILES\BuildScripts\1Bdm32.MtDtBuild
Source Code: main.e68
Script: -Ho File Open-
Script Report: -Ho File Open-
Script Startup: Startup.Cpu32Command
Build: -Ho File Open-
Verification:
Script Failures: GABBBBAA

Files
The name of the project fileisdisplayed. Seethe Project Sessionschapter for adetailed explanation
of this capability.

The name of the MtDt build script file is displayed. See the Full-System Simulation chapter and the
MtDt Build Script Commands File section for detailed explanations of the available capabilities and
format of thisfile.

The names of the open source code (executable image), primary script, primary script report, and
startup script files are displayed. Thesefiles arelisted relative to the path of the open project file.

The auto-build file name is displayed. The auto-build file allows direct building of the executable
image from within MtDt and is covered in the Auto-Build Batch File Options Dial og Box section.

Verification

The count of the number of user-defined verification tests that have failed since the last MtDt reset
is displayed. User-defined tests are part of script commands files. See the Script Commands
Groupingssection for adescription of the various script commands that support user-defined tests

SIM Main Window

Availability: 683xx Hardware Debugger

113

22 MyBdm32: SIM - Main =] E3

SIMCR | EXOFF F..F | CLKOUT Pin oOn
| FRZSW E..E | On FREEZE the watchdog & periodic interrupt timer are OFF
| FRZBH D..D | On FREEZE the bus monitor is OFF
| SLUEH B..B | The IMB is Mot Available to external bus master
| SHEN 9..8 | Show Cycles Enable is @@
| SUPU 7..7 | %IH 5/U registers access at Supuv priviledge level
| MM 6..6 | Internal modules at FFFB8B-FFFFFF
| IARB 3..8 | SIM interrupt arbitration priority F
SYNCR 5FB8 | W F..F | W-freq ctrl: UCD multiplied by 1
| % E..E | %-freq ctrl: UCD divided by 2
| Y D..8 | ¥-freq ctrl: UCO divided by [1F+1]
| | Clock frequency is 8.388608 HHz {assuming 32.768 KHz crystal)
| EDIV 7..7 | ECLK pin (addr 23) divide rate is system clock divided by 8
| SLIMF &..4 | Crystal reference is ok
| SLOCK 3..3 | UCD is locked, or external
| RSTEN 2..2 | Loss of reference causes limp mode
| STSIMH 1..1 | During low-power stop, SIM clock is driven by an external source
| STEXT ©..8 | During low-power stop, the CLKOUT pin is held low
RSR 88 | EXT 7..7 | Reset caused by an external signal Ho
| POW 6..6 | Reset caused by the power-up reset circuit HNo
| SW 5..5 | Reset caused by a software watchdog timeout Ho
| HLT 4..4 | Reset caused by the halt monitor No
| LOC 2..2 | Reset caused by a loss of clock Ho
| sSYs 1..1 | Reset caused by a RESET instruction No
| TST 8..8 | Reset caused by the test submodule Ho
SYPCR 88 | SWE 7..7 | The software watchdog is EHNRBLED
| SuP 6..6 | First watchdog prescaler is divide by 1
| SWT 5..4 | Additional watchdog prescaler is 2Y59
| | Watchdog period is @15,625.8 micro-seconds {assuming 32._.768 KHz c
| HHE 3..3 | Halt monitor function Disabled
| BHE 2..2 | Bus monitor is Disabled for external bus cycles
| BHT 1..8 | Bus monitor timeout is 64 system clocks
PICR #AAF | PIRQL A..8 | Interrupt priority disabled
| PIV 7..8 | Periodic interrupt vector @F
PITR g@ae | PTP 8..8 | First periodic interrupt timer prescaler is divide by 1
| PTH 7..8 | Aadditional periodic interrupt timer prescaler is [80+1]
| | Periodic interrupt timer period is 8988,122.1 micro-seconds (assur
T I

The SIM Main window displays the Module Configuration Register (SIMCR), the Clock
Synthesizer Control Register (SYNCR), the Reset Status Register (RSR), the System Protection
Control Register (SYPCR), the Periodic Interrupt Control Register (PICR), and the Periodic
Interrupt Timer Register (PITR).

SIM PortsWindow

Availability: 683xx Hardware Debugger

114

92 MyBdm32: SIM - Ports =] E3
=xxxx PORT C DATA AND CHIP SELECT PIN ASSIGNMENT REGISTER 1 sessss
| PRIMARY ALTERNATE DISCRETE BITS |

PORTC | €318 ADDR23 ECLK 9..8 | 16-Bit CS -
CSPAR1 @355 | C59 ADDR22 PC.6 7..6 | ADDR22 -

| C38 ADDR21 PC.5 5..4% | ADDRZ1 -

| C37 ADDRZ@ PC.4 3..2 | ADDRZM@ -

| C36 ADDR19 PC.3 1..8 | ADDR1? -
**%x% PORT C DATA AND CHIP SELECT PIN ASSIGHHMENT REGISTER B xxxxx
PORTC ¥F | C55 FC2 PC.2 D..C | 16-Bit CS -
CSPARB 3FFF | C34 FC1 PC.1 B..A | 16-Bit CS -

| C33 FC@ PC.0 9..8 | 16-Bit €S -

| €32 BGACK - 7..6 | 16-Bit €S -

| €31 BG - 5..4 | 16-Bit CS -

| Cc38 BR - 3..2 | 16-Bit €S -

| C3BOOT - - 1..8 | 16-Bit €S -
**%%x% PORT E PIN ASSIGHMENT, DATA DIRECTION, AND DATA REGISTERS xxxxx

PEPAR FF | sIZ1 7..7 | SsIzZ1 - -

DDRE 0 | SIZa 6..6 | SIz@ - -

PORTE FF | &S 5..5 | AS - -
| bs h..4 | DS - -
| RHC 3..3 | RHC - -
| AVEC 2..2 | AUEC - -
| DSACK1 1..1 | DSACK1 - -
| DSACK@ ©..8 | DSACKE -

*xxxx PORT F PIN ASSIGHMENT, DATA DIRECTION, AND DATA REGISTERS xxxxx
PFPAR 88 | IROQ7 7..7 PF.7 Input

I (]

DDRF 80 | IRO6 6..6 | PF.6 Input 8
PORTF 61 | IRQS 5..5 | PF.S Input 8
| IRQX 4_.4 | PF.4 Input 8

| 1IRQ3 3..3 | PF.3 Input 8

| IRQ2 2..2 | PF.2 Input 8

| IRQ1 1..1] PF.1 Input 8

I 8| 1

HODCLKE ®@.. PF.8 Input

The SIM Ports window contains the registers that determine the port pin usage, pin direction (input
or output) and value. These registers are the Port C, Port E, and Port F Data Registers (PORTC,
PORTE, PORTF), the Chip Select Pin Assignment Registers one and zero (CSPAR1, CSPAROQ),
Port E and Port F Pin Assignment Registers (PEPAR, PFPAR) and the Port E and Port F Data
Direction Registers (DDRE, DDRF).

To the right of the bit position field are a variable number of fields. Depending on the specific
capability of each port the usage, direction and value can be selected.

SIM Chip Selects Window

Availability: 683xx Hardware Debugger

2 MyBdm32: SIM - Chip Selects M=l E3
CS# CSBAR CSOR ADDR SIZE HODE BYTE R/W STRE WAITS SPACE IPL AUEC PIN/WIDTH
Boot B@B7 7B7@ 0AAEAS 1M Asynch Both Both AS @8xD S/U A1l OFF 16-Bit CS
CS8 6060 ©OOBP BBABAB 2K Asynch Disable Rsud AS @ Cpu All OFF 16-Bit CS
CS1 6080 7B70 00000 2K Asynch Both Both AS O8xD S/U ALl OFF 16-Bit CS
CS2 6888 7B70 DBABAA 2K Asynch Both Both #AS 8xD S/U A1l OFF 16-Bit CS
CS3 6060 0OO0 0GB 2K Asynch Disable Rsud RS Cpu ALl OFF 16-Bit CS
CS4 6060 ©OOBA DAABAS 2K Asynch Disable Rsud AS Cpu All OFF 16-Bit €S
CS5 6060 ©OOBP BBABAB 2K Asynch Disable Rsud AS Cpu A1l OFF 16-Bit CS
CS6 BO8AG 60AA 0AABAA 2K Asynch Disable Rsud AS Cpu All OFfF
CS7 6060 0OOBP DBABAA 2K Asynch Disable Rsud AS Cpu All OFF ADDRZD
CS& 0000 0OOO 0BOBOO 2K Asynch Disable Rsud AS Cpu ALl OFF ADDR21
CS9 6880 OBBA DBABAS 2K Asynch Disable Rsud AS Cpu A1l OFF ADDR22
CS10 6060 0OGO 0BOBO8 2K Asynch Disable Rsud AS Cpu ALl OFF 16-Bit CS

The SIM Chip Selects window displays information for each of the SIMS chip select. The second
and third fields from the left are the Chip Select Base Address (CSBARX) and the Chip Select
Options register (CSORX), where X denotes the selects one of the 11 chip selects.

115

Starting from the left and going to the right are the Base Address, Block Size,
Asynchronous/Synchronous E Clock Mode, Upper/Lower Byte Option, Read/Write, Address/Data
Strobe, Wait States, Address Space Select, Interrupt Priority Level, Autovector Enable, and Pin
Widths fields. All except the Pin/Width field are bit groupings derived from the CSBARX and the
CSORX registers. The Pin/Width field is derived from the Chip Select Pin Assignment registers
one and zero (CSPAR1, CSPARO) (not shown in thiswindow).

QSM Main Window

Availability: 683xx Hardware Debugger

22 MyBdm32: QSM - Main (O]
QSHHCR | STOP F..F | The QSH Module is operating normally
| FR21 E..E | When FREEZE on IMB, ignore it
| FRZ& D..D | [Reserved For future use]
| SUPY 7..7 | 05SH S/U registers access at Supv priviledge lewvel
| IARB 3..8 | OSH interrupt arbitration priority 8
QILR/UR 888F | ILQSPI D..B | QSPI interrupt priority is @
| ILSCI A..8 | SCI interrupt priority is @
| INTU 7..8 | 0SH interrupt vecor number is OF

The QSM Main window displays the QSM Configuration Register (QSMMCR) and the QSM
Interrupt Level and Vector Register (QILR/QIVR).

QSM Port Window

Availability: 683xx Hardware Debugger

22 MyBdm32: QSM - Port M= 3
pogspar [| THD 7..7 | PQS.7 Input ®
DDRQS 606 | PCS3 6..6 | POS.6 Input @
PORTQS @0 | PCS2Z 5..5 | POS.5 Input @
| PGS 4.4 | PQS.4 Input ®
| PCSO/SS 3..3 | POS.3 Input B
| ScK 2..2 | P0S.2 Input @
| HOST 1..1 | POS.1 Input 8
| MISO @..8 | P0OS.0 Input @

The QSM Port window displays the Port QS Pin Assignment Register (PQSPAR), the Port QS Data
Direction Register (DDRQS), and the Port QS Data Register (PORTQS). Using the bit port bit
fields, located to the right of the bit position fields, the use of each port pin can be specified. Each
pin can be specified as a generic 1/0 or assigned to the QSM. In addition, both the data direction
and register value can be specified.

QSM QSPI Window

Availability: 683xx Hardware Debugger

116

2 MyBdm32: QSM - OSPI

SPCRO |
|

SPCR1 8484

SPCR2 @aaa

SPCR3 @888

Receive gaea
Transmit BBF8
Command 7F
CONT .7 PORT
BITSE.6 BITS

Another SPI node requested to become master? no
QSPI is not halted
The last channel executed is @
QSPI RAM ===
3 4 5 [i] 7 8 9 A B H D
¥C9F EFB3 66DB BBF2 EGFF 6747 97F3 EAAF 25AR0 G65FD F8FA1
O4FF 7872 96BA FEDB BDBF 15EB E4C7 BF6F F987 GS75F F77E
6D ED [11H FD FF 1B FD DA 8F CB FF
PORT DEAS DEAS DEAS DEAS PORT DEAS DEAS DEAS DEAS DEAS
BITS BITS BITS BITS BITS 8 BITS BITS 8 BITS BITS
DT.5 DTL DTL DTL std DTL DTL std DTL std std std DTL
DSCK .4, DSCK CK/2 CK/2 DSCK DSCK DSCK DSCK DSCK DSCK CK/2 CK/f2 DSCK
PCS.3, HI HI HI HI HI HI HI HI HI HI HI HI
PCS.2, HI HI HI HI HI HI 1o HI 1o HI 1o HI
PCS.1, HI 1o 1o 1o 1o HI HI 1o HI HI HI HI
PCS.8, HI HI HI 1o HI HI HI HI 1o HI HI HI

MSTR
WOHQ
BITS
CPOL
CPHA
SPER

SPE
DSCKL

DTL

SPIFIE
WREN
WRTOD
ENDQP
NEQQP
LOOPQ
HMIE
HALT
SPIF
MODF
HALTA

F..F
E..E
D..A
9..9
8..8
7..8

F..F
E..8

..o

QSPI is a slave device

Outputs have normal HOS drivers

Bits field is @ resulting in 16 bits per transfer
The inactive state value of the SCK pin is lo

Data CHANGED on SCK's leading edge and captured on the trailing edge

|
|
|
|
| .
| SPBR is 84

| for a clock period of 080,0081.0 microseconds

| OSPI is a slave device

| Delay from chip-select assertion to leading edge of SCK
| is equal to DSCKL field, @4, system clocks.

| for a delay of 888,08008.5 micro-seconds

| for each channel with CHMD.RAM's DSCK bit asserted

| Delay from chip-select negation to next operation

| is equal to DTL field, 84, multipied by 32 system clocks
| for a delay of 888,815.3 micro-seconds

| for each channel with CHD.RAM's DT bit asserted

| QSPI interrupts are disabled

| Wraparound mode is disabled

| Wrap to pointer address @

| The last QSPI channel to transfer is @

| The first QSPI channel to transfer is @

| OSPI interrupts are disabled

| HALTA and HODF interrupts are disabled

| Halt is not enabled

| QSPI is not finished

|

|

|

M [=1E3

The QSM QSPI window displays the QSPI Control registers 0, 1, 2 and 3 (SPCRO0, SPCR1, SPCR2,
In addition the QSPI's Receive, Transmit and Command RAM (RR[0:F], TR[0:F],
and CR[0:F]) are displayed for each of the 16 locations. Below the Command RAM field, each of
the 16 command RAM locations is broken down by bit groupings. These fields are the Continue
(CONT), the Bits per Transfer Enable (BITSE), the Delay After Transfer (DT) and the PCS to SCK

and SPCR3).

Delay (DSCK).

QSM SCI (UART) Window

Availability: 68332 Hardwar e Debugger

117

32 MyBdm32: QSH - SCI IA[=1 E3

sccre [LLD | SCBR C..8 | SCI clock period 808,815.3 micro-seconds
| (assuming 32.768 KHz crystal)
SCCR1 8088 | LOOP E..E | Hormal SCI operation, no looping, feedback path disabled
| WoOHS D..D | If configured as an output, TXD is a normal CHOS output
| ILT C..C | short idle line detect
| PT B..B | even parity
| PE A..A | SCI parity is disabled
| H 9..9 | 18-bit SCI frame
| YAKE 8..8 | SCI receiver awakened by idle-line detection
| TIE 7..7 | SCI transmit TDRE interrupts are disabled
| TCIE &..6 | SCI transmit complete interrupts are disabled
| RIE 5..5 | SCI receive "recieve data register flag" {RDRF)
| | and “overrun error” {OR) interrupts are disabled
| ILIE 4..4% | Idle line interrupts are disabled
| TE 3..3 | SCI receiver is disabled (TXD pin can be used as I1/0)
| RE 2..2 | SCI receiver is disabled {status bits inhibited)
| RWU 1..1 | Hormal receiver operation (received data recognized)
| SBK 8..8 | Hormal operation
SCSR 8188 | TDRE 8..8 | A new character can now be written to register TDR
| TC 7..7 | SCI transmitter is idle
| RORF 6..6 | Receive data register {(RDR) is empty or contains previously read data
| RAF 5..5 | SCI receiver is idle
| IDLE 4..4% | SCI receiver did not detect an idle line condition
| OR 3..3 | Receive data register (RDRF) is cleared before new data arrives
| NF 2..2 | Hoise was not detected on the received data
| FE 1..1 | A framing error or break was not detected on the received data
| PE 8..8 | A parity error did not occur on the received data
SCDR 86858 | RDR 8..8 | Receive data register 8658 (read only)
| TDR 8..8 | Transmit data register 8855 (write only - read value is meaningless)

The QSM SCI window displays the SCI Control registers 0 and 1 (SCCRO and SCCR1), the SCI
Status Register (SCSR), and the SCI Data Register (SCDR).

Masked ROM Window

Availability: 683xx Hardware Debugger

Do Mysim32: Masked ROM =]

wMRMCcR [EIG | STOP F.. ROM array is is in low-pouwer stop mode
| BOOT C.. ROH does not responds to bootstrap word locations during reset vector fetch
LOCK B.. ROM Write lock enabled . Protected registers and fields cannot be written
ASPC 9.. ROM array is accessible at the unrestricted program and data priviledge level
WAIT 7.. ROM array accesses take 2 wait states
ROMBAH B456 AD-HI 7.
ROMBAL 48068 AD-LD F.. Base address is 84564080

ROM signature high register is 1234

ocoocoooOoo@om

|
|
|
|
|
RSIGHI 1234 | RS-HI 7..
|
|
|
|
|

RSIGLD 5678 | RS-LO F.. ROM signature low register is 5678
ROMBS® 1861 BS-8 F.. ROM bootstrap word 8 is 1861
ROMBS1 2222 BS-1 F.. ROM bootstrap word 1 is 2222
ROMBS2 3333 BsS-2 F.. ROM bootstrap word 2 is 3333
ROMBS3 12AC BS-3 F.. ROM bootstrap word 3 is 12AC

The Masked ROM window displays the Masked ROM Module Configuration Register (MRMCR),
the ROM Array Base Address High Register (ROMBAH), the ROM Base Address Low Register
(ROMBAL), the ROM Signature High Register (RSIGHI), the ROM Signature Low Register
(RSIGLO), and the ROM Bootstrap Words 0 through 3 Registers (ROMBS0, ROMBS1, ROMBS2,
and ROMBS3).

Standby RAM Submodule Window (68336/68376)

Availability: 683xx Hardware Debugger

92My68376: Standby RAM =]
RAMMCR @888 | STOP F..F | Standby RAM (SRAH) is

| RLCK B..B SRAM base address registers are locked

| RASP 9..8 | SRAM is accessible at the unrestricted program and data priwviledge level
RAMBAH 8858 | AD-HI 7..8
RAMBAL 2888 | AD-LD F..C

Base address is 008582088

The Standby RAM Submodule window (68336/68376) displays the RAM Module Configuration
Register (RAMMCR), the RAM Array Base Address High Register (RAMBAH), and the RAM

118

Array Base Address Low Register (RAMBAL).

Static RAM Submodule Window (68338)

Availability: 683xx Hardware Debugger

52My5in132: Static RAM Submodule

FFF5008: 0080 000 0000 DOOO
FFF518: 1111 L eae0 aoga
FFF5268: 0060 0600 0000 000@
FFF5308: 0000 0000 D000 DOOQ

=101 x|
0000 0000 0000 0000
00008 AOA0 0AOA AOAO
000808 AOAD OAGA AOAG
0000 0000 0000 OO0

The Static RAM Submodule Window (68338) consists of 16 contiguous 16-bit words of RAM.

TPU Emulation RAM Window (68332, 68336, 68376)

Availability: 683xx Hardware Debugger

22 MyBdm32: Standby RAM

TRAWMCR GREE | sToOP
| RASP

TRAMBAR 8881 | ADDR
| RAHDS

==l E3

TPURAM Module is operating normally

TPURAM array is accessible at the Supv priviledge level
TPURAM array base address is 00090088

TPURAM array is Disabled

The TPU Emulation RAM window displays the TPURAM Module Configuration Register
(TRAMMCR) and the TPURAM Base Address Register (TRAMBAR).

TPU Main Window

Availability: 683xx Hardware Debugger

22 MyBdm32: TPU - Main
TPUMCR | STOP
| TCR1P
| TcR2P
| EHU

| T2CG
| STF

| SuPU
| PSCK
| 1RARB
|

|

|

|

|

|

TICR goee CIRL

CIBUY

U — B - - - Wy B |
I
P R T T T T
[= B - = === = = By |

ISi[=1 3

TPU HModule is operating normally

TCR1 prescaler divides by 1

TCR2 prescaler divides by 1

TPU executes out of standard mask ROH

TCR2 pin used as clock source for TCR2

TPU is operating normally

TPU S/U registers access at Supv priviledge lewel
Clock input to the TCR1 input is the system clock/32
TPU interrupt arbitration priority 8

TCR1 counter clock period is 8608,0803.8 micro-seconds
TCR2 counter clock period is - micro-seconds
The TCR2 counter clock source is the TCR2 input pin divided by 1
Channel interrupt request level is 8

Channel interrupt base vector is @

{interrupt vector is 8x88 plus channel number)

The TPU Main window displays the TPU Module Configuration Register (TPUMCR) and the TPU
Interrupt Configuration Register (TICR).

TPU Host I nterface Window

Availability: 683xx Hardware Debugger

119

22 MyBdm32: TPU - Host I/F _[O] =]
F EDCBOAS 8 7 6 5 4 3 2 1 8

CFsSR: £ @8 8 8 @ @ @ 8 8 8 8 8 B B B B @000, 0000, 0000, A00A
CPR: 00 00 90 0P 60 60 PO 60 00 PO 0P 60 09 0O 6O 0O 0000, 80088

HSRR: 0@ B0 09 0P 0O OO A0 OO0 A0 0O 0D 60 @9 0O @O 0@ 0000, 0000

HSQR: PG B0 09 0P 0O GO AO 00 A0 OO 0D 60 @9 0O 0O 0@ 8008, 0080

CISR: @ 8 8 # B O 8 8 8@ @ B O 8 A A @ aa0a@

CIER: @ 8 8 8 8 8 @8 8 @ @ B 8 8@ A @ @ aa0a

The TPU Host Interface window displays the Channel Function Select Register (CFSR), the
Channel Priority Register (CPR), the Host Service Request Register (HSRR), the Host Sequence
Register (HSQR), the Channel Interrupt Status Register (CISR), and the Channel Interrupt Enable
Register (CIER).

TPU Parameter RAM Window

Availability: 683xx Hardware Debugger

20 MyBdm32: TPU - Parameter RAM - [O] =]
[[:§] 0034 62C2 6188 2811 6601 0008 QA6A
0818 1848 6C34 2128 AG10 6621 008 QA6A
4811 6934 QOO0 9885 1128 164E 06000 A00A
8000 8114 0000 08281 0069 B554 ©000 000G
9319 0028 @401 6011 0210 2004 0000 0PGH
2440 4034 @985 G824 3C90 10AG OO0 AOPG
DOAA C2608 8065 8830 0090 G400 OA0D 00D
4814 BCSY4 4880 B112 8621 0234 0000 0OPG
8040 0000 0O2A PO41 S000 1004 0000 0000
02F2 OD14 6230 1106C 2860 EOO0 0090 Q06O
0168 0761 2001 6615 0630 3000 0090 Q06O
4370 OABC 1240 2000 0012 6814 0000 0000
4811 6930 9020 4612 $204 9140 0000 0000
1212 6528 Ch400 B8B4G 0PO2 AZE? 0000 AOQA
B284 41808 40082 1820 1020 8280 4A81 4081
020808 0288 850A B5A@ AG22 5509 0258 418B

MO O MDD WO~ ChVl R

The TPU Parameter RAM window displays the TPU Parameter RAM. Each row in the window
displays the parameter RAM belonging to the row number's TPU channel.

GPT Main Window

Availability: 683xx Hardware Debugger

120

GPTHMCGR

GPTICR

DDGRP/
0c1M/0

TCHT
PACTLY

THMSK1/

TFLG1/
CFORC/

PRESCL

2308
PORTGP 2FF2
C1D FREB
1344
PACHT 8400
THSK2 B82B8
TFLG2 1838
PUHC 2B84
2833

| P
| FRZ1
| FR2Z@

| STOPP
| INCP

| SuPY

| 1ARE

| 1PA

| IPL

| 1UBA

| DDGRP
| PORTGP
| ocin

| 1P
|

|

|

|

|

|

|

|

|

|

|

|

|

I4/05

T0I
CPROUT
CPR
TOF

PPR

DT NT TN WO oMmMmm
TPTow@o®FfFoOo~mOoomm

=10l x|
GPT clocks are not shut down
FR21 is not used
When FREEZE on IMB, halt the GPT
Stop prescaler and pulse accumulator, ignore input pins
On STOFP, increment prescaler & input synchronizers once
$/U registers access at Supv priviledge level
Interrupt arbitration priority 1
Hake Input Capture 2
Interrupt priority is level 3
Interrupt vector base address is 8%
Pin Direction is 2F (see other windouws)
Pin Data is F2 ({see other windows)
0C1H Action Mask is 1F {see Output Compare window)
O0C1D Action Data is 1C (see Output Compare window)
Timer counter register is 1344
Output compare 5 Disable, Input capture 4 ENABLE
{See Pulse Accumulator window for most settings)
(See other windows for most settings)
Interrupt requested when TOF flag is set
TCHT clock driven out 0C1 pin
CPR=8; TCHT Capture/Compare clock period is @88,258.1 ns or Fsys/4

highest priority

Timer Overflow flag is clr
{See Output Compare and PUHM windows for most settings)
PPR=8; PWH CHT input is 880,125.1 ns or Fsys/2

9-Bit prescaler is 0033 (Bits[F..9] always zero)

The GPT Main window displays the GPT Module Configuration Register (GPTMCR), the GPT
Interrupt Configuration Register (GPTICR), the Port G Data Direction Register (DDGRP), the Port
G Data Register (PORTGP), the OC1 Action Mask Register (OC1M), the OC1 Action Data
Register (OC1D), the Timer Counter Register (TCNT), the Pulse Accumulator Control Register
(PACTL), the Pulse Accumulate Counter (PACNT), the Timer Interrupt Mask Registers 1 and 2
(TMSKL/TMSK?2), the Timer Interrupt Flag Registers 1 and 2 (TFLGL/TFLG2), the Compare Force
Register(CFORC), the PWM Control Register C (PWMC), and the GPT Prescaler (PRESCL .)

GPT Input CapturesWindow

Availability: 683xx Hardware Debugger

52My5in132: GPT IC - Input Captures

Capture
i Edge
Ichy both
IC3 rising
IC2 falling
IC1 disabled
TCTLA/TCTL2=1EDE,
DDGRP=2F,

Reg

Ual Interrupt Output? Is
8888 ENABLED
8088 Disabled
8888 ENABLED
8088 Disabled
THSK1/THSK2=82B8
PORTGP=F2

=101]

Input/ Pin

Input [H
Output 1o
Output HI
Output 1o

The GPT Input Captures window displays the Timer Control Registers 1 and 2 (TCTLL/TCTL?2),
the Timer Interrupt Mask Registers 1 and 2 (TMSK1/TMSK2), the Port G Data Direction Register
(DDGRP), and the Port G Data Register (PORTGP).

GPT Output Compares Window

Availability: 683xx Hardware Debugger

121

=0l x|

C1 On OC1 Reg TCHT Force Input/ Pin
Match Match pin Ual Interrupt Hatch? Comparexx Qutput? Is
0cs - - - - Illﬂlllﬂ - - - -
ochy toggqle op SET 1233 Disabled Ho clr Input HI
oc3 set op SET 3388 Disabled Ho SET Output HI
oc2 clear op clr BABA Disabled Yes clr Input HI
0c1 - op clr CDEE Disabled Ho SET Output 1o

TCTL1/TCTL2=1ED8, OC1HM/OCID=FBE®, THSK1/THSK2=82B8, TFLAG1/TFLAG2=1838
CFPRC/PWHC=2B84, DDGRP=2F, PORTGP=F2
** MHote: Force Compare always reads zero

The GPT Output Captures window displays the Timer Control Registers 1 and 2 (TCTLL/TCTL?2),
the OC1 Action Mask Register (OC1M), the OC1 Action Data Register (OC1D), the Timer
Interrupt Mask Registers 1 and 2 (TMSK1/TMSK?2), the Timer Interrupt Flag Registers 1 and 2
(TFLGUTFLG2), the Compare Force Register (CFORC), the PWM Force Register (PWMC), the
Port G Data Direction Register (DDGRP), and the Port G Data Register (PORTGP).

GPT Pulse Accumulate Window

Availability: 683xx Hardware Debugger

=10l x|

PACTL/PACHT 8488 | PAIS F..F | Pulse accumulator input pin state is lo

| PAEN E..E | Pulse accumulator is Disabled

| PAMOD D..D | External event counting

| PEDGE C..C | PAI falling edge increments counter

| PCLKES B..B | PCKLK pin state is lo

| 14705 A..A | Output compare 5 Disable, Input capture 4 EHNABLE

| PACLK 9..8 | Clock source: System clock divided by 512

| | Clock period is 888,832.8 ns

| PACHT 7..8 | Pulse accumulator count is 88
THIK1/THSK2 82B8 | PAOUI 5..% | Counter overflow Interrupt EHABLED

| PAII 4_..4 | Input pulse Interrupt EHABLED
TFLG1/TFLG2 1838 | PAODUF 5_.5 | Counter overflow flagq

| PAIF 4__4 | Input pulse flag is SET

The GPT Pulse Accumulate window displays the Pulse Accumulate Control Register (PACTL), the
Pulse Accumulate Counter Register (PACNT), the Timer Interrupt Mask Registers 1 and 2
(TMSK1L/TMSK?2), and the Timer Interrupt Flag Registers 1 and 2 (TFLGL/TFLG2).

GPT Pulse Width Modulation Window

Availability: 683xx Hardware Debugger

PT PWM - F =10l
Force Force Pin Fast/ Period Period Width ~width
Output? State Use S$low? (CHTs) {us) Ual Percent
PUH-A Yes lo TCHT FAST 256 a@e,832.8 @8 a
PUH-B Yes lo - clow 32768 a4y, 8984 Ba a

CFPRC/PUNMC=2B84,

The GPT Pulse Accumulate Width Modulation window displays the Compare Force Register
(CFORC), and the PWM Control Register C Register (PWMC).

122

CTM4/CTM®6 BusInterface and Clocks Window

Availability: 683xx Hardware Debugger

% ——
BIUHMCR 1a@1 STOP F..F Configirable Timer Hodule &4 clocks are EHABLED
FR21 E..E Uhen FREEZE on IHB, ignore it
UECT C..B Interrupt vector base is $C8 plus submodule offset
IARE A..8 | CTHY4 interrupt arbitration priority 2
TBRS1 5..5 | Time Base Select Bit 1 is @

| |

| |

| |

| |

I | T it 1
| TBRS8 @..8 | Time Base Select Bit 8 is 1
| | Use Time Base Bus 2 (TBB2)
| |
| |
| |
| |

BIUTBR @688 F..8 | The value of Time Base Bus 2 is @888
CPCR a@az PRUN 3..3 Prescaler divider is held in reset and not running
pIu23 2..2 First prescaler stage divides by two
PSEL 1..8 PCLKG post DIU23 prescaler is Eéﬁ
PCLKA PCLK2? PCLE3 PCLKY PCLKS PCLKG
Clock Period (ns) @15,258.8 061,967.3 008,953.7 O00,476.8 000,238_.4 008,119.2
Total Prescaler 256 32 16] 4 2

The CTM4/CTM6 Bus Interface and Clocks window displays the BIU Module Configuration
Register (BIUMCR), the BIU Time Base Register (BIUTBR), and the CPSM Control Register
(CPCR). In addition, the prescaler clock period is calculated and listed in both nano-seconds and
divisionratio.

CTM4/CTM6 Free-Running Counter Submodule Window

Availability: 683xx Hardware Debugger

5 =10lx]
FCSHSIC 1888 | COF F..F | A free-running counter overflow has not occured
IL E..C Interrupt is lewel 1
IARB3 B..B Interrupt arbitration bit 3 is SET

|
|
|
| (Concatenated with BIUHMCR:IARB[Z..8])
DRU 9..8 | Time base bus EUISGTSEUT)]
|
|
|

IN 7..7 The CTH2C clock input pin is Low
CLK 2..8 The counter clock source is PCLK1
FCSHCHT 23D2 F..@8 The value of the FCSH counter register is 23D2

The CTM4/CTM6 Free-Running Counter Submodule window displays the FCSM
Status/Interrupt/Control Register (FCSMSIC) and the FCSM Counter Register (FCSMCNT).

CTM4/CTM6 Modulus Counter Submodule Window

Availability: 683xx Hardware Debugger

27 =0l x|
363636363 3636 36 3 MCSHB2 il
SIC 2921 | COF F..F A overflow has not occured

| IL E..C Interrupt level is lewel 2
IARB2 B..B | Interrupt arbitration bit 3 is SET
(Concatenated with BIUMCR:IARB[Z..08])
DRU 9..8 Time base bus A is driven

|
|
|
I
IN2 7..7 | The CTH2C clock input pin is Low
|
|
|
|
|

IH1 6..6 | The CTD9 modulus load input pin is Low
EDGE 5..4 | CTD9 edge detection: negative edge only
CLK 2..8 | The counter clock source is PCLKZ2
CHT 1232 | F..B | Counter register value is
HL 1232 | F..8 Modulus latch walue is 1232
HEXEXEXERER HMCSH11
_jif @ae@ | COF F..F | A overflow has not occured _J:J
4 »

123

The CTM4/CTM6 Modulus Counters Submodule window displays the MCSM 2 and 11
Status/Interrupt/Control Registers (MCSM2SIC, MCSM11SIC), the MCSM 2 and 11 Counter
Registers (MCSM2CNT, MCSM11CNT), and the MCSM 2 and 11 Modulus Latch Registers
(MCSM2ML, MCSM11ML).

CTM4 Double-Action Submodule Window

Availability: 683xx Hardware Debugger

52My63376: CTM4 - Double Actions (DASM) - |Elll|
————————————————— DASH #3 -—————————- fl
3 (H 2B88 | FLAG F..F | fin input capture or output compare has
| IL E..C | Interrupt is lewel 2
| IARB3 B..B | Int. arbitration bit 3 is SET + BIUMCR:IARB[2..8]
| WOR 9..92 | If output then buffer operates in wired-or mode
| BSL 8..8 | Connected to time base bus B
| IN 7..7 | If input, then the pin is High
| FORCA 6..6 | Set to force channel A compare, always reads 8
| FORCE 5..% | Set to force channel B compare, always reads 8
| EDPOL 4..4 | 8 is A compare on channel A sets the ouptut pin to logic 1
| | A compare on channel B clears the ouptut pin to logic @
| MODE 3..8 | OPWH - Output pulse width modulation 16 bit resolution
DATA-A BBBS | F..B | The DATA-A register value is BBBS
DATA-B E97B | F..8 | The DATA-B register value is E97B
————————————————— DASH #4 -
SIC 8888 | FLAG F..F | An input capture or output compare has not occured ZJ

The CTM4 Double-Action Submodule window displays the DASM 3, 4, 9, and 10
Status/Interrupt/Control Registers (DASM3SIC, DASM4SIC, DASM9SIC, DASM10SIC), and the
DASM 3, 4, 9, and 10 Data Register A and B registers (DASM3A, DASM4A, DASMO9A,
DASM10A, DASM3B, DASM4B, DASM9B, and DASM10B).

CTM4 Pulse Width M odulation Submodule Window

Availability: 683xx Hardware Debugger

- A PYH period is not complete :I
PWH interrupt is level 2

PWHM interrupt arbitration bit 3 is
(Concatenated with BIUMCR:-IARB[2..4])

.
mam

|
|
|
.¥ | The PWHM output pin is Low
.5 | SET to load pulse width (always reads @)
.3 | Always low
3 -
.8 | CLE is @ for a period of 008,119.2 [Fs5ys/2]
.8 | The PERIODD is F463
.8 | The PULSE WIDTH is 2D1E
..8 | The COUNTER is aam
.F | A PYH period is not complete =l
The CTM4 Pulse Width Modulation Submodule window displays the DASM 5, 6, 7, and 8
Statug/Interrupt/Control Registers (PWM5SIC, PWM6SIC, PWM7SIC, PWM8SIC), the DASM 5,
6, 7, and 8 Period Registers (PWM5PER, PWM6PER, PWM7PER, PWMB8PER), the DASM 5, 6, 7,
and 8 Pulse Width Registers (PWM5PW, PWM6PW, PWM7PW, PWM8PW), and the DASM 5, 6,

7, and 8 Count Registers (PWM5CNT, PWMG6CNT, PWM7CNT, PWMB8CNT).

CTM®6 Single-Action Submodule Window

Availahility: 683xx Har dwar e Debugger

124

32My5in132: LCTMG - Single Actions (SASM) i] 4]

Input capture or output compare has occ
| Interrupt level is (Shared by A and B)

| Interrupt arbitration bit 3. {IARB += BIUMCR:IARB[2..8]}

| Interrupts are disabled/enabled?

| | Use time base bus A or time base bus B?

| | | Pin state when input or flip flop state when output

|

|

| | Set to force output compare {always reads 8)
|

|

|

|

|
| |
| |
|

FLAG IL IARB IEN BSL IN FORCE EDOUT HODE
i 0

| | Capture edge, match action or output pin state
| | | Operating mode

SIC DAT |
SASM12A 8681 0868688 | Ho DIS clr dis 1o 8 clr ==> Output Port, pin set high
SASHM12B E364 068088 | Yes DIS clr dis B 1o 1 clr IC ==» Input Capture on falling edge
SASH14A 1861 0060 | Ho 1 SET dis A 1o a8 clr OP ==> Dutput Port, pin set high
SASH14B 0845 0860 | Ho 1 SET dis na 1o a clr 0P ==> Output Port, pin set high
SASHM18A 000A @ae8 | No DIS clr dis A 1o a clr IC ==»> Input Capture on falling edge
SASM1BE 8191 BDBA | Ho DIS clr dis B HI 8 SET OP ==> Output Port, pin set louw
SASHM24A 0528 @668 | Ho DIS clr EH B 1o 1 clr IC ==> Input Capture on falling edge
SASHM24B 0088 @a68 | No DIS clr dis A HI a clr IC ==> Input Capture on falling edge

The CTM®6 Single-Action Submodule window displays the SASM 12A, 12B, 14A, 14B, 18A, 18B,
24A, 24B Statud/Interrupt/Control Registers (SIC12A, SIC12B, SIC14A, etc.), and the SASM 12A,
12B, 14A, 14B, 18A, 18B, 24A, 24B Registers (S12DATA, S12DATB, S14DATA, etc.)

CTM6 Double-Action Submodule - M odes Window

Availability: 683xx Hardware Debugger

52My5in132: CTMG - Double Actions Modes (DASM)

DASHO4: OPWH - Output pulse width modulation ﬂ
A compare on channel A sets the ouptut pin to logic 1

A compare on channel B clears the ouptut pin to logic 8
Dashos:

Channel A captures on a rising edge

Channel B captures on a falling edge

DASHBs: IC - Input capture hd|

The CTM6 Double-Action - Modes Submodule window displays the DASM 4, 5, 6, 7, 8, 9, 10, 26,
27, 28, and 29 Statug/Interrupt/Control Registers (DASMA4SIC, DASM5SIC, DASMG6SIC,
DASM7SIC, DASMS8SIC, DASM9SIC, DASM10SIC, DASM26SIC, DASM27SIC, DASM28SIC,
DASM29SIC).

See the Bits form of the CTM6 Double-Action Submodule window for display of additional
information.

CTM6 Double-Action Submodule - Bits Window

Availability: 683xx Hardware Debugger

52My5in132: CTMG - Double Actions Bits (DASM) =] 5]
An input capture or output compare has occured?
| Interrupt level is
| Interrupt arbitration bit 3. J{IARB += BIUMCR:IARB[Z..8]}
| If output then buffer operates mode is mode
| Connected to time base bus
| Pin function when input
| Set to force chan-A compare, always reads 8
| Set to force chan-B compare, always reads 8

|

|

| |

I | | |]

| | | | Edge Polarity

| | | | | Hode selecte string
| | | | Bits of resolution

L IN FORCA FORCE EDPLO HMODE |

|
|
|
|
|
|
|
|
|
L

|
IARB3 WOR B

|
|
|
|
|
|
SIC D-A D-B FLAG I s
DASHBY 938C 92800 988A Yes 1 clr wired-or B High a]] C 12 OPWH
DASHES B224 0000 0000 Ho DIS clr wired-or A Low a 1] 4 16 0CB
DASHB6 860683 1900 0068 ﬂ:a DIS clr normal A Low a [i] [i] 3 16 IC
DASHB? ©60684 8161 0068 Ho DIS clr normal A Low a [i] [i] 4 16 0CB
DASHER ©326 08680 693A Ho DIS clr wired-or B Low a 1 a 1] - unused
DASHEY 198D 00688 BOO3 Ho 1 SET normal B High a]] D 1 0PUWH
DASH18 BO6ES 8761 00688 Yes 3 clr normal A Low a]] 5 16 DCAB
DASH26 B222 00600 0088 Ho DIS clr wired-or A Low a 1] 2 16 IPH
DASH27 ©641 00008 66888 Ho DIS clr normal A Low 1]] 1 16 IPUH
DASH28 0000 0000 G088 Ho DIS clr normal A Low a]]] - DIS
DASHM29 0086 0000 0860 Ho DIS clr normal A Low a a a] - unused

125

The CTM6 Double-Action Bits Submodule window displays the DASM 4, 5, 6, 7, 8, 9, 10, 26, 27,
28, and 29 Status/Interrupt/Control Registers (DASM4SIC, DASMS5SIC, etc.), and the DASM Data
A and B registers (DASM4A, DASM4B, DASM5A, etc.)

See the Modes form of the CTM6 Double-Action Submodule window for display of additional
information.

Real Time Clock Window

Availability: 683xx Hardware Debugger

0 Mysim32: Real Time Clock (RTC) B[] B
SIC 8847 | TICKF F..F | A 1HZ tick ha ccured: Ho
| IL E..C | Interrupt is disabled when TICKF sets
| IARB3 B..B | Interrupt arbitration bit 3 is
| | (Concatenated with BIUMCR:IARB[2..8])
| WEH 9..92 | Writes to prescaler and counter are Disabled
| EM 8..8 | The RTC is not running
PRR a1 | F..8 | RTC prescaler 8108
FRCH @caa | F..8 | Free-running counter, hi BCAA
FRCL F83n | F..8 | Free-running counter, lo F83A

The Real Time Clock window displays the RTC Status, Interrupt, Control Register (RT16SIC), the
RTCSM Prescaler Register (RTCSM), and the RTCSM Free-Running Counter High and Low
Registers (R16FRCH, R16FRCL).

Paralle Port 1/0O Submodule Window

Availability: 683xx Hardware Debugger

DPMySim32: Parallel Pork i =] 4
pAaTa [[§ | Bit?7 Input HI
DDR 88 | Bité Input 1o

| Bits Input 1o

| Bitds Input 1lo

| Bita Input HI

| Bit2 Input HI

| Bit1 Input 1o

| Bitd Input 1lo

The Paralel Port 1/O Submodule window displays the PIOSM Control Register (PIO17A) which
controls data direction and either reads or writes the port data.

TouCAN Main Window

Availability: 683xx Hardware Debugger

126

J2My68376: TouCAN - Main =101 x|
canMck I | sToP F..F | TouGAN clocks are EMNABLED
| FRZ E..E | TouCAN is allowed to enter debug mode
| HALT C..C | On FRZ=1, TouCan goes to debug mode
| HotRdy B..B | TouCAN is in low-power stop or debug mode
| WakeMsk A..A | Wake up interrupt is EHNABLED
| SoftRst 9..9 | Soft reset cycle completed
| FrzAick 8..8 | TouCAN has entered debug mode and the prescaler is Disabled
| SUPV 7..7 | 5/U registers access at Supv priviledge level
| S1fWake 6..6 | Self wake is ENABLED
| APS 5..5 | Auto power save ENABLED; clocks stop and restart as needed
| StopAck 4..4 | TouCAN is in low-power stop mode
| IARB 3..8 | Interrupt arbitration priority @
CANICR 884F | ILCAN A..8 | Interrupt request is disabled
| IuBn 7..5 | Interrupt vector base upper 3 bits are 2
CANCTRL® 4480 | BoffHsk F..F | BUS OFF interrupt is Disabled
| Erriisk E..E | ERROR interrupt is EHNABLED
| Rx1lode B..B | On the CANRX1 pin, a logic 8 is dominant, 1 is recessive
| RxBHode A..A | On the CANRXA pin, a logic 1 is dominant, B8 is recessive
| TxMode 9..8 | Full CHOS; positive polarity (CANTX8=8,CANTX1=1 is dominant)
| SAHP 7..7 | Sample each receive bit three times
| LOOP 6..6 | Internal loopback is Disabled
| TSYNC 5..5 | Timer synchrnization Disabled
| LBUF 4..4 | HMessage buffer with lowest ID is transmitted first
| PROPSEG 2..8 | PROPSEG=8 ——> Propogation Segment Time: 888,859.6 (ns)
PRESDIUFCTRL | PRESDIV 7..8 | PRESDIV=68 --> 5-Clock: 8808,85%.6 (ns)
6088 | RJW F..6 | RJU=8 --> Resynchronization Jump Width: 8608,859.6 (ns)
| PSEG1 5..3 | PSEG1=8 -—-> Phase Buffer Seqment 1: @88,859.6 (ns)
| PSEG2 2..8 | P3EG2=8 -—-> Phase Buffer Segment 1: B88,0859.6 (ns)
ESTAT KEEE | | === THE ESTAT STATES ARE HOT DISPLAYED w*xx
| | === BECAUSE ESTAT READE ARE IHTRUSIVE s
RXGHMSKHI FFEF | | Receive global mask High is FFEF
RXGHMSKLD FFFE | | Receive global mask Low is FFFE
R¥14MsHI FFEF | | Receive buffer 14 mask High is FFEF
RX14MsSLO FFFE | | Receive buffer 14 mask Low is FFFE
RX15MsHI FFEF | | Receive buffer 15 mask High is FFEF
RX15MsL0 FFFE | | Receive buffer 15 mask Low is FFFE
IMASK 454E | | See buffer window
IFLAG gaea | | See buffer window
RXECTR ga | | Receive error counter is 88
TXECTR aa | | Transmit error counter is 88

The TouCAN Main window displays the TouCAN Module Configuration Register (CANMCR), the
TouCAN Interrupt Configuration Register (CANICR), the TouCAN Control Registers 0, 1 and 2
(CANCTRLO, CANCTRL1 and CANCTRL2), the touCAN Prescaler Divide Register (PRESDIV),
the Receive Global Mask High and Low Registers (RXGMSKHI, RXGMSKLO), the Receive
Buffer 14 and 15 High and Low Registers (RX14MSKHI, RX14MSKLO, RX15MSKHI,
RX15M SKLO), the Interrupt Mask and Flag Registers (IMASK, IFLAG), the Receive and Transmit
Error Counters (RXECTR, TXECTR).

TouCAN BuffersWindow

Availability: 683xx Hardware Debugger

127

J2My68376: TouCAN - Buffers =10l x|
DATA BYTES INTERRUPTS

08,01 D2,03 D4,D5 D6,D7 Enabled? Flag

FB,5F FF,.EE 4D,AF FD,F3 Disabled clv

Buf Ctrl | ID 1D
i fSts | HIGH LoOW
15 N/FR | DY E645

| I

| |
14 NfA | 2BFF7 FFFF | F7,FF FA,36 F7,F7 D7,F5 | ENABLED clr
13 H/n | 1FEF 7C5F | 3E,BE 7F,B7 B6,FE AF,75 | Disabled clr
12 H/h | FFD? 75EB | 7B,F4 FF,FF 6F ,EF 8F,98 | Disabled clr
11 N/fn | BBFB FFDF | AA,5F S5B,67 CF,CD 7D,E7 | Disabled clv
18 N/fd | FEFF B¥F7 | 7F,C% FC,EF @F,76 9A,A3 | ENABLED clr
2 H/h | AEA7 E59D | FD,CF 57,72 FF,EF DD,F7 | Disabled clr
8 NfA | DDF6 ¥DFF | FE,FF 56,EF DE,3F CF,D7 | ENABLED clv
7 N/n | SDBF EBDF | FD,3F D9,27 CD,B6 B7,BF | Disabled clvr
6 N/d | FEC?7 FFDF | EF,DE FB,F7 DF,DC FF,FF | ENABLED clr
5 N/A | 73F9 EF3Rn | FF,CF 7F,EB 1F,B4 71,FA | Disabled clvr
4 N/n | S?FE F7aF | 7F,D3 F2,FF 9D,7n DF,FF | Disabled clv
3 N/fA | 2AF7 EAREB | F7,FF DF,BF F7,F7 7¥D,F7 | ENABLED clr
2 N/fA | FD7D F6¥F | 7D,B5 D9,FB 2F,FF B5,E7 | ENRBLED clr
1 N/fA | FF7B FFFF | EE,F% FF,EB FF,AE FD,7D | ENABLED clr
a8 H/h | FFER F79E | AF,DF FF,7F B7,5D FC,BE | Disabled clr

The TouCAN Buffers window displays information for each of the 16 buffers. For each buffer the
status, identification (high and low), eight data bytes, interrupt enable/disable, and interrupt set/clear
state isdisplayed

QADC Main Window

Availability: 683xx Hardware Debugger

22 My66376: QADC - Main = =] B

QADCHMCR 4884 | STOP F..F The QADC clock is enabled
| FR2 E..E OQADC finishes any current conversion, then freezes
SUPY 7.7 All tables and registers are supervisor only
IARE 3..0 | QADC interrupt arbitration priority I
QADCINT 313C IRLOQ1 E..C Queue 1 interrupt is level 3 ({B=disabled, 7=highest}
IRLQ2 A..8 Queue 2 interrupt is level 1 ({B=disabled, 7=highest}
7..8

Interrupt vector base is 3C
[2 1sb’s cannot be written and always read 8]

QACRA 8133 MUX F..F Internally multiplexed, 16 possible channels
PSH 8..4 PSH=13 --> Prescaler clock hi time is 661,192_.1 ns
PSA 3..3 QCLK high and low times are not modified
PSL 2..8 PSL=3 --» Prescaler clock lo time is 688,238_.4 ns
QACR1 515 1] GIE1 F..F Queue 1 completion interrupt is disabled
PIE1 E..E | Queue 1 pause interrupts are disabled
SSE1 D..D | Enables a single-scan after trigger event

[This bit always reads as a zero]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| HO1
|
|
|
|
|
|
|
|
|
|
|
|
|

fA..8 Disabled mode, conversions do not occur
(ACR2 8827 | CIE2Z F..F | Queue 2 completion interrupt is disabled
PIEZ E..E | Queue 2 pause interrupts are disabled
$SE2 D..D | Enables a single-scan after trigger event
[This bit always reads as a zero]
Q2 C..8 Single-scan mode, [3..8]=0, Interval is - micro-seconds
Disabled mode, conversions do not occuyr
QASR 515515} CF1 F..F Queue 1 scan is not complete
PF1 E..E Queue 1 has not reached a pause
GF2 D..D Queue ? scan is not complete
PF2 GC..C Queue 2 has not reached a pause
TOR1 B..B Ho queue 1 trigger events have occured
TOR2 B..B Ho queue 2 trigger events have occured
Qs 9..6 Queue 1 idle, Queue 2 idle
| Cup 5..8 Conversion Command Word @8 is currently or last executed

The QADC Main window displays the QADC Module Configuration Register (QADCMCR), the
QADC Interrupt Register (QADCINT), the QADC Control Registers 0, 1, and 2 (QACRO0, QACR1,
QACR?2), and the QADC Status Register (QASR).

QADC PortsWindow

Availability: 683xx Hardware Debugger

128

5 My68376: QADC - Ports B [=] 5]
DDRQ 7188 | ANSO F..F | Input @
PORTQ 41088 | ANSE E..E | POA.6 Output 1

| ANS? D..D | POA.5 Qutput @
| ANSG/ETRIG2 C..C | PQA.4 Output @
| ANSS/ETRIG1 B..B | PQA.3/ANSS Input @
| ANS4/HAZ A..A | PQA.2/ANS5Y Input @
| ANS3/HA1 9..9 | POA.2/AN5Y Input @
| ANS2/HAB 8..8 | POAR.2 Output 1
| ANS1 7..7 | POQB.7/A51 ({always) @
| ANSB 6..6 | PQB.6/A5B ({always) @
| ANug 5..5 | PQB.5/A49 ({always) @
| AHu8 4_.4 | POB.4/A48 (always) O
| AN[3]/ANz 3..3 | POA.3/ANZ 0
| AN[2]/ANY 2..2 | POA.2/AN2 a
| AN[1]/ANx 1..1 | POA.1/AM1 a
| AN[8]/AHu 8..8 | PQA.B/ANBG a

The QADC Ports window displays the QADC Port Data Direction Register (DDRQA) and the
QADC Port A and B registers (PORTQA, PORTQB).

QADC ChannelsWindow

Availability: 683xx Hardware Debugger

2P My68376: QADC - Channels - o] x|
P --— PAUSE after executing current CCW?

| BYP -—— Use BYPASS amplifier? |---- RESULTS --——- |

| | IST -—— Input sample time, ns | RHT LFT LFT |

| | | CHAN | JST JST JST |

CCW[X] vAaL 9..9 8_.8 7..6 5.8 | UNS SHD UNS |
a BOFF .. no 16-0CLK's=822,888.2 3F==>PQA.0/ANO B2FF 3FCA BFCH
1 03FF PAUSE YES 16-QCLK's5=022,888.2 3F==>PQA.0/ANO 0357 55C@ D5CA
2 B3FF PAUSE YES 16-0CLK's=822,888.2 3F==>PQA.06/nHB 813F CFCA 4FCH
3 8209 PAUSE no 16-0CLK's=822,888.2 19==>PQA.0/0HB 63c8 7280 F2088
N 821F PAUSE no 2-qcLK's=002,861.0 1F==>{GICITLTEEE core BECo 3ECE
g B2FF PAUSE no 16-0CLK's=822,888.2 3F==>PQA.06/NHB B3EF 7BCA FBCA
6 B2FF PAUSE no 16-0CLK's=822,888.2 3F==>PQA.0/nNB B3BE 6F80 EF8H
7 0201 PAUSE no 16-QCLK's=022,888.2 11==>PQA.0/ANO O3EB 7AC@ FACH
8 B1FF .. YES 16-0CLK's=022,888.2 3F==>PQA.06/AHB B3FA 7E8@ FESH
9 B3FF PAUSE YES 16-0CLK's=822,888.2 3F==>PQA.0/ANB B1FS FD4E 7048
A 03FF PAUSE YES 16-QCLK's5=022,888.2 3F==>PQA.0/ANO 0O6F 9BCA 1BCH
B 8308 PAUSE YES 16-0CLK's=822,888.2 18==>PQA.06/nHB B3DE 7788 F788
C BO7F .. no 4-QCLK'5=005,722.8 3F==>PQA.0/AND BOFF BFCA 3FCH
D 03BE PAUSE YES 8-QCLK'5=011,444.1 3E==>PQA.0/ANO 03FF 7FCA@ FFCO
E B3FE PAUSE YES 16-0CLK's=822,888.2 3E==>PQA.0/ANA B3FF 7FCA FFCA
F B15F .. YES 4-QCLK'5=005,722.8 1F==>PQA.0/AND 6309 7648 F6uB
10 01BE .. YES 8-QCLK'5=011,444.1 3E==>PQA.0/ANO OOFF BFCA@ 3FCH
11 BOSF .. no 4-OCLK 5=005,722.8 1F==>PQA.0/ANO B3FF 7FCA FFCA
12 8108 .. YES 16-0CLK's=822,888.2 18==>PQA.06/ANB B3FF 7FCA FFCH
13 030D PAUSE YES 16-QCLK's5=022,888.2 1D==>PQA.0/ANO 0309 7648 F640
14 B3EA PAUSE YES 16-0CLK's=822,888.2 2A==>PQA.0/ANA BOFF BFCA 3FCH
15 BOFE .. no 16-0CLK's=822,888.2 3E==>PQA.06/ANB B3FF 7FCA FFCH
16 B0EF .. no 16-0CLK's=822,888.2 2F==>PQA.08/ANO 03FF 7FCA@ FFCH
17 B1FF .. YES 16-QCLK'5=822,888.2 3F==>PQA.0/ANA 8309 7648 F648
18 BOFF .. no 16-0CLK's=822,888.2 3F==>PQA.06/ANB BOFF BFCA 3FCH
19 B3FF PAUSE YES 16-0CLK's=822,888.2 3F==>PQA.0/ANO 03FF 7FCA@ FFCH
1n B3FF PAUSE YES 16-0CLK's5=822,888.2 3F==>PQA.0/ANA B3FF 7FCA FFCA
1B 8309 PAUSE YES 16-0CLK's=622,888.2 19==>PQA.06/AHB 8309 7648 F648
1C BOFF .. no 16-0CLK's=822,888.2 3F==>PQA.0/ANO B0FF BFCA@ 3FCH
1D B3FF PAUSE YES 16-0CLK's5=822,888.2 3F==>PQA.0/ANA B3FF 7FCA FFCA
1E B3FF PAUSE YES 16-0CLK's=822,888.2 3F==>PQA.06/NHB B3FF 7FCA FFCH
1F 0309 PAUSE YES 16-QCLK's=022,888.2 19==>PQA.0/ANO 0309 7640 F6u0
28 8309 PAUSE YES 16-0CLK's5=822,888.2 19==>PQA.0/ANA BOFF BFCA 3FCH
29 B1FD .. YES 16-0CLK's=822,888.2 3D==>PQA.06/AHB B3FF 7FCA FFCH
2n 020B PAUSE no 16-QCLK's=022,888.2 1B==>PQA.0/ANO 03FF 7FCA FFCH
2B 8391 PAUSE YES 8-QCLK'5=811,444.1 11==>PQA.0/AND 8309 7648 F648
2c BOFF .. no 16-0CLK's=822,888.2 3F==>PQA.06/AHB BOFF BFCA 3FCH
2D 03FF PAUSE YES 16-QCLK's=022,888.2 3F==>PQA.0/nNO 03FF 7FCA FFCH
2E B3FF PAUSE YES 16-0CLK's=822,888.2 3F==>PQA.0/ANA B3FF 7FCA FFCA
2F 8309 PAUSE YES 16-0CLK's=822,888.2 19==>PQA.06/AHB 8309 7648 F648

129

The QADC Channels window displays the Conversion Command Word Table Registers (CCWO to
CCW2F), the Right Justified Unsigned Result Registers (RJURRO to RJURR2F), the Left Justified
Signed Result Registers (LJSRRO to LIJSRR63), and the Left Justified Unsigned Result Registers
(LJURRO to LJURRZ27).

Note that the QADC normally has up to 16 analog input channels but can directly support up to 40
analog channels with QADC-controlled external multiplexing.

683xx ASH WARE Hardware Window
Availability: 683xx Hardware Debugger

52M_l,lem32: Hardware M= E
Using

BDM Fort Ervors: 80008800

Go Hode is Lock Step

Is ASH WARE Hardware? Yes
Hardware Revison 32.85 Build A
Bypass Mode is Available
Bypass Mode Read is Disabled
Bypass Mode Write is Disabled
Jumper@ is Installed

Jumper1 is Installed

PLD Register Bit: SET
Data Bus Size: Word
Data Bus Wait States ac

Clock Cycles Per Second (Hex) @@8800080

The first field indicates to which parallel port the BDM cable is attached. The BDM Port errors
field gives the total number of low-level communications errors encountered. This field should
never be greater than zero when the port communications are working properly. The Lock Step
field indicates if the hardware is free running or isin lock step. Lock step is when the hardware is
only single stepped. This greatly reduces the target execution speed and generally should not be
selected.

The Hardware Revision field gives the release number of the ASH WARE hardware.

Bypass mode is a special accelerated communications mode in which the normal BDM path is
bypassed to speed up code download and upload. The three fields indicate if the mode is available,
if bypass mode is enabled for reads, and if bypass mode is available for writes. Enabling bypass
mode significantly improves code uploads/downloads and window display update rates.

The PLD Register bit field indicates if a bit within the ASH WARE development board's PLD is set
or cleared. Seethe Development Board documentation for a detailed explanation of this bit.

CPU32 Simulator Configuration Window

Availability: CPU32 Simulator

52 MySim32: Configuration 1 =]
Files:
Project: E:\Mtdt\TargetCode\Cpu32 Test141Sin32.MtDtProject]

MEtDt Build: E:\Mtdt\GuUi\TESTFILES\BuildScripts\15im32.HMtDtBuild
Source Code: main.e68
Script: -Ho File Open-
Script Report: -Ho File Open-
Script Startup: -Ho File Open-
Auto Build: -Ho File Open-
Uerification:
Script Failures: 888088888

130

Files

The name of the project fileisdisplayed. Seethe Project Sessionschapter for adetailed explanation
of this capability.

The name of the MtDt build script file is displayed. See the Full-System Simulation chapter and the
MtDt Build Commands File section for detailed explanations of the available capabilities and format
of thisfile.

The names of the open source code (executable image), primary script, primary script report, and
startup script filesare displayed. Thesefiles are listed relative to the path of the open project file.

The auto-build file name is displayed. The auto-build file allows direct building of the executable
image from within MtDt and is covered in the Auto-Build Batch File Options Dialog Box section.

Verification

The count of the number of user-defined verification tests that have failed since the last MtDt reset
is displayed. User-defined tests are part of script commands files. See the Script Commands
Groupings section for a description of the various script commands that support user-defined tests.

CPU32 Simulator Busses Window

Availability: CPU32 Simulator

52 MySim32: Busses I =]
Instruction: ndd|

Sub-Instruction:

Instruction Size: This is a 16 bit (Word) instruction

————— A-BUS -

Source: 16-Bit 1234 Addr : @00@ezog
Operand: Address Register Indirect with Datal16 Displacement
Space: Supervisor Data Space
————— B-BUS --——--——--——-
Source: 16-Bit FOF8
Destination: 16-Bit 8324
Operand: Data Register
Space: -
———————————————— CLOCKS
Instruction Fetch 6
A Bus Load 3
B Bus Load 3]
Instruction (min) 2
B Bus Store 3]

The CPU32 Simulator Busses window displays detailed information regarding the just executed
instruction. This includes the data flow within the simulated CPU32, the data flow between the
simulated CPU32 and external memory, and timing information.

CPU32 Smulator Interrupt Window

Availability: CPU32 Simulator

131

2 Host32: Interrupts =]
Source Uect Lwvl IARB Time Clocks i’
TpuSim[@] 4@ 3 2 a4, 796.8 BA0O013A6A

[TpuSim[D] 4D 3 2 004,796.8 0O0013A68 |
TpusSim[E] &4E 3 2 084,796.8 000013A6G0
TpuSim[F] &F 3 2 084 ,796.8 000013A60

Ho more pending interrupts
Ho more pending interrupts -

Al v

The CPU32 Simulator Interrupt window displays detailed information regarding the currently
pending CPU32 interrupts. Towards the top are the highest priority (first to be serviced) interrupts
and towards the bottom are the lowest priority (last to be serviced) interrupts. Once interrupts are
serviced they are removed from this window.

CPU32 Registers Window
Availability: CPU32 Simulator and 683xx Har dwar e Debugger

52M_l,lem32: Registers M=
PC LSRRl UBR 868008080
S5P ABO308008 USSP A0008813
SFC 9BO0OOAS DFC a0008085
AR 22222222 DA aahuhunh
A1 11111111 D1 33333333
AZ ©AB0ABR2Z2 D2 A000BA32
A3 ©AB00ABB23 D3 060008833
A4 ©PO00GBS24 D4 GO00DB3L
A ©AB00AS2S DS A000DA3S
A6 PBO00BBO26 D6 AOO0DB36
A7 9AB630008 D7 Q0008837
SR 2783

The CPU32 Registers window displays the CPU32's registers. These are the Program Counter (PC),
the Vector Base Register (VBR), the Supervisor and User Stack Pointers (SSP and USP), the
Alternate Function Code registers (SFC and DFC), the Address registers (A0 through A7), the Data
registers (DO through D7), and the Status Register (SR).

CPU32 Disassembly Dump Window
Availability: CPU32 Simulator and 683xx Har dwar e Debugger

The CPU32 Disassembly Dump window displays disassembled code starting at the target's program
counter.

CPU16 Smulator Configuration Window

Availability: CPU16 Simulator

[[z] MySim16: Configuration =] B3
Files:
Project: E:\Mtdt\TargetCode\Cpul16 Simple\Cpul6 Simple._HtDtProject

MtDt Build: E:\Htdt\Gui\TESTFILES\BuildScripts\1Sim16.MtDtBuild
Source Code: main.e1é
Script: Simple2_Cpui6Command
Script Report: Simple2_Report
Script Startup: -Ho File Open-
Auto Build: -Ho File Open-
Verification:
Script Failures: 900008600

132

Files
The name of the project fileisdisplayed. Seethe Project Sessionschapter for adetailed explanation
of this capability.

The name of the MtDt build script file is displayed. See the Full-System Smulation chapter and the
MtDt Build Commands File section for detailed explanations of the available capabilities and format
of thisfile.

The names of the open source code (executable image), primary script, primary script report, and
startup script files are displayed. Thesefilesarelisted relative to the path of the open project file.

The auto-build file name is displayed. The auto-build file allows direct building of the executable
image from within MtDt and is covered in the Auto-Build Batch File Options Dialog Box section.

Verification

The count of the number of user-defined verification tests that have failed since the last MtDt reset
is displayed. User-defined tests are part of script commands files. See the Script Commands
Groupingssection for adescription of the various script commands that support user-defined tests.

CPU16 Register Window

Availability: CPU16 Simulator

[@ ySim16: Reg... =] E3
n: [6: on

b: aeaa

E: @:8808

X: @:o808

¥: @:o808

£: @:o888

SP: B:83946

PK: @:8894
FWa: aaava

CCR: S4ED

HR: @a88

IR: @889

ACC: AA@BA:0a88
RHSK FF

YHSK FF

The CPU16 Register window displays the various CPU16 registers.

CPU16 Disassembly Dump Window

Availability: CPU16 Simulator

133

[@ MySim16: Diz-Assembly Dump

ae:
B152:
5L
0158:
B15a:
15c:
B15e:
62:
164:
B166:
B16a:
B6e:
B16e:
7a:
;M72:
76:
B7a:
B17c:
B17e:
g1ga:

k1l

37b5 foBay

dad

37b5 @009

aa
ba
as
fa
al
aa
fa
as
al
aa
as

2

18

5}
aagn

2723 @
37b8 0007

bd
ab
3f
35

dc
n

a6
a6

LDD #4h
STD 6h,z
LDD #%h

STD 2h,z
BRA 176h
LDD ©h,z
JSR 9ah

ADDD 2h,z
STD 2h,z
JSR 1Bah
LDD 2h,z
ADDD Bh,z
STD 4h,z
LDD Bh,z
INCW Bh,z
CPD #7h

BLT 15ch
LDD 4h,z
AIS #6h

PULH K,z

IS[=] F3

IMH16
IND&2Z
IHKH16
IND8Z
RELS
IND&2Z
EXTZ8
IND8Z
IND&2Z
EXTZ8
IND8Z
IND8Z
IND&2Z
IND&2Z
IND16Y
IHH16
RELS
IND&2Z
IHKHE
IHKg

»

The CPU16 Disassembly Dump window displays instructions in memory starting with the program
counter. The instructions address, the hexadecimal value of the instruction, the actual disassembled
instruction, and the parse mode are displayed. Note that the disassembled instructions are viewable
in a generally more useful fashion by selecting mixed assembly viewing mode from within source
code windows.

Unsupported Window

Thiswindow for diagnostic purposes only and is not supported for customer use.

134

LOGIC ANALYZER

Overview

TheLogic Analyzer displays node transitions in a graphical format similar to that of aclassical logic
analyzer. The display can be continuously updated as MtDt runs, or the user can turn off the
automatic display update and scroll through previously-recorded transition data.
The following topics are available regarding the Logic Analyzer.

? Executing to aprecisetime

? View node selection

? Theactivewaveform

? Theleft and right cursors

? Bringing an out-of-view cursor into view

? Using the mouse

? Thevertical yellow context cursor

? Scroll bars

? Waveform boundary time indicators

? Buffer datastart indicator

? Context time indicator

? Current timeindicator

? Left, right and delta cursor time indicators

? Auto scroll the waveform display as the simulator executes

? Button controls

? Datastorage buffer

L. TpuSim: Logic Analyzer - O] x|
|UART_RCV LII |‘| W‘H—H'II'I |‘||— |A
IU_J.RT_}D.IT -

M oawoserst gl «| | » [
ﬁ @ 000, 000.0 v housse: 004,140 4 o8 008, 000.0 o
Diata Start: 000,000.0 u8 Context: (04,4791 8 Current Tame: 0076516 u8
F | Set | Left Corsor: 002,191.1 u8 Delta Corsor: (00,9360 ol Right Cursor: 003,127.1 o8

ExecutingtoaPrecise Time

It is informative to consider how to execute the simulator to the precise time of the falling edge
indicated by thearrow 1, shown in the picture below.

135

? Usethe keyboards up and down arrows to highlight the UART_RCV waveform.
? Dragthe"Left Cursor' near to the desired edge using the mouse.

? Snap to the actual edge using the left and right arrow keys on your keyboard. In the
picture below, this edge is shown to occur at 2,191.1 microseconds.

? Place the cursor over the field showing the time of the left cursor indicated by the second
arrow. Anopen hand 5"1 will appear indicating that this "time" can be copied.

? Eﬁgin dragging the time by holding the left mouse button down to form a closed hand
K

? Dragthetime (closed hand) over the " Current Time" field shown by arrow 3.
? Dropthetimeinto the " current time" field by releasing the left mouse button.

? Thesimulator will reset and execute to precisely 2,191.1 microseconds.

o] x|

N =

il
WW'* :

MMouss: 003,427.4 o8 008, 000"
Context: 004,475.1 8 Current Tima: 007,651.6u8
Delta Cursor: 000,536.0 o8 Right Cursor: 003,127.1 u8

A similar method can be used to execute to a"context" time. The context time is shown at arrow 4
above. The "context" time is the time at which some "context" event occurs. For instance, in the
trace window, click on any stored event. By clicking on the event, the time at which that event
occurred becomes the "context" time. Similarly, in the thread window, click on aworst case thread,
and the time at which the first instruction of the worst case tread occurred becomes the context
time. This context time can then be dragged into the current time field causing the simulator to
execute to that precisetime.

View Waveform Selection

The Logic Analyzer displays nodes from the pin transition trace buffer as a waveform Nodes are
added to the display when they are selected from within the drop-down list box located to the left of
the waveform display panel. The nodes that may be displayed include the TPU channel 1/0 pins
and the TCR2 pin as well as any user-defined nodes. User-defined nodes are those defined within
Test Vector Files.

The waveform display panel may not be large enough to display all the desired nodes. The display
can be scrolled vertically using the vertical scroll bar.

N1 Viewing Thread Activity Nodes (ETPU and TPU Only)

Thread activity can be viewed in the logic analyzer window as shown below. There are eight user-
configured thread nodes. Each of these thread nodes can display the thread activity for one or more
channels. See the Logic Analyzer Dialog box section for more information on configuring thread
nodes.

136

S TpuSim: Logic Analyzer =10 x|

|UART_Rev ;|| ’_| H |—| l— B
|CactResTheess v HINRERREE HERNEREEE
M

omrmr &1] |11 L L
st 1] || {1 L LT

I_ Auto-Seroll .LI _I LI-
| 2

01,7650 vl Mouse: 005,522 8 vl
8| £

Data Start: 00,0000 o8 Context: 000,000.0 uB Current Time: 05,4372 08
& | 5et | Laft Cursor: 001,821.9 o8 Delta Cursor: (03,6430 8 Right Cursor: (05,4658 vl

M1 Viewing Channel Nodes (€TPU and TPU Only)

Several eTPU and TPU channel nodes can be viewed in the logic analyzer as shown below. These
include the Host Service Request (HSR,) Link Service Request (LSR,) Match Recognition Latch
(output and enable MRL and MRLE,) and Transition Detection Latch (TDL.) Only the nodes from
asingle channel can be stored and viewed at atime. The channel for which the nodes will be stored
isdefined in the Logic Analyzer Dialog box.

S TpuSim: Logic Analyzer =10 x|

sy B[] CTLTUL e

IU.-‘n.RT_RU.‘.Tc‘.l = | |

II:_J,RT_RC‘.'.MIIE -

¥ Auto-Zeroll .LI _I LI_-

‘ﬁ] (01,8615 uS Mouvsa: 0054512 v8
Data Start: 00,0000 ui Context: 000,000.0 o8 Current Time: 07,7154 u8
? | 5et Laft Cursor: 001,915.9 u8 Delta Cursor: 003 4300 vl Right Cursor: (05,3968 us
The Active Waveform

The active waveform is red, whereas all others are black. Use the <up> and <down> arrows on the
keyboard to switch the active waveform

The Left and Right Cursors

The logic analyzer has two cursors; a left cursor and aright cursor. The left cursor is blue whereas
the right cursor is green.

One of the two cursors is always "selected” and this selected cursor is displayed as a solid line.
Conversely, the unselected cursor is displayed as a dashed line. The concept of an active cursor is
important because the active cursor is snapped to edges on the active waveform using the
keyboard’s left and right arrow keys. To switch between the selected and unselected cursor hold the
<CTRL> key while pressing either the left or right arrow keys on the keyboard.

137

Grabbing an Out-of-View Cursor

Occasionally the left or right cursor may be out of view as the left cursor is in the picture seen
below. The right cursor is at arrow 1 But the left cursor is out of view because the waveform is
only displaying a quarter microsecond of waveform at around six microseconds, but the left cursor
is at 1 microsecond. Therefore the left cursor is to the left of the visible area. To bring the left
cursor back into view, click the left mouse button at the location indicated by arrow 2.

o TpuSim: Logic Analyzer =10l x|
[UART_Rev =l | [| .

|UART RevTa [+ ! > - V .
reree T BT (2) 7N — > |
N’

006,027 4 u8 Mouss: 006,251.8 uB
Data Start: 000,000.0 ol Context: (00,0000 u8 Current Time: (06,2203 o8
Laft Cursor: 001,047.1 o2 Delta Cursor: (05,1321 o8 Right Corsor: 006,179.2 vt

The simulation can execute to precisely the left or right cursor’s time by dragging and dropping the
time into the current time, as explained in the, Executing to a Precise Time section.

The cursor can also be moved by dragging and dropping a time into a vertical cursor's time
indicator.

#L eft, Right, and Delta Cursor Time Indicators

The left and right time cursor time indicators show the time associated with the respective vertical
cursors. The Delta Qursor indicator shows the difference in time between the left cursor and the
right cursor.

These time indicators are capable of extremely precise time measurement with accuracies
approaching one femto-second. This is because the cursors can be snapped to the precise pin
transition time using your keyboard' s left and right arrow keys.

Mouse Functionality

In the waveform display panel the mouse has two purposes. It is used to provide a goto time
function and also is used to move the left and right cursors.

To get MtDt to execute to a particular point in time, move the mouse to a location corresponding to
that time and click the right mouse button. If the selected time is earlier than the current Simulator
time MtDt automatically resets before executing. The simulation runs until the selected time is
reached.

The second mouse function is to move the left and right cursors. These cursors are displayed as blue
and green vertical lines. The user may move either cursor using the mouse. The times (or CPU
clocks) associated with both cursors as well as the delta between cursors are displayed in the cursor
time indicators.

Note that the left and right cursors can also be moved using the left and right arrow keys on your

LOGIC_ANALYZER_CURSOR_INDICATORS

138

keyboard. This causesthe cursorsto snap to edges on the active waveform.

Cursor display and movement follow these rules:
? Cursors may belocated beyond the edge of the wave form display panel.

? If the left cursor gets beyond the right display edge it is automatically moved back into
the display.

? If theright cursor gets beyond the left display edge it is automatically moved back into
the display.
? Cursorsoutside the display retain their timing association.

? Toalow the user to "pick up" a cursor that is not in the display the cursor is considered
to bejust outside the display edge for the "drag and drop" operation.

The Vertical Ydlow Context Time Cur sor

The vertical yellow context cursor is the time of some referenced event occurring elsewhere in the
IDE. For instance, open atrace window and scroll backward through the trace data. The vertical
yellow context cursor will show the time at which the trace window event occurred.

This context capability is a powerful debugging tool. The source code associated with the trace data
also popsinto view. This allows you to line up previously executed source code, the trace data, and
in some cases the call stack data. If you want to re-execute to that context time, use the mouse to
drag the time from the context time indicator into the current time indicator, as explained in the,
Executing to a Precise Time section.

Context Time I ndicator

The context time indicator displays the time with the IDE-wide context time. For example, select a
past-event in a trace window. The time associated with this event becomes the context time. This
context time appears as the vertical yellow context cursor in the waveform display. Drag and drop
thistime into the current time, as explained in the, Executing to a Precise Time section.

Scroll Bars

The horizontal scroll bar provides the functionality shown in the picture below. Note that thisis a
standard Windows scroll bar except that it has the additional functionality of the Home and End
keys. These keys move the view to the start or end of the simulation.

Home PageLeft PageRight End

C1=1 | EJ .|

ShiftLeft Drag ShiftRight

The vertical scroll bar provides the functionality shown in the picture below. This provides the user
with the ability to scroll through the 30 available nodes that the Logic Analyzer supports.

139

4| — ShiftUp
— PageUp
— Drag
—— PageDown
4| — ShiftDown

Waveform Boundary Time Indicators

The left and right time indicators show the time associated with the left-most and right-most visible
portions of the waveform pane.

The waveform pane can be changed so that a different portion of the waveform is in view. For
example, use the mouse to drag the current time by depressing the left mouse button over the current
time indicator. Holding the left mouse button down, move the mouse over the right time indicator,
the release the | eft mouse button.

Buffer Data Start Indicator

The data start indicator shows the time associated with the very first data in the buffer. Thistime
indicator generally shows zero because the buffer can usually hold all the previously saved pin
transition data. But occasionally the buffer overflows so that the very oldest data must be discarded,
and in this case the indicator shows the non-zero time associated with the oldest valid data.

Current Time Indicator

The current time indicator is the latest time associated with any target in the system.

Drag and drop any timeinto thisfield, as explained in the, Executing to a Precise Time section.

Auto-Scroll the Waveform Display asthe Tar get Executes

Selecting auto-scroll causes the Logic Analyzer to continuously update the view as the simulation
runs. De-selection causes the Logic Analyzer to cease updating the view as the simulation runs.

Button Controls

Zoom In C:_'-:f’

Selecting the Zoom I n button narrows the view to the transition data at the center of the display.

Zoom Out k=

Sel ecting the Zoom Out button widens the view so that more transition datais displayed.

Zoom Back @

Selecting the Zoom Back button restores the previous view. The last five views are always saved.
MtDt stores the view information in acircular buffer so that if the Zoom Back button is selected five
times the original view is restored. Note that only the view and not the cursors are affected. This
allows the user to shift views while retaining the timing information associated with the vertical
Cursors.

140

Zoom To Cursors —P

Selecting the Zoom To Cursors button causes the view to display the transition data between the left
and right cursors.

Setup ﬂl

Selecting the Setup button causes the Logic Analyzer Options dialog box to be opened. This dialog
box accesses various setup options as described in the Logic Analyzer Options Dialog Box section.

Help LI

Selecting the Help button accesses the Logic Analyzer section of the on-line help.
Timing Display

Below the Logic Analyzer’s horizontal scroll bar are two fields that display the time (or CPU clock
counts) corresponding to the left-hand and right-hand sides of the wave form display panel.

The display region can be modified using the horizontal scroller located below the wave form view
panel. It can also be modified using the buttons described in the Button Controls section found
earlier in the description of the Logic Analyzer.

Below the left side of the wave form display panel are the three fields that display the time (or CPU
clock counts) associated with the left cursor, right cursor, and delta cursor. "Delta" refers to the
time (or CPU clock counts) difference between the left and right cursors.

Below the right side of the wave form display are three fields that display the time (or CPU clock
counts) associated with the current Simulator time, the oldest available transition data, and the
mouse. The mouse field is visible only when the window’s cursor is within the wave form display
panel.

Data Storage Buffer

As MtDt runs, transition information is continuously stored in a data storage buffer. Datais stored
only when there is an actual transition on a hode. When no transitions occur, no buffer space is
used. Thisisan important consideration since the user can significantly increase the effective data
storage by disabling the logging of the TCR2 input pin (assuming it is active). This is disabled from
within the Logic Analyzer Optionsdialog box.

All buffer data is retained as long as it predates the current Simulator time and there is enough room
to storeit. Therefore, if MtDt time is reset to zero, al buffer dataislost. When the amount of data
reaches the size of the buffer (i.e., the buffer becomes full), new data overwrites the oldest data. In
this fashion, the buffer always contains continuous transition data starting from the current time and
going backward.

141

DIALOG BOXES

Dialog boxes provide an interface for setting the various Simulator options. This version of MtDt
has the dialog boxes listed below:

? FileOpen, Save, and Save As Dialog Boxes
? Auto-Build Batch File Options Dialog Box
? Goto Time Dialog Box

? Occupy Workshop Dialog Box

? IDE Options Dialog Box

? Workshop Options Dialog Box

? Message Options Dialog Box

? Source Code Search Options Dialog Box

? Reset Options Dialog Box

? Logic Analyzer Options Dialog Box

? Thread Options Dialog Box

? Complex Breakpoint Dialog Box

? Trace Options Dialog Box

? Local Variable Options Dialog Box

? License Options Dialog Box

? BDM Options Dialog Box

? Memory Tool Dialog Box

? Insert Watch Dialog Box

? Waitch Options Dialog Box

File Open, Save, and Save As Dialog Boxes

The File Open, Save, and Save As dialog boxes support the opening and saving of a number of files.
Each of these is described individually below.

L oad Executable Dialog Box

The Load Executable dialog box controls the opening of the executable image (source code). This
enables the user to change the source code, recompile the source code, and reread it into MtDt. It
also allows a different executable image (source code) to be loaded into the target.

See the Source Code Files Windows section for information on viewing the executable image
(source code) files.

Open Primary Script File Dialog Box

This dialog box specifies which primary script commands file is open. Only one primary script

142

commands file may be opened for each target at one time. The default search is * . XXX Command,
where XXX denotes the type of target. For instance, for TPU Targets, the default search is
* . TpuCommand.

Save Primary Script Commands Report File Dialog Box

This dialog box specifies the report file that is generated when the primary script commands file is
parsed. Note that selection of a file name does not actually cause the report file to be written.
Rather, the report file is written only when the primary script commandsfileis parsed.

Open Startup Script Commands File Dialog Box

This dialog box specifies which startup script commands file is open. Only one startup script
commands file may be opened for each target at one time. This fileis very similar to the primary
script file. Almost al script commands that are supported in the primary script file are aso
supported in the startup script file. The primary difference between primary and startup script
command files is when they are executed. Startup script command files are executed only when
MtDt resets atarget. Primary script files execute as the target executes.

Startup script files do not support specification of areport file name. The report file name generated
for the startup script is always the same as the startup script file name except the file suffix is
changed to .report.

Open Test Vector File Dialog Box

This dialog box is accessed via the Files menu by selecting the Vector, Open submenu. It is only
available when a TPU simulation target is active.

This dialog box specifies a test vector file to be loaded. The entire file is loaded at once. Loading
additional files causes existing test vectors to be removed. This dialog box allows full specification
of drive, directory, and filename. The default filename is VECTORS.Vector, and the default search
is*.Vector.

Project Open and Project Save As Dialog Boxes

The Project Open and Project Save As dialog boxes are opened from the Files menu by selecting the
Project, Open submenu or the Project, Save submenu.

From the Project Open dialog box a MtDt project filename is specified. MtDt loads a new
configuration from thisfile.

From the Project Save As dialog box a MtDt project filename is specified. The current configuration
issaved to thisfile.

Run MtDt Build Script Dialog Box

The Run MtDt Build Script dialog box specifies which MtDt build script is to be run. Running a
MtDt build script has a large impact. Before the new script is run, open windows are closed, and all
target information is deleted from within MtDt. This effectively erases most of the Project
information; so it isusually best to create a new project before opening a new MtDt build script.

143

Save Behavior Verification Dialog Box

The Behavior Verification dialog box is opened from the Files menu by selecting the Behavior
Verification Save submenu. This capability is only available for the eTPU and TPU simulation
targets. The recorded behavior issaved to thisfile.

Save Cover age Statistics Dialog Box

The Save Coverage Statistics dialog box is opened from the Files menu by selecting the Coverage
Statistics, Save submenu. Thisdialog box is currently only available for TPU Simulation targets.

From the Save Coverage Statistics Dialog Box a coverage filename is specified. An overview of the
coverage statistics since the last reset on both a project and afile-by-file basisiswritten to thisfile.

Auto-Build Batch File Options Dialog Box

The Auto-Build Batch File Options dialog box provides the capability of building the executable
image file (source code) from within MtDt. This dialog box is opened from the Files menu by
selecting the Auto-Build, Open submenu.

The auto-build batch file is a console window batch file. In this batch file the user puts the shell
commands that build the executable image from the source code. MtDt executes this auto-build
batch file.

The following describes the various capabilities accessed from within the Auto-Build Batch File
Options dialog box.
Edit Window

From within this window the user can edit the currently-selected auto-build batch file. Edits to this
file are saved only if the user hits the OK button, the OK, Build button, or the Build button. If the
Cancel button is hit, or if a new file is selected before one of these buttons is hit, then all edits are
lost.

OK Button

This saves edits, makes the currently-selected auto-build batch file the default, and closes the Auto-
Build Batch File Options dialog box.

OK, Build Button

This saves edits, makes the currently-selected auto-build batch file the default, and closes the Auto-
Build Batch File Options dialog box. In addition, abuild is performed.

Cancel Button

This closes the Auto-Build Batch File Options dialog box. Edits are not saved. The default auto-
build file is not set to be active for future builds. Instead, the default auto-build file reverts back to
whatever the default was before the Auto-Build Batch File Options dialog box was opened.

Build Button

This saves edits and performs an auto-build. The Auto-Build Batch File Options dialog box is not
closed.

144

Help Button
This accesses this hel p menu.

Change File Button

This allowsthe user to select anew auto-build batch file. Beside this button islisted the name of the
currently -sel ected auto-build file.

Goto Time Dialog Box

The Goto Time Dialog Box is opened via the Run menu by selecting the Goto Time submenu. It
provides the capability to execute MtDt until a user-specified time.

There are two types of Goto time options, one of which must be selected.

Goto Until Time

This sets MtDt to go to an absolute (simulation) time. The simulation time is initially set to zero.
The simulation time is reset to zero viathe Run menu by sel ecting the Reset submenu.

Goto Current Time, Plus

This sets MtDt to go to the current (simulation) time plus some user-specified additional time.

User-specified time is entered as thousands of seconds (ksec), seconds (secs), milliseconds (ms),
microseconds (us), and nanoseconds (ns). MtDt’s resolution is two CPU clock cycles. For the
16.778 MHz (two to the 24th cycles per second) CPU clock, this equates to approximately 124
nanoseconds.

Help

This accesses this help window.

Goto
This closes the Goto Time dialog box and runs MtDt until the specified time.

OK, Save

This closes the Goto Time dialog box and saves any changes. MtDt remainsidle.
Cancel

This closes the Goto Time dialog box without saving any changes.

Occupy Workshop Dialog Box

The Occupy Workshop dialog box provides the @pability of specifying for individual windows
which workshop(s) the window will be visible.

OK

This closes the dialog box and saves any changes.

Cancel

This closes the dialog box and discards all changes.

145

Help
This accesses this help window.

Occupy All
This causes the window to be visiblein all workshops.

Leave All

This causes the window to not be visible in any workshop. This should be treated as a shortcut for
clearing all selections. Note that this is not the same as closing the window as the window will still
exist within MtDt.

Revert

This causes any settings made since the dialog box was opened to be discarded.

Options
This opens the Workshop Options dial og box.

| DE Options Dialog Box

The following describes the IDE Options dialog box.

All Targets Settings

The following settings are for all targets.

Change the Application Wide Font
Changes the fonts used by all the windows.

Update Windows While Target is Running

This specifies whether the windows are continually updated as target runs. The window update
generaly takes well under 1% of the application’s CPU time so this option is generally selected.
But in certain cases desel ection of this option can improve performance.

View Toolbar

This specifies whether the toolbar and its associated buttons are visible. The toolbar is the gray area
located at the top of MtDt's application window.

View Status bar

This specifies whether the status bar and its associated indicators are visible. The status bar is the
gray arealocated at the bottom of MtDt's application window.

Pop to Halted Target’s Workshop

Each target is generally assigned to a workshop. In a multiple target environment when a target
halts the workshop associated with the target that caused the system to halt. This should generally
be left selected.

Auto-Open Window for File of Active-Target’s Program Counter When Target Halts

When thisis selected, if the target halts the source code file corresponding to the program counter of
the active target is closed, it will automatically be opened. In addition, the current line is

146

automatically scrolled into view.
TPU Simulator Target Only

The following settings are only available for TPU Simulator targets.

View Coverage (TPU Targets Only)

This specifies whether the code coverage indicators are visible within source code windows. These
are the color coded boxes at the far left of each line of text that is associated with an instruction.
These boxes indicate if the associated instruction has been executed, and, if it is a branch
instruction, if the true and fal se cases have been traversed.

Active Target Settings

The following settings act only on the target that was active at the time that the dialog box was
opened. Each target can beindividually set.
Sour ce Code Spaces per Tab

Specifies the number of spaces that correspond to each tab character.

Wor kshops Options Dialog Box

The Workshops Options dialog box is used to associate targets with workshops, specify workshop
names, and place workshop buttonsin the toolbar.

When adding a new target association to a workshop you will be prompted to indicate whether you
would like all windows belonging to that target to be made visible within that workshop. It is
generally desirable to select the "yes" or "yesto al” option.

The very first workshop is special in that all windows initially visible within this workshop. This
prevents windows from becoming lost. To avoid confusion, this workshop nameis always"All."

This dialog box allows you to remove a target association from a workshop. In this case you will
also be prompted to indicate whether you would like to remove visibility of all windows belonging
to the removed target from the affected workshops.

On Toolbar

Checking this option causes a button to appear on the toolbar that automatically switches to that
workshop when depressed.

Workshop Name

This is the name of the workshop. You can either type in a new name using the keyboard;
alternatively a button to the left of this edit control allows you to assign the associated target's name
to the workshop.

Primary Association

This is the target that is associated with the workshop. A dropdown list allows selection of any
target.

147

M essage Options Dialog Box

The Message Options dialog box provides the capability to disable the display of various messages.
These messages warn the usersin avariety of situations such as afailed script verification command
failure or when suspicious code is encountered.

When there is a check next to the described message, a message is generated when the described
situation occurs. To disable the message, remove the check. The user might wish to execute
through a failing or suspicious section of code without having to acknowledge each message and
would therefore disable the associated message.

All Targets M essages

Behavior Verification Failure

Behavior verification failure messages are generated when the current execution does not match that
from a previously-recorded behavior verification file.

Script Verification Failure

Script verification failure messages are generated when a user-defined script verification test fails.

Bad at_time() Script Command

Bad at_time() script commands specify when a particular script command is to be executed. A
message appears when this command specifies atime earlier than the current time.

Obsolete set_cpu_frequency Script Command

The set_cpu_frequency script command is being deprecated and users should switch to the
set_period script command to achieve this functionality. The problem with the set_cpu_frequency
command is that the simulation engine now calculates all times in periods rather than frequency.
This command requires an inversion which can generate extremely small error, and this error over
many billions of simulation cycles can become significant. Consider a two targets, one running half
the frequency of the other. If one clock is 333 MHz and the other is 666 MHz, after the inversion,
the resulting clock periods may not be exactly double anymore.

TPU Messages

An Instruction Accessed Unimplemented Parameter RAM

The message that reports an access of un-implemented parameter RAM locations may be disabled.
Some users have taken advantage of the un-documented feature that accesses to these un-
implemented parameter RAM locations return zero. Taking advantage of this un-documented
feature is dangerous because Freescale might choose to implement these locations, such as in the
TPU2, or might change the values returned when these locations are accessed. In any case, these
warning messages can be disabled.

WMER Instruction at N+1 after CHAN_REG Change

The TPU behavior in this situation is undefined so MtDt generates a message.

READ_MER Instruction at N+2 after CHAN_REG Change
The TPU behavior in this situation is undefined so MtDt generates a message.

148

Subroutine Return from Outside a Subroutine

When the TPU performs a subroutine call, the calling address is pushed unto the stack. It would be
legal but highly suspicious to do multiple subroutine returns following a single subroutine call.
Sequential TCRx Write than Read

Thisis actualy legal, but it is unlikely that it does what you want it to. Y ou see, the read finds the
pre-written value having to do with some usual TPU craziness.

Entry Bank Register Accessed Multiple Times

In the real TPU the register holding the entry bank number can be written only once. The TPU
Simulator allows this register to be written multiple times but gives a warning if you choose to do
S0.

Address Rollover Within a Bank

TPU2 and TPU3 support multiple banks. TPU behavior is not defined if a non-end and non-return
last bank instruction is executed.

Sour ce Code Sear ch Options Dialog Box

The Source Code Search Options dialog box is opened from the Options menu by selecting the
Source Search submenu.

When the executable image is loaded, there are normally a number of source code files associated
with the executable image that get loaded. MtDt needs to be able to find these files. This dialog
box allows specification of source code directories to be searched when searching for these source
code files.

The search locations can be specified for each individua target, and for all targets globally.
Specifying global search options is useful in situations in which multiple targets are using the same
directories for their library files.

Add

This button inserts a new directory into the search list.

M odify

This button modifies apreviously entered search location.

Delete

This button removes alocation from the search list.

Cut

This button removes the currently selected search location from the search list, and places it into the
paste buffer.

Copy

This button adds the currently selected search location to the paste buffer without removing it from
the search list.

Copy

This button creates a new search location using the paste buffer.

149

Move Up

This button moves the currently selected search location higher in the search list such that MtDt
searchesthislocation earlier.

Move Down

This button moves the currently selected search location lower in the search list such that MtDt
searches thislocation earlier.

Reset Options Dialog Box

The Reset Options dialog box is accessed from the Options menu by selecting the Reset submenu.
It specifies the actions taken when either the Reset submenu or the Reset and Go submenu is
selected.

Reread Primary Script Commands File

Selecting this option causes the primary script commands file to be reread every time MtDt resets
the targets.

Rewrite Code Image

Selecting this option causes a cached version of the executable image to be re-written every time
MtDt resets the targets. The executable image file is not reread, instead, a cached version of the
executable image is used. Since a cached version is used, source code files are also not changed.
Note that this option should be selected with care as the executable image in the target should
generally not be modified during target execution and reloading every reset could mask such a bug.

Reread Test Vector File (eTPU and TPU Targets Only)
Sel ecting this option causes the test vector file to be reread every time MtDt resets the targets.

PRAM Variable Memory (eTPU and TPU Targets Only)

This option specifies whether the PRAM memory is not changed, written to all zeroes, or is
randomized on reset.

TCR1 and TCR2 Counters (eTPU and TPU Targets Only)

This option specifies whether the TCR1 and TCR2 counters are not changed, written to zero, or are
randomized on reset.

Help

This accesses this hel p menu.

Cancel
This discards and changes and exits the Reset Options dial og box.

OK
This saves any changes and exits the Reset Options dialog box.

L ogic Analyzer Options Dialog Box

The Logic Analyzer Options Dialog box defines the settings associated with the Logic Analyzer
Logic Analyzer Window.

150

Log TCRCLK (eTPU) and TCR2 (TPU) Pin Transition

This controls whether the TCRCLK/TCR2 input pin transitions are logged to the data storage buffer.
This pin can be used to clock and/or gate in the eTPU and TPU. Disabling this increases the
effective data storage buffer size.

Log TCRY/TCR2 Counter Transitions

The least significant bit of the TCR1 and TCR2 global counters can be logged, and thereby
displayed as a waveform in the logic analyzer. Disabling this increases the effective data storage
buffer size.

Log Angle Mode Transitions.

Various aspect of angle mode can be displayed in the logic analyzer as a waveform. These include
the mode (high-speed, Normal, Wait), angle ticks, synthesized PLL tooth ticks, etc. Disabling this
increases the effective data storage buffer size.

Log Threads

Threads can be grouped into thread groups, and the thread group activity can be displayed in the
logic analyzer window. Disabling thisincreases the effective data storage buffer size.

Configure Thread Groups

There are eight thread groups labeled from 'A’ to 'H'. This opens the Thread Group Dialog Box
allows configuration of which thread(s) are associated with each of these groups.

Time Display

The Logic Analyzer can base the timing display on either target clock count or Simulator time.
Both of these are set to zero when MtDt isreset. Thisfield allows the user to select between the two
display options.

Target Clocks Display
See the above description from the time display.

Channel Group Options Dialog Box

The Channel Group Options Dialog box is used to select groups of one or more channels. It is
accessed in different locations for different purposes.

This dialog box is accessed from the Logic Analyzer Options Dialog box to specify groups for
monitoring of eTPU thread activity. Note that thread group activity is displayed as a waveform in
the Logic Analyzer.

This dialog box also is used by the Complex Breakpoint Conditional Dialog to select which
channels a complex breakpoint conditional acts upon.

Complex Breakpoint Conditional Dialog Box

The complex breakpoint conditional dialog box alows the user to add conditionals to complex
breakpoints. Each complex breakpoint must contain one or more conditionals. This dialog box is
accessed from the complex breakpoints window.

151

Trace Options Dialog Box

Instruction Execution

Selecting this option causes each instruction execution to be logged to the trace buffer.

Instruction Boundary

Selecting this option causes each instruction boundary to be logged in the trace buffer. While an
instruction boundary contains no useful information, the resulting dividing line makes the trace
window easier to read.

Memory Read

Sel ecting this option causes each memory read to be logged to the trace buffer.

Memory Write

Sel ecting this option causes each memory write to be logged to the trace buffer.

Exception

Selecting this option causes each exception to be logged to the trace buffer. Thisis only meaningful
in the context of CPU targets.

Time Slot Transition

Selecting this option causes each time slot transition to be logged to the trace buffer. Thisis only
meaningful in the context of TPU targets.

State End

Selecting this option causes state end to be logged to the trace buffer. Thisisonly meaningful inthe
context of TPU targets.

Pin Transition

Selecting this option causes each pin transition to be logged to the trace buffer. This is only
meaningful in the context of TPU targets.

SGL Negation NOP

Selecting this option causes SGL negation NOP to be logged to the trace buffer. This is only
meaningful in the context of TPU targets.

Trace Window and Trace Buffer Considerations

The Trace Options Dialog Box specifies what is stored in the trace buffer. The Trace Window
displays all trace information stored in the trace buffer regardless of whether or not this information
is enabled for storage. If information has already been stored in the buffer and you disable tracing
of this information the information will not disappear from the Trace Window until the buffer has
been completely overwritten with new information, or until the buffer is flushed following areset.

Multiple Target Considerations

Individual trace settings are maintained for each target. In a multiple target environment it is
possible to enable trace settings in one target and disable these same settings in another target. The
target on which the Trace Options Dialog Box acts is listed at the top of the dialog box. This

152

corresponds with either the active target at the time that the dialog box is opened or the target
associated with the active window.

Local Variable Options Dialog Box

It is important to note that the Local Variables window automatically tracks the current function.
When the target transitions from running to stopped, the active function’s local variables are
automatically displayed. But in addition, when you scroll through the Call Stack window, the Local
Variable window automatically displays the stacked local variables associated with selected line in
the Call Stack window. This automatic behavior is generally quite useful but in certain cases it can
get intheway. By locking the local variable window you are able to disable this automation.

L ock thelocal variables from <functionName> at stack frame <frameAddr ess>

When this is checked, the Local Variable window displays a particular function’s local variables.
The normally automatic tracking of the current function’slocal variablesisdisabled. For example if
you are parsing through text, a stacked function may point to the beginning of a buffer that is being
traversed by called functions. Use of this option would allow you to lock onto display of the calling
function’slocal variables thereby viewing areference to the beginning of the buffer.

Note that the function name and frame address are determined by the window’s current display
state. The functionName is a symbolic name of a function, e.g. main(char argc, char *argv[]). The
frame address is the address such as 0x1000.

Maximum Expansion Level for Structure Members, Pointers, etc

It is common for structures to be members of other structures or to be referenced from within
structures. The local variable window expands these contained and referenced structures. This
setting specifies the number of levelsto expand.

Maximum Number of Array Elementsto Display

This specifies the number of local variable array members that are displayed. For example an
integer array might consist of multiple members but the actual number of members is generally not
availablein the symbol table. This setting allows you to specify how many elements to display.

L icense Options Dialog Box

This dialog box allows you to enter additional information prior to sending a license file to ASH
WARE Inc. A license file is generated whenever you install an ASH WARE product.
Unfortunately, the license file generated at install time contains very little information other than a
computer identifier. This dialog box allows you to add additional information such as your name,
purchase order number, etc.

The license file has been a problem for ASH WARE in that users have sent in license files for
purchased products but we were unable match the license files with the purchase. This dialog box is
intended to reduce this confusion, thereby allowing us to serve you better.

All information is optional. Generally, it is best to include at least your company’s purchase order
number or the ASH WARE invoice number, if available.

BDM Options Dialog Box

The following describes the Background Debug Mode (BDM) Options dial og box.

153

Halt Target for Periodic Update

When this is selected, the free-running hardware is halted when MtDt redraws its windows. The
advantage of selecting this is that the windows can be updated as the target runs. The disadvantages
are that it effectively disables the target's ability to service interrupts and in some cases the target
will execute significantly slower.

Memory Tool Dialog Box
This tool supports specialized memory functions listed below. The dump file functions are also
accessible from the dump_file script command listed in the File Script Commands section.

? Fill memory with data or text

? Searchfor dataor text

? Dump to disassembly file

? Dump to Motorola SRecord (SREC) file

? Dumpto Intel Hexadecimal (IHEX) file

? Dumptoimagefile

? Dumpto"C" structurefile

For each function the address space and memory range can be specified. Earlier address ranges are
stored in a buffer and can be retrieved using the recall button. For the file-dump options, selecting
the change button can specify the file name.

In disassembly dump files inclusion of address, raw values, addressing mode information, and
symbolic information can be selected.

When creating an image file or a"C" data structure file or when using the fill function, data word
size can of eight-bits, 16-bits, or 32-bit. For the fill function, verification after the fill can be
selected.

The find capability allows a specific byte pattern to be located in memory. Options include the
ability to search for between one and eight sequential bytes, as well as the ability to search for both
acase sensitive or case-insensitive string.

"C" data files can be written with the address included within a comment. Output format can be
either hexadecimal, which isthe default, or decimal.

Selection of endian ordering is available for where the data size is exceeds one byte. This option is
available when dumping to an image or a "C" structure file or when using the find function. In

cases where the selected endian ordering does not match the natural endian ordering of the target a
warning is displayed.

Insert Watch Dialog Box

The Insert Watch dialog box is used whenever a new watch is added to the watch window using the
insert function.

Two lists support the ability to either re-select (and presumably modify) a currently active watch,
and the ability to re-select a previously discarded watch string. Y ou can also edit a brand new string

154

or modify any string selected from the af orementioned lists.
Watch Options Dialog Box

The Watch Options dialog box is currently featureless. This dialog box is provided to maintain
forward-compatibility with future versions of this software.

About ASH WARE's Multiple Target Development T ool

MtDt is copyrighted in 1994 through 2000 by ASH WARE Inc. All rights are reserved. Various
national and international laws and treaties protect these rights. Any misuse or other violation of the
copyright will be prosecuted to the full extent of the law.

MtDt may not be copied except for the purpose of creating a backup copy for archival purposes.
BDM Port Dialog Box

The BDM Port dialog box is used only in the rare event that MtDt finds BDM target hardware on
multiple parallel ports. In this case you are asked to select target hardware from a list found during
BDM auto-detection.

155

MENUS

The menus allow the user to access the various capabilities of MtDt. The menus appear at the top of
MtDt. Pointing the arrow at the menu by moving the mouse and then clicking the left mouse button
accesses them. They are also accessed by the <F10> and the <AL T> function keys.

The menu structure is organized as a series of submenus within each menu. When a menu item is
clicked, the submenu structure pops up into view. Clicking on the corresponding items can then
access a submenu selection.
MtDt provides the following menus.

? FilesMenu

? StepMenu

? Run Menu

? Breakpoints Menu

? Activate Menu

? View Menu

? Window Menu

? OptionsMenu

? HelpMenu

FilesMenu

The Executable, Open submenu
This opens the Load Executable dialog box.

The Executable, Fast Submenu

This provides a fast repeat capability for the Load Executable dialog box. By selecting this
submenu the actions set up in the Load Executable dialog box are quickly repeated without having
to actually open the dialog box.

ThePrimary Script, Open Submenu

This opens the Open Primary Script File dialog box.

ThePrimary Script, Fast Submenu

This provides a fast repeat capability for the Open Primary Script File dialog box. By selecting this
submenu the actions set up in the Open Primary Script File dialog box are quickly repeated without
having to actually open the dialog box.

ThePrimary Script, Report Submenu

This opens the Save Primary Script Commands Report File dialog box. This report file is generated
when the primary script commandsfileis parsed.

The Startup Script, Open Submenu

This opens the Open Startup Script Commands File dialog box. This script commands file is

156

executed after MtDt resetsitstargets.

TheVector, Open Submenu
This opens the Open Test Vector File dialog box.

The Vector, Fast Submenu

This provides a fast repeat load test vector file capability. By selecting this submenu the last loaded
test vector fileisreloaded.

The Project, Open Submenu

The Project Open submenu opens the Project Open dialog box. Each dialog box provides a project
session capability where MtDt settings are associated with MtDt project files. This submenu allows
the user to open a previously-saved project session.

TheProject, Save As Submenu

The Project Save As submenu opens the Project Save As Dialog Box. Each dialog box provides a
project session capability where MtDt settings are associated with MtDt project files. This submenu
provides the capability to both create a new MtDt project file and overwrite an existing project file
with the currently -active configuration.

The MtDt Build Script, Run Submenu

This opens the Run MtDt Build Script Commands File dialog box and runs the selected MtDt build
script commands file. This action has a large impact on MtDt so care must be taken when selecting
it.

The MtDt Build Script, Fast Submenu

This provides a fast repeat run MtDt build script commands file. By selecting this submenu the last
run MtDt build script fileisre-run. Thisis useful when debugging a custom MtDt build script file.
The Auto-Build, Edit Submenu

This opens the Auto-Build Batch File Options dialog box. for selection and editing of the auto-build
batch file.

The Auto-Build, Fast Submenu

This provides a fast repeat build capability. By selecting this submenu or using the <CTRL A> hot
key the default auto-build batch file is executed.

TheBehavior Verification, Open Submenu

This opens the Open Behavior Verification dialog box. This is used to load previously saved
behavior files.

The Behavior Verification, Save Submenu

This opens the Save Behavior Verification dialog box. Thisis used to save the recorded Simulator
behavior into abehavior verification file.

The Coverage Statistics, Save Submenu

This opens the Coverage Statistics dialog box. Thisis used to store a coverage statistics report to a
file.

157

Help
This accesses this help screen.

Step Menu

Into

This runs the active target until one line of source code is executed. If afunction is caled, MtDt
halts on the first instruction within that function. If no instructions associated with source code lines
occur, MtDt continuesto run until stopped by selecting the Stop submenu in the Run menu.

Over

This single steps the target by one line of source code, stepping over any function call. Thisisthe
same as the above "Into" function except the "Into" function will halt on aline of source code within
the function that is called. If no instructions associated with source code lines occur, MtDt

continues to run until stopped by selecting the Stop submenu in the Run menu.

Out

This runs the active target until the current function returns. Execution is halted on the next line of
source to be executed in the calling function. If no instructions associated with source code lines
associated with a calling function occur, MtDt continues to run until stopped by selecting the Stop
submenu in the Run menu.

Anything

This causes one action to be performed. This action may be execution of a single instruction,
execution of a script command, or simply a tick of the CPU clock. This is helpful for advancing
execution by as small an amount of possible, allowing you to really zoom in on a problem.

Script

This runs MtDt until one script command from the active target is executed. If no rew script
commands become available MtDt continues to run until stopped by selecting the Stop submenu in
the Run menu.

Time Slot

This runs MtDt until a TPU time slot transition occurs. MtDt stops just before execution of the first
microinstruction of the TPU channel service routine. If no time slot transitions occur, MtDt
continues to run until stopped by selecting the Stop submenu in the Run menu.

Assembly

This runs the active target until a single assembly instruction occurs. If instructions occur, MtDt
continues to run until stopped by selecting the Stop submenu in the Run menu.

Assembly, N

This runs the active target until a user-specified number of assembly instructions occur. A dialog
box opens alowing specification of the desired number of assembly instructions. If no assembly
instructions occur, MtDt continues to run until stopped by selecting the Stop submenu in the Run
menu.

Help

This accesses this help screen.

158

Run Menu

Goto Cursor

This runs MtDt until an instruction associated with the current cursor location is about to be
executed or a breakpoint is encountered. A source code window must be active for this command to
work.

Goto Time

This opens the Goto Time dialog box. Runs MtDt until the specified time or until a breakpoint is
encountered.

Goto Time, Fast

This behaves exactly like the Goto Time submenu, except the goto time dialog box is not opened.
Instead, the previously specified Goto Time options are used.

Go

This causes MtDt to execute indefinitely. MtDt executes until a breakpoint is encountered or until
the user terminates execution by selecting the Stop submenu in the Run menu.

Stop

This causes MtDt to stop executing. Thisis normally used to stop MtDt when the expected event
(such as step, breakpoint, time slot transition, etc.) failed to occur.

Reset and Go

This causes MtDt to reset and immediately begin execution. The reset actions are specified in the
Reset Options submenu. MtDt will execute until a breakpoint is encountered or until interrupted by
the user selecting the Stop submenu from the Run menu.

Reset

This causes MtDt to reset. The reset actions are specified in the Options submenu in the Reset
menu.

Help

This accesses this help screen.

Breakpoints Menu

The breakpoints menu controls the various functions associated with the breakpoint capabilities of
the MtDt. These capabilities are accessed viathe following submenus.
Set (Toggle)

This toggles a breakpoint at the instruction source code window’s cursor. If the instruction aready
has a breakpoint, then the breakpoint is deleted. A source code window must be active for this to
work. If the cursor is beyond the last instruction associated with the file, then thiswill not work.

Disable All

Thisdisables all active breakpoints. Disabled breakpoints remain disabled. MtDt remembers which
breakpoints have been disabled, such that the Enable Breakpoints submenu can reactivate all
disabled breakpoints.

159

Enable All
This enables all disabled breakpoints.

Delete All

This deletes all active and disabled breakpoints. Selecting this submenu causes MtDt to "forget"
which instructions had breakpoints.

Help

This accesses this help screen.
Activate Menu

The Activate menu allows you to specify which workshop and target are active. These capabilities
are accessed viathe following submenus.
Workshop

This displays a list of workshops that can be activated. Activation of a workshop causes all
windows within that workshop to be displayed, and the target associated with that workshop, if any,
to be activated. Activation of an associated target upon workshop activation is a feature that can be
disabled within the Workshop Options dialog box.

Target

This displays alist of targets that can be activated. The active target is the one used when target-
specific functions such as single stepping are selected. This feature is useful only in a multiple
target environment.

Help

This accesses this help screen.
View Menu

This menu opens the various Simulator windows for viewing. MtDt allows multiple instances of
each window to be open simultaneously. When there are multiple targets a submenu for each target
appears. Otherwise, all available windows are available directly within the view menu.

See the Operational Status Windows chapter for alisting of the available windows for each target.

Help

This accesses this help screen.

Window Menu

The Window menu accesses the four standard windows functions: Cascade, Tile, Arrange Icons,
and Close All. The standard Windows size toggle function switches the window between
maximized and normal size. In addition there is a list of all open windows. Selecting an open
window from this list causes that window to pop to the front.

Occupy Workshop

This opens the Occupy Workshop dialog box. This allows display of the currently active window
within the various workshops to be enabled and disabled.

160

Redraw All

This causes all windows to be redrawn. In addition, all windows caches are invalidated, thereby
forcing MtDt to go out to the hardware (for hardware targets) to refresh window data. This is
helpful on hardware targets for updating the display of hardware registers that may be changing
even while execution is halted.

Help

This accesses this help screen.
Options Menu

The Options menu provides the user with the capability of setting various Simulator options. These
arelisted below.

IDE
This opensthe IDE Options dialog box.

Workshop
This opens the Workshops Options dialog box.

M essages

This opens the M essage Options dialog box.

Reset

This opens the Reset Options dialog box. It specifies the actions taken when MtDt is reset from the
Reset menu by selection of the Reset submenu.

L ogic Analyzer

This opens the Logic Analyzer Options dialog box. Note that a Logic Analyzer window must be
active for this submenu item to be available.

BDM

This opens the BDM Options dialog box. Note that a 683xx Hardware Debugger target must be
active for this submenu item to be available.

Memory Tool

This opens the Memory Tool dialog box. Note that if a Memory Dump Window is selected when
this dialog box is opened, settings from the window are automatically loaded into the dialog box.
This supports a variety of capabilities including dumping memory to files, searching for patternsin
memory, and filling memory.

Memory

This lists a variety of settings available for a Memory Dump Window. Note that this type of
window must be selected for these options to be available.

Toggle Mixed Assembly

This toggles the visibility of assembly within Source Code File windows. Note that this type of
window must be selected for these options to be available.

161

Verify Recorded Behavior

This verifies the recorded behavior against the currently active master behavior verification file.
See the Pin Transition Behavior Verification section for a description of this capability.

Enable Continuous Verification

This enables continuous verification of behavior against the currently active master behavior
verification file. This provides immediate feedback if the microcode behavior has changed. See the
Pin Transition Behavior Verification section for adescription of this capability.

Disables Continuous Verification

This disables continuous verification of behavior against the currently active master behavior
verification file. This prevents a large number of verification errors from being displayed if
microcode behavior has changed significantly. See the Pin Transition Behavior Verification section
for adescription of this capahility.

Timer

Thislists avariety of options available for timers. These options are only available if a Source Code
File window is selected. Options include setting the timer's start or stop address to be equal to that
associated with the cursor location within the Source Code File window. A timer can aso be
enabled or disabled.

Watch

This lists a variety of options available for a watch. These options are available only if a Watches
window is selected. Options include inserting and removing a watch, moving a watch up or down,
and setting the options for a specific watch.

Help

This accesses this help screen.

Help Menu

The Help menu provides the following options.

Contents

This accesses the contents screen of MtDt’ s on-line help program.

Using Help

This accesses the standard Microsoft Windows "help on help" program.

Latest Enhancements

This accesses information on the enhancements added in the various versions of this software.

Technical Support

This accesses information on obtaining technical support for this product.

About
This gives general information about MtDt.

162

HOT KEYS, TOOLBAR, AND STATUS
INDICATORS

Pointing and clicking with the mouse activate Toolbar buttons. The toolbar is located toward the
top of the main screen.

Toolbar buttons also allows you to quickly switch between workshops. These are the text buttons
located at the top right of the main screen.

An execution status indicator appears at the top right of the main screen. Thisindicator appearsas a
moving error while the targets are executing. When the targets are stopped, a bitmap appears that
depicts the cause of the halt.

An active target button appears at the top right of the main screen. This button lists the active target.
Depressing this button causes alist of all targetsto appear asamenu. Selection of atarget from this
menu causes that target to become activated.

The status window is located at the bottom of MtDt. Miscellaneous information is displayed in this
window.

Both the toolbar and the status window can be hidden as explained in the Options Menu section.

At the bottom right of the main window is a menu help indicator. This indicator shows the function
of all menus and toolbar buttons prior to selection.

To theright of the menu help indicator is the ticksindicator. This displays the number of ticks since
the last target reset, if available. This indication may not be valid for hardware targets that have
been free-run since the last reset as MtDt is not able to determine the number of clock ticks under
this condition.

To the right of the ticks indicator is the steps indicator. This indicates the number of opcodes that
have been executed for the active target since the last reset. The limitations listed above for the
ticksindicator also appliesto the steps indicator.

To the right of the steps indicator is the failures indicator. The failures indicator lists the number of
script commands and behavior failures, respectively.

To the right of the failures indicator is the target type indicator. This is a bitmap that depicts the
type of target that is currently active.

To the right of the target type indicator is the current time indicator. This displays the amount of
time that has occurred since the last target reset. The limitations listed above for the ticks indicator
also appliesto the current time indicator.

To the right of the current time indictor isaclock. A clock isaclock. Use thisto determine if it is
time to go home.

163

SUPPORTED TARGETSAND AVAILABLE
PRODUCTS

Due to its layered design, MtDt supports a variety of both simulated and hardware targets.
Customer requirements dictate that these capabilities to be offered as specific individual products.

List of Available System Simulators

The currently available products are listed below and are explained in greater detail later in this
section.

? €TPU/CPU System Simulator
? TPU/CPU32 System Simulator
? TPU/CPU16 System Simulator

List of Available Single-Target Simulators and Debuggers
?

? eTPU Stand-Alone Simulator
? TPU Stand-Alone Simulator

? TPU Standard Mask Simulator
? CPU32 Stand-Alone Simulator
? CPU16 Stand-Alone Simulator
? 683xx Hardware Debugger

List of Supported Targets

The currently supported targets are listed below and are explained in greater detail later in this
section.

? €TPU simulation engine

? TPU simulation engine

? CPU32 simulation engine

? CPU32 hardware acrossaBDM port

? CPU16 simulation engine

eT PU/CPU System Simulator

Our eTPU/CPU System Sinulator supports instantiation and simulation of an arbitrary number and
combination of eTPUs and CPUs. A dedicated external system modeling CPU could be used, for
instance, to model the behavior of an automobile engine. Executable code can be individually
loaded into each of these targets. Synchronization between targets is fully retained as the full
system simulation progresses.

All CPU engine targets can be used with this system simulation include the CPU32, CPU16, and
soon-to-be-released, PPC simulation engines.

164

TPU/CPU32 System Simulator

Our TPU/CPU32 System Simulator supports instantiation and simulation of an arbitrary number and
combination of TPUs and CPU32s. A dedicated external system modeling CPU32 could be used,
for instance, to model the behavior of an automobile engine. Executable code can be individually
loaded into each of these targets. Synchronization between and among targets is fully retained as
the full system simulation progresses.

Standard single-target debugging capabilities such as single stepping, breakpoints, goto cursors, etc.,
are fully supported within this full system simulation environment. For instance, breakpoints can be
inserted and activated within several targets simultaneously. The full system simulation is halted as
soon as a breakpoint is encountered in any target.

TPU/CPU16 System Simulator

Our TPU/CPU16 System Simulator supports instantiation and simulation of an arbitrary number and
combination of TPUs and CPU16s. A dedicated external system modeling CPU16 could be used,
for instance, to model the behavior of an automobile engine. Executable code can be individually
loaded into each of these targets. Synchronization between targets is fully retained as the full
system simulation progresses.

Standard single-target debugging capabilities such as single stepping, breakpoints, goto cursors, etc.,
are fully supported within this full system simulation environment. For instance, breakpoints can be
inserted and activated within several targets simultaneously. The full system simulation is halted as
soon as a breakpoint is encountered in any target.

eT PU Stand-Alone Simulator

This product is a single-target version that uses only a single instance of our eTPU simulation
engine. Because it is a stand-alone product the user must use script commands files to act as the
host and test vector filesto act asthe external system.

TPU Stand-Alone Simulator

This product is a single-target version that uses only a single instance of our TPU Simulation
engine. Because it is a stand-alone product the user must use script commands files to act as the
host and TPU test vector files to act as the external system. This is the origina ASH WARE
product.

TPU Standard Mask Simulator

Our TPU Standard Mask Simulator allows you to develop your CPU code used in conjunction with
any standard Freescale TPU microcode. Currently ASH WARE supports the following three TPU
Microcode builds.

? MASKA
? MASKG

165

? MASK MPC5xx

This product supports al the capabilities of our system simulator products with the single exception
that you cannot load microcode that you have modified. Instead, the only TPU microcode that can
be loaded is the one of the af orementioned standard TPU microcode masks.

Although you can tailor your configuration to any specific microcontroller mapping the following
three configurations are the defaults. The default configurations are usually sufficient and
intricacies of custom configuration generation need not be explored.

? MASK A: 683xx with one TPU mapped at OXxFFFEOO
? MASK G: 683xx with one TPU mapped at OxFFFEOO
? MASK MPC5xx: MPC555 with two TPUs mapped at 0x304000 and 0x304400.

CPU32 Stand-Alone Simulator

Our CPU32 Stand-Alone Simulator alows you to load code into a single simulated CPU32. You
can also load the standard mask TPU microcode into a simulated TPU.

CPU16 Stand-Alone Simulator

Our CPU16 Stand-Alone Simulator alows you to load code into a single simulated CPU16. You
can also load the standard mask TPU microcode into a simulated TPU.

683xx Har dwar e Debugger

Our 683xx Hardware Debugger allows you to control any 683xx microcontroller across a BDM
port. You can load and execute code. Standard debugging capabilities such as single step,
breakpoints, goto cursor, etc., are supported.

Operational status windows support viewing of CPU32 registers, memory, peripherals, etc.

el PU Simulation Engine

The Enhanced Time Processing Unit, or eTPU, is a microsequencer sold by Freescale on a variety
of microcontrollers. Thisis sold as a stand alone product and also as a system simulator in which it
is co-simulated along with one or more CPU targets.

The eTPU simulation engine can be used both as a stand-alone device and in conjunction with other

targets including multiple TPUs. When used in stand-alone mode, of primary importance are script
commands files and test vector files.

TPU Simulation Engine

The Time Processing Unit, or TPU, is a microsequencer sold by Freescale on a variety of
microcontrollers. There are currently three varieties, known as TPU1, TPU2, and TPU3. MtDt

166

supports all three varieties.

The TPU simulation engine can be used both as a stand-alone device and in conjunction with other
targets including multiple TPUs. When used in stand-alone mode, of primary importance are script
commands files and test vector files.

The TPU simulation engine is used for developing, debugging, and verifying operation of TPU
microcode. User microcode is loaded from files currently generated by Freescale’s TPU Microcode
Assembler. These files are loaded into the TPU simulation target's microcode space. The storage
format is the binary equivalent of the microcode actually executed by the TPU. MtDt also displays
user microcode source files in source code windows, highlighting the line associated with the actual
microinstruction being executed.

Additional TPU operational status information is displayed in various context windows. The
windows include information about channel control registers, host CPU interface registers,
microengine control registers, the scheduler, script commands files, source microcode files, etc.

The Time Processor Unit (TPU)

The TPU is a microsequencer developed by Freescale for measurement and generation of time-
critical waveforms. It isasingle silicon target that is offered on several microcontroller products,
such as the MC68332 and the HC16.

The TPU has two operational modes. It can execute microcode out of its internal ROM, or it may
execute custom microcode out of its internal RAM. In order to execute custom microcode, the
microcontroller’s operational software must first copy the microcode into its internal RAM and then
configure the TPU to execute out of RAM.

Support for TPU1

MtDt supports the TPU1. Thisisthe original TPU.

Support for TPU2

MtDt supports the TPU2. The following is a list of new and supported features of the TPU2, not
availablein TPUL.

? Entry table bank (ETBANK)

? Code bank

? Full parameter RAM

? Load zero using aRAM sub-instruction

? Additional TCR2 and TCR1 clock options

? Flag2 set, clear, and conditional execution

? Branchon current pin state

? Negation of MRL and TDL using TBS sub-instruction

? Matchon equal
The entry bank is controlled in the TPU simulation engine using a write_entry bank() script
command as described in the TPU Bank and Mode Control Script Commands section. The current
state of thisfield is displayed in the microsequencer window.

The code bank is set during a time slot transition using bits 10 and 9 of the entry table. The user

167

modifies this directly within the source microcode. The current state of this field is displayed in the
microsequencer window.

The TPU1 does not implement parameters six and seven of the parameter RAM for channels zero
through 13. The TPU2 supports a full complement of parameter RAM for all channels.

The TPU2 supports a loading of zero using the parameter RAM sub-instruction. In the TPU1 one
could make use of the undocumented feature that reading from the un-implemented parameter RAM
returned a zero. In this case a zero was able to be effectively loaded. This capability is supported in
the TPU2 by adirect clear or write of zero using the RAM sub-instruction.

New counter options support a higher resolution (faster count) for TCR1 and improved edge control
(clock on rising pin edge, falling pin edge, or both pin edges) for TCR2. These include a DIV2
control bit for TCR1 and a T2CSL control bit for the TCR2. These fields are displayed in the
configuration window. Script commands for controlling these two bits are described in the TPU
Clock Control Script Commandssection.

A Flag2, which is quite similar to Flagl and Flag0, has been added.

A conditional branch can now be made on the current pin state using the PIN conditional. This field
is displayed in the Execution Unit window. Previously only the PSL conditional could be used, and
the PSL is updated only on a time slot transition or a write to the CHAN_REG register. The PIN
conditional allows a branch based on the most current pin state.

MRL and TDL can be negated using the TBS field of instruction format three.

A match can be set to occur on an equal condition. Previously matches always occurred based on a
greater than or equal logic. This match-on-equal allows the user to schedule a match further out in
the future because, using this feature, the concept of past events is dropped. All events are
effectively considered to occur in the future. Thisfield isdisplayed in the Channel window.

Setting the TPU Mode

MtDt automatically sets the TPU mode when the source microcode files are parsed. The %type
command is located and the appropriate TPU mode (TPU1, TPU2, or TPU3) is set based on the
values of thisfield.

MtDt also supports a script command described in the TPU Bank and Mode Control Script
Commands section for setting the TPU mode. Use of this command is highly discouraged since
there are subtle differences among the TPU1, TPU2, and TPUS3 that the TPU assembler hides from
the user.

Support for TPU3

Version 2.1 of MtDt supports the TPU3. The following is alist of new and supported features of the
TPU3.

? Enhanced TCR1 prescaler

? TCR2 pre-divider prescaler

? TCR2 controllable clock edge (rising, falling, or both)

The prescaler options listed above are accessible using script commands described in the TPU Clock
Control Script Commandssection.

168

CPU32 Simulation Engine

The CPU32 is sold on a number of Freescale microcontrollers, including the very popular 68332.
The CPU32 Simulation Engine can be used both in stand-alone mode and in conjunction with other
CPUs and peripherals including multiple CPU32s.

CPU32 Hardwareacrossa BDM Port

The 683xx line of microcontrollers can debugged using this BDM Debugger.

CPU16 Simulation Engine

The CPU16 is sold on a number of Freescale microcontrollers, including the HC16 series. The
CPU16 Simulation Engine can be used both in stand-alone mode and in conjunction with other
CPUs and peripherals including multiple CPU16s.

169

FULL-SYSTEM SIMULATION

This section covers how an entire system consisting of multiple CPUs, peripherals, and models of
the external system can be simulated. Of special interest are MtDt build script files because these
are used to create the targets and specify how they interact.

In many cases, such as when using a TPU Stand-Alone Simulator or a 683xx Hardware Debugger,
the standard build batch files are sufficient and little or no knowledge of MtDt build batch filesis
required. But when implementing complex multiple-target systems the detailed description of MtDt
build batch files contained in this section is required.

Theory of Operation

MtDt is capable of instantiating and simulating multiple targets, allowing them to interact via shared
memory while maintaining the correct synchronization and relative timing. In addition, arich set of
debugging capabilities normally associated with single target systems has been extended to this
multiple target environment.

Each target |oads and runsits own executabl e code image.

Each target can have primary and startup script commands files. TPU targets can also have ISR
filesthat are associated with and activated by specific interrupts, and test vector file that can be used
towigglethe TPU's 1/O pins.

The relative timing of targets is maintained with one femto-second precision. Each target has its
own atomic execution step size that must be a multiple of the femto-second precision. Negative
numbers and zero are valid steps sizes. Since the currently-supported targets are all execution cycle
simulators, the step size is equal to the amount of simulated time it takes to execute a single opcode.

As each target executes it is advanced by the amount of time the last opcode took to execute. Itis
then scheduled to execute again when the simulation time is equal to the target's next scheduled
time. The current simulation time is defined as the time that the next scheduled target will execute.

Although all the currently-supported targets are execution-cycle simulation engines, this is not a
fundamental restriction of MtDt. In fact, MtDt can support targets that have much finer execution
granularities. This would alow, for instance, a VHDL target that properly models inter-target
interaction down to the transistor level.

Debugging Capabilities

All standard single-target debugging capabilities such as single stepping, breakpoints, goto cursor,
etc., have been extended to the multiple target environment. For instance, if breakpoints are injected
and activated within multiple targets, the simulation halts on whichever breakpoint is encountered
first.

A concept of an "active target” is employed to support specifically single-target capabilities such as
single stepping. When the active target is single-stepped, the entire system simulation proceeds
until the active target completes the commanded single step.

With an essentially limitless number of targets, and with the large number of possible windows per

170

target, the vast number of windows can become unwieldy, to say the least. Actually, without some
mechanism to bring order to the chaos of having way too many windows, MtDt becomes unusable.
Workshops bring order to this chaos and are therefore a key enabling feature that makes MtDt
usable. Each target can be associated with a specific workshop. Those target's windows are
displayed only when the workshop associated with that target is activated. Individual windows can
be overridden to appear in more than one target.

A target other than the active target can halt a simulation. In this situation the workshop is changed
to one associated with the halting target. This can be caused, for instance, if a breakpoint is
encountered in a non-active target. In this case, the simulation is halted, the halting target becomes
the active target, and the workshop is switched to the one associated with the newly -active target.

Building the MtDt Environment

With MtDt an entire hardware or simulation environment can be built. This is done using a
dedicated build script file that gets loaded when the project file isloaded. A detailed description of
each command that can be used within MtDt build script files is found in the MtDt Build Script
Commands File section. That section explains how a complete system is defined using these build
script commands.

MtDt Simulated Memory

Simulated targets require memory for executing code, for holding data, and for providing
capabilities supported in a simulated environment. The following is a list of simulated memory
characteristics supported by MtDt memory.

? Multiple address spaces

? Memory sizing

? Read only or read/write accesses

? Shared memory

? Byte, word, and long-word access widths

? Access speed based on even or odd access addresses

? Privilegeviolations

? Busfaults

? Addressfaults

? Banking

? Mirroring
The ASH WARE MtDt simulated memory model supports all of these characteristics though at the
cost of increased complexity. The good news is that for many applications the standard memory

models work just fine so a detailed understanding of memory modeling is not required. In the vast
majority of other cases only a small percentage of these capabilities are required.

Memory Block

Whereas a simulated memory map can support a large variety of characteristics that might change

171

from one memory range and address space to the next, a memory block is a range of memory that
has a single uniform set of characteristics.

A target's address space comprises a finite number of memory blocks. For instance, a 3 wait state
RAM could reside at address O to FFFF hexadecimal. A 0 wait state ROM could reside at address
1000 to 1FFFF. Therest of memory, from 1000 to FFFFFFFF hexadecimal, could be empty.

There are a number of rules associated with memory blocks. A build of MtDt simulated memory
will succeed only if both of the following rules are met:

Memory blocks must cover all memory.
Memory blocks may not occupy both the same address and address space.

A report file for each build attempt provides a detailed listing of the memory map, including the
information required to fix any problems.

The following is an example script commands sequence.

#define MEM _DEVICE_STOP 0Oxffff

#define BLANK_START MEM_DEVICE_STOP + 1

#define MEM _END Oxffffffff

instantiate_target(SIM 16, "MySim16");

add_mem_block("MySim16",0, MEM_DEVICE_STOP, "RAM", ALL_SPACES);

add_non_mem_block("MySim16", BLANK_START, MEM_END," OFF",
ALL_SPACES);

In this example a single CPU16 CPU is instantiated. A 64K simulated memory device is added
between addresses 0 and FFFF hexadecimal and is assigned the name "RAM." The device resides
in all address spaces. A second memory block, also residing in all address spaces, fills the rest of
memory between 1000 hexadecimal and FFFFFFFF hexadecimal and is assigned the name "OFF."
Thisblock is blank and as such takes up no physical memory on your computer.

Address Spaces

All MtDt simulated memory supports eight address spaces. The function of each address space
depends entirely on the particular target and how it is specified in the build script file. For instance,
asimulated TPU target makes use of three address spaces. Code, Data, and Pins. By treating its [/O
pins as shared memory the simulated TPU exposes its pins to other targets. This allows, for
instance, a simulated engine model to read and modify the TPU's pins.

With the nearly universal acceptance of the superiority of a single, unified, large address space why
does MtDt still support non-unified memory space architecture? The answer is twofold. First, the
MtDt supports older but still popular architectures such as CPU16 in which a split code/data and
space might actually be employed. Second, the multiple address space model provides the required
mechanism for support of advanced simulation features. These mechanisms do not necessarily exist
in the actual hardware. For example, an engine modeling CPU might be set up to query and modify
TPU channel 1/0 pins. To support this, the TPU pins have been exposed in a purely theoretical
"PINS" address space. MtDt can be configured so that aread or write in the engine modeling CPU's
DATA_SPACE occurs in the TPU's PINS space, thus allowing the engine modeling CPU to react to
and drive the TPU's pins. This mechanism does not have a hardware corollary, but it provides the
powerful capability of simulating the full system.

In many cases a uniform address model isdesirable. Thisisachieved by mapping all address spaces
to the same physical memory.

The following diagram depicts the address spaces accessed by the TPU simulation engine.

172

The TPU simulation model fetches code between 0 and 1FFF hexadecimal from its CODE space. It
accesses its parameter RAM and host interface registers between 0 and 1FF hexadecimal of its
DATA space. And it accesses its channel pins in the first four bytes of a smulated PINS space.
Note that its code banks are "unrolled" and placed linearly in memory.

In order for accesses to these spaces to behave properly, simulated memory devices must be placed
into these address spaces. The following build script commands create the required memory for a
stand-alone TPU Simulation engine.

/l Createatarget TPU

instantiate_target(TPU_SIM, " TpuSim");

/I Create a simulated memory block for the TPU's code (microcode)

add_mem_block(" TpuSim", 0, Ox1fff, " Code", TPU_CODE_SPACE);

add_non_mem_block(" TpuSim", 0x2000, OXFFFFFFFF, " UnusedCode" ,
TPU_CODE_SPACE);

/I Create a simulated memory block for the TPU's data (host interface)

add_mem_bl ock(" TpuSim", 0, Ox1ff, " Data", TPU_DATA_SPACE);

add_non_mem_block(" TpuSim", 0x200, OXFFFFFFFF, " UnusedData"
TPU_DATA_SPACE);

/I Create a simulated memory block for the TPU's pins

/I (channel pinsand TCR2 counter pin)

add_mem_block(" TpuSim", 0x0, 0x3, " Pins", TPU_PINS_SPACE);

add_non_mem_block(" TpuSim", 0x4, OXFFFFFFFF, " UnusedPins', TPU_PINS SPACE);

/I Besureto providea non_mem block for the unused address spaces

add_non_mem_block(" TpuSim", 0x0, Oxffffffff, " B4", TPU_UNUSED_SPACE);

In this example the TPU's code, data, and pins address spaces are filled with the memory devices
required for proper operation. Unused space above and below the simulated devicesisfilled in with
blank blocks. Thisis required, as dl space must be filled in; even unused space must be provided
with memory block(s).

Memory Block Size

Each memory block has a specific size. The size is equal to the stop address minus the start address
plus one. A common error is to overlap by one byte the end of one device with the start of the next
device. MtDt cannot support multiple devices occupying the same address in the same address
space so this causes an error. One method for avoiding this error is to cascade define directives and
thereby ensure that contiguous devices form the proper zero-byte seam.

#defineFLASH_SIZE 0x10000 /* 64K FLASH device*/

#defineRAM_SIZE 0x8000 /* 32K RAM device*/

#define FLASH_START 0

#define FLASH_END FLASH_START + FLASH_SIZE -1

#define RAM_START FLASH END +1

#defineRAM_END RAM_START + RAM_SIZE -1

#defineBLANK_START RAM_END +1

#define BLANK _END FFFFFFFF

instantiate target(SIM32, "MyCpu");

add_mem_block("MyCpu", FLASH_START, FLASH_END, "Flash", ALL_SPACES);

add_mem_block("MyCpu", RAM_START, RAM_END, "RAM", ALL_SPACES);

add_non_mem_block("MyCpu", BLANK_START, BLANK_END, "Empty",
ALL_SPACES);

In this example, two devices are created in such a way that a zero-byte seams between them is
guaranteed. All menory for every address spaces is covered. Notice that the FLASH and RAM
sizes can be changed at asingle location and that the devices will remain contiguous in memory.

173

Memory Block Access Control

The purpose of the memory block access control is to make asimulated model match the behavior
of real hardware. For instance you might want to make a ROM read-only, such that reads are
simply ignored or perhaps cause a bus fault. An odd access may cause an address fault or an
additional wait state. Memory block access control allows the required level of control to achieve
this. This section serves as ahigh-level guide rather than a detailed description.

Each memory block supports the following access types.
? 8bitread
? 8bitwrite
? 16-bit read
? 16-bit write
? 32-bit read
? 32-bit write
? 64-bit read (not yet implemented)
? 64-bit write (not yet implemented)

For each access type, the user can specify a number of parameters. The following parameters are
available.

Clocks per even access

Clocks per odd access

Odd access causes bus fault yes/no?

Busfault yes/no?

Blank access yes/no?

Dock offset (applicable docked accesses only!)

Dock function code (applicable to docked accesses only)

In addition, there is a block-wide default, "blank access value." Thisis the value that isreturned on
aread access to amemory block that has been marked as blank.

Read/Write Control

It is possible to disable specific types of memory accesses.

In this example amemory deviceis configured asread only. A write to this memory device will not
cause the values in memory to change. This read only behavior could be used to model a ROM
device.

#define ROM _ST OP Oxffff

#define BLANK_START ROM_STOP +1

#define MEM _END Oxffffffff

instantiate_target(SIM32, "MyCpu");

add_mem_block(*MyCpu", 0, ROM_STOP, "Rom", ALL_SPACEYS);

add_non_mem_block("MyCpu", BLANK_START, MEM_END, " Empty",
ALL_SPACES);

/I Turn off READ access for the ROM device

#define WRITE_ALL RW_WRITE8 + RW_WRITE16 + RW_WRITE32

set_block_to_off("MyCpu","Rom", ALL_SPACES, WRITE_ALL);

The command specifies that for all address spaces, all write accesses will be "empty." Despite this

174

being an "empty" access, other parameters such as clocks per even cycle remain valid. The last two
arguments specify the aldress spaces and access types affected by this script command. It is
possible to indicate specific address spaces and a specific type of access. For instance, using this
script command, one could specify 32-bit writes to user data space.

Clocks per AccessControl

For each memory block and type of access, the clocks per even access and the clocks per odd access
can be specified. This capability effectively provides the capability of setting the number of wait
states.

set_block_timing("MyCpu", " Rom", ALL_SPACES, RW_ALL, 2, 3);

In this example even accesses are set to two clocks per access and odd accesses are set to three
clocks per access. In this example these settings apply to al address spaces and for all read and
write accesses, though it is possible to indicate the specific set of address spaces and access types
for which this applies.

Address Fault Control

For each address space and access type an address fault can be set to occur on odd accesses. Note
that thisis generally not applicable to 8-bit accesses, though it is still available.

#define CODE_SPACE CPU32_SUPV_CODE_SPACE + CPU32 USER_CODE_SPACE
set_block_to_addrs fault(" MyCpu", "Rom", CODE_SPACE, READ_ALL);

In this example, odd read accesses to the memory block's code space are configured to cause an
address fault.

Bus Fault Control

For each address space and access type a bus fault can be set to occur.
set_block_to_bus fault("MyCpu", " Rom", CPU32 USER_CODE_SPACE, RW_ALL);

In this example, any access while at the user privilege level result in a bus fault. This might be
useful in aprotected system in which a user processis prevented from accessing hardware.

Sharing Memory

A fundamental aspect of multiple target simulation is the ability to share memory. MtDt employs
"docking" to implement shared memory. If two targets are to share memory, one target must dock
memory blocksto another target.

There is a fundamental and important lack of symmetry in that one target must provide the "dock-
from" block and the other target must be the "dock-to." The "dock-to" target isrelatively unaffected
by being the recipient of a dock, other than that its physical memory might be modified on occasion.

On the other hand, there are numerous effects to the "dock-from" target. First and foremost, it must
be able to support extrinsic, or externally mapped, memory. In other words, it must be able to
project its memory access outside of itself and to adifferent target.

Note that this command must match exactly the memory bounds of an existing memory block for
the docking device, but not for the "dock-to" target. In fact, the "dock-to" target could be any target
such as a MC68332 across a BDM port. In fact, the "dock-to" target could be itself, and thisis the
recommended way of modeling multiple image memory. Although memory accesses are fully re-
entrant, legal, and often necessary, it is possible to create an infinitely cyclic access that would,

175

without guards, cause a stack overflow on your computer. To guard against this, MtDt has limited
memory accesses re-entrance to a depth of 100.

Thefollowing build script command is presented in alater example.

...
set_block_to_dock("HostCpu", " TpuDataDock", ALL_SPACES, " Tpu", 0-0x80000);
...

In the above command a previously-added blank block is docked to memory contained in a target
named "TPU." The last argument, ALL_SPACES, is potentially problematic, as will be discussed
later.

Shared M emory Address Space Transfor mation

No assumptions should be made about address spaces between or among dissimilar targets. In other
words, the code space of a CPU32 may not map to the code space of memory shared with a TPU.
For memory docks between dissimilar target types it is critical to fully specify all address spaces
from the docking memory block. Due to the lack of symmetry, this is not true for the dockee. The
following script command should be used to fully define all docked address spaces between
dissimilar targets.

When docking a CPU to a TPU the following address space transformation such as that shown in
the following figure is often required.

TPU PINS Space All Modeling CPU Spaces ~ Other TPU Spaces

FFFFFFFF FFFFFFFF [k FFFFFFFE 4
0003 I
C0000
3
0 0 0
| m—) —
| '
p ——

The following build script commands generate the address space transformations shown in the
above figure. If the modeling CPU does a read from its address CO000 hexadecimal, the read will
actually accessthe shared memory with the TPU in its PINS space.

...

set_block_dock_space(" ModelingCpu", " TpuPinsDock", ALL_SPACES,
RW_ALL, TPU_PINS SPACE);

...

In this example all address spaces from a docked block of a modeling CPU are set to the TPU's
PINS address space. This is an eight-to-one transformation in that an access in any of the CPU's
address spaces becomes an access to the TPU's PINS space. For example if the CPU performs a
dataread within this block, the value of the TPU's channel pinswill be what actually getsread.

176

Shared Memory Address Offset

Shared memory need not appear in the same address from the perspective of each target. Indeed,
shared memory usually appears at different addresses for each target that is sharing that memory.
Thefollowing illustrates this.

...

set_block_to dock("HostCpu", " TpuDataDock", ALL_SPACES, " Tpu",
TPU_DOCK_OFFSETT);

...

In this example an offset of TPU_DOCK_OFFSETT is applied to any HostCpu access within the
docking block. For exampleif the docking block is at address FFEOO hexadecimal and an offset of -
FFEOO hexadecimal is applied by defining TPU_DOCK_OFFSETT to this value, a CPU access at
address FFE20 occurs at address 20 within the TPU.

Shared Memory Timing

Timing transformations allow the clock per access to be specified for the docking block. For
instance a shared memory block between a TPU and a CPU might take the CPU two clocks to
access, but might take the TPU only asingle clock.

There is no special method for doing this. The timing parameters specified by each of the targets
own dock block apply to the docking target.

A Complete Shared Memory Example

The example in this section creates a TPU simulation engine, a host CPU simulation engine, and a
modeling CPU simulation engine. The shared memory architecture from the following figure is
generated.

177

TPU DATA Space Host CPU All Spaces

FEFFFFFF FFFFFFFF
FFFFF
FFE0Q
TFFEFF
Modeling CPU All Spaces
70000
by N I S A FFFFFFFF
0 0
TPU PINS Space D0003
FEFFFFFF c0004
€0003
C0000
0
3
0

The following build script commands instantiate the shared memory architecture found in the above
figure.

#define MEM _END Oxffffffff

/l Createatarget TPU

instantiate target(TPU_SIM, " Tpu");

/I Create a simulated memory block for the TPU's code (microcode)
add_mem_block(" Tpu", 0, Ox1fff, " Code", TPU_CODE_SPACE);
add_non_mem_block(" Tpu", 0x2000, MEM_END, " B1", TPU_CODE_SPACE);
/I Create a simulated memory block for the TPU's data (host interface)
add_mem_block(" Tpu", 0, Ox1ff, " Data", TPU_DATA_SPACE);
add_non_mem_block(" Tpu", 0x200, MEM_END, "B2", TPU_DATA_SPACE);
/I Create a simulated memory block for the TPU's pins

/I (channel pinsand TCR2 counter pin)

add_mem_block(" Tpu", 0x0, 0x3, " Pins", TPU_PINS_SPACE);
add_non_mem_block(" Tpu", Ox4, MEM_END, "B3", TPU_PINS_SPACE);

/I Besureto providea non_mem block for the unused addr ess spaces
add_non_mem_block(" Tpu", 0x0, MEM_END, "B4", TPU_UNUSED_SPACE);
//***************** END OF TPU kkhkhkkkhhkkkhhkkhkkhkkhhkkhhkkkhkkhkkkk*x

/I Createatarget host CPU

instantiate _target(SIM 32, "HostCpu");

/I Add a half-meg RAM

add_mem_block("HostCpu", 0, OX7FFFF,"RAM", ALL_SPACEYS);

/l Add three empty spaces

add_non_mem_block (" HostCpu", 0x80000, OXFFDFF, "B1", ALL_SPACES);

178

add_non_mem_block (" HostCpu" , OxFFEQO, OXFFFFF," TpuDataDock" , ALL_SPACEYS);
add_non_mem_block(" HostCpu", 0x100000, MEM_END, "B2", ALL_SPACES);
/I Set the middle empty block to dock with the TPU tar get
set_block_to_dock("HostCpu", " TpuDataDock", ALL_SPACES, " Tpu", 0-0x80000);
/I Make surethat no matter which space the TPU accesses within this dock
/I the TPU's data space is always accessed
set_block _dock_space(" HostCpu", " TpuDataDock", ALL_SPACES,
RW_ALL, TPU_DATA_SPACE);
//***************** END OF HOST CPU EEEEEEEEEEEEEEEEEEEEEEEE L]
/I Create a CPU for modeling the exter nal system
instantiate_target(SIM32, "ModelCpu");
/I Add a half-meg RAM
add_mem_block(" ModelCpu", 0, OXBFFFF, " RAM", ALL_SPACES);
/I Add three empty spaces
add_non_mem_block(" ModelCpu", 0xC0000, 0xC0003, " TpuPinsDock" , ALL_SPACES);
add_non_mem_block (" ModelCpu", 0xC0004, 0xD0003, " CpuCpuShare",
ALL_SPACES);
add_non_mem_block(" ModelCpu", 0xD0004, MEM_END, "B2", ALL_SPACES);
/I Set the lowest empty block to dock with the TPU tar get
set_block_to_dock(*ModelCpu", " TpuPinsDock", ALL_SPACES, " Tpu", 0-0xC0000);
/I Make surethat no matter which space the TPU accesses within this dock
/I the TPU's pins space is always accessed
set_block_dock_space(" ModelCpu", " TpuPinsDock" , ALL_SPACES,
RW_ALL, TPU_PINS SPACE);
/I Set the middle empty block to dock with the HOST CPU
set_block_to_dock("ModelCpu”, " CpuCpuShare", ALL_SPACES, "HostCpu",
0x70000-0xC0000);

In this example the shared memory architecture from the above figureis generated.
Simulating Mirrored Memory

Mirrored memory is memory that is accessible at multiple address ranges within a memory map.
This can occur, for instance, when not all address bits are decoded for a memory device. The
following figure depicts an 8K memory device that resides in a 64K memory system. Assume it is
an 8-bit wide device. Since the 8K device is on a byte wide bus, the device itself decodes the lower
13 address bits, A12 through AO. Assume that the memory controller decodes only the upper two
address bits, A15 and A14, and enables the device when both are zero. This means that nothing
decodes A13, and thus the memory device is activated when A15 and A14 are zero, regardless of
the state of A13.

179

All Spaces
FFEFFFEFF

Th. here —

e MemOry 3FFF

2000

Is mirrored here \‘.{ 1FFF

0

This mirrored memory architecture is created by implementing a dock from the address space to
itself asfollows.

instantiate _target(SIM16, "MyCpu");

add_non_mem_block (" MyCpu", 0x0, OX1FFF, " Mirror", ALL_SPACES);
add_mem_block(" MyCpu", 0x2000, Ox3FFF, " RAM", ALL_SPACES);
add_non_mem_block("MyCpu", 0x4000, OXFFFFFFFF, "B1", ALL_SPACES);
/I Createa mirror at the lowest 8K of the next higher 8K

set_block_to _dock("MyCpu", " Mirror", ALL_SPACES, "MyCpu", 0x2000);

In this example the previously-described memory architecture with mirrored memory is
implemented.

Computer Memory Considerations

MtDt uses your computer's memory to model the memory devices belonging to your target. There
is roughly a one-to-one correspondence between the total amount of memory occupied by the
simulated devices and the amount of your computer's memory that is required. In the examples
shown in the previous sections, simulated memory totals a few hundred kilobytes. Thisis atrivial
amount of memory for a modern computer. When many megabytes are required, you are limited to
the amount of virtual memory available for the MtDt application that your computer can provide. If
you attempt to simulate a 100-gigabyte memory device, for example, but have only 50-gigabytes of
available virtual memory on your computer, the build script file will fail to execute.

Note that since modern computer systems employ virtual memory, the amount of simulated memory
can exceed the amount of RAM actually in your computer. Adjusting the available amount of

virtual memory on your computer can increase the total amount of memory devices that you can
simulate. A description of how to increase the swap file size of your computer is beyond the scope
of thismanual.

180

