Master thesis in Computing science, 20 credits

A Sequence Diagram
Editor for BlueJ

Matilda Ostling, <c99mog@cs.umu.se>

Department of Computing Science, Uagniversity

10th May 2004

Abstract

Today most programming courses for beginners use an object-oriented language.
This has led to many new learning tools, theories and methods for teaching object-

orientation. One such new tool is BlueJ which is developed to teach Java and

object-orientation for beginners. BlueJ does not have any support for drawing se-

quence diagrams and this thesis describes the development of an editor for se-
guence diagrams. The editor is developed as a plugin for BlueJ and designed to
be used by beginners. This paper describes the design and implementation of the
editor and it contains a user manual for the editor.

In this thesis it is also talked about UML diagrams in general and more specific
about sequence diagrams. The use of sequence diagrams in education of object-
oriented thinking is described and advantages are pointed out. Object-oriented
education is discussed and different teaching methods are addressed.

Contents

1 Introduction 1
1.1 Background 1
1.2 The Purpose of this Master's Thesis 2
1.3 ThesisOutline 2

2 UML 3
21 DiagramsinUML. 4

211 UseCaseDiagrams 4
212 ClassDiagrams i 5
2.1.3 ObjectDiagrams 5
2.1.4 InteractionDiagrams 5
2.1.5 BehaviourDiagrams 7
2.1.6 Implementation Diagrams 7
2.2 UML Diagrams in Education 7
2.2.1 Educational Benefits for Using a Subsetof UML 8
2.3 Use CasesandtheirScenarios 9
2.4 SequenceDiagrams 0o 10

3 Teaching and Learning Software Development 15
3.1 Programming and Problem Solving. 16
3.2 Coding and Design/Analysis 17
3.3 SyntaxandSemantics L. 17

4 Teaching and Learning Object-Oriented Programming 19
4.1 Object-Oriented Programming vs. Procedural Programming . 19
4.2 Different Teaching Approaches UsingJava. 20
4.3 ActivelLearning 21

5 Sequence Diagrams in Education 25

6 A Sequence Diagram Editor for BlueJ 27
6.1 Requirements 27
6.2 Design. e e 28

Vi CONTENTS

6.2.1 The Graphical UserInterface 28

6.2.2 ReturnMessages 30

6.2.3 SeqUeNCEeS. o i e e e 31

6.2.4 Different Modes ofthe Editor 31

6.2.5 CreatingaPluginforBlued. 31

6.2.6 FileManagement 32

6.2.7 Automatic Consistency Check againstBlueJ 34

6.2.8 CreationMessages 34

6.3 System Descriptiono 35

6.4 FutureWork 38

7 Related Work 39
8 Summary and Conclusions 41
Acknowledgements 43
References 45

A User Manual 49

A.l Introduction 50

A.2 Installation ofthe Plugin 50

A.3 StartingthePlugin, 50

A.4 A Tutorial, Creation of a Sequence Diagram 51

A.5 Adding Components to a Sequence Diagram 55

A5.1 AddinganActor, 55

A5.2 AddinganObject. 55

A53 AddingaMessage 55

A.5.4 Adding a Destroy Symbol 56

A.5.5 Notes about the Sequence Diagram 56

A56 ReturnMessages 57

A5.7 Creationofasequence 57

A.6 Save and Open a Sequence Diagram 57

A.7 Moving, Deletingand Editing 58

A7.1 Objects e 58

AT7.2 Actors. 58

A7.3 Messages e 59

A.7.4 Destroy Symbol 59

A75 Lifeline 59

A8 KnownBugs 60

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

6.1
6.2
6.3
6.4
6.5
6.6

Al
A.2
A3
A4
A5
A.6
A7
A.8
A.9

Ausecasediagram. oo 4
Aclassdiagram.. e 5
Asequencediagram. 6
A collaborationdiagram. 6
Notations for a sequence diagram. 11
More notations of a sequence diagram. 12
Object constraint language in a sequence diagram. 13
The window of the editor. 28
ThewindowofBlued. 29
Description of the XML-file. 32
An example of a simple sequence diagram. 33
A class diagram describing the system. 35
The state machine of adestroy symbol. 37
Aviewoftheeditor. 49
Steponeinthetutorial. 51
Steptwointhetutorial. 52
Step threeinthetutorial. 53
Stepfourinthetutorial. 54
Classchooser. 55
Method chooser. 56
Window forwritingnotes L L. 56
Filename chooser. 57

Vii

Introduction

1.1 Background

Today object-orientation is widely used both in education and software devel-
opment. Even though object-orientation has been taught for quite a long time
now, there exist many theories how to best teach object-oriented programming
and thinking to students. The widely usage of object-orientation in education
have raised a lot of questions. Is it more natural for a student to think in an
object-oriented way then in a procedural way [Neubauer and Strong, 2002]? Is it
harder to teach an object-oriented programming language then a procedural pro-
gramming language? What is the correct way to teach object-orientation and
which method should be used? There exist many opinions in this matter and
some “guidelines”, when teaching object-orientation with Java, have been devel-
oped [Kblling and Rosenberg, 2001]. One often used technique is “active learning”
which can shortly be described as having the students more active in the learning
process [Smialek, 2000]. Some commonly used techniques are so called CRC ses-
sions, Role play sessions and Use case sessions. They let the students act like dif-
ferent objects in the system by playing scenarios where the system should achieve
different tasks. Documenting these plays will help the students in designing their
systems.

When teaching object-oriented programming languages to beginners, such as
for example Java, new tools are used. One example is BlueJ that is an IDE (In-
tegrated Development Environment) for Java designed to be used by beginners,
seewww.bluej.org . Itis designed to help students understand the foundations
of object-oriented programming and is not meant to be used by experienced pro-
grammers. When teaching object-orientation today sequence diagrams are often
used. They have shown to be very beneficial for beginners to object-orientation
and are good since they can for example be helpful in the design phase, clarify the
program flow of the system and be used in the test phase [Fowler and Scott, 1997,
Kutar et al., 2002].

2 Chapter 1. Introduction

1.2 The Purpose of this Master’s Thesis

BlueJ does not have any support for drawing sequence diagrams and this paper will
describe the development of an editor for sequence diagrams designed as a plugin
for BlueJ. The editor will be connected to projetis BlueJ and help the students
draw sequence diagrams describing their implemented classes and methods. The
editor is designed just as BlueJ to be used by beginners and it does not provide all
possible notations for a sequence diagram but only the most basic parts. The editor
has been developed with the same philosophy as BlueJ, to “keep it simple” and
make it easy to use and understand.

1.3 Thesis Outline

In the first chapter the UML and its different diagrams are shortly described. Later
in this chapter use cases, scenarios and sequence diagrams are described in more
detail and the advantages of using sequence diagrams in education are distin-
guished.

In chapter three teaching and learning software development is discussed in
general and in the next chapter, chapter four, teaching and learning object-oriented
programming is discussed. Different methods are illustrated and active learning is
described in more detail. In chapter five the use of sequence diagrams in education
is talked about and advantages and disadvantages are pointed out.

Next chapter, chapter six, describes the design and development of the editor
for sequence diagrams. The editor is described and the design choices are ex-
plained. The system of the editor is also shortly explained and shown. After this a
chapter follows containing a short summary and conclusions of this work.

At the end of this thesis an appendix is attached containing an user manual for
the editor. The user manual helps the user to install and use the editor.

!In BlueJ implemented classes belonging to the same system are saved together as projects.

UML

The development of the Unified Modeling Language (UML) began in October of
1994 and is an evolution from Booch method by Grady Booch, OMT (Object Mod-
eling Technique) by James Rumbaugh, OOSE (Object-Oriented Software Engi-
neering) by Ivar Jacobson and other object-oriented methods [Mrozek et al., 2002].
In October of 1995 UML 0.8 (then called the Unified Method) came. UML 1.1 was
released in September of 1997 and the development is still in progress. UML 2.0
was released in 2003 and newer versions are expected sdokdBger, 2003].

UML is a visual modeling language consisting of nine diagrams. A model of a
software system can be explained as an abstract representation of the system. These
nine diagrams in UML are used to visualize, specify, construct, and document the
different components of a software system before the implementation. UML is
used to make “blueprints” of a software system, this is necessary within big projects
to get an overview of the system. UML has a tight mapping to object-oriented lan-
guages and is best suited for designing systems of this kind but UML can also be
used advantageous with other programming languages [Rumbaugh et al., 2001].
Though UML is intentionally process independent the authors of UML advocate
that UML is used in use-case-driven, architecture centric, iterative and incremen-
tal development processes [Rumbaugh et al., 1997b]. Two examples of such pro-
cesses that are used for development in software engineering are the Unified Pro-
cess and RUP (Rational Unified Process) [Phillips, 1998].

Static view Dynamic view
Class diagrams State-chart diagrams
Object diagrams Activity diagrams

Use case diagrams | Sequence diagrams
Component diagrams Collaboration diagrams
Deployment diagrams

Table 2.1. The nine diagrams in UML version 1.5 belonging to the static view and the
dynamic view, respectively.

4 Chapter 2. UML

2.1 Diagramsin UML

The UML is composed of nine different diagrams. Which diagram to use de-
pends upon each special situation and the types of problems being solved. Usually
the different diagrams are divided into two groups, static and dynamic models,
see table 2.1. The static models, also called the structural models, underline the
structures of different objects in a system, including their classes, interfaces, at-
tributes and relations between them. The diagrams belonging to the static view are
class diagrams, object diagrams, use-case diagrams, and implementation diagrams
(component and deployment diagrams). The dynamic models, also called the be-
havioural models, emphasize the behaviour of different objects in a system, includ-
ing their methods, interactions, collaborations, and different states. The diagrams
included in this view are behaviour diagrams (state-chart and activity diagrams)
and interaction diagrams (sequence and collaboration diagrams).

The following sections will briefly describe the different diagrams in UML and
in what situations to use each diagram.

2.1.1 Use Case Diagrams

Use case diagrams descrilvbata system does and are closely connected to sce-
narios. Scenarios will be described in section 2.3. They can be thought of as a
summary of scenarios for a single task or goal. Use case diagrams are best when
developers are communicating with clients since they are relatively easy to under-
stand and relate to. Use case diagrams are also useful when designing the system,
when the requirements are made, and for generating different test cases for use in

the testing phase [Booch et al., 1999].

Cancel Appoi nt ment
Make Appoi nt ment Schedul ar

Request Medi cation ;' ':

Doct or
Figure 2.1. An example of an use case diagram.

at i ent

2.1. Diagrams in UML 5

2.1.2 Class Diagrams

To get an overview of a system, its classes and the relationships between them, a
class diagram is used. The relationship among the classes can be several differ-
ent kinds. The three most used relationships are association, generalization, and
aggregation. An association between two classes is a labelled relationship. A gen-
eralization is a hierarchical relationship between two classes, meaning that one
class is the parent of the other class, as in an inheritance hierarchy. An aggrega-
tion between two classes (also called a dependency) is a relationship meaning that
one class depends on another in some way that if changing one class may lead to
have to change the other class too. Class diagrams are static in the way that they
describe what parts interact and not what happens when they interact with each
other [Booch et al., 1999, LeBlanc and Stiller, 2000].

Animal
Reptile Bird Mammal
Snake Lizard Parrot Horse Dog

Figure 2.2. An example of a class diagram.

2.1.3 Object Diagrams

The object diagram is very similar to the class diagram except that they show in-
stances (objects) instead of classes. The object diagram models a set of objects
and their relationship during a system snapshot. An object diagram is very useful
when, for example, explaining complicated relationships within a smaller part of a
system [LeBlanc and Stiller, 2000].

2.1.4 Interaction Diagrams

Interaction diagrams describe dynamic aspects of a system and there are two kind
of interaction diagrams, sequence diagrams and collaboration diagrams.

6 Chapter 2. UML

A sequence diagram explains how operations are performed, describing differ-
ent scenarios. They show how different objects work together and what messages
(method calls) are sent between them. A sequence diagram shows time-ordering
between messages and the messages are organized chronological. A sequence dia-
gram is shown in figure 2.3.

redObject:ClassRed blueObject:ClassBlue

T T
| MessageA =
I I
| MessageB |
I I
! MessageC - :
I L

I I
I I

Figure 2.3. An example of a sequence diagram.

Collaboration diagrams contain the same information as sequence diagrams
but they concentrate on the role of the objects, the relationship between the ob-
jects, and the communication between them. Instead of having an axis showing the
ordering in time between the messages each message has a sequence number. A
collaboration diagram is shown in figure 2.4.

1.1: MessageA
1.3: MessageC
redObject:ClassRed _ | blueObject:ClassBlue

A

1.2: MessageB

Figure 2.4. Example of a collaboration diagram.

Both collaboration and sequence diagrams are best to use when different sce-
narios are being described. The collaboration diagram emphasizes “who-is-talking-
to-whom” and the time-ordering of the messages gets a little clouded. The se-
guence diagram on the contrary accentuates the time-ordering of the messages
though here the-who-is-talking-to-whom situation gets obscured [Software, 2001].
Sequence diagrams and scenarios will be described in section 2.3 and in sec-
tion 2.4.

2.2. UML Diagrams in Education 7

2.1.5 Behaviour Diagrams

Objects can have different behaviour and states depending on their current actions
or conditions. There are two diagrams to describe the behaviour and states of an
object, statechart diagrams and activity diagrams.

A statechart diagram displays the possible states for an object and the transi-
tions that will change the state of the object. The activity diagram instead focuses
on the activities in a special process and the flow of activities. It shows how the
different activities depend on each other. Even though the two different types of
behavioural diagrams are closely related an activity diagram can be described as
a “flowchart”, showing the flow of activities in a process, the statechart diagram
concentrates on the object and its different states in a process and what causes the
change in state for the object.

2.1.6 Implementation Diagrams

There are two kinds of implementation diagrams in UML, the component diagram
and the deployment diagram. These diagrams display the view of implementation
and the run-time implementation structure [Booch et al., 1999]. The component
diagram describes the organization of physical software components, including
source code, run-time code, and executables. The deployment diagram depicts the
physical resources in a system, including nodes, components, and connections.

2.2 UML Diagrams in Education

The UML with its nine different diagrams is extremely large and offers many no-
tational possibilities. When students new to object-orientation and programming
are trying to learn and use UML they can easily be confused and find it difficult to
use UML. It easily happens that they miss the big picture which is very important
for understanding the goals and processes of software engineering. Though UML
is very complex with a lot of rules for syntax and semantics the most important
core of the language is quite easy to learn and understand which is pointed out by
LeBlanc and Stiller [LeBlanc and Stiller, 2000].

When students start to use UML they only need to use a subset of the nine
diagrams in UML or otherwise the students would be overwhelmed with all the
possible notations. The subset has to offer the student enough of notational possi-
bilities so he or she can model a software system without getting confused. Which
subset of UML to use in education is under discussion and there are many pro-
posals of suitable subsets of the UML. The class diagram, the sequence diagram
and/or the collaboration diagram appear to be the most used diagrams in education.

8 Chapter 2. UML

These diagrams would be enough for beginners in programming and make it possi-
ble for the students to document the software systems without finding it confusing
and too hard. Others wish to include more diagrams in the subset of UML for
beginners. For example LeBlanc and Stiller [LeBlanc and Stiller, 2000] suggest
a subset containing the use-case diagram, the class diagram, the object diagram,
the collaboration diagram and the sequence diagram. The activity diagram and the
statechart diagram have not been mentioned but they are also used when tutoring
beginners. Since object diagrams are quite similar to class diagrams a common
opinion is that they are not very important for beginners to UML. Sequence dia-
grams and collaboration diagrams contain and display almost the same information
so it may be a good idea to use only one of these diagrams. According to different
empirical studies sequence diagrams are often shown to be easier to learn and read
than collaboration diagrams. Kutar, Britton and Barker [Kutar et al., 2002] have
performed a study that showes that sequence diagrams are better than collabora-
tion diagrams. The study performed both an empirical and a cognitive study of the
two diagrams. The result of the cognitive study was that sequence diagrams are
easier to read and understand then collaboration diagrams. The empirical study did
not support this theory as much as expected, but it did not reject it neither. The con-
clusion of the study was that sequence diagrams are often better than collaboration
diagrams though this must be better established with further studies. Even though
this study shows that sequence diagrams are to prefer there are certainly a number
of occasions when a collaboration diagram is better then a sequence diagram.

2.2.1 Educational Benefits for Using a Subset of UML

A class diagram is useful in the way that it models the compaosition of classes in a
system. Showing the different relationships between the classes and the elements
being part of each class. A class diagram gives a static view of the system, though
a system can have many class diagrams showing different structural aspects of the
system. For students having difficulties understanding inheritance (which is a basic
concept in object-orientation) between classes a class diagram can help. It also
shows how the classes depend upon each other and how the system is composed.
An object diagram reminds very much of a class diagram and has the same
advantages. The big difference is that instead of showing how different classes
depend upon each other an object diagram shows instances of classes, objects.
An object diagram contains values of different attributes making it possible for
students to understand and see the relationships between objects at a given time.
Use case diagrams are used to show how the system interacts with a user and
are commonly used in the design phase of a system. A use case diagram is useful
for students when designing the new system/program and modeling the behaviour

2.3. Use Cases and their Scenarios 9

of the system towards a user. This kind of diagram is good since it hides much of
the functionality of the system and only describes what the system should do. The
students can then concentrate of the behaviour of the system instead of thinking
about how the system should achieve certain tasks.

The interaction diagrams, collaboration diagrams and sequence diagrams are
quite similar and display almost the same information. They show the interaction
between objects in a system and describe the communication between them. These
diagrams have shown to be very useful for students and quite easy and intuitive to
learn and understand. Both collaboration and sequence diagrams can really help a
student to see the program flow of the system and help them understand how the
objects work together. Often it can be very hard in an object-oriented system to find
the flow of program, especially for beginners in the area, since there is seldom an
obvious program flow in an object-oriented system as it is for example in a system
written in a procedural language [Fowler and Scott, 1997].

Sequence diagrams also have a very prominent role in teaching object-orienta-
tion today together with active learning, see section 4.3. Active learning can shortly
be described as including the students more in the teaching/learning process and
making them more active in their search for knowledge. Many investigations also
show that sequence diagrams are found to be very useful both when designing a
new system and also when trying to understand an already existing system. Se-
guence diagrams have shown to be appreciated both by experienced programmers
and by novices. Though collaboration and sequence diagrams almost contain the
same information, sequence diagrams more clearly show the program flow and
helps the student understand the system. A sequence diagram is also often quite
structured and it is easy to read and follow the program flow. A collaboration dia-
gram can easily become a little indistinct if it gets too big and complex including
many objects and messages. This makes the messages cross each other and makes
it hard to arrange the objects in a structured way, leading to a diagram being diffi-
cult to interpret. Sequence diagrams and their use in education together with active
learning will be further described in chapter 5.

2.3 Use Cases and their Scenarios

Use cases are used to describe sequence of events and to show how the system is
supposed to interact with an actor (a user of the system). A use case is often just a
plain text documentation that can be obtained from, for example, the requirements
document. A use case is created for every major functionality of the system. Use
cases are very useful in the design-phase since they desdndtea system does
without having to sayhow the system should achieve a certain task and how to

10 Chapter 2. UML

implement it [LeBlanc and Stiller, 2000].

Scenarios can be used in many situations, for example in the analysis of the
requirements, in the software design, or in the implementation. The first two men-
tioned are probably the most important and mostly used areas. A scenario is used
to describe a system'’s behaviour in a specific situation and can also be described
as an instance of a use case. Itis created from a use case by looking at every pos-
sible outcome and creating a scenario for each possibility. It is important to not
only create scenarios for the normal system but also to show what will happen if
an error occurs or if the system breaks down. Scenarios can be documented just in
plain text or sometimes using different states or logic. From the different scenarios
resulting from the use cases, sequence diagrams can be drawn. These sequence di-
agrams are often very useful in e.g. the design-phase of the software development
and the documentation of it.

2.4 Sequence Diagrams

A sequence diagram shows the interaction between objects in time. The diagram
displays the communication, i.e. the objects participating in the interaction and the
actual messages sent between them. The sequence diagram focuses on the time-
ordering between the messages, compared to the collaboration diagram that focuses
on communication between the objects and the relationship between them. The re-
lationship between objects is not shown at all in a sequence diagram. Sequence dia-
grams are used throughout the design phase in the development process to show the
different scenarios in the system. They are suitable in real-time specifications and
for complex scenarios. Sequence diagrams are used to model use case scenarios,
protocols in a framework, subsystems, classes, and method logic [Miller, 2001b].

Or as Fowler [Fowler and Scott, 1997] explain the role of sequence diagrams:

“One of the hardest things to understand in an object-oriented pro-
gram is the overall flow of control. A good design has lots of small
methods in different classes, and at times it can be tricky to figure out
the overall sequence of behaviour. You can end up looking at the code
trying to find the program. This is particular true for those new to
objects. Sequence diagrams help you to see that sequence’”

The sequence diagram is very attractive since it permits a lot of useful infor-
mation to be shown at the same time. One thing is that the objects interacting
with each other (in the described scenarios) can be ordered in such a way that
the interaction is easier to understand and follow. Another good thing with se-
quence diagrams is that the lifeline of the object can point out the activity of the

2.4. Sequence Diagrams 11

object in isolation. Last and maybe most important is the way that sequence dia-
grams show the sequence of execution and the distribution of execution between
objects [Fowler and Scott, 1997].

Obj ect A

Actor B

Figure 2.5. The different notations in a sequence diagram. First the notation for an object
is shown, then an actor. In the middle is a lifeline for an object and then an activation for
it. Last is the notation for a message sent between the objects.

A sequence diagram has two dimensions, time which is represented by the
vertical dimension and different objects and actors that are represented by the hor-
izontal dimension. In most cases time proceeds down the page though if desired
the dimension may be reversed. The ordering among objects in the horizontal di-
mension is of no significance and arbitrary. But often the objects are ordered in
such a way that the call arrows (messages) are arranged to point in the same direc-
tion (to the right) but in some cases this is not possible. Each object has a vertical
dashed line which is called the lifeline of the object. The existence of the object is
represented by the lifeline at a particular time [Rumbaugh et al., 1997a]. The life-
line can show whether the object is being created or destroyed during the shown
scenario and when and for how long the object is active. The activity of the object
is shown as a tall thin rectangle which starts at the initiation of the activation and
ends when the object is not active anymore. If the object is being destroyed this is
marked with a big “X” and the message destroying the object points at the “X” and
the lifeline is ended at this point. If the object is created this is shown by letting the
message creating the object point to the object symbol. This is shown in figure 2.6.
An object that exists throughout the whole scenario has its lifeline from the top to
the bottom of the diagram.

A sequence diagram can also display conditions, branches and loops, see fig-
ure 2.7. A condition is shown by putting the condition (e.g. an if-statement) en-
closed in square brackets to the left of the message name. To symbolize a loop an
asterisk (*) is used before the name of the message. If the number of iterations are
known this number can be put in square brackets after the asterisk, though this is
very seldom the case [Miller, 2001a]. To present a branch several arrows can start
at a single point each with a guard condition. If the object sends a message to itself
the call arrow just points back to this object, making an U-turn, see figure 2.6.

To express conditions, branches and loops in a sequence diagram (or another

12 Chapter 2. UML

firstObject:First

new secondObject(): secondObject:Second

idNumber

updatelD

destroy o ><
| >

Figure 2.6. The notation for creation of an object and the notation for destroying an object.
The secondObiject is first created be the firstObject and then after sending a message back
to the firstObject the secondObiject is destroyed by the firstObject.

UML diagram) the Object Constraint Language (OCL) is used. OCL is part of the
UML and it is a formal language used to express constraints. It is not a program-
ming language but a specification language that uses simple logic for expressing
different constraints [Rumbaugh et al., 2001].

OCL can be used for different intentions [Rumbaugh et al., 2001]:

e To specify invariants on classes and types in the class model.

To specify type invariant for Stereotypes.

To describe pre- and post conditions on operations and methods.

As a navigation language.

To describe guards.

To specify constraints on operations.

OCL is often used to show constraints for a message in a sequence diagram.
The given constraint says that it should only be executed if a special condition is
fulfilled and OCL is used to express this condition. OCL is a typed language so
each expression must have a type. A String can not be compared to an Integer in
OCL and there is a set of predefined types in OCL that can be used when writing
expressions using OCL. There are also predefined operators, keywords and the like
in OCL [Rumbaugh et al., 2001].

In later versions of UML sequence diagrams have come to have a more promi-
nent meaning. In the specification for UML 2.0 that was recently released (summer

2.4. Sequence Diagrams 13

ObjectA ObjectB ObjectC ObjectD

D [value > 0] insertValue ‘[] I:] *[4] increaseValue ‘[]

Figure 2.7. Two different sequence diagrams. The one to the left illustrates a message with
a condition (value> 0) and the other one illustrates a loop. The asterisk tells that there are
a loop and the 4 tells that the number of iterations are four.

of 2003) [Group, 2004] one new thing was the increased potential for sequence di-
agrams. Sequence diagrams based on scenarios are powerful in many aspects but
are maybe most associated with the specification and analysis phase. Sequence
diagrams are also very powerful and useful when describing different test cases
during the testing phase. One of the simplest but also the most powerful change
is the introduction of references to other sequences. This gives the opportunity
to break down a sequence into smaller sequences and then have references to it
from other connections. All this leads to increased usability of sequence diagrams
within UML [Bj 6rkander, 2003]. The increased interest for sequence diagrams in
the context of UML is also reflected in education when UML is adopted.

Teaching and Learning Software
Development

When teaching software development there are some concepts that are essential and
it is important for the teacher to explain and clarify these concepts for the student.
Most people think that software development is just about sitting in front of the
computer and writing code. They do not understand the concepts design, analysis,
problem solving etc. It is very important that a student new to programming learns
and understands these concepts and realizes the meaning of them. Many students
find it less interesting with design and does not fully understand the importance of
design. They just want to take the problem and write the code for it without making
any design or thinking about the best way to solve the problem. In the beginning
this can work but when the problems get more complicated and the systems to
implement get more complex this method will fail. So it is very important that

the teacher lets the students realize the importance of design and have them see
the positive side of it. Many authors have agreed that the most important thing
when teaching/learning programming are the issues of problem solving, design
and expressing a solution or design as a program [Robins et al., 2003].

Learning to program is not easy and it involves getting complex new knowl-
edge and practical skills. Du Boulay [du Boulay, 1989] describes five sources of
difficulty that must be overcome. These five domains are overlapping and some-
times all these new things can come as a “shock” for the student.

These domains are:

General orientation - What programs are for and what can be done with them.
Understanding that programs are usually written for a purpose, with respect
to some task, problem or specification.

The notional machine - A model of the computer as it relates to executing pro-
grams. Getting an overview of the computer, how it works and “how” the
programs implemented are executed.

15

16 Chapter 3. Teaching and Learning Software Development

Notation - The syntax and semantics of a particular programming language. Learn-
ing to understand and use the new programming language. Learn how to
write different statements and how to combine them into a program solving
a given task.

Structures - How we learn new things according to special schemas and/or plans.
Learning about these things can simplify the learning and understanding of
e.g. a new programming language.

Pragmatics - Meaning to develop and exercise the skills of planning, developing,
testing, debugging and so on.

3.1 Programming and Problem Solving

One common misunderstanding with programming and software developing is the
importance of good problem solving. A good programmer is not just an expert
at writing code but is also (often) a good problem solver which results in well
written and effective implementations for different problems. A given problem
can of course be solved and implemented in a number of ways and here the prob-
lem solving phase is crucial. Solving different problems and finding solutions are
something that can be exercised. The hard part is often to see the whole picture
of the problem, understand it and find a good solution to the problem. One good
start is to split the problem into smaller parts. So instead of having@nprob-

lem there are mangmaller problems. Then these small problems can be solved
and by combining their solutions the big problem can be solved. This division of
a problem into smaller parts is something that must be practiced. By doing this
repeatedly a person can learn good ways to divide a problem and be able to see
common patterns and often old solutions can be reused. Today many courses in
programming for beginners use problem solving based teaching, also called prob-
lem based learning. Though there are many people positive to this approach there
are also people meaning that the biggest difficulty for a novice programmer is to ex-
press solved problems using a programming language [Robins et al., 2003]. These
people mean that problem solving is of course important, but the student also has
to learn the programming language, how to use it, and how to write programs for
the solved problems.

3.2. Coding and Design/Analysis 17

3.2 Coding and Design/Analysis

When the problem has been analysed and solved the design phase of the pro-
gram/system can start. Before starting with the implementation the system has
to be designed. When students new to programming learn and hear about design
they often find it unnecessary and do not realize the importance of design. Because
the programs they write in the beginning are so small it can be hard for them to
see how significant the design is. But it is really important that it is pointed out for
them why design is so crucial. Trying to explain how difficult (impossible) it would

be to create a bigger system without any design is very important and also to show
them examples of bigger systems. Since most programming courses for beginners
today use an object-oriented language the significance of design grows since design
is quite fundamental in object-orientation. To express the design UML-diagrams
are often used. Since the UML is composed of nine different diagrams it is rec-
ommended that only a subset of the diagrams is used so the student does not find
it too overwhelming. Design is just as problem solving something that must be
practiced and exercised. There are many different methods to teach design and
many are connected to object-oriented design. This will be further discussed later
in section 4.3.

3.3 Syntax and Semantics

When learning a new (programming) language the student first has to learn what
everything means and how it is written. This is when syntax and semantics are the
crucial concepts. Shortly the syntax of a language can be described as how the dif-
ferent expressions, statements and program units are written. The semantics of the
language can be described as the meaning of those expressions, statements and pro-
gram units. Syntax and semantics are closely related and it is often found easier to
understand/explain syntax then semantics. As Robert W. Sebesta [Sebesta, 1999]
says this is partly because a concise and universally accepted notation is available
for syntax description but yet there is none developed for semantics.

To clarify the difference between semantics and syntax lets take an if-statement
written in the syntax of the programming language C.

if (< expr >) < statement >

How we write this statement form is controlled by the syntax and this is the correct
syntax for an if-statement written in C. The semantics of this statement form is that
if the expression (the current value of it) is true then the statement will be executed.

Many different studies have shown that novice programmers who know the

18 Chapter 3. Teaching and Learning Software Development

syntax and semantics of individual statements in a programming language often
find it very hard to combine these statements into a program. They have solved
the problem (by hand) but they can not write an equivalent computer program for
the solution [Robins et al., 2003]. So learning the syntax and sematics of a pro-
gramming language does not mean that the student will be able to write programs
using the given language. First he or she has to learn how to “translate” the solved
problem into code by combining different statements.

Teaching and Learning
Object-Oriented Programming

4.1 Object-Oriented Programming vs.
Procedural Programming

Today most programming courses for beginners use an object-oriented language
instead of a procedural language. One of the main reason for the change in pro-
gramming language is that the proponents of object-orientation are claiming that
object-oriented thinking is more natural than procedural thinking. Neubauer and
Strong [Neubauer and Strong, 2002] write about the theory that object-orientation
is more natural and base this theory on the idea that the world we live in and
experience is filled with things, or objects, which have both attributes and be-
haviours. Though this theory would lead to beginners preferring object-oriented
thinking some people point out that beginners prefer the procedural way. Neubauer
and Strong write that the explanation for this could be that students from the first
day in school learn mathematics in a procedural way looking at procedural pro-
cesses applied to data. Object-orientation has a drawback as many students see
it, it includes a lot of design and abstraction. Most students are not really in-
terested in design and think of programming as equal to writing code. Another
disadvantage with object-orientation is that many find it more difficult to debug
and correct an object-oriented system than a system written in a procedural lan-
guage [Neubauer and Strong, 2002].

Though there are many pros and cons about object-orientation almost all uni-
versities today use an object-oriented language in the first programming course
and the ones not doing so are planning to. This change in programming language
has led to discussions about how to best teach object-oriented programming and
which pedagogy is the best. Some mean that since object-orientation is quite new
in education there are (yet) no good software tools and teaching support materials.
This has led to teachers finding it more difficult to teach object-oriented thinking

19

20 Chapter 4. Teaching and Learning Object-Oriented Programming

than the procedural approachdling and Rosenberg, 2001, Lewis, 2000]. Con-
sidering the opinion that it is harder for students to think in an object-oriented way,
rather than in a procedural way, the strategies for teaching object-orientation really
has to help the students to think in an object-oriented way. The students have to
learn to think and program with objects [Neubauer and Strong, 2002]. Since all
this is rather new there are several different theories and strategies about how to
best teach object-oriented thinking and it is hard to say which strategy is the best.

Today most programming courses for beginners use Java as the programming
language. Next section 4.2 describes different teaching approaches for object-
orientation with Java as the programming language.

4.2 Different Teaching Approaches Using Java

There are some guidelines that are often mentioned in many articles about teach-
ing object-oriented programming and thinking to beginners with Java as the pro-
gramming language. The most common approache®Chcts first” and“Ob-

jects early” which point out the importance of that students first of all get the un-
derstanding of objects when learning object-oriented programming and thinking.
Though there is no scientific evidence, or very little, to support this theory most
teachers and textbooks today are following this approach and start with objects
early [Kolling and Rosenberg, 2001]. Ralph Westfall [Westfall, 2001] on the other
hand says that this is not the case and one of his explanations is that many teachers
have a background from programming with procedural languages. Another argu-
ment in the discussion is the use of “Hello world’-programs for beginners. Many
claim that this is a very bad example to start with and that it is not object-oriented at
all [Kdlling and Rosenberg, 2001] when others mean that if it is correctly used and
explained it is a good example [Lewis, 2000]. Ralph Westfall [Westfall, 2001] says
that the “Hello World”-program must be rewritten to be object-oriented and gives
an example of this. He says that in most books for teaching Java the following code
is presented:

class HelloWorld {
public static void main(String[] args) {
System.out.printin("hello, world™);

}

He means that this code will only confuse the students and not teach them anything
about object-orientation. Ralph Westfall says that the code has to be rewritten to
include a user-created object. The result would then be:

4.3. Active Learning 21

class Helloworld {
public static void printHello() {
System.out.printin("hello, world”);

class UseHello {
public static void main(String[] args) {
HelloWorld myHello = new HelloWorld();
myHello.printHello();

The main method in Java is also considered to be a problem by many teach-
ers since its only purpose is to connect the application to the operating system.
The code does not naturally relate with any classes or objects and it does not im-
plement an operation on an objectding and Rosenberg, 2001]. Another thing
with Java is its support to deal with input and output which is huge and complex
and can lead to difficulties for beginners. A proposal to solve this is that the teach-
ers provide students with classes for I/O that encapsulate the complexities in Java.
Another approach is that the standard I/O is just avoided until the students are able
to understand and use it [Lewis, 2000]. There are more guidelines for teaching
object-orientation that often come up. One is that the students in the first stage
do not start with a blank screen but instead make changes to already existing code
and see what the result of the changes are. It is also recommended that students
read code to get a sense of well written programs and learn about good style and
idioms [Kolling and Rosenberg, 2001]. It is really not easy for a student to write
good code if he or she never got the opportunity to read well written and structured
code.

4.3 Active Learning

To fulfil all, or at least some, of the guidelines mentioned in section 4.2 when
teaching object-oriented thinking some newer approaches have been adopted. One
widely used approach iactive learning Active learning means that the student
instead of just receiving new knowledge from the teacher instead gets a problem
and solve it, often with some guidance from the teacher. This type of education
forces the learner to find and to use new knowledge to solve the given problem.
This type of education is also called learner-centered education since it involves
the students more in the learning process and make them more active. It seems that

22 Chapter 4. Teaching and Learning Object-Oriented Programming

people learn best when absorbed in the subject and actively participating in the pro-
cess towards their own learning and understanding [Harley et al., 1998]. Though
this technique with active learning seems to give the learners good understanding
quickly it cannot be backed with any statistical data [Smialek, 2000]. It has also
been shown that if students work in pairs or in groups better results are achieved.
This depends on two things. The first thing is that students working in a group can
solve more complex and interesting problems than a student working alone leading
to more active and engaged students. The second thing is that students in a group
have to discuss for example different designs and argue with each other and this is
the kind of reflection that leads to learning [Harley et al., 1998].

One often used technique is pair-programming. This technique is used both
for beginners to programming and for experienced programmers. The proponents
of pair-programming mean that by always being two persons common and “un-
necessary” errors can easily be avoided, the solutions often get better and the two
programmers can switch places to avoid having a person doing the same thing for
a long time [Jensen, 2003]. When beginners use pair-programming more com-
plex and interesting problems can be solved and the student not typing can check
for errors in the code which are often easier to discover when “sitting on the
side” [Williams and Kessler, 2003]. It has also shown that when students work-
ing together the process of learning a new programming language is significantly
faster then for a student working alone [Williams and Kessler, 2003].

According to these new approaches for education of object-oriented thinking
there are some basic elements that are widely used. Two of thamseaseand
CRC cards Using these methods together with the philosophy of active learning
the best result is achieved when teaching object-oriented thinking [Smialek, 2000].

Use case session In a use case session the different use cases of the system are
modelled and for each use case when it is possible a number of scenarios
are developed. The participants of the session, which the students are, write
down the scenarios using a very elementary grammar. Sometimes these use
case sessions can be formed like interviews where somebody plays the role
of the user, somebody the role of the analysts and the rest of the group review
the session by documenting the scenario. This documentation is for example
done with a sequence diagram or a simplification of one [Smialek, 2000].

CRC sessions- CRC cards characterise objects by Class name, Responsibilities,
and Collaborators and are widely used for teaching novice programmers the
concept of object-oriented thinking and design [Beck, 1989]. Often the pro-
cess starts with identifying the classes in the future system and making a
CRC-card for each class. Then the responsibilities and collaborators of the
object are added on the cards. Now the students can use the CRC-cards to

4.3. Active Learning 23

illustrate different scenarios in the future system and document these scenar-
ios. This is often done using some kind of role play where the students play
different classes in the system. The responsibilities and collaborators of the
different objects are surely to change during the session and can easily be
adjusted during the session. CRC-cards are suitable for groups of students
and the groups must not be too big since it will then be hard to engage all
students actively in the session. Four to six students have shown to be a good
size of the groups [Nordsim and Brstler, 2002]. Since the role-play ses-
sions will create different scenarios describing the behaviour of the system
it is a good idea to have one or more students documenting the role-plays.
Sequence diagrams are often used when documenting the different scenarios
resulting from the CRC sessions.

The main purpose with active learning is to include the student more in the
learning process and making him or her more active in the seeking for new knowl-
edge and understanding. Taking away the “old picture” of teaching and learning
when the teacher talked and the students listened and hopefully learned what they
where supposed to learn.

Both techniques described above often use sequence diagrams, or a simplified
version of them, for the documentation. In chapter 5 the use of sequence diagrams
in education will be further discussed and described.

Sequence Diagrams in Education

Since object-oriented languages have become the leading programming languages
in the beginner's programming courses, instead of procedural programming lan-
guages, UML has begun to play a bigger part in the education.

Relating to previous sections about teaching object-orientation and the guide-
lines mentioned together with the “new” approach with active learning, sequence
diagrams become very important and useful. Since object-orientation is much
about design and the understanding about objects and classes and the connection
between them, UML is widely used. When beginners start with object-orientation
one complicated thing is how to understand and see the communication between
different objects, to understand how objects cooperate to accomplish a given task
and how messages are sent between the objects. As Fowler and Scott point out
[Fowler and Scott, 1997] it can be very difficult to understand the program flow in
an object-oriented system, especially for beginners new to object-orientation. Here
sequence diagrams can be very helpful for the students trying to understand and
learn about object-orientation, objects, and the communication between objects in
the system. The three different teaching approaches, described in section 4.3, all
include the use of sequence diagrams in some way.

Since the major part of sequence diagrams describes the communication be-
tween objects and the time-ordering among messages, they can help a student both
to understand an already designed system, or help the student to design and anal-
yse his or her own new system. If the students are to design a new system and for
example use the model with role-plays, sequence diagrams will play a meaning-
ful part. Since the role-play produces different scenarios when the students play
different classes cooperating to achieve certain goals the scenarios have to be doc-
umented in some way. Since the purpose of sequence diagrams are to describe
different scenarios the natural thing would be for the students in the role-play to
use a sequence diagram to document the scenario the role-play resulted in. If a se-
guence diagram is used for the documentation this diagram will help the students
later in the design and the implementation of their system. One other guideline
when teaching object-orientation is that students get a bigger system and try to un-

25

26 Chapter 5. Sequence Diagrams in Education

derstand it and later make changes to the system. When the student “gets a system”
and the documentation belonging to the system, it will surely make it easier for the
student to understand the overall program flow if a sequence diagram is used. Then
the student can see how the different objects cooperate and how messages are sent
between them. This will certainly facilitate the understanding of the system for the
student and help him or her see the overall program flow. If there were no sequence
diagram to help explain and show the program flow of the system the student had
to read and try to understand the code to get the whole picture. If the student were

a beginner in programming and maybe also in object-orientation this would for
certain not be an easy task.

When students in a group together are supposed to design a system with its
classes and methods the process is simplified if sequence diagrams are used. When
several people (students) sit together discussing for example the design of a system
itis very easy to misunderstand or misinterpret each other if only words are used. If
the group wants to be sure that no misinterpretations are made and that everybody
is talking the “same” language it is very good to draw a “picture” [Hussman, 2002].
When designing an object-oriented system this “picture” very natural becomes a
sequence diagram since the discussions in the design phase certainly are concen-
trated around classes and the communication between them. If it is the students’
first programming course it is even more expected that there will be misunder-
standings in the discussion since everything is new for the members of the group.
Drawing pictures (e.g. sequence diagrams) will then increase the understanding
within the group and probably result in a better design of the system since every-
one in the group can participate in the design.

A Sequence Diagram Editor for
BlueJ

The main task with this work was to design and implement an editor for sequence
diagrams. The editor should work as a plugin for BlueJ. Blued is an IDE (Inte-
grated Development Environment) for Java and is created to be used by begin-
ners. More information about BlueJ and available downloads can be found at
www.bluej.org

6.1 Requirements

There were no specific written requirements for this sequence diagram editor. The
editor should be implemented in Java and designed as a plugin for BlueJ.

In BlueJ different classes are saved together as projects. It seemed quite natu-
ral that a sequence diagram should be connected to a project meaning that the se-
guence diagram describes the classes and methods belonging to the given project.
Each project in BlueJ should also be able to contain an arbitrary number of se-
quence diagrams. When drawing a sequence diagram the user should be able to
choose from the implemented classes and their methods. In this way the user can
not invent own classes and methods that do not exist and are forced to only use
existing, implemented classes and methods. Since BlueJ is mostly used by begin-
ners this is a positive thing because the sequence diagrams are only going to reflect
implemented classes and methods. This functionality also has its drawbacks which
will be further discussed in section 6.4.

A sequence diagram can be very complex and contain a huge amount of infor-
mation if all of the notational possibilities are used. Since BlueJ and the sequence
diagram editor will be used by beginners the sequence diagrams drawn in the ed-
itor will be of the basic kind. The editor does not offer all notational possibilities
but only provide the most basic concepts. Belonging to the basics of a sequence
diagram are objects and actors, destroy symbols, messages, return messages, and

27

28 Chapter 6. A Sequence Diagram Editor for BlueJ

lifelines. Of course this is a big limitation, but when beginners draw sequence di-
agrams these notations are mostly (only) used. Since the editor must not be too
complex and difficult to use this subset of all notational possibilities will probably
be enough.

The sequence diagrams that are drawn should also be able to be saved and
opened later on. There were no special requirements how the sequence diagrams
should be saved and in what form. Though it seemed natural that sequence dia-
grams belonging to a certain project should be saved in the same directory as the
project it belongs to.

6.2 Design

6.2.1 The Graphical User Interface

The first thing that | started with was the Graphical User Interface (GUI). The main
thing was that it should be easy and intuitive to use and not differ from the GUI of
BlueJ too much, see figures 6.1 and 6.2. Since they are beginners who will use the
editor it should not include too much functionality and the program should not take

a long time to understand and learn. The window of the editor contains a drawing
area, where the sequence diagram is drawn, some menus in the top of the window
and some icons that are used to draw the sequence diagram. The icons represent
an actor, an object, a message and notes for the diagram. The GUI is implemented
using Java’s swing-library, sddtp://java.sun.com

£ Sequence Dagram Editor

Fllg Ogition
o 1ar: Gar o Derai
1
|
acton
el
abjsct
—
MESs age
wiles
‘

Figure 6.1. The window of the sequence diagram editor.

6.2. Design 29

Help

Project Edit Tools View

‘ Mew Class... Tringle

[>

(—= Co |
] :

{ Complle |

Creating virtual machine... Done

Figure 6.2. The window of BlueJ.

The menu The menu contains three different itenfise, option andhelp. The
menu itemhelp has been placed to the right in the window. The reason for
this is because BlueJ has the menu iteetp placed here. Then the user
will quickly find the help if he or she is used to BlueJ. To the left in the
window file and option are placed. In the menu itepption the user can
choose BlueJ-mode on or off and whether to show return messages or not.
Under the menu iterfile is open save save ascloseandquit. These menu
items are also connected to the keyboard if the user for example wants to use
Ctrl-S instead of choosing save from the menu. The same functionality is
also included in Blued.

The icons At the left side in the window four icons are placed. These icons repre-
sents from top down an actor, an object, a message and notes for the sequence
diagram. The three first mentioned icons are the most common parts of a se-
guence diagram and because of this it seemed natural to give them each an
icon. In this way the user easily can create for example an object without
having to use the menu. The icon for notes is placed in the left bottom a
little bit away from the other icons because it has a different functionality.

In BlueJd each project has a note belonging to it where the user can write
information about the project. To be consistent to BlueJ the editor also has
a note where the user can save information belonging to a certain sequence
diagram.

The drawing area The drawing area where the sequence diagram is drawn is
placed to the right in the window. The background is white and the dif-

30 Chapter 6. A Sequence Diagram Editor for BlueJ

ferent parts of the sequence diagram are drawn in black. Simple and easy to
read. The drawing area has a default size from the start, but if the user draws
a sequence diagram that is bigger than the drawing area scrollbars are added
automatically. Then the user can scroll the drawing area if the diagram is too
big.

When an actor or an object is added to the drawing area by the user it always
gets a lifeline with a default length. If the user wants to make any changes to an
already added actor or object he or she can click with the right mouse button on
the object. Then a menu appears and the user can choose between changing the
name, deleting it, and adding a destroy symbol. In BlueJ the name for an object
can be changed if the user double clicks on the object. Because the editor should
be similar to BlueJ this function also exists in the program. The name of an object,
an actor, or a message can be changed by double clicking on it.

When a message is added to the sequence diagram the user first marks the
starting object with the mouse by clicking on its lifeline. Then the message gets
visible and “follows” the mouse (like a rubber band-effect) until the user has chosen
the end object of the message. This is also done by clicking on the end object’s
lifeline.

Most parts in the drawn sequence diagram can be moved after they have been
added. When a part is marked (clicked on) it is drawn in red and there appears
“handles” that the user can grab and move the selected part of the diagram. The
user moves the selected part by pressing the left mouse button and draw the part
with the mouse. | have chosen this method because many drawing programs use
this method (“press and drag”) when the user should move, for example, an object.
So many users will find this method natural and easy to use.

6.2.2 Return Messages

When a user adds a message to a sequence diagram the message will automatically
get a return message. An exception to this is if the message goes to and from the
same object. Then the message will not get a return message. If the type of the
return message is known it will be added to the return message, for example if the
type of the return value is int, the return message will get the label “int". The
return message is placed under the message it belongs to with a distance around
one cm. If the user wants to hide the return messages he or she can do this in
the menu under option. Return messages can be switched on and off during the
development of a sequence diagram.

6.2. Design 31

6.2.3 Sequences

Beginners to programming often write sequential programs and because of this one
functionality that should be implemented was the opportunity to have messages in
a sequence in a sequence diagram. If messages are added to a sequence they are
automatically arranged and the distance between them and their return messages
is updated. This leads to a sequence diagram that is symmetric and easy to read.
If the user on the other hand wants to draw a sequence diagram not having the
messages in a sequence this is also possible.

To illustrate how this functionality has been implemented an example is used.
If message A is to be added to an already existing sequence after message B, mes-
sage A's start point is placed between message B and message B’s return message.
Then message A will be added to the sequence after message B and all positions
for messages and return messages belonging to the sequence will be automatically
arranged.

6.2.4 Different Modes of the Editor

Since one requirement was that the editor should be a plugin for BlueJ and that a
sequence diagram should be connected to a certain project the editor is developed
so it can be run in two different modes, BlueJ-mode on or BlueJ-mode off. If the
editor is in BlueJ-mode the sequence diagram that is being drawn will be connected
to the current open project in BlueJ. Then the user must choose classes and methods
belonging to the project. If the editor is not in BlueJ-mode the user can draw a
sequence diagram that contains objects, messages etc that are not yet implemented.
If the program is started from BlueJ, as a plugin, the default is that the editor is in
BlueJ-mode. The user can change the mode under option in the menu. The editor
can also be started as an independent program and then it is used to draw arbitrary
sequence diagrams.

6.2.5 Creating a Plugin for BlueJ

When creating a plugin for BlueJ | got a lot of help from the webpage for BlueJ,
seewww.bluej.org . They had a number of tutorials and examples. When the
editor is in BlueJ-mode it has to get information of the current open project. For
example what classes exist and what methods each class contains so the user can
choose what class or method to add to the sequence diagram. For this BlueJ provide
an interface that makes it quite easy to integrate the editor with the BlueJ program.

| started with adding the editor to the menu in BlueJ and when the editor starts
it receives an object of the BlueJ program. Through this object the editor gets
access to the current open project and its classes, methods etc.

32 Chapter 6. A Sequence Diagram Editor for BlueJ

6.2.6 File Management

There is a number of ways and methods to use when implementing the saving of a
sequence diagram, for example as a plain text file, using XML etc. It seemed very
complicated to save them as plain text or some kind of combination of numbers
since there is quite a lot of information that must be saved and it is easy that some-
thing goes wrong. If you want to change something later on, like remove or add an
attribute, that can be quite complicated. Since | have never used XML it seemed
like a good idea to use and learn about XML. One positive thing about XML is that

it is very easy to add or remove things during the development. Changes are easy
to make which would have been very hard if the diagrams for example had been
saved as plain text.

can have any nunber of
actor and objects.

Each sequenceDi agram A‘

notes

sequenceDiagram

object/actor | TTTTTTTTTTTomoosooossmmoooososssoos object / actor

[message]"'[message) [lifeline] { destroysymbol] [message]"'[message J [lifeline] [destroysymbol]
[message J { message J [message) { message J

Each obj ect/actor

can have any nunber
of messages connected
to them

Each nessage
has a return
message.

Figure 6.3. How the XML-file is arranged. All parts of a saved sequence diagram are
arranged in a tree structure with the sequenceDiagram node as the root.

The XML-file is arranged with a tree structure, see figure 6.3. The node “se-
quenceDiagram” acts like the root. All actors and objects in a sequence diagram
are saved as child nodes to the root. Each actor/object has child nodes containing
information about the lifeline, destroy symbol and all messages belonging to the
actor or object. Each message also has a child node containing the information
about its return message. The sequence diagram contains a “text” representing the
notes about this sequence diagram. This note is saved as a child node to the root.
The number of actors and objects in a sequence diagram are arbitrary and also the
number of messages belonging to an actor or an object.

6.2. Design 33

& Sequence DMagram Editer - exem pel.sd

Figure 6.4. An example of a simple sequence diagram.

In figure 6.4 a simple sequence diagram is displayed. The XML textual syntax
for this sequence diagram will be:

<?xml version="1.0" encoding="UTF-8"?>

<sequenceDiagram bluej="shapes">

<notes>Notes about this Sequence Diagram

This diagram is only an example...</notes>

<actor startPoint="85,20" endPoint="95,60" name="Actor" BClass="null"
hasDestroySymbol="false" hasCreationMessage="false">

<message mess="setVisible" startPoint="90,105" endPoint="290,115"
isCreateMessage="false" isReturnMessage="false" startEntity="Actor"
endEntity="null" sequencelndex="null" returnMessage="notNull">

<message mess="" startPoint="290,135" endPoint="90,145" isCreateMessage="false"
isReturnMessage="true" startEntity="null" endEntity="Actor"/>

</message>

<lifeline startPoint="86,65" endPoint="94,420"/>

</actor>

<object startPoint="240,20" endPoint="340,60" name="canvas" length="101"
BClass="BClass: Canvas" hasDestroySymbol="true" hasCreationMessage="false">

<destroysymbol startPoint="281,341" endPoint="301,361"/>

<message mess="setVisible" startPoint="90,105" endPoint="290,115"
isCreateMessage="false" isReturnMessage="false" startEntity="null"
endEntity="canvas" sequencelndex="null" returnMessage="notNull">

<message mess="" startPoint="290,135" endPoint="90,145" isCreateMessage="false"
isReturnMessage="true" startEntity="canvas" endEntity="null"/>

</message>

<lifeline startPoint="286,65" endPoint="294,351"/>

</object>

</sequenceDiagram>

34 Chapter 6. A Sequence Diagram Editor for BlueJ

Since the program can be in two different modes, see section 6.2.4, BlueJ-mode
on or off, the saving procedure also differs a little. When the program is in BlueJ-
mode the sequence diagram is always saved in the same directory as the current
project. The user then only gets to choose the name of the file. If the program
is not in BlueJ-mode the user gets to choose both the nhame of the file and which
directory the file should be saved in. All sequence diagrams are saved with the
extensionsd If the user does not add this to the filename the extension is added
by the program. When the user chooses to open a file the program only shows files
with the extensionsd If the editor is in BlueJ-mode thedHiles belonging to the
current project is shown and otherwise théfiles is shown in the current working
directory.

Like most programs the editor always asks the user if he or she wants to save
the current open sequence diagram if the sequence diagram is being closed for
some reason. If the user switches BlueJ-mode with an open sequence diagram
the editor closes the open sequence diagram before changing mode. Doing so
the editor makes sure that a sequence diagram belonging to a given project is not
changed without confirming the correctness with the project.

6.2.7 Automatic Consistency Check against BlueJ

When the editor is in BlueJ-mode a sequence diagram can only include classes
and methods already implemented in the current open project. If the user draws a
sequence diagram belonging to a certain project this sequence diagram has to be
checked against this project when it is later opened again. If the editor discovers
that a class included in the sequence diagram does not exist in the project anymore
this object (of the missing class) is drawn in red in the diagram and the user gets a
warning-message from the editor.

6.2.8 Creation Messages

Sometimes an object is created by another object during a displayed scenario in a
sequence diagram and this functionality is provided by the editor. To create a new
object, or make a creation message, the user first chooses to add a new message. He
or she selects the start object, meaning the object going to create the new object.
But instead of selecting the end object for the message the user clicks with the
right mouse button and then gets to choose which object to create. The editor then
creates the new object and places it at the end of the creation message.

6.3. System Description 35

6.3 System Description

If all classes and interfaces were to be described it would take up too much space
so only the most important and interesting classes will be described. All documen-
tation for the program can be found at:
http://www.cs.umu.se/"c99mog/javadocs/

A class diagram including the most important classes can be seen in figure 6.5.

DrawingArea CurrentState

LifeLine ClassEntity | Message | | DestroySymbol

|Actor| |Sequence0bject

Figure 6.5. A class diagram describing the most important parts of the system.

EditorExtension This is the main class. If the program is started from BlueJ
the editor is not started using main but another method called “startup”. To
start the extension, BlueJ calls this method sending an object of itself as an
parameter. This class later starts the editor by creating an object of the class
SeqDiagramEditor.

SegDiagramEditor This class starts the editor and creates menus, icons, the draw-
ing area etc. It also handles all events that comes from the menus or if the
user clicks on one of the icons.

DrawingArea This class contains most of the code and could be said to be the
“pbrain” of the editor. DrawingArea.java implements the interfaces Action-
Listener, EventListener, MouseListener, and MouseMotionListener. DrawingArea

36 Chapter 6. A Sequence Diagram Editor for BlueJ

keeps track of a lot of information, e.g. what file is currently open, what parts
to draw in a sequence diagram, and it also saves and opens a sequence dia-
gram to and from a file.

CurrentState This class is used by the Drawingarea to keep track of what to do
next. If a user selects e.g. a lifeline the current state is updated for the
Drawingarea so it knows how to handle next event created by the user.
For example if a new message is to be created and the start point of the
new message has been selected the class Message sets the CurrentState for
DrawingArea toRUBBERBAND hen the DrawingArea knows how to be-
have and what action to take when the user makes his or her next choice.
Every class has a kind of state machine that tells the DrawingArea what the
next step will be, see figure 6.6. The class CurrentState defines a number of
different states e.gNORMALINSERT, FIND_ENDPOINT, andCHANGE
These states are used by the different classes to set the state correct for the
DrawingArea.

Entity This class is an abstract class that all parts belonging to a sequence diagram
inherit from.

MessageThis class inherits from Entity and represents a message in a sequence
diagram. A message can go between two objects or actors but can also have
the same object or actor as start and end point. This class has an attribute
saying whether it is a regular message or a return message. Depending on the
value of this attribute the message is drawn in different styles on the drawing
area.

LifeLine This class inherits from the class Entity and represents a lifeline in a
sequence diagram. A lifeline is always associated with either an actor or an
object.

DestroySymbol This class represents a destroy symbol for an object and it also
inherits from the class Entity. A destroy symbol is always connected to an
actor or an object.

ClassEntity This is an abstract class that represents either an object or an actor in
a sequence diagram. It inherits from Entity and implements a few methods
common for an actor and an object.

Actor This class inherits from ClassEntity and represents an actor in a sequence
diagram.

SequenceObjectAs the class Actor this class also inherits from ClassEntity and
an object in a sequence diagram is represented by this class.

6.3. System Description 37

SDFilter This class is used when saving and opening files in the editor. The filter
only make files with the extensiadsvisible for the user.

\

®—>(1cer) ((oonc o e

Figure 6.6. The state machine for an object of the class DestroySymbol. When the object
has been created and inserted to the sequence diagram it can toggle between the two states
NORMABNIDRAGGINGSTART The statdNSERT only appears when the destroy sym-

bol is added to a sequence diagram. When the destroy symbol is added the state is updated
to NORMALIf the user marks the destroy symbol by clicking on it the state is updated

to DRAGGINGSTARTand the destroy symbol can be moved by the user. If the destroy
symbol is “unmarked” by the user the state is updated batlQ8MAL

38 Chapter 6. A Sequence Diagram Editor for BlueJ

6.4 Future Work

There are a number of features that had not (yet) been implemented. The main
thing missing is an undo-button. The current solution for the user is to use the
delete function if something goes wrong or gets into the wrong position. Probably
this can be quite frustrating for the user and an undo function must be seen to have
high priority.

Another function that would be useful to have implemented is the possibility to
print a sequence diagram. Of course the user can take a screen shot and print that,
but it would be practical with a print functionality in the program.

There is also the possibility of code generation, meaning that if the user draws
a sequence diagram the program should create code based on the drawn sequence
diagram. For example, when the user is in BlueJ-mode and suddenly realizes that
he or she would need a new class or a new method in a class. Instead of having to
go back to BlueJ and create the class or method the user could just add the class or
method to the sequence diagram and the editor would then generate the code for
the method or class.

Since the editor is mainly supposed to be used by beginners there are a lot
of notational possibilities of the UML that have not been implemented. If the
editor is to be used by more experienced programmers the editor has to offer more
notational possibilities. Activation boxes are not implemented in the editor since
the conclusion was that this functionality was not very important for beginners. If
the editor is to be further developed activation boxes should be implemented and
also the possibility for each actor or object to have a number of activation boxes.

If the drawn sequence diagram gets too big scrollbars are added to the drawing
area. A function that could be beneficial to have would be some kind of zoom so
the user can zoom in and out. Then the user can zoom out if he or she would like
to look at the whole diagram at once or zoom in to look at a smaller part of the
diagram in more detail.

Related Work

There exist a number of editors for UML, e.g. Rational Rose vegw@.ratio-

nal.com , Together, seawww.borland.com/together/ etc. The big draw-

back with these editors is that they are too complicated for beginners to use since
they are designed to be used by experienced programmers. If a beginner new to
programming and UML should use any of these programs he or she would only get

confused and intimidated probably leading to less interest in the area.

Today there are less complicated editors for UML too, for example MS Vi-
sio (developed by Microsoft) and Violet, segw.horstmann.com/violet/

MS Visio has a library for drawing UML diagrams but the program does not un-
derstand the diagrams. This leads to that the components can be arranged in any
way and there is no check for correctness of the diagrams. Violet is an editor de-
signed to be used by students and it is quite easy to learn and understand. Violet
has the same drawback as MS Visio, it does not interpret the diagrams and the
components can be combined in any way. If a student draws a sequence diagram
it would be helpful if the editor could make a consistency check against a class
diagram of the system. Another drawback, with the editors mentioned, is that they
are not platform independent. MS Visio for example does only work together with
Windows.

Today many courses in programming for beginners use Java as the object-
oriented programming language and BlueJ as an editor for writing programs in.
Currently BlueJ does not have any support for drawing sequence diagrams and
there exists no editor that works integrated with Blueld. If the student using BlueJ
would like to draw a sequence diagram he or she has to use some editor not con-
nected to BlueJ at all. Doing so there will be no consistency check against the
implemented classes and methods in BlueJ and the correctness of the diagram will
not be controlled. The editor developed in this thesis is (hopefully) easy to un-
derstand and use. It is very uncomplicated to install and since it is implemented
in Java it is just as BlueJ platform independent. The editor is connected to BlueJ
and the students using it can draw sequence diagrams describing their implemented
classes and methods. The editor always checks against existing classes and meth-
ods resulting in a correct and consistent sequence diagram.

39

Summary and Conclusions

In this paper the development of an editor for sequence diagrams has been de-
scribed. The editor is designed to be used by beginners to programming and im-
plemented as a plugin for BlueJ. Since the editor is mainly to be used by beginners
the design has focused on making the editor easy to use and learn instead of having
it contain a lot of functionality which would make it more complicated to use, es-
pecially for beginners. The plugin is easy to install into BlueJ, just copy the jar-file
into the correct directory of BlueJ, see section A.2 in the appendix. Then the editor
is started from the menu of the BlueJ program.

The editor only provides notations for the most basic parts of a sequence dia-
gram. What the basic parts of a sequence diagram are is only based on my own
opinion and can of course be discussed. The editor has support for drawing ac-
tors and objects with lifelines. It provides two different types of messages, regular
synchronous messages and return messages. The reason for only supporting syn-
chronous messages is because the editor is designed for beginners and they often
only use this kind of messages. If the editor would support all possible messages
of the UML the user would probably find it complicated to know what message
to use if there were too many possibilities. Since beginners new to object-oriented
programming often write sequential programs the editor also provides the possibil-
ity to have the messages creating a sequence. Through this sequence of messages
the program flow is easy to follow and understand. Return messages are also sup-
ported and the user can choose whether he or she would like to show or hide the
return messages. Other notations that the editor has support for is destroy symbols
and create messages. The possibilities of having activation boxes are missing in
the editor and this could be seen as a drawback. The explanation for this is that it
showed to be quite difficult to get them right and it did not seem too important to
offer this functionality for beginners since they do not bring anything very impor-
tant to a sequence diagram. Of course it could be implemented in later versions of
the editor.

41

42 Chapter 8. Summary and Conclusions

Since the purpose of the editor is to be used as a plugin to BlueJ it is designed
to be run in two different modes, BlueJ-mode on or off. When it is run in BlueJ-
mode the editor is connected to a project in BlueJ. Then the user can only draw
sequence diagrams describing a given project, including its classes and methods.
When drawing the sequence diagram the user gets to choose from existing classes
and their methods. This will hopefully help the student draw correct sequence
diagrams describing their systems. |If the editor is run with BlueJ-mode off the
user can draw sequence diagrams containing any classes and methods.

One thing missing in the editor is the possibility of code generation. If the
user draws a diagram and suddenly realizes that he or she is missing a class or
a method he or she has to go back to BlueJ and implement the class or method.
It would be very convenient for the user if he or she just could add the class or
method in the editor and then the code would automatically be generated. Code
generation could also be helpful if the user draws a sequence diagram and code
was generated based from the diagram. All classes used in the diagram were au-
tomatically created and code-stubs for the methods where generated. This would
save lots of time for the user letting him or her focus on more important parts of the
implementation then writing new classes and methods. On the other hand, writing
new classes and methods is not as intuitive and easy for beginners to programming
as it seems to experienced programmers who often find this process quite boring
and time-consuming. But if the editor later should be extended and include more
functionality for more experienced programmers, code generation would be a good
functionality to add.

When implementing this kind of program it feels like it is never completed.
There is always some new functionality that could be added, changed or removed.
The editor today hopefully provides enough functionality for a beginner in pro-
gramming to draw sequence diagrams in and is not too complicated or hard to un-
derstand and use. Since the editor has not been tested with any appropriate users,
meaning beginners in programming, this theory is only theoretical and should of
course be further investigated. Studies should be made with beginners to see how
they find the editor and what improvements should be made to the editor.

Acknowledgements

I would like to thank Jurgen &stler at the Department of Computing Science at
Umea University for all his help and ideas during the development of this thesis
and for the help with the oral presentation. | would also like to thank Claes Gahlin
for his help and support during the development of this paper. Finally | would like
to thank my mother Monic®stling for reading this thesis and correcting many of
the grammar mistakes.

43

References

[Beck, 1989] Beck, K. (1989). A laboratory for teaching object-oriented think-
ing. In Object-Oriented Programming, Systems, Languages, and Applications
http://c2.com/doc/oopsla89/paper.html.

[Bjorkander, 2003]Bjorkander, M. (2003). Detaras br uml 2.0. Elektronik i
Norden 10.

[Booch et al., 1999]Booch, G., Rumbaugh, J., and Jacobsson, I. (19883.Uni-
fied Modeling Language User GuidAddison Wesley Longman, Inc.

[du Boulay, 1989]du Boulay, B. (1989). Some difficulties of learning to program.
In E. Soloway & J.C. Spohrer(Edg)ages 283—-299.

[Fowler and Scott, 1997Fowler, M. and Scott, K. (1997)JML Distilled: Apply-
ing the Standard Object Modeling Languageddison-Wesley.

[Group, 2004] Group, O. M. (2004). Interim ftf report of the uml 2.0 super-
structure finalization task force. Technical report, Object Management Group.
http://www.omg.org.

[Harley et al., 1998]Harley, H. D., Seals, C. D., and Rosson, M. B. (1998). A
formative evaluation of scenariobased tools for learning object-oriented design.
Webpage. www.acm.org/crossroads/xrds5-1/eval.html , last checked 040302.

[Hussman, 2002Hussman, D. (2002). Test first design with uml / “a picture is
worth a thousand programmers”.\Workshop on Teaching in XP (WTiXP2002)
http://www.cwi.nl/wtixp2002/cfp.

[Jensen, 2003])ensen, R. W. (2003). A pair programming experi-
ence. Crosstalk, The Journal of Defense Software Engineering
http://www.stsc.hill.af.mil/crosstalk/2003/03/jensen.html.

[K6lling and Rosenberg, 200{.0lling, M. and Rosenberg, J. (2001). Guidelines
for teaching object orientation with java. Innovation and Technology in Com-
puter Science Education

45

46 REFERENCES

[Kutar et al., 2002]Kutar, M., Britton, C., and Barker, T. (2002). A comparison
of empirical study and cognitive dimensions analysis in the evaluation of uml
diagrams. IrPPIG, Psychology of Programming Interest Group

[LeBlanc and Stiller, 2000]LeBlanc, C. and Stiller, E. (2000). Uml for undergrad-
uate software engineering. @onsortium for Computing Sciences in Colleges

[Lewis, 2000] Lewis, J. (2000). Myths about object-
orientation and its pedagogy. In SIGCSE 2000
http://duke.csc.villanova.edu/lewis/presentations/mythsPaper.html.

[Miller, 2001a] Miller, G. (2001a). Conditional logic in sequence diagrams.
http://mww.-106.ibm.com/developerworks/library/j-jmod0605/index.html , last
checked 040302.

[Miller, 2001b] Miller, G. (2001b). Introduction to sequence diagram.
http://www.-106.ibm.com/developerworks/library/j-jmod0508/index.html , last
checked 040302.

[Mrozek et al., 2002]Mrozek, Z., Mrozek, B., and Adjei, O. (2002). Teaching
object oriented software engineering with uml. 18th EAEEIE Annual Con-
ference on Innovation in Education for Electrical and Information Engineer-
ing(EIE).

[Neubauer and Strong, 200§eubauer, B. and Strong, D. (2002). The object-
oriented paradigm: More natural or less familiardansortium for Computing
Sciences in Colleges

[Nordstiom and Birstler, 2002]Nordstiom, M. and Brstler, J. (2002). Objektori-
enterad analys och designh med crc-kort, version 3.0. Technical Report UMINF
02.19, Uma University, Department of Computing Science.

[Phillips, 1998] Phillips (1998). Rational Unified ProcessAddison Wesley Pub-
lishing Company.

[Robins et al., 2003]Robins, A., Rountree, J., and Rountree, N. (2003). Learn-
ing and teaching programming: A review and discussi@umputer Science
Education 13:137-172.

[Rumbaugh et al., 1997dRumbaugh, J., Booch, G., and Jacobson, I. (1997a).
UML Notation Guide, version 1.10bject Modeling Group.

[Rumbaugh et al., 1997bRumbaugh, J., Booch, G., and Jacobson, I. (1997b).
UML Summary, version 1.10bject Modeling Group.

REFERENCES 47

[Rumbaugh et al., 2001Rumbaugh, J., Booch, G., and Jacobson, I. (200MG
Unified Modeling Language SpecificatioBbject Modeling Group.

[Sebesta, 1999Febesta, R. W. (1999Concepts of programming languagesd-
dison Wesley Longman, Inc.

[Smialek, 2000]Smialek, M. (2000). Teaching ooad with active lectures and
brainstorms. ImObject-Oriented Programming, Systems, Languages, and Ap-
plications 2000 workshap

[Software, 2001]Software, C. (2001). Object modeling with uml. Webpage,
PDF-file. http://www.omg.org/news/meeting/workshops/ presentations/eai-
2001 /tuturialmonday/tockeytuturial/1-Intro.pdf, last checked 040302.

[Westfall, 2001] Westfall, R. (2001). Hello, world considered harmf@ommu-
nications of the ACM44, No. 10:129-130.

[Williams and Kessler, 2003Williams, L. A. and Kessler, R. R. (2003). Exper-
imenting with industry’s "pair-programming” model in the computer science
classroom. Technical report, North Carolina State University and University of
Utah. http://www.pairprogramming.com/csed.pdf.

User Manual

In this user manual it is described how the editor works and how to use it. The
manual contains both a tutorial and sections about each functionality. After a short
introduction the tutorial follows. After this each functionality of the editor is de-
scribed and explained in more detail.

Menn: File & Option
o (o e s ey E i 12 ENE Help

Hiw Uglen Hida,

f—— Add an Actor

Arhan

= 4dd an Object

——— Add a Message

| =t—— MNotes about this diagram

Figure A.1. A view of the editor with descriptions for the most important functions.

49

50 Chapter A. User Manual

A.1 Introduction

This appendix will help the user to install and use the sequence diagram editor.
Since the BlueJ program is a project still under development the plugin will only
work together with the version 1.3.0 or later versions. To be able to run BlueJ and
the plugin you will also need JDK version 1.4.2 or later installed on your computer.

A.2 Installation of the Plugin

To install the editor as a plugin for BlueJ copy the Jarflleditor.jar into the
lib/extension directory of your BlueJ installation. Next time BlueJ is started
the plugin will appear in the menu of the BlueJ application.

A.3 Starting the Plugin

If the editor is started as a plugin to BlueJ it is started from the menu in BlueJ.
Chooseéools — Sequence Diagram Editao start the editor.
If the editor is started without BlueJ the jar-file is executed to start the editor.

A.4. A Tutorial, Creation of a Sequence Diagram 51

A.4 A Tutorial, Creation of a Sequence Diagram

When the editor has been installed and started a sequence diagram can be created.
This tutorial will illustrate when the editor is in BlueJ-mode using a project called
“people2” which comes as an example with the BlueJ program. The scenario de-
scribed in the sequence diagram will display a secretary registrating a new student
adding him or her to the database.

First an actor is added to the sequence diagram. This is done by clicking on
the icon for an actor, see figure A.1. The name of the actor is then changed to
“Secretary” by double clicking on the actor or by choosing from the menu. The
menu of the actor is shown by clicking on the actor with the right mouse button.

Next step in the sequence diagram is the creation of a new student. The “Secre-
tary” will create a new student to add to the database. This is done by first choosing
to add a new message to the diagram, see A.1. Mark the start for the message on
the lifeline of the actor (“Secretary”). Then click with the right mouse button and
the editor will ask if*‘Do you want to create a hew object with this message?”
Answering yes will create a new object. First choose which class the object should
be created from and then write the name of the object, see figure A.6. The sequence
diagram will now look as in figure A.2.

& Sequence Dlagram Editor
File Oyption Hedg

%]
? 5
A o o
Secralany ::
acd ' i _
- nires Sludent) ', newSlucdant . Etadenl EE
— - 5
anen %
== £
ohject
»
mMRSSARR

g

4

Figure A.2. The actor and the new student have been added to the sequence diagram.

52 Chapter A. User Manual

Next step will be that the Secretary sets the address of the new student. This is
done by making a call to the method “setAddress” which the student has inherited
from its super class Person. The message call is made by first choosing to add a
new message. First click on the lifeline of the actor, who will make the method
call, then click on the lifeline of the student to which the call is made. Then choose
which method to use in the drop down list and click “OK”. The diagram will now
look as in figure A.3.

When a message is added to a sequence diagram the default in the editor is that
the message gets a return message. If the type of the return value is known it will
be added to the return message. Return messages can be switched on and off in the
menu undepption — show return message$his could be done any time during
the development of the diagram.

If a message has been added to a sequence diagram and the position of it is not
satisfactory the message can be moved. This is done by selecting the message, by
clicking on it, and then click on the handlef the message and hold the left mouse
button down and drag the message to the right position.

& Sequence [Magram Editer - tutorkal.sd

Flle Opdion Help
o a
. I :
3
' A G
Sanretany ;i
3
ZEL netw Sludant) revei=tuder - Hiudert o
b
i
B4
e | =2
= 4
FaddE ! 5]
F wi
nhjrrt | 5
d
————————— — P
4
— ! i
]
| &
i
message | i
I &
I i
£l
| e
¥4
| il
b4
b4
| 4
b
| “n
|
|
= 1
= I
I -
i ¥

Figure A.3. The actor and the new student have been added to the sequence diagram. The
actor calls the method “setAddress” to let the student set its address.

A little square that will appear when the message has been selected.

A.4. A Tutorial, Creation of a Sequence Diagram 53

When the method “setAddress” is called on the student it creates a new object
of the class Address and sets its own address. This has to be displayed in the
sequence diagram by letting the student create a new object of the class Address
before returning the method call to setAddress, done by the actor. This is done
by choosing to add a new message. Mark the start point of the method call on
the lifeline of the student, since it is the student creating the new Address. To
clarify that the new Address is created before the method call to “setAddress”
returns the start point of the message should be placed between the endpoint of the
“setAddress”-message and the return message belonging to it. Then create a new
object from the class Address as described before. The look of the diagram will
now be as in figure A.4.

If a message, an actor, or an object has been added to the diagram but should
be deleted this is done by clicking on the component with the right mouse button
and a menu will appear. Just choose “delete” from the menu and the component
will be deleted from the sequence diagram.

& Sequence Diagram Editor - tuterial.sd

saladdrass k!

F nivr hddmeesi) ’ adirass | Aldess

!:- R b‘%-‘%-‘%-‘%-‘%-‘%-%-‘%-‘%-‘%-‘%-‘%-‘%-$$$$$$$$$$$$$$$$$$$$$$$<I * o

|

e

Figure A.4. The student creates a new object of the class Address to be able to set its own
address.

54 Chapter A. User Manual

Next and last step in the sequence diagram will be the Secretary adding the new
student to the database. First we have to add an object of the class Database to the
sequence diagram. This is done by choosing to add a new object to the diagram by
clicking on the icon for an object, see figure A.1. Then choose which class to create
the object from and write the name of the new object, see figure A.6. Now the
Secretary adds the new student to the Database by calling the method “addPerson”
in the database. To add this method call into the diagram first choose to add a
new message, click on the lifeline of the actor and then click on the lifeline of the
database. Then choose which method in the list (“addPerson”) and click “OK”.
The diagram will now look as in figure A.5.

& Seguence Diagram Fditer - tuberkal.sd

File Dptinn Hika
" EE

i grirchny ;
ELEri 5

* B
[z2=] :
B

=

el 3
b

T B
3 b

B

| =
[l e o ES
b

B

=

E

#

B

3

B

nules |

| I
15 0 e A v o v | ¥

Figure A.5. The finished sequence diagram.

Now the sequence diagram is complete and all objects and messages have
been added. If the diagram has not been saved yet this is done by either press-
ing Ctrl-S or choosingsave / save as from the file menu. The name of
the sequence diagram is typed and then click “OK”, see figure A.9. The file of the
diagram will be saved in the same directory as the project it belongs to, that is, the
currently open project in BlueJ.

A.5. Adding Components to a Sequence Diagram 55

A.5 Adding Components to a Sequence Diagram

If the editor is started the user can choose to create a new sequence diagram or
open a saved one. To create a new sequence diagram the diagram is drawn in the
drawing area and later saved under the mileu— save as Otherwise a saved
sequence diagram is opened using the nfdéau- open

A.5.1 Adding an Actor

To add an actor to the sequence diagram just click on the icon for an actor, see
figure A.1, and an actor will be added to the drawing area.

A.5.2 Adding an Object

2 class chooser g

hoose a class in the list

Student -
| oK || cancel

Figure A.6. If the editor is in BlueJ-mode the user first has to choose the class of the new
object (the window to the left) and then the name of the object (the window to the right).

To add an object to the sequence diagram click on the icon for an object, see
figure A.1. If the editor is in BlueJ-mode the class of the object first has to be
chosen, see figure A.6. This is done by selecting one of the classes in the list and
then click on the “OK”-button. After this the user has to fill in the name of the
new object. If a new name is not given the object will be given a default name like
“objectl”.

A.5.3 Adding a Message

To add a message to the sequence diagram click on the icon for a message, see
figure A.1. To select the start object of the message, meaning the object making
the method calto the end object, click on the lifeline on this object (or actor).

To select the end object of the message click on the lifeline of this object. If the
editor is in BlueJ-mode the user has to choose a method. This is done by selecting
one method in the list and click on the “OK”-button, see figure A.7. If the option
“Show return messages” is selected in the menu uagéoneach added message

56 Chapter A. User Manual

£ method chooser @

Choose a method in the list

public int sampleMethod(int) v

o

Figure A.7. If the editor is in BlueJ-mode and a message is added the user has to choose
which method to add by selecting one from the list.

will get a return message belonging to it. If the return message has a type this will
be added as a label to the return message.

A.5.4 Adding a Destroy Symbol

A destroy symbol can be added to an object or to an actor. This is done by clicking
on the object or actor with the right mouse button and a popup menu will appear.
The destroy symbol is added by selectitrgate destroysymbdh the menu and
then click on the lifeline of the object or actor where the destroy symbol should be
placed.

A.5.5 Notes about the Sequence Diagram

ihotes about this Sequence Diagram

[This sequence diagram describes the systern shapes
it contains four classes, Triangle, Square, Circle and Canvas

Close ’?

Figure A.8. The window where the user can write notes belonging to a sequence diagram.

Each sequence diagram has a note (a text field) belonging to it. The note can
contain information about the diagram for example if the user wants to point out
something special about the diagram, a general description of the scenario etc, he
or she can write it here. To write notes for a sequence diagram just click on the

A.6. Save and Open a Sequence Diagram 57

icon for notes, see figure A.1. Then a window will appear, see figure A.8, where
the notes can be written. Before closing the window click onsiéneebutton and
the notes will be saved together with the sequence diagram.

A.5.6 Return Messages

Every message that is added to a sequence diagram will automatically get a return
message. If the editor is in BlueJ-mode the type of the return message will be
added as the label of the return message. The user can choose whether to display
the return messages or not. This is done urgion — Show return messages
Return messages can be switched on and off during the development of a sequence
diagram.

A message having the same object as its start and end object will not get a
return message.

A.5.7 Creation of a sequence

Messages added to a sequence diagram can be arranged in a sequence. All mes-
sages, including return messages, in a sequence will automatically be arranged
with the same distance between them. If a message in a sequence is removed the
messages after the removed message will be removed from the sequence.

To add message-M2 to a sequence after message-M1 message-M2's start point
has to be placed between message-M1's endpoint and its return message. If this
is done message-M2 will be added to the sequence and all messages and return
messages in the sequence will automatically be arranged.

A.6 Save and Open a Sequence Diagram

% ~ Write the name for the file

= |

| OK H Cancel |

Figure A.9. If the editor is in BlueJ-mode and the sequence diagram should be saved the
user just has to fill in the name of the file

To save a sequence diagram chfile— save as / savelf the editor is in
BlueJ-mode only the filename has to be filled in, see figure A.9. The file of the
sequence diagram will be saved in the same directory as the project it belongs to.

58 Chapter A. User Manual

If the editor is not in BlueJ-mode the user chooses the name of the file and the
directory where the file should be saved. To save a sequence diagram the user can
also pres<trl-S

To open a saved sequence diagram chgo&e — open Then choose which
file to open and click OK. If the editor is in BlueJ-mode only the files belonging
to the currently open project are shown. To open a sequence diagram the keyboard
can be used by pressiajrl-O

A.7 Moving, Deleting and Editing

A.7.1 Objects

Delete To delete an object click on the object with the right mouse button and
choosedeletefrom the popup menu. When deleting an object all attributes
belonging to it will also be deleted, such as messages, destroy symbol, life-
line etc.

Rename An object can be renamed in two different ways. The name can be
changed via the menu that appears when the object is clicked on with the
right mouse button. The name can also be changed by double clicking on
the object.

Move To move an object first select the object by clicking on it. The object will
then be drawn in red and a handle (a small square) will appear. To move the
object click on the handle and “drag” the object (with the left mouse button
pressed down) to the new position. When the mouse is released all objects
and actors in the sequence diagram will be rearranged automatically and the
distance between them will be the same.

A.7.2 Actors

Delete To delete an actor click on the actor with the right mouse button and choose
deletefrom the popup menu. If an actor is deleted, all attributes belonging
to it, like messages, destroy symbol, lifeline etc. will also be deleted.

Rename An actor can be renamed in two different ways. The name can be changed
via the menu that appears when the actor is clicked on with the right mouse
button. The name can also be changed by double clicking on the actor.

Move To move an actor, first mark it by clicking on the actor. The actor will then
be drawn in red and a handle (a small square) will appear. To move the actor

A.7. Moving, Deleting and Editing 59

click on the handle and “drag” the actor (with the left mouse button pressed
down) to the new position.

A.7.3 Messages

Delete To delete a message click on the message with the right mouse button and
choosedeletefrom the popup menu. The message will then be deleted. If
the message has a return message this return message will also be deleted.

Rename There are two ways to rename a message. The message can be renamed
by clicking on the message with the right mouse button and chcitesege
messagéom the popup menu. The message can also be changed by double
clicking on it. Return messages can also be renamed in the same way.

Move If a message is selected by clicking on it a handle appears. By clicking on
this handle and dragging it, the message (or return message) can be moved
vertically.

Creation messagelf a message is to create a new object this is done by first se-
lecting the start object for the message, the object that is going to create the
new object. Then click with the right mouse button and the editor will let the
user choose which new object to create. The new object will then be added
to the sequence diagram.

A.7.4 Destroy Symbol

Delete To delete a destroy symbol click on it with the right mouse button and
choosedeletefrom the popup menu.

Move To move a destroy symbol select it by clicking on it. The destroy symbol
will then be drawn in red and a handle will appear in the middle. To move
the destroy symbol click on the handle and “drag” the destroy symbol (with
the left mouse button down) to the new position. The destroy symbol can
only be moved up or down along the lifeline it belongs to.

A.7.5 Lifeline

The length of a lifeline can be changed. To change the lifeline first mark it by
clicking on it. The lifeline will then be drawn in red and a handle will appear at

the end of the lifeline. To change the length of the lifeline click on the handle and
“drag” the handle to the new position for the end of the lifeline. The handle can
only be moved vertical along the lifeline.

60 Chapter A. User Manual

A.8 Known Bugs

There are a number of known bugs in the editor and surely a number of unknown
too. Since the program still needs some adjustments and more functionality there
are some features left to implement. One of the biggest bug is that the program is
not all “waterproofed”, it is not that hard to have it crash. If the editor is correctly
used it works OK, but if the user starts to “test” the program there will probably
happen strange things.

The known bugs in the editor are:

Sequencesdlf a sequence contains two messages which are messages back to the
same object in a row this will cause problems. New messages can only be
added at the end of the sequence and not in the middle of an already existing
sequence.

Consistency checkWhen a sequence diagram is opened it is checked against a
BlueJ project. But only classes are checked and not methods.

Moving components Sometimes when different objects or actors are rearranged
in the drawing area all attributes belonging to them do not get the correct
new position.

Creation messagesA creation message can not be in a sequence of messages.

Return messagesWhen a regular message is added to the sequence diagram it
gets a return message placed in the right positon. But later on the user can
move this return message to any position without any controll from the edi-
tor.

Inheritance If a classA inherits from classB, all classB’s public methods are also
shown for classA. But if classB inherits from classC, classC's public meth-
ods should be shown for classA which is not the case. The inheritance is just
shown in one step in the editor.

