
Hollywood SDK 6.0
The Cross-Platform Multimedia Application Layer

Andreas Falkenhahn

i

Table of Contents

1 General information . 1
1.1 Introduction . 1
1.2 Terms and conditions . 1
1.3 Requirements . 3
1.4 Examples . 3
1.5 History . 4
1.6 Contact . 4

2 Conceptual overview . 5
2.1 Getting started . 5
2.2 Plugin types and Hollywood APIs . 5
2.3 What is a Hollywood plugin? . 7
2.4 Basic plugin design . 8
2.5 Auto and manual init plugins . 8
2.6 Compiling plugins . 10
2.7 Error codes . 11
2.8 Data types . 11
2.9 Version compatibility . 12
2.10 Tag lists . 13
2.11 String encoding . 14
2.12 File IO information . 14
2.13 File attributes . 14
2.14 Bitmap information . 16
2.15 Pixel formats . 16
2.16 Differences between Hollywood and Lua . 18
2.17 Object identifiers . 19
2.18 Designer compatibility . 21
2.19 Multithreading . 22
2.20 Legacy plugins . 22

3 AmigaOS peculiarities . 23
3.1 Glue code . 23
3.2 C runtime limitations . 24
3.3 clib2 versus newlib . 25
3.4 saveds keyword . 25
3.5 Building for 68881 and 68882 . 26
3.6 Building for WarpOS . 27

4 Base plugin functions . 29
4.1 Overview . 29
4.2 ClosePlugin . 29
4.3 InitPlugin . 29

ii Hollywood SDK

5 Convert script plugins . 35
5.1 Overview . 35
5.2 FreeScript . 35
5.3 GetScript . 35

6 Library plugins . 37
6.1 Overview . 37
6.2 FreeLibrary . 38
6.3 GetBaseTable . 38
6.4 GetCommands . 38
6.5 GetConstants . 39
6.6 GetLibraryCount . 40
6.7 InitLibrary . 41
6.8 SetCurrentLibrary . 41

7 Image plugins . 43
7.1 Overview . 43
7.2 FreeImage . 43
7.3 GetImage . 43
7.4 IsImage . 44
7.5 LoadImage . 45
7.6 TransformImage . 48

8 Anim plugins . 51
8.1 Overview . 51
8.2 CloseAnim . 51
8.3 FreeFrame . 51
8.4 GetFrameDelay . 52
8.5 LoadFrame . 52
8.6 OpenAnim . 53

9 Sound plugins . 57
9.1 Overview . 57
9.2 CloseStream . 57
9.3 GetFormatName . 57
9.4 OpenStream . 58
9.5 SeekStream . 60
9.6 StreamSamples . 60

iii

10 Vectorgraphics plugins . 63
10.1 Overview . 63
10.2 CloseFont . 63
10.3 CreateVectorFont . 63
10.4 DrawPath . 64
10.5 FreeVectorFont . 70
10.6 GetCurrentPoint . 71
10.7 GetPathExtents . 71
10.8 OpenFont . 72
10.9 TranslatePath . 73

11 Video plugins . 75
11.1 Overview . 75
11.2 CloseVideo . 75
11.3 DecodeAudioFrame . 75
11.4 DecodeVideoFrame . 76
11.5 FlushAudio . 78
11.6 FlushVideo . 79
11.7 FreePacket . 79
11.8 GetVideoFormat . 80
11.9 GetVideoFrames . 80
11.10 NextPacket . 80
11.11 OpenVideo . 81
11.12 SeekVideo . 84

12 Image saver plugins . 87
12.1 Overview . 87
12.2 RegisterImageSaver . 87
12.3 SaveImage . 89

13 Animation saver plugins . 91
13.1 Overview . 91
13.2 BeginAnimStream . 91
13.3 FinishAnimStream . 92
13.4 RegisterAnimSaver . 93
13.5 WriteAnimFrame . 94

14 Sample saver plugins . 97
14.1 Overview . 97
14.2 RegisterSampleSaver . 97
14.3 SaveSample . 98

15 Require hook plugins . 101
15.1 Overview . 101
15.2 RequirePlugin . 101

iv Hollywood SDK

16 Display adapter plugins . 103
16.1 Overview . 103
16.2 ActivateDisplay . 104
16.3 AllocBitMap . 105
16.4 AllocVideoBitMap . 106
16.5 BeginDoubleBuffer . 109
16.6 BltBitMap . 109
16.7 ChangeBufferSize . 113
16.8 CloseDisplay . 114
16.9 Cls . 114
16.10 CreatePointer . 115
16.11 DetermineBorderSizes . 116
16.12 DoVideoBitMapMethod . 116
16.13 EndDoubleBuffer . 117
16.14 Flip . 118
16.15 ForceEventLoopIteration . 118
16.16 FreeBitMap . 119
16.17 FreeGrabScreenPixels . 119
16.18 FreeMonitorInfo . 119
16.19 FreePointer . 120
16.20 FreeVideoBitMap . 120
16.21 FreeVideoPixels . 120
16.22 GetBitMapAttr . 121
16.23 GetMonitorInfo . 122
16.24 GetMousePos . 123
16.25 GetQualifiers . 124
16.26 GrabScreenPixels . 125
16.27 HandleEvents . 125
16.28 Line . 127
16.29 LockBitMap . 128
16.30 MovePointer . 130
16.31 OpenDisplay . 130
16.32 ReadVideoPixels . 134
16.33 RectFill . 134
16.34 SetDisplayAttributes . 136
16.35 SetDisplayTitle . 137
16.36 SetPointer . 137
16.37 ShowHideDisplay . 138
16.38 ShowHidePointer . 138
16.39 SizeMoveDisplay . 138
16.40 Sleep . 139
16.41 UnLockBitMap . 140
16.42 VWait . 140
16.43 WaitEvents . 140
16.44 WritePixel . 142

v

17 Timer adapter plugins . 145
17.1 Overview . 145
17.2 FreeTimer . 145
17.3 RegisterTimer . 145

18 Requester adapter plugins 147
18.1 Overview . 147
18.2 ColorRequest . 148
18.3 FileRequest . 149
18.4 FontRequest . 150
18.5 FreeRequest . 152
18.6 ListRequest . 152
18.7 PathRequest . 153
18.8 StringRequest . 154
18.9 SystemRequest . 156

19 File adapter plugins . 159
19.1 Overview . 159
19.2 FClose . 159
19.3 FEof . 159
19.4 FFlush . 160
19.5 FGetC . 160
19.6 FOpen . 161
19.7 FPutC . 163
19.8 FRead . 163
19.9 FSeek . 164
19.10 FStat . 165
19.11 FWrite . 168
19.12 Stat . 168

20 Directory adapter plugins 171
20.1 Overview . 171
20.2 CloseDir . 171
20.3 NextDirEntry . 171
20.4 OpenDir . 173

21 Audio adapter plugins . 175
21.1 Overview . 175
21.2 AllocAudioChannel . 175
21.3 CloseAudio . 177
21.4 FreeAudioChannel . 177
21.5 OpenAudio . 177
21.6 SetChannelAttributes . 178

vi Hollywood SDK

22 Extension plugins . 179
22.1 Overview . 179
22.2 GetExtensions . 179

23 CRTBase functions . 181
23.1 Overview . 181

24 SysBase functions . 183
24.1 Overview . 183
24.2 hw AddLoaderAdapter . 183
24.3 hw AddTime . 184
24.4 hw AllocSemaphore . 185
24.5 hw CmpTime . 185
24.6 hw ConfigureLoaderAdapter . 186
24.7 hw ConvertString . 187
24.8 hw Delay . 187
24.9 hw DisableCallback . 188
24.10 hw FreeObjectData . 188
24.11 hw FreeSemaphore . 189
24.12 hw FreeString . 189
24.13 hw GetDate . 189
24.14 hw GetDateStamp . 190
24.15 hw GetErrorName . 191
24.16 hw GetSysTime . 191
24.17 hw HandleEvents . 192
24.18 hw LockSemaphore . 192
24.19 hw LogPrintF . 193
24.20 hw MasterControl . 193
24.21 hw MasterServer . 195
24.22 hw PostEvent . 196
24.23 hw PostEventEx . 202
24.24 hw PostSatelliteEvent . 203
24.25 hw RegisterCallback . 207
24.26 hw RegisterError . 208
24.27 hw RegisterEventHandler . 208
24.28 hw RegisterEventHandlerEx . 209
24.29 hw RegisterFileType . 212
24.30 hw RegisterUserObject . 214
24.31 hw RemoveLoaderAdapter . 220
24.32 hw RunTimerCallback . 221
24.33 hw SetErrorCode . 221
24.34 hw SetErrorString . 222
24.35 hw SetTimerAdapter . 222
24.36 hw SubTime . 223
24.37 hw TrackedAlloc . 223
24.38 hw TrackedFree . 224
24.39 hw UnLockSemaphore . 224

vii

24.40 hw UnregisterCallback . 225
24.41 hw WaitEvents . 225

25 DOSBase functions . 227
25.1 Overview . 227
25.2 hw AddPart . 227
25.3 hw BeginDirScan . 228
25.4 hw ChunkToFile . 228
25.5 hw CreateDir . 229
25.6 hw DeleteFile . 229
25.7 hw EndDirScan . 230
25.8 hw ExLock . 230
25.9 hw FClose . 231
25.10 hw FEof . 232
25.11 hw FFlags . 232
25.12 hw FFlush . 233
25.13 hw FGetC . 234
25.14 hw FilePart . 234
25.15 hw FOpen . 235
25.16 hw FOpenExt . 236
25.17 hw FPutC . 237
25.18 hw FRead . 237
25.19 hw FSeek . 238
25.20 hw FSeek64 . 238
25.21 hw FStat . 239
25.22 hw FWrite . 241
25.23 hw GetCurrentDir . 241
25.24 hw Lock . 242
25.25 hw NameFromLock . 243
25.26 hw NextDirEntry . 243
25.27 hw PathPart . 244
25.28 hw Rename . 245
25.29 hw Stat . 245
25.30 hw TmpNam . 248
25.31 hw TmpNamExt . 248
25.32 hw TranslateFileName . 249
25.33 hw TranslateFileNameExt . 250
25.34 hw UnLock . 252

viii Hollywood SDK

26 GfxBase functions . 253
26.1 Overview . 253
26.2 hw AddBrush . 253
26.3 hw AttachDisplaySatellite . 255
26.4 hw BitMapToARGB . 261
26.5 hw ChangeRootDisplaySize . 262
26.6 hw DetachDisplaySatellite . 263
26.7 hw FindDisplay . 263
26.8 hw FreeARGBBrush . 264
26.9 hw FreeIcons . 264
26.10 hw FreeImage . 265
26.11 hw GetARGBBrush . 265
26.12 hw GetBitMapAttr . 266
26.13 hw GetDisplayAttr . 267
26.14 hw GetIcons . 268
26.15 hw GetImageData . 270
26.16 hw GetRGB . 270
26.17 hw IsImage . 271
26.18 hw LoadImage . 271
26.19 hw LockBitMap . 272
26.20 hw LockBrush . 274
26.21 hw MapRGB . 276
26.22 hw RawBltBitMap . 276
26.23 hw RawLine . 279
26.24 hw RawRectFill . 280
26.25 hw RawWritePixel . 281
26.26 hw RefreshDisplay . 282
26.27 hw RefreshSatelliteRoot . 282
26.28 hw SetDisplayAdapter . 283
26.29 hw UnLockBitMap . 287
26.30 hw UnLockBrush . 288

27 AudioBase functions . 289
27.1 Overview . 289
27.2 hw LockSample . 289
27.3 hw SetAudioAdapter . 290
27.4 hw UnLockSample . 292

28 RequesterBase functions 293
28.1 Overview . 293
28.2 hw EasyRequest . 293
28.3 hw FileRequest . 293
28.4 hw PathRequest . 294
28.5 hw SetRequesterAdapter . 295

ix

29 FontBase functions . 297
29.1 Overview . 297
29.2 hw FindTTFFont . 297

30 FT2Base functions . 299
30.1 Overview . 299

31 LuaBase functions . 301
31.1 Overview . 301
31.2 luaL checkfilename . 301
31.3 luaL checknewid . 302
31.4 luaL checkid . 303
31.5 lua pcall . 303
31.6 lua throwerror . 304

32 MiscBase functions . 305
32.1 Overview . 305

33 ZBase functions . 307
33.1 Overview . 307

34 JPEGBase functions . 309
34.1 Overview . 309

35 PluginBase functions . 311
35.1 Overview . 311
35.2 hw DisablePlugin . 311
35.3 hw FreePluginList . 311
35.4 hw GetPluginList . 312
35.5 hw GetPluginUserPointer . 312
35.6 hw SetPluginUserPointer . 313

36 UtilityBase functions . 315
36.1 Overview . 315
36.2 hw CRC32 . 315
36.3 hw DecodeBase64 . 315
36.4 hw EncodeBase64 . 316
36.5 hw MD5 . 316

x Hollywood SDK

Appendix A Licenses . 319
A.1 Lua license . 319
A.2 OpenCV license . 319
A.3 ImageMagick license . 319
A.4 GD Graphics Library license . 323
A.5 Bitstream Vera fonts license . 323
A.6 Pixman license . 324
A.7 LGPL license . 325

Index . 329

Chapter 1: General information 1

1 General information

1.1 Introduction

Welcome to the Hollywood Software Development Kit (SDK). This package contains all
the necessary information and files to write your own Hollywood plugins. Plugins can
greatly enhance Hollywood’s functionality. They can provide load and save support for
additional video, audio, image, and sample formats, they can extend the command set of
the Hollywood language as well as enable Hollywood to use real vector graphics and it is
even possible to write plugins which replace core parts of Hollywood like its inbuilt display
and audio driver with custom implementations provided by plugins. It is also possible to
write plugins which convert project files of other applications like Scala or PowerPoint into
Hollywood scripts so that Hollywood can run these project files directly although they are
not in the ‘*.hws’ format.

Hollywood plugins use the suffix ‘*.hwp’ and must be stored in the same directory as the
main Hollywood program, or, if you are distributing a compiled Hollywood program, then
the plugins required by your program must be put into the same directory as your program.
On Amiga compatible systems, plugins can also be placed in ‘LIBS:Hollywood’. Plugins
in the program’s directory have a higher priority than those in ‘LIBS:Hollywood’. So if a
plugin is present in both locations, Hollywood will load the one from the program’s directory.
On Mac OS X, you need to put the plugin inside the application bundle, i.e. inside the
‘Hollywood.app/Contents/MacOS’ directory.

Plugins will be loaded automatically by Hollywood on startup. If you do not want this, you
can disable automatic loading by renaming the plugin: Plugins whose filename starts with
an underscore character (’ ’) will not be loaded automatically by Hollywood on startup. As
an alternative, you can also use the ‘-skipplugins’ console argument to tell Hollywood to
skip automatic loading of certain plugins. Plugins which have not been loaded at startup,
can be loaded later by using the @REQUIRE preprocessor command or the LoadPlugin()

function.

The Android version of Hollywood also supports Hollywood plugins. You have to copy them
to the directory ‘Hollywood/_Plugins’ on your SD card. Hollywood will scan this location
on every startup and load all plugins from there. If you want to compile your own plugins,
make sure that you compile in thumb mode.

1.2 Terms and conditions

The Hollywood SDK is c© Copyright 2002-2015 by Andreas Falkenhahn (in the following
referred to as "the author"). All rights reserved.

The software is provided "as-is" and the author can not be made responsible of any possible
harm done by it. You are using this software absolutely at your own risk. No warranties
are implied or given by the author.

This software must not be distributed without the written permission of the author.

It is generally not allowed to release any kind of wrapper programs that make Hollywood
commands available to other programming languages or the end-user. It is also generally
not allowed to release any sort of mediator programs that would enable the user to access
Hollywood commands through a mediating software.

2 Hollywood SDK

No changes may be made to the SDK without the permission of the author.

This software is based in part on the Lua programming language by Roberto Ierusalimschy,
Waldemar Celes and Luiz Henrique de Figueiredo. See Section A.1 [Lua license], page 319,
for details.

This software is based in part on the work of the Independent JPEG Group.

This software is based in part on the libpng link library by the PNG Development Group
and the zlib link library by Jean-loup Gailly and Mark Adler.

This software is based in part on PTPlay c© Copyright 2001, 2003, 2004 by Ronald Hof,
Timm S. Mueller, Per Johansson.

This software uses the OpenCV library by Intel Corporation. See Section A.2 [OpenCV
library license], page 319, for details.

This software is based in part on ImageMagick by ImageMagick Studio LLC. See Section A.3
[ImageMagick license], page 319, for details.

This software is based in part on the GD Graphics Library by Thomas Boutell. See
Section A.4 [GD Graphics Library license], page 323, for details.

This software uses the pixman library. See Section A.6 [Pixman license], page 324, for
details.

Portions of this software are copyright c© 2010 The FreeType Project (http://www.
freetype.org). All rights reserved.

Hollywood uses the Bitstream Vera font family. See Section A.5 [Bitstream Vera fonts
license], page 323, for details.

The Linux version of Hollywood uses gtk, glibc, and the Advanced Linux Sound Architecture
(ALSA) all of which are licensed under the LGPL license. See Section A.7 [LGPL license],
page 325, for details.

Amiga is a registered trademark of Amiga, Inc. All other trademarks belong to their
respective owners.

DISCLAIMER: THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDER AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-

http://www.freetype.org
http://www.freetype.org

Chapter 1: General information 3

GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

1.3 Requirements

This SDK is targetted at C programmers only. Using C for writing Hollywood plugins is
recommended because C compilers are available for a multitude of platforms and thus it is
usually not too difficult to make your plugin available for more than one platform.

You need a C compiler and some knowledge about how to write shared libraries in C and
how to compile them using your C compiler.

It’s recommended to use the following compilers:

Windows: Microsoft Visual C

Linux, Android, Mac OS X, AmigaOS 4, AROS, MorphOS:

gcc

AmigaOS 3:

vbcc

WarpOS: vbcc

1.4 Examples

The Hollywood SDK comes with several example plugins and makefiles for lots of different
platforms. You can study the source code of these examples to learn more about the
practical aspects of writing a Hollywood plugin. The following example plugins are currently
included with the SDK:

AIFF: This is a plugin of type HWPLUG_CAPS_SOUND which adds a loader for the AIFF
audio file format popular on the Mac OS platforms to Hollywood. The AIFF
file format’s layout is very easy to understand so this plugin is a good starting
point for learners who want to write a sound plugin. See Section 9.1 [Sound
plugins], page 57, for details.

Library: This is a plugin of type HWPLUG_CAPS_LIBRARY. It adds some primitive functions
and constants to Hollywood and is a good starting point if you want to extend
Hollywood’s command set using your own functions. It can also be used to learn
about the way the Lua VM works. See Section 6.1 [Library plugins], page 37,
for details.

PCX: This is a plugin of type HWPLUG_CAPS_IMAGE which adds a loader for the PCX
image file format to Hollywood. Have a look at this source code if you intend
to write an image loader plugin for Hollywood. See Section 7.1 [Image plugins],
page 43, for details.

As an exercise, you might want to use the AIFF or PCX plugin source codes as a starting
point and extend them to include a saver for these formats as well. See Section 12.1 [Image
saver plugins], page 87, for details. See Section 14.1 [Sample saver plugins], page 97, for
details.

More plugin source codes are available at the official Hollywood portal at http://www.

hollywood-mal.com. You can find them in the download section next to the binary distri-
butions of the plugins.

http://www.hollywood-mal.com
http://www.hollywood-mal.com

4 Hollywood SDK

1.5 History

Please consult the Hollywood documentation for a detailed list of changes in the course of
Hollywood’s evolution.

1.6 Contact

If you need to contact me, you can either send an e-mail to andreas@airsoftsoftwair.de

or use the contact form on http://www.hollywood-mal.com.

andreas@airsoftsoftwair.de
http://www.hollywood-mal.com

Chapter 2: Conceptual overview 5

2 Conceptual overview

2.1 Getting started

The best way to learn to write Hollywood plugins is a learning-by-doing based approach.
Just take a look at the source code of one of the example plugins that come with this
SDK and use this documentation to try to understand what is going on there. After you
have understood the structure and operation modes of some basic plugins, you can start to
extend them by adding your own code, using this documentation as a reference manual.

This SDK expects that you are familiar with the C language and know how to use a C
compiler to create libraries. If you aren’t an experienced Amiga programmer, it is advised
that you start out on Windows or Linux first, because it’s much easier to write Hollywood
plugins on these systems than on AmigaOS-based systems. Once you have developed a
stable plugin on Windows or Linux and you are confident with Hollywood’s plugin API,
you may tackle an AmigaOS build as well, although there are several pitfalls that you have
to avoid. See Section 3.1 [AmigaOS peculiarities], page 23, for details.

If you need help, don’t hesitate to ask on the official Hollywood forums which are online at
http://forums.hollywood-mal.com/ There you will find a friendly community from all
around the world which can surely help you to solve your programming problems.

2.2 Plugin types and Hollywood APIs

This documentation can be divided into two major parts: The first part describes all the
different plugin types supported by Hollywood and their interfaces. There is detailed in-
formation on all the functions you will have to implement for the individual plugin types
as well as on the way Hollywood interacts with them. As of Hollywood 6.0, the following
plugin types are supported:

− Convert script plugins: These plugins automatically convert a custom file format into
a Hollywood script. See Section 5.1 [Convert script plugins], page 35, for details.

− Library plugins: These plugins can add new commands and constants to Hollywood’s
script language. See Section 6.1 [Library plugins], page 37, for details.

− Image plugins: These plugins can provide loaders for additional image formats. See
Section 7.1 [Image plugins], page 43, for details.

− Animation plugins: These plugins can provide loaders for additional animation formats.
See Section 8.1 [Animation plugins], page 51, for details.

− Sound plugins: These plugins can provide loaders for additional sound and music for-
mats. See Section 9.1 [Sound plugins], page 57, for details.

− Vectorgraphics plugins: These plugins can provide code for drawing vector-based graph-
ics. See Section 10.1 [Vectorgraphics plugins], page 63, for details.

− Video plugins: These plugins can provide loaders for additional video formats. See
Section 11.1 [Video plugins], page 75, for details.

− Image saver plugins: These plugins can provide savers for additional image formats.
See Section 12.1 [Image saver plugins], page 87, for details.

− Animation saver plugins: These plugins can provide savers for additional animation
formats. See Section 13.1 [Animation saver plugins], page 91, for details.

http://forums.hollywood-mal.com/

6 Hollywood SDK

− Sample saver plugins: These plugins can provide savers for additional sample formats.
See Section 14.1 [Sample saver plugins], page 97, for details.

− Require hook plugins: These plugins can hook into Hollywood’s @REQUIRE preprocessor
command to do their initialization only when explicitly asked to. See Section 15.1
[Require hook plugins], page 101, for details.

− Display adapter plugins: These plugins can completely replace Hollywood’s internal
display driver with a custom one. This is a very powerful plugin type and can be
used to achieve quite astonishing things. See Section 16.1 [Display adapter plugins],
page 103, for details.

− Timer adapter plugins: These plugins can completely replace Hollywood’s internal
timer handler with a custom one. See Section 17.1 [Timer adapter plugins], page 145,
for details.

− Requester adapter plugins: These plugins can completely replace Hollywood’s internal
requester handler with a custom one. See Section 18.1 [Requester adapter plugins],
page 147, for details.

− File adapter plugins: These plugins can hook into Hollywood’s file handler and intercept
any file they like. This can be used to make Hollywood magically able to handle
compressed files or entirely new file formats. See Section 19.1 [File adapter plugins],
page 159, for details.

− Directory adapter plugins: These plugins can hook into Hollywood’s directory handler
and intercept access on any directory they like. This can be used to allow Hollywood to
deal with custom directory types, e.g. a plugin that treats a ZIP file as a directory could
be written using the directory adapter plugin interface. See Section 20.1 [Directory
adapter plugins], page 171, for details.

− Audio adapter plugins: These plugins can completely replace Hollywood’s internal
audio driver with a custom one. See Section 21.1 [Audio adapter plugins], page 175,
for details.

− Extension plugins: This is a special plugin type that does not offer any functionality on
its own. Its only purpose is to extend other plugin types. See Section 22.1 [Extension
plugins], page 179, for details.

The second major part of this manual is the documentation of the functions that are pub-
lically exposed by Hollywood to every plugin. When Hollywood calls the InitPlugin()

function of a plugin, it passes a pointer to a hwPluginAPI data structure which contains
pointers to all the API functions that Hollywood has made publically available. Currently,
the hwPluginAPI structure looks like this:

typedef struct _hwPluginAPI

{

int hwVersion;

int hwRevision;

hwCRTBase *CRTBase;

hwSysBase *SysBase;

hwDOSBase *DOSBase;

hwGfxBase *GfxBase;

hwAudioBase *AudioBase;

Chapter 2: Conceptual overview 7

hwRequesterBase *RequesterBase;

hwFontBase *FontBase;

hwFT2Base *FT2Base;

hwLuaBase *LuaBase;

hwMiscBase *MiscBase;

/****** V5.3 vectors start here *****/

hwZBase *ZBase;

hwJPEGBase *JPEGBase;

/****** V6.0 vectors start here *****/

hwPluginLibBase *PluginBase;

hwUtilityBase *UtilityBase;

} hwPluginAPI;

All the individual structure members point to libraries, i.e. collections of functions that
your plugin can use to interact with Hollywood. The way you have to call these functions
is described in the second major part of this documentation. See Section 26.1 [GfxBase
functions], page 253, to find out about all functions supported by the GfxBase library, for
example.

2.3 What is a Hollywood plugin?

A Hollywood plugin is a shared library that is dynamically loaded by Hollywood at run
time. Every Hollywood plugin has to export a number of function symbols that Hollywood
can call when necessary. The actual file format of a plugin is platform-dependent. Here is
an overview of the file formats used by Hollywood plugins on the individual platforms:

Windows: Hollywood plugins have to be compiled as standard Windows DLLs. Hollywood
loads plugins using LoadLibrary().

Mac OS X: Hollywood plugins have to be compiled as dynamic libraries (dylib). Hollywood
loads plugins using dlopen().

Linux and Android:

Hollywood plugins have to be compiled as shared objects. Hollywood loads
plugins using dlopen().

AmigaOS and compatibles:

Hollywood plugins have to be compiled as executables that can be loaded via
LoadSeg(). As AmigaOS doesn’t supported named symbol export, some glue
code is necessary to allow access to named symbols. See Section 3.1 [AmigaOS
glue code], page 23, for details. Another speciality on AmigaOS is that you
cannot use certain functions from the standard ANSI C runtime library. See
Section 3.2 [AmigaOS C runtime limitations], page 24, for details.

Please note that although Hollywood uses common file formats like DLLs on Windows,
dylibs on Mac OS X, and shared objects on Linux/Android, the file extension of a Hollywood
plugin always has to be ‘*.hwp’. Otherwise Hollywood won’t be able to detect plugins.

8 Hollywood SDK

2.4 Basic plugin design

Every Hollywood plugin needs to export the functions InitPlugin() and ClosePlugin().
As their names imply, these two functions initialize and close a plugin. By calling
InitPlugin() Hollywood asks your plugin to identify itself, i.e. it needs to report certain
information back to Hollywood, e.g. its feature set, author, version, minimum required
Hollywood version and so on. Depending on this information, Hollywood will then import
other function pointers from the plugin, depending on the feature set the plugin has
reported to Hollywood.

To describe its feature set, the plugin sets the hwPluginBase.CapsMask field to
a combination of capability bits taken from the HWPLUG_CAPS_XXX definitions in
‘hollywood/plugin.h’. Hollywood then knows what this plugin can do and will
import the needed function pointers. For example, if hwPluginBase.CapsMask is set to
HWPLUG_CAPS_SOUND|HWPLUG_CAPS_SAVESAMPLE, Hollywood will know that this plugin
can load sound files and save sample files. Hollywood will therefore import the following
additional function pointers from the plugin:

OpenStream()

CloseStream()

SeekStream()

StreamSamples()

GetFormatName()

RegisterSampleSaver()

SaveSample()

If one of the function pointers listed above cannot be resolved, Hollywood won’t load this
plugin.

See Section 4.3 [InitPlugin()], page 29, for details.

See Section 4.2 [ClosePlugin()], page 29, for details.

2.5 Auto and manual init plugins

All available plugins will be loaded automatically by Hollywood upon startup. However, not
all plugins will be initialized automatically. Some plugin types will only be initialized if the
user explicitly calls @REQUIRE on them. The reason for this is simple: Some plugin types can
completely replace core components of Hollywood like the inbuilt display or audio driver.
It would not make any sense to activate these plugins automatically upon startup because
it could happen then that several plugins try to replace the same core component and it
would also make it impossible to revert to Hollywood’s inbuilt drivers. That’s the reason
why certain plugin types are only initialized if explicitly demanded by the user by calling
@REQUIRE on them. Other plugin types, however, like loaders and savers for additional file
formats are normally initialized automatically so that they are immediately available to
all Hollywood applications right after their installation. Starting with Hollywood 6.0 it is
possible to prevent automatic initialization of image, animation, sound, and video loader
plugins using extension flags.

If you want to write a plugin that requires manual initialization, you need to set the HWPLUG_
CAPS_REQUIRE capability flag in your InitPlugin() implementation. Hollywood will then
call your plugin whenever the user runs the @REQUIRE preprocessor command on your plugin.

Chapter 2: Conceptual overview 9

You will then be able to perform all necessary initialization in your implementation of the
RequirePlugin() call.

Here’s a brief overview which plugin types are automatically initialized and which plugin
types have to be manually initialized from your RequirePlugin() function:

HWPLUG_CAPS_CONVERT:

Initialized automatically when plugin is loaded.

HWPLUG_CAPS_LIBRARY:

Initialized automatically when plugin is loaded.

HWPLUG_CAPS_IMAGE:

Initialized automatically when plugin is loaded. Starting with Hollywood 6.0
automatic loading can be disabled by setting the HWEXT_IMAGE_NOAUTOINIT

extension bit.

HWPLUG_CAPS_ANIM:

Initialized automatically when plugin is loaded. Starting with Hollywood 6.0
automatic loading can be disabled by setting the HWEXT_ANIM_NOAUTOINIT ex-
tension bit.

HWPLUG_CAPS_SOUND:

Initialized automatically when plugin is loaded. Starting with Hollywood 6.0
automatic loading can be disabled by setting the HWEXT_SOUND_NOAUTOINIT

extension bit.

HWPLUG_CAPS_VECTOR:

Initialized automatically when plugin is loaded. Starting with Hollywood 6.0,
however, the user will have to call SetVectorEngine() manually to make Hol-
lywood’s vectorgraphics library use the plugin.

HWPLUG_CAPS_VIDEO:

Initialized automatically when plugin is loaded. Starting with Hollywood 6.0
automatic loading can be disabled by setting the HWEXT_VIDEO_NOAUTOINIT

extension bit.

HWPLUG_CAPS_SAVEIMAGE:

Initialized automatically when plugin is loaded.

HWPLUG_CAPS_SAVEANIM:

Initialized automatically when plugin is loaded.

HWPLUG_CAPS_SAVESAMPLE:

Initialized automatically when plugin is loaded.

HWPLUG_CAPS_REQUIRE:

Initialized automatically when plugin is loaded.

HWPLUG_CAPS_DISPLAYADAPTER

Use hw_SetDisplayAdapter() to initialize this plugin type. See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

HWPLUG_CAPS_TIMERADAPTER

Use hw_SetTimerAdapter() to initialize this plugin type. See Section 24.35
[hw SetTimerAdapter], page 222, for details.

10 Hollywood SDK

HWPLUG_CAPS_REQUESTERADAPTER

Use hw_SetRequesterAdapter() to initialize this plugin type. See Section 28.5
[hw SetRequesterAdapter], page 295, for details.

HWPLUG_CAPS_FILEADAPTER

Use hw_AddLoaderAdapter() to initialize this plugin type. See Section 24.2
[hw AddLoaderAdapter], page 183, for details.

HWPLUG_CAPS_DIRADAPTER

Use hw_AddLoaderAdapter() to initialize this plugin type. See Section 24.2
[hw AddLoaderAdapter], page 183, for details.

HWPLUG_CAPS_AUDIOADAPTER

Use hw_SetAudioAdapter() to initialize this plugin type. See Section 27.3
[hw SetAudioAdapter], page 290, for details.

HWPLUG_CAPS_EXTENSION:

This is a special plugin type that extends other plugin types. It does not offer
any functionality on its own.

You will normally call the functions listed above in your RequirePlugin() implementation.
See Section 15.2 [RequirePlugin], page 101, for details.

Some plugin types only support the initialization of a single plugin, e.g. it is not possible to
have multiple display adapter plugins running. Only a single display adapter can be active
at a time. Thus, only the first call to hw_SetDisplayAdapter() will succeed. All other
attempts to install another display adapter will fail once a plugin has installed a custom
display adapter.

2.6 Compiling plugins

All source files that include ‘hollywood/plugin.h’ need to be compiled with certain pre-
processor commands defined, depending on the platform. Here is a list of preprocessor
commands that may need to be defined, depending on your platform:

HW_AMIGAOS3

Needs to be defined for AmigaOS 3 builds.

HW_AMIGAOS4

Needs to be defined for AmigaOS 4 builds.

HW_ANDROID

Needs to be defined for Android builds.

HW_AROS Needs to be defined for AROS builds.

HW_LINUX Needs to be defined for Linux builds.

HW_LITTLE_ENDIAN

Needs to be defined for little endian builds.

HW_MACOS Needs to be defined for Mac OS X builds.

HW_MORPHOS

Needs to be defined for MorphOS builds.

Chapter 2: Conceptual overview 11

HW_WARPOS

Needs to be defined for WarpOS builds.

HW_WIN32 Needs to be defined for Windows builds.

Also make sure to use the HW_EXPORT macro on all function declarations that you export as
shared library functions to Hollywood, i.e.

HW_EXPORT int InitPlugin(hwPluginBase *self, hwPluginAPI *cl, STRPTR p)

{

...

}

Finally, don’t forget to target your plugin for 32-bit architectures. Modern compilers often
default to 64-bit binaries nowadays but Hollywood is a 32-bit application and can only load
32-bit shared libraries.

On AmigaOS you also need to make sure that you do not link the compiler’s startup code
against the plugin as this can cause conflicts. You also must not use any library auto-open
features provided by the compiler. You need to manually open all Amiga libraries that your
plugins requires. See Section 3.2 [AmigaOS C runtime limitations], page 24, for details.

2.7 Error codes

Many functions require you to return a Hollywood error code to indicate success or failure.
All standard error codes are defined in ‘hollywood/errors.h’ but you can also register
custom error codes using hw_RegisterError(). To indicate success, you have to return 0
which is equivalent to the constant ERR_NONE.

A special error code is ERR_USERABORT. If you return this error code, Hollywood will
immediately shut down and quit without showing any error message.

2.8 Data types

The Hollywood SDK defines a few additional data types that are often used by its functions.
They are all defined in <hollywood/types.h>. Here is a brief overview:

APTR: The arbitrary pointer. This is used to declare pointers to memory buffers that
contain data of various sizes. The C equivalent to the APTR is the void pointer.

STRPTR: The string pointer. This data type is used to refer to null-terminated strings.
See Section 2.11 [String encoding], page 14, for details.

UBYTE: This data type is used for an unsigned byte (8-bit).

UWORD: This data type is used for an unsigned word (16-bit).

ULONG: This data type is used for an unsigned long-word (32-bit).

DOSINT64:

This is a platform-dependent data type for IO functions that deal with 64-
bit integers. On platforms that support 64-bit file IO, this is set to a signed
64-bit quantity whereas on platforms that do not support 64-bit file IO, e.g.
AmigaOS 3.x, this is set to a signed 32-bit quantity, limiting large file support
to 2 gigabytes.

12 Hollywood SDK

2.9 Version compatibility

It is possible to write plugins which dynamically make use of features of newer Hollywood
versions. However, you need to be very careful when trying to access structure members or
functions that are not available in all Hollywood versions. For example, let’s consider the
struct LoadSoundCtrl structure which looks like this:

struct LoadSoundCtrl

{

ULONG Samples;

int Channels;

int Bits;

int Frequency;

ULONG Flags;

int SubSong; // V5.3

int NumSubSongs; // V5.3

STRPTR Adapter; // V6.0

};

You can see that the SubSong and NumSubSongs members are not available in Hollywood
versions before 5.3 and Adapter is not available before Hollywood 6.0. This means that if
your plugin is targetted at Hollywood 5.0 and up, you must only access these fields if you’ve
verified that the user is running at least Hollywood 5.3 or 6.0 respectively. Otherwise you
are going to access uninitialized memory which can easily lead to a crash. Hollywood will
pass its version and revision numbers to your InitPlugin() function. It’s recommended
to store this information somewhere in your plugin so that your OpenStream() function
can verify that the user is running Hollywood 5.3 or 6.0 before accessing the new structure
members. Such a check could look like this:

ctrl->Frequency = 48000;

ctrl->Channels = 2;

ctrl->Bits = 16;

ctrl->Samples = numsamples;

ctrl->Flags = HWSNDFLAGS_SIGNEDINT;

// only return NumSubSongs if Hollywood >= 5.3

if(hwver > 5 || (hwver == 5 && hwrev >= 3)) {

ctrl->NumSubSongs = numsubsongs;

}

Furthermore, be extra careful when using memset() to zero-out structure memory. For
example, to zero-out struct LoadSoundCtrl you could do the following inside your
OpenStream() implementation:

memset(ctrl, 0, sizeof(struct LoadSoundCtrl));

This, however, will cause memory access faults when the plugin is loaded by Hollywood
versions older than version 6.0 because in that case the structure pointer passed to your
OpenStream() function will point to a memory block that is smaller than the one used by
Hollywood 6.0. If you just do a memset() without verifying version numbers first, you will
write to unallocated memory which is likely to crash Hollywood. Thus, always make sure to

Chapter 2: Conceptual overview 13

check version numbers before reading from or writing to structure memory passed to your
plugin by Hollywood.

If this is too much hassle for you, you can also declare that your plugin requires at least
Hollywood 6.0 in your InitPlugin() implementation. If you do that, then you won’t have
to do all these checks of course because all Hollywood versions earlier than 6.0 will simply
refuse to load your plugin.

You also have to be careful when calling Hollywood API functions from the different library
bases. On its man page, every library base API function is followed by a version number
in brackets which indicates the Hollywood version in which this API was first introduced.
Before calling Hollywood API functions you must make sure that the user is running a
Hollywood version that has this API using one of the methods described above.

2.10 Tag lists

People familiar with AmigaOS programming will already know about the concept of tag lists
which can be used to pass additional arguments to functions or receive additional return
values. The Hollywood SDK makes extensive use of this concept so that the capabilities of
the individual functions can be easily extended in the future simply by offering new tags.

A tag list is an array of a number of struct hwTagList elements that is terminated by a
last element that has its Tag member set to 0. Many Hollywood SDK API functions accept
such a tag list as their last argument in order to be extensible. struct hwTagList looks
like this:

struct hwTagList

{

ULONG Tag;

union {

ULONG iData;

void *pData;

} Data;

};

As you can see, each tag item is accompanied by a data item that can either be an integer
value or a pointer. Tag items can either be used to pass additional parameters to a function
or they can also be used to receive additional return values from a function by setting the
pData pointer to a variable that is to receive an additional return value. The data that
needs to be passed in the iData or pData elements depends on the tag of course. This is
all documented alongside the respective API functions.

Here is an example of how a tag list is used with the hw_SetAudioAdapter() API:

struct hwTagList[3];

t[0].Tag = HWSAATAG_BUFFERSIZE;

t[0].Data.iData = 2048;

t[1].Tag = HWSAATAG_CHANNELS;

t[1].Data.iData = 8;

t[2].Tag = 0;

error = hw_SetAudioAdapter(self, HWSAAFLAGS_PERMANENT, t);

14 Hollywood SDK

In this case, a tag list is used to pass some additional parameters to hw_SetAudioAdapter().

2.11 String encoding

As of Hollywood 6.0 Unicode is unfortunately still not universally supported by Hollywood.
There are some functions that can deal with Unicode text, e.g. TextOut(), but internally,
Hollywood still uses the ISO-8859-1 charset for all strings. As Hollywood is mostly used
in countries that are fully covered by the ISO-8859-1 charset Unicode support still doesn’t
have a high priority.

If you want to write a plugin, keep in mind that all strings that you get from Holly-
wood or pass to Hollywood must be in the ISO-8859-1 encoding. Hollywood is not able
to deal with other encodings like UTF-8. There is a convenience function named hw_

ConvertString() which allows you to do conversion between different string formats. See
Section 24.7 [hw ConvertString], page 187, for details.

2.12 File IO information

As Hollywood can deal with virtual files as well as with files linked into other files like applets
or executables there are some things to attend to when writing plugins that deal with files.
If you want your plugin to support all these Hollywood-specific extensions you must make
sure that you only use IO functions provided by Hollywood in the DOSBase pointer to deal
with files. If you use functions like fopen() from the ANSI C library instead, your plugin
will only work with normal files that are physically existent on a system drive.

For example, when writing plugins that provide loaders for additional file formats like
images, sounds, or videos it can often happen that the filename that is passed to your plugin
is a specially formatted specification that Hollywood uses to load files that have been linked
to applets or executables. If you do not use Hollywood’s IO functions to open this file, your
plugin won’t be able to load files that have been linked to applets or executables. This can
be quite annoying for the end-user because the ability to link data files into applets and
executables is a key functionality of Hollywood and thus your plugin should strive to be
compatible with it. If you use fopen() instead, it will just fail whenever your function is
passed a specially formatted specification to open one of Hollywood’s virtual files.

If your plugin has to use IO functions from the C runtime for some particular reason
and you are unable to use the functions from DOSBase instead, you can translate
virtual file specifications into physical files using the hw_TranslateFileName() or
hw_TranslateFileNameExt() APIs. See Section 25.32 [hw TranslateFileName], page 249,
for details.

2.13 File attributes

The following attributes are supported by Hollywood for file system objects, i.e. files and
directories:

HWOS_FILEATTR_READ:

Read access is granted (user scope). This is unsupported on Win32.

HWOS_FILEATTR_WRITE:

Write access is granted (user scope). This is unsupported on Win32.

Chapter 2: Conceptual overview 15

HWOS_FILEATTR_DELETE:

Delete access is granted. This is only supported on AmigaOS and compatibles.

HWOS_FILEATTR_EXECUTE:

Execute access is granted (user scope). This is unsupported on Win32.

HWOS_FILEATTR_PURE:

File can be made resident. This is only supported on AmigaOS and compatibles.

HWOS_FILEATTR_ARCHIVE:

Archive bit. This is supported on AmigaOS and Win32.

HWOS_FILEATTR_SCRIPT:

File is an AmigaDOS script. This is only supported on AmigaOS and compat-
ibles.

HWOS_FILEATTR_HIDDEN:

File is hidden. This is supported on AmigaOS and Win32.

HWOS_FILEATTR_SYSTEM:

User for system files on Win32.

HWOS_FILEATTR_READG:

Read access is granted (group scope). This is unsupported on Win32 and
AmigaOS.

HWOS_FILEATTR_WRITEG:

Write access is granted (group scope). This is unsupported on Win32 and
AmigaOS.

HWOS_FILEATTR_EXECUTEG:

Execute access is granted (group scope). This is unsupported on Win32 and
AmigaOS.

HWOS_FILEATTR_READO:

Read access is granted (others scope). This is unsupported on Win32 and
AmigaOS.

HWOS_FILEATTR_WRITEO:

Write access is granted (others scope). This is unsupported on Win32 and
AmigaOS.

HWOS_FILEATTR_EXECUTEO:

Execute access is granted (others scope). This is unsupported on Win32 and
AmigaOS.

HWOS_FILEATTR_READONLY:

Only read-access is allowed for this file. Supported on Win32 only.

You’ll have to deal with these attributes if you write a file or directory adapter.

See Section 19.12 [Stat], page 168, for details.

See Section 20.3 [NextDirEntry], page 171, for details.

16 Hollywood SDK

2.14 Bitmap information

Hollywood supports two different kinds of bitmaps: Software bitmaps and hardware bit-
maps. Software bitmaps, often also called device-independent bitmaps (DIBs), are bitmaps
that are usually allocated in CPU memory. Hollywood will often need to read from and
write to these bitmaps. That’s why it’s advised that they are stored in memory that the
CPU can access efficiently. The downside of software bitmaps is that it is quite slow to draw
them to the screen and that it’s not possible to apply hardware-accelerated transformations
like scaling, rotating, blending, etc. to them. This is only possible with hardware bitmaps.

Hardware bitmaps, on the other hand, are usually stored in GPU memory. They are often
also called video or device-dependent bitmaps (DDBs). Hardware bitmaps are optimized for
efficient blitting to the display and for hardware-accelerated transformations. Hollywood
will never modify the pixels of hardware bitmaps using the CPU because this would be too
slow. Instead, hardware bitmaps are uploaded to GPU memory once and then only the GPU
is used to access hardware bitmaps. Only the Amiga versions of Hollywood have inbuilt
support for hardware bitmaps. On all other systems hardware bitmap support is not avail-
able in Hollywood but can be provided by third party plugins by installing a display adapter
using hw_SetDisplayAdapter() and setting the HWSDAFLAGS_VIDEOBITMAPADAPTER flag.

Software bitmaps always store the color and transparency channels in separate bitmaps.
This is because Hollywood is still compatible with 15-bit and 16-bit screen modes which
do not have enough room for an 8-bit alpha channel that carries transparency information.
Thus, software bitmaps, even if they use 32-bits per pixel, will never contain alpha channel
information in their most significant bits. This is always stored in a separate bitmap.
Plugins which want to override Hollywood’s inbuilt software bitmap handler by setting the
HWSDAFLAGS_BITMAPADAPTER flag need to adhere to this design as well and allocate color
and transparency channels separately. See Section 16.3 [AllocBitMap], page 105, for details.

Hardware bitmaps, on the other hand, can store color and transparency channels in any
way they like because Hollywood will never access the pixels of hardware bitmaps directly.
The way a plugin allocates hardware bitmaps is completely up to the plugin. A limitation
of hardware bitmaps is that they can only be drawn when Hollywood is in hardware double-
buffer mode. Thus, if you want to write a plugin which offers support for hardware bitmaps,
you also have to set the HWSDAFLAGS_DOUBLEBUFFERADAPTER flag along with HWSDAFLAGS_

VIDEOBITMAPADAPTER or your hardware bitmap support won’t be of much use.

If you want to replace Hollywood’s inbuilt bitmap handler with your custom versions, you
have to write a display adapter plugin. See Section 16.1 [Display adapter plugins], page 103,
for details.

2.15 Pixel formats

Hollywood software bitmaps can currently use the following pixel formats:

HWOS_PIXFMT_RGB15:

Two bytes per pixel. Colors are stored as 0rrrrrgg gggbbbbb.

HWOS_PIXFMT_BGR15:

Two bytes per pixel. Colors are stored as 0bbbbbgg gggrrrrr.

HWOS_PIXFMT_RGB15PC:

Two bytes per pixel. Colors are stored as gggbbbbb 0rrrrrgg.

Chapter 2: Conceptual overview 17

HWOS_PIXFMT_BGR15PC:

Two bytes per pixel. Colors are stored as gggrrrrr 0bbbbbgg.

HWOS_PIXFMT_RGB16:

Two bytes per pixel. Colors are stored as rrrrrggg gggbbbbb.

HWOS_PIXFMT_BGR16:

Two bytes per pixel. Colors are stored as bbbbbggg gggrrrrr.

HWOS_PIXFMT_RGB16PC:

Two bytes per pixel. Colors are stored as gggbbbbb rrrrrggg.

HWOS_PIXFMT_BGR16PC:

Two bytes per pixel. Colors are stored as gggrrrrr bbbbbggg.

HWOS_PIXFMT_RGB24:

Three bytes per pixel. Colors are stored as rrrrrrrr gggggggg bbbbbbbb.

HWOS_PIXFMT_BGR24:

Three bytes per pixel. Colors are stored as bbbbbbbb gggggggg rrrrrrrr.

HWOS_PIXFMT_ARGB32:

Four bytes per pixel. Colors are stored as aaaaaaaa rrrrrrrr gggggggg bbbbbbbb.

HWOS_PIXFMT_BGRA32:

Four bytes per pixel. Colors are stored as bbbbbbbb gggggggg rrrrrrrr aaaaaaaa.

HWOS_PIXFMT_RGBA32:

Four bytes per pixel. Colors are stored as rrrrrrrr gggggggg bbbbbbbb aaaaaaaa.

HWOS_PIXFMT_ABGR32:

Four bytes per pixel. Colors are stored as aaaaaaaa bbbbbbbb gggggggg rrrrrrrr.

HWOS_PIXFMT_ALPHA8:

One byte per pixel. Stored as aaaaaaaa.

HWOS_PIXFMT_MONO1:

One bit per pixel (visible and invisible).

Please note that although many pixel formats support the storage of alpha channel infor-
mation next to the color channel information, Hollywood’s software bitmaps always store
alpha channel information in separate bitmaps for compatibility with 15-bit and 16-bit
screen modes. See Section 2.14 [Bitmap information], page 16, for details.

Keep in mind that for 16-bit and 32-bit pixel formats the actual byte storage order is
dependent on the endianness of the host system. The constants defined above always
specify the byte order when reading words or longwords from memory. Thus, in case a
little endian system is used, the actual byte order in memory will be inverted for all 16-bit
and 32-bit pixel formats, i.e. if you access a bitmap that uses HWOS_PIXFMT_ARGB32 as its
pixel format on a little endian system, the bytes will actually be stored in BGRA order
in memory so that you get an ARGB pixel whenever you read a longword from the pixel
buffer. Conversely, bitmaps that use HWOS_PIXFMT_BGRA32 will store bytes as ARGB on
little endian systems so that you get BGRA pixels when reading a longword from the pixel
buffer.

18 Hollywood SDK

2.16 Differences between Hollywood and Lua

If you plan to write plugins that extend Hollywood’s script language by installing new
commands and constants, you will have to deal with the Lua VM which is at the heart of
Hollywood. Hollywood uses Lua 5.0.2 as its virtual machine but with major modifications.
Here is a non-exhaustive list of the differences between Lua 5.0.2 and Hollywood:

1. At a first glance, Hollywood in contrast to Lua does not seem to distinguish between
lower and upper case characters for keywords, preprocessor commands, variable, func-
tion, and constant names. You can mix upper and lower case characters any way
you please. Internally, however, Hollywood still does the distinction between upper
and lower case in true Lua fashion. The reason why you don’t notice this, is because
Hollywood’s parser converts everything to lower case when it parses your script so all
the differences are levelled at parsing time already and you don’t have to care about
upper and lower case characters when writing your script. However, if you write a
plugin and you push elements into the stack or pop them from the stack, you need to
be very careful that you use lower case strings only when describing these elements.
Otherwise the user won’t be able to access the elements that you have pushed or you
won’t be able to access the elements the user has pushed because internally Hollywood
still distinguishes between upper and lower case characters. This must be kept in mind
when writing plugins that push/pop stack elements. Always use lower case characters
for everything and your plugin will fit in just fine.

2. The handling of Nil is different between Hollywood and Lua. Comparing 0 against Nil
will be True in Hollywood, but False in Lua. This change has been made to allow you
to work with uninitialiazed variables. If you pass an uninitialized, i.e. a Nil variable to
a function or you use an uninitialized variable in an equation, Hollywood will just treat
this uninitialized variable as if its value was 0. Lua, on the other hand, will fail if you try
do arithmetics with Nil variables or pass a Nil variable to a function which expects a
numerical value. Hollywood will just assume a numerical value of 0 for all uninitialized
variables. The only exception from this rule is with table elements. Hollywood will fail
if you try to index table elements that are Nil. It will not automatically assume 0 for
them. That is why you have to explicitly initialize all table elements you want to use.
Variables, on the other hand, don’t have to be initialized explicitly. You can just use
them and if they are still Nil, Hollywood will assume they are 0.

3. Hollywood does not support the boolean object type. In Hollywood, the values True
and False are simply special constants that will be mapped to the numerical values
1 and 0 respectively. There is no special object type for boolean values. This means
that comparing 0 against False will be True in Hollywood, whereas in Lua it would
be False because you would be comparing two different object types. Internally, Lua’s
boolean API is still supported by the VM and your plugin could use the respective
functions from LuaBase but this is not recommended since Hollywood itself will never
use Lua’s boolean object type. It will always just use numbers. Not to mention that it
is impossible to pass a real Lua boolean value to one of your plugin’s functions because
the parser will map all the True and False keywords to plain numbers.

4. The syntax is different. Whereas Lua uses the end keyword to close all kinds of different
scopes, Hollywood has scope-dependent closing keywords like Wend, Next, EndIf and
so on to make script files better readable.

Chapter 2: Conceptual overview 19

5. The operators are different. For example, Lua uses ~= for the not equal operator
whereas Hollywood uses <>. Hollywood also supports much more operators than Lua
does. For example, Hollywood comes with a variety of bitwise operators that Lua is
missing entirely.

6. Lua uses 1-based tables and arrays whereas in Hollywood they are 0-based as in almost
every other programming language. Though 1-based arrays might make more sense
from a strictly logical point of view, 0-based arrays are the de facto standard in the
programming world.

7. Hollywood’s preprocessor has support for preprocessor commands, e.g. @BRUSH or
@INCLUDE. Preprocessor commands are prefixed by the at character (@).

8. Hollywood supports constants. Constants are always prefixed by the hash tag (#).

9. Hollywood supports additional program flow statements like Repeat/Until and
Switch/EndSwitch.

10. Hollywood still supports labels and Goto() and Gosub(), although this is considered
obsolete and is only included for compatibility with Hollywood 1.x.

11. Hollywood has a continue statement.

12. Hollywood introduces a new data type named lua_ID and the functions
luaL_checkid() and luaL_checknewid() to deal with its object identifiers. See
Section 2.17 [Object identifiers], page 19, for details.

13. There is a difference in the error handling when writing C functions that are callable
from Lua. If an error occurs in a C function with Lua 5.0.2, your C function has to
call the luaL_error() function which will directly jump to Lua’s error handler. In
Hollywood, however, you have to return an error code from your C function to indicate
that an error has occurred. If that is not possible for some reason, you may also call lua_
throwerror() to jump directly into Hollywood’s error handler but the recommended
way is returning an error code. The reason for this design is that working with error
codes is preferable to doing a longjmp() because it gives your code a chance to free
resources before it error-exits. Note that Lua functions like luaL_checklstring() and
luaL_checknumber() will still jump into the error handler directly, so be prepared to
deal with this.

See Section 6.1 [Library plugins], page 37, for details.

See Section 31.1 [LuaBase], page 301, for details.

2.17 Object identifiers

All Hollywood objects like brushes, videos, samples, etc. have an object identifier that
is used to refer to the object when calling a function that deals with this object type.
Hollywood objects can use two different kinds of identifiers: They can either use a numerical
identifier or an automatically chosen identifier that uses the LUA_TLIGHTUSERDATA object
type internally. The user can request an automatically chosen identifier by passing Nil as
the desired identifier when creating the object. In that case, Hollywood will automatically
choose an identifier for the object and return it. This is usually done by using the raw
memory pointer to the newly allocated object as an identifier because this guarantees its
uniqueness.

20 Hollywood SDK

Internally, Hollywood object identifiers are managed using the lua_ID structure which looks
like this:

typedef struct _lua_ID

{

int num;

void *ptr;

} lua_ID;

Every Hollywood object has such a lua_ID associated with it. The two structure members
are initialized like this:

num: If the object uses a numerical identifier, this identifier is stored in num and the
ptr member is set to NULL. If the ptr member is not NULL, Hollywood will
ignore whatever is in num and the object will automatically use the value in ptr

as its identifier.

ptr: If the object has been created using automatic ID selection, this member con-
tains the object’s unique identifier of type LUA_TLIGHTUSERDATA. This is typ-
ically set to the raw memory pointer of the newly allocated object. If ptr is
NULL, Hollywood will automatically use the numerical identifier specified in num.

Whenever you call an API function that expects an object identifier you need to pass a
pointer to a lua_ID to it. For example, let’s assume you want to use hw_LockBrush() to
access the raw pixel data of brush 1. In that case, you’d have to call hw_LockBrush() like
this:

lua_ID id = {1, NULL};

struct hwos_LockBrushStruct lb;

APTR handle;

handle = hw_LockBrush(&id, NULL, &lb);

if(handle) hw_UnLockBrush(handle);

If you are writing a plugin that has the HWPLUG_CAPS_LIBRARY capability flag set and you
want to offer a function that accepts either a numerical or an automatically chosen object
identifier, you can use the luaL_checkid() function for that. luaL_checkid() will check
whether the value at the specified stack position is a number or a light userdata value and
then it will initialize the lua_ID structure accordingly. The function from above would look
like this then:

static SAVEDS int plug_LockBrush(lua_State *L)

{

lua_ID id;

struct hwos_LockBrushStruct lb;

APTR handle;

luaL_checkid(L, 1, &id);

handle = hw_LockBrush(&id, NULL, &lb);

if(handle) hw_UnLockBrush(handle);

}

Chapter 2: Conceptual overview 21

By using luaL_checkid() your function can be made to accept numerical as well as light
user data identifiers without much hassle.

You can also register your own Hollywood object types by calling the hw_

RegisterUserObject() function. See Section 24.30 [hw RegisterUserObject], page 214,
for details.

2.18 Designer compatibility

Hollywood Designer, the WYSIWYG editor for Hollywood scripts, also supports Hollywood
plugins. However, it supports only a fraction of Hollywood’s plugin API. Thus, you need
to be very careful when calling plugin API functions because they might not be available
when Hollywood Designer has opened your plugin.

The first version of Hollywood Designer that supports Hollywood plugins is version 4.0.
Hollywood Designer supports the following plugin types:

HWPLUG_CAPS_IMAGE

Plugin provides a loader for additional image formats. See Section 7.1 [Image
plugins], page 43, for details.

HWPLUG_CAPS_ANIM

Plugin provides a loader for additional animation formats. See Section 8.1
[Animation plugins], page 51, for details.

HWPLUG_CAPS_VIDEO

Plugin provides a loader for additional video formats. See Section 11.1 [Video
plugins], page 75, for details.

HWPLUG_CAPS_SAVEIMAGE

Plugin provides a saver for additional image formats. See Section 12.1 [Image
saver plugins], page 87, for details.

All the other plugin types are currently unsupported. Thus, you don’t have to be careful
about which plugin API functions you call if your plugin is of a type that Designer doesn’t
support anyway. Be careful about the InitPlugin() and ClosePlugin() functions, though.
These will be called for all plugins so you must be very careful about the plugin API
functions you call from these functions.

Let’s suppose you are going to write a plugin that adds an image loader and a file adapter.
In that case you would set hwPluginBase.CapsMask to HWPLUG_CAPS_IMAGE|HWPLUG_

CAPS_FILEADAPTER. File adapters usually call hw_ConfigureLoaderAdapter() from
their InitPlugin() implementation. hw_ConfigureLoaderAdapter(), however, is not
supported by Designer because Designer doesn’t support file adapters. That’s why you
have to check if Hollywood or Hollywood Designer has opened your plugin before you call
hw_ConfigureLoaderAdapter(). You can check for Hollywood Designer by looking at the
first function of LuaBase and see if it is NULL. If it is, you can be sure that you are being
called by Hollywood Designer. Your implementation of InitPlugin() could then look like
this:

HW_EXPORT int InitPlugin(hwPluginBase *self, hwPluginAPI *cl, STRPTR p)

{

int isdesigner = (cl && cl->LuaBase->lua_gettop == NULL);

22 Hollywood SDK

self->CapsMask = HWPLUG_CAPS_IMAGE|HWPLUG_CAPS_FILEADAPTER;

self->hwVersion = 1;

self->hwRevision = 0;

...

if(cl) {

if(!isdesigner) cl->SysBase->hw_ConfigureLoaderAdapter(...);

}

return TRUE;

}

The code above will only call hw_ConfigureLoaderAdapter() if InitPlugin() has been
called by Hollywood. If you don’t do this check, Hollywood Designer will crash on every
startup because your plugin tries to jump to a function that is NULL. So make sure your
InitPlugin() implementation is compatible with Hollywood Designer.

To find out which plugin APIs are supported by Hollywood Designer, look at the "Designer
compatibility" section that is part of every function’s documentation.

To find out which version of Hollywood Designer is calling you, you must use the HWMCP_

GETDESIGNERVERSION tag with the hw_MasterControl() function. It is not sufficient to
look at the hwVersion and hwRevision members of the hwPluginBase that is passed to
your InitPlugin() implementation because these just contain the version of the Hollywood
plugin API provided by the Designer version that is calling your plugin. For example,
Designer 4.0 will identify itself as Hollywood 5.0 whereas Designer 4.5 will identify itself as
Hollywood 6.0. To get the real Designer version numbers, use HWMCP_GETDESIGNERVERSION.
See Section 24.20 [hw MasterControl], page 193, for details.

2.19 Multithreading

Generally, all of Hollywood’s API functions are not thread-safe and the plugin functions
need also not be thread-safe except where stated. There are a few thread-safe API calls
and there are also a few plugin functions that must be thread-safe. In that case, this
requirement is explicitly mentioned in this documentation. If nothing is mentioned in an
API call’s documentation, then the call is not thread-safe or need not be thread-safe in case
it is a plugin function to be written by you.

2.20 Legacy plugins

Plugin support was introduced with Hollywood 1.5. However, Hollywood’s plugin interface
was completely redesigned for Hollywood 5.0 and isn’t compatible to previous versions
any more. Thus, all the documentation provided here only applies to Hollywood 5.0 and
up. If you need to target older Hollywood versions, too, please contact me for developer
information for older Hollywood versions.

Chapter 3: AmigaOS peculiarities 23

3 AmigaOS peculiarities

3.1 Glue code

As AmigaOS doesn’t support the export of named symbols from library files, Hollywood
plugins need to provide some glue code on AmigaOS and compatible systems so that Hol-
lywood can locate symbols by name instead of by jumptable.

After calling LoadSeg() on your plugin, Hollywood will look for two magic cookies that
must be embedded in the MagicCookie[] array in the following structure:

typedef struct _hwAmigaEntry

{

ULONG MagicCookie[2];

int Platform;

void *(*GetProcAddress)(STRPTR name);

} hwAmigaEntry;

Thus, your plugin needs to declare a global constant based on this structure so that Hol-
lywood can identify the file as a Hollywood plugin. An example declaration could be like
this:

const hwAmigaEntry entry = {

{HWPLUG_COOKIE1, HWPLUG_COOKIE2},

HWARCH_OS3,

GetProcAddress,

};

Make sure that the compiler doesn’t optimize this declaration away just because it isn’t
referenced anywhere. Otherwise Hollywood won’t be able to load your plugin. As you
can see MagicCookie[] needs to be set to HWPLUG_COOKIE1 and HWPLUG_COOKIE2 which
are both defined in ‘hollywood/plugin.h’. Note that different cookies are used on little
endian systems so make sure to define the preprocessor constant HW_LITTLE_ENDIAN if you
target little endian systems.

It is very important to set hwAmigaEntry.Platform to the correct architecture constant.
In the above example we set it to HWARCH_OS3 indicating that this is a plugin for AmigaOS
3.

You can also see that the declaration above references a function named GetProcAddress().
You need to implement this function in your glue code as well. Hollywood calls this function
whenever it needs to resolve a function pointer from a symbol name. Thus, your implemen-
tation of GetProcAddress() needs to look at the string argument it has received and then
return the appropriate function pointer. This can be implemented using a lookup table like
this:

static const struct

{

STRPTR name;

void *func;

} funcs[] =

{

{"InitPlugin", (void *) InitPlugin},

24 Hollywood SDK

{"ClosePlugin", (void *) ClosePlugin},

// ...more function pointers here, depending on plugin type

{NULL, NULL}

};

HW_EXPORT void *GetProcAddress(STRPTR name)

{

int k;

for(k = 0; funcs[k].name; k++) {

if(!strcmp(name, funcs[k].name)) return funcs[k].func;

}

return NULL;

}

Another speciality on AmigaOS is that you cannot use certain functions from the standard
ANSI C runtime library. See Section 3.2 [AmigaOS C runtime limitations], page 24, for
details.

3.2 C runtime limitations

As Hollywood plugins on AmigaOS are loaded using LoadSeg() they do not contain the C
compiler’s runtime library startup code and there is no standardized way of executing the
constructor and destructor functions of your C compiler’s runtime library from a Hollywood
plugin. This means that you won’t be able to use any functions from the ANSI C runtime
that require the compiler constructor or destructor code. Instead, you either have to call
into AmigaOS API functions directly or you can use the C runtime functions that Hollywood
makes available to your plugin in CRTBase that is passed to your InitPlugin() function.

Here is a list of functions that typically require the constructor and destructor code of
your C compiler and therefore cannot be used from Hollywood plugins. Depending on your
compiler, there may be more functions which cannot be used:

Memory allocation functions

Functions like malloc(), calloc(), realloc(), free(), strdup()...

File IO functions

All functions that deal with file handles like fopen(), fclose(), fread(), fwrite(),
fgetc()...

Standard IO functions

Functions like printf(), sprintf(), scanf(), sscanf()...

Date and time functions

Functions like time(), localtime(), mktime(), gettimeofday()...

Locale dependent functions

Functions like toupper(), tolower(), isgraph()...

Please note that it is usually not possible to write Hollywood plugins in C++ on AmigaOS
because C++ most of the time also needs custom compiler constructor and destructor code.

Chapter 3: AmigaOS peculiarities 25

You also must not use any library auto-open features provided by the compiler. You need
to manually open and close all Amiga libraries that your plugins requires.

Very experienced users might be able to work around all these limitations by finding a way
to run the compiler’s constructor and destructor code manually from the InitPlugin() and
ClosePlugin() functions but this requires quite some effort and is different from compiler
to compiler.

3.3 clib2 versus newlib

Developers targetting the AmigaOS 4 platform can choose between two different C runtime
libraries: clib2 and newlib. clib2 is linked statically into the binary whereas newlib is
available as a shared library. Since Hollywood uses clib2 it is recommended that you use
clib2 for your plugins as well. This can be achieved by compiling your sources with the
following compiler setting:

gcc -mcrt=clib2 ...

Please note that clib2 is not thread-safe by default. Thus, if you need a thread-safe C
runtime you need to link against clib2-ts instead, i.e.

gcc -mcrt=clib2-ts ...

If you want to use newlib for your plugins, you need to be very careful not to mix clib2
and newlib structures and handles. For example, all handles (e.g. an stdio FILE handle)
allocated by Hollywood will be clib2 handles since Hollywood uses clib2. Thus, you must
not pass them to a newlib stdio function since the internal representation of these handles
might differ. Also, you must be careful when using structures that are shared between the
C runtime provided by Hollywood and your plugin. Hollywood’s C runtime will use the
structures as defined in the clib2 headers whereas your plugin will use the format defined
the newlib headers.

Finally, you also have to open newlib.library on your own if you want to use newlib in
your plugin.

3.4 saveds keyword

If you compile plugins for the Motorola 680x0 processors or for WarpOS you have to make
sure that all your functions that will be called by Hollywood are declared using the __saveds
keyword or your compiler’s equivalent of this keyword (some compilers use a function called
geta4() or a __geta4 keyword instead). This is to make sure that the compiler generates
code that loads the near data pointer in register a4 on each function entry so that your
function is able to access its data. If you don’t use __saveds in your functions that can be
called from Hollywood, then the index register will still point to to the data section within
Hollywood and not within your plugin which will lead to all sorts of trouble.

Note that you need not use __saveds for all your functions but only the ones that Hollywood
will directly call into. This includes the functions your plugin exports, the Lua functions
offered by your plugin as well as callback functions within your plugin whose pointers you
pass to Hollywood functions.

When declaring your plugin functions, the HW_EXPORT macro will automatically set __

saveds for you, e.g.

26 Hollywood SDK

HW_EXPORT int InitPlugin(hwPluginBase *self, hwPluginAPI *cl, STRPTR p)

{

...

}

However, you will also need to use __saveds when defining the Lua functions for your
HWPLUG_CAPS_LIBRARY plugin, e.g.

static SAVEDS int MyDiv(lua_State *L)

{

double a = luaL_checknumber(L, 1);

double b = luaL_checknumber(L, 2);

// catch division by zero CPU exception and handle

// it cleanly

if(b == 0) return ERR_ZERODIVISION;

lua_pushnumber(L, a / b);

// push 1 to indicate one return value

return 1;

}

static const struct hwCmdStruct plug_commands[] = {

{"MyDiv", MyDiv},

...

{NULL, NULL}

};

Here we use the macro SAVEDS which will only insert the __saveds keyword when building
for 680x0 or WarpOS-based systems.

Finally, don’t forget to set __saveds when writing callback functions that you pass to a
Hollywood API call. These must also be declared with the __saveds keyword because,
obviously, Hollywood calls into them, e.g.

static SAVEDS int dispatcher(APTR h, int op, APTR data, APTR udata)

{

...

}

handle = hw_AttachDisplaySatellite(&id, dispatcher, data, tags);

Make sure that you don’t forget the __saveds keyword for all these functions! Trying to
debug a crash that is caused by a missing __saveds declaration can be a really frustrating
experience because very strange things will start to happen if the data index register hasn’t
been set up correctly.

3.5 Building for 68881 and 68882

Some extra care needs to be taken when compiling plugins for the 68881 and 68882 FPUs.
Hollywood’s plugin interface was designed to allow plugins compiled for 68881/2 to be

Chapter 3: AmigaOS peculiarities 27

used with the non-FPU version of Hollywood as well. This means that return values from
plugins compiled for 68881/2 must never be stored in FPU registers like fp0. Instead,
return values must always be returned in CPU registers. If a 64-bit value is to be returned
from a plugin that has been compiled for 68881/2, it must be returned in registers d0 and
d1, not in fp0. Even the FPU version of Hollywood will expect floating point return values
in CPU registers. Hollywood will never look for them in FPU registers! This design makes
it possible to use FPU-compiled plugins with the non-FPU version of Hollywood and also
vice versa.

Most compilers, however, will use FPU registers for floating point return values by default.
If you’re using vbcc, you can change this behaviour by compiling your source codes using
the -no-fp-return command line argument. If this is specified, vbcc will always use
CPU registers for return values. If you compile your sources with -no-fp-return enabled,
however, you’ll soon run into another problem, namely that all the ANSI C runtime library
functions which return floating point values will return them in fp0. This will cause conflicts
because the compiler expects them in d0 and d1 now. To solve this problem, you will have
to link your project against runtime libraries which also have been compiled using -no-

fp-return. At the time of this writing, the standard vbcc distribution does not come
with these special libraries, but they’re available on request from Frank Wille, who is the
maintainer of the Amiga vbcc distribution.

3.6 Building for WarpOS

If you build plugins for WarpOS, the hwPluginAPI pointer that is passed to your
InitPlugin() will contain function pointers to PPC code. However, many of these
function pointers will immediately do a context switch and run on the 68k context. You
might already be aware of the fact that context switches are quite expensive so you should
do your best to minimize the number of context switches your plugin has to perform. To
achieve this, you need to know which of the functions in the hwPluginAPI base pointer
run PPC-native and which of them need a context switch. So here’s an overview on
the functions that don’t need a context switch. All other functions not listed here will
immediately perform a context switch.

CRTBase: The following functions are available in PPC native versions: malloc(),
calloc(), realloc(), free(), strdup(), qsort(), stricmp(), strnicmp(),
toupper(), tolower(), strtolower(), strtoupper(), gettimeofday(),
time(), lrint(), strtol(), strtoul(), strtod(), vsscanf(), vsnprintf(),
atol().

SysBase: The following functions are available in PPC native versions: hw_

GetSysTime(), hw_SubTime(), hw_AddTime(), hw_CmpTime(), hw_Delay(),
hw_MasterControl() (but this function is only PPC-native when querying the
HWMCP_GETPOWERPCBASE tag to make Hollywood return its PowerPCBase pointer
to you), hw_TrackedAlloc(), hw_TrackedFree(), hw_AllocSemaphore(),
hw_FreeSemaphore(), hw_LockSemaphore(), hw_UnLockSemaphore().

DOSBase: All functions here are implemented in 68k code and will immediately do a
context switch.

GfxBase: All functions here are implemented in 68k code and will immediately do a
context switch.

28 Hollywood SDK

AudioBase:

All functions here are implemented in 68k code and will immediately do a
context switch.

RequesterBase:

All functions here are implemented in 68k code and will immediately do a
context switch.

FontBase:

All functions here are implemented in 68k code and will immediately do a
context switch.

FT2Base: All functions here are PPC-native and don’t need a context switch.

LuaBase: All functions here are implemented in 68k code and will immediately do a
context switch.

ZBase: All functions here are PPC-native and don’t need a context switch.

JPEGBase:

All functions here are PPC-native and don’t need a context switch.

PluginBase:

All functions here are implemented in 68k code and will immediately do a
context switch.

UtilityBase:

All functions here are PPC-native and don’t need a context switch.

Chapter 4: Base plugin functions 29

4 Base plugin functions

4.1 Overview

The functions InitPlugin() and ClosePlugin() must be implemented by every plu-
gin. Hollywood will load the plugin depending on the information returned to it by
InitPlugin().

4.2 ClosePlugin

NAME
ClosePlugin – close plugin (V5.0)

SYNOPSIS
void ClosePlugin(void);

FUNCTION
This function must free all resources allocated by the plugin. ClosePlugin() will be the
final call Hollywood makes to your plugin. After that the plugin will be expunged from
memory.

Important: Be very careful about the plugin API functions that you call here because
ClosePlugin() can also be called by Hollywood versions that are older than the one you
requested in your InitPlugin() implementation. See Section 4.3 [InitPlugin], page 29,
for a detailed description of this issue.

INPUTS
none

4.3 InitPlugin

NAME
InitPlugin – init plugin (V5.0)

SYNOPSIS
int success = InitPlugin(hwPluginBase *self, hwPluginAPI *cl, STRPTR path);

FUNCTION
This function must initialize your plugin and report information about it back to Holly-
wood. Your InitPlugin() implementation must fill out all fields of the hwPluginBase

structure that is passed to it:

typedef struct _hwPluginBase

{

ULONG CapsMask; // [out]

int Version; // [out]

int Revision; // [out]

int hwVersion; // [in/out]

int hwRevision; // [in/out]

STRPTR Name; // [out]

30 Hollywood SDK

STRPTR ModuleName; // [out]

STRPTR Author; // [out]

STRPTR Description; // [out]

STRPTR Copyright; // [out]

STRPTR URL; // [out]

STRPTR Date; // [out]

STRPTR Settings; // [out]

STRPTR HelpFile; // [out]

} hwPluginBase;

Here is an explanation about the function of the different structure members:

CapsMask:

This is a bitmask describing the capabilities of your plugin, i.e. which fea-
tures your plugin provides. Hollywood uses this bitmask to determine which
function pointers it has to import from your plugin. This member must be
set to one or more of the following capabilities:

HWPLUG_CAPS_CONVERT

Plugin can convert custom file types into Hollywood scripts. See
Section 5.1 [Convert script plugins], page 35, for details.

HWPLUG_CAPS_LIBRARY

Plugin adds new commands and constants. See Section 6.1 [Li-
brary plugins], page 37, for details.

HWPLUG_CAPS_IMAGE

Plugin provides a loader for additional image formats. See
Section 7.1 [Image plugins], page 43, for details.

HWPLUG_CAPS_ANIM

Plugin provides a loader for additional animation formats. See
Section 8.1 [Animation plugins], page 51, for details.

HWPLUG_CAPS_SOUND

Plugin provides a loader for additional sound formats. See
Section 9.1 [Sound plugins], page 57, for details.

HWPLUG_CAPS_VECTOR

Plugin provides an implementation to draw vector graphics. See
Section 10.1 [Vectorgraphics plugins], page 63, for details.

HWPLUG_CAPS_VIDEO

Plugin provides a loader for additional video formats. See
Section 11.1 [Video plugins], page 75, for details.

HWPLUG_CAPS_SAVEIMAGE

Plugin provides a saver for additional image formats. See
Section 12.1 [Image saver plugins], page 87, for details.

HWPLUG_CAPS_SAVEANIM

Plugin provides a saver for additional animation formats. See
Section 13.1 [Animation saver plugins], page 91, for details.

Chapter 4: Base plugin functions 31

HWPLUG_CAPS_SAVESAMPLE

Plugin provides a saver for additional sound formats. See
Section 14.1 [Sample saver plugins], page 97, for details.

HWPLUG_CAPS_REQUIRE

Plugin wants to be called when the user does a @REQUIRE on it.
See Section 15.1 [Require hook plugins], page 101, for details.
(V6.0)

HWPLUG_CAPS_DISPLAYADAPTER

Plugin replaces Hollywood’s inbuilt display handler. See
Section 16.1 [Display adapter plugins], page 103, for details.
(V6.0)

HWPLUG_CAPS_TIMERADAPTER

Plugin replaces Hollywood’s inbuilt timer handler. See
Section 17.1 [Timer adapter plugins], page 145, for details.
(V6.0)

HWPLUG_CAPS_REQUESTERADAPTER

Plugin replaces Hollywood’s inbuilt requester handler. See
Section 18.1 [Requester adapter plugins], page 147, for details.
(V6.0)

HWPLUG_CAPS_FILEADAPTER

Plugin provides a loader for additional file formats. See
Section 19.1 [File adapter plugins], page 159, for details. (V6.0)

HWPLUG_CAPS_DIRADAPTER

Plugin provides a loader for additional directory formats. See
Section 20.1 [Directory adapter plugins], page 171, for details.
(V6.0)

HWPLUG_CAPS_AUDIOADAPTER

Plugin replaces Hollywood’s inbuilt audio driver. See
Section 21.1 [Audio adapter plugins], page 175, for details.
(V6.0)

HWPLUG_CAPS_EXTENSION:

This is a special plugin type that does not offer any functionality
on its own. Its only purpose is to extend other plugin types. See
Section 22.1 [Extension plugins], page 179, for details. (V6.0)

You have to implement all functions for every capability bit you set in
CapsMask otherwise Hollywood will fail to load your plugin.

Version: Set this to the current version of your plugin.

Revision:

Set this to the current revision of your plugin.

hwVersion:

This contains the Hollywood version that has just opened your plugin. You
should store this value somewhere because you might need it later to check

32 Hollywood SDK

whether a certain feature is available in this Hollywood version or not. After
that, set this member to the minimum Hollywood version required by your
plugin.

hwRevision:

This contains the Hollywood revision that has just opened your plugin. You
should store this value somewhere because you might need it later to check
whether a certain feature is available in this Hollywood revision or not. After
that, set this to the minimum Hollywood revision required by your plugin.

Name: Set this to a string describing the name of your plugin. This can contain
spaces and need not be unique.

ModuleName:

Set this to the module name of your plugin. The module name of your plugin
must be identical to its file name minus the ‘*.hwp’ extension. If file and
module names do not match, Hollywood will refuse to load your plugin.

Author: Set this to the name(s) of the plugin author(s).

Description:

Set this to a string describing the plugin’s functionality.

Copyright:

Set this to a string containing relevant copyright information.

URL: Set this to a string containing a link to the plugin’s website. This may be
NULL.

Date: Set this to the build date of the plugin. This may be NULL.

Settings:

This can be set to the full path of an external program that can be used
to configure settings for your plugin. It is advised to store this program
relative to your plugin’s path. You can find out the full path of your plugin
by looking at the third argument that is passed to InitPlugin(). This will
tell you where the user has installed your plugin. If you set this member, the
user will be able to launch the external program from the Hollywood GUI.
If your plugin doesn’t feature such a program, set this member to NULL.

HelpFile:

This can be set to the full path of a help file that acts as a user manual
for the plugin. It is advised to store this help file relative to your plugin’s
path. You can find out the full path of your plugin by looking at the third
argument that is passed to InitPlugin(). This will tell you where the user
has installed your plugin. If you set this member, the user will be able to
open this help file from the Hollywood GUI. If your plugin doesn’t come
with a help file, set this member to NULL.

Note that all string pointers you use to initialize the hwPluginBase structure must stay
valid until ClosePlugin() is called.

The second parameter that is passed to InitPlugin() is a pointer to a hwPluginAPI

vector which is the gateway to all plugin API functions provided by Hollywood. Plugin

Chapter 4: Base plugin functions 33

API functions are grouped into several different library bases like GfxBase and SysBase.
Please note that this parameter can be NULL. If this is the case, your plugin should
not initialize itself but just fill out the hwPluginBase structure and return True. If
Hollywood passes NULL in hwPluginAPI it only wants to collect information about your
plugin without actually loading it.

Important: You have to be very careful about the plugin API functions you call from
your InitPlugin() implementation. This is because an older Hollywood version might
have called your InitPlugin() function and if you try to call newer plugin API functions
that are unavailable in the Hollywood version that has just called InitPlugin(), your
plugin will crash terribly. You always have to check the hwVersion and hwRevision

members of the hwPluginBase structure that is passed to your InitPlugin() func-
tion before you call any of the plugin APIs. These checks only have to be done in
InitPlugin() and ClosePlugin() since they can be called by any Hollywood version.
All the other functions of your plugin will only be called if the host Hollywood version
matches the one you request in your InitPlugin() implementation using the hwVersion
and hwRevision members. InitPlugin() and ClosePlugin(), however, may be called
by any arbitrary Hollywood version and the only assumption you can make is that it will
be at least Hollywood 5.0 which is calling you because 5.0 is the version that introduced
the new plugin system explained here. Please take this advice very seriously because
a plugin which does not cleanly work with older Hollywood versions will also crash all
executables compiled by these previous Hollywood versions because they will usually
also scan and load all available plugins and if there is a plugin which isn’t compatible
with older versions, projects compiled with older Hollywood versions will suddenly crash
badly.

Additionally, InitPlugin() can also be called by Hollywood Designer. In that case you
have to be careful as well, because Hollywood Designer supports only a subset of the
official Hollywood plugin API so many function pointers inside hwPluginBase will be
NULL and you cannot call them. That is why your InitPlugin() implementation also
has to check whether it was called by Hollywood or by Hollywood Designer and act
accordingly then. See Section 2.18 [Designer compatibility], page 21, for details.

The third parameter contains the full path to the plugin’s location on the user’s hard
drive. This may be useful information if you need to load files from the plugin’s directory
or store preferences files in the plugin’s directory, etc.

InitPlugin() has to return either True or False to signal success or failure. If it returns
False, ClosePlugin() won’t ever be called on this plugin.

INPUTS

self pointer to structure that your plugin has to fill out

cl pointer to Hollywood’s plugin API functions or NULL (see above)

path full path to the plugin’s shared library file

RESULTS

success True or False indicating whether initialization was successful

Chapter 5: Convert script plugins 35

5 Convert script plugins

5.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_CONVERT set are called when Hollywood
loads the file the user has passed to the program. The plugin can then examine the file and
if it is in a format that the plugin recognizes, it can convert the file into a Hollywood script
and return this script to Hollywood. Hollywood will then run the script it has received from
the plugin instead of the file it was originally passed.

This makes it possible to enable Hollywood to open custom file formats. The Malibu plugin,
which makes Hollywood able to open Scala project files, uses HWPLUG_CAPS_CONVERT for this
job for example.

5.2 FreeScript

NAME
FreeScript – free converted script (V5.0)

SYNOPSIS
void FreeScript(STRPTR buf);

FUNCTION
This function must free the script returned by GetScript(). Note that this is called
before Hollywood actually runs your script so if your GetScript() implementation has
created some temporary files that are required by the script, you must not free them in
FreeScript() but in ClosePlugin() which is called when Hollywood shuts down.

INPUTS

buf script buffer allocated by GetScript()

5.3 GetScript

NAME
GetScript – convert custom file to Hollywood script (V5.0)

SYNOPSIS
STRPTR buf = GetScript(STRPTR file);

FUNCTION
This function must examine the file that is passed to this function and if it is in a format
that the plugin can handle, it must convert the file to a Hollywood script and return this
script as a null-terminated string. Hollywood will then skip loading this file and it will
run the script that it has received from GetScript() instead.

If GetScript() does not want to handle the file it is passed, it must return NULL.

INPUTS

file path to a file that the user wants Hollywood to run

36 Hollywood SDK

RESULTS

buf null-terminated string containing a Hollywood script or NULL

Chapter 6: Library plugins 37

6 Library plugins

6.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_LIBRARY set can add new commands
and constants to Hollywood’s set of inbuilt commands and constants. If you want to write
such a plugin, you need to familiarize yourself with the Lua which Hollywood uses as a VM.
You can access Hollywood’s Lua VM through the LuaBase pointer that is passed inside the
hwPluginAPI table which your InitPlugin() function receives.

Here is a brief explanation of how Lua calls C functions: Your function will receive just a
single parameter - a pointer to the lua_State. All parameters that the script passes to your
function will be pushed into the stack. If you want to return values to Lua, you have to push
them into the stack as well and return the number of values you pushed. Alternatively, you
can also return an error code. Standard error codes are defined in ‘hollywood/errors.h’.
You can also register custom error codes using hw_RegisterError().

Here is how a custom function that simply divides the first parameter by the second:

static SAVEDS int MyDiv(lua_State *L)

{

double a = luaL_checknumber(L, 1);

double b = luaL_checknumber(L, 2);

// catch division by zero CPU exception and handle

// it cleanly

if(b == 0) return ERR_ZERODIVISION;

lua_pushnumber(L, a / b);

// push 1 to indicate one return value

return 1;

}

This is just a primitive example. Check the Lua manual for more information on how to
implement Lua functions in C. Please note that Hollywood uses Lua 5.0.2 so make sure you
consult the correct manual. See Section 31.1 [LuaBase functions], page 301, for details.

The SDK distribution also comes with an example library plugin which adds several func-
tions and constants to Hollywood. Feel free to study this example code to learn how library
plugins are written in practice.

Starting with Hollywood 6.0 library plugins support the HWEXT_LIBRARY_MULTIPLE ex-
tension. If this extension is set, a library can install multiple libraries instead of just a
single one. If you set the HWEXT_LIBRARY_MULTIPLE extension bit, you need to imple-
ment the GetLibraryCount() and SetCurrentLibrary() functions. Hollywood will then
call GetLibraryCount() to find out how many libraries your plugin wants to install. See
Section 22.1 [Extension plugins], page 179, to learn how to use plugin extension bits.

38 Hollywood SDK

6.2 FreeLibrary

NAME
FreeLibrary – free library initialization (V5.0)

SYNOPSIS
void FreeLibrary(lua_State *L);

FUNCTION
This function must free any initialization done by InitLibrary(). Any cleanup that
requires a valid lua_State must be done here as the lua_State is no longer there once
ClosePlugin() is called.

INPUTS

L pointer to the lua_State

6.3 GetBaseTable

NAME
GetBaseTable – get name of base table for plugin functions (V5.0)

SYNOPSIS
STRPTR name = GetBaseTable(void);

FUNCTION
This function must return the name of a table that should host all the functions this
plugin makes available. Functions made available by plugins should always be subsumed
under a table so that there won’t be any conflicts with existing or future Hollywood APIs
and the user will be able to clearly distinguish plugin APIs from inbuilt APIs.

A good base table name is the module name that has been specified in InitPlugin().
For example, if your plugin is called "cooladdon.hwp", then you might want to use
"cooladdon" as a base table name. All functions added by GetCommands() will then be
stored in a table named "cooladdon".

INPUTS
none

RESULTS

name name of a table that should host all functions

6.4 GetCommands

NAME
GetCommands – get list of plugin commands (V5.0)

SYNOPSIS
struct hwCmdStruct *list = GetCommands(void);

Chapter 6: Library plugins 39

FUNCTION
This function must return a pointer to an array of struct hwCmdStruct items that
contains a number of commands this plugin wants to make available. The array must
be terminated by two NULL elements. struct hwCmdStruct looks like this:

struct hwCmdStruct

{

STRPTR Name;

int (*Func)(lua_State *L);

};

You have to specify a name and a function pointer for every command that you want
to add. Functions must be implemented as Lua C functions. Please check the manual
of Lua 5.0.2 to find out how Lua C functions are implemented. See Section 6.1 [Library
plugins], page 37, for some more details on how to implement Lua functions. The array
that is to be returned by this function may look like this then:

struct hwCmdStruct plugin_commands[] = {

{"TestFunc", hw_TestFunc},

{"TestFunc2", hw_TestFunc2},

...

{NULL, NULL}

};

All functions that you specify here will then be pushed into the Lua table whose name
has been specified using GetBaseTable(). The user can then call your functions like
this:

testplugin.TestFunc()

INPUTS
none

RESULTS

list an array of struct hwCmdStruct elements

6.5 GetConstants

NAME
GetConstants – get list of plugin constants (V5.0)

SYNOPSIS
struct hwCstStruct *list = GetConstants(void);

FUNCTION
This function must return a pointer to an array of struct hwCstStruct items that
contains a number of constants this plugin wants to make available. The array must be
terminated by three NULL elements. struct hwCstStruct looks like this:

struct hwCstStruct

{

STRPTR Name;

STRPTR StrVal;

40 Hollywood SDK

double Val;

};

Constants can be either a string or a number. If the StrVal member is set to NULL, the
constant will use the numerical value specified in Val. Please note that the name you
pass in Name must not contain the hash prefix. The array that is to be returned by this
function may look like this then:

struct hwCstStruct plugin_constants[] = {

{"NUMBERTEST", NULL, 1234},

{"STRINGTEST", "Hello World", 0},

...

{NULL, NULL, 0}

};

With a table like this the user would then be able to access the two new constants
#NUMBERTEST and #STRINGTEST if your plugin is installed.

Please note that your constant names should be chosen in a way that they do not conflict
with inbuilt constants. It is good practice to prefix the constant names with the name
of your plugin so that they can be clearly distinguished from inbuilt constants and there
is no risk of conflict with existing constants.

If your plugin doesn’t define any constants, you may also return NULL.

INPUTS
none

RESULTS

list an array of struct hwCstStruct elements or NULL

6.6 GetLibraryCount

NAME
GetLibraryCount – get number of libraries to install (V6.0, optional)

SYNOPSIS
int c = GetLibraryCount(void);

FUNCTION
This function is optional and must only be implemented when the HWEXT_LIBRARY_

MULTIPLE extension bit has been set. See Section 22.1 [Extension plugins], page 179, for
details. In that case, GetLibraryCount() has to return the total number of libraries
your plugin wants to install. Hollywood will call your GetBaseTable(), GetCommands()
and GetConstants() functions as many times as this function requests so that you can
add more than one library into the system. Before calling these functions, Hollywood will
first invoke your SetCurrentLibrary() function to tell you whose library’s commands,
constants or base table you should return. See Section 6.8 [SetCurrentLibrary], page 41,
for details.

The value to be returned by GetLibraryCount() is 1-based so a return value of 1 means
there is just one library to install. In that case, of course, it wouldn’t be necessary to
use the HWEXT_LIBRARY_MULTIPLE extension at all.

Chapter 6: Library plugins 41

INPUTS
none

RESULTS

c the total number of libraries to be installed by this plugin

6.7 InitLibrary

NAME
InitLibrary – perform library initialization (V5.0)

SYNOPSIS
int error = InitLibrary(lua_State *L);

FUNCTION
This function can be used to perform additional library initialization. Certain plugins
might need to do some additional things once the lua_State has been setup correctly.
For example, a plugin might want to setup some metatables or push additional helper
tables into the stack. It’s impossible to do such things in InitPlugin() since the lua_

State isn’t ready yet at InitPlugin() call time. That’s why this function is available.
Many plugins, however, probably don’t need to do anything here at all.

InitLibrary() has to return an error code or 0 for success.

INPUTS

L pointer to the lua_State

RESULTS

error error code or 0 for success

6.8 SetCurrentLibrary

NAME
SetCurrentLibrary – set current library number (V6.0, optional)

SYNOPSIS
void SetCurrentLibrary(int n);

FUNCTION
This function is optional and must only be implemented when the HWEXT_LIBRARY_

MULTIPLE extension bit has been set. See Section 22.1 [Extension plugins], page 179, for
details. In that case, Hollywood will call SetCurrentLibrary() to tell your plugin whose
library’s commands, constants or base table you should return when Hollywood makes
the next call to your GetBaseTable(), GetCommands() or GetConstants() functions.
The library numbers passed by Hollywood are 0-based, so a value of 0 means the first
library. Hollywood will call this function as many times as you’ve specified in your
GetLibraryCount() implementation. See Section 6.6 [GetLibraryCount], page 40, for
details.

42 Hollywood SDK

INPUTS

n number of the current library (zero-based)

Chapter 7: Image plugins 43

7 Image plugins

7.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_IMAGE set will be called whenever Hol-
lywood has to load an image. The plugin can check then whether the image is in a format
that the plugin recognizes and if it is, it can open the image and return the raw pixel data
to Hollywood. This makes it possible to load custom image formats with Hollywood.

Image plugins can support two different image types: Raster and vector images. If your
plugin supports vector images, Hollywood will always call your plugin whenever it needs to
transform the image. Your plugin can then do the lossless vector image transformation on its
own and return the new pixel data to Hollywood. For raster images, image transformation
is always done by Hollywood and your plugin doesn’t have to do anything.

By default, image plugins are automatically activated when Hollywood loads them. Starting
with Hollywood 6.0 this behaviour can be changed by setting the HWEXT_IMAGE_NOAUTOINIT
extension bit. If this bit is set, Hollywood will not automatically activate your plugin at
load time. Instead, you will have to manually call hw_AddLoaderAdapter() to activate your
plugin. For example, you could call hw_AddLoaderAdapter() from your RequirePlugin()
implementation. In that case, the image plugin would only be activated if the user called
@REQUIRE on it. If you do not call hw_AddLoaderAdapter() on a plugin that has auto-
initialization disabled, it will only be available if the user addresses it directly through the
Loader tag. See Section 22.1 [Extension plugins], page 179, to learn how to use plugin
extension bits.

The SDK distribution comes with an example image plugin which contains a loader for the
PCX image format. Feel free to study this example code to learn how image plugins are
written in practice.

7.2 FreeImage

NAME
FreeImage – free image handle (V5.0)

SYNOPSIS
void FreeImage(APTR handle);

FUNCTION
This function must free the specified image handle that has been allocated by your
plugin’s LoadImage() function. Hollywood will call FreeImage() when it is done with
your image.

INPUTS

handle image handle returned by LoadImage()

7.3 GetImage

NAME
GetImage – get raw pixel image data (V5.0)

44 Hollywood SDK

SYNOPSIS
ULONG *raw = GetImage(APTR handle, struct LoadImageCtrl *ctrl);

FUNCTION
This function must return the image’s raw pixel data encoded as an array of 32-bit ARGB
values. If the image type is HWIMAGETYPE_VECTOR, GetImage() also needs to take possible
transformations that have been applied via TransformImage() into account.

Furthermore, GetImage() has to provide some additional information in the struct

LoadImageCtrl pointer that is passed as the second parameter. See Section 7.5 [Load-
Image], page 45, for details on this structure. The following information has to be
provided by GetImage():

Width: Must be set to the image width in pixels. If the image type is HWIMAGETYPE_
VECTOR and TransformImage() has been called prior to GetImage(), this
value must exactly match the width that has been passed to the last call of
TransformImage().

Height: Must be set to the image height in pixels. If the image type is HWIMAGETYPE_
VECTOR and TransformImage() has been called prior to GetImage(), this
value must exactly match the height that has been passed to the last call of
TransformImage().

LineWidth:

Must be set to the image modulo width in pixels. This is often the same as
the image width.

AlphaChannel:

Must be set to True or False, depending on whether or not this image has
an alpha channel.

The pointer that is returned by GetImage() must stay valid at least until the next call
to GetImage() or FreeImage() on this handle.

INPUTS

handle image handle as returned by LoadImage()

ctrl pointer to a struct LoadImageCtrl for storing information about the image

RESULTS

raw an array of raw 32-bit ARGB pixels

7.4 IsImage

NAME
IsImage – check if a file is in a supported image format (V5.0)

SYNOPSIS
int ok = IsImage(STRPTR filename, struct LoadImageCtrl *ctrl);

FUNCTION
This function has to check whether the specified file is in an image format that the plugin
wants to handle. If it is, the plugin has to return True and provide information about

Chapter 7: Image plugins 45

the image’s size and whether or not it has an alpha channel. This is done by setting the
following members of the struct LoadImageCtrl pointer that is passed to IsImage()

in the second argument:

Width: Must be set to the image width in pixels.

Height: Must be set to the image height in pixels.

AlphaChannel:

Must be set to True or False, depending on whether or not this image has
an alpha channel.

Flags: Your implementation may set the following flags:

HWIMGFLAGS_TRANSPARENCY:

Set this flag to tell Hollywood that the image has a monochrome
transparency channel (e.g. a transparent pen in a palette-based
image). (V6.0)

The following members of struct LoadImageCtrl are set by Hollywood before it calls
your implementation of IsImage():

Adapter: Starting with Hollywood 6.0 users can specify the file adapter that should
be used to open certain files. If this member is non-NULL, Hollywood wants
your plugin to use the file adapter specified in Adapter to open the file.
This means that you have to use hw_FOpenExt() instead of hw_FOpen() to
open the file. Make sure to check for Hollywood 6.0 before trying to access
this member because it isn’t there in previous versions. See Section 25.16
[hw FOpenExt], page 236, for details. (V6.0)

You must not touch any other members of the struct LoadImageCtrl pointer that
is passed to this function. See Section 7.5 [LoadImage], page 45, for details on this
structure.

INPUTS

filename filename to examine

ctrl pointer to a struct LoadImageCtrl for storing information about the image

RESULTS

ok True if the plugin wants to handle this file, False otherwise

7.5 LoadImage

NAME
LoadImage – load image into memory (V5.0)

SYNOPSIS
APTR handle = LoadImage(STRPTR filename, struct LoadImageCtrl *ctrl);

FUNCTION
This function has to open the specified filename, check if it is in a format that the plugin
wants to handle, and, if it is, return a handle to the image back to Hollywood. Otherwise

46 Hollywood SDK

it has to return NULL. The handle returned by LoadImage() is an opaque datatype that
only your plugin knows about. Hollywood will simply pass this handle back to your
GetImage() function when it wants to have the raw pixel data.

This function also has to provide certain information about the image it has just loaded.
This information has to be written to the struct LoadImageCtrl that is passed in the
second parameter. This structure looks like this:

struct LoadImageCtrl

{

int Width; // [out]

int Height; // [out]

int LineWidth; // [out]

int AlphaChannel; // [out]

int ForceAlphaChannel; // [out]

int Type; // [out]

ULONG Flags; // [in/out] -- V5.3

int ScaleWidth; // [in] -- V5.3

int ScaleHeight; // [in] -- V5.3

int BaseWidth; // [out] -- V5.3

int BaseHeight; // [out] -- V5.3

ULONG ScaleMode; // [in] -- V5.3

STRPTR Adapter; // [in] -- V6.0

};

The following information has to be provided by LoadImage():

Type: This must be set to either HWIMAGETYPE_RASTER or HWIMAGETYPE_VECTOR.
If you set this to HWIMAGETYPE_VECTOR, Hollywood will call your
TransformImage() function whenever it needs to transform the image.
This allows you to do lossless transformation of the vector image. For
images of type HWIMAGETYPE_RASTER, TransformImage() is never called.
Instead, Hollywood does all transformations itself.

Width: Must be set to the image width in pixels.

Height: Must be set to the image height in pixels.

LineWidth:

Must be set to the image modulo width in pixels. This is often the same as
the image width.

AlphaChannel:

Must be set to True or False, depending on whether or not this image has
an alpha channel.

ForceAlphaChannel:

If this is set to True, Hollywood will automatically create an alpha chan-
nel for all objects that load this image. For example, if the user calls
LoadBrush() on your image but does not set the "LoadAlpha" tag to True,
the brush will still get an alpha channel if you set "ForceAlphaChannel" to
True.

Chapter 7: Image plugins 47

Flags: The following flags may be set by Hollywood:

HWIMGFLAGS_TRANSPARENCY:

This flag will be set whenever the user sets the "LoadTrans-
parency" tag to True. You may then choose to write the im-
age’s transparency information to its alpha channel and set the
ForceAlphaChannel member to True. See above for more in-
formation. (V6.0)

The following flags may be set by your implementation:

HWIMGFLAGS_DIDSCALE:

If your plugin has scale-loaded this image, you have to set the
HWIMGFLAGS_DIDSCALE flag here so that Hollywood knows that
your plugin has loaded and scaled the image. See below for more
information on scaled loading of images. (V5.3)

Adapter: Starting with Hollywood 6.0 users can specify the file adapter that should be
used to open certain files. If this member is non-NULL, Hollywood wants your
plugin to use the file adapter specified in Adapter to open the image. This
means that you have to use hw_FOpenExt() instead of hw_FOpen() to open
the image. Make sure to check for Hollywood 6.0 before trying to access
this member because it isn’t there in previous versions. See Section 25.16
[hw FOpenExt], page 236, for details. (V6.0)

Starting with Hollywood 5.3 LoadImage() also supports scaled loading of images. This
is optional functionality and need not be supported by LoadImage(). If you want to
support it, you have to look at the members ScaleWidth and ScaleHeight of the struct
LoadImageCtrl pointer that is passed to LoadImage(). Warning! Make sure that you
access these members only if you have checked that your plugin has been opened by
version 5.3 or higher of Hollywood. Otherwise, these members won’t be there and trying
to access them will read from bad memory locations and give you back random values. So
if you want to implement support for scaled loading of images, first check for Hollywood
5.3 and then take a look at the following members of the struct LoadImageCtrl:

ScaleWidth:

If Hollywood wants your plugin to scale the image while loading, this member
will be set to either a positive or negative integer. A positive integer value
specifies the desired width in pixels for this image while a negative integer
value is to be interpreted as a percentage value specifying the desired scaling
factor relative to the original image width, i.e. "-75" means that the image
should be scaled to 75% of its original width. If ScaleWidth is 0, Hollywood
doesn’t want to have any scaling. (V5.3)

ScaleHeight:

This works in the same way as described above for ScaleWidth except that
it deals with the image height. (V5.3)

ScaleMode:

Contains the ID of a scale mode. Currently, this can be either 0 for hard
scaling or 1 for interpolated scaling using anti-aliasing. (V5.3)

48 Hollywood SDK

BaseWidth:

If your plugin supports scaled loading, you need to set this member to the
original width of the image. This is important because otherwise Hollywood
won’t know the original size of the image as the Width member needs to be
set to the scaled width if you do scaling. (V5.3)

BaseHeight:

Same as BaseWidth but for the image height. (V5.3)

Please note that you should not use ANSI C functions like fopen() to open the file that
is passed to this function because the filename that is passed to this function can also be
a specially formatted filename specification that Hollywood uses to load files that have
been linked to applets or executables. In order to be able to load these files correctly,
you have to use special IO functions provided by Hollywood. See Section 2.12 [File IO
information], page 14, for details.

INPUTS

filename filename to open

ctrl pointer to a struct LoadImageCtrl for storing information about the image

RESULTS

handle a handle that identifies this image or NULL if plugin doesn’t want to handle
this image

7.6 TransformImage

NAME
TransformImage – transform a vector image (V5.0)

SYNOPSIS
int ok = TransformImage(APTR handle, struct hwMatrix2D *m, int width,

int height);

FUNCTION
This function must transform the specified vector image according to the 2D transforma-
tion matrix passed in parameter 2. It must also clip the resulting image to the specified
width and height in pixels. After calling TransformImage(), Hollywood will then call
your plugin’s GetImage() function again to obtain the raw pixel data of the newly trans-
formed image. It is very important that the dimensions and the pixel array returned
by the next call to GetImage() match the dimensions passed to TransformImage() in
parameters 3 and 4 exactly.

TransformImage() is only ever called for images of type HWIMAGETYPE_VECTOR. If your
LoadImage() function sets the image type to HWIMAGETYPE_RASTER, TransformImage()
won’t be called at all and Hollywood will do all image transformations on its own.

If the transformation was successful, TransformImage() must return True. Otherwise
it has to return False.

INPUTS

handle image handle as returned by LoadImage()

Chapter 7: Image plugins 49

m 2D matrix describing the desired transformation

width clipping width for resulting image

height clipping height for resulting image

RESULTS

ok True or False indicating success or failure

Chapter 8: Anim plugins 51

8 Anim plugins

8.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_ANIM set will be called whenever Holly-
wood has to load an animation. The plugin can check then whether the animation file is
in a format that the plugin recognizes and if it is, it can open the animation and return
the raw pixel data of the individual frames to Hollywood. This makes it possible to load
custom animation formats with Hollywood.

By default, anim plugins are automatically activated when Hollywood loads them. Starting
with Hollywood 6.0 this behaviour can be changed by setting the HWEXT_ANIM_NOAUTOINIT
extension bit. If this bit is set, Hollywood will not automatically activate your plugin at
load time. Instead, you will have to manually call hw_AddLoaderAdapter() to activate your
plugin. For example, you could call hw_AddLoaderAdapter() from your RequirePlugin()
implementation. In that case, the anim plugin would only be activated if the user called
@REQUIRE on it. If you do not call hw_AddLoaderAdapter() on a plugin that has auto-
initialization disabled, it will only be available if the user addresses it directly through the
Loader tag. See Section 22.1 [Extension plugins], page 179, to learn how to use plugin
extension bits.

8.2 CloseAnim

NAME
CloseAnim – close animation handle (V5.0)

SYNOPSIS
void CloseAnim(APTR handle);

FUNCTION
This function must close the specified animation handle that has been allocated by your
plugin’s OpenAnim() function. Hollywood will call CloseAnim() when it is done with
your animation.

INPUTS

handle handle returned by OpenAnim()

8.3 FreeFrame

NAME
FreeFrame – free frame pixel data (V5.0)

SYNOPSIS
void FreeFrame(ULONG *raw);

FUNCTION
This function must free the raw pixel data returned by LoadFrame().

RESULTS

raw frame buffer allocated by LoadFrame()

52 Hollywood SDK

8.4 GetFrameDelay

NAME
GetFrameDelay – get frame presentation time stamp (V5.0)

SYNOPSIS
int delay = GetFrameDelay(APTR handle, int frame);

FUNCTION
This function must return the presentation time stamp of the specified frame. Frame
indices are counted from 0 to number of frames minus 1. Presentation time stamp
means the duration that this frame should be shown before skipping to the next frame.
This value has to be specified in milliseconds. If the animation format doesn’t support
frame-based time stamps you can also return a global frame delay value here or even 0.
Returning 0 for every frame will display the animation as fast as possible.

INPUTS

handle handle returned by OpenAnim()

frame index of frame to query (starts from 0)

RESULTS

delay delay in milliseconds for the specified frame

8.5 LoadFrame

NAME
LoadFrame – load raw pixel data of a single frame (V5.0)

SYNOPSIS
ULONG *raw = LoadFrame(APTR handle, int frame, struct LoadAnimCtrl *ctrl);

FUNCTION
This function must load the specified frame and return its raw pixel data encoded as an
array of 32-bit ARGB values. Frame indices are counted from 0 to number of frames mi-
nus 1. The returned pixel array must use the exact dimensions returned by OpenAnim(),
i.e. it must contain exactly width * height * 4 bytes. A line width different from the
animation width is currently not supported.

This function also has to provide certain information about the frame it has just loaded.
This information has to be written to the struct LoadAnimCtrl that is passed in the
third parameter. This structure looks like this:

struct LoadAnimCtrl

{

int Width; // [unused]

int Height; // [unused]

int LineWidth; // [unused]

int NumFrames; // [unused]

int AlphaChannel; // [in]

int ForceAlphaChannel; // [out]

Chapter 8: Anim plugins 53

STRPTR Adapter; // [unused] -- V6.0

ULONG Flags; // [in] -- V6.0

};

In contrast to OpenAnim(), LoadFrame() only uses some members from the struct

LoadAnimCtrl structure pointer. The following members are used by LoadFrame():

AlphaChannel:

This will be set to True whenever the "LoadAlpha" tag has been set to True.

ForceAlphaChannel:

If you set this to True, Hollywood will automatically create an alpha channel
for this frame. For example, if the user calls OpenAnim() on your anima-
tion but does not set the "LoadAlpha" tag to True, the frame will still get
an alpha channel if you set "ForceAlphaChannel" to True. Note that this
functionality was broken before Hollywood 6.0.

Flags: This member can be set to a combination of the following flags:

HWANMFLAGS_TRANSPARENCY:

This flag will be set whenever the user sets the "LoadTrans-
parency" tag to True. You may then choose to write the
frame’s transparency information to its alpha channel and set
the ForceAlphaChannel member to True. See above for more
information. (V6.0)

Make sure to check for Hollywood 6.0 before trying to access this member
because it isn’t there in previous versions

Hollywood will call FreeFrame() to free the pixel array returned by this function.

INPUTS

handle handle returned by OpenAnim()

frame index of frame to load (starts from 0)

ctrl pointer to a struct LoadAnimCtrl

RESULTS

raw an array of raw 32-bit ARGB pixels

8.6 OpenAnim

NAME
OpenAnim – open an animation file (V5.0)

SYNOPSIS
APTR handle = OpenAnim(STRPTR filename, struct LoadAnimCtrl *ctrl);

FUNCTION
This function has to open the specified filename, check if it is in an animation format
that the plugin wants to handle, and, if it is, return a handle to the animation back to
Hollywood. Otherwise it has to return NULL. The handle returned by OpenAnim() is an

54 Hollywood SDK

opaque datatype that only your plugin knows about. Hollywood will simply pass this
handle back to your LoadFrame() function when it wants to have the raw pixel data of
a single frame.

This function also has to provide certain information about the animation it has just
loaded. This information has to be written to the struct LoadAnimCtrl that is passed
in the second parameter. This structure looks like this:

struct LoadAnimCtrl

{

int Width; // [out]

int Height; // [out]

int LineWidth; // [out]

int NumFrames; // [out]

int AlphaChannel; // [out]

int ForceAlphaChannel; // [out]

STRPTR Adapter; // [in] -- V6.0

ULONG Flags; // [in] -- V6.0

};

The following information has to be written to the struct LoadAnimCtrl pointer by
OpenAnim():

NumFrames:

Must be set to the number of frames in this animation.

Width: Must be set to the animation width in pixels. Note that Hollywood only
supports animations which use the same width for every frame.

Height: Must be set to the animation height in pixels. Note that Hollywood only
supports animations which use the same height for every frame.

AlphaChannel:

Must be set to True or False, depending on whether or not this animation
uses frames that have an alpha channel.

ForceAlphaChannel:

If this is set to True, Hollywood will automatically create an alpha chan-
nel for all objects that load this animation. For example, if the user calls
OpenAnim() on your animation but does not set the "LoadAlpha" tag to
True, the animation will still get an alpha channel if you set "ForceAl-
phaChannel" to True. Note that this functionality was broken before Hol-
lywood 6.0.

Adapter: Starting with Hollywood 6.0 users can specify the file adapter that should be
used to open certain files. If this member is non-NULL, Hollywood wants your
plugin to use the file adapter specified in Adapter to open the animation.
This means that you have to use hw_FOpenExt() instead of hw_FOpen()
to open the animation. Make sure to check for Hollywood 6.0 before try-
ing to access this member because it isn’t there in previous versions. See
Section 25.16 [hw FOpenExt], page 236, for details. (V6.0)

Flags: The following flags may be set by Hollywood:

Chapter 8: Anim plugins 55

HWANMFLAGS_TRANSPARENCY:

This flag will be set whenever the user sets the "LoadTrans-
parency" tag to True. You may then choose to write a frame’s
transparency information to its alpha channel and set the
ForceAlphaChannel member to True. See above for more
information. (V6.0)

Make sure to check for Hollywood 6.0 before trying to access this member
because it isn’t there in previous versions

Please note that you should not use ANSI C functions like fopen() to open the file that
is passed to this function because the filename that is passed to this function can also be
a specially formatted filename specification that Hollywood uses to load files that have
been linked to applets or executables. In order to be able to load these files correctly,
you have to use special IO functions provided by Hollywood. See Section 2.12 [File IO
information], page 14, for details.

INPUTS

filename filename to open

ctrl pointer to a struct LoadAnimCtrl for storing information about the anima-
tion

RESULTS

handle a handle that identifies this animation or NULL if plugin doesn’t want to
handle this animation

Chapter 9: Sound plugins 57

9 Sound plugins

9.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_SOUND set will be called whenever Hol-
lywood has to load a sample or music. The plugin can check then whether the file is in a
format that the plugin recognizes and if it is, it can open the sound file and stream the raw
PCM data to Hollywood. This makes it possible to load custom sound file formats with
Hollywood.

By default, sound plugins are automatically activated when Hollywood loads them. Starting
with Hollywood 6.0 this behaviour can be changed by setting the HWEXT_SOUND_NOAUTOINIT
extension bit. If this bit is set, Hollywood will not automatically activate your plugin at
load time. Instead, you will have to manually call hw_AddLoaderAdapter() to activate your
plugin. For example, you could call hw_AddLoaderAdapter() from your RequirePlugin()
implementation. In that case, the sound plugin would only be activated if the user called
@REQUIRE on it. If you do not call hw_AddLoaderAdapter() on a plugin that has auto-
initialization disabled, it will only be available if the user addresses it directly through the
Loader tag. See Section 22.1 [Extension plugins], page 179, to learn how to use plugin
extension bits.

The SDK distribution comes with an example sound plugin which contains a loader for the
AIFF sound format. Feel free to study this example code to learn how sound plugins are
written in practice.

9.2 CloseStream

NAME
CloseStream – close sound handle (V5.0)

SYNOPSIS
void CloseStream(APTR handle);

FUNCTION
This function must close the specified sound stream handle that has been allocated by
your plugin’s OpenStream() function. Hollywood will call CloseStream() when it is
done with your sound file.

INPUTS

handle handle returned by OpenStream()

9.3 GetFormatName

NAME
GetFormatName – get human-readable stream format name (V5.0)

SYNOPSIS
STRPTR name = GetFormatName(APTR handle);

58 Hollywood SDK

FUNCTION
This function must return a human-readable name for the stream format of the sound file
handle passed as parameter 1. This string can be retrieved from Hollywood by querying
the #ATTRFORMAT constant on #MUSIC objects.

INPUTS

handle handle returned by OpenStream()

RESULTS

name stream format name

9.4 OpenStream

NAME
OpenStream – open a sound file (V5.0)

SYNOPSIS
APTR handle = OpenStream(STRPTR filename, struct LoadSoundCtrl *ctrl);

FUNCTION
This function has to open the specified filename, check if it is in a sound file format
that the plugin wants to handle, and, if it is, return a handle to the sound file back to
Hollywood. Otherwise it has to return NULL. The handle returned by OpenStream() is
an opaque datatype that only your plugin knows about. Hollywood will simply pass this
handle back to your StreamSamples() function when it wants to have the raw PCM
data of the sound file.

This function also has to provide certain information about the sound file it has just
opened. This information has to be written to the struct LoadSoundCtrl that is passed
in the second parameter. This structure looks like this:

struct LoadSoundCtrl

{

ULONG Samples; // [out]

int Channels; // [out]

int Bits; // [out]

int Frequency; // [out]

ULONG Flags; // [out]

int SubSong; // [in] -- V5.3

int NumSubSongs; // [out] -- V5.3

STRPTR Adapter; // [in] -- V6.0

};

The following information has to be written to the struct LoadSoundCtrl pointer by
OpenStream():

Samples: The total number of PCM frames in the sound file.

Channels:

The number of channels used by the sound file. This must be either 1 (mono)
or 2 (stereo).

Chapter 9: Sound plugins 59

Bits: The number of bits per PCM sample. This must be either 8 or 16.

Frequency:

The number of PCM frames that should be played per second. Usually 44100
or 48000.

Flags: A combination of the following flags describing additional properties of the
stream:

HWSNDFLAGS_BIGENDIAN

The PCM samples are stored in big endian format. This flag is
only meaningful if the bit resolution is 16. This flag is unsup-
ported on Windows, AROS x86, and Android.

HWSNDFLAGS_SIGNEDINT

The PCM samples are stored as signed integers. This flag must
always be set for 16-bit samples. For 8-bit samples this flag is
unsupported on Windows, Linux and Android, i.e. 8-bit samples
must always be unsigned on these three platforms. On all other
platforms this flag must be set for 8-bit samples and the samples
must be signed.

HWSNDFLAGS_CANSEEK

Plugin supports seeking directly to PCM frames using
SeekStream(). Note that even if this flag isn’t set, your plugin
still needs to be able to rewind the stream, i.e. seek it back to
the very beginning when 0 is passed to SeekStream(). See
Section 9.5 [SeekStream], page 60, for details.

SubSong: This member will be set by Hollywood to the sub-song within the sound
file that Hollywood wants your plugin to open. Only useful for old tracker
modules. (V5.3)

NumSubSongs:

This must be set by your plugin to the total number of sub-songs in the
sound file. This is typically set to 1 because most sound file formats do not
support sub-songs. This feature is only here to allow support for old tracker
module formats that can have various sub-songs in the same file. (V5.3)

Adapter: Starting with Hollywood 6.0 users can specify the file adapter that should be
used to open certain files. If this member is non-NULL, Hollywood wants your
plugin to use the file adapter specified in Adapter to open the sound file. This
means that you have to use hw_FOpenExt() instead of hw_FOpen() to open
the sound file. Make sure to check for Hollywood 6.0 before trying to access
this member because it isn’t there in previous versions. See Section 25.16
[hw FOpenExt], page 236, for details. (V6.0)

Please note that you should not use ANSI C functions like fopen() to open the file that
is passed to this function because the filename that is passed to this function can also be
a specially formatted filename specification that Hollywood uses to load files that have
been linked to applets or executables. In order to be able to load these files correctly,
you have to use special IO functions provided by Hollywood. See Section 2.12 [File IO
information], page 14, for details.

60 Hollywood SDK

INPUTS

filename filename to open

ctrl pointer to a struct LoadSoundCtrl for storing information about the sound
file

RESULTS

handle a handle that identifies this sound file or NULL if plugin doesn’t want to
handle this sound file

9.5 SeekStream

NAME
SeekStream – seek sound stream to new position (V5.0)

SYNOPSIS
void SeekStream(APTR handle, ULONG pos);

FUNCTION
This function must seek the specified sound stream handle to the position passed as
parameter 2. The new position is specified in PCM frames. You only need to implement
direct PCM frame seeking if you have set the flag HWSNDFLAGS_CANSEEK in OpenStream().
However, seeking back to position 0 has to be implemented by all plugins - no matter
whether HWSNDFLAGS_CANSEEK has been set or not. If SeekStream() is called with 0 as
the new position, you need to rewind the stream so that the next call to StreamSamples()
returns PCM frames right from the start of the stream.

Warning: Due to a bug in Hollywood 5.x this function is called with non-zero posi-
tions even if HWSNDFLAGS_CANSEEK has not been set. This has been fixed in Hollywood
6.0. In Hollywood 6.0 and up SeekStream() is only ever called with a zero position if
HWSNDFLAGS_CANSEEK hasn’t been set.

This function must be implemented in a thread-safe way.

INPUTS

handle handle returned by OpenStream()

pos new stream position in PCM frames

9.6 StreamSamples

NAME
StreamSamples – get raw PCM frames from sound stream (V5.0)

SYNOPSIS
int error = StreamSamples(APTR handle, struct StreamSamplesCtrl *ctrl);

FUNCTION
This function has to read the number of raw PCM frames requested from the specified
sound stream and copy them to the memory buffer that is passed to this function.

Chapter 9: Sound plugins 61

Hollywood will pass a pointer to a struct StreamSamplesCtrl to this function. This
structure looks like this:

struct StreamSamplesCtrl

{

APTR Buffer; // [in]

int Request; // [in]

int Written; // [out]

int Done; // [out]

};

Here is the meaning of the individual members:

Buffer: This is a pointer to a memory buffer. You have to copy the PCM frames to
this buffer.

Request: Contains the number of PCM frames that Hollywood wants you to copy to
the memory buffer. Note that this value is specified in PCM frames, not
in bytes. So if the request is 1024 and your PCM samples are formatted as
16-bit wide stereo frames, you would have to copy 4096 bytes to the memory
buffer.

Written: This must be set by your implementation to the number of PCM frames that
has actually been written to Buffer. Once again, the value is specified in
PCM frames, not in bytes.

Done: Set this to True if the stream end has been reached. Otherwise set it to
False.

StreamSamples() must return an error code or 0 for success.

This function must be implemented in a thread-safe way. Hollywood will usually call
this function from a helper thread so make sure that your implementation is thread-safe.

INPUTS

handle handle returned by OpenStream()

ctrl pointer to a struct StreamSamplesCtrl containing Hollywood’s request

RESULTS

error error code or 0 for success

Chapter 10: Vectorgraphics plugins 63

10 Vectorgraphics plugins

10.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_VECTOR set can provide support for
drawing vector-based paths with Hollywood. Hollywood comes with a vectorgraphics library
which can use an internal vectorgraphics backend or an external one provided by a plugin.
The inbuilt vectorgraphics backend is platform-independent but has some restrictions when
it comes to filling complex shapes. That’s why it might be better to write a vectorgraphics
plugin for certain advanced tasks. Vectorgraphics plugins might want to use the vector-
based drawing functionality offered by the host operating systems, e.g. Quartz on Mac OS
X or GDI+ on Windows, or they could use platform-independent vector drawing backends
like Cairo.

Starting with Hollywood 6.0 library plugins support the HWEXT_VECTOR_EXACTFIT exten-
sion. If this extension is set, GetPathExtents() must take the transformation matrix it
is passed into account when computing the path’s extents. If HWEXT_VECTOR_EXACTFIT is
not set, Hollywood will compute the extents of the transformed path but this is not rec-
ommended since it is your plugin that knows best about the real extents. See Section 22.1
[Extension plugins], page 179, to learn how to use plugin extension bits.

10.2 CloseFont

NAME
CloseFont – close FreeType2 font (V5.0)

SYNOPSIS
void CloseFont(FT_Face face);

FUNCTION
This function is used to free FreeType2 fonts that have been allocated by OpenFont().
It’s only necessary to implement this function on WarpOS. On all other systems, this
function can be a dummy. See Section 10.8 [OpenFont], page 72, for details.

INPUTS

face FT_Face font handle allocated by OpenFont()

10.3 CreateVectorFont

NAME
CreateVectorFont – create a vector font (V5.0)

SYNOPSIS
APTR handle = CreateVectorFont(FT_Face face);

FUNCTION
This function has to create a vector font from the FT_Face passed to this function. FT_
Face is a data type for describing font handles allocated by the FreeType2 library which
Hollywood uses to render text. CreateVectorFont() has to return a handle which is

64 Hollywood SDK

then passed in the CCMD_TEXT path command whenever Hollywood wants you to draw
some vector text. See Section 10.4 [DrawPath], page 64, for details.

Hollywood will call FreeVectorFont() to free handles allocated by this function.

INPUTS

face pointer to an FT_Face describing a FreeType2 font

RESULTS

handle handle to a vector font to be used with DrawPath() or NULL in case of an
error

10.4 DrawPath

NAME
DrawPath – draw a vector path (V5.0)

SYNOPSIS
int ok = DrawPath(struct DrawPathCtrl *ctrl);

FUNCTION
This function has to draw a vector path to a bitmap. The path itself and all other
parameters that you need to know are passed in the struct DrawPathCtrl pointer that
this function receives. struct DrawPathCtrl looks like this:

struct DrawPathCtrl

{

void *Path; // [in]

struct PathStyle *Style; // [in]

int Fill; // [in]

int Thickness; // [in]

ULONG Color; // [in]

UBYTE *Buf; // [in]

int LineWidth; // [in]

int Width; // [in]

int Height; // [in]

int Pad; // [unused]

double TX; // [in]

double TY; // [in]

double MinX; // [in]

double MinY; // [in]

struct hwMatrix2D *Matrix; // [in]

};

Hollywood will pass the following data in this structure:

Path: A buffer containing the actual path data. This buffer contains the individ-
ual commands and their parameters in a number of disparate items. The
command is stored in an int and is always first. The number of parameters
that follow the command int and their sizes depend on the actual command
that has been passed. The following commands are currently recognized:

Chapter 10: Vectorgraphics plugins 65

CCMD_STACKTOP:

This is the terminator command. This will always be at the end
of the path buffer. You must break out of your command loop
when encountering CCMD_STACKTOP.

CCMD_NEWSUBPATH:

This has to start a new sub-path and set the current point to
undefined.

CCMD_CLOSEPATH:

This has to close the current path by drawing a line from the
current point to the first point in the sub-path. After that the
current point has to be set to this start and end point of the
sub-path.

CCMD_MOVETO:

This command has to begin a new sub-path. The sub-path’s
current point must be set to the specified position. CCMD_MOVETO
receives the following three arguments:

rel (int) This is a boolean value that indicates whether the
coordinates are relative or absolute values. If this
is True, the coordinates have to be interpreted as
relative to the current point.

x (double)

The x coordinate of the new position.

y (double)

The y coordinate of the new position.

CCMD_LINETO:

This command has to draw a line from the current point to the
specified position. Additionally, it must change the current point
to the line’s end point when it is done. CCMD_LINETO receives
the following three arguments:

rel (int) This is a boolean value that indicates whether the
coordinates are relative or absolute values. If this
is True, the coordinates have to be interpreted as
relative to the current point.

x (double)

The x coordinate of the new position.

y (double)

The y coordinate of the new position.

If there is no current point, CCMD_LINETO must behave as if it
was CCMD_MOVETO, i.e. it must simply set the current point to
the specified vertex.

CCMD_CURVETO:

This command has to draw a Bézier curve that runs from the
current point to the position passed in the final two coordinates.

66 Hollywood SDK

The other four coordinates are the control points for the curve.
Additionally, it must change the current point to the curve’s
end point when it is done. CCMD_CURVETO receives the following
seven arguments:

rel (int) This is a boolean value that indicates whether the
coordinates are relative or absolute values. If this
is True, the coordinates have to be interpreted as
relative to the current point.

x1 (double)

The x coordinate of the first control point.

y1 (double)

The y coordinate of the first control point.

x2 (double)

The x coordinate of the first control point.

y2 (double)

The y coordinate of the first control point.

x3 (double)

The x coordinate of the end point.

y3 (double)

The y coordinate of the end point.

If there is no current point, CCMD_CURVETO must use the point
passed in (x1,y1) as the current point.

CCMD_ARC:

This command has to draw an elliptical arc. CCMD_ARC must
open a new subpath for the new arc only in case there is no
currently active subpath. If there is already a subpath, CCMD_ARC
must connect its starting vertex with the current vertex of the
subpath. CCMD_ARC also must not close the subpath when it has
finished adding its vertices. CCMD_ARCmust not connect the start
and end angles of the arc with its center point automatically.
The user has to explicitly request this by issuing separate CCMD_
MOVETO and CCMD_LINETO commands before and after CCMD_ARC.
CCMD_ARC receives the following arguments:

xc (double)

The x center point of the arc.

yc (double)

The y center point of the arc.

ra (double)

Arc’s radius on the x axis.

rb (double)

Arc’s radius on the y axis.

Chapter 10: Vectorgraphics plugins 67

start (double)

Start angle in degrees.

end (double)

End angle in degrees.

clockwise (int)

Whether or not the angles should be connected in
clockwise direction.

When CCMD_ARC is done, it needs to set the current point to the
position of the end angle.

CCMD_BOX:

This command has to draw a rectangle. CCMD_BOX must first
open a new subpath, then add the rectangle’s vertices to it and
close the subpath when it is finished. Optionally, the rectan-
gle can have rounded corners. CCMD_BOX receives the following
arguments:

x (double)

X position of the rectangle.

y (double)

Y position of the rectangle.

width (double)

Rectangle width.

height (double)

Rectangle height.

rnd1 (int)

Integer value in the range of 0 to 100 specifying the
degree of rounding for the first corner of the rectan-
gle. 0 for no rounding.

rnd2 (int)

Integer value in the range of 0 to 100 specifying the
degree of rounding for the second corner of the rect-
angle. 0 for no rounding.

rnd3 (int)

Integer value in the range of 0 to 100 specifying the
degree of rounding for the third corner of the rect-
angle. 0 for no rounding.

rnd4 (int)

Integer value in the range of 0 to 100 specifying the
degree of rounding for the fourth corner of the rect-
angle. 0 for no rounding.

CCMD_TEXT:

This command has to draw vector text relative to the current
point. The individual characters should be added as closed sub-
paths. CCMD_TEXT receives the following arguments:

68 Hollywood SDK

ptr (APTR)

This is set to a pointer to a vector font created by
CreateVectorFont().

size (int)

Desired font size.

text (varies)

The text to draw is passed directly after the inte-
ger specifying the font size. It is a null-terminated
string encoded in the UTF-8 format. To read the
next command following the string data, you need to
pad the pointer address after the terminating NULL

to a multiple of 4, i.e. a long-aligned address. Com-
mands are always long-aligned so be sure to pad to
a long-aligned address after the string end.

When CCMD_TEXT is done, it needs to set the current point to
where the next character would be displayed.

Style: This will be set to a pointer to a struct PathStyle containing information
about the line style that shall be used when drawing this path. struct

PathStyle looks like this:

struct PathStyle

{

int LineJoin;

int LineCap;

int FillRule;

int AntiAlias;

double DashOffset;

double *Dashes;

int NumDashes;

};

Here’s an explanation of the individual member’s function:

LineJoin:

Contains the desired line join style for the path. This can be
one of the following constants:

HWLINEJOIN_MITER:

Join lines using a sharp corner.

HWLINEJOIN_ROUND:

Join lines using round edges.

HWLINEJOIN_BEVEL:

Join lines using cut-off edges.

LineCap: Determines how line endings should be drawn. This can be one
of the following constants:

Chapter 10: Vectorgraphics plugins 69

HWLINECAP_BUTT:

Line should stop exactly at the end point without
any further decoration.

HWLINECAP_ROUND:

Line ending should be round.

HWLINECAP_SQUARE:

Line ending should be squared.

FillRule:

Determines the fill rule for overlapping sections of the path. This
can be one of the following constants:

HWFILLRULE_WINDING:

Fill all overlapping paths only if they are not wind-
ing.

HWFILLRULE_EVENODD:

Fill overlapping paths if the total number of inter-
sections is odd.

AntiAlias:

This indicates whether Hollywood wants you to draw
anti-aliased shapes or monochrome shapes. True means
anti-aliasing should be used.

DashOffset:

If NumDashes is greater than zero, this specifies the offset at
which dashing should start.

Dashes: If NumDashes is greater than zero, this is set to a double array
which contains NumDashes entries, specifying alternate on and
off sections that define the dash style.

NumDashes:

If this is greater than zero, Hollywood wants you to draw
dashed lines. The dashing pattern is specified in DashOffset

and Dashes (see above).

Fill: This member specifies whether Hollywood wants you to draw filled shapes
or just the stroke outlines. If this is True, you have to fill all shapes.

Thickness:

This member sets the line thickness.

Color: This is currently unused since DrawPath() doesn’t draw into color channels
at all. Ignore this.

Buf: This contains a pointer to an 8-bit bitmap which you have to draw to. See
LineWidth to find out about the bitmap’s alignment.

LineWidth:

This contains the bytes per row of the bitmap passed in Buf.

70 Hollywood SDK

Width: Contains the width of the bitmap in pixels. This can be less than LineWidth.

Height: Contains the height of the bitmap in pixels.

TX: If this does not equal 0, Hollywood wants you to translate every pixel that
you draw by this many pixels on the x-axis. Note that the translation must
be done after applying the transformation matrix passed in Matrix.

TY: If this does not equal 0, Hollywood wants you to translate every pixel that
you draw by this many pixels on the y-axis. Note that the translation must
be done after applying the transformation matrix passed in Matrix.

MinX: You have to translate the path by this many pixels on the x-axis before
drawing it. Note that this value is inverted. A positive value indicates
translation to the left whereas a negative value requires you to translate the
shape to the right.

MinY: You have to translate the path by this many pixels on the y-axis before
drawing it. Note that this value is inverted. A positive value indicates
upwards translation whereas a negative value requires you to translate the
shape in downward direction.

Matrix: Contains a 2D transformation matrix that should be applied to this path.
If there is no transformation, you’ll get a pointer to an identity matrix con-
sisting of (1,0,0,1).

INPUTS

ctrl pointer to a struct DrawPathCtrl

RESULTS

ok True for success, False otherwise

10.5 FreeVectorFont

NAME
FreeVectorFont – free a vector font (V5.0)

SYNOPSIS
void FreeVectorFont(APTR handle);

FUNCTION
This function is used to free vector fonts that have been allocated by
CreateVectorFont().

INPUTS

handle vector font handle allocated by CreateVectorFont()

Chapter 10: Vectorgraphics plugins 71

10.6 GetCurrentPoint

NAME
GetCurrentPoint – get path’s current point (V5.0)

SYNOPSIS
void GetCurrentPoint(void *path, struct PathStyle *style, double *curx,

double *cury);

FUNCTION
This function has to return the current point of the specified path. Your implementation
has to write the x and y position of the current point to the curx and cury pointers
passed as parameters 3 and 4. See Section 10.4 [DrawPath], page 64, for a detailed
description on how the path buffer is formatted.

INPUTS

path pointer to a disparate array containing the path; See Section 10.4 [Draw-
Path], page 64, for details.

style pointer to a struct PathStyle containing the path’s style; See Section 10.4
[DrawPath], page 64, for details.

curx pointer to a double that receives the path’s current x point

cury pointer to a double that receives the path’s current y point

10.7 GetPathExtents

NAME
GetPathExtents – compute path’s extents (V5.0)

SYNOPSIS
void GetPathExtents(struct PathExtentsCtrl *ctrl);

FUNCTION
This function has to compute the extents of the specified path if drawn using the specified
style. Hollywood needs this information to determine the size of the bitmap it allocates
and passes to DrawPath(). Hollywood passes a struct PathExtentsCtrl pointer which
contains all information to this function. struct PathExtentsCtrl looks like this:

struct PathExtentsCtrl

{

void *Path; // [in]

struct PathStyle *Style; // [in]

int Fill; // [in]

int Thickness; // [in]

double TX; // [in]

double TY; // [in]

double X1; // [out]

double Y1; // [out]

double X2; // [out]

72 Hollywood SDK

double Y2; // [out]

struct hwMatrix2D *Matrix; // [in] -- V6.0

};

Here’s a description of each structure member’s function:

Path: The path’s whose extents are to be calculated. This is a pointer to a disparate
array consisting of a variable number of path commands and their arguments.
See Section 10.4 [DrawPath], page 64, for details.

Style: This will be set to a pointer to a struct PathStyle containing informa-
tion about the line style that shall be used when drawing this path. See
Section 10.4 [DrawPath], page 64, for details.

Fill: This member specifies whether Hollywood wants the extents of filled shapes
or just the stroke outlines. If this is True, you have to determine the extents
of filled shapes.

Thickness:

This member contains the line thickness for the path.

TX: If this does not equal 0, Hollywood wants you to translate the path by this
many pixels on the x-axis before determining the extents.

TY: If this does not equal 0, Hollywood wants you to translate the path by this
many pixels on the y-axis before determining the extents.

X1: Your implementation must set this member to the start x position of the
path.

Y1: Your implementation must set this member to the start y position of the
path.

X2: Your implementation must set this member to the end x position of the path.

Y2: Your implementation must set this member to the end y position of the path.

Matrix: This member must only be handled if the HWEXT_VECTOR_EXACTFIT exten-
sion bit has been set. In that case, this member contains a 2D transformation
matrix that should be applied to this path before computing the path ex-
tents. If there is no transformation, you’ll get a pointer to an identity matrix
consisting of (1,0,0,1). (V6.0)

INPUTS

ctrl pointer to a struct PathExtentsCtrl which contains information about the
path and receives details about its extents

10.8 OpenFont

NAME
OpenFont – create FreeType2 font from memory buffer (V5.0)

SYNOPSIS
FT_Face face = OpenFont(UBYTE *data, int datalen);

Chapter 10: Vectorgraphics plugins 73

FUNCTION
This function has to create an FT_Face handle from the raw font data passed to it.
You only need to implement this function if you build plugins for WarpOS. On all other
systems, your OpenFont() implementation can just return NULL because it is never called.

The reason why this function is needed on WarpOS is that the WarpOS version of
Hollywood contains two builds of FreeType2: one for 68020 and one for the PowerPC
architecture. Plugins will always have to work with the PPC native version to avoid con-
text switches. Hollywood itself, however, uses the 68020 build of FreeType2 because it’s
faster in most cases because Hollywood doesn’t have to do any context switches. Using
the FT_Face handle allocated by the 68020 version of FreeType2 is not going to work
with the PowerPC version of FreeType2, though, due to different structure alignments,
etc. That is why you need to use the PowerPC version of FreeType2 on WarpOS to
create a compatible FT_Face handle which is then passed to CreateVectorFont(). On
all other systems OpenFont() is not necessary because there’s only a single-architecture
FreeType2 in Hollywood.

Basically, all this function has to do on WarpOS is the following:

HW_EXPORT FT_Face OpenFont(UBYTE *data, int datalen)

{

FT_Face face;

if(hwcl->FT2Base->FT_New_Memory_Face(freetype_library, data,

datalen, 0, &face)) return NULL;

return face;

}

HW_EXPORT void CloseFont(FT_Face face)

{

hwcl->FT2Base->FT_Done_Face(face);

}

Hollywood will call CloseFont() to free handles allocated by this function.

INPUTS

data pointer to raw font data (usually pointer to TrueType font data)

datalen size of the data buffer in bytes

RESULTS

face handle to an FT_Face allocated by the WarpOS version of FreeType2 or
NULL in case of an error

10.9 TranslatePath

NAME
TranslatePath – translate a path (V5.0)

SYNOPSIS
void TranslatePath(struct TranslatePathCtrl *ctrl);

74 Hollywood SDK

FUNCTION
This function has to translate the specified path by the specified offsets.
TranslatePath() receives a pointer to a struct TranslatePathCtrl which looks like
this:

struct TranslatePathCtrl

{

void *Path; // [in/out]

int Pad; // [unused]

double TX; // [in]

double TY; // [in]

};

Here’s a description of the individual structure members:

Path: The path which has to be translated. This is a pointer to a disparate array
consisting of a variable number of path commands and their arguments.
See Section 10.4 [DrawPath], page 64, for details. Your implementation of
TranslatePath() has to retrieve all coordinates from this buffer and update
them with the translated coordinates.

TX: Amount of pixels this path should be translated on the x-axis. This can also
be negative.

TY: Amount of pixels this path should be translated on the y-axis. This can also
be negative.

INPUTS

ctrl pointer to a struct TranslatePathCtrl which contains information about
the path and receives the translated path

Chapter 11: Video plugins 75

11 Video plugins

11.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_VIDEO set will be called whenever Hol-
lywood has to open a video file. The plugin can check then whether the file is in a format
that the plugin recognizes and if it is, it can open the video file and stream the raw pixel
and audio data to Hollywood. This makes it possible to load custom video file formats with
Hollywood.

By default, video plugins are automatically activated when Hollywood loads them. Starting
with Hollywood 6.0 this behaviour can be changed by setting the HWEXT_VIDEO_NOAUTOINIT
extension bit. If this bit is set, Hollywood will not automatically activate your plugin at
load time. Instead, you will have to manually call hw_AddLoaderAdapter() to activate your
plugin. For example, you could call hw_AddLoaderAdapter() from your RequirePlugin()
implementation. In that case, the video plugin would only be activated if the user called
@REQUIRE on it. If you do not call hw_AddLoaderAdapter() on a plugin that has auto-
initialization disabled, it will only be available if the user addresses it directly through the
Loader tag. See Section 22.1 [Extension plugins], page 179, to learn how to use plugin
extension bits.

11.2 CloseVideo

NAME
CloseVideo – close video handle (V5.0)

SYNOPSIS
void CloseVideo(APTR handle);

FUNCTION
This function must close the specified video stream handle that has been allocated by
your plugin’s OpenVideo() function. Hollywood will call CloseVideo() when it is done
with your video file.

INPUTS

handle handle returned by OpenVideo()

11.3 DecodeAudioFrame

NAME
DecodeAudioFrame – get audio frame from packet (V5.0)

SYNOPSIS
int status = DecodeAudioFrame(APTR handle, APTR packet,

struct DecodeAudioFrameCtrl *ctrl);

FUNCTION
This function must decode the specified audio packet into PCM audio frames. Hollywood
will pass a pointer to a struct DecodeAudioFrameCtrl structure to this function. This
structure looks like the following:

76 Hollywood SDK

struct DecodeAudioFrameCtrl

{

WORD *Buffer; // [in]

int BufferSize; // [in]

int Written; // [out]

int Done; // [out]

};

Your DecodeAudioFrame() implementation has to write to the following members of this
structure:

Buffer: This contains a pointer to a memory buffer allocated for you by Hollywood.
You have to write the individual PCM frames to this buffer. Please note
that audio must always be written as 16-bit PCM frames in native endian
byte order. In case the video uses stereo sound, the PCM samples must be
stored in interleaved order.

BufferSize:

Contains the size of the memory buffer in bytes. This should always be
enough to hold one second of audio PCM data but be sure to check against
this value when writing PCM frames to the buffer allocated by Hollywood
or you might trash innocent memory. If there’s not enough space, simply
set Done to False and Hollywood will call you again.

Written: This must be set to the number of bytes that you have copied to the memory
buffer. Please note that this is specified in bytes, not in PCM frames or
samples.

Done: This must be set to False if there is more audio data to decode in this
packet. In that case, Hollywood will call you again. If you’ve decoded all
audio data that is in this packet, set this member to True. Hollywood will
then free the packet using FreePacket().

This function must return a status code: 0 indicates success, any other value indicates
failure.

This function must be implemented in a thread-safe way.

INPUTS

handle handle returned by OpenVideo()

packet pointer to a packet allocated by NextPacket()

ctrl pointer to a struct DecodeAudioFrameCtrl to be filled out by the function

RESULTS

status a status code (see above)

11.4 DecodeVideoFrame

NAME
DecodeVideoFrame – get video frame from packet (V5.0)

Chapter 11: Video plugins 77

SYNOPSIS
int more = DecodeVideoFrame(APTR handle, APTR packet,

struct DecodeVideoFrameCtrl *ctrl);

FUNCTION
This function must decode the specified packet into a video frame. For most video
formats several packets need to be decoded in order to get a single video frame. If your
video decoder needs more packets in order to finish decoding the video frame, then you
have to return True here. This indicates that DecodeVideoFrame() wants to be fed more
packets before handing out a decoded frame.

Hollywood will pass a pointer to a struct DecodeVideoFrameCtrl structure to this
function. This structure looks like the following:

struct DecodeVideoFrameCtrl

{

UBYTE **Buffer; // [in/out]

int *BufferWidth; // [in/out]

int Delay; // [out]

ULONG Offset; // [out]

double PTS; // [out]

double DTS; // [out]

};

If you return True to indicate that you are not able to decode a full frame just yet, you
don’t have to write anything to the struct DecodeVideoFrameCtrl pointer passed to
you by Hollywood. Otherwise you have to set the following members:

Buffer: This is already initialized to an array of three UBYTE* pointers. You need to
set these pointers to the chunks of memory containing the actual pixel data
of the decoded frame. If you have set the PixFmt member in OpenVideo()

to HWVIDPIXFMT_ARGB32, you only need to set the first pointer because
ARGB32 frames are stored as chunky pixels. If you use HWVIDPIXFMT_

YUV420P, though, you need to set all three pointers to point to the individual
YUV planes, i.e.

ctrl->Buffer[0] = y_plane;

ctrl->Buffer[1] = u_plane;

ctrl->Buffer[2] = v_plane;

Make sure that you do not modify the base Buffer pointer! You must only
write to the individual three pointers already allocated for you by Hollywood.

BufferWidth:

This is already initialized to an array of three integers. You need to store the
byte length of one row of pixel data for each pixel map you pass. If you have
set the PixFmt member in OpenVideo() to HWVIDPIXFMT_ARGB32, you only
need to set the first integer to the byte width of a single row of ARGB32
pixel array because ARGB32 frames are stored as chunky pixels. If you use
HWVIDPIXFMT_YUV420P, though, you need to set all three integers to point
to the byte width of a single row in each of the three individual YUV planes,
i.e.

78 Hollywood SDK

ctrl->BufferWidth[0] = y_plane_bytewidth;

ctrl->BufferWidth[1] = u_plane_bytewidth;

ctrl->BufferWidth[2] = v_plane_bytewidth;

Make sure that you do not modify the base BufferWidth pointer! You must
only write to the individual integer array items already allocated for you by
Hollywood.

Delay: This member can be used to specify an additional delay for the video
frame. The delay you specify here is multiplied by the FrameTime specified
in OpenVideo() divided by two. So to delay the current frame for one
FrameTime unit, you’d have to set this member to 2. This should normally
be set to 0.

Offset: This must be set to the current offset in the video stream in bytes. This is
only required if SeekMode in OpenVideo() has been set to HWVIDSEEKMODE_

BYTE. If that is not the case, you can set this member to 0.

PTS: This must be set to the video frame’s presentation time stamp, i.e. the time
when this frame should be presented to the viewer, relative to the beginning
of the video stream. You have to specify this time stamp as a floating point
number in seconds, i.e. a presentation time stamp of 10.2 means that the
frame is to be shown 10.2 seconds after the start of the video stream. The
value you pass in PTS must be a multiple of the FrameTime fraction specified
in OpenVideo().

DTS: This should normally be set to -1. You only need to set this to a time stamp
if the frame’s presentation order is different from the encoding order. In that
case you need to set this member to the decoding time stamp. As above,
PTS also needs to be specified as a floating point number in seconds.

This function must be implemented in a thread-safe way.

INPUTS

handle handle returned by OpenVideo()

packet pointer to a packet allocated by NextPacket()

ctrl pointer to a struct DecodeVideoFrameCtrl to be filled out by the function

RESULTS

more True if function needs more packets to decode a frame, False if it has suc-
cessfully decoded a frame

11.5 FlushAudio

NAME
FlushAudio – flush audio decoder (V5.0)

SYNOPSIS
void FlushAudio(APTR handle);

Chapter 11: Video plugins 79

FUNCTION
This function must flush the audio decoder, i.e. it must reset itself to a clean state so
that DecodeAudioFrame() can be fed a fresh packet without the risk of confusing the
decoder because it was expecting a different packet. This function is called by Hollywood
before seeking the audio stream.

Depending on how flexible your decoder is, this function may not need to do anything
at all.

This function must be implemented in a thread-safe way.

INPUTS

handle handle returned by OpenVideo()

11.6 FlushVideo

NAME
FlushVideo – flush video decoder (V5.0)

SYNOPSIS
void FlushVideo(APTR handle);

FUNCTION
This function must flush the video decoder, i.e. it must reset itself to a clean state so
that DecodeVideoFrame() can be fed a fresh packet without the risk of confusing the
decoder because it was expecting a different packet. This function is called by Hollywood
before seeking the video stream.

Depending on how flexible your decoder is, this function may not need to do anything
at all.

This function must be implemented in a thread-safe way.

INPUTS

handle handle returned by OpenVideo()

11.7 FreePacket

NAME
FreePacket – free stream packet (V5.0)

SYNOPSIS
void FreePacket(APTR packet);

FUNCTION
This function must free the specified stream packet that has been allocated by your
plugin’s NextPacket() function. Hollywood will call FreePacket() when it is done
with this packet.

This function must be implemented in a thread-safe way.

INPUTS

packet packet allocated by NextPacket()

80 Hollywood SDK

11.8 GetVideoFormat

NAME
GetVideoFormat – get human-readable stream format name (V5.0)

SYNOPSIS
STRPTR name = GetVideoFormat(APTR handle);

FUNCTION
This function must return a human-readable name for the stream format of the video file
handle passed as parameter 1. This string can be retrieved from Hollywood by querying
the #ATTRFORMAT constant on #VIDEO objects.

INPUTS

handle handle returned by OpenVideo()

RESULTS

name video format name

11.9 GetVideoFrames

NAME
GetVideoFrames – get number of video frames in stream (V5.0)

SYNOPSIS
ULONG count = GetVideoFrames(APTR handle);

FUNCTION
This function must return the total number of video frames in the specified video stream
handle. If you don’t have this information, you might return 0 here.

INPUTS

handle handle returned by OpenVideo()

RESULTS

count total number of video frames

11.10 NextPacket

NAME
NextPacket – get next packet from stream (V5.0)

SYNOPSIS
int status = NextPacket(APTR handle, struct VideoPacketStruct *p);

FUNCTION
This function must read the next packet from the video stream and return it to Hol-
lywood. NextPacket() is passed a struct VideoPacketStruct pointer that looks like
the following:

Chapter 11: Video plugins 81

struct VideoPacketStruct

{

APTR Packet; // [out]

int Type; // [out]

int Size; // [out]

int Pad; // [unused]

double PTS; // [out]

};

You have to fill in the following members of the structure:

Packet: Must be set to a pointer to the actual packet data. This is an opaque
data type only understood by your plugin. The packet pointer you
specify here will be passed to your plugin’s DecodeVideoFrame() or
DecodeAudioFrame() function, depending on the packet type. To free the
packet data passed here, Hollywood will call FreePacket() on it.

Type: This must be set to the type of data that is in the packet. This must be one
of the following predefined types:

HWVIDPKTTYPE_VIDEO:

Packet contains video data.

HWVIDPKTTYPE_AUDIO

Packet contains audio data.

Size: This must be set to the packet’s size in bytes.

PTS: This must be set to the packet data’s presentation time stamp, i.e. the time
when this packet’s data should be presented to the viewer, relative to the
beginning of the video stream. You have to specify this time stamp as a
floating point number in seconds, i.e. a presentation time stamp of 10.2
means that the packet’s data is to be shown 10.2 seconds after the start
of the video stream. The value you pass in PTS must be a multiple of the
FrameTime fraction specified in OpenVideo().

NextPacket() must return a special status code: 0 means success, -1 means
NextPacket() has reached the stream end, and -2 means there was an error.

This function must be implemented in a thread-safe way.

INPUTS

handle handle returned by OpenVideo()

v pointer to a struct VideoPacketStruct to be filled out by the function

RESULTS

status status code (see above)

11.11 OpenVideo

NAME
OpenVideo – open a video file (V5.0)

82 Hollywood SDK

SYNOPSIS
APTR handle = OpenVideo(STRPTR filename, struct OpenVideoCtrl *ctrl);

FUNCTION
This function has to open the specified filename, check if it is in a video file format
that the plugin wants to handle, and, if it is, return a handle to the video file back to
Hollywood. Otherwise it has to return NULL. The handle returned by OpenVideo() is
an opaque datatype that only your plugin knows about. Hollywood will simply pass
this handle back to your NextPacket() function when it wants to have the individual
packets of the video file.

This function also has to provide certain information about the video file it has just
opened. This information has to be written to the struct OpenVideoCtrl that is passed
in the second parameter. This structure looks like this:

struct OpenVideoCtrl

{

int Width; // [out]

int Height; // [out]

ULONG Duration; // [out]

int Frequency; // [out]

int Channels; // [out]

int SeekMode; // [out]

int BitRate; // [out]

int PixFmt; // [out]

ULONG Flags; // [out]

int Pad; // [unused]

double FrameTime; // [out]

DOSINT64 FileSize; // [out] -- V6.0

STRPTR Adapter; // [in] -- V6.0

};

The following information has to be written to the struct OpenVideoCtrl pointer by
OpenVideo():

Width: Frame width in pixels.

Height: Frame height in pixels.

Duration:

Duration of the video stream in milliseconds.

Frequency:

The number of PCM frames that should be played per second. Usually 44100
or 48000. If there is no audio stream accompanying the video stream, set
this to 0.

Channels:

The number of channels used by the sound file. This must be either 1 (mono)
or 2 (stereo). If there is no audio stream accompanying the video stream,
set this to 0.

Chapter 11: Video plugins 83

SeekMode:

This member specifies the unit in which SeekVideo() receives its seek des-
tination position. This can be one of the following constants:

HWVIDSEEKMODE_TIME:

Seek destination position will be passed as a time stamp in mil-
liseconds. This is the most common seek mode but not all video
formats support it.

HWVIDSEEKMODE_BYTE:

Seek destination position will be passed as an absolute position
in bytes which is calculated by multiplying the BitRate param-
eter of this structure with the target time stamp. This will
obviously only work with video streams that use a constant bit
rate. If you choose this mode, make sure to set BitRate to the
correct video bit rate.

Note that this member doesn’t have any effect if the HWVIDFLAGS_CANSEEK

flag isn’t set.

BitRate: Set this to the number of bytes this video stream needs to store one second of
video data. You only need to provide this information if you’ve set SeekMode
to HWVIDSEEKMODE_BYTE. Otherwise this information is not needed. Please
note that in contrast to its name, this member actually needs to be set to a
value in bytes, not in bits!

PixFmt: This member specifies the pixel format in which you want to provide the
individual video frame data to Hollywood. This can be one of the following
constants:

HWVIDPIXFMT_YUV420P:

Pixel data is provided in planar YUV 4:2:0 format.

HWVIDPIXFMT_ARGB32:

Pixel data is provided as 32-bit ARGB pixel data.

Flags: A combination of the following flags describing additional properties of the
stream:

HWVIDFLAGS_CANSEEK

This plugin’s SeekVideo() function supports seeking according
to the mode specified in SeekMode. Note that even if this flag
isn’t set, your plugin still needs to be able to rewind the video
stream, i.e. seek it back to the very beginning in case 0 is passed
to SeekVideo(). See Section 11.12 [SeekVideo], page 84, for
details.

FrameTime:

Specifies how long each video frame should be presented in seconds which
can then be used to compute the frame rate. For example, a FrameTime of
0.04 means that the video is meant to play at 25 frames per second.

84 Hollywood SDK

FileSize:

If Hollywood 6.0 or higher is calling your function, you should set this mem-
ber to the size of the video file in bytes or -1 if you don’t know the size.
Setting this member is optional but doing so allows Hollywood to open your
video faster since Hollywood won’t have to query the file size on its own if
you can provide it. Make sure to check for Hollywood 6.0 before touching
this member because it wasn’t there in previous versions. (V6.0)

Adapter: Starting with Hollywood 6.0 users can specify the file adapter that should be
used to open certain files. If this member is non-NULL, Hollywood wants your
plugin to use the file adapter specified in Adapter to open the video file. This
means that you have to use hw_FOpenExt() instead of hw_FOpen() to open
the video file. Make sure to check for Hollywood 6.0 before trying to access
this member because it isn’t there in previous versions. See Section 25.16
[hw FOpenExt], page 236, for details. (V6.0)

Please note that you should not use ANSI C functions like fopen() to open the file that
is passed to this function because the filename that is passed to this function can also be
a specially formatted filename specification that Hollywood uses to load files that have
been linked to applets or executables. In order to be able to load these files correctly,
you have to use special IO functions provided by Hollywood. See Section 2.12 [File IO
information], page 14, for details.

INPUTS

filename filename to open

ctrl pointer to a struct OpenVideoCtrl for storing information about the video
file

RESULTS

handle a handle that identifies this video file or NULL if plugin doesn’t want to handle
this video file

11.12 SeekVideo

NAME
SeekVideo – seek video stream to new position (V5.0)

SYNOPSIS
int status = SeekVideo(APTR handle, ULONG pos, int mode);

FUNCTION
This function must seek the specified video stream handle to the position passed as
parameter 2. The new position is specified either in milliseconds or as a byte offset
relative to the beginning of the file. This depends on the SeekMode you have set in
OpenVideo(). The ’mode’ parameter passed to this function is actually redundant. It
will always be the same as the SeekMode passed in OpenVideo().

Before calling SeekVideo(), Hollywood will always flush your audio and video decoder
states using FlushAudio() and FlushVideo().

Chapter 11: Video plugins 85

Note that you only need to implement seeking if you have set the flag HWVIDFLAGS_

CANSEEK in OpenVideo(). However, seeking back to position 0 has to be implemented by
all plugins - no matter whether HWVIDFLAGS_CANSEEK has been set or not. If SeekVideo()
is called with 0 as the new position, you need to rewind the stream so that the next call
to NextPacket() returns packets right from the start of the stream.

This function must be implemented in a thread-safe way.

INPUTS

handle handle returned by OpenVideo()

pos new stream position in a unit that depends on "mode"

mode seek mode

RESULTS

status status code indicating error or success (see above)

Chapter 12: Image saver plugins 87

12 Image saver plugins

12.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_SAVEIMAGE set can register one or more
additional output image formats. The user will then be able to save images in the output
formats supported by the plugin. Plugins have to register new output image formats by
passing the name of a constant that should be used to access the new format. For example,
a plugin might choose to register a new output image format under the constant #IMGFMT_
CUSTOMFORMAT. Whenever the user calls SaveBrush() or SaveSnapshot() now and passes
#IMGFMT_CUSTOMFORMAT as the image format, Hollywood will ask the plugin to save the
image.

12.2 RegisterImageSaver

NAME
RegisterImageSaver – register a new image saver (V5.0)

SYNOPSIS
void RegisterImageSaver(struct SaveImageReg *reg)

FUNCTION
Hollywood will call this function to get information about the image saver your plugin
wants to register. In addition, RegisterImageSaver() has to tell Hollywood whether
it wants to register another image saver. Hollywood will pass a pointer to a struct

SaveImageReg to this function. This structure looks like this:

struct SaveFormatReg

{

ULONG CapsMask; [out]

ULONG FormatID; [in/out]

STRPTR FormatName; [out]

};

struct SaveImageReg

{

struct SaveFormatReg hdr;

};

Your implementation has to do the following with the individual structure members:

CapsMask:

This must be set to a combination of flags that tell Hollywood about the
capabilities of the image saver that is to be registered. The following flags
are currently supported:

HWSAVEIMGCAPS_ARGB:

Your image saver supports source image data that is delivered
as a 32-bit ARGB pixel array.

88 Hollywood SDK

HWSAVEIMGCAPS_CHUNKY:

Your image saver supports source image data that is delivered
as 8-bit chunky pixels that are index values for a palette look-up
table.

HWSAVEIMGCAPS_ALPHA:

Your image saver supports alpha channel saving. This is only
supported if you also set HWSAVEIMGCAPS_ARGB.

HWSAVEIMGCAPS_MORE:

If you set this flag, Hollywood will call RegisterImageSaver()
again so that you can register another saver. If you don’t want
to register another saver, don’t set this flag. (V5.3)

Note that HWSAVEIMGCAPS_ARGB and HWSAVEIMGCAPS_CHUNKY are not mutu-
ally exclusive. You can set them both if the target image format supports
both true colour and palette-based pixel data storage.

FormatID:

This member must be set to a unique 32-bit value that should be assigned
to the constant that is registered for accessing this image saver from Holly-
wood scripts. Values smaller than 32768 are reserved for internal Hollywood
use. You may use values larger than 32768 for your saver but if you want to
publish your plugin, you need to contact Airsoft Softwair to obtain a unique
value that is still vacant. This won’t cost you anything; it’s just needed to
make sure that plugin image savers don’t use conflicting identifiers. Also,
once you have published your image saver plugin, the FormatID you have
specified must not be changed or you will break compatibility with applets
or executables that have been compiled with previous versions. If you are
registering more than one image saver using HWSAVEIMGCAPS_MORE, you can
look at the FormatID member to tell how many times Hollywood has already
called RegisterImageSaver() because FormatID will contain the identifier
of the last image saver you registered. If FormatID is 0, then this is the first
call to RegisterImageSaver(). Note that it is not recommended to keep
your own counter because Hollywood might call RegisterImageSaver()

multiple times, i.e. it might first loop over RegisterImageSaver() to deter-
mine how many image savers there are in total and then it might loop over
RegisterImageSaver() again to actually register their names.

FormatName:

This must be set to a string that should form the second half of the con-
stant that Hollywood registers for your image saver. This string you specify
here must follow the naming restrictions for Hollywood constants, i.e. only
alphabetical characters, numbers and very few special characters like the un-
derscore character are allowed. The #IMGFMT_ prefix must not be included in
the string you pass. Hollywood will add this automatically, i.e. if you pass
the string "TESTFORMAT" here, Hollywood will make your image saver
available under the constant #IMGFMT_TESTFORMAT.

INPUTS

reg pointer to a struct SaveImageReg to be filled out by your implementation

Chapter 12: Image saver plugins 89

12.3 SaveImage

NAME
SaveImage – save image to disk (V5.0)

SYNOPSIS
int ok = SaveImage(STRPTR filename, struct SaveImageCtrl *ctrl);

FUNCTION
This function must save the image provided by the pointer in the second parameter to
the filename specified in the first parameter. Hollywood passes a pointer to a struct

SaveImageCtrl to this function. This structure looks like this:

struct SaveImageCtrl

{

APTR Data; // [in]

int *Palette; // [in]

int Width; // [in]

int Height; // [in]

int Modulo; // [in]

int Format; // [in]

int Quality; // [in]

int Colors; // [in]

int TransIndex; // [in]

ULONG Flags; // [in]

ULONG FormatID; // [in] -- V5.3

};

In this structure Hollywood passes the following information to your SaveImage() func-
tion:

Data: The pixel data to save to the file. The actual format of this data depends
on the Format member.

Width: Width of the image in pixels.

Height: Height of the image in pixels.

Modulo: Number of bytes used by a single row of pixel data. This may be larger than
the specified width because there may be some padding involved.

Format: This specifies the pixel format of the source data passed in Data. May be
one of the following constants:

HWSAVEIMGFMT_ARGB:

Data is a 32-bit array consisting of ARGB pixels.

HWSAVEIMGFMT_CHUNKY:

Data contains 8-bit indices into a color look-up table. This color
look-up table is passed in Palette below.

90 Hollywood SDK

You will only have to handle those formats here that you have explicitly
declared as supported when Hollywood called your RegisterImageSaver()
function.

Quality: This contains a value between 0 and 100 indicating the desired quality for the
output file. Image formats that use lossy compression can use this member
to determine compression settings for the image. Image formats that don’t
use any compression or offer lossless compression can ignore this member.

Colors: This contains the number of colors in the color look-up table passed in the
Palette member. This member is only used if Format is HWSAVEIMGFMT_

CHUNKY.

Palette: Contains the look-up table that you need to convert the chunky pixel values
to RGB color values. This table consists of as many 32-bit ARGB values
as has been set in the Colors member. Note that Palette is only used if
Format is HWSAVEIMGFMT_CHUNKY.

TransIndex:

If Format is HWSAVEIMGFMT_CHUNKY this member specifies the index of the
color that should appear transparent in the image. The value specified here is
only valid if the HWSAVEIMGFLAGS_TRANSINDEX flag has been set (see below).

Flags: Contains a combination of flags specifying further options:

HWSAVEIMGFLAGS_ALPHA:

Pixel data contains alpha channel transparency values.

HWSAVEIMGFLAGS_TRANSINDEX:

The TransIndex member contains the index of a palette entry
that should be made transparent in the output image.

FormatID:

This member contains the identifier of the image format the file should be
saved in. You only need to look at this member if your plugin supports more
than one output image format. But be careful, you are only allowed to look
at this member if the user is running at least Hollywood 5.3. Otherwise,
you must not access this member because older versions of Hollywood don’t
support it. (V5.3)

This function has to return True if the image has been successfully saved or False in
case of an error.

INPUTS

filename path to a destination file

ctrl pointer to a struct SaveImageCtrl containing the image to be saved

RESULTS

ok True or False indicating success or failure

Chapter 13: Animation saver plugins 91

13 Animation saver plugins

13.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_SAVEANIM set can register one or more
additional output animation formats. The user will then be able to save animations in the
output formats supported by the plugin. Plugins have to register new output animation
formats by passing the name of a constant that should be used to access the new format.
For example, a plugin might choose to register a new output animation format under the
constant #ANMFMT_CUSTOMFORMAT. Whenever the user calls a command like SaveAnim()

now and passes #ANMFMT_CUSTOMFORMAT as the animation format, Hollywood will ask the
plugin to save the animation.

13.2 BeginAnimStream

NAME
BeginAnimStream – create a new animation stream (V5.0)

SYNOPSIS
APTR handle = BeginAnimStream(STRPTR filename, int width, int height,

int format, int quality, int fps);

FUNCTION
This function must create a new animation stream in the specified filename. After
Hollywood has called this function, it will then call WriteAnimFrame() to add a number
of frames to your animation stream. Once all frames have been added, Hollywood will
call FinishAnimStream() on the stream handle.

The ’format’ parameter specifies the pixel format of the source frame data that will be
passed by WriteAnimFrame() later. This can be one of the following constants:

HWSAVEANMFMT_ARGB:

Data is delivered as a 32-bit array consisting of ARGB pixels.

HWSAVEANMFMT_CHUNKY:

Data is delivered as 8-bit indices into a color look-up table.

You will only have to handle those formats that you have explicitly declared as supported
when Hollywood called your RegisterAnimSaver() function.

The ’quality’ parameter contains a value between 0 and 100 indicating the desired quality
for the output file. Animation formats that use lossy compression can use this member
to determine compression settings for the animation. Animation formats that don’t use
any compression or offer lossless compression can ignore this parameter.

The ’fps’ parameter contains the desired playback rate for the animation in frames per
second. This is not supported by all animation formats so you can ignore it if you want.
Some animation formats also support a frame-based delay value that Hollywood will
pass to you in its WriteAnimFrame() calls.

Please note that in case your plugin supports multiple output animation formats, you’ll
have to wait until the first call to WriteAnimFrame() on that stream until you can tell
which format the user has chosen for the stream. This inconvenience is due to a design

92 Hollywood SDK

flaw in Hollywood: Support for multiple output animation formats wasn’t available
before Hollywood 5.3 but the API was designed for Hollywood 5.0. So there’s just no
room for another parameter in the BeginAnimStream() prototype declaration because
it doesn’t accept a tag list or any other parameter that could by dynamically extended
as Hollywood functionality increases. Thus, you’ll have to wait until WriteAnimFrame()
which gives you the information in the FormatID structure member.

This function has to return a handle to the stream if the animation has been successfully
created or NULL if there was an error.

INPUTS

filename desired location for the animation file on disk

width animation width in pixels

height animation height in pixels

format format for the animation (see above)

quality quality for the animation (see above)

fps frames per second for the animation

RESULTS

handle animation handle or NULL in case of an error

13.3 FinishAnimStream

NAME
FinishAnimStream – finish animation stream (V5.0)

SYNOPSIS
int ok = FinishAnimStream(APTR stream);

FUNCTION
This function must finish all writes to the specified animation stream and then close its
file handle so that the file can be used.

This function has to return True if the stream has been successfully finished or False
in case of an error.

INPUTS

stream output anim stream handle created by BeginAnimStream()

RESULTS

ok True or False indicating success or failure

Chapter 13: Animation saver plugins 93

13.4 RegisterAnimSaver

NAME
RegisterAnimSaver – register a new animation saver (V5.0)

SYNOPSIS
void RegisterAnimSaver(struct SaveAnimReg *reg)

FUNCTION
Hollywood will call this function to get information about the animation saver your plugin
wants to register. In addition, RegisterAnimSaver() has to tell Hollywood whether it
wants to register another animation saver. Hollywood will pass a pointer to a struct

SaveAnimReg to this function. This structure looks like this:

struct SaveFormatReg

{

ULONG CapsMask; [out]

ULONG FormatID; [in/out]

STRPTR FormatName; [out]

};

struct SaveAnimReg

{

struct SaveFormatReg hdr;

};

Your implementation has to do the following with the individual structure members:

CapsMask:

This must be set to a combination of flags that tell Hollywood about the
capabilities of the animation saver that is to be registered. The following
flags are currently supported:

HWSAVEANMCAPS_ARGB:

Your animation saver supports source animation data that is
delivered as a 32-bit ARGB pixel array.

HWSAVEANMCAPS_CHUNKY:

Your animation saver supports source animation data that is de-
livered as 8-bit chunky pixels that are index values for a palette
look-up table.

HWSAVEANMCAPS_ALPHA:

Your animation saver supports alpha channel saving. This is
only supported if you also set HWSAVEANMCAPS_ARGB.

HWSAVEANMCAPS_MORE:

If you set this flag, Hollywood will call RegisterAnimSaver()
again so that you can register another saver. If you don’t want
to register another saver, don’t set this flag. (V5.3)

Note that HWSAVEANMCAPS_ARGB and HWSAVEANMCAPS_CHUNKY are not mutu-
ally exclusive. You can set them both if the target animation format supports
both true colour and palette-based pixel data storage.

94 Hollywood SDK

FormatID:

This member must be set to a unique 32-bit value that should be assigned to
the constant that is registered for accessing this animation saver from Holly-
wood scripts. Values smaller than 32768 are reserved for internal Hollywood
use. You may use values larger than 32768 for your saver but if you want to
publish your plugin, you need to contact Airsoft Softwair to obtain a unique
value that is still vacant. This won’t cost you anything; it’s just needed to
make sure that plugin animation savers don’t use conflicting identifiers. Also,
once you have published your animation saver plugin, the FormatID you have
specified must not be changed or you will break compatibility with applets or
executables that have been compiled with previous versions. If you are reg-
istering more than one animation saver using HWSAVEANMCAPS_MORE, you can
look at the FormatID member to tell how many times Hollywood has already
called RegisterAnimSaver() because FormatID will contain the identifier of
the last animation saver you registered. If FormatID is 0, then this is the
first call to RegisterAnimSaver(). Note that it is not recommended to keep
your own counter because Hollywood might call RegisterAnimSaver() mul-
tiple times, i.e. it might first loop over RegisterAnimSaver() to determine
how many animation savers there are in total and then it might loop over
RegisterAnimSaver() again to actually register their names.

FormatName:

This must be set to a string that should form the second half of the constant
that Hollywood registers for your animation saver. This string you specify
here must follow the naming restrictions for Hollywood constants, i.e. only
alphabetical characters, numbers and very few special characters like the
underscore character are allowed. The #ANMFMT_ prefix must not be included
in the string you pass. Hollywood will add this automatically, i.e. if you pass
the string "TESTFORMAT" here, Hollywood will make your animation
saver available under the constant #ANMFMT_TESTFORMAT.

INPUTS

reg pointer to a struct SaveAnimReg to be filled out by your implementation

13.5 WriteAnimFrame

NAME
WriteAnimFrame – write single animation frame to disk (V5.0)

SYNOPSIS
int ok = WriteAnimFrame(APTR stream, struct SaveAnimCtrl *ctrl);

FUNCTION
This function must save the frame described in the second parameter to the animation
stream that is passed in the first parameter. This stream pointer is a handle that has
been created by the BeginAnimStream() function. The second parameter is a pointer
to a struct SaveAnimCtrl. This structure looks like this:

struct SaveAnimCtrl

Chapter 13: Animation saver plugins 95

{

APTR Data; // [in]

int *Palette; // [in]

int Modulo; // [in]

int Colors; // [in]

int TransIndex; // [in]

int Delay; // [in]

ULONG Flags; // [in]

ULONG FormatID; // [in] -- V5.3

};

Hollywood passes the following information to your WriteAnimFrame() function:

Data: The pixel data to save to the frame. The actual format of this data depends
on the Format member.

Modulo: Number of bytes used by a single row of pixel data. This may be more than
needed to store for the width that has been passed to BeginAnimStream()

since there may be some padding.

Colors: This contains the number of colors in the color look-up table passed in the
Palette member. This member is only used if HWSAVEANMFMT_CHUNKY has
been passed to BeginAnimStream().

Palette: Contains the look-up table that you need to convert the chunky pixel values
to RGB color values. This table consists of as many 32-bit ARGB values
as has been set in the Colors member. Note that Palette is only used if
HWSAVEANMFMT_CHUNKY has been passed to BeginAnimStream().

TransIndex:

If this animation stream has been created using HWSAVEANMFMT_CHUNKY this
member specifies the index of the color that should appear transparent in
the animation. The value specified here is only valid if the HWSAVEANMFLAGS_
TRANSINDEX flag has been set (see below).

Delay: The delay for this frame in milliseconds or 0 if there should be no delay. Not
all animation formats support frame-based delaying.

Flags: Contains a combination of flags specifying further options:

HWSAVEANMFLAGS_ALPHA:

Pixel data contains alpha channel transparency values.

HWSAVEANMFLAGS_TRANSINDEX:

The TransIndex member contains the index of a palette entry
that should be made transparent in the output animation.

FormatID:

This member contains the identifier of the animation format the frame should
be saved in. You only need to look at this member if your plugin supports
more than one output animation format. But be careful, you are only allowed
to look at this member if the user is running at least Hollywood 5.3. Other-
wise, you must not access this member because older versions of Hollywood
don’t support it. (V5.3)

96 Hollywood SDK

This function has to return True if the frame has been successfully saved or False in
case of an error.

INPUTS

stream output anim stream handle created by BeginAnimStream()

ctrl pointer to a struct SaveAnimCtrl containing the frame to be saved

RESULTS

ok True or False indicating success or failure

Chapter 14: Sample saver plugins 97

14 Sample saver plugins

14.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_SAVESAMPLE set can register one or
more additional output sample formats. The user will then be able to save samples in
the output formats supported by the plugin. Plugins have to register new output sample
formats by passing the name of a constant that should be used to access the new format.
For example, a plugin might choose to register a new output sample format under the
constant #SMPFMT_CUSTOMFORMAT. Whenever the user calls SaveSample() now and passes
#SMPFMT_CUSTOMFORMAT as the sample format, Hollywood will ask the plugin to save the
sample.

14.2 RegisterSampleSaver

NAME
RegisterSampleSaver – register a new sample saver (V5.0)

SYNOPSIS
void RegisterSampleSaver(struct SaveSampleReg *reg)

FUNCTION
Hollywood will call this function to get information about the sample saver your plugin
wants to register. In addition, RegisterSampleSaver() has to tell Hollywood whether
it wants to register another sample saver. Hollywood will pass a pointer to a struct

SaveSampleReg to this function. This structure looks like this:

struct SaveFormatReg

{

ULONG CapsMask; [out]

ULONG FormatID; [in/out]

STRPTR FormatName; [out]

};

struct SaveSampleReg

{

struct SaveFormatReg hdr;

};

Your implementation has to do the following with the individual structure members:

CapsMask:

This must be set to a combination of flags that tell Hollywood about the
capabilities of the sample saver that is to be registered. The following flags
are currently supported:

HWSAVESMPCAPS_MORE:

If you set this flag, Hollywood will call RegisterSampleSaver()
again so that you can register another saver. If you don’t want
to register another saver, don’t set this flag. (V5.3)

98 Hollywood SDK

FormatID:

This member must be set to a unique 32-bit value that should be assigned
to the constant that is registered for accessing this sample saver from Holly-
wood scripts. Values smaller than 32768 are reserved for internal Hollywood
use. You may use values larger than 32768 for your saver but if you want to
publish your plugin, you need to contact Airsoft Softwair to obtain a unique
value that is still vacant. This won’t cost you anything; it’s just needed to
make sure that plugin sample savers don’t use conflicting identifiers. Also,
once you have published your sample saver plugin, the FormatID you have
specified must not be changed or you will break compatibility with applets
or executables that have been compiled with previous versions. If you are
registering more than one sample saver using HWSAVESMPCAPS_MORE, you can
look at the FormatID member to tell how many times Hollywood has already
called RegisterSampleSaver() because FormatID will contain the identifier
of the last sample saver you registered. If FormatID is 0, then this is the first
call to RegisterSampleSaver(). Note that it is not recommended to keep
your own counter because Hollywood might call RegisterSampleSaver()
multiple times, i.e. it might first loop over RegisterSampleSaver() to de-
termine how many sample savers there are in total and then it might loop
over RegisterSampleSaver() again to actually register their names.

FormatName:

This must be set to a string that should form the second half of the constant
that Hollywood registers for your sample saver. This string you specify
here must follow the naming restrictions for Hollywood constants, i.e. only
alphabetical characters, numbers and very few special characters like the
underscore character are allowed. The #SMPFMT_ prefix must not be included
in the string you pass. Hollywood will add this automatically, i.e. if you pass
the string "TESTFORMAT" here, Hollywood will make your sample saver
available under the constant #SMPFMT_TESTFORMAT.

INPUTS

reg pointer to a struct SaveSampleReg to be filled out by your implementation

14.3 SaveSample

NAME
SaveSample – save sample to disk (V5.0)

SYNOPSIS
int ok = SaveSample(STRPTR filename, struct SaveSampleCtrl *ctrl);

FUNCTION
This function must save the sample provided by the pointer in the second parameter to
the filename specified in the first parameter. Hollywood passes a pointer to a struct

SaveSampleCtrl to this function. This structure looks like this:

struct SaveSampleCtrl

{

Chapter 14: Sample saver plugins 99

APTR Data; // [in]

int DataSize; // [in]

int Samples; // [in]

int Channels; // [in]

int Bits; // [in]

int Frequency; // [in]

ULONG Flags; // [in]

ULONG FormatID; // [in] -- V5.3

};

In this structure Hollywood passes the following information to your SaveSample()

function:

Data: This contains the raw PCM data to save to the file.

DataSize:

This contains the size of the Data buffer in bytes.

Samples: The total number of PCM frames to save. Note that this is specified in PCM
frames, not in bytes.

Channels:

The number of channels used by the sound data. This will be either 1 (mono)
or 2 (stereo).

Bits: The number of bits per PCM sample. This will be either 8 or 16.

Frequency:

The number of PCM frames that should be played per second.

Flags: A combination of the following flags describing additional properties of the
sample:

HWSNDFLAGS_BIGENDIAN

The PCM samples are stored in big endian format. This flag is
only meaningful if the bit resolution is 16.

HWSNDFLAGS_SIGNEDINT

The PCM samples are stored as signed integers. This is typically
set for 16-bit samples.

FormatID:

This member contains the identifier of the sample format the file should be
saved in. You only need to look at this member if your plugin supports more
than one output sample format. But be careful, you are only allowed to look
at this member if the user is running at least Hollywood 5.3. Otherwise,
you must not access this member because older versions of Hollywood don’t
support it. (V5.3)

This function has to return True if the sample has been successfully saved or False in
case of an error.

INPUTS

filename path to a destination file

100 Hollywood SDK

ctrl pointer to a struct SaveSampleCtrl containing the sample to be saved

RESULTS

ok True or False indicating success or failure

Chapter 15: Require hook plugins 101

15 Require hook plugins

15.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_REQUIRE set can be used to hook your
plugin into the @REQUIRE preprocessor command, i.e. your plugin will be called whenever
the user runs @REQUIRE on your plugin. Hooking into the @REQUIRE preprocessor command
is mandatory for certain plugin types that are not activated automatically when Hollywood
loads the plugin. File or display adapter plugins, for example, are only initialized once your
plugin explicitly calls hw_AddLoaderAdapter() or hw_SetDisplayAdapter() on them. This
is usually done in the RequirePlugin() function of your plugin.

See Section 2.5 [Auto and manual plugin initialization], page 8, for details.

This plugin type is supported since Hollywood 6.0.

15.2 RequirePlugin

NAME
RequirePlugin – require a plugin (V6.0)

SYNOPSIS
int error = RequirePlugin(lua_State *L, int version, int revision,

ULONG flags, struct hwTagList *tags);

FUNCTION
This function will be called when the user runs the @REQUIRE preprocessor command
on the plugin. It is especially useful to initialize plugins that are not automatically
set up when Hollywood starts. You will typically initialize these plugin types from your
RequirePlugin() function then. See Section 2.5 [Auto and manual plugin initialization],
page 8, for details.

RequirePlugin() can also be used to perform some custom initialization or configura-
tion according to the user’s specific needs as it is possible to pass parameters from the
@REQUIRE preprocessor statement to your RequirePlugin() implementation through the
HWRPTAG_USERTAGS tag item (see below).

Here is a list of tags supported by this function:

HWRPTAG_USERTAGS:

Hollywood will set this tag to a struct hwRequireUserTagList containing
a list of all parameters the user has passed to the @REQUIRE preprocessor
command. The struct hwRequireUserTagList looks like this:

struct hwRequireUserTagList

{

struct hwRequireUserTagList *Succ;

STRPTR Name;

STRPTR Str;

double Val;

};

Here is a description each member variable:

102 Hollywood SDK

Succ: Contains a pointer to the next node in the list or NULL for the
tail node.

Name: Name of the parameter.

Str: If the user has set the parameter to a string value, it is passed
here. If this is NULL, then you have to examine the Val member
below.

Val: If the user has set the parameter to a numerical value, it is passed
in this structure member.

HWRPTAG_PLUGINFLAGS:

This tag is used to return plugin flags back to Hollywood. Hollywood will
pass a pointer to a ULONG variable here which you can write to if your plugin
wants to request certain features. The following flags are currently recog-
nized:

HWPLUGINFLAGS_HIDEDISPLAYS:

If you set this flag, Hollywood will hide all displays upon startup.
Even the ones that have been explicitly declared as open will be
hidden if this tag is set.

INPUTS

L pointer to the lua_State

version plugin version requested in @REQUIRE call

revision plugin revision requested in @REQUIRE call

flags currently unused, will be 0

tags pointer to a taglist or NULL (see above)

RESULTS

error error code or 0 for success

Chapter 16: Display adapter plugins 103

16 Display adapter plugins

16.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_DISPLAYADAPTER set can replace Hol-
lywood’s inbuilt display handler with a custom display handler. This is a very powerful
feature and allows you to reroute Hollywood’s complete graphics output and event han-
dler through an entirely different toolkit or display driver, thus making it possible to use
Hollywood scripts in completely new environments.

Optionally, display adapters can also choose to override Hollywood’s inbuilt bitmap handler
with custom implementations and it is also possible to offer support for custom hardware
bitmaps and double buffers from display adapters. This allows you to take full advantage
of device dependent bitmaps for optimized drawing.

If you’re just starting out with display adapters, it is advised that you begin with a pretty
basic display adapter first and then you may choose to add support for advanced features
later. Functions like BltBitMap() can get quite complex if your display adapter supports
all the advanced functionality that Hollywood makes available, so it might be a better
idea to first implement a barebones display adapter that doesn’t support video bitmaps
or hardware double buffers but just reroutes all of Hollywood’s graphics through a custom
device. You can then use this implementation as a basis to add support for more advanced
features.

Also, be sure to benchmark raw performance of scripts with your display adapter and
compare them to the performance of Hollywood’s inbuilt display handler to see if your
adapter needs optimizing. See Section 16.27 [HandleEvents], page 125, for details.

Please note that display adapters are not automatically initialized when Hollywood
loads the plugin. Instead, you have to manually call hw_SetDisplayAdapter() in your
RequirePlugin() function to activate the display adapter. The display adapter will then
only be activated if the user calls @REQUIRE on your plugin. Otherwise, Hollywood will use
its default display handler. See Section 2.5 [Auto and manual plugin initialization], page 8,
for details.

You don’t have to implement all functions offered by the display adapter API. Many func-
tions are optional and only have to be implemented if you explicitly request their use in
your call to hw_SetDisplayAdapter(). However, it is mandatory that all functions de-
fined by the display adapter API are declared so that Hollywood can import their symbols
when it loads the plugin. Functions that are optional and that you don’t enable via hw_

SetDisplayAdapter() can just be dummies then. Here is an overview of all display adapter
APIs that are optional:

Sleep() Only used if activated by setting HWSDAFLAGS_SLEEP.

VWait() Only used if activated by setting HWSDAFLAGS_VWAIT.

GetMonitorInfo()

Only used if activated by setting HWSDAFLAGS_MONITORINFO.

FreeMonitorInfo()

Only used if activated by setting HWSDAFLAGS_MONITORINFO.

104 Hollywood SDK

GrabScreenPixels()

Only used if activated by setting HWSDAFLAGS_GRABSCREEN.

FreeGrabScreenPixels()

Only used if activated by setting HWSDAFLAGS_GRABSCREEN.

BeginDoubleBuffer()

Only used if activated by setting HWSDAFLAGS_DOUBLEBUFFER.

EndDoubleBuffer()

Only used if activated by setting HWSDAFLAGS_DOUBLEBUFFER.

Flip() Only used if activated by setting HWSDAFLAGS_DOUBLEBUFFER.

Cls() Only used if activated by setting HWSDAFLAGS_DOUBLEBUFFER.

AllocBitMap()

Only used if activated by setting HWSDAFLAGS_BITMAPADAPTER.

FreeBitMap()

Only used if activated by setting HWSDAFLAGS_BITMAPADAPTER.

LockBitMap()

Only used if activated by setting HWSDAFLAGS_BITMAPADAPTER.

UnLockBitMap()

Only used if activated by setting HWSDAFLAGS_BITMAPADAPTER.

GetBitMapAttr()

Only used if activated by setting HWSDAFLAGS_BITMAPADAPTER.

AllocVideoBitMap()

Only used if activated by setting HWSDAFLAGS_VIDEOBITMAPADAPTER.

FreeVideoBitMap()

Only used if activated by setting HWSDAFLAGS_VIDEOBITMAPADAPTER.

ReadVideoPixels()

Only used if activated by setting HWSDAFLAGS_VIDEOBITMAPADAPTER.

FreeVideoPixels()

Only used if activated by setting HWSDAFLAGS_VIDEOBITMAPADAPTER.

DoVideoBitMapMethod()

Only used if activated by setting HWSDAFLAGS_VIDEOBITMAPADAPTER.

See Section 26.28 [hw SetDisplayAdapter], page 283, for information on how to install your
display adapter.

This plugin type is supported since Hollywood 6.0.

16.2 ActivateDisplay

NAME
ActivateDisplay – activate a display (V6.0)

SYNOPSIS
void ActivateDisplay(APTR handle, ULONG flags);

Chapter 16: Display adapter plugins 105

FUNCTION
This function must assign the focus to the specified display. Optionally, the following
flags may be set:

HWACTDISPFLAGS_TOFRONT:

If this flag is set, the display should also be brought to the front.

INPUTS

handle display handle returned by OpenDisplay()

flags additional options (see above)

16.3 AllocBitMap

NAME
AllocBitMap – allocate a new software bitmap (V6.0, optional)

SYNOPSIS
APTR handle = AllocBitMap(int type, int width, int height, ULONG flags,

struct hwTagList *tags);

FUNCTION
This function has to allocate a software bitmap of the specified type in the requested
dimensions. The type parameter can be one of the following constants:

HWBMTYPE_RGB:

Hollywood wants you to allocate a color bitmap.

HWBMTYPE_ALPHA:

Hollywood wants you to allocate an 8-bit alpha channel bitmap. Alpha
channel bitmaps contain transparency information ranging from 0 (pixel
is transparent) to 255 (pixel is fully opaque) for every pixel. Hollywood’s
software bitmaps always store alpha channel information for color bitmaps
in separate bitmaps to be compatible with 15-bit and 16-bit screenmodes
which don’t have enough room to store an 8-bit alpha channel in a bitmap.

HWBMTYPE_MASK:

Hollywood wants you to allocate a monochrome 1-bit mask bitmap. Mask
bitmaps are used to store information about pixel transparency settings. In
contrast to alpha channel bitmaps only two different states are supported:
Visible pixels (1) or invisible pixels (0).

The flags parameter can be a combination of the following flags:

HWABMFLAGS_CLEAR:

If this flag is set, Hollywood wants you to clear the bitmap after allocating.
Clearing a bitmap means that all bits should be set to 0.

Hollywood also passes a taglist to this function. Your implementation has to handle the
following tags:

106 Hollywood SDK

HWABMTAG_FRIENDBITMAP:

If type is HWBMTYPE_MASK, the pData element of this tag item can contain a
pointer to a color bitmap that Hollywood wants to use this mask for. The
mask can then be allocated in a way that allows efficient blitting.

HWABMTAG_DATA:

If this tag is given, your AllocBitMap() implementation must initialize the
bitmap it has just allocated with the bits provided in the pData member of
this tag. If this tag is set, Hollywood will also always pass the HWABMTAG_

DATABYTESPERROW to inform your implementation about the byte length of
a single row of the pixel array that has been passed to this function in the
pData member. HWABMTAG_DATA is only used for types HWBMTYPE_MASK or
HWBMTYPE_ALPHA.

HWABMTAG_DATABYTESPERROW:

If HWABMTAG_DATA is set, this tag contains the byte width of a single row in
its iData member. To find out the total size of the array passed to you in
HWABMTAG_DATA, multiply this value with the height of the bitmap.

See Section 2.14 [Bitmap information], page 16, for more information on Hollywood
bitmaps.

AllocBitMap() is an optional API and must only be implemented if HWSDAFLAGS_

BITMAPADAPTER has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

INPUTS

type desired bitmap type (see above)

width width of the bitmap in pixels

height height of the bitmap in pixels

flags allocation flags (see above)

tags taglist for additional options (see above)

RESULTS

handle handle to the bitmap or NULL in case of an error

16.4 AllocVideoBitMap

NAME
AllocVideoBitMap – allocate a video bitmap (V6.0, optional)

SYNOPSIS
APTR handle = AllocVideoBitMap(int width, int height, ULONG flags,

struct hwTagList *tags);

FUNCTION
This function must allocate a new video bitmap in the requested dimensions. Video bit-
maps, also called hardware or device-dependent bitmaps (DDBs), are usually stored in

Chapter 16: Display adapter plugins 107

GPU memory and can thus be drawn and transformed with hardware acceleration. Hol-
lywood can only draw video bitmaps to the custom hardware double buffer implemented
by your plugin. Thus, whenever you write a plugin that supports video bitmaps you
will also have to implement a custom hardware double buffer and set the HWSDAFLAGS_

DOUBLEBUFFERADAPTER flag accordingly. See Section 2.14 [Bitmap information], page 16,
for details.

Hollywood will pass a taglist which contains further parameters for the operation to
AllocVideoBitMap(). Your implementation must be able to deal with the following
tags:

HWAVBMTAG_DATA:

The pData member of this tag item will be set to an object that should be
used to initialize the video bitmap’s pixels. This tag will always be provided
because there is no way to set the video bitmap’s pixel data at a later stage.
That is why the pixel data for the video bitmap is already provided by
Hollywood at allocation time. If the HWAVBMFLAGS_BITMAPDATA flag is set,
then pData will contain a handle to another video bitmap. This means that
the new video bitmap should copy all pixels from this video bitmap handle.
It is guaranteed that the video bitmap handle provided here matches the size
of the new video bitmap that is to be allocated. If HWAVBMFLAGS_BITMAPDATA
is not set, then pData contains a pointer to a 32-bit ARGB pixel array that
contains the raw pixels that should be used to initialize the new video bitmap.
This 32-bit ARGB array will always be of the size width * height * 4. No
row padding is applied to this buffer.

HWAVBMTAG_SRCWIDTH:

If this tag is set and the HWAVBMTAG_MATRIX2D tag is not passed, then the
width value passed in parameter 1 is to be interpreted as a scaled value while
the width passed in this tag’s iDatamember contains the width of the source
pixel data that is passed in HWAVBMTAG_DATA. This means that your imple-
mentation has to scale the source pixel data provided in HWAVBMTAG_DATA to
the dimensions passed in parameters 1 and 2. It also has to take the scale
mode into account that is passed in HWAVBMTAG_SCALEMODE. Hollywood uses
this tag to offer hardware-accelerated scaling of video bitmaps. Please note
that HWAVBMTAG_SRCWIDTH will only ever be passed to AllocVideoBitMap()

if your plugin has explicitly declared that it supports video bitmap scal-
ing by setting the HWVBMCAPS_SCALE flag in HWSDATAG_VIDEOBITMAPCAPS. If
HWAVMTAG_SRCWIDTH and HWAVBMTAG_MATRIX2D are both passed, then you
have to apply a transformation matrix to the source pixel data. See the
documentation of HWAVBMTAG_MATRIX2D below for more information.

HWAVBMTAG_SRCHEIGHT:

This is the height counterpart for HWAVBMTAG_SRCWIDTH. See above for a
description on what this tag is used for.

HWAVBMTAG_SCALEMODE:

If HWAVBM_SRCWIDTH and HWAVBM_SRCHEIGHT or HWAVBM_MATRIX2D are set,
this tag will also be provided to tell you about the scale mode that Hollywood
wants you to use. Currently, only 0 and 1 are supported here. A value of 0

108 Hollywood SDK

in iData means that you should do hard scaling without any interpolation
whereas a value of 1 means that Hollywood wants you to do use anti-alias
interpolation. See above in the description of HWAVBM_SRCWIDTH for more
information.

HWAVBMTAG_MATRIX2D:

If this tag is set, then Hollywood wants you to apply a transformation to
the source pixel data provided in HWAVBMTAG_DATA and store the transfor-
mation’s resulting pixels in the new video bitmap that is to be allocated.
Hollywood has already calculated the dimensions for the new video bitmap
and passed them to this function in parameters 1 and 2. To get to know
about the dimensions of the source pixel data, you have to examine the
tags HWAVBMTAG_SRCWIDTH and HWAVBM_SRCHEIGHT which are always passed
if HWAVBMTAG_MATRIX2D is set. The pData member of this tag item will be
set to a pointer to a struct hwMatrix2D that contains all parameters for
the transformation. Note that your implementation also has to take the
scale mode that is passed in HWAVBMTAG_SCALEMODE into account. Holly-
wood uses this tag to offer hardware-accelerated transformation of video
bitmaps. Please note that HWAVBMTAG_MATRIX2D will only ever be passed to
AllocVideoBitMap() if your plugin has explicitly declared that it supports
video bitmap transformation by setting the HWVBMCAPS_TRANSFORM flag in
HWSDATAG_VIDEOBITMAPCAPS.

HWAVBMTAG_DISPLAY:

If you’ve set the HWSDAFLAGS_TIEDVIDEOBITMAP flag when installing your
display adapter using hw_SetDisplayAdapter() then this tag will always
be provided and its pData member will be set to a handle to the display
that this video bitmap should be allocated for. This will always be a handle
returned by your OpenDisplay() implementation.

In addition to the taglist items described above, Hollywood can also set the following
flags and your plugin has to be prepared to handle them:

HWAVBMFLAGS_BLEND:

If this flag is set, then the data provided in HWAVBMTAG_DATA contains alpha
channel transparency information and your plugin is expected to do the
alpha blending with this data whenever it draws this bitmap. Note that the
alpha channel data is always non-premultiplied.

HWAVBMFLAGS_BITMAPDATA:

If this flag is set, then the data provided in HWAVBMTAG_DATA is a handle to
another video bitmap which Hollywood wants you to use as the pixel data
source. If this flag isn’t set, then HWAVBMTAG_DATA contains a pointer to a
32-bit ARGB pixel array. See the documentation of HWAVBMTAG_DATA above
for more information.

AllocVideoBitMap() is an optional API and must only be implemented if HWSDAFLAGS_
VIDEOBITMAPADAPTER has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

Chapter 16: Display adapter plugins 109

INPUTS

width desired bitmap width in pixels

height desired bitmap height in pixels

flags allocation flags (see above)

tags taglist containing additional parameters (see above)

RESULTS

handle handle to the bitmap or NULL in case of an error

16.5 BeginDoubleBuffer

NAME
BeginDoubleBuffer – start hardware double buffer mode for display (V6.0, optional)

SYNOPSIS
int error = BeginDoubleBuffer(APTR handle, struct hwTagList *tags);

FUNCTION
This function must put the specified display into hardware double buffering mode. If
Hollywood is in hardware double buffering mode, all calls to functions that draw some-
thing to the display like BltBitMap() or RectFill() must draw to the back buffer
instead. This back buffer must then be drawn to the display whenever Hollywood calls
the Flip() function of your plugin.

Please note that this function will only be called if the Hollywood script explicitly
requests a hardware double buffer, i.e. the user has to set the hardware parameter
to True when he calls Hollywood’s BeginDoubleBuffer() function. If he doesn’t do
that, Hollywood will use its own software double buffering method and your plugin’s
BeginDoubleBuffer() function will never be called at all.

BeginDoubleBuffer() is an optional API and must only be implemented if HWSDAFLAGS_
DOUBLEBUFFERADAPTER has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

INPUTS

handle display handle returned by OpenDisplay()

tags reserved for future use (currently NULL)

RESULTS

error error code or 0 for success

16.6 BltBitMap

NAME
BltBitMap – copy pixels from source bitmap to destination (V6.0)

110 Hollywood SDK

SYNOPSIS
void BltBitMap(APTR bmap, APTR handle, struct hwBltBitMapCtrl *ctrl,

ULONG flags, struct hwTagList *tags);

FUNCTION
This function must copy pixels from a source bitmap to a destination which can be
a display or another bitmap. The source bitmap can be a software bitmap allocated
by Hollywood or your plugin or it can be a custom video bitmap allocated by your
plugin’s AllocVideoBitMap() function. BltBitMap() can be used in many different
contexts so you need to pay close attention to implement it correctly. If you only need a
barebones implementation that doesn’t support offscreen rendering and video bitmaps,
the implementation is really simple and straight-forward, though. See towards the end of
the BltBitMap() documentation for information on what the most basic implementation
of BltBitMap() has to look like.

In parameter 3, Hollywood will pass a struct hwBltBitMapCtrl which looks like this:

struct hwBltBitMapCtrl

{

int SrcX; // [in]

int SrcY; // [in]

int DstX; // [in]

int DstY; // [in]

int Width; // [in]

int Height; // [in]

int ScaleWidth; // [in]

int ScaleHeight; // [in]

ULONG ScaleMode; // [in]

APTR Mask; // [in]

APTR Alpha; // [in]

};

Here’s a description of the individual structure members:

SrcX: Contains the x position in the source bitmap that marks the start offset for
the copy operation. This is relative to the upper-left corner of the source
bitmap.

SrcY: Contains the y position in the source bitmap that marks the start offset for
the copy operation. This is relative to the upper-left corner of the source
bitmap.

DstX: Contains the destination x position relative to the upper-left corner.

DstY: Contains the destination y position relative to the upper-left corner.

Width: Contains the number of columns to copy.

Height: Contains the number of rows to copy.

ScaleWidth:

If you’ve passed the HWSDAFLAGS_CUSTOMSCALING flag in your call to
hw_SetDisplayAdapter() then this will contain the desired scale width

Chapter 16: Display adapter plugins 111

when autoscaling mode is active. If you haven’t passed HWSDAFLAGS_

CUSTOMSCALING, Hollywood will take care of scaling automatically and this
member will always be zero.

ScaleHeight:

If you’ve passed the HWSDAFLAGS_CUSTOMSCALING flag in your call to
hw_SetDisplayAdapter() then this will contain the desired scale height
when autoscaling mode is active. If you haven’t passed HWSDAFLAGS_

CUSTOMSCALING, Hollywood will take care of scaling automatically and this
member will always be zero.

ScaleMode:

If you’ve passed the HWSDAFLAGS_CUSTOMSCALING flag in your call to hw_

SetDisplayAdapter() then this will contain the desired scale mode when
autoscaling mode is active. This can be either 0 for brute force scaling or 1
for interpolated scaling using pixel antialiasing.

Mask: Contains a pointer to mask bitmap or NULL if there is no mask. This member
is only used when drawing software bitmaps to video bitmaps or hardware
double buffers.

Alpha: Contains a pointer to an alpha channel bitmap or NULL if there is no alpha
channel. This member is only used when drawing software bitmaps to video
bitmaps or hardware double buffers.

The way BltBitMap() should operate is defined by the flags parameter. The following
flags are currently recognized:

HWBBFLAGS_SRCVIDEOBITMAP:

The source bitmap passed in parameter 1 is a video bitmap allocated by
AllocVideoBitMap(). If this flag isn’t set, then the source bitmap will
be a software bitmap that has either been allocated by Hollywood or by
your plugin (if you’ve set the HWSDAFLAGS_BITMAPADAPTER flag). Note that
video bitmaps can only be drawn to a hardware double buffer allocated
by your plugin or to another offscreen video bitmap. Thus, if HWBBFLAGS_
SRCVIDEOBITMAP is set you can be certain that Hollywood is either currently
in hardware double buffer mode, i.e. it has previously called your plugin’s
BeginDoubleBuffer() function, or that the HWBBFLAGS_DESTVIDEOBITMAP

flag is set.

HWBBFLAGS_DESTVIDEOBITMAP:

The destination handle passed in parameter 2 is a video bitmap allocated by
AllocVideoBitMap(). This can only happen if you’ve set the HWVBMCAPS_

OFFSCREENCOLOR or HWVBMCAPS_OFFSCREENALPHA capabilities in HWSDATAG_

VIDEOBITMAPCAPS to enable offscreen rendering to video bitmaps. Other-
wise, HWBBFLAGS_DESTVIDEOBITMAP will never be set.

HWBBFLAGS_DESTALPHAONLY:

This is only set in connection with HWBBFLAGS_DESTVIDEOBITMAP. If Hol-
lywood wants you to draw to the alpha channel of your video bitmap allo-
cated by AllocVideoBitMap(), it will indicate this by setting HWBBFLAGS_

112 Hollywood SDK

DESTALPHAONLY. If HWBBFLAGS_DESTVIDEOBITMAP is set and HWBBFLAGS_

DESTALPHAONLY isn’t, you have to draw to the color channels of the video
bitmap instead. Note that HWBBFLAGS_DESTALPHAONLY will only ever be set
if you’ve set the HWVBMCAPS_OFFSCREENALPHA capability flag in HWSDATAG_

VIDEOBITMAPCAPS to enable offscreen rendering to video bitmap alphachan-
nels.

HWBBFLAGS_DESTBITMAP:

The destination handle passed in parameter 2 is a software bitmap allo-
cated by Hollywood or your plugin’s AllocBitMap() function if you’ve set
the HWSDAFLAGS_BITMAPADAPTER in your call to hw_SetDisplayAdapter().
Note that HWBBFLAGS_DESTBITMAP will only ever be set if you’ve passed
either HWBMAHOOK_BLTBITMAP, HWBMAHOOK_BLTMASKBITMAP or HWBMAHOOK_

BLTALPHAHOOK in HWSDAFLAGS_BITMAPHOOK. Otherwise, Hollywood will do
the rendering to the software bitmap on its own and you don’t have to care.
HWBBFLAGS_DESTBITMAP will only ever be set if you’ve explicitly requested
that you want to do offscreen drawing to software bitmaps on your own by
setting the appropriate bitmap hook flags.

HWBBFLAGS_DONOTBLEND:

This flag indicates that BltBitMap() should not do any alpha blending. In-
stead, it should just do a raw copy of the color and alpha channel pixel
data without any blending. This may only ever be set if the source or desti-
nation bitmap is a video bitmap allocated by your plugin, i.e. HWBBFLAGS_

DONOTBLENDmay only be set if HWBBFLAGS_DESTVIDEOBITMAP or HWBBFLAGS_
SRCVIDEOBITMAP is defined, too. It will never be set when dealing with
software bitmaps.

HWBBFLAGS_IGNOREBKBUFFER:

If autoscaling is active and HWSDAFLAGS_CUSTOMSCALING hasn’t been set in
your call to hw_SetDisplayAdapter() this flag may be set to indicate that
the source bitmap doesn’t match the dimensions of your back buffer. Thus,
if this flag is set you must not draw into the back buffer first. Instead,
you must draw directly to your display. If HWBBFLAGS_IGNOREBKBUFFER is
set, the destination handle will always be a display handle allocated by
OpenDisplay().

This may all sound quite complicated but in fact, the complexity of the BltBitMap()

function can be greatly reduced if your plugin doesn’t support offscreen drawing and
video bitmaps. In that case, all your BltBitMap() implementation has to do is to grab
the pixels from the source bitmap and draw them to the destination display. You won’t
have to support the Mask and Alpha members of the struct hwBltBitMapCtrl in that
case either, because they will only ever be set if BltBitMap() is used to draw a software
bitmap to a video bitmap or a hardware double buffer.

To get the raw pixels of Hollywood bitmaps, you can use the hw_LockBitMap() function.
If you’ve installed your own bitmap and video bitmap adapters, you can also directly
interpret the handle pointers that are passed to this function because you’ve allocated
them. It’s not necessary to use hw_LockBitMap() on bitmaps that have been allocated
by your plugin.

Chapter 16: Display adapter plugins 113

A typical implementation of BltBitMap() should do the following whenever it has to
draw directly to the display: It should first draw the pixels into a back buffer (unless
HWBBFLAGS_IGNOREBKBUFFER is set or a hardware double buffer is used) and then it
should draw the pixels from this back buffer to the display.

This function doesn’t have to do any clipping. Hollywood will perform clipping itself
before calling BltBitMap().

If your plugin supports hardware double buffering and Hollywood has put your display
into hardware double buffering mode by calling your plugin’s BeginDoubleBuffer()

function, this function must not draw anything to the display but only to the back
buffer. Hollywood will call your plugin’s Flip() function when it wants you to draw the
back buffer to the display.

You might want to use the hw_RawBltBitMap() function in your implementation to copy
the pixels of bitmaps stored as raw pixel buffers. See Section 26.22 [hw RawBltBitMap],
page 276, for details.

INPUTS

bmap source bitmap

handle destination display or bitmap (depends on the flags that are set, see above)

ctrl pointer to a struct hwBltBitMapCtrl containing parameters for the blit

flags flags specifying how to copy the pixels (see above)

tags additional options (currently always NULL)

16.7 ChangeBufferSize

NAME
ChangeBufferSize – change size of back buffer (V6.0)

SYNOPSIS
int error = ChangeBufferSize(APTR handle, int width, int height,

ULONG flags, struct hwTagList *tags);

FUNCTION
This function will usually be called by Hollywood when the display’s size has changed.
It tells you about the new size of Hollywood’s internal back buffer and if your drawing
mechanism is back buffer based as well, you need to adapt the size of your back buffer
when Hollywood calls this function.

Please note that the back buffer size is not necessarily the same as the window’s phys-
ical dimensions. If autoscaling is active, back buffer size and the window’s physical
dimensions can be different.

If you don’t use a back buffer you won’t have to do anything here. This is often the case
for plugins which are designed to draw in hardware double buffer mode. In that case,
an additional back buffer is not necessary and would only slow things down.

INPUTS

handle display handle returned by OpenDisplay()

114 Hollywood SDK

width new back buffer width

height new back buffer height

flags additional flags (currently 0)

tags taglist for additional options (currently always NULL)

RESULTS

error error code or 0 for success

16.8 CloseDisplay

NAME
CloseDisplay – close a display (V6.0)

SYNOPSIS
int error = CloseDisplay(APTR handle);

FUNCTION
This function must close the specified display that has been opened by your plugin’s
OpenDisplay() function. Hollywood will call CloseDisplay() when it is done with
your display. After calling this function, there will be no more accesses to the display
handle and you can safely free all resources associated with it.

INPUTS

handle display handle returned by OpenDisplay()

RESULTS

error error code or 0 for success

16.9 Cls

NAME
Cls – clear back buffer in hardware double buffer mode (V6.0, optional)

SYNOPSIS
int error = Cls(APTR handle, ULONG color, struct hwTagList *tags);

FUNCTION
This must clear the back buffer of the hardware double buffer in the specified display
with the color specified in the second parameter. The color is specified as a 24-bit RGB
value.

Cls() is an optional API and must only be implemented if HWSDAFLAGS_

DOUBLEBUFFERADAPTER has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

INPUTS

handle display handle returned by OpenDisplay()

color color to use for clearing

Chapter 16: Display adapter plugins 115

tags reserved for future use (currently NULL)

RESULTS

error error code or 0 for success

16.10 CreatePointer

NAME
CreatePointer – create a custom mouse pointer (V6.0)

SYNOPSIS
APTR handle = CreatePointer(ULONG *rgb, int hx, int hy, int *width,

int *height, struct hwTagList *tags);

FUNCTION
This function must create a mouse pointer that uses the custom imagery passed to this
function. Hollywood passes the desired imagery for the custom mouse pointer as a 32-bit
ARGB pixel array in the first parameter. Please note that transparency settings for the
mouse pointer image are always provided as 8-bit alpha channel values in the 8 most
significant bits. If your hardware doesn’t support alpha channeled mouse pointers, you
have to convert this information first.

Additionally, Hollywood passes the desired hotspot for the mouse pointer to
CreatePointer(). A mouse pointer’s hotspot is a single pixel within the pointer
imagery that is used to determine the mouse pointer’s pixel position by the operating
system. The hotspot is described as an offset in pixels that is relative to the upper-left
corner of the mouse pointer image.

The desired pixel dimensions for the new mouse pointer are passed as pointer values
because your implementation of CreatePointer() is allowed to modify them in case
there are some hardware restrictions for mouse pointer dimensions on your system. You
have to return the actual pixel dimensions of the new mouse pointer in parameters 4 and
5.

The last parameter is a pointer to a tag list. This is reserved for future use and is
currently always NULL.

INPUTS

rgb pointer to a 32-bit ARGB pixel array containing the pointer image

hx x offset of the pointer hotspot in pixels

hy y offset of the pointer hotspot in pixels

width pointer to an integer containing the pointer width in pixels; you have to
write the real pointer width in pixels to this pointer on exit

height pointer to an integer containing the pointer height in pixels; you have to
write the real pointer height in pixels to this pointer on exit

tags tag list containing additional parameters (see above)

RESULTS

handle handle to the custom pointer or NULL if CreatePointer() failed

116 Hollywood SDK

16.11 DetermineBorderSizes

NAME
DetermineBorderSizes – obtain information about window border sizes (V6.0)

SYNOPSIS
void DetermineBorderSizes(ULONG flags, int *left, int *right,

int *top, int *bottom);

FUNCTION
Hollywood will call this function before OpenDisplay() to determine the border sizes
of the display your plugin is about to open. Hollywood needs this information prior to
opening the display in order to align the display on its host screen or center it. You have
to write the border size values in pixels to the integer pointers passed to this function.

Additionally, Hollywood passes some flags to this function that tell you something about
the display’s style. Flags can be a combination of the following bits:

HWDISPFLAGS_BORDERLESS:

Display should be opened without any border decoration.

HWDISPFLAGS_SIZEABLE:

Display should be resizeable.

HWDISPFLAGS_FIXED:

Display dragging should be disabled.

HWDISPFLAGS_NOHIDE:

Display should not have a widget for minimizing.

HWDISPFLAGS_NOCLOSE:

Display should not have a close widget.

INPUTS

flags flags describing the display facilities

left integer pointer to receive width of the left window border

right integer pointer to receive width of the right window border

top integer pointer to receive height of the top window border

bottom integer pointer to receive height of the bottom window border

16.12 DoVideoBitMapMethod

NAME
DoVideoBitMapMethod – perform custom action on video bitmap (V6.0, optional)

SYNOPSIS
int error = DoVideoBitMapMethod(APTR handle, int method, APTR data);

FUNCTION
This function is used to perform custom actions on a video bitmap. It accepts a method

and a data parameter. The contents of the data parameter depend on the specified
method.

Chapter 16: Display adapter plugins 117

The following methods are currently recognized:

HWVBMMTHD_SETBLEND:

Hollywood will call this method to toggle the blend flag of the video bitmap.
If the blend flag is set, this video bitmap has to be drawn with alpha blending
enabled. If the blend flag isn’t set, the video bitmap should be drawn without
any alpha blending. If HWVBMMTHD_SETBLEND is passed, the data parameter
will just be an int that is set to True or False to enable or disable the blend
flag.

DoVideoBitMapMethod() is an optional API and must only be implemented if
HWSDAFLAGS_VIDEOBITMAPADAPTER has been passed to hw_SetDisplayAdapter(). See
Section 26.28 [hw SetDisplayAdapter], page 283, for details.

INPUTS

handle handle to a bitmap allocated by AllocVideoBitMap().

method method to execute (see above)

data method specific data

RESULTS

error error code or 0 for success

16.13 EndDoubleBuffer

NAME
EndDoubleBuffer – stop hardware double buffer mode (V6.0, optional)

SYNOPSIS
int error = EndDoubleBuffer(APTR handle, struct hwTagList *tags);

FUNCTION
This function must stop hardware double buffer mode for the specified display.

EndDoubleBuffer() is an optional API and must only be implemented if HWSDAFLAGS_
DOUBLEBUFFERADAPTER has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

INPUTS

handle display handle returned by OpenDisplay()

tags reserved for future use (currently NULL)

RESULTS

error error code or 0 for success

118 Hollywood SDK

16.14 Flip

NAME
Flip – flip front and back buffers (V6.0, optional)

SYNOPSIS
int error = Flip(APTR handle, struct hwTagList *tags);

FUNCTION
When in hardware double buffer mode, this function must bring the display’s back buffer
into view and install the former front buffer as the new back buffer. See Section 16.5
[BeginDoubleBuffer], page 109, for details.

The following tags may be passed in the second parameter:

HWFLIPTAG_VSYNC:

If the iData element of this tag item is set to True, Hollywood wants you
to synchronize buffer flips with the vertical blank interrupt. If this is False,
Hollywood doesn’t want you to do any synchronization and your Flip()

implementation should exit immediately after flipping front and back buffers.

Flip() is an optional API and must only be implemented if HWSDAFLAGS_

DOUBLEBUFFERADAPTER has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

INPUTS

handle display handle returned by OpenDisplay()

tags taglist for additional options (see above)

RESULTS

error error code or 0 for success

16.15 ForceEventLoopIteration

NAME
ForceEventLoopIteration – wake up WaitEvents() (V6.0)

SYNOPSIS
void ForceEventLoopIteration(struct hwTagList *tags);

FUNCTION
This function must wake up your WaitEvents() implementation and make it return
control to Hollywood. Hollywood will call ForceEventLoopIteration() from worker
threads whenever it needs control back from your plugin.

The tag list parameter is reserved for future use. It’s currently always NULL.

This function must be implemented in a thread-safe way.

INPUTS

t tag list containing additional parameters (currently always NULL)

Chapter 16: Display adapter plugins 119

16.16 FreeBitMap

NAME
FreeBitMap – free a software bitmap (V6.0, optional)

SYNOPSIS
void FreeBitMap(APTR handle);

FUNCTION
This function must free bitmaps allocated by AllocBitMap().

FreeBitMap() is an optional API and must only be implemented if HWSDAFLAGS_

BITMAPADAPTER has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

INPUTS

handle bitmap handle returned by AllocBitMap()

16.17 FreeGrabScreenPixels

NAME
FreeGrabScreenPixels – free grabbed screen pixels (V6.0, optional)

SYNOPSIS
void FreeGrabScreenPixels(ULONG *pixels);

FUNCTION
This function must free the pixel array allocated by GrabScreenPixels().

FreeGrabScreenPixels() is an optional API and must only be implemented
if HWSDAFLAGS_GRABSCREEN has been passed to hw_SetDisplayAdapter(). See
Section 26.28 [hw SetDisplayAdapter], page 283, for details.

INPUTS

pixels pixel array allocated by GrabScreenPixels()

16.18 FreeMonitorInfo

NAME
FreeMonitorInfo – free data allocated by GetMonitorInfo() (V6.0, optional)

SYNOPSIS
void FreeMonitorInfo(int what, APTR data);

FUNCTION
This function must free the data allocated by GetMonitorInfo(). You have to specify
the type of the data in what. See Section 16.23 [GetMonitorInfo], page 122, for a list of
supported data types.

FreeMonitorInfo() is an optional API and must only be implemented if HWSDAFLAGS_
MONITORINFO has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

120 Hollywood SDK

INPUTS

what which data to free

data data allocated by GetMonitorInfo()

16.19 FreePointer

NAME
FreePointer – free a custom mouse pointer (V6.0)

SYNOPSIS
void FreePointer(APTR handle);

FUNCTION
This function has to free a mouse pointer handle allocated by CreatePointer(). Holly-
wood will make sure that this function is only called if the custom mouse pointer is no
longer attached to any display.

INPUTS

handle pointer handle returned by CreatePointer()

16.20 FreeVideoBitMap

NAME
FreeVideoBitMap – free video bitmap (V6.0, optional)

SYNOPSIS
void FreeVideoBitMap(APTR handle);

FUNCTION
This function must free the specified video bitmap that has been allocated using
AllocVideoBitMap(). See Section 16.4 [AllocVideoBitMap], page 106, for details.

FreeVideoBitMap() is an optional API and must only be implemented if HWSDAFLAGS_
VIDEOBITMAPADAPTER has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

INPUTS

handle handle to a bitmap allocated by AllocVideoBitMap().

16.21 FreeVideoPixels

NAME
FreeVideoPixels – free pixel array allocated by ReadVideoPixels() (V6.0, optional)

SYNOPSIS
void FreeVideoPixels(APTR pixels);

Chapter 16: Display adapter plugins 121

FUNCTION
This function must free the pixel array allocated by ReadVideoPixels(). See
Section 16.32 [ReadVideoPixels], page 134, for details.

FreeVideoPixels() is an optional API and must only be implemented if HWSDAFLAGS_
VIDEOBITMAPADAPTER has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

INPUTS

pixels pixel array allocated by ReadVideoPixels()

16.22 GetBitMapAttr

NAME
GetBitMapAttr – query software bitmap attribute (V6.0, optional)

SYNOPSIS
int val = GetBitMapAttr(APTR handle, int attr, struct hwTagList *tags);

FUNCTION
This function must return the requested information about the specified bitmap. The
attr parameter will tell you which information you have to return. The following at-
tributes are currently recognized:

HWBMATTR_WIDTH:

Return the bitmap’s width in pixels.

HWBMATTR_HEIGHT:

Return the bitmap’s height in pixels.

HWBMATTR_BYTESPERROW:

Return the bitmap’s bytes per row.

GetBitMapAttr() is an optional API and must only be implemented if HWSDAFLAGS_
BITMAPADAPTER has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

INPUTS

handle bitmap handle allocated by AllocBitMap()

attr which information should be queried

tags reserved for future use (currently NULL)

RESULTS

val value of the requested attribute

122 Hollywood SDK

16.23 GetMonitorInfo

NAME
GetMonitorInfo – get information about monitor hardware (V6.0, optional)

SYNOPSIS
int error = GetMonitorInfo(int what, int monitor, APTR *data,

struct hwTagList *tags);

FUNCTION
This function must query all available monitors and return information about their con-
figuration and capabilities. Hollywood will use the what parameter to tell your imple-
mentation which information about the monitor hardware the program wants to have.
what can be one of the following values:

HWGMITYPE_MONITORS:

Hollywood wants to have information about all monitors available to the sys-
tem and their positions on the extended desktop relative to the primary mon-
itor. If what has been set to HWGMITYPE_MONITORS, your GetMonitorInfo()
implementation must allocate a list of all available monitors as an array
of struct hwMonitorInfo elements. The list must be terminated by a last
struct hwMonitorInfo element with all structure members set to zero. Here
is what struct hwMonitorInfo looks like:

struct hwMonitorInfo

{

int X; // [out]

int Y; // [out]

int Width; // [out]

int Height; // [out]

};

Hollywood expects the following information in the individual structure
members:

X: Must be set to the x position of this monitor on the extended
desktop.

Y: Must be set to the y position of this monitor on the extended
desktop.

Width: This monitor’s width on the extended desktop.

Height: This monitor’s height on the extended desktop.

All values must be specified in pixels. The pointer to the list of struct
hwMonitorInfo elements must be written to the data pointer that
is passed to GetMonitorInfo() as parameter 3. Hollywood will call
FreeMonitorInfo() to give you a chance to free the list you’ve allocated.

The monitor parameter is ignored if what is HWGMITYPE_MONITORS.

HWGMITYPE_VIDEOMODES:

Hollywood wants to know about all video modes that a specific monitor
supports. The number of the monitor to examine is passed in the monitor

Chapter 16: Display adapter plugins 123

parameter. Monitors are counted from 0 which describes the primary
monitor. Your GetMonitorInfo() implementation must allocate a list
of all available video modes for this monitor as an array of struct

hwVideoModeInfo elements. The list must be terminated by a last struct
hwVideoModeInfo element with all structure members set to zero. Here is
what struct hwVideoModeInfo looks like:

struct hwVideoModeInfo

{

int Width; // [out]

int Height; // [out]

int Depth; // [out]

};

Hollywood expects the following information in the individual structure
members:

Width: Width of video mode in pixels.

Height: Height of video mode in pixels.

Depth: Depth of video mode.

The pointer to the list of struct hwVideoModeInfo elements must be written
to the data pointer that is passed to GetMonitorInfo() as parameter 3.
Hollywood will call FreeMonitorInfo() to give you a chance to free the list
you’ve allocated.

GetMonitorInfo() is an optional API and must only be implemented if HWSDAFLAGS_
MONITORINFO has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

INPUTS

what which information to query (see above)

monitor monitor index to query

data pointer to store this function’s return data

tags taglist containing additional parameters (currently always NULL)

RESULTS

error error code or 0 for success

16.24 GetMousePos

NAME
GetMousePos – query mouse pointer position (V6.0)

SYNOPSIS
void GetMousePos(APTR handle, int *mx, int *my);

124 Hollywood SDK

FUNCTION
This function must query the mouse pointer position for the specified window and write
it to the pointers passed in parameters 2 and 3. The mouse position you return in this
function must be relative to the upper-left corner of your display’s client area.

INPUTS

handle display handle returned by OpenDisplay()

mx pointer to write the mouse pointer’s x position to

my pointer to write the mouse pointer’s y position to

16.25 GetQualifiers

NAME
GetQualifiers – query current qualifier key state (V6.0)

SYNOPSIS
ULONG state = GetQualifiers(APTR handle);

FUNCTION
This function must query the state of all keyboard qualifiers for the specified display and
return them to Hollywood. The following keyboard qualifiers are currently defined:

HWKEY_QUAL_MASK:

This is an internal control bit and must always be set.

HWKEY_QUAL_LSHIFT:

Left shift key is down.

HWKEY_QUAL_RSHIFT:

Right shift key is down.

HWKEY_QUAL_LALT:

Left alt key is down.

HWKEY_QUAL_RALT:

Right alt key is down.

HWKEY_QUAL_LCOMMAND:

Left command key is down.

HWKEY_QUAL_RCOMMAND:

Right command key is down.

HWKEY_QUAL_LCONTROL:

Left control key is down.

HWKEY_QUAL_RCONTROL:

Right control key is down.

INPUTS

handle display handle returned by OpenDisplay()

Chapter 16: Display adapter plugins 125

RESULTS

state bitmask containing all qualifier keys that are currently down; do not forget
to always set HWKEY_QUAL_MASK

16.26 GrabScreenPixels

NAME
GrabScreenPixels – grab pixels of display’s host screen (V6.0, optional)

SYNOPSIS
ULONG *rgb = GrabScreenPixels(APTR handle, int x, int y, int width,

int height, ULONG flags, struct hwTagList *tags);

FUNCTION
This function must grab the pixels of the screen that is currently hosting the specified
display and return them to Hollywood as a 32-bit RGB pixel array. The pixel array
that is returned by this function must be exactly width * height * 4 bytes in size. No
padding bytes are allowed.

Hollywood will call your FreeGrabScreenPixels() function to free the pixel array allo-
cated by this function.

GrabScreenPixels() is an optional API and must only be implemented if HWSDAFLAGS_
GRABSCREEN has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

INPUTS

handle display handle returned by OpenDisplay()

x x offset marking the start position of the grab operation

y y offset marking the start position of the grab operation

width grab width in pixels

height grab height in pixels

flags reserved for future use (currently 0)

tags reserved for future use (currently NULL)

RESULTS

rgb 32bit RGB array containing the grabbed pixels

16.27 HandleEvents

NAME
HandleEvents – handle display events (V6.0)

SYNOPSIS
int error = HandleEvents(lua_State *L, ULONG flags, struct hwTagList *t);

126 Hollywood SDK

FUNCTION
This function must handle all display events that have come in. Hollywood will call
this function many times per second so that your application stays responsive. As this
is called so very often, you may want to implement a throttle here so that you only
poll for events 50 times per second or so. Otherwise, HandleEvents() has the potential
to slow down your script’s execution significantly if polling for events is too expensive
and you do not implement a throttle. Be sure to benchmark raw performance of scripts
with your display adapter and compare them to the performance of Hollywood’s inbuilt
display handler to see if your adapter needs optimizing.

The following flags may be passed in the second parameter:

HWHEFLAGS_LINEHOOK:

This flag is set if HandleEvents() has been called from the Lua line hook.

HWHEFLAGS_MODAL:

If this flag is set, then HandleEvents() has been called from a modal loop
that Hollywood is currently running. A modal loop is a temporary event
loop set up by functions that block the script execution until certain events
happen, e.g. WaitLeftMouse() or InKeyStr().

HWHEFLAGS_CHECKEVENT:

This flag is set if HandleEvents() has been called as a result of the script
calling Hollywood’s CheckEvent() command.

HWHEFLAGS_WAITEVENT:

This flag is set if HandleEvents() has been called because WaitEvents()

has triggered.

Your HandleEvents() function should always call hw_MasterServer() with the
HWMSFLAGS_DRAWVIDEOS flag set so that Hollywood can update any videos that are
currently playing. If you don’t do that, video playback won’t work correctly.

The third parameter is a tag list which is currently always NULL. This might change in
the future, though.

HandleEvents() must return an error code or 0 for success. A special return value
is ERR_USERABORT. If your HandleEvents() returns ERR_USERABORT, Hollywood will
quit. Thus, it is suggested that you return ERR_USERABORT if the user has clicked your
display’s close widget, pressed the escape key, etc. Note that you should not return
ERR_USERABORT in case the HWDISPSATAG_USERCLOSE attribute has been set to True

using SetDisplayAttributes(). See Section 16.34 [SetDisplayAttributes], page 136,
for details.

Please note that this function must handle events on all displays that have currently
been opened by OpenDisplay(). Additionally, it could also happen that no display is
open at all and your HandleEvents() function is called. Be prepared to deal with these
cases.

All standard window events like sizing a window, moving a window, key presses and
mouse events, etc. should be forwarded to Hollywood using hw_PostEventEx() so that
Hollywood is able to notify any handlers that might listen to these events.

INPUTS

L pointer to the lua_State

Chapter 16: Display adapter plugins 127

flags combination of flags (see above)

t tag list containing additional parameters (see above)

RESULTS

error error code or 0 for success; returning ERR_USERABORT tells Hollywood to quit

16.28 Line

NAME
Line – draw a line (V6.0)

SYNOPSIS
void Line(APTR handle, int x1, int y1, int x2, int y2, ULONG color,

ULONG flags, struct hwTagList *tags);

FUNCTION
This function must draw a line between the two points passed to this function. The
destination handle can be either a display or a bitmap. You have to look at flags

parameter to find out how to interpret the handle that Hollywood has passed to your
function. The following flags are currently recognized:

HWLIFLAGS_DESTVIDEOBITMAP:

The handle passed is a video bitmap allocated by AllocVideoBitMap().
This can only happen if you’ve set the HWVBMCAPS_OFFSCREENCOLOR or
HWVBMCAPS_OFFSCREENALPHA capabilities in HWSDATAG_VIDEOBITMAPCAPS

to enable offscreen rendering to video bitmaps. Otherwise, HWLIFLAGS_

DESTVIDEOBITMAP will never be set.

HWLIFLAGS_DESTALPHAONLY:

This is only set in connection with HWLIFLAGS_DESTVIDEOBITMAP. If Hol-
lywood wants you to draw to the alpha channel of your video bitmap allo-
cated by AllocVideoBitMap(), it will indicate this by setting HWLIFLAGS_

DESTALPHAONLY. If HWLIFLAGS_DESTVIDEOBITMAP is set and HWLIFLAGS_

DESTALPHAONLY isn’t, you have to draw to the color channels of the video
bitmap instead. Note that HWLIFLAGS_DESTALPHAONLY will only ever be set
if you’ve set the HWVBMCAPS_OFFSCREENALPHA capability flag in HWSDATAG_

VIDEOBITMAPCAPS to enable offscreen rendering to video bitmap alphachan-
nels. In that case, the color parameter will contain just an 8-bit alpha
transparency value ranging from 0 to 255.

HWLIFLAGS_DESTBITMAP:

The handle passed is a software bitmap allocated by Hollywood or
your plugin’s AllocBitMap() function if you’ve set the HWSDAFLAGS_

BITMAPADAPTER in your call to hw_SetDisplayAdapter(). Note that
HWLIFLAGS_DESTBITMAP will only ever be set if you’ve passed HWBMAHOOK_

WRITEPIXEL in HWSDAFLAGS_BITMAPHOOK. Otherwise, Hollywood will do the
rendering to the software bitmap on its own and you don’t have to care.
HWLIFLAGS_DESTBITMAP will only ever be set if you’ve explicitly requested

128 Hollywood SDK

that you want to do offscreen drawing to software bitmaps on your own by
setting the appropriate bitmap hook flags.

If you’ve set the HWSDAFLAGS_ALPHADRAW flag when calling hw_SetDisplayAdapter()

to initialize your plugin, the color value passed in parameter 6 will contain an alpha
value in its 8 most significant bits and your implementation is expected to draw to the
destination with alpha blending enabled. If you haven’t set HWSDAFLAGS_ALPHADRAW, the
color will be just a 24-bit RGB value. If the HWLIFLAGS_DESTALPHAONLY flag is set, the
color parameter will contain just an 8-bit alpha transparency value ranging from 0 to
255.

This function doesn’t have to do any clipping. Hollywood will perform clipping itself
before calling Line().

If your display adapter doesn’t support video bitmaps or hooks into Hollywood’s bitmap
handler, Line() only has to be able to draw to the display which should be quite simple
and straight-forward to implement.

If your plugin supports hardware double buffering and Hollywood has put your display
into hardware double buffering mode by calling your plugin’s BeginDoubleBuffer()

function, this function must not draw anything to the display but only to the back
buffer. Hollywood will call your plugin’s Flip() function when it wants you to draw the
back buffer to the display.

You might want to use the hw_RawLine() function in your implementation to draw lines
to bitmaps stored as raw pixel buffers. See Section 26.23 [hw RawLine], page 279, for
details.

INPUTS

handle destination display or bitmap (depends on the flags that are set, see above)

x1 start x offset for the line

y1 start y offset for the line

x2 end x offset for the line

y2 end y offset for the line

color desired line color

flags flags specifying further parameters

tags additional options (currently always NULL)

16.29 LockBitMap

NAME
LockBitMap – lock a software bitmap (V6.0, optional)

SYNOPSIS
APTR lock = LockBitMap(APTR handle, ULONG flags, struct

hwos_LockBitMapStruct *bmlock, struct hwTagList *tags);

Chapter 16: Display adapter plugins 129

FUNCTION
This function must lock a bitmap to allow access to the bitmap’s underlying pixel data.
Hollywood will pass a pointer to a struct hwos_LockBitMapStruct to this function.
Your implementation must then fill this structure with all necessary information. struct
hwos_LockBitMapStruct looks like this:

struct hwos_LockBitMapStruct

{

APTR Data; // [out]

int Modulo; // [out]

int PixelFormat; // [out]

int BytesPerPixel; // [out]

int Width; // [out]

int Height; // [out]

};

Your LockBitMap() implementation has to write the following information to the indi-
vidual structure members:

Data: Must be set to a pointer to the bitmap’s actual pixel data. The pointer
must be valid until Hollywood calls UnLockBitMap() on the handle that is
returned by this function.

Modulo: Must be set to the bitmap’s modulo width, i.e. the length of a single row
of pixels. For bitmaps of type HWBMTYPE_RGB this value must be specified in
pixels. For the other bitmap types, this value must be specified in bytes.

PixelFormat:

This must be set to the pixel format used by the raw pixel array that you’ve
set in Data. See Section 2.15 [Pixel format information], page 16, for details.

BytesPerPixel:

This must be set to how many bytes are needed for a single pixel.

Width: Must be set to the bitmap’s width.

Height: Must be set to the bitmap’s height.

Hollywood will also pass a combination of flags to this function. The following flags are
currently supported:

HWLBMFLAGS_READONLY:

If this flag is set, Hollywood will only need read access to the bitmap. It
won’t write to the pixel array you return in the Data member of the struct
hwos_LockBitMapStruct.

LockBitMap() has to return a lock handle for this bitmap. This is an opaque datatype
only known by your plugin. It’s only used to unlock the bitmap again when Hollywood
is finished with it. Hollywood will call UnLockBitMap() then, passing the handle which
was returned by LockBitMap(). If this function fails to lock the bitmap, return NULL.

This function will usually be called very often by Hollywood so your implementation
should be efficient and should not have to copy the pixels to a new memory block first.
Instead, it should be designed in a way that allows immediate access to the pixel data.

130 Hollywood SDK

LockBitMap() is an optional API and must only be implemented if HWSDAFLAGS_

BITMAPADAPTER has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

INPUTS

handle bitmap handle allocated by AllocBitMap()

flags flags for the lock operation (see above)

bmlock pointer to a struct hwos_LockBitMapStruct to be filled out by this function

tags reserved for future use (currently NULL)

RESULTS

lock bitmap lock or NULL in case there was an error

16.30 MovePointer

NAME
MovePointer – move the mouse pointer (V6.0)

SYNOPSIS
void MovePointer(APTR handle, int x, int y);

FUNCTION
This function must move the mouse pointer to the specified position. The position that
is passed to this function is relative to the display’s client area top-left corner.

INPUTS

handle display handle returned by OpenDisplay()

x desired new x position for mouse pointer

y desired new y position for mouse pointer

16.31 OpenDisplay

NAME
OpenDisplay – open a display (V6.0)

SYNOPSIS
APTR handle = OpenDisplay(STRPTR title, int x, int y, int width,

int height, ULONG flags, struct hwTagList *tags);

FUNCTION
This function has to open a new display that is described by the parameters passed to
this function. Hollywood will pass the position of the display on screen as well as its
dimensions. All values are in pixels. Additionally, a flags bitfield and a tag list is passed
to this function.

Your implementation has to return a handle that is used to refer to this display later or
NULL in case an error has occurred.

The flags parameter can be a combination of the following individual flags:

Chapter 16: Display adapter plugins 131

HWDISPFLAGS_BORDERLESS:

Window should be opened without any border decoration.

HWDISPFLAGS_SIZEABLE:

Window should be resizeable. Note that this flag refers to user resizability
only. Even if this flag isn’t set, Hollywoood might still ask your window to
resize by calling the SizeMoveDisplay() function.

HWDISPFLAGS_FIXED:

Window dragging should be disabled.

HWDISPFLAGS_NOHIDE:

Window should not have a widget for minimizing.

HWDISPFLAGS_NOCLOSE:

Window should not have a close widget.

HWDISPFLAGS_AUTOSCALE:

This flag is set if the user has enabled auto scaling for this window. If that
is the case, the window’s physical dimensions won’t necessarily match the
dimensions of its back buffer.

HWDISPFLAGS_LAYERSCALE:

This flag is set if the user has enabled layer scaling for this window. Layer
scaling uses a different technique than auto scaling which means that the
back buffer size will match the window’s physical size in case layer scaling is
active.

HWDISPFLAGS_LAYERS:

This flag is set if layers are enabled for this window.

HWDISPFLAGS_DOUBLEBUFFER:

This flag is set if Hollywood will use double buffer drawing for this window.

HWDISPFLAGS_HARDWAREDB:

This flag is set if Hollywood is using a hardware double buffer provided by
the plugin for this window.

HWDISPFLAGS_FULLSCREEN:

If this flag is set, the display should be opened in full screen mode. You may
choose to ignore the x and y parameters in that case.

HWDISPFLAGS_DISABLEBLANKER:

If this flag is set, the screen blanker should be disabled while this display is
opened.

Additionally, Hollywood will pass a tag list to OpenDisplay(). This tag list can contain
the following tags:

HWDISPTAG_BUFFERWIDTH:

This tag is always provided and contains the pixel width of Hollywood’s back
buffer for this display. Please note that this is not necessarily the same as
the window’s physical dimensions. If autoscaling is active, back buffer size
and the window’s physical dimensions can be different. It is suggested that

132 Hollywood SDK

you allocate a pixel buffer of this size and first draw everything into this
back buffer. After that you refresh the display using the graphics you have
drawn into the back buffer. For optimized drawing you should implement
a custom double buffer using HWPLUG_CAPS_DOUBLEBUFFER. Custom double
buffers don’t have to draw into the back buffer first because double buffer
frames are usually updated multiple times per second so there’s no need to
cache an additional back buffer for refreshing the window when parts of it
have to be redrawn.

HWDISPTAG_BUFFERHEIGHT:

This tag is always provided and contains the pixel height of Hollywood’s
back buffer for this display. See above for details.

HWDISPTAG_OPTIMIZEDREFRESH:

This tag is always provided and it is set to a pointer to a ULONG. Your plugin
can write True to this pointer if it wants Hollywood to enable optimized
refresh for this display. Optimized refresh should be enabled on systems
where it’s more efficient to refresh the complete display instead of several
smaller parts. By default, Hollywood prefers to refresh just the parts of
the display that actually need refreshing. On some backends, however, this
is quite slow if several smaller parts have to be updated. It is often faster
to refresh the complete display on these systems. This is especially true
for backends that are double buffer based because refreshing a single tile
on double buffer based backends means doing a complete buffer flip which
doesn’t look so nice and is quite slow. That’s why it is wise to enable this
option on some systems. By default, optimized refresh is disabled.

HWDISPTAG_SINGLEREFRESHFX:

This tag is always provided and it is set to a pointer to a ULONG. Your
plugin can write True to this pointer if it wants Hollywood to enable single
refresh transition effect drawing for this display. This option is related to the
HWDISPTAG_OPTIMIZEDREFRESH tag (see above). If you set the pointer that
you are passed here to True, Hollywood will draw one transition effect frame
in exactly one video frame. If it is set to False (which is also the default),
Hollywood might emit more than one video frame for a single transition
effect frame. This is especially so for transition effect frames that consist of
many small parts that need to be updated. If HWDISPTAG_SINGLEREFRESHFX
is not set to True, Hollywood will prefer to draw many small parts instead
of the complete frame all at once. On some systems, however, drawing
many small bits totally kills the performance. In that case you need to set
this tag to True. See above in HWDISPTAG_OPTIMIZEDREFRESH for additional
information.

HWDISPTAG_LUASTATE:

This tag is always provided and contains a pointer to the lua_State.

HWDISPTAG_MONITOR:

This tag is always provided and specifies the monitor that this display should
be opened on. Monitors are counted from 0 which specifies the primary
monitor.

Chapter 16: Display adapter plugins 133

HWDISPTAG_SCREENWIDTH:

If HWDISPFLAGS_FULLSCREEN has been set, this tag contains the desired pixel
width for the full screen mode. This is not necessarily the same as the display
width since the user might explicitly choose a full screen resolution that is
larger than the display, e.g. an 800x600 screen mode for a 640x480 display.

HWDISPTAG_SCREENHEIGHT:

Contains the desired pixel screen height if HWDISPFLAGS_FULLSCREEN has
been set. See above for details.

HWDISPTAG_SCREENDEPTH:

Contains the desired screen depth if HWDISPFLAGS_FULLSCREEN has been set.
On most systems you may choose to ignore this since most modern systems
all operate in 32-bit true colour mode.

HWDISPTAG_SCALEWIDTH:

If HWDISPFLAGS_AUTOSCALE or HWDISPFLAGS_LAYERSCALE is active, this tag
contains the current scale width.

HWDISPTAG_SCALEHEIGHT:

If HWDISPFLAGS_AUTOSCALE or HWDISPFLAGS_LAYERSCALE is active, this tag
contains the current scale height.

HWDISPTAG_SCALEMODE:

If HWDISPFLAGS_AUTOSCALE or HWDISPFLAGS_LAYERSCALE is active, this tag
contains the current scale mode. Currently, only 0 and 1 are defined here. 0
means hard scaling with no interpolation whereas 1 means anti-alias inter-
polated scaling.

Please note that Hollywood supports multiple displays so OpenDisplay() can be called
several times. Hollywood also supports multiple full screen displays if they are to appear
on different monitors. Be prepared to deal with these cases.

INPUTS

title caption string for the display’s window border

x desired x position of this display in pixels

y desired y position of this display in pixels

width desired width for this display in pixels

height desired height for this display in pixels

flags flags describing additional options (see above)

tags tag list describing additional options (see above)

RESULTS

handle a handle to the newly allocated display or NULL in case of an error

134 Hollywood SDK

16.32 ReadVideoPixels

NAME
ReadVideoPixels – get raw pixels from video bitmap (V6.0, optional)

SYNOPSIS
APTR rgb = ReadVideoPixels(APTR handle, struct hwTagList *tags);

FUNCTION
This function must return the raw pixels of the specified video bitmap. This is often
very slow because it has to read from GPU memory. That’s why Hollywood calls this
function only under very special circumstances. This function has to return a pixel buffer
that is exactly of the size width * height * bytes_per_pixel. No line padding may be
involved.

Additionally, your implementation has to handle the following taglist:

HWRVPTAG_BLEND:

The pData member of this tag item will be set to a pointer to an int. Your
implementation has to set this pointer to either True or False, depending
on whether the returned video pixels contain alpha channel transparency
information or not.

HWRVPTAG_PIXELFORMAT:

The pData member of this tag item will be set to a pointer to an int. Your
implementation has to set this pointer to the pixel format the returned data
is in. See Section 2.15 [Pixel formats], page 16, for details.

When Hollywood is done with the data returned by this function, it will call
FreeVideoPixels() on it.

ReadVideoPixels() is an optional API and must only be implemented if HWSDAFLAGS_
VIDEOBITMAPADAPTER has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

INPUTS

handle handle to a bitmap allocated by AllocVideoBitMap().

tags taglist containing additional parameters (see above)

RESULTS

rgb array containing raw pixel data or NULL in case of an error

16.33 RectFill

NAME
RectFill – fill rectangular pixel area with color (V6.0)

SYNOPSIS
void RectFill(APTR handle, int x, int y, int width, int height,

ULONG color, ULONG flags, struct hwTagList *tags);

Chapter 16: Display adapter plugins 135

FUNCTION
This function must fill the specified rectangular area with the color passed in parameter
6. The destination handle can be either a display or a bitmap. You have to look at
flags parameter to find out how to interpret the handle that Hollywood has passed to
your function. The following flags are currently recognized:

HWRFFLAGS_DESTVIDEOBITMAP:

The handle passed is a video bitmap allocated by AllocVideoBitMap().
This can only happen if you’ve set the HWVBMCAPS_OFFSCREENCOLOR or
HWVBMCAPS_OFFSCREENALPHA capabilities in HWSDATAG_VIDEOBITMAPCAPS

to enable offscreen rendering to video bitmaps. Otherwise, HWRFFLAGS_

DESTVIDEOBITMAP will never be set.

HWRFFLAGS_DESTALPHAONLY:

This is only set in connection with HWRFFLAGS_DESTVIDEOBITMAP. If Hol-
lywood wants you to draw to the alpha channel of your video bitmap allo-
cated by AllocVideoBitMap(), it will indicate this by setting HWRFFLAGS_

DESTALPHAONLY. If HWRFFLAGS_DESTVIDEOBITMAP is set and HWRFFLAGS_

DESTALPHAONLY isn’t, you have to draw to the color channels of the video
bitmap instead. Note that HWRFFLAGS_DESTALPHAONLY will only ever be set
if you’ve set the HWVBMCAPS_OFFSCREENALPHA capability flag in HWSDATAG_

VIDEOBITMAPCAPS to enable offscreen rendering to video bitmap alphachan-
nels. In that case, the color parameter will contain just an 8-bit alpha
transparency value ranging from 0 to 255.

HWRFFLAGS_DESTBITMAP:

The handle passed is a software bitmap allocated by Hollywood or
your plugin’s AllocBitMap() function if you’ve set the HWSDAFLAGS_

BITMAPADAPTER in your call to hw_SetDisplayAdapter(). Note
that HWRFFLAGS_DESTBITMAP will only ever be set if you’ve passed
HWBMAHOOK_RECTFILL in HWSDAFLAGS_BITMAPHOOK. Otherwise, Hollywood
will do the rendering to the software bitmap on its own and you don’t have
to care. HWRFFLAGS_DESTBITMAP will only ever be set if you’ve explicitly
requested that you want to do offscreen drawing to software bitmaps on
your own by setting the appropriate bitmap hook flags.

If you’ve set the HWSDAFLAGS_ALPHADRAW flag when calling hw_SetDisplayAdapter()

to initialize your plugin, the color value passed in parameter 6 will contain an alpha
value in its 8 most significant bits and your implementation is expected to draw to the
destination with alpha blending enabled. If you haven’t set HWSDAFLAGS_ALPHADRAW, the
color will be just a 24-bit RGB value. If the HWRFFLAGS_DESTALPHAONLY flag is set, the
color parameter will contain just an 8-bit alpha transparency value ranging from 0 to
255.

This function doesn’t have to do any clipping. Hollywood will perform clipping itself
before calling RectFill().

If your display adapter doesn’t support video bitmaps or hooks into Hollywood’s bitmap
handler, RectFill() only has to be able to draw to the display which should be quite
simple and straight-forward to implement.

136 Hollywood SDK

If your plugin supports hardware double buffering and Hollywood has put your display
into hardware double buffering mode by calling your plugin’s BeginDoubleBuffer()

function, this function must not draw anything to the display but only to the back
buffer. Hollywood will call your plugin’s Flip() function when it wants you to draw the
back buffer to the display.

You might want to use the hw_RawRectFill() function in your implementation to draw
rectangles to bitmaps stored as raw pixel buffers. See Section 26.24 [hw RawRectFill],
page 280, for details.

INPUTS

handle destination display or bitmap (depends on the flags that are set, see above)

x x offset of the rectangle to fill

y y offset of the rectangle to fill

width width in pixels of the area to fill

height height in pixels of the area to fill

color filling color

flags flags specifying further parameters

tags additional options (currently always NULL)

16.34 SetDisplayAttributes

NAME
SetDisplayAttributes – modify display attributes (V6.0)

SYNOPSIS
int error = SetDisplayAttributes(APTR handle, struct hwTagList *tags);

FUNCTION
This function is used by Hollywood to change certain attributes of your display. Holly-
wood will pass a tag list to this function. The following tags are currently defined:

HWDISPSATAG_USERCLOSE:

If iData is set to True here, then you must not shut down Hollywood when
the user clicks on your display’s close widget, i.e. your HandleEvents()

implementation should not return ERR_USERABORT in that case. Instead,
you should just post an HWEVT_CLOSEDISPLAY event and leave everything
else to Hollywood. This attribute is often set to True in case the user
listens to CloseWindow events using InstallEventHandler() to perform
some custom action when the window’s close widget is pressed.

INPUTS

handle display handle returned by OpenDisplay()

t tag list containing additional attributes (see above)

RESULTS

error error code or 0 for success

Chapter 16: Display adapter plugins 137

16.35 SetDisplayTitle

NAME
SetDisplayTitle – change display title (V6.0)

SYNOPSIS
void SetDisplayTitle(APTR handle, STRPTR title);

FUNCTION
This function must change the display’s window caption to the specified string.

INPUTS

handle display handle returned by OpenDisplay()

title new caption for the display

16.36 SetPointer

NAME
SetPointer – change mouse pointer (V6.0)

SYNOPSIS
void SetPointer(APTR handle, int type, APTR data);

FUNCTION
This function must change the display’s mouse pointer to the one that is requested by
Hollywood. The second parameter describes the requested mouse pointer type. This can
be one of the following types:

HWPOINTER_SYSTEM:

Mouse pointer should be changed to the system’s default mouse pointer.

HWPOINTER_BUSY:

Mouse pointer should be changed to a system mouse pointer that indicates
that the application is currently busy.

HWPOINTER_CUSTOM:

Mouse pointer should be changed to a custom mouse pointer allocated by
CreatePointer(). If type is set to HWPOINTER_CUSTOM, a handle to the
custom mouse pointer is passed in the data parameter. Otherwise the data
parameter is NULL.

INPUTS

handle display handle returned by OpenDisplay()

type desired mouse pointer type (see above for supported types)

data if type is HWPOINTER_CUSTOM, this is set to a handle returned by
CreatePointer(), otherwise it is NULL

138 Hollywood SDK

16.37 ShowHideDisplay

NAME
ShowHideDisplay – show or hide the display (V6.0)

SYNOPSIS
int error = ShowHideDisplay(APTR handle, int show, struct hwTagList *t);

FUNCTION
This function must show or hide the display depending on the state passed as parameter
2.

INPUTS

handle display handle returned by OpenDisplay()

show True to show the display, False to hide it

t taglist for additional options (currently always NULL)

RESULTS

error error code or 0 for success

16.38 ShowHidePointer

NAME
ShowHidePointer – show or hide the mouse pointer (V6.0)

SYNOPSIS
void ShowHidePointer(APTR handle, int show);

FUNCTION
This function must show or hide the mouse pointer for the specified display.

INPUTS

handle display handle returned by OpenDisplay()

show True to show the pointer, False to hide it

16.39 SizeMoveDisplay

NAME
SizeMoveDisplay – change display position and/or size (V6.0)

SYNOPSIS
int error = SizeMoveDisplay(APTR handle, int x, int y, int width,

int height, ULONG flags, struct hwTagList *tags);

FUNCTION
This function must change the display position to the specified new position and the
display size must be changed to the specified new dimensions. All values have to be
passed in pixels.

Chapter 16: Display adapter plugins 139

After a display size change Hollywood will usually also call ChangeBufferSize()

so that your plugin can adapt the size of its back buffer. The only time in which
ChangeBufferSize() is not called after SizeMoveDisplay() is with enabled autoscaling
because in that case the size of the back buffer does not change with the output
display’s size.

INPUTS

handle display handle returned by OpenDisplay()

x new x position for this display

y new y position for this display

width new width for this display

height new height for this display

flags additional flags (currently 0)

t taglist for additional options (currently always NULL)

RESULTS

error error code or 0 for success

16.40 Sleep

NAME
Sleep – sleep for a certain amount of time (V6.0, optional)

SYNOPSIS
int error = Sleep(lua_State *L, int ms);

FUNCTION
This function must put the application to sleep for the requested amount of milliseconds.
It is important that this is done in a way that lets the application stay responsive, i.e.
you must make sure that you keep handling window events and you also must call into
hw_MasterServer() frequently to keep videos playing. If the user closes the display
while sleeping, you should return ERR_USERABORT so that Hollywood can shutdown.

Sleep() is an optional API and must only be implemented if HWSDAFLAGS_SLEEP has
been passed to hw_SetDisplayAdapter(). See Section 26.28 [hw SetDisplayAdapter],
page 283, for details.

INPUTS

L pointer to the lua_State

ms number of milliseconds to sleep

RESULTS

error error code or 0 for success

140 Hollywood SDK

16.41 UnLockBitMap

NAME
UnLockBitMap – unlock a software bitmap (V6.0, optional)

SYNOPSIS
void UnLockBitMap(APTR handle);

FUNCTION
This must unlock the software bitmap specified by handle. Note that the handle pa-
rameter is not a bitmap but the lock handle as returned by LockBitMap().

UnLockBitMap() is an optional API and must only be implemented if HWSDAFLAGS_

BITMAPADAPTER has been passed to hw_SetDisplayAdapter(). See Section 26.28
[hw SetDisplayAdapter], page 283, for details.

INPUTS

handle lock handle returned by LockBitMap()

16.42 VWait

NAME
VWait – wait for next vertical blank (V6.0, optional)

SYNOPSIS
void VWait(APTR handle, struct hwTagList *tags);

FUNCTION
This function must wait for the next vertical blank on the specified display. The following
tags can currently be passed in the tag list:

HWVWAITTAG_DOUBLEBUFFER:

The iData value of this tag item is set to True if Hollywood is currently in
double-buffer mode, otherwise it is set to False.

VWait() is an optional API and must only be implemented if HWSDAFLAGS_VWAIT has
been passed to hw_SetDisplayAdapter(). See Section 26.28 [hw SetDisplayAdapter],
page 283, for details.

INPUTS

handle display handle returned by OpenDisplay()

t taglist for additional options (see above)

16.43 WaitEvents

NAME
WaitEvents – wait until events come in (V6.0)

SYNOPSIS
int error = WaitEvents(lua_State *L, ULONG flags, struct hwTagList *t);

Chapter 16: Display adapter plugins 141

FUNCTION
This function must halt the program’s execution until an event comes in. The event
must then be handled by your HandleEvents() implementation. WaitEvents() has to
return an error code or 0 for success.

The following flags may be passed in the second parameter:

HWWEFLAGS_MODAL:

If this flag is set, then WaitEvents() has been called from a modal loop that
Hollywood is currently running. A modal loop is a temporary event loop set
up by functions that block the script execution until certain events happen,
e.g. WaitLeftMouse() or InKeyStr(). If HWWEFLAGS_MODAL is not set, then
you can be sure that Hollywood is currently running the script’s main loop.
This means that your WaitEvents() implementation has been called as a
result of the script calling Hollywood’s WaitEvent() function.

The third parameter is a tag list that can contain the following tags:

HWWETAG_AMIGASIGNALS:

This tag is always passed on Amiga systems and your WaitEvents()

implementation must take it into account. The pData item of this tag
is set to a ULONG pointer that contains a combination of signal bits that
your WaitEvents() implementation has to take into account. Thus, on
Amiga systems all WaitEvents() implementations must be based on
exec.library/Wait(). You may choose to wait on additional signals
but you also must take the signals that you get from Hollywood into
account. Furthermore, you must write the signals that have broken your
WaitEvents() implementation back to the ULONG pointer before you return
from this function. This is because Hollywood needs to know which signals
have triggered so that it can take appropriate action.

Please note that this function must wait for events on all displays that have currently
been opened by OpenDisplay(). Additionally, it could also happen that no display is
open at all and your WaitEvents() function is called. Be prepared to deal with these
cases.

Also note that your WaitEvents() implementation must be capable of being woken up by
ForceEventLoopIteration() when this is called from worker threads. See Section 16.15
[ForceEventLoopIteration], page 118, for details.

INPUTS

L pointer to the lua_State

flags combination of flags (see above)

t tag list containing additional parameters (see above)

RESULTS

error error code or 0 for success

142 Hollywood SDK

16.44 WritePixel

NAME
WritePixel – draw a single pixel (V6.0)

SYNOPSIS
void WritePixel(APTR handle, int x, int y, ULONG color, ULONG flags,

struct hwTagList *tags);

FUNCTION
This function must draw a single pixel with the color passed in parameter 4. The
destination handle can be either a display or a bitmap. You have to look at flags

parameter to find out how to interpret the handle that Hollywood has passed to your
function. The following flags are currently recognized:

HWWPFLAGS_DESTVIDEOBITMAP:

The handle passed is a video bitmap allocated by AllocVideoBitMap().
This can only happen if you’ve set the HWVBMCAPS_OFFSCREENCOLOR or
HWVBMCAPS_OFFSCREENALPHA capabilities in HWSDATAG_VIDEOBITMAPCAPS

to enable offscreen rendering to video bitmaps. Otherwise, HWWPFLAGS_

DESTVIDEOBITMAP will never be set.

HWWPFLAGS_DESTALPHAONLY:

This is only set in connection with HWWPFLAGS_DESTVIDEOBITMAP. If Hol-
lywood wants you to draw to the alpha channel of your video bitmap allo-
cated by AllocVideoBitMap(), it will indicate this by setting HWWPFLAGS_

DESTALPHAONLY. If HWWPFLAGS_DESTVIDEOBITMAP is set and HWWPFLAGS_

DESTALPHAONLY isn’t, you have to draw to the color channels of the video
bitmap instead. Note that HWWPFLAGS_DESTALPHAONLY will only ever be set
if you’ve set the HWVBMCAPS_OFFSCREENALPHA capability flag in HWSDATAG_

VIDEOBITMAPCAPS to enable offscreen rendering to video bitmap alphachan-
nels. In that case, the color parameter will contain just an 8-bit alpha
transparency value ranging from 0 to 255.

HWWPFLAGS_DESTBITMAP:

The handle passed is a software bitmap allocated by Hollywood or
your plugin’s AllocBitMap() function if you’ve set the HWSDAFLAGS_

BITMAPADAPTER in your call to hw_SetDisplayAdapter(). Note that
HWWPFLAGS_DESTBITMAP will only ever be set if you’ve passed HWBMAHOOK_

WRITEPIXEL in HWSDAFLAGS_BITMAPHOOK. Otherwise, Hollywood will do the
rendering to the software bitmap on its own and you don’t have to care.
HWWPFLAGS_DESTBITMAP will only ever be set if you’ve explicitly requested
that you want to do offscreen drawing to software bitmaps on your own by
setting the appropriate bitmap hook flags.

If you’ve set the HWSDAFLAGS_ALPHADRAW flag when calling hw_SetDisplayAdapter()

to initialize your plugin, the color value passed in parameter 4 will contain an alpha
value in its 8 most significant bits and your implementation is expected to draw to the
destination with alpha blending enabled. If you haven’t set HWSDAFLAGS_ALPHADRAW, the
color will be just a 24-bit RGB value. If the HWWPFLAGS_DESTALPHAONLY flag is set, the

Chapter 16: Display adapter plugins 143

color parameter will contain just an 8-bit alpha transparency value ranging from 0 to
255.

This function doesn’t have to do any clipping. Hollywood will perform clipping itself
before calling WritePixel().

If your display adapter doesn’t support video bitmaps or hooks into Hollywood’s bitmap
handler, WritePixel() only has to be able to draw to the display which should be quite
simple and straight-forward to implement.

If your plugin supports hardware double buffering and Hollywood has put your display
into hardware double buffering mode by calling your plugin’s BeginDoubleBuffer()

function, this function must not draw anything to the display but only to the back
buffer. Hollywood will call your plugin’s Flip() function when it wants you to draw the
back buffer to the display.

You might want to use the hw_RawWritePixel() function in your implementation to
plot pixels to bitmaps stored as raw pixel buffers. See Section 26.25 [hw RawWritePixel],
page 281, for details.

INPUTS

handle destination display or bitmap (depends on the flags that are set, see above)

x x offset for the pixel

y y offset for the pixel

color pixel color

flags flags specifying further parameters

tags additional options (currently always NULL)

Chapter 17: Timer adapter plugins 145

17 Timer adapter plugins

17.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_TIMERADAPTER set can replace Holly-
wood’s inbuilt timer handler with their customized version. Timers are used to control
Hollywood functions like SetInterval() or SetTimeout(), for instance. If you’re writing
a display adapter using an alternative toolkit, it might be good idea to also use the timer
facilities of this toolkit to get a better performance.

Please note that timer adapters are not automatically initialized when Hollywood
loads the plugin. Instead, you have to manually call hw_SetTimerAdapter() in your
RequirePlugin() function to activate the timer adapter. The timer adapter will then
only be activated if the user calls @REQUIRE on your plugin. Otherwise, Hollywood will use
its default timer handler. See Section 2.5 [Auto and manual plugin initialization], page 8,
for details.

See Section 24.35 [hw SetTimerAdapter], page 222, for information on how to install your
timer adapter.

This plugin type is supported since Hollywood 6.0.

17.2 FreeTimer

NAME
FreeTimer – free a timer (V6.0)

SYNOPSIS
void FreeTimer(APTR handle);

FUNCTION
This function must free the specified timer that has been allocated by RegisterTimer().
See Section 17.3 [RegisterTimer], page 145, for details.

INPUTS

handle timer handle allocated by RegisterTimer()

17.3 RegisterTimer

NAME
RegisterTimer – register a new timer (V6.0)

SYNOPSIS
APTR handle = RegisterTimer(lua_State *L, int ms, int oneshot);

FUNCTION
This function has to register a new timer that triggers once the time specified in param-
eter 2 has elapsed. If the third parameter is set to True, Hollywood wants to have a
one-shot timer. Otherwise, the timer is expected to regard the time in parameter 2 as
an interval time and fire continuously in these intervals.

146 Hollywood SDK

To make Hollywood run the user callbacks associated with timer events you
need to call hw_RunTimerCallback() when a timer has fired. See Section 24.32
[hw RunTimerCallback], page 221, for details.

Hollywood will call FreeTimer() to free timers registered by this function.

INPUTS

L pointer to the lua_State

ms time in milliseconds

oneshot True if this timer should fire only once

RESULTS

handle handle to the timer or NULL in case of an error

Chapter 18: Requester adapter plugins 147

18 Requester adapter plugins

18.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_REQUESTERADAPTER set can replace Hol-
lywood’s inbuilt requester handler with their customized version. If you’re writing a display
adapter using an alternative toolkit, it might be good idea to also use the requester facilities
of this toolkit for consistency reasons and an overall more polished appearance.

Please note that requester adapters are not automatically initialized when Hollywood
loads the plugin. Instead, you have to manually call hw_SetRequesterAdapter() in your
RequirePlugin() function to activate the requester adapter. The requester adapter will
then only be activated if the user calls @REQUIRE on your plugin. Otherwise, Hollywood will
use its default requester handler. See Section 2.5 [Auto and manual plugin initialization],
page 8, for details.

You don’t have to implement all functions offered by the requester adapter API. Many
functions are optional and only have to be implemented if you explicitly request their use
in your call to hw_SetRequesterAdapter(). However, it is mandatory that all functions
defined by the display adapter API are declared so that Hollywood can import their symbols
when it loads the plugin. Functions that are optional and that you don’t enable via hw_

SetRequesterAdapter() can just be dummies then. Here is an overview of all requester
adapter APIs that are optional:

SystemRequest()

Only used if activated by setting HWSRAFLAGS_SYSTEMREQUEST.

FileRequest()

Only used if activated by setting HWSRAFLAGS_FILEREQUEST.

PathRequest()

Only used if activated by setting HWSRAFLAGS_PATHREQUEST.

StringRequest()

Only used if activated by setting HWSRAFLAGS_STRINGREQUEST.

ListRequest()

Only used if activated by setting HWSRAFLAGS_LISTREQUEST.

FontRequest()

Only used if activated by setting HWSRAFLAGS_FONTREQUEST.

ColorRequest()

Only used if activated by setting HWSRAFLAGS_COLORREQUEST.

See Section 28.5 [hw SetRequesterAdapter], page 295, for information on how to install
your requester adapter.

This plugin type is supported since Hollywood 6.0.

148 Hollywood SDK

18.2 ColorRequest

NAME
ColorRequest – open a color requester (V6.0, optional)

SYNOPSIS
int error = ColorRequest(APTR handle, STRPTR title, ULONG flags,

int *result, struct hwTagList *tags);

FUNCTION
This function must open a color requester, i.e. a dialog box that prompts the user to
select a color. The color must be returned to Hollywood by writing an RGB value to the
int pointer that has been passed as parameter 4. If the user has cancelled the requester,
ColorRequest() has to write -1 to the result pointer.

Hollywood also passes a taglist to this function. Your implementation has to handle the
following tags:

HWCOLORREQTAG_FROMSCRIPT:

The iData member of this tag item is set to True if Hollywood has called
you while the script is running. This might be important to know because
requesters should not block window refresh so you might want to setup a
temporary modal event loop if this tag has been set to True to enable your
display to stay responsive.

HWCOLORREQTAG_DEFCOLOR:

If this tag is present, Hollywood wants you to preselect the color that has
been passed in the iData member of this tag item in the color requester.

Note that Hollywood won’t call FreeRequest() for this requester type because
ColorRequest() shouldn’t have to allocate any resources.

ColorRequest() is an optional API and must only be implemented if HWSRAFLAGS_

COLORREQUEST has been passed to hw_SetRequesterAdapter(). See Section 28.5
[hw SetRequesterAdapter], page 295, for details.

INPUTS

handle display handle or NULL if no display is open

title title string for the requester’s window

flags reserved for future use (currently 0)

result int pointer for storing the user’s selection

tags taglist for additional options (see above)

RESULTS

error error code or 0 for success

Chapter 18: Requester adapter plugins 149

18.3 FileRequest

NAME
FileRequest – open a file requester (V6.0, optional)

SYNOPSIS
int error = FileRequest(APTR handle, STRPTR title, ULONG flags,

STRPTR *result, struct hwTagList *tags);

FUNCTION
This function must open a file requester (also known as an open dialog box or file
chooser dialog) that prompts the user to select a file for opening or saving. The function
must then return a fully qualified path to this file to Hollywood by setting the fourth
parameter to a string pointer that your function has allocated. Hollywood will then
call FreeRequest() on this string when it is done with it. If the user cancels the file
requester, you have to write NULL to the result string pointer.

The flags and tags parameters are used to control the appearance of the file requester.
The following flags are currently defined:

HWFILEREQFLAGS_MULTISELECT:

If this flag is set, your requester has to allow the selection of multiple files.
In multi-select mode the return string pointer that you write to the result
parameter has to be a list of fully qualified paths to files. The individ-
ual filenames are separated from one another by a single NULL terminator
byte whereas the complete list is terminated by two NULL terminator bytes
to signal the list end to Hollywood. This flag cannot be combined with
HWFILEREQFLAGS_SAVEMODE.

HWFILEREQFLAGS_SAVEMODE:

If this flag is set, Hollywood wants your requester to open in save mode, i.e.
the user should select a file for saving. In contrast to open file mode, the user
might select a file that doesn’t exist when in save mode and the requester
should also make the user confirm that the file can be overwritten in case he
selects an existing file. This flag cannot be combined with HWFILEREQFLAGS_

MULTISELECT.

Hollywood also passes a taglist to this function. Your implementation has to handle the
following tags:

HWFILEREQTAG_FROMSCRIPT:

The iData member of this tag item is set to True if Hollywood has called
you while the script is running. This might be important to know because
requesters should not block window refresh so you might want to setup a
temporary modal event loop if this tag has been set to True to enable your
display to stay responsive.

HWFILEREQTAG_EXTENSIONS:

If this tag is set, the requester should only show files that use the specified file
extension. The pData member of this tag item is set to a string that contains
a list of file extensions that should be shown. The individual extensions do
not contain a dot and are separated by a vertical bar character (|), for
example "jpg|jpeg|png|bmp|gif|lbm|ilbm".

150 Hollywood SDK

HWFILEREQTAG_DEFDRAWER:

If this tag is set, Hollywood wants your requester to show the files of this
directory when it opens. The directory is passed as a string in the pData

member of this tag item.

HWFILEREQTAG_DEFFILE:

If this tag is set, Hollywood wants your requester to preselect this file when
it opens. The file is passed as a string in the pData member of this tag item.

FileRequest() is an optional API and must only be implemented if HWSRAFLAGS_

FILEREQUEST has been passed to hw_SetRequesterAdapter(). See Section 28.5
[hw SetRequesterAdapter], page 295, for details.

INPUTS

handle display handle or NULL if no display is open

title title string for the requester’s window

flags flags controlling the requester’s appearance (see above)

result STRPTR pointer for storing the user’s selection

tags taglist for additional options (see above)

RESULTS

error error code or 0 for success

18.4 FontRequest

NAME
FontRequest – open a font requester (V6.0, optional)

SYNOPSIS
int error = FontRequest(APTR handle, STRPTR title, ULONG flags, STRPTR *

result, ULONG *style, struct hwTagList *tags);

FUNCTION
This function must open a font requester, i.e. a dialog box that prompts the user to select
a font face, size, color, and style. The function must then return a string to Hollywood
that contains information about the user’s selection. This string must be formatted like
this:

facename|size|color (e.g. "Arial|72|16711680")

The color is specified as an RGB value but in decimal notation. Your FontRequest()
implementation must set parameter 4 to a string pointer that adheres to the format as
described above. The string must be allocated by your function. Hollywood will call
FreeRequest() on this string when it is done with it so that you can free it. If the user
cancels the font requester, you have to write NULL to the result string pointer.

Additionally, your FontRequest() implementation must set the style pointer to a com-
bination of the following flags which indicate the style the user has selected for this
font:

Chapter 18: Requester adapter plugins 151

#define HWFONTREQWEIGHT_THIN 0x00000001

#define HWFONTREQWEIGHT_EXTRALIGHT 0x00000002

#define HWFONTREQWEIGHT_LIGHT 0x00000004

#define HWFONTREQWEIGHT_BOOK 0x00000008

#define HWFONTREQWEIGHT_NORMAL 0x00000010

#define HWFONTREQWEIGHT_MEDIUM 0x00000020

#define HWFONTREQWEIGHT_SEMIBOLD 0x00000040

#define HWFONTREQWEIGHT_BOLD 0x00000080

#define HWFONTREQWEIGHT_EXTRABOLD 0x00000100

#define HWFONTREQWEIGHT_BLACK 0x00000200

#define HWFONTREQWEIGHT_EXTRABLACK 0x00000400

#define HWFONTREQSLANT_ROMAN 0x00000800

#define HWFONTREQSLANT_ITALIC 0x00001000

#define HWFONTREQSLANT_OBLIQUE 0x00002000

#define HWFONTREQSTYLE_UNDERLINED 0x00004000

#define HWFONTREQSTYLE_STRIKEOUT 0x00008000

#define HWFONTREQSTYLE_BOLD 0x00010000

#define HWFONTREQSTYLE_ITALIC 0x00020000

The HWFONTREQWEIGHT_XXX flags control the font’s weight (i.e. how bold the individual
characters should appear) and the HWFONTREQSLANT_XXX flags contain the font’s slant
(i.e. how italic the individual characters should appear). You may only set one flag from
the HWFONTREQWEIGHT_XXX and HWFONTREQSLANT_XXX groups.

Hollywood also passes a taglist to this function. Your implementation has to handle the
following tags:

HWFONTREQTAG_FROMSCRIPT:

The iData member of this tag item is set to True if Hollywood has called
you while the script is running. This might be important to know because
requesters should not block window refresh so you might want to setup a
temporary modal event loop if this tag has been set to True to enable your
display to stay responsive.

HWFONTREQTAG_DEFFONT:

If this tag is in the list, Hollywood wants you to initialize the requester’s
initial font to the one specified in this tag. The pData member of this tag
item is set to a string pointer containing the name of the font.

HWFONTREQTAG_DEFSIZE:

If this tag is in the list, Hollywood wants you to preselect the font size spec-
ified in the iData member of this tag item when first opening the requester.

FontRequest() is an optional API and must only be implemented if HWSRAFLAGS_

FONTREQUEST has been passed to hw_SetRequesterAdapter(). See Section 28.5
[hw SetRequesterAdapter], page 295, for details.

INPUTS

handle display handle or NULL if no display is open

title title string for the requester’s window

152 Hollywood SDK

flags reserved for future use (currently 0)

result STRPTR pointer for storing the user’s selection (see above)

style ULONG pointer for storing the font’s style (see above)

tags taglist for additional options (see above)

RESULTS

error error code or 0 for success

18.5 FreeRequest

NAME
FreeRequest – free requester specific data (V6.0)

SYNOPSIS
void FreeRequest(int type, STRPTR data);

FUNCTION
This function must free the data that has been allocated by one of the requester functions
of your plugin. The first parameter tells FreeRequest() which function has allocated
the data in the second parameter. The following types are currently recognized:

HWREQTYPE_FILE:

Data has been allocated by FileRequest().

HWREQTYPE_PATH:

Data has been allocated by PathRequest().

HWREQTYPE_STRING:

Data has been allocated by StringRequest().

HWREQTYPE_FONT:

Data has been allocated by FontRequest().

INPUTS

type type of data to free

data the actual data item allocated by one of the requester functions

18.6 ListRequest

NAME
ListRequest – open a list requester (V6.0, optional)

SYNOPSIS
int error = ListRequest(APTR handle, STRPTR title, STRPTR body, STRPTR

choices, ULONG flags, int *result, struct hwTagList *tags);

FUNCTION
This function must open a list requester that prompts the user to select one item from
a list of choices. The list of choices is passed in the fourth parameter as a list of an

Chapter 18: Requester adapter plugins 153

unlimited number of strings which are separated by NULL characters. The end of this list
is marked by two NULL characters.

Your implementation has to write the index of the list item chosen by the user to the
result parameter which is a pointer to an int. List items are counted from 0 which
marks the first item. If the user has cancelled the requester, your ListRequest() im-
plementation has to write -1 to the result pointer.

Hollywood also passes a taglist to this function. Your implementation has to handle the
following tags:

HWLISTREQTAG_FROMSCRIPT:

The iData member of this tag item is set to True if Hollywood has called
you while the script is running. This might be important to know because
requesters should not block window refresh so you might want to setup a
temporary modal event loop if this tag has been set to True to enable your
display to stay responsive.

HWLISTREQTAG_ACTIVE:

If this tag is provided, Hollywood wants your list requester to preselect the
list item at the index specified in this tag item’s iData member. Item indices
are counted from 0 so if iData is 0, you’d have to preselect the first list item.

Note that Hollywood won’t call FreeRequest() for this requester type because
ListRequest() shouldn’t have to allocate any resources.

ListRequest() is an optional API and must only be implemented if HWSRAFLAGS_

LISTREQUEST has been passed to hw_SetRequesterAdapter(). See Section 28.5
[hw SetRequesterAdapter], page 295, for details.

INPUTS

handle display handle or NULL if no display is open

title title string for the requester’s window

body message string for the requester’s body

choices list of strings separated by NULL characters

flags for future use (currently 0)

result int pointer for storing the user’s selection

tags taglist for additional options (see above)

RESULTS

error error code or 0 for success

18.7 PathRequest

NAME
PathRequest – open a path requester (V6.0, optional)

SYNOPSIS
int error = PathRequest(APTR handle, STRPTR title, ULONG flags,

STRPTR *result, struct hwTagList *tags);

154 Hollywood SDK

FUNCTION
This function must open a path requester (also known as a browse folder dialog box)
that prompts the user to select a path. The function must then return this path to
Hollywood by setting the fourth parameter to a string pointer that your function has
allocated. Hollywood will then call FreeRequest() on this string when it is done with
it. If the user cancels the path requester, you have to write NULL to the result string
pointer.

The flags and tags parameters are used to control the appearance of the path requester.
The following flags are currently defined:

HWPATHREQFLAGS_SAVEMODE:

If this flag is set, Hollywood wants your requester to open in save mode, i.e.
the user should select a path where files can be saved.

Hollywood also passes a taglist to this function. Your implementation has to handle the
following tags:

HWPATHREQTAG_FROMSCRIPT:

The iData member of this tag item is set to True if Hollywood has called
you while the script is running. This might be important to know because
requesters should not block window refresh so you might want to setup a
temporary modal event loop if this tag has been set to True to enable your
display to stay responsive.

HWPATHREQTAG_DEFDRAWER:

If this tag is set, Hollywood wants your requester to show this directory when
it initially opens. The directory is passed as a string in the pData member
of this tag item.

PathRequest() is an optional API and must only be implemented if HWSRAFLAGS_

PATHREQUEST has been passed to hw_SetRequesterAdapter(). See Section 28.5
[hw SetRequesterAdapter], page 295, for details.

INPUTS

handle display handle or NULL if no display is open

title title string for the requester’s window

flags flags controlling the requester’s appearance (see above)

result STRPTR pointer for storing the user’s selection

tags taglist for additional options (see above)

RESULTS

error error code or 0 for success

18.8 StringRequest

NAME
StringRequest – open a string requester (V6.0, optional)

Chapter 18: Requester adapter plugins 155

SYNOPSIS
int error = StringRequest(APTR handle, STRPTR title, STRPTR body,

ULONG flags, STRPTR *result, struct hwTagList *tags);

FUNCTION
This function must open a string requester, i.e. a dialog box that prompts the user
to enter a string. The function must then return this string to Hollywood by setting
parameter 5 to a string pointer that your function has allocated. Hollywood will then
call FreeRequest() on this string when it is done with it. If the user cancels the string
requester, you have to write NULL to the result string pointer.

The flags and tags parameters are used to control further parameters of the string
requester. The following flags are currently defined:

HWSTRINGREQTYPE_ALPHANUMERICAL:

If this flag is set, only alphabetical and numerical characters should be ac-
cepted by the requester.

HWSTRINGREQTYPE_ALPHABETICAL:

If this flag is set, only alphabetical characters should be accepted by the
requester.

HWSTRINGREQTYPE_NUMERICAL:

If this flag is set, only numerical characters should be accepted by the re-
quester.

HWSTRINGREQTYPE_HEXANUMERICAL:

If this flag is set, only hexadecimal numerical characters should be accepted
by the requester, i.e. the letters A to F and the number 0 to 9.

HWSTRINGREQFLAGS_PASSWORD:

If this flag is set, the requester should open in password mode, i.e. it should
not show the letters that are being entered.

Please note that all the HWSTRINGREQTYPE_XXX flags are mutually exclusive. Only one
from this group will be set.

Hollywood also passes a taglist to this function. Your implementation has to handle the
following tags:

HWSTRINGREQTAG_FROMSCRIPT:

The iData member of this tag item is set to True if Hollywood has called
you while the script is running. This might be important to know because
requesters should not block window refresh so you might want to setup a
temporary modal event loop if this tag has been set to True to enable your
display to stay responsive.

HWSTRINGREQTAG_DEFTEXT:

If this tag is in the list, Hollywood wants you to initialize the requester’s
string widget with the text provided in the string pointer in this tag item’s
pData member.

156 Hollywood SDK

HWSTRINGREQTAG_MAXCHARS:

If this tag is set, your string requester should limit the text that can be
entered to the number of characters provided in the iData member of this
tag.

StringRequest() is an optional API and must only be implemented if HWSRAFLAGS_
STRINGREQUEST has been passed to hw_SetRequesterAdapter(). See Section 28.5
[hw SetRequesterAdapter], page 295, for details.

INPUTS

handle display handle or NULL if no display is open

title title string for the requester’s window

body message string for the requester’s body

flags flags controlling the requester’s appearance (see above)

result STRPTR pointer for storing the user’s selection

tags taglist for additional options (see above)

RESULTS

error error code or 0 for success

18.9 SystemRequest

NAME
SystemRequest – open a system requester (V6.0, optional)

SYNOPSIS
int error = SystemRequest(APTR handle, STRPTR title, STRPTR body,

ULONG flags, int *result, struct hwTagList *tags);

FUNCTION
This function must open a system requester (also known as a message box) that presents
the string passed in the body parameter to the user. The user then has to acknowledge the
requester by pressing a button. The flags parameter specifies which button(s) should
be shown and it also tells you whether or not there should be an icon the requester. The
following flags are currently defined:

HWSYSREQTYPE_OK:

Requester should contain an "OK" button.

HWSYSREQTYPE_OKCANCEL:

Requester should contain "OK" and "Cancel" buttons.

HWSYSREQTYPE_YESNO:

Requester should contain "Yes" and "No" buttons.

HWSYSREQTYPE_YESNOCANCEL:

Requester should contain "Yes", "No", and "Cancel" buttons.

Chapter 18: Requester adapter plugins 157

HWSYSREQTYPE_CUSTOM:

Requester should contain custom buttons. If this flag is set, Hollywood will
pass a string in HWSYSREQTAG_CHOICES which contains the names for the
custom buttons.

HWSYSREQICON_NONE:

There should be no icon in the requester.

HWSYSREQICON_INFORMATION:

There should be an information icon in the requester.

HWSYSREQICON_ERROR:

There should be an error icon in the requester.

HWSYSREQICON_WARNING:

There should be a warning icon in the requester.

HWSYSREQICON_QUESTION:

There should be a question icon in the requester.

Please note that all HWSYSREQTYPE_XXX and all HWSYSREQICON_XXX flags are mutually
exclusive. There will only be one flag from each group set.

Hollywood also passes a taglist to this function. Your implementation has to handle the
following tags:

HWSYSREQTAG_FROMSCRIPT:

The iData member of this tag item is set to True if Hollywood has called
you while the script is running. This might be important to know because
requesters should not block window refresh so you might want to setup a
temporary modal event loop if this tag has been set to True to enable your
display to stay responsive.

HWSYSREQTAG_CHOICES:

If the HWSYSREQTYPE_CUSTOM flag has been set, the pData member of this tag
item contains a pointer to a string that contains the name(s) of one or more
buttons. If there is more than one button, the individual button names will
be separated by the vertical bar character (|). If this tag is provided, your
implementation must setup a custom requester that contains the buttons
specified here.

Your SystemRequest() implementation has to write the id of the button that has been
pressed to the int pointer passed as the fifth parameter. The right-most button always
has the id 0. If there is only one button, it will also have the id 0. The ids of the
other buttons are counted from left to right starting at 1. This arrangement has been
chosen so that in case there are two buttons like "OK|Cancel" or "Yes|No", the affir-
mative button’s id will correspond to True whereas the negative response button’s id
will correspond to False.

Note that Hollywood won’t call FreeRequest() for this requester type because
SystemRequest() shouldn’t have to allocate any resources.

SystemRequest() is an optional API and must only be implemented if HWSRAFLAGS_
SYSTEMREQUEST has been passed to hw_SetRequesterAdapter(). See Section 28.5
[hw SetRequesterAdapter], page 295, for details.

158 Hollywood SDK

INPUTS

handle display handle or NULL if no display is open

title title string for the requester’s window

body message string for the requester’s body

flags flags controlling the requester’s appearance (see above)

result int pointer for storing the user’s selection

tags taglist for additional options (see above)

RESULTS

error error code or 0 for success

Chapter 19: File adapter plugins 159

19 File adapter plugins

19.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_FILEADAPTER set can hook into Holly-
wood’s file handler. Whenever Hollywood has to open a file, it will first ask all the plugins
that have hooked themselves into Hollywood’s file handler if one of them wants to open it
instead. If one of the plugins chooses to handle this file type, all file IO will be done through
the file adapter functions implemented in the plugin. Otherwise, Hollywood will do all file
IO through its default file handler.

Please note that file adapters are not automatically initialized when Hollywood loads
the plugin. Instead, you have to manually call hw_AddLoaderAdapter() in your
RequirePlugin() function to activate the file adapter. The file adapter will then only be
activated if the user calls @REQUIRE on your plugin. See Section 2.5 [Auto and manual
plugin initialization], page 8, for details. If you do not call hw_AddLoaderAdapter() on
your file adapter plugin, it will only be available if the user addresses it directly through
the Adapter tag.

See Section 24.2 [hw AddLoaderAdapter], page 183, for information on how to add your
file adapter.

All functions of this plugin type have to be implemented in a thread-safe manner.

This plugin type is supported since Hollywood 6.0.

19.2 FClose

NAME
FClose – close a file handle (V6.0)

SYNOPSIS
int ok = FClose(APTR handle);

FUNCTION
This function must close the specified file handle, finishing all pending writes. FClose()
must return True on success, False otherwise.

This function must be implemented in a thread-safe manner.

INPUTS

handle file handle returned by FOpen()

RESULTS

ok True to indicate success, False on failure

19.3 FEof

NAME
FEof – check if end-of-file marker has been reached (V6.0)

160 Hollywood SDK

SYNOPSIS
int ok = FEof(APTR handle);

FUNCTION
This function must return True if the end-of-file marker has been reached for the specified
file handle.

This function must be implemented in a thread-safe manner.

INPUTS

handle file handle returned by FOpen()

RESULTS

ok True or False

19.4 FFlush

NAME
FFlush – flush all pending writes to file (V6.0)

SYNOPSIS
int ok = FFlush(APTR handle);

FUNCTION
This function must flush any pending buffered write operations to the specified file handle
and return True on success, False otherwise.

If your file adapter doesn’t support writing to files, this function can be a dummy stub.

This function must be implemented in a thread-safe manner.

INPUTS

handle file handle returned by FOpen()

RESULTS

ok True to indicate success, False on failure

19.5 FGetC

NAME
FGetC – read a single character from a file (V6.0)

SYNOPSIS
int c = FGetC(APTR handle);

FUNCTION
This function must read a single character from the specified file handle and return it.
In case the end-of-file marker has been reached or an error has occurred, -1 must be
returned.

This function must be implemented in a thread-safe manner.

Chapter 19: File adapter plugins 161

INPUTS

handle file handle returned by FOpen()

RESULTS

c character read or -1 on error or EOF

19.6 FOpen

NAME
FOpen – open a file (V6.0)

SYNOPSIS
APTR handle = FOpen(STRPTR name, int mode, struct hwTagList *tags);

FUNCTION
This function is called for every file that Hollywood opens. Your FOpen() implementation
has to check whether your plugin wants to handle this file or not. If your plugin wants
to handle this file, your FOpen() implementation needs to open it and return a handle to
Hollywood. Otherwise FOpen() must return NULL. The handle returned by this function
is an opaque data type only your plugin knows about. Hollywood will pass this handle
to you whenever it wants to do IO on this file.

The second parameter specifies whether Hollywood wants to open this file for reading
and/or writing. It can be one of the following values:

HWFOPENMODE_READ_NEW:

File should be opened for reading. FOpen() must fail if file doesn’t exist.

HWFOPENMODE_WRITE:

File should be opened for writing. If it doesn’t exist, FOpen() has to create
it first.

HWFOPENMODE_READWRITE:

File should be opened for reading and writing.

Additionally, Hollywood will pass a tag list to your implementation in parameter 3. This
tag list can contain the following items:

HWFOPENTAG_FLAGS:

This tag allows you to report certain flags about the file back to Hollywood.
The pData member of this tag will be set to a pointer to a ULONG. You may
then set one or more of the following flags in this ULONG to inform Hollywood
about the properties of this file. The following flags are currently recognized:

HWFOPENFLAGS_STREAMING:

Setting this flag tells Hollywood that the file is being streamed
from a network source. If this flag is set, Hollywood will try
to avoid operations that are inefficient on streaming sources like
excessive seeking operations.

HWFOPENFLAGS_NOSEEK:

Setting this flag tells Hollywood that the file cannot be seeked.
Note that if you set this flag, you will still have to implement

162 Hollywood SDK

the FSeek() function but it only needs to support rewinding
(i.e. reverting the read/write cursor to the beginning of the
file) and querying the current file cursor position. Note that
if you set HWFOPENFLAGS_NOSEEK several file format handlers
which depend on the seek functionality might stop working. Plu-
gins may choose to work-around this problem by setting the
HWFOPENMODE_EMULATESEEK flag when calling hw_FOpen(). See
Section 25.15 [hw FOpen], page 235, for details.

HWFOPENTAG_CHUNKFILE:

If you’ve set the HWCLAFAFLAGS_CHUNKLOADER flag to indicate that your file
adapter supports opening of virtual files that do not exist physically but
only as parts of other files, you can use this tag to find out the path to the
real file that contains the virtual file. If Hollywood passes the HWFOPENTAG_
CHUNKFILE tag to your FOpen() implementation, the pData member will
be set to a string containing the path to the real file Hollywood wants you
to open, but keep in mind that Hollywood wants you to look at a part
of this file only. This part is described by the HWFOPENTAG_CHUNKOFFSET

and HWFOPENTAG_CHUNKLENGTH tags which are always passed alongside
HWFOPENTAG_CHUNKFILE. HWFOPENTAG_CHUNKOFFSET specifies the offset
where the virtual file inside the file passed in HWFOPENTAG_CHUNKFILE

starts and HWFOPENTAG_CHUNKLENGTH specifies its length. Your file adapter
implementation must remap all accesses to the virtual file to the physical
file specified in HWFOPENTAG_CHUNKFILE then, i.e. if the user calls FSeek()
to seek to the beginning of the file, your implementation of FSeek() must
actually seek to the position specified in HWFOPENTAG_OFFSET and so on.
You only need to implement support for HWFOPENTAG_CHUNKFILE if you set
LinkMode to HWSTATLKMODE_CONTAINER in FStat(). Otherwise, it’s not
necessary to implement HWFOPENTAG_CHUNKFILE. See Section 19.10 [FStat],
page 165, for details.

HWFOPENTAG_CHUNKMEMORY:

This is similar to HWFOPENTAG_CHUNKFILE except that the pData member
of this tag doesn’t point to a string containing a file path but to a
memory block containing the data of the virtual file. You can look at
the HWFOPENTAG_CHUNKLENGTH to find out the size of the memory block.
HWFOPENTAG_CHUNKOFFSET is not used for this tag. See above for more
information.

HWFOPENTAG_CHUNKOFFSET:

If HWFOPENTAG_CHUNKFILE is set, the iData member of this tag will be set
to the starting offset of the virtual file inside the physical file specified in
HWFOPENTAG_CHUNKFILE.

HWFOPENTAG_CHUNKLENGTH:

If either HWFOPENTAG_CHUNKFILE or HWFOPENTAG_CHUNKMEMORY is set, the
iData member of this tag will be set to the length of the virtual file in bytes.

This function must be implemented in a thread-safe manner.

Chapter 19: File adapter plugins 163

INPUTS

name file to open

mode desired access mode (see above)

tags tag list with additional options (see above)

RESULTS

handle handle to refer to this file later or NULL if your plugin doesn’t want to handle
this file

19.7 FPutC

NAME
FPutC – write single character to file (V6.0)

SYNOPSIS
int ok = FPutC(APTR handle, int ch);

FUNCTION
This function must write the specified character to the specified file handle. It must
return True on success or False on failure.

If your file adapter doesn’t support writing to files, this function can be a dummy stub.

This function must be implemented in a thread-safe manner.

INPUTS

handle file handle returned by FOpen()

ch character to write to file (0-255)

RESULTS

ok True to indicate success, False on failure

19.8 FRead

NAME
FRead – read file data into memory buffer (V6.0)

SYNOPSIS
int read = FRead(APTR handle, APTR buf, int size);

FUNCTION
This function has to read the specified number of bytes into the memory buffer specified
in parameter 2. It has to return the number of bytes actually read.

This function must be implemented in a thread-safe manner.

INPUTS

handle file handle returned by FOpen()

buf pointer to memory buffer to receive the data read

164 Hollywood SDK

size number of bytes to read from file handle

RESULTS

read number of bytes actually read

19.9 FSeek

NAME
FSeek – seek file to new position (V6.0)

SYNOPSIS
DOSINT64 oldpos = FSeek(APTR handle, DOSINT64 pos, int mode);

FUNCTION
This function has to seek the file handle’s read/write cursor to the specified position.
Additionally, it has to return the position of the read/write cursor before the seek oper-
ation. The specified position is relative to the seek mode passed in parameter 3. This
can be one of the following modes:

HWFSEEKMODE_CURRENT:

New seek position is relative to the current position.

HWFSEEKMODE_BEGINNING:

New seek position is relative to the beginning of the file.

HWFSEEKMODE_END:

New seek position is relative to the end of the file.

Note that FSeek() is often called with a 0 zero position and HWFSEEKMODE_CURRENT to
query the position of the read/write cursor.

If there was an error, FSeek() has to return -1.

If you set the HWFOPENFLAGS_NOSEEK flag in your FOpen() implementation, your FSeek()
implementation only has to support rewinding the file and querying the position of the
cursor. In terms of code, this means that FSeek() only has to support the following two
operations if HWFOPENFLAGS_NOSEEK is set:

FSeek(fh, 0, HWFSEEKMODE_BEGINNING); // rewind

pos = FSeek(fh, 0, HFSEEKMODE_CURRENT); // query cursor position

For any other operation, it has to return -1, i.e. an error has occurred.

This function must be implemented in a thread-safe manner.

INPUTS

handle file handle returned by FOpen()

pos destination seek position

mode seek mode (see above)

RESULTS

oldpos previous position of file cursor or -1 on error

Chapter 19: File adapter plugins 165

19.10 FStat

NAME
FStat – obtain information about open file (V6.0)

SYNOPSIS
int ok = FStat(APTR handle, ULONG flags, struct hwos_StatStruct *st,

struct hwTagList *tags);

FUNCTION
This function has to do the same as Stat() but instead of a string describing a path to
a file system object it has to be able to obtain information about a file from its handle
allocated by FOpen(). FStat() needs to write the information about the file to the
structure pointer passed in parameter 3. struct hwos_StatStruct looks like this:

struct hwos_StatStruct

{

int Type; // [out]

DOSINT64 Size; // [out]

ULONG Flags; // [out]

struct hwos_DateStruct Time; // [out]

struct hwos_DateStruct LastAccessTime; // [out]

struct hwos_DateStruct CreationTime; // [out]

STRPTR FullPath; // [out]

STRPTR Comment; // [out]

int LinkMode; // [out]

STRPTR Container; // [out]

};

Your FStat() implementation needs to write the following information to the individual
structure members:

Type: This must always be set to HWSTATTYPE_FILE.

Size: This must be set to the size of the file in bytes or -1 if the size is not known,
maybe because the file is being streamed from a network source.

Flags: Combination of flags describing the file system object attributes. See
Section 2.13 [File attributes], page 14, for a list of supported attributes.

Time: Time stamp indicating when this file system object was last modified. This
information is optional. Do not touch this member if you don’t have this
time information.

LastAccessTime:

Time stamp indicating when this file system object was last accessed. This
information is optional. Do not touch this member if you don’t have this
time information.

CreationTime:

Time stamp indicating when this file system object was created. This infor-
mation is optional. Do not touch this member if you don’t have this time
information.

166 Hollywood SDK

FullPath:

Fully qualified path to the file. This must be provided. If the HWSTATFLAGS_
ALLOCSTRINGS flag is not set, you can set this to a static string buffer
which must stay valid until the next call to FStat(). If HWSTATFLAGS_

ALLOCSTRINGS has been set, you need to allocate a string buffer using hw_

TrackedAlloc().

Comment: Comment stored for this file in the file system. Set this to NULL if you
do not have this information or the file system doesn’t support storage of
comments. If the HWSTATFLAGS_ALLOCSTRINGS flag is not set, you can set
this to a static string buffer which must stay valid until the next call to
Stat(). If HWSTATFLAGS_ALLOCSTRINGS has been set, you need to allocate a
string buffer using hw_TrackedAlloc().

LinkMode:

This member has to be set to the link mode to use when Hollywood needs to
link this file into an applet or executable. This can be one of the following
pre-defined link modes:

HWSTATLKMODE_NORMAL:

Normal link mode. This means that all data is simply read
from the file and is written to the applet or executable. Conse-
quently, your file adapter is no longer necessary when running
the compiled applet or executable since the data has already
been converted to its raw form. Thus, if you use HWSTATLKMODE_
NORMAL, the compiled applet or executable won’t require your file
adapter plugin any more. Also, your file adapter won’t be called
at all when the user runs the compiled applet or executable be-
cause Hollywood has already obtained the raw data from the file
adapter during linking stage.

HWSTATLKMODE_NONE:

This file should never be linked to applets or executables. If
you use this link mode, Hollywood will not link the file and just
keep the original reference that was specified in the Hollywood
script, whatever it may be. This can be useful when writing
a file adapter that streams data from a network source like an
HTTP server. It wouldn’t make sense then for the Hollywood
linker to always download the whole file and link it to your
applet or executable. Instead, just the URL specification should
be linked so that the data is streamed from this URL when
the user runs the compiled applet or executable. In that case
HWSTATLKMODE_NONE is the right choice since it skips linking for
this file altogether.

HWSTATLKMODE_CONTAINER:

This link mode allows you to specify a container file that
should be linked instead of the current file. Imagine you are
writing a file adapter that can load a compressed file format
like gzip. If you used HWSTATLKMODE_NORMAL now, Hollywood

Chapter 19: File adapter plugins 167

would always link the uncompressed data to the applet or
executable. However, you might want to make Hollywood
link the compressed data instead. This can be achieved by
setting the link mode to HWSTATLKMODE_CONTAINER and then
setting the Container member of this structure to the file
that contains the compressed data. When setting LinkMode to
HWSTATLKMODE_CONTAINER, Hollywood will always link the file
specified in Container instead of the current file. Please note
that if you use HWSTATLKMODE_CONTAINER, your implementation
of FOpen() has to support the HWFOPENTAG_CHUNKXXX tags and
you have to set the HWCLAFAFLAGS_CHUNKLOADER flag using
hw_ConfigureLoaderAdapter(). see{FOpen, FOpen}

Container:

If you set LinkMode to HWSTATLKMODE_CONTAINER, you need to set this mem-
ber to a path to a file that should be linked instead of the current file when
Hollywood is in linking mode. This can be used for fine-tuned control over
Hollywood’s linker. See above for more information. The string buffer you
use to pass a container file to Hollywood must stay valid until the next call to
FStat(). Note that HWSTATFLAGS_ALLOCSTRINGS (see below) doesn’t affect
Container. It must always use a static string buffer. If link mode isn’t set
to HWSTATLKMODE_CONTAINER, set this member to NULL.

The following flags are supported by FStat():

HWSTATFLAGS_ALLOCSTRINGS:

If this flag is set, FStat() must not use static string buffers for the FullPath
and Comment structure members but allocate new private string buffers for
them. Hollywood will then call hw_TrackedFree() on these buffers once
it is done with them. This flag is often set when FStat() is used in a
multithreaded setup.

FStat() has to return True on success or False on failure.

This function must be implemented in a thread-safe manner if the HWSTATFLAGS_

ALLOCSTRINGS flag is set.

INPUTS

handle file handle returned by FOpen()

flags additional flags (see above)

st pointer to a struct hwos_StatStruct for storing information about the file

tags reserved for future use (currently NULL)

RESULTS

ok True to indicate success, False on failure

168 Hollywood SDK

19.11 FWrite

NAME
FWrite – write data to file handle (V6.0)

SYNOPSIS
int written = FWrite(APTR handle, APTR buf, int size);

FUNCTION
This function has to write the specified number of bytes from the memory buffer specified
in parameter 2 to the file handle passed in parameter 1. It has to return the number of
bytes actually written.

If your file adapter doesn’t support writing to files, this function can be a dummy stub.

This function must be implemented in a thread-safe manner.

INPUTS

handle file handle returned by FOpen()

buf source memory buffer

size number of bytes to write to file handle

RESULTS

written number of bytes actually written

19.12 Stat

NAME
Stat – examine a file system object (V6.0)

SYNOPSIS
int ok = Stat(STRPTR name, ULONG flags, struct hwos_StatStruct *st,

struct hwTagList *tags);

FUNCTION
This function has to examine the file system object specified in parameter 1 and write
information about it to the structure pointer passed in parameter 3. struct hwos_

StatStruct looks like this:

struct hwos_StatStruct

{

int Type; // [out]

DOSINT64 Size; // [out]

ULONG Flags; // [out]

struct hwos_DateStruct Time; // [out]

struct hwos_DateStruct LastAccessTime; // [out]

struct hwos_DateStruct CreationTime; // [out]

STRPTR FullPath; // [out]

STRPTR Comment; // [out]

int LinkMode; // [out]

STRPTR Container; // [out]

Chapter 19: File adapter plugins 169

};

Your Stat() implementation needs to write the following information to the individual
structure members:

Type: This must be set to one of the following types:

HWSTATTYPE_FILE:

The file system object examined is a file.

HWSTATTYPE_DIRECTORY:

The file system object examined is a directory.

Size: Size of object in bytes if it is a file, 0 for directories. Note that this can also
be set to -1 in case the file size isn’t know, for example because the file is
being streamed from a network source.

Flags: Combination of flags describing the file system object attributes. See
Section 2.13 [File attributes], page 14, for a list of supported attributes.

Time: Time stamp indicating when this file system object was last modified. This
information is optional. Do not touch this member if you don’t have this
time information.

LastAccessTime:

Time stamp indicating when this file system object was last accessed. This
information is optional. Do not touch this member if you don’t have this
time information.

CreationTime:

Time stamp indicating when this file system object was created. This infor-
mation is optional. Do not touch this member if you don’t have this time
information.

FullPath:

Fully qualified path to the file system object. This must be provided. If the
HWSTATFLAGS_ALLOCSTRINGS flag is not set, you can set this to a static string
buffer which must stay valid until the next call to Stat(). If HWSTATFLAGS_
ALLOCSTRINGS has been set, you need to allocate a string buffer using hw_

TrackedAlloc().

Comment: Comment stored for this object in the file system. Set this to NULL if you
do not have this information or the file system doesn’t support storage of
comments. If the HWSTATFLAGS_ALLOCSTRINGS flag is not set, you can set
this to a static string buffer which must stay valid until the next call to
Stat(). If HWSTATFLAGS_ALLOCSTRINGS has been set, you need to allocate
a string buffer using hw_TrackedAlloc().

LinkMode:

Currently unused. Set to 0.

Container:

Currently unused. Set to NULL.

The following flags are supported by Stat():

170 Hollywood SDK

HWSTATFLAGS_ALLOCSTRINGS:

If this flag is set, Stat() must not use static string buffers for the FullPath
and Comment structure members but allocate new private string buffers for
them. Hollywood will then call hw_TrackedFree() on these buffers once it is
done with them. This flag is often set when Stat() is used in a multithreaded
setup.

Stat() has to return True on success or False on failure.

Stat() is often used by Hollywood to find out whether a certain file system object is a
file or a directory. It is also used to resolve relative file name specifications into absolute,
fully-qualified paths. So make sure your implementation provides this information in the
FullPath structure member above.

This function must be implemented in a thread-safe manner if the HWSTATFLAGS_

ALLOCSTRINGS flag is set.

INPUTS

name name of file system object to examine

flags additional flags (see above)

st pointer to a struct hwos_StatStruct for storing information about the file
system object

tags reserved for future use (currently NULL)

RESULTS

ok True to indicate success, False on failure

Chapter 20: Directory adapter plugins 171

20 Directory adapter plugins

20.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_DIRADAPTER set can hook into Holly-
wood’s directory handler. Whenever Hollywood has to scan a directory, it will first ask all
the plugins that have hooked themselves into Hollywood’s directory handler if one of them
wants to scan it instead.

Please note that directory adapters are not automatically initialized when Hollywood
loads the plugin. Instead, you have to manually call hw_AddLoaderAdapter() in
your RequirePlugin() function to activate the directory adapter. The directory
adapter will then only be activated if the user calls @REQUIRE on your plugin. See
Section 2.5 [Auto and manual plugin initialization], page 8, for details. If you do not call
hw_AddLoaderAdapter() on your directory adapter plugin, it will only be available if the
user addresses it directly through the Adapter tag.

See Section 24.2 [hw AddLoaderAdapter], page 183, for information on how to add your
directory adapter.

This plugin type is supported since Hollywood 6.0.

20.2 CloseDir

NAME
CloseDir – close a directory handle (V6.0)

SYNOPSIS
void CloseDir(APTR handle);

FUNCTION
This function must close the specified directory handle allocated by OpenDir().

INPUTS

handle directory handle returned by OpenDir()

20.3 NextDirEntry

NAME
NextDirEntry – return next directory object (V6.0)

SYNOPSIS
int more = NextDirEntry(APTR handle, struct hwos_StatStruct *st,

struct hwTagList *tags);

FUNCTION
This function has to return the next file system object from the directory handle passed
in parameter 1. File system objects can be returned in a random order. They do not need
to be alphabetically sorted. NextDirEntry() needs to return True if it has obtained a file
system object from the directory or False if all entries have been retrieved. If it returns
True, it has to write information about the file system object retrieved to the struct

172 Hollywood SDK

hwos_StatStruct pointer passed in parameter 2. struct hwos_StatStruct looks like
this:

struct hwos_StatStruct

{

int Type; // [out]

DOSINT64 Size; // [out]

ULONG Flags; // [out]

struct hwos_DateStruct Time; // [out]

struct hwos_DateStruct LastAccessTime; // [out]

struct hwos_DateStruct CreationTime; // [out]

STRPTR FullPath; // [out]

STRPTR Comment; // [out]

int LinkMode; // [out]

STRPTR Container; // [out]

};

Your NextDirEntry() implementation needs to write the following information to the
individual structure members:

Type: This must be set to one of the following types:

HWSTATTYPE_FILE:

The file system object is a file.

HWSTATTYPE_DIRECTORY:

The file system object is a directory.

Size: Size of object in bytes if it is a file, 0 for directories. Note that this can also
be set to -1 in case the file size isn’t know, for example because the file is
being streamed from a network source.

Flags: Combination of flags describing the file system object attributes. See
Section 2.13 [File attributes], page 14, for a list of supported attributes.

Time: Time stamp indicating when this file system object was last modified. This
information is optional. Do not touch this member if you don’t have this
time information.

LastAccessTime:

Time stamp indicating when this file system object was last accessed. This
information is optional. Do not touch this member if you don’t have this
time information.

CreationTime:

Time stamp indicating when this file system object was created. This infor-
mation is optional. Do not touch this member if you don’t have this time
information.

FullPath:

Name of the file system object. This must be provided. The string pointer
you use here must stay valid until the next call to NextDirEntry(). Please
note that in contrast to its name, FullPath must not be set to a fully

Chapter 20: Directory adapter plugins 173

qualified path but just to the name of the file system object without any
path components.

Comment: Comment stored for this object in the file system. Set this to NULL if you
do not have this information or the file system doesn’t support storage of
comments. The string pointer you pass here must stay valid until the next
call to NextDirEntry().

LinkMode:

Currently unused. Set to 0.

Container:

Currently unused. Set to NULL.

INPUTS

handle directory handle returned by OpenDir()

st pointer to a struct hwos_StatStruct for storing information about the file
system object

tags reserved for future use (currently NULL)

RESULTS

ok True if file system object has been retrieved, False if there are no more
objects

20.4 OpenDir

NAME
OpenDir – open a directory (V6.0)

SYNOPSIS
APTR handle = OpenDir(STRPTR name, int mode, struct hwTagList *tags);

FUNCTION
This function is called for every directory that Hollywood opens. Your OpenDir() im-
plementation has to check whether your plugin wants to handle this directory or not.
If your plugin wants to handle this directory, your OpenDir() implementation needs to
open it and return a handle back to Hollywood. Otherwise OpenDir() must return NULL.
The handle returned by this function is an opaque data type only your plugin knows
about. Hollywood will pass this handle to you whenever it wants to get the next object
from this directory.

The mode and tags parameters are currently unused and reserved for future use.

INPUTS

name directory to open

mode reserved for future use (currently 0)

tags reserved for future use (currently NULL)

174 Hollywood SDK

RESULTS

handle handle to refer to this directory later or NULL if your plugin doesn’t want to
handle this directory

Chapter 21: Audio adapter plugins 175

21 Audio adapter plugins

21.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_AUDIOADAPTER set can replace Holly-
wood’s inbuilt audio driver with a customized version. This is a very powerful feature
and allows you to reroute Hollywood’s complete audio output through an entirely differ-
ent backend, thus making it possible to adapt Hollywood to completely different audio
environments.

Please note that audio adapters are not automatically initialized when Hollywood
loads the plugin. Instead, you have to manually call hw_SetAudioAdapter() in your
RequirePlugin() function to activate the audio adapter. The audio adapter will then
only be activated if the user calls @REQUIRE on your plugin. Otherwise, Hollywood will use
its default audio driver. See Section 2.5 [Auto and manual plugin initialization], page 8,
for details.

See Section 27.3 [hw SetAudioAdapter], page 290, for information on how to install your
audio adapter.

This plugin type is supported since Hollywood 6.0.

21.2 AllocAudioChannel

NAME
AllocAudioChannel – allocate new audio channel (V6.0)

SYNOPSIS
APTR chandle = AllocAudioChannel(APTR handle, int fmt, int freq, int vol,

int (*feedproc)(APTR handle, APTR chandle, APTR buf,

int count, APTR userdata), ULONG flags, APTR userdata,

struct hwTagList *tags);

FUNCTION
This function must allocate a new audio channel on the audio device passed in the first
parameter. Hollywood will inform you about the PCM sample format that should be
played on this channel in parameters 2 to 4. The fmt parameter can be one of the
following formats:

HWSMPFMT_U8M:

Unsigned 8-bit mono PCM data is fed to this channel.

HWSMPFMT_U8S:

Unsigned 8-bit stereo PCM data is fed to this channel.

HWSMPFMT_S8M:

Signed 8-bit mono PCM data is fed to this channel.

HWSMPFMT_S8S:

Signed 8-bit stereo PCM data is fed to this channel.

HWSMPFMT_S16M:

Signed 16-bit mono PCM data is fed to this channel.

176 Hollywood SDK

HWSMPFMT_S16S:

Signed 16-bit stereo PCM data is fed to this channel.

Parameter 3 contains the number of PCM frames that will be played on this channel
per second. Common values are 44100 or 48000 here. Parameter 4 contains the desired
volume for this channel. This can range from 0 (mute) to 64 (full volume).

Hollywood will also pass a pointer to an audio feed procedure to this function. Whenever
you need more PCM data to play on this audio channel, call this feed procedure. The
prototype of this procedure looks like this:

int feedproc(APTR hdl, APTR ch, APTR buf, int count, APTR userdata);

Here is how you have to call this feed procedure:

hdl: This parameter must be set to the handle of the audio device opened via
OpenAudio().

ch: This parameter must be set to the handle of the audio channel allocated via
AllocAudioChannel().

buf: You have to pass a pointer to a memory buffer that should receive the new
PCM data here.

count: You have to pass the number of PCM frames you want to receive here.
Please note that this parameter must be specified in PCM frames, not in
bytes. So if you set this to 1024 and your PCM samples are formatted as
16-bit wide stereo frames, the buffer you pass would have to be at least 4096
bytes in size. You should request PCM frames from Hollywood only in small
portions. For a playback rate of 44100 frames per second, a request of 2048
PCM frames per feedproc() call is a reasonable size.

userdata:

You always have to set this parameter to the user data pointer that Holly-
wood has passed to your AllocAudioChannel() function here.

feedproc() returns the number of PCM frames successfully copied. Once again, be
careful that this value is in PCM frames, not in bytes (see above). If this value is
less than you requested, the channel has finished playing and Hollywood will soon call
FreeAudioChannel() on it.

The feed procedure that Hollywood passes to you is thread-safe so you can call this from
worker threads or audio interrupts as well.

INPUTS

handle audio device allocated by OpenAudio()

fmt format of PCM data passed to this channel (see above)

freq number of PCM frames per second to be played on this channel

vol initial channel volume (0 to 64)

feedproc pointer to a function that needs to be called to request more PCM data from
Hollywood

flags reserved for future use (currently 0)

Chapter 21: Audio adapter plugins 177

userdata userdata that needs to be passed to feedproc()

tags reserved for future use (currently NULL)

RESULTS

chandle handle to this audio channel or NULL on error

21.3 CloseAudio

NAME
CloseAudio – close audio device (V6.0)

SYNOPSIS
void CloseAudio(APTR handle);

FUNCTION
This function must close the specified audio device handle that has been opened by
OpenAudio().

INPUTS

handle audio device allocated by OpenAudio()

21.4 FreeAudioChannel

NAME
FreeAudioChannel – free audio channel (V6.0)

SYNOPSIS
void FreeAudioChannel(APTR handle, APTR chandle);

FUNCTION
This function must free the specified channel on the audio device.

INPUTS

handle audio device allocated by OpenAudio()

chandle audio channel allocated by AllocAudioChannel()

21.5 OpenAudio

NAME
OpenAudio – open audio device (V6.0)

SYNOPSIS
APTR handle = OpenAudio(ULONG flags, struct hwTagList *tags);

FUNCTION
This function must open your plugin’s audio device and return a handle to it. The flags
and tags parameters are currently unused and reserved for future use.

178 Hollywood SDK

INPUTS

flags reserved for future use (currently 0)

tags reserved for future use (currently NULL)

RESULTS

handle handle to audio device or NULL on error

21.6 SetChannelAttributes

NAME
SetChannelAttributes – change audio channel attributes (V6.0)

SYNOPSIS
int error = SetChannelAttributes(APTR handle, APTR chandle,

struct hwTagList *tags);

FUNCTION
This function must change attributes of the specified audio channel. Attributes are
passed as a taglist. The following attributes may currently be changed:

HWSCATAG_VOLUME:

Change the channel’s volume to the volume specified in the iData member
of this tag item. Volumes are specified in the range of 0 (mute) to 64 (full
volume).

HWSCATAG_PANNING:

Change the channel’s panning value to the value specified in the iData mem-
ber of this tag item. Panning values range from 0 (left speaker only) to 255
(right speaker only). The default panning is 128 which means centered audio
output.

HWSCATAG_PITCH:

Change the channel’s pitch to the value specified in the iData member of
this tag item. The pitch value specifies the number of PCM frames that are
to be played per second.

INPUTS

handle audio device allocated by OpenAudio()

chandle audio channel allocated by AllocAudioChannel()

tags taglist containing attributes to modify (see above)

RESULTS

error error code or 0 for success

Chapter 22: Extension plugins 179

22 Extension plugins

22.1 Overview

Plugins that have the capability flag HWPLUG_CAPS_EXTENSION set are a special plugin type
that doesn’t offer any functionality on its own but just extends an existing plugin type.
Certain plugin types support a number of extensions in newer Hollywood versions and the
extension plugin type can be used to tell Hollywood which extensions your plugin actually
supports. There is only one function, GetExtensions(), which Hollywood will call to get
information about the extensions supported by your plugin.

This plugin type is supported since Hollywood 6.0.

22.2 GetExtensions

NAME
GetExtensions – query supported extensions for plugin type (V6.0)

SYNOPSIS
ULONG exts = GetExtensions(ULONG capbit, struct hwTagList *tags);

FUNCTION
Hollywood will call this function to see which extensions are supported by your plugin
for a certain plugin type. Hollywood will pass the capability bit of the plugin type whose
supported extensions it wants to know to GetExtensions(). Note that this is a not a
combination of capability flags but only a single capability bit will ever be set in each
call to GetExtensions() Hollywood makes, i.e. Hollywood will call GetExtensions()
for each plugin type whose supported extensions it wants to get individually.

The following plugin types currently support extensions:

HWPLUG_CAPS_LIBRARY:

Library plugins currently support the following extensions:

HWEXT_LIBRARY_MULTIPLE:

If this extension bit is set, your library plugin wants to install
multiple libraries and has implemented the GetLibraryCount()
and SetCurrentLibrary() functions to handle this. See
Section 6.1 [Library plugins], page 37, for details. (V6.0)

HWPLUG_CAPS_IMAGE:

Image plugins currently support the following extensions:

HWEXT_IMAGE_NOAUTOINIT:

If this extension bit is set, Hollywood will not automatically
activate your plugin at load time. Instead, you’ll have to do this
manually by calling the hw_AddLoaderAdapter() function. See
Section 7.1 [Image plugins], page 43, for details. (V6.0)

HWPLUG_CAPS_ANIM:

Anim plugins currently support the following extensions:

180 Hollywood SDK

HWEXT_ANIM_NOAUTOINIT:

If this extension bit is set, Hollywood will not automatically
activate your plugin at load time. Instead, you’ll have to do this
manually by calling the hw_AddLoaderAdapter() function. See
Section 8.1 [Anim plugins], page 51, for details. (V6.0)

HWPLUG_CAPS_SOUND:

Sound plugins currently support the following extensions:

HWEXT_SOUND_NOAUTOINIT:

If this extension bit is set, Hollywood will not automatically
activate your plugin at load time. Instead, you’ll have to do this
manually by calling the hw_AddLoaderAdapter() function. See
Section 9.1 [Sound plugins], page 57, for details. (V6.0)

HWPLUG_CAPS_VIDEO:

Video plugins currently support the following extensions:

HWEXT_VIDEO_NOAUTOINIT:

If this extension bit is set, Hollywood will not automatically
activate your plugin at load time. Instead, you’ll have to do this
manually by calling the hw_AddLoaderAdapter() function. See
Section 11.1 [Video plugins], page 75, for details. (V6.0)

HWPLUG_CAPS_VECTOR:

Vectorgraphics plugins currently support the following extensions:

HWEXT_VECTOR_EXACTFIT:

If this extension is set, GetPathExtents() must take the trans-
formation matrix it is passed into account when computing the
path’s extents. If HWEXT_VECTOR_EXACTFIT is not set, Holly-
wood will compute the extents of the transformed path but this
is not recommended since it is your plugin that knows best
about the real extents. See Section 10.1 [Vectorgraphics plu-
gins], page 63, for details. (V6.0)

INPUTS

capbit single capability bit of the plugin type whose extensions should be queried

tags reserved for future use (currently NULL)

RESULTS

exts combination of extension bits for the specified plugin type (see above)

Chapter 23: CRTBase functions 181

23 CRTBase functions

23.1 Overview

CRTBase contains many functions from the ANSI C runtime library. This is only useful if
you compile plugins for AmigaOS and compatibles because you won’t be able to use many
of the C runtime library functions directly because they require constructor and destructor
code which is not supported by AmigaOS modules loaded via LoadSeg(). See Section 3.2
[C runtime limitations], page 24, for details.

On all other systems you should just use the C runtime functions provided by your compiler
directly. You should not use the ones from CRTBase. They are really just here to workaround
AmigaOS module limitations.

CRTBase is available since Hollywood 5.0.

Chapter 24: SysBase functions 183

24 SysBase functions

24.1 Overview

SysBase contains commands for controlling various lowlevel functionalities of Hollywood.

SysBase is available since Hollywood 5.0.

24.2 hw AddLoaderAdapter

NAME
hw AddLoaderAdapter – add a loader or an adapter (V6.0)

SYNOPSIS
int error = hw_AddLoaderAdapter(hwPluginBase *self, ULONG type);

FUNCTION
This function can be used to manually activate a file loader or adapter plugin. The
following types are currently supported:

HWPLUG_CAPS_IMAGE:

Image loader plugins. You only need to call hw_AddLoaderAdapter() on
them if automatic initialization has been disabled by setting the HWEXT_

IMAGE_NOAUTOINIT extension bit.

HWPLUG_CAPS_ANIM:

Anim loader plugins. You only need to call hw_AddLoaderAdapter() on
them if automatic initialization has been disabled by setting the HWEXT_

ANIM_NOAUTOINIT extension bit.

HWPLUG_CAPS_SOUND:

Sound loader plugins. You only need to call hw_AddLoaderAdapter() on
them if automatic initialization has been disabled by setting the HWEXT_

SOUND_NOAUTOINIT extension bit.

HWPLUG_CAPS_VIDEO:

Video loader plugins. You only need to call hw_AddLoaderAdapter() on
them if automatic initialization has been disabled by setting the HWEXT_

VIDEO_NOAUTOINIT extension bit.

HWPLUG_CAPS_FILEADAPTER:

File adapter plugins. These are not initialized automatically. So you will
have to call hw_AddLoaderAdapter() on them or they will only be available
when the user directly addresses them using the Adapter tag.

HWPLUG_CAPS_DIRADAPTER:

Directory adapter plugins. These are not initialized automatically. So you
will have to call hw_AddLoaderAdapter() on them or they will only be avail-
able when the user directly addresses them using the Adapter tag

Please note that this function cannot be used to activate display, timer, requester, and
audio adapters. These all have custom functions that are used for their activation, e.g.
hw_SetDisplayAdapter() for display adapters.

184 Hollywood SDK

This function should be called from inside your RequirePlugin() implementation. If
this function succeeds, Hollywood will call your loader or adapter whenever it needs
to open an object of the respective type and your plugin can then choose which ob-
jects it would like to handle. In the first parameter, you have to pass a pointer to the
hwPluginBase that Hollywood has passed to your plugin’s InitPlugin() function. The
second parameter has to specify the type of the loader or adapter to add (see above for
supported types). Note that this must not be a combination of types, but only a single
loader or adapter type can be activated per call.

Loaders and adapters may be added and removed any time you want. They are not a
one time setting, though traditionally you will want to install your loaders and adapters
when your RequirePlugin() is called as a result of the user running @REQUIRE on your
plugin. But this is not a must. You may also choose to add and remove loaders and
adapters at any later time. When Hollywood opens an object, the loaders and adapters
will be asked whether they want to handle this object in the order they were added into
the system. First come, first served.

It is not necessary to remove the loader or adapter using hw_RemoveLoaderAdapter()

when your plugin is closed. Hollywood will do this automatically for you.

Please note that even if this function hasn’t been called, Hollywood can still call your
loaders and adapters. This will happen if the user directly addresses a loader or an
adapter in the script. Consider the following example:

LoadBrush(1, "a.tiff.pp", {Loader = "tiff", Adapter = "powerpacker"})

This Hollywood code will call into the file adapter of powerpacker.hwp and into
the image loader of tiff.hwp directly, no matter if they have been activated or
not. If loaders and adapters are addressed directly, Hollywood will always call
them if the respective plugins are not disabled. Thus, it is advised that you call
hw_ConfigureLoaderAdapter() in your InitPlugin() implementation because
RequirePlugin() might not even be called if the user addresses the loader or adapter
directly. See Section 24.6 [hw ConfigureLoaderAdapter], page 186, for details.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

self hwPluginBase pointer passed to InitPlugin()

type type of the loader or adapter to add (see above)

RESULTS

error error code or 0 for success

24.3 hw AddTime

NAME
hw AddTime – add two time stamps (V5.0)

SYNOPSIS
void hw_AddTime(struct hwos_TimeVal *dest, struct hwos_TimeVal *src);

Chapter 24: SysBase functions 185

FUNCTION
This functions adds the dest and src time stamps and stores the resulting time stamp
in dest.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

dest pointer to a struct hwos_TimeVal containing the augend; the result of the
addition will be written to this buffer

src pointer to a struct hwos_TimeVal containing the addend

24.4 hw AllocSemaphore

NAME
hw AllocSemaphore – allocate a semaphore (V6.0)

SYNOPSIS
APTR handle = hw_AllocSemaphore(void);

FUNCTION
This function allocates and initializes a semaphore that can be used to protect certain
data structures from access by multiple threads. Another name for semaphore is critical
section (Windows) or mutex (POSIX).

DESIGNER COMPATIBILITY
Unsupported

INPUTS
none

RESULTS

handle a semaphore handle or NULL on error

24.5 hw CmpTime

NAME
hw CmpTime – compare two time stamps (V5.0)

SYNOPSIS
int r = hw_CmpTime(struct hwos_TimeVal *t1, struct hwos_TimeVal *t2);

FUNCTION
This function compares the two time stamps and returns a value that indicates their
relation. 0 is returned if both time stamps are identical, -1 is returned if t2 is earlier
than t1 and 1 is returned if t1 is earlier than t2.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

186 Hollywood SDK

INPUTS

t1 pointer to a struct hwos_TimeVal

t2 pointer to a struct hwos_TimeVal

RESULTS

r relation of the two time stamps (see above)

24.6 hw ConfigureLoaderAdapter

NAME
hw ConfigureLoaderAdapter – configure a loader or adapter (V6.0)

SYNOPSIS
int hw_ConfigureLoaderAdapter(hwPluginBase *self, ULONG type, ULONG flags,

struct hwTagList *tags);

FUNCTION
This function allows you to configure your loader or adapter plugin. Since Hollywood
might call into your loader or adapter even if it hasn’t been activated, it is recommended
to always call this function from inside your InitPlugin() implementation, i.e. before
you call hw_AddLoaderAdapter(). This ensures that your loader or adapter plugin
always uses the configuration you want it to use, no matter if it is manually activated
by hw_AddLoaderAdapter() or if Hollywood is calling directly into it.

The second parameter specifies the type of the loader or adapter you want to configure.
See Section 24.2 [hw AddLoaderAdapter], page 183, for a list of supported types.

The third and fourth parameters depend on the type passed as parameter 2. The
following flags and tags are currently recognized:

HWPLUG_CAPS_FILEADAPTER:

File adapter plugins currently support the following flags:

HWCLAFAFLAGS_CHUNKLOADER:

If this flag is set, you indicate that your file adapter’s FOpen()
implementation supports loading of chunked files. If you
set this flag, your FOpen() implementation must support
the HWFOPENTAG_CHUNKXXX tags. See Section 19.6 [FOpen],
page 161, for details.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

self hwPluginBase pointer passed to InitPlugin()

type loader or adapter type (see above)

flags desired flags for the loader or adapter (see above)

tags currently unused; pass NULL

Chapter 24: SysBase functions 187

RESULTS

error error code or 0 for success

24.7 hw ConvertString

NAME
hw ConvertString – convert string between character encodings (V6.0)

SYNOPSIS
STRPTR s = hw_ConvertString(STRPTR in, int infmt, int outfmt,

struct hwTagList *tags);

FUNCTION
This function converts the string specified from infmt to outfmt and returns it. hw_

ConvertString() allocates the resulting string for you. You have to free this string
using hw_FreeString() then.

The following formats are currently available:

HWOS_ENCODING_ISO8859_1:

ISO 8859-1. This is Hollywood’s default encoding.

HWOS_ENCODING_UTF8:

UTF-8.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

in null-terminated string to convert

infmt format of the source string (see above)

outfmt desired destination format (see above)

tags currently unused; pass NULL

RESULTS

s converted string pointer or NULL on error

24.8 hw Delay

NAME
hw Delay – sleep for a certain amount of time (V5.0)

SYNOPSIS
void hw_Delay(int time);

FUNCTION
This function sleeps for the specified amount of milliseconds. Please note that this
function will really put the complete application to sleep, i.e. no window handling will
take place at all.

188 Hollywood SDK

This function is not thread-safe on AmigaOS and compatibles. You must not call this
function from threads on AmigaOS and compatibles. On all other platforms it is thread-
safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

time number of milliseconds to sleep

24.9 hw DisableCallback

NAME
hw DisableCallback – disable a callback (V6.0)

SYNOPSIS
void hw_DisableCallback(APTR handle, int disable);

FUNCTION
This function can be used to temporarily disable a callback that has been registered using
hw_RegisterCallback(). Pass True in parameter 2 to disable the callback, False to
enable it again.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

handle callback handle allocated by hw_RegisterCallback()

disable boolean flag indicating whether the callback should be disabled

24.10 hw FreeObjectData

NAME
hw FreeObjectData – free user object data (V5.3)

SYNOPSIS
void hw_FreeObjectData(lua_State *L, struct hwObjectList *item);

FUNCTION
This function frees any data that Hollywood has associated with your object. You have
to call this function before freeing your object so that Hollywood gets a chance to free
any data it has associated with your object, for example via the SetObjectData() call.

See Section 24.30 [hw RegisterUserObject], page 214, for details.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

L pointer to the lua_State

item user object whose data shall be freed

Chapter 24: SysBase functions 189

24.11 hw FreeSemaphore

NAME
hw FreeSemaphore – free semaphore (V6.0)

SYNOPSIS
void hw_FreeSemaphore(APTR sem);

FUNCTION
This function frees the specified semaphore handle.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

sem semaphore handle allocated by hw_AllocSemaphore()

24.12 hw FreeString

NAME
hw FreeString – free converted string (V6.0)

SYNOPSIS
void hw_FreeString(STRPTR s);

FUNCTION
This function can be used to free a string that has been allocated by hw_

ConvertString().

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

s string allocated by hw_ConvertString()

24.13 hw GetDate

NAME
hw GetDate – get current date and time (V5.0)

SYNOPSIS
void hw_GetDate(STRPTR buf);

FUNCTION
This function copies the current date and time to the specified memory buffer. The
string will be formatted as follows: dd-mmm-yyyy hh:mm:ss. All constituents are numbers
except the month which is specified as a three letter code containing the first three letters
of the English month name, e.g. "Jan".

If you want to query the current date in an abstracted format, please use the hw_

GetDateStamp() function instead. See Section 24.14 [hw GetDateStamp], page 190,
for details.

190 Hollywood SDK

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

buf buffer large enough to hold the date and time string

24.14 hw GetDateStamp

NAME
hw GetDateStamp – get current date and time (V6.0)

SYNOPSIS
void hw_GetDateStamp(struct hwos_DateStruct *stamp);

FUNCTION
This function will retrieve the current date and time and copy it to the struct hwos_

DateStruct pointer passed as parameter 1. struct hwos_DateStruct looks like this:

struct hwos_DateStruct

{

int Seconds;

int Minutes;

int Hours;

int Day;

int Month;

int Year;

};

hw_GetDateStamp() will initialize the individual members as follows:

Seconds: This will be set to a value between 0 and 59.

Minutes: This will be set to a value between 0 and 59.

Hours: This will be set to a value between 0 and 23.

Day: This will be set to a value between 1 and 31.

Month: This will be set to a value between 0 and 11.

Year: This will be set to the year number.

If you want to query the current date in a human-readable format, please use the hw_

GetDate() function instead. See Section 24.13 [hw GetDate], page 189, for details.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

stamp pointer to a struct hwos_DateStruct

Chapter 24: SysBase functions 191

24.15 hw GetErrorName

NAME
hw GetErrorName – compose error string into memory buffer (V5.0)

SYNOPSIS
void hw_GetErrorName(int error, STRPTR buf, int size);

FUNCTION
This function composes a full error message including extended error information set via
hw_SetErrorString() or hw_SetErrorCode() into a memory buffer. You have to pass
a pointer to a memory buffer in parameter 2 and the size of this buffer in parameter 3.
Hollywood will then copy a null-terminated string to this memory buffer. Some error
messages are quite lengthy so make sure that the buffer you pass here is at least 1 kilobyte
in size.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

error error code whose message text you want to retrieve

buf pointer to a memory buffer

size total size of the memory buffer in bytes

24.16 hw GetSysTime

NAME
hw GetSysTime – get system time (V5.0)

SYNOPSIS
void hw_GetSysTime(struct hwos_TimeVal *tv);

FUNCTION
This function queries the system time and stores it in the struct hwos_TimeVal you
pass to this function. The system time is counted from a platform-dependent start time
defined as 0 and is monotonically increasing. You can use the related functions hw_

SubTime(), hw_AddTime(), and hw_CmpTime() to work with the time stamps returned
by this function.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

tv pointer to a struct hwos_TimeVal to hold the current system time

192 Hollywood SDK

24.17 hw HandleEvents

NAME
hw HandleEvents – handle events (V6.0)

SYNOPSIS
int error = hw_HandleEvents(lua_State *L, ULONG flags, int *quit);

FUNCTION
This function reads all events that are currently in the queue and processes them. If
there is an event that tells Hollywood to quit, the int pointer in the third parameter
is set to True. Together with hw_WaitEvents() this function can be used to set up a
temporary modal event loop.

The following flags are currently defined:

HWHEFLAGS_LINEHOOK:

This flag must be set if hw_HandleEvents() has been called from the Lua
line hook. This should never be set by you.

HWHEFLAGS_MODAL:

This flag signals that hw_HandleEvents() has been called from a temporary
modal event loop. You should always set this flag.

HWHEFLAGS_CHECKEVENT:

This flag is set if hw_HandleEvents() has been called as a result of the script
calling Hollywood’s CheckEvent() command. This should never be set by
you.

HWHEFLAGS_WAITEVENT:

This flag is set if hw_HandleEvents() has been called as a result of the
script calling Hollywood’s WaitEvent() command. This should never be set
by you.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

L pointer to the lua_State

flags combination of flags (see above)

quit pointer to an int that is set to True if Hollywood shall quit

RESULTS

error error code or 0 for success

24.18 hw LockSemaphore

NAME
hw LockSemaphore – lock a semaphore (V6.0)

SYNOPSIS
void hw_LockSemaphore(APTR sem);

Chapter 24: SysBase functions 193

FUNCTION
This function attempts to lock the specified semaphore handle. If another thread has
already locked the semaphore, hw_LockSemaphore() will wait until that thread releases
the semaphore again.

Note that hw_LockSemaphore() contains a nesting count. Every call to
hw_LockSemaphore() must be matched by a call to hw UnLockSemaphore().

DESIGNER COMPATIBILITY
Unsupported

INPUTS

sem semaphore handle allocated by hw_AllocSemaphore()

24.19 hw LogPrintF

NAME
hw LogPrintF – wait for events (V6.0)

SYNOPSIS
void hw_LogPrintF(const char *fmt, va_list argptr);

FUNCTION
This function can be used to print the specified string to the current debug device. If you
intend to use printf() style formatting codes be warned that the internal representation
of va_list is compiler-dependent, so you might get crashes if your compiler uses a
representation that is different from the compiler that was used to build Hollywood.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

fmt printf() style format string

argptr va_list containing the values for the format fields of fmt

24.20 hw MasterControl

NAME
hw MasterControl – control various internal attributes (V5.0)

SYNOPSIS
int c = hw_MasterControl(struct hwTagList *tags);

FUNCTION
This function can be used to set/get various internal attributes. You have to pass a
pointer to a hwTagList to this function. hw_MasterControl() will iterate through this
taglist and set/get all the individual tags in the list. It will return the number of tags
successfully handled.

The following tags are currently recognized:

194 Hollywood SDK

HWMCP_GETPOWERPCBASE:

In the WarpOS version of Hollywood, pData will be set to a pointer of
PowerPCBase. In all other versions, NULL will be written to pData.

HWMCP_GETAPPTITLE:

This tag returns the application’s title as specified in the @APPTITLE pre-
processor command. You have to pass a pointer to a STRPTR in pData.
Hollywood will set this STRPTR to the application’s title then. Hollywood
will never write NULL to the STRPTR but it may return an empty string.
(V5.2)

HWMCP_GETAPPVERSION:

This tag returns the application’s version as specified in the @APPVERSION

preprocessor command. You have to pass a pointer to a STRPTR in pData.
Hollywood will set this STRPTR to the application’s version then. Hollywood
will never write NULL to the STRPTR but it may return an empty string.
(V5.2)

HWMCP_GETAPPCOPYRIGHT:

This tag returns the application’s copyright text as specified in the
@APPCOPYRIGHT preprocessor command. You have to pass a pointer to
a STRPTR in pData. Hollywood will set this STRPTR to the application’s
copyright text then. Hollywood will never write NULL to the STRPTR but it
may return an empty string. (V5.2)

HWMCP_GETAPPAUTHOR:

This tag returns the application’s author as specified in the @APPAUTHOR

preprocessor command. You have to pass a pointer to a STRPTR in pData.
Hollywood will set this STRPTR to the application’s author then. Hollywood
will never write NULL to the STRPTR but it may return an empty string.
(V5.2)

HWMCP_GETAPPDESCRIPTION:

This tag returns the application’s description as specified in the
@APPDESCRIPTION preprocessor command. You have to pass a pointer to
a STRPTR in pData. Hollywood will set this STRPTR to the application’s
description then. Hollywood will never write NULL to the STRPTR but it
may return an empty string. (V5.2)

HWMCP_SETCALLBACKMODE:

This tag enables or disables callback mode according to the value passed in
iData. You have to pass True to enable callback mode or False to disable
it. Callback mode should be enabled whenever one of your plugin’s Lua
functions runs another Lua function by calling lua_pcall(). Please note
that HWMCP_SETCALLBACKMODE contains a nesting count. Thus, every enable
operation must be matched by a disable operation. (V6.0)

HWMCP_GETGTKREADY:

This tag returns a boolean value indicating whether GTK has been setup
correctly on Linux. You have to set pData to a pointer to an int. Hollywood

Chapter 24: SysBase functions 195

will then write either True or False to this int. This tag is only supported
on Linux. (V6.0)

HWMCP_SETDISABLELINEHOOK:

This tag can be used to enable or disable Hollywood’s Lua line hook. By
default, the line hook is called after executing one line of Lua code. This
leads to some overhead because the line hook will handle window events
and update video frames among other things. To increase performance in
certain situations, your plugin can temporarily disable this line hook by
setting iData to True in this tag. However, make sure that you enable it
again as soon as possible because several key features of Hollywood won’t
work while the line hook is disabled. This tag expects either True or False
in iData. (V6.0)

HWMCP_GETFPSLIMIT:

This tag returns the FPS limit that has been set by a call to Hollywood’s
SetFPSLimit() command. You have to set pData to a pointer to an int.
Hollywood will then write the FPS limit to this int. (V6.0)

HWMCP_GETDESIGNERVERSION:

This tag returns the version of Hollywood Designer if your plugin has been
opened by Hollywood Designer. You have to set pData to a pointer to a
ULONG. The upper 16-bits of the ULONG will then receive Designer’s version
number whereas the revision number will be written to the lower 16-bits.
Obviously, this tag is only recognized by Hollywood Designer and not by
Hollywood itself. Note that Designer 4.0 doesn’t support this tag. If your
plugin was opened by Designer and hw_MasterControl() fails to obtain this
tag, you can be sure that Designer 4.0 is handling your plugin. (V6.0)

DESIGNER COMPATIBILITY
Supported since Designer 4.

INPUTS

tags pointer to a struct hwTagList containing various tags (see above)

RESULTS

c the number of tags successfully handled

24.21 hw MasterServer

NAME
hw MasterServer – call into the master server (V6.0)

SYNOPSIS
int error = hw_MasterServer(lua_State *L, ULONG flags,

struct hwTagList *tags);

FUNCTION
This function allows you to call into Hollywood’s master server. This is necessary when
you install a display adapter and do your own event processing to give Hollywood a

196 Hollywood SDK

chance to manage its asynchronous operations. The flags parameter determines which
sections of the master server you want to enter. The following flags are currently defined:

HWMSFLAGS_RUNCALLBACKS:

This will run all user callbacks for events that have triggered. It does
the same as the Hollywood functions CheckEvent() and WaitEvent(). If
for some reason your display adapter cannot delegate event handling to
CheckEvent() or WaitEvent(), the HWMSFLAGS_RUNCALLBACKS flag allows
you to manually force Hollywood to run user event callbacks when you need
it. Use this flag with care. It’s only needed under very special circumstances.

HWMSFLAGS_DRAWVIDEOS:

This flag will update all videos that are currently playing, if necessary.
Your display adapter needs to call hw_MasterServer() with this flag set
whenever it does some event processing. Hollywood’s video server worker
threads will wake up your event loop using ForceEventLoopIteration()

whenever a video needs updating. That’s why you should always call hw_
MasterServer() with HWMSFLAGS_DRAWVIDEOS whenever you process your
window events, preferably in your hw_HandleEvents() implementation.

Please note that this function should only be used by display adapter plugins. If Hol-
lywood is using its default display adapter, it will take care of calling into the master
server on its own.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

L pointer to the lua_State

flags flags indicating what to do (see above)

tags currently unused; pass NULL

24.22 hw PostEvent

NAME
hw PostEvent – post a new event to queue (V5.2)

SYNOPSIS
void hw_PostEvent(int type, APTR userdata);

FUNCTION
This function posts a new event to Hollywood’s event queue. Prior to Hollywood 6.0
hw_PostEvent() could only be used with event types that had been registered using
hw_RegisterEventHandler(). Starting with Hollywood 6.0 hw_PostEvent() supports
several new event types. Here is a list:

HWEVT_QUIT:

If you post this event, Hollywood will quit. The user data parameter is
unused for this event. (V6.0)

Chapter 24: SysBase functions 197

HWEVT_CALLFUNCTION:

If you post this event, Hollywood will call the specified function the next
time it enters a WaitEvent() or CheckEvent() cycle. You have to pass a
pointer to a struct hwEvtCallFunction in the user data parameter. struct
hwEvtCallFunction looks like this:

struct hwEvtCallFunction

{

int (*Func)(lua_State *L, APTR userdata);

APTR UserData;

};

The following members are part of struct hwEvtCallFunction:

Func: This must be set to the function that you want Hollywood to
call. Hollywood will pass a pointer to the lua_State and the
user data you specify below to your function.

UserData:

Set this to the user data that Hollywood should pass to your
function.

(V6.0)

HWEVT_WAKEUP:

This event can be used to wake up Hollywood from another thread. The
user data parameter is unused for this event. (V6.0)

HWEVT_MOUSE:

This event can only be used from plugins that install a display adapter.
HWEVT_MOUSE posts a mouse event to Hollywood’s event queue. You have to
pass a pointer to a struct hwEvtMouse in the user data parameter. struct
hwEvtMouse looks like this:

struct hwEvtMouse

{

APTR Handle;

int X;

int Y;

int Button;

int Down;

ULONG Flags;

};

The following members are part of struct hwEvtMouse:

Handle: This must be set to a display handle obtained from
OpenDisplay().

X: This must be set to the mouse cursor’s current x position, rela-
tive to the upper-left corner of the display.

Y: This must be set to the mouse cursor’s current y position, rela-
tive to the upper-left corner of the display.

198 Hollywood SDK

Button: This must be set to one of the following predefined constants
to define the mouse button that Down member of struct

hwEvtMouse is referring to. The following button types are
currently defined:

HWMBTYPE_NONE:

Structure member Down is unused.

HWMBTYPE_LEFT:

Structure member Down contains the current state
of the left mouse button.

HWMBTYPE_RIGHT:

Structure member Down contains the current state
of the right mouse button.

HWMBTYPE_MIDDLE:

Structure member Down contains the current state
of the middle mouse button.

Down: If Button does not equal HWBMTYPE_NONE, this member needs
to be set to either True or False depending on whether the
corresponding mouse button is currently down or up.

Flags: Currently unused. Must be 0.

(V6.0)

HWEVT_KEYBOARD:

This event can only be used from plugins that install a display adapter.
HWEVT_KEYBOARD posts a keyboard event to Hollywood’s event queue. You
have to pass a pointer to a struct hwEvtKeyboard in the user data param-
eter. struct hwEvtKeyboard looks like this:

struct hwEvtKeyboard

{

APTR Handle;

int ID;

int Down;

ULONG Qualifiers;

ULONG Flags;

};

The following members are part of struct hwEvtKeyboard:

Handle: This must be set to a display handle obtained from
OpenDisplay().

ID: This must be set to the identifier of the key this event is referring
to. This can be either the 8-bit character code of a ISO-8859-1
key or one of the following special keys:

HWKEY_CURSOR_UP

HWKEY_CURSOR_DOWN

HWKEY_CURSOR_RIGHT

Chapter 24: SysBase functions 199

HWKEY_CURSOR_LEFT

HWKEY_HELP

HWKEY_F1

HWKEY_F2

HWKEY_F3

HWKEY_F4

HWKEY_F5

HWKEY_F6

HWKEY_F7

HWKEY_F8

HWKEY_F9

HWKEY_F10

HWKEY_F11

HWKEY_F12

HWKEY_F13

HWKEY_F14

HWKEY_F15

HWKEY_F16

HWKEY_BACKSPACE

HWKEY_TAB

HWKEY_ENTER

HWKEY_RETURN

HWKEY_ESC

HWKEY_SPACE

HWKEY_DEL

HWKEY_INSERT

HWKEY_HOME

HWKEY_END

HWKEY_PAGEUP

HWKEY_PAGEDOWN

HWKEY_PRINT

HWKEY_PAUSE

Down: This must be set to either True or False indicating whether the
specified key is currently pressed.

Qualifiers:

This must be set to a combination of qualifiers like shift and
alt that are currently pressed. See Section 16.25 [GetQualifiers],
page 124, for a list of available qualifiers.

Flags: Currently unused. Must be 0.

(V6.0)

HWEVT_CLOSEDISPLAY:

This event can only be used from plugins that install a display adapter.
HWEVT_CLOSEDISPLAY posts a close display event to Hollywood’s event queue.
This event is usually posted when the user presses the window’s close widget.

200 Hollywood SDK

You have to pass a pointer to a struct hwEvtCloseDisplay in the user data
parameter. struct hwEvtCloseDisplay looks like this:

struct hwEvtCloseDisplay

{

APTR Handle;

ULONG Flags;

};

The following members are part of struct hwEvtCloseDisplay:

Handle: This must be set to a display handle obtained from
OpenDisplay().

Flags: Currently unused. Must be 0.

(V6.0)

HWEVT_SIZEDISPLAY:

This event can only be used from plugins that install a display adapter.
HWEVT_SIZEDISPLAY posts a size display event to Hollywood’s event queue.
This event is usually posted when the user changes the size of the window.
You have to pass a pointer to a struct hwEvtSizeDisplay in the user data
parameter. struct hwEvtSizeDisplay looks like this:

struct hwEvtSizeDisplay

{

APTR Handle;

int Width;

int Height;

ULONG Flags;

};

The following members are part of struct hwEvtSizeDisplay:

Handle: This must be set to a display handle obtained from
OpenDisplay().

Width: This must be set to the new display width in pixels.

Height: This must be set to the new display height in pixels.

Flags: Currently unused. Must be 0.

(V6.0)

HWEVT_MOVEDISPLAY:

This event can only be used from plugins that install a display adapter.
HWEVT_MOVEDISPLAY posts a move display event to Hollywood’s event queue.
This event is usually posted when the user moves the window around. You
have to pass a pointer to a struct hwEvtMoveDisplay in the user data
parameter. struct hwEvtMoveDisplay looks like this:

struct hwEvtMoveDisplay

{

APTR Handle;

Chapter 24: SysBase functions 201

int X;

int Y;

ULONG Flags;

};

The following members are part of struct hwEvtMoveDisplay:

Handle: This must be set to a display handle obtained from
OpenDisplay().

X: This must be set to the display’s new x position in pixels. The
position you specify here must be relative to the screen’s upper-
left corner.

Y: This must be set to the display’s new y position in pixels. The
position you specify here must be relative to the screen’s upper-
left corner.

Flags: Currently unused. Must be 0.

(V6.0)

HWEVT_SHOWHIDEDISPLAY:

This event can only be used from plugins that install a display adapter.
HWEVT_SHOWHIDEDISPLAY posts a show/hide display event to Hollywood’s
event queue. This event is usually posted when the user minimizes the
window or restores it from a minimized state. You have to pass a pointer
to a struct hwEvtShowHideDisplay in the user data parameter. struct

hwEvtShowHideDisplay looks like this:

struct hwEvtShowHideDisplay

{

APTR Handle;

int Show;

ULONG Flags;

};

The following members are part of struct hwEvtShowHideDisplay:

Handle: This must be set to a display handle obtained from
OpenDisplay().

Show: This must be set to False if the display has been min-
imized/hidden and True if it has been restored from a
minimized/hidden state.

Flags: Currently unused. Must be 0.

(V6.0)

HWEVT_FOCUSCHANGEDISPLAY:

This event can only be used from plugins that install a display
adapter. HWEVT_FOCUSCHANGEDISPLAY posts a focus change display
event to Hollywood’s event queue. This event is usually posted when
the window loses or gets the focus. You have to pass a pointer to a

202 Hollywood SDK

struct hwEvtFocusChangeDisplay in the user data parameter. struct

hwEvtFocusChangeDisplay looks like this:

struct hwEvtFocusChangeDisplay

{

APTR Handle;

int Focus;

ULONG Flags;

};

The following members are part of struct hwEvtFocusChangeDisplay:

Handle: This must be set to a display handle obtained from
OpenDisplay().

Focus: This must be set to False if the display has lost the focus and
True if it has received the focus.

Flags: Currently unused. Must be 0.

(V6.0)

Alternatively, you can also specify a custom event type that you have registered through
hw_RegisterEventHandler() in parameter 1. In that case, the user data pointer you
pass in parameter 2 is directly forwarded to your custom event’s handler function. See
Section 24.27 [hw RegisterEventHandler], page 208, for details.

Starting with Hollywood 6.0 this function has an extended version named hw_

PostEventEx(). In contrast to hw_PostEvent(), the extended version will tell you
whether the event was successfully posted. See Section 24.23 [hw PostEventEx],
page 202, for details.

This function is thread-safe.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

type type of event to post (see above)

userdata event-dependent data (see above)

24.23 hw PostEventEx

NAME
hw PostEventEx – post a new event to queue (V6.0)

SYNOPSIS
int error = hw_PostEventEx(lua_State *L, int type, APTR userdata,

struct hwTagList *tags);

FUNCTION
This function does the same as hw_PostEvent() but returns an error code that informs
you whether or not the event could be added successfully. Additionally, it accepts a tag

Chapter 24: SysBase functions 203

list parameter but there are currently no tags that are supported here. See Section 24.22
[hw PostEvent], page 196, for details.

This function is thread-safe.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

L pointer to a lua_State

type type of event to post

userdata event-dependent data

tags currently unused; set this to NULL

24.24 hw PostSatelliteEvent

NAME
hw PostSatelliteEvent – post a satellite event to queue (V5.2)

SYNOPSIS
void hw_PostSatelliteEvent(APTR handle, int type, APTR typedata);

FUNCTION
This function posts an event that has happened in a display satellite to the
satellite’s root display. You have to pass the satellite handle as returned by
hw_AttachDisplaySatellite() in parameter 1 and the event type and its data in
parameters 2 and 3. The following event types are currently supported:

HWSATEVT_MOUSEMOVE:

This event indicates that the mouse has been moved in the display satel-
lite. You need to pass a pointer to a struct hwSatelliteEventMouse in
typedata. The structure looks like this:

struct hwSatelliteEventMouse

{

int MouseX;

int MouseY;

int ButtonDown;

};

The following members need to initialized for HWSATEVT_MOUSEMOVE:

MouseX: This must be set to the mouse cursor’s current x position, rela-
tive to the upper-left corner of the display satellite.

MouseY: This must be set to the mouse cursor’s current y position, rela-
tive to the upper-left corner of the display satellite.

HWSATEVT_LEFTMOUSE:

This event indicates that the left mouse button has been pressed or re-
leased in the display satellite. You need to pass a pointer to a struct

hwSatelliteEventMouse in typedata. The structure looks like this:

204 Hollywood SDK

struct hwSatelliteEventMouse

{

int MouseX;

int MouseY;

int ButtonDown;

};

The following members need to initialized for HWSATEVT_LEFTMOUSE:

MouseX: This must be set to the mouse cursor’s current x position, rela-
tive to the upper-left corner of the display satellite.

MouseY: This must be set to the mouse cursor’s current y position, rela-
tive to the upper-left corner of the display satellite.

ButtonDown:

This must be set to True or False depending on whether the
left mouse button is down or not.

HWSATEVT_RIGHTMOUSE:

This event indicates that the right mouse button has been pressed or re-
leased in the display satellite. You need to pass a pointer to a struct

hwSatelliteEventMouse in typedata. The structure looks like this:

struct hwSatelliteEventMouse

{

int MouseX;

int MouseY;

int ButtonDown;

};

The following members need to initialized for HWSATEVT_RIGHTMOUSE:

MouseX: This must be set to the mouse cursor’s current x position, rela-
tive to the upper-left corner of the display satellite.

MouseY: This must be set to the mouse cursor’s current y position, rela-
tive to the upper-left corner of the display satellite.

ButtonDown:

This must be set to True or False depending on whether the
right mouse button is down or not.

HWSATEVT_MIDMOUSE:

This event indicates that the middle mouse button has been pressed or re-
leased in the display satellite. You need to pass a pointer to a struct

hwSatelliteEventMouse in typedata. The structure looks like this:

struct hwSatelliteEventMouse

{

int MouseX;

int MouseY;

int ButtonDown;

};

The following members need to initialized for HWSATEVT_MIDMOUSE:

Chapter 24: SysBase functions 205

MouseX: This must be set to the mouse cursor’s current x position, rela-
tive to the upper-left corner of the display satellite.

MouseY: This must be set to the mouse cursor’s current y position, rela-
tive to the upper-left corner of the display satellite.

ButtonDown:

This must be set to True or False depending on whether the
middle mouse button is down or not.

HWSATEVT_MOUSEWHEEL:

This event indicates that the mouse wheel has been rotated in the display
satellite. You need to pass a pointer to a struct hwSatelliteEventMouse

in typedata. The structure looks like this:

struct hwSatelliteEventMouse

{

int MouseX;

int MouseY;

int ButtonDown;

};

The following members need to initialized for HWSATEVT_LEFTMOUSE:

MouseX: This must be set to the mouse cursor’s current x position, rela-
tive to the upper-left corner of the display satellite.

MouseY: This must be set to the mouse cursor’s current y position, rela-
tive to the upper-left corner of the display satellite.

ButtonDown:

This must be set to True if the wheel has been spinned down-
wards or False if it has been spinned in upwards direction.

HWSATEVT_KEYBOARD:

A keyboard event has occurred in the display satellite. You need to pass a
pointer to a struct hwSatelliteEventKeyboard in typedata. The struc-
ture looks like this:

struct hwSatelliteEventKeyboard

{

int KeyID;

int KeyDown;

ULONG Qualifiers;

};

The individual structure members need to be initialized like this:

KeyID: This must be set to the identifier of the key this event is referring
to. This can be either the 8-bit character code of a ISO-8859-1
key or one of the following special keys:

HWKEY_CURSOR_UP

HWKEY_CURSOR_DOWN

HWKEY_CURSOR_RIGHT

206 Hollywood SDK

HWKEY_CURSOR_LEFT

HWKEY_HELP

HWKEY_F1

HWKEY_F2

HWKEY_F3

HWKEY_F4

HWKEY_F5

HWKEY_F6

HWKEY_F7

HWKEY_F8

HWKEY_F9

HWKEY_F10

HWKEY_F11

HWKEY_F12

HWKEY_F13

HWKEY_F14

HWKEY_F15

HWKEY_F16

HWKEY_BACKSPACE

HWKEY_TAB

HWKEY_ENTER

HWKEY_RETURN

HWKEY_ESC

HWKEY_SPACE

HWKEY_DEL

HWKEY_INSERT

HWKEY_HOME

HWKEY_END

HWKEY_PAGEUP

HWKEY_PAGEDOWN

HWKEY_PRINT

HWKEY_PAUSE

KeyDown: This must be set to either True or False indicating whether the
specified key is currently pressed.

Qualifiers:

This must be set to a combination of qualifiers like shift and
alt that are currently pressed. See Section 16.25 [GetQualifiers],
page 124, for a list of available qualifiers.

See Section 26.3 [hw AttachDisplaySatellite], page 255, for more information on display
satellites.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

handle display satellite handle allocated by hw_AttachDisplaySatellite()

Chapter 24: SysBase functions 207

type type of event to post (see above)

typedata event-dependent data (see above)

24.25 hw RegisterCallback

NAME
hw RegisterCallback – register a new callback (V5.2)

SYNOPSIS
APTR cb = hw_RegisterCallback(int type, APTR func, APTR userdata);

FUNCTION
This function can be used to register a new callback that will be run by Hollywood in
a certain context which is specified by type. The following callback types are currently
supported:

HWCB_AMIGASIGNAL:

This is only supported in the AmigaOS compatible versions of Hollywood.
Hollywood will run callbacks of the type HWCB_AMIGASIGNAL whenever it
is about to call exec.library/Wait() to wait on a set of signals. Your
callback will then be asked for additional signal bits that should be included
in the call to Wait(). The prototype for an Amiga signal callback looks like
this:

ULONG AmigaSignal(APTR userdata);

Hollywood will pass the user data that you pass in parameter 3
of hw_RegisterCallback() to your AmigaSignal() callback. Your
AmigaSignal() callback has to return a combination of signal bits that
should be included in the call to Wait(). There are two special return
values: If you return 0, Hollywood will run your AmigaSignal() again. If
you return 0xFFFFFFFF, no additional signals will be included in the call to
Wait().

HWCB_LINEHOOK:

Callbacks of type HWCB_LINEHOOK will be run whenever Hollywood runs its
line hook, i.e. after running one line of Lua code. Line hooks are called very
often, usually many times per second. Thus, you must make sure that your
line hook callback doesn’t do any expensive things or it will slow down the
script’s execution significantly. The prototype for a line hook callback looks
like this:

int LineHook(lua_State *L, APTR userdata);

Your line hook callback will receive a pointer to the lua_State as well as the
user data that has been passed to hw_RegisterCallback() when registering
the callback. Your callback has to return a standard Hollywood error code
or 0 for success. (V6.0)

DESIGNER COMPATIBILITY
Supported since Designer 4.5

208 Hollywood SDK

INPUTS

type callback type to register (see above for supported types)

func pointer to callback function; the actual format of this function depends on
the specified callback type (see above)

userdata user data that should be passed to the callback function when Hollywood
runs it

RESULTS

cb callback handle or NULL on error

24.26 hw RegisterError

NAME
hw RegisterError – register a new error code (V5.0)

SYNOPSIS
int error = hw_RegisterError(STRPTR msg);

FUNCTION
This function can be used to register custom Hollywood error codes. All functions that
return a standard Hollywood error code may return this custom error code then to make
Hollywood show the specified error message. The string you pass to this function may
contain a %s or %ld wildcard. If that is the case, Hollywood will replace these wildcards
with the values set using hw_SetErrorString() and hw_SetErrorCode().

Hollywood will make a copy of the string you pass to this function so you may free it
once hw_RegisterError() returns.

This function should only be called in your InitPlugin() function.

See Section 2.7 [ErrorCodes], page 11, for more information on standard Hollywood error
codes.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

msg null-terminated string describing the error message

RESULTS

error new error code or ERR_MEM in case of an error

24.27 hw RegisterEventHandler

NAME
hw RegisterEventHandler – register a new event type (V5.2)

SYNOPSIS
int id = hw_RegisterEventHandler(STRPTR name, void (*evtfunc)

(lua_State *L, int type, APTR userdata));

Chapter 24: SysBase functions 209

FUNCTION
This function allows you to register a new event type. The user will then be able to
listen to events of this type by installing a new event handler for this type by using the
Hollywood function InstallEventHandler(). Whenever you want this event handler to
trigger, you have to post an event to Hollywood’s event queue using the hw_PostEvent()
or hw_PostEventEx() function.

You have to specify a name for the new event type. This name must follow the conven-
tions for Hollywood variables because the user will need to use this name when installing
a handler for this event type using Hollywood’s InstallEventHandler() function. Thus,
the name you specify here must not clash with any existing event handler names and
it must not use any spaces or special characters. It has to start with a letter from the
English alphabet.

In parameter 2, you need to pass a function pointer to hw_RegisterEventHandler().
This function will be called whenever Hollywood is about to run the callback that the user
has installed for the event using InstallEventHandler(). Your function may then push
additional values on the stack. When evtfunc is called, Hollywood will have already
pushed a table to the stack and it will have set the Action field of that table to the name
of your event for consistency with inbuilt Hollywood events. All other values that your
event handler may want to provide to the user’s event callback should also be stored in
that table. Note that you must implement this function even if you do not want to push
any additional values on the stack. evtfunc must not be NULL. The user data that is
passed to evtfunc as the third parameter is the same pointer that you provided in the
call to hw_PostEvent() or hw_PostEventEx().

This function is also available as an extended version. See Section 24.28
[hw RegisterEventHandlerEx], page 209, for details.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

name name for the new event type (see above for limitations in the event name
format)

evtfunc function that should be called when running user callbacks for this event

RESULTS

id identifier of the new event or 0 on error

24.28 hw RegisterEventHandlerEx

NAME
hw RegisterEventHandlerEx – register a new event type (V6.0)

SYNOPSIS
int id = hw_RegisterEventHandlerEx(STRPTR name, int type, APTR data);

FUNCTION
This function allows you to register a new event type. The user will then be able to
listen to events of this type by installing a new event handler for this type by using the

210 Hollywood SDK

Hollywood function InstallEventHandler(). Whenever you want this event handler to
trigger, you have to post an event to Hollywood’s event queue using the hw_PostEvent()
or hw_PostEventEx() function.

You have to specify a name for the new event type. This name must follow the conven-
tions for Hollywood variables because the user will need to use this name when installing
a handler for this event type using Hollywood’s InstallEventHandler() function. Thus,
the name you specify here must not clash with any existing event handler names and
it must not use any spaces or special characters. It has to start with a letter from the
English alphabet.

In parameter 2, you need to pass the type of the event you would like to register. The
following event types are currently recognized:

HWEVTHANDLER_STANDARD:

This registers a standard event. Standard events are the most basic event
types available and they are also the ones that are registered by the hw_

RegisterEventHandler() function. For standard events, the data param-
eter must be set to a pointer to a struct hwStandardEventHandler which
looks like this:

struct hwStandardEventHandler

{

void (*EvtFunc)(lua_State *L, int type, APTR userdata);

};

The following items are members of this structure:

EvtFunc: This member must be set to a function pointer which will be
called whenever Hollywood is about to run the callback that the
user has installed for the event using InstallEventHandler().
The function you specify here may then push additional values
on the stack. When evtfunc is called, Hollywood will have al-
ready pushed a table to the stack and it will have set the Action
field of that table to the name of your event for consistency with
inbuilt Hollywood events. All other values that your event han-
dler may want to provide to the user’s event callback should also
be stored in that table. Note that you must write this function
even if you do not want to push any additional values on the
stack. EvtFunc must not be NULL. The user data that is passed
to EvtFunc as the third parameter is the same pointer that you
provided in the call to hw_PostEvent() or hw_PostEventEx().

HWEVTHANDLER_STANDARD is identical to the event handler registered by hw_

RegisterEventHandler() so you might also use the latter to register stan-
dard events.

HWEVTHANDLER_CUSTOM:

This registers a custom event. Custom events differ from standard events in
the way that your plugin is given more fine-tuned control about the way the
events are handled. In contrast to standard events, Hollywood will call your
plugin also after it has run a user callback for this event and it also supports

Chapter 24: SysBase functions 211

event destructors. For custom events, the data parameter must be set to a
pointer to a struct hwCustomEventHandler which looks like this:

struct hwCustomEventHandler

{

int (*PushData)(lua_State *L, int type, APTR udata);

void (*PostCall)(lua_State *L, int type, APTR udata);

void (*FreeEvent)(lua_State *L, int type, APTR udata);

};

The following items are members of this structure:

PushData:

This member must be set to a function pointer which will be
called whenever Hollywood is about to run the callback that the
user has installed for the event using InstallEventHandler().
The function you specify here may then push additional val-
ues on the stack. Note that in comparison to events of type
HWEVTHANDLER_STANDARD, Hollywood won’t push any values on
the stack for custom events. There will also be no table on the
stack as it is the case with HWEVTHANDLER_STANDARD. Instead,
your plugin is given complete control over what the stack should
look like when Hollywood runs the user callback. For consis-
tency reasons, however, it is advised that you push a table, set
the Action field to the name of your event and then store all ad-
ditional values inside that table. You should only deviate from
this standard if you have very good reason to do so.

PostCall:

This member must be set to a function that should be called im-
mediately after Hollywood has finished running the user callback
registered for this event type.

FreeEvent:

This member must be set to a function that should act as a
destructor for this event type. Hollywood will call this function
whenever it has to free an event of your type.

Note that you must provide functions for all of the structure members above,
even if they don’t do anything. No structure member must be NULL. The
user data that is passed to all the functions above as the third parameter
is the same pointer that you provided in the call to hw_PostEvent() or
hw_PostEventEx() when you posted the event.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

name name for the new event type (see above for limitations in the event name
format)

type desired event type (see above for supported types)

212 Hollywood SDK

data event type dependent data (see above for details)

RESULTS

id identifier of the new event or 0 on error

24.29 hw RegisterFileType

NAME
hw RegisterFileType – register a new file type (V5.3)

SYNOPSIS
int ok = hw_RegisterFileType(hwPluginBase *self, int type, STRPTR name,

STRPTR mime, STRPTR ext, ULONG formatid, ULONG flags);

FUNCTION
This function can be used to register a new file type with Hollywood. Hollywood won’t
do anything with these file types except return information about them to the user if
requested by a call to GetPlugins(). The information about the file types supported
by the individual plugins can be useful to filter file name extensions when showing file
requesters or it can be useful to ask the user to select a file format when saving an
image, etc. This makes it possible for scripts to dynamically support all plugins that are
currently available.

You have to pass a pointer to your plugin’s hwPluginBase in parameter 1. Hollywood
passes this pointer to you when it first calls your InitPlugin() function. You also have
to specify the root type of the file format you want to register. The following types are
currently supported:

HWFILETYPE_IMAGE:

Register specified file type as an image file format.

HWFILETYPE_ANIM:

Register specified file type as an animation file format.

HWFILETYPE_SOUND:

Register specified file type as a sound file format.

HWFILETYPE_VIDEO:

Register specified file type as a video file format.

The name you have to specify in parameter 3 must be a human-readable name of the
file type you want to register, e.g. "IFF ILBM". The name you specify here may use
spaces. The fourth parameter is optional and allows you to specify the MIME type for
the file format you want to register. If you don’t want to provide this, pass NULL as the
fourth parameter. Parameter number 5 must contain the extension(s) used by this file
type. The extension(s) must be specified without the dot. If the file type supports more
than one extension, separate the individual extensions using a vertical bar character (|),
e.g. "iff|ilbm|lbm". The formatid parameter is only used if HWFILETYPEFLAGS_SAVE
is set in the flags parameter. In that case, you have to pass the identifier of this file
format here. This must match the identifier that is returned by your implementations
of functions like RegisterImageSaver() or RegisterAnimSaver().

Finally, RegisterFileType() accepts the following flags:

Chapter 24: SysBase functions 213

HWFILETYPEFLAGS_SAVE:

If this flag is set, you’re registering a saver file type. You must register
loaders and savers in two separate calls. It is not possible to register loader
and saver within a single call to hw_RegisterFileType().

HWFILETYPEFLAGS_ALPHA:

This flag indicates that your plugin can load or save alpha channel infor-
mation, depending on whether HWFILETYPEFLAGS_SAVE is set. This is only
applicable for HWFILETYPE_IMAGE and HWFILETYPE_ANIM.

HWFILETYPEFLAGS_QUALITY:

This flag indicates that your plugin supports lossy compression of image
data. It is only supported by for HWFILETYPE_IMAGE and HWFILETYPE_ANIM

and the HWFILETYPEFLAGS_SAVE flag must be set. The quality level is passed
to your plugin saver as a value ranging between 0 (bad quality) to 100
(excellent quality).

HWFILETYPEFLAGS_FPS:

This flag indicates that your plugin can save animations with different frames
per second settings. It is only supported by HWFILETYPE_ANIM together with
the HWFILETYPEFLAGS_SAVE flag set.

RegisterFileType() is usually called in your InitPlugin() function but make sure that
you have at least Hollywood 5.3 before attempting to call this function!

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

self pointer to a hwPluginBase as passed to your InitPlugin() function

type file type to register (see above)

name human-readable name of this file type

mime MIME type for this file format or NULL

ext extension(s) for this file type; multiple extensions must be separated by a
vertical bar (|)

formatid when registering output file types, the unique identifier used by this format
(see above)

flags additional flags (see above)

RESULTS

ok True for success, False on failure

EXAMPLE
hw_RegisterFileType(self, HWFILETYPE_IMAGE, "JPEG 2000", NULL,

"jp2|j2k", 0, HWFILETYPEFLAGS_ALPHA);

hw_RegisterFileType(self, HWFILETYPE_IMAGE, "JPEG 2000 (JP2)", NULL,

"jp2", outfmt[0], HWFILETYPEFLAGS_SAVE|

214 Hollywood SDK

HWFILETYPEFLAGS_ALPHA|HWFILETYPEFLAGS_QUALITY);

hw_RegisterFileType(self, HWFILETYPE_IMAGE, "JPEG 2000 (J2K)", NULL,

"j2k", outfmt[1], HWFILETYPEFLAGS_SAVE|

HWFILETYPEFLAGS_ALPHA|HWFILETYPEFLAGS_QUALITY);

The code above registers a loader file type for the JPEG 2000 format and two savers for
the JPEG 2000 format. The savers distinguish between the JP2 and the J2K container
formats while the loader combines them into a single format.

24.30 hw RegisterUserObject

NAME
hw RegisterUserObject – register a new object type (V5.3)

SYNOPSIS
int id = hw_RegisterUserObject(lua_State *L, STRPTR name,

struct hwObjectList **list,

int (*attrfunc)(lua_State *L, int attr, lua_ID *id));

FUNCTION
This function allows you to register a new object type with Hollywood. The user will then
be able to use all of Hollywood’s object functions with your new type. For example, it is
possible to associate custom data with Hollywood objects by using the SetObjectData()
function and it is possible to query object attributes by calling the GetAttribute() Hol-
lywood function. Additionally, all registered object types will also appear in Hollywood’s
resource monitor.

hw_RegisterUserObject() will return an identifier for the new object type or 0 in case
of an error.

The name you pass to hw_RegisterUserObject() may contain spaces and non-ASCII
characters as it is only used by Hollywood’s resource monitor.

You have to pass a pointer to a pointer that marks the start of an object list to this
function. Each list node must start with a struct hwObjectList item so that Hollywood
can iterate the list and find objects in it on its own. struct hwObjectList looks like
this:

struct hwObjectListHeader

{

int type;

lua_ID id;

APTR reserved;

};

struct hwObjectList

{

struct hwObjectListHeader hdr;

struct hwObjectList *succ;

// ... your private data must follow here ...

Chapter 24: SysBase functions 215

};

Whenever you add a new Hollywood object, you need to initialize the following members:

type: This member must be set to the object’s identifier returned by
hw_RegisterUserObject().

id: This member must be set to the lua_ID of this object. Hollywood objects can
use two different kinds of identifiers: They can either use a numerical identi-
fier or an automatically chosen identifier that uses the LUA_TLIGHTUSERDATA
object type. The user can request an automatically chosen identifier by pass-
ing Nil as the desired identifier when creating the object. In that case, the
plugin should automatically choose an identifier for the object and return it.
This is usually done by using the raw memory pointer to the newly allocated
object as an identifier because this guarantees its uniqueness. Internally, the
two different kinds of identifiers are managed using the lua_ID structure
which looks like this:

typedef struct _lua_ID

{

int num;

void *ptr;

} lua_ID;

When adding a new object, the two structure members must be initialized
like this:

num: If the object is to use a numerical identifier, you need to write
this identifier to num and set the ptr member to NULL. If the
ptr member is not NULL, Hollywood will ignore whatever is in
num so don’t forget to set ptr to NULL.

ptr: If the object has been created using automatic ID selection, you
need to set this member to the identifier that this object should
use. This is typically set to the raw memory pointer of the newly
allocated object. If ptr is NULL, Hollywood will automatically
use the numerical identifier specified in num.

reserved:

Reserved for future use. Must be NULL.

succ: This must point to the next object in the list or it must be NULL in case the
object is the last one. Whenever you create a new object, make sure to chain
it into the list of objects that you passed to hw_RegisterUserObject().

You also have to pass a pointer to a function that is called whenever the user calls
GetAttribute() on your object type. Hollywood will handle the #ATTRCOUNT attribute
automatically for your object type but for all other attributes, Hollywood will simply
run the callback you specified when registering the new object type. The callback then
has to push the return value(s) for this attribute on the stack and return the number of
values actually pushed or an error code, just like a standard Lua function would do. See
below for an example implementation.

Note that all of Hollywood’s inbuilt objects use constant identifiers defined by inbuilt
object constants like #BRUSH, #ANIM, or #VIDEO. User objects, however, use dynamic

216 Hollywood SDK

object identifiers that are determined at runtime by hw_RegisterUserObject(). They
can be different every time Hollywood is run. That is why you should never create
constants to refer to your user objects because constant values will be hard-coded in
applets when scripts are compiled so there can be conflicts if hw_RegisterUserObject()
returns an identifier that is different from the constant definition. The recommended way
of dealing with user object identifiers is to implement a function named GetObjectType()

which returns the dynamic object identifier to the script.

An example implementation could look like this:

struct myobj

{

struct hwObjectList list;

// store your object data here

...

};

// the actual identifier will be determined at runtime by

// hw_RegisterUserObject()

static int MY_OBJECT_TYPE = 0;

// our list of objects

static struct myobj *firstobj = NULL;

// this function is called whenever the user calls GetAttribute()

// on our user object

static SAVEDS int attrfunc(lua_State *L, int attr, lua_ID *id)

{

struct myobj *o;

// first find the object in our list

for(o = firstobj; o; o = o->list.succ) {

if(id->num == o->list.hdr.id.num &&

id->ptr == o->list.hdr.id.ptr) break;

}

// not found? --> error out!

if(!o) return ERR_FINDOBJECT;

// check attribute that should be queried and push return values

switch(attr) {

case MYATTRONE:

lua_pushnumber(L, ...);

return 1;

}

// unknown attribute

Chapter 24: SysBase functions 217

return ERR_UNKNOWNATTR;

}

HW_EXPORT int InitLibrary(lua_State *L)

{

// register our new object type

MY_OBJECT_TYPE = hw_RegisterUserObject(L, "MyObject",

(struct hwObjectList **) &firstobj, attrfunc);

return 0;

}

HW_EXPORT void FreeLibrary(lua_State *L)

{

struct myobj *o, *succ;

// do not forget to see if there are any objects that

// the user hasn’t freed yet on exit --> otherwise you

// will leak memory

for(o = firstobj; o; o = succ) {

o = o->list.succ;

freeobject(L, o);

free(o);

}

}

// this function is important because the actual object identifier

// can be different each time Hollywood is run

static SAVEDS int my_GetObjectType(lua_State *L)

{

lua_pushnumber(L, MY_OBJECT_TYPE);

return 1;

}

static SAVEDS int my_CreateObject(lua_State *L)

{

struct myobj *o, *prev = NULL;

lua_ID id;

// this will check whether the user passed a number in

// parameter 1 or Nil if he passed Nil, luaL_checknewid()

// will set id.ptr to ((void *) 1)

luaL_checknewid(L, 1, &id);

if(!id.ptr) {

// must check if there already is an object with this

218 Hollywood SDK

// id and free it

...

}

for(o = firstobj; o; o = o->list.succ) prev = o;

// allocate new object

if(!(o = calloc(sizeof(struct myobj), 1))) return ERR_MEM;

// additional initialization to be done here

...

// make sure to chain our object into the list

if(!prev) {

firstobj = o;

} else {

prev->list.succ = o;

}

// if the user wants automatic id selection, we need to set id.ptr

// to our object and push it as light user data on the stack

if(id.ptr) {

id.ptr = o;

lua_pushlightuserdata(L, id.ptr);

}

// don’t forget to initialize the hwObjectList header

pdf->list.hdr.type = MY_OBJECT_TYPE;

pdf->list.hdr.id = id;

// returns 1 if the user wants automatic id selection because in

// that case there will be one return value; otherwise there won’t

// be any return values

return (id.ptr != NULL);

}

static SAVEDS int my_FreeObject(lua_State *L)

{

struct myobj *o, *prev = NULL;

lua_ID id;

// check whether the user passed a number or a light userdata

// parameter

luaL_checkid(L, 1, &id);

// find the object in our list

for(o = firstobj; o; o = o->list.succ) {

Chapter 24: SysBase functions 219

if(id.num == o->list.hdr.id.num &&

id.ptr == o->list.hdr.id.ptr) break;

prev = o;

}

// not found? exit!

if(!o) return ERR_FINDOBJECT;

// do your clean up here

...

// important! ask Hollywood to free all data associated with this

// object!

hw_FreeObjectData(L, (struct hwObjectList *) o);

// unchain object from our list

if(prev) {

prev->list.succ = o->list.succ;

} else {

firstobj = o->list.succ;

}

// and free it

free(o);

return 0;

}

static const struct hwCmdStruct plug_commands[] = {

{"CreateObject", my_CreateObject},

{"FreeObject", my_FreeObject},

{"GetObjectType", my_GetObjectType},

...

{NULL, NULL}

};

HW_EXPORT struct hwCmdStruct *GetCommands(void)

{

return (struct hwCmdStruct *) plug_commands;

}

Note that you have to iterate through your object list in FreeLibrary() and free all
objects that the user didn’t free explicitly. Hollywood won’t do this automatically. If
you do not iterate through your object list in FreeLibrary(), you will leak memory. It’s
also very important that you call hw_FreeObjectData() on every object that you have
allocated. See Section 24.10 [hw FreeObjectData], page 188, for details.

220 Hollywood SDK

If your plugin implements support for additional object types like above, the user will be
able to do the following from the Hollywood script to work with these new object types:

MY_OBJECT_TYPE = myplug.GetObjectType()

obj1 = myplug.CreateObject(Nil, ...)

DebugPrint(GetAttribute(MY_OBJECT_TYPE, obj1, #ATTRYOURATTR))

SetObjectData(MY_OBJECT_TYPE, obj1, "test", "Hello")

DebugPrint(GetObjectData(MY_OBJECT_TYPE, obj1, "test"))

myplug.FreeObject(obj1)

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

L pointer to the lua_State

name user object name to be displayed in the resource monitor

list pointer to a struct hwObjectList pointer (see above)

attrfunc function to be called when the user queries attributes for this object

RESULTS

id identifier of the new object or 0 on error

24.31 hw RemoveLoaderAdapter

NAME
hw RemoveLoaderAdapter – remove a loader or adapter (V6.0)

SYNOPSIS
void hw_RemoveLoaderAdapter(hwPluginBase *self, ULONG type);

FUNCTION
This function can be used to remove a loader or adapter plugin. You may choose to
activate it again later by calling hw_AddLoaderAdapter(). In the first parameter, you
have to pass a pointer to the hwPluginBase that Hollywood has passed to your plugin’s
InitPlugin() function. The second parameter specifies the loader or adapter type. See
Section 24.2 [hw AddLoaderAdapter], page 183, for a list of supported types.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

self hwPluginBase pointer passed to InitPlugin()

type loader or adapter type (see above)

Chapter 24: SysBase functions 221

24.32 hw RunTimerCallback

NAME
hw RunTimerCallback – run timer user callback (V6.0)

SYNOPSIS
int error = hw_RunTimerCallback(lua_State *L, APTR handle);

FUNCTION
This function runs the user callback associated with the specified timer handle that has
been allocated by RegisterTimer(). The user callback can be a function that has been
installed either using Hollywood’s SetInterval() or SetTimeout() command.

You will normally call hw_RunTimerCallback() whenever your timer has fired. How-
ever, you need to take care that you call this function at a reasonable time. hw_

RunTimerCallback() will immediately call lua_pcall() so it must be called at a time
when the Hollywood script expects to be interrupted by a user callback, preferably while
it is in a WaitEvent() state. Thus, it is advised that you call this function some-
where in your HandleEvents() implementation. When in HandleEvents() make sure
to check that the HWHEFLAGS_LINEHOOK and HWHEFLAGS_MODAL flags aren’t set. Then you
can be sure that HandleEvents() has been called in response to the WaitEvent() or
CheckEvent() Hollywood commands and you may safely call hw_RunTimerCallback().

DESIGNER COMPATIBILITY
Unsupported

INPUTS

L pointer to the lua_State

handle timer handle allocated by RegisterTimer()

RESULTS

error error code or 0 for success

24.33 hw SetErrorCode

NAME
hw SetErrorCode – set extended error information (V5.0)

SYNOPSIS
void hw_SetErrorCode(int c);

FUNCTION
This function can be used to set extended error information for errors containing a %ld

wildcard. When composing the final error message, Hollywood will replace the %ld

wildcard with the value passed to this function.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

c extended error information to store in Holywood

222 Hollywood SDK

24.34 hw SetErrorString

NAME
hw SetErrorString – set extended error information (V5.0)

SYNOPSIS
void hw_SetErrorString(STRPTR s);

FUNCTION
This function can be used to set extended error information for errors containing a
%s wildcard. When composing the final error message, Hollywood will replace the %s

wildcard with the string passed to this function.

Hollywood will make a copy of the string you pass to this function so you may free it
once hw_SetErrorString() returns.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

s null-terminated string describing the extended error information

24.35 hw SetTimerAdapter

NAME
hw SetTimerAdapter – install a timer adapter (V6.0)

SYNOPSIS
int error = hw_SetTimerAdapter(hwPluginBase *self, ULONG flags,

struct hwTagList *tags);

FUNCTION
This function can be used to activate a plugin that has the HWPLUG_CAPS_TIMERADAPTER
capability flag set. This function must only be called from inside your RequirePlugin()
implementation. If this function succeeds, Hollywood’s inbuilt timer handler will be
completely replaced by the timer handler provided by your plugin and Hollywood will
call into your plugin whenever it needs to work with timers. In the first parameter, you
have to pass a pointer to the hwPluginBase that Hollywood has passed to your plugin’s
InitPlugin() function. The second parameter must be set to a combination of flags.
The following flags are currently defined:

HWSTAFLAGS_PERMANENT:

If this flag is set, the timer adapter will be made permanent. This means
that other plugins won’t be able to overwrite this timer adapter with their
own one. If HWSTAFLAGS_PERMANENT is set, all subsequent calls to hw_

SetTimerAdapter() will fail and your timer adapter will persist.

See Section 17.1 [Timer adapter plugins], page 145, for information on how to write timer
adapter plugins.

DESIGNER COMPATIBILITY
Unsupported

Chapter 24: SysBase functions 223

INPUTS

self hwPluginBase pointer passed to InitPlugin()

flags combination of flags (see above)

tags reserved for future use; set it to NULL for now

RESULTS

error error code or 0 for success

24.36 hw SubTime

NAME
hw SubTime – subtract two time stamps (V5.0)

SYNOPSIS
void hw_SubTime(struct hwos_TimeVal *dest, struct hwos_TimeVal *src);

FUNCTION
This function subtracts the time stamp src from dest and stores the resulting time
stamp in dest.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

dest pointer to a struct hwos_TimeVal containing the minuend; the result of the
subtraction will be written to this buffer

src pointer to a struct hwos_TimeVal containing the subtrahend

24.37 hw TrackedAlloc

NAME
hw TrackedAlloc – allocate memory buffer with tracking (V5.0)

SYNOPSIS
APTR buf = hw_TrackedAlloc(int size, ULONG flags, STRPTR name);

FUNCTION
The debug version of Hollywood supports memory tracking to make it easier to detect
memory leaks and illegal free memory calls. If you are developing your plugin using a
debug version of Hollywood, you can use hw_TrackedAlloc() to allocate a memory buffer
that gets tracked by Hollywood. If you forget to free this memory buffer, Hollywood will
issue a warning before it terminates. In order to be able to identify the memory buffer
that hasn’t been freed, you need to provide a name for every memory buffer you allocate
using hw_TrackedAlloc(). In case you forget to free a buffer, Hollywood will tell you
its name so that you can identify where in your code the allocation was made.

The following flags are currently supported by hw_TrackedAlloc():

224 Hollywood SDK

HWMEMF_CLEAR:

If this flag is set, hw_TrackedAlloc() will clear the memory buffer with
zeros before returning control to your plugin.

In release versions of Hollywood this function does the same as malloc().

You need to use hw_TrackedFree() to free memory allocated by hw_TrackedAlloc().

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

size size of the buffer in bytes

flags combination allocation flags (see above)

name null-terminated string containing a name for this buffer; it need not be unique
but should help you to identify the allocation; this must always be provided!

RESULTS

buf pointer to newly allocated memory or NULL on error

24.38 hw TrackedFree

NAME
hw TrackedFree – free a tracked memory buffer (V5.0)

SYNOPSIS
void hw_TrackedFree(APTR buf);

FUNCTION
This function must be used to free memory allocated by hw_TrackedAlloc(). See
Section 24.37 [hw TrackedAlloc], page 223, for details.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

buf memory buffer allocated by hw_TrackedAlloc()

24.39 hw UnLockSemaphore

NAME
hw UnLockSemaphore – unlock a semaphore (V6.0)

SYNOPSIS
void hw_UnLockSemaphore(APTR sem);

Chapter 24: SysBase functions 225

FUNCTION
This function unlocks the specified semaphore handle. See Section 24.18
[hw LockSemaphore], page 192, for details.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

sem semaphore handle allocated by hw_AllocSemaphore()

24.40 hw UnregisterCallback

NAME
hw UnregisterCallback – unregister a callback (V6.0)

SYNOPSIS
void hw_UnregisterCallback(APTR handle);

FUNCTION
This function can be used to unregister a callback registered by hw_RegisterCallback().
It is normally not necessary to call this function since Hollywood unregisters all callbacks
before it exits.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

handle callback handle allocated by hw_RegisterCallback()

24.41 hw WaitEvents

NAME
hw WaitEvents – wait for events (V6.0)

SYNOPSIS
int error = hw_WaitEvents(lua_State *L, ULONG flags);

FUNCTION
This function halts the program execution until one or more events come in. This can
be useful if you need to set up a temporary modal event loop. The following flags are
currently recognized by this function:

HWWEFLAGS_MODAL:

Signals that hw_WaitEvents() is called from a temporary modal event loop.
This flag should always be set.

Once hw_WaitEvents() returns, you should immediately call hw_HandleEvents().

DESIGNER COMPATIBILITY
Unsupported

226 Hollywood SDK

INPUTS

L pointer to the lua_State

flags combination of flags (see above)

RESULTS

error error code or 0 for success

Chapter 25: DOSBase functions 227

25 DOSBase functions

25.1 Overview

DOSBase contains commands for working with files and directories. As Hollywood can deal
with virtual files as well as with files linked into other files like applets or executables
you must make sure that you only use IO functions provided by Hollywood in the DOSBase
pointer to deal with files. If you use functions like fopen() from the ANSI C library instead,
your plugin will only work with normal files that are physically existent on a system drive.

For example, when writing plugins that provide loaders for additional file formats like
images, sounds, or videos it can often happen that the filename that is passed to your plugin
is a specially formatted specification that Hollywood uses to load files that have been linked
to applets or executables. If you do not use Hollywood’s IO functions to open this file, your
plugin won’t be able to load files that have been linked to applets or executables. This can
be quite annoying for the end-user because the ability to link data files into applets and
executables is a key functionality of Hollywood and thus your plugin should strive to be
compatible with it. If you use fopen() instead, it will just fail whenever your function is
passed a specially formatted specification to open one of Hollywood’s virtual files.

DOSBase is available since Hollywood 5.0.

25.2 hw AddPart

NAME
hw AddPart – append file name to path specification (V5.0)

SYNOPSIS
int ok = hw_AddPart(STRPTR dirname, STRPTR filename, int size);

FUNCTION
This function appends the file name specified in parameter 2 to the directory name
passed in parameter 1. Depending on the operating system in use, the components are
joined by slash or backslash characters.

This function returns True on success, False otherwise.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

dirname directory name to append to

filename file name to append

size size of the dirname buffer in bytes

RESULTS

ok True on success, False otherwise

228 Hollywood SDK

25.3 hw BeginDirScan

NAME
hw BeginDirScan – start iteration over all directory entries (V5.0)

SYNOPSIS
int error = hw_BeginDirScan(APTR handle, APTR *dirhandle);

FUNCTION
This function initiates a directory scanning operation on the handle specified in param-
eter 1. This handle must have been obtained by hw_Lock(). You have to pass a pointer
to an APTR to this function in parameter 2. This pointer will receive a special direc-
tory handle that you have to pass to hw_EndDirScan() once you are finished with the
directory scanning. See Section 25.7 [hw EndDirScan], page 230, for details.

To iterate over the single directory entries, call hw_NextDirEntry(). See Section 25.26
[hw NextDirEntry], page 243, for details.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

handle handle returned by hw_Lock()

dirhandle

pointer to an APTR to receive the scan handle

RESULTS

error error code or 0 on success

25.4 hw ChunkToFile

NAME
hw ChunkToFile – save virtual file to real file (V6.0)

SYNOPSIS
int error = hw_ChunkToFile(STRPTR dest, APTR src, DOSINT64 pos,

DOSINT64 len, ULONG flags, struct hwTagList *tags);

FUNCTION
This function can be used to save a virtual file to a physical file. This is useful in
connection with the hw_TranslateFileName() and hw_TranslateFileNameExt() com-
mands which break down a virtual file specification into their individual constituents.
hw_ChunkToFile() uses these individual constituents to save the virtual file to the new
physical file specified in dest.

If the HWCTFFLAGS_MEMORYSOURCE flag isn’t set, you have to pass a STRPTR to the filename
that contains the virtual file in src. The pos and len parameters must be set to the re-
spective values returned by hw_TranslateFileName() or hw_TranslateFileNameExt().
If HWCTFFLAGS_MEMORYSOURCE is set, you have to pass a pointer to a memory block in src.
The pos argument is ignored in this case but the len argument must contain the virtual
file length in bytes. Once again, this value is returned by hw_TranslateFileName() and

Chapter 25: DOSBase functions 229

hw_TranslateFileNameExt(). See Section 25.33 [hw TranslateFileNameExt], page 250,
for details.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

dest name of physical file to save virtual file to

src pointer to a filename or memory block depending on whether HWCTFFLAGS_
MEMORYSOURCE is set (see above)

pos virtual file offset inside the container file

len virtual file length inside the container file

flags flags for the operation (see above)

tags currently unused, pass NULL

RESULTS

error error code or 0 on success

25.5 hw CreateDir

NAME
hw CreateDir – create a directory (V5.0)

SYNOPSIS
int error = hw_CreateDir(STRPTR name);

FUNCTION
This function creates the specified directory.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

name directory to create

RESULTS

error error code or 0 on success

25.6 hw DeleteFile

NAME
hw DeleteFile – delete a file system object (V5.0)

SYNOPSIS
int ok = hw_DeleteFile(STRPTR name);

230 Hollywood SDK

FUNCTION
This function deletes the specified file system object. It can be either a file or a directory.
If name specifies a directory, then this directory must be empty or hw_DeleteFile() will
fail.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

name file system object to delete

RESULTS

ok True on success, False otherwise

25.7 hw EndDirScan

NAME
hw EndDirScan – stop directory scan (V5.0)

SYNOPSIS
void hw_EndDirScan(APTR dirhandle);

FUNCTION
This function stops a directory scanning operation initiated by a call to hw_

BeginDirScan(). You have to pass the handle that was returned to you by
hw_BeginDirScan() to this function. After you have called hw_EndDirScan() it is no
longer allowed to call hw_NextDirEntry().

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

dirhandle

handle returned by hw_BeginDirScan()

25.8 hw ExLock

NAME
hw ExLock – examine a file system object (V5.0)

SYNOPSIS
int ok = hw_ExLock(APTR handle, struct hwos_ExLockStruct *exlock);

FUNCTION
This function returns information about a file system object that has been locked using
hw_Lock(). The information is written to the struct hwos_ExLockStruct which has to
be passed in parameter 2. struct hwos_ExLockStruct looks like this:

Chapter 25: DOSBase functions 231

struct hwos_ExLockStruct

{

int nStructSize; // [in]

STRPTR Name; // [out]

int Type; // [out]

ULONG Size; // [out]

ULONG Flags; // [out]

};

Here’s a description of the individual structure members:

nStructSize:

This must be set by you to sizeof(struct hwos_ExLockStruct) before
calling hw_ExLock().

Name: This is currently always set to NULL. Use hw_NameFromLock() to get the
fully-qualified path to this file system object.

Type: This will be set to one of the following types:

HWEXLOCKTYPE_FILE:

The file system object is a file.

HWEXLOCKTYPE_DIRECTORY:

The file system object is a directory.

Size: Size of object in bytes if it is a file, otherwise 0.

Flags: Combination of flags describing the file system object attributes. See
Section 2.13 [File attributes], page 14, for a list of supported attributes.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

handle handle returned by hw_Lock()

exlock pointer to a struct hwos_ExLockStruct for storing information about the
file system object

RESULTS

ok True on success, False otherwise

25.9 hw FClose

NAME
hw FClose – close a file handle (V5.0)

SYNOPSIS
int ok = hw_FClose(APTR handle);

232 Hollywood SDK

FUNCTION
This function closes the specified file handle, finishing all pending writes. hw_FClose()
returns True on success, False otherwise.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

handle file handle returned by hw_FOpen()

RESULTS

ok True on success, False on failure

25.10 hw FEof

NAME
hw FEof – check if end-of-file marker has been reached (V5.0)

SYNOPSIS
int ok = hw_FEof(APTR handle);

FUNCTION
This function returns True if the end-of-file marker has been reached for the specified
file handle.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

handle file handle returned by hw_FOpen()

RESULTS

ok True or False

25.11 hw FFlags

NAME
hw FFlags – get flags of an open file (V6.0)

SYNOPSIS
ULONG flags = hw_FFlags(APTR fh);

FUNCTION
This function returns the flags associated with the file handle passed in parameter 1.
The following flags are currently defined:

Chapter 25: DOSBase functions 233

HWFOPENFLAGS_STREAMING:

If this flag is set, the file is being streamed from a network source. This means
that you should try to avoid operations that are inefficient on streaming
sources like excessive seeking operations.

HWFOPENFLAGS_NOSEEK:

If this flag is set, you won’t be able to seek the file. This means that most
calls to hw_FSeek() will fail. The only operations that are still supported
by hw_FSeek() are rewinding (i.e. reverting the read/write cursor to the
beginning of the file) and querying the current file cursor position. If you
want hw_FSeek() to work on files with HWFOPENFLAGS_NOSEEK set too, you
may want to set the HWFOPENMODE_EMULATESEEK flag, although this can be
very inefficient. See Section 25.15 [hw FOpen], page 235, for details.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

handle file handle returned by hw_FOpen()

RESULTS

flags combination of file flags

25.12 hw FFlush

NAME
hw FFlush – flush all pending writes (V6.0)

SYNOPSIS
int ok = hw_FFlush(APTR handle);

FUNCTION
This function will flush any pending buffered write operations to the specified file handle
and return True on success, False otherwise.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

handle file handle returned by hw_FOpen()

RESULTS

ok True on success, False on failure

234 Hollywood SDK

25.13 hw FGetC

NAME
hw FGetC – read a single character from a file (V5.0)

SYNOPSIS
int c = hw_FGetC(APTR handle);

FUNCTION
This function reads a single character from the specified file handle and returns it. In
case the end-of-file marker has been reached or an error has occurred, -1 is returned.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

handle file handle returned by hw_FOpen()

RESULTS

c character read or -1 on error or EOF

25.14 hw FilePart

NAME
hw FilePart – get last component of a path specification (V5.0)

SYNOPSIS
STRPTR f = hw_FilePart(STRPTR name);

FUNCTION
This function returns a pointer to the last component in the specified path. If the
path points to a file, then the last component is always the file name. If there is only
one component in the path specification, hw_FilePart() will return a pointer to the
beginning of the string.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

name path specification

RESULTS

f pointer to the last component in the path

Chapter 25: DOSBase functions 235

25.15 hw FOpen

NAME
hw FOpen – open a file (V5.0)

SYNOPSIS
APTR handle = hw_FOpen(STRPTR name, int mode);

FUNCTION
This function opens the specified file for reading and/or writing. The second parameter
specifies the IO mode to be used on this file. It can be a combination of the following
flags:

HWFOPENMODE_READ_LEGACY:

File should be opened for reading. This is mutually exclusive with
HWFOPENMODE_WRITE and HWFOPENMODE_READWRITE. Please note that this
flag is actually set to 0 for compatibility reasons. This means that hw_

FOpen() cannot use the bitwise AND-operator to check if it is set. Instead,
it will check if either HWFOPENMODE_WRITE or HWFOPENMODE_READWRITE is
set. If both aren’t set, then it will assume that HWFOPENMODE_READ_LEGACY
is set and will open the file for reading. You should only use this flag if
you also need to target Hollywood 5. For Hollywood 6.0 and higher, use
HWFOPENMODE_READ_NEW instead (see below).

HWFOPENMODE_WRITE:

File should be opened for writing. If it doesn’t exist, hw_FOpen() will cre-
ate it first. This is mutually exclusive with HWFOPENMODE_READ_NEW and
HWFOPENMODE_READWRITE.

HWFOPENMODE_READWRITE:

File should be opened for reading and writing. This is mutually exclusive
with HWFOPENMODE_WRITE and HWFOPENMODE_READ_NEW.

HWFOPENMODE_READ_NEW:

File should be opened for reading. This is mutually exclusive with
HWFOPENMODE_WRITE and HWFOPENMODE_READWRITE. Please note that this
flag requires Hollywood 6.0. If you want to open files for reading with
earlier Hollywood versions, use HWFOPENMODE_READ_LEGACY. See above for
details. (V6.0)

HWFOPENMODE_NOFILEADAPTER:

If this flag is set, Hollywood will skip all file adapters that are currently
active and use its inbuilt file handler to open the file. Use this only if you
have a good reason to bypass the file adapters. (V6.0)

HWFOPENMODE_EMULATESEEK:

If this flag is set, Hollywood will emulate seeking for files that have the
HWFOPENFLAGS_NOSEEK flag set. Emulation of the seek functionality is done
by simply reading bytes from the file until the desired seek position has been
reached. This is of course highly inefficient for large seek distances so it
should only be used on small files or to bridge small seek distances. (V6.0)

This function is thread-safe.

236 Hollywood SDK

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

name file to open

mode desired access mode (see above)

RESULTS

handle handle to refer to this file later or NULL on error

25.16 hw FOpenExt

NAME
hw FOpenExt – open a file (V6.0)

SYNOPSIS
APTR handle = hw_FOpenExt(STRPTR name, int mode, struct hwTagList *tags);

FUNCTION
This function does the same as hw_FOpen() but accepts an additional tag list that can
be used to specify additional parameters for the open operation. The following tags are
currently recognized:

HWFOPENTAG_ADAPTER:

This tag allows you to specify one or more file adapters that should be used
to open the file. The pData member of this tag must be set to a string
containing the name of at least one file adapter or a special keyword (see
the Hollywood documentation for more information). Multiple names or
keywords must be separated by the vertical bar character (|). If this tag is
set, hw_FOpenExt() will fail in case the specified file adapter refuses to open
the file.

See Section 25.15 [hw FOpen], page 235, for a detailed description of the other parame-
ters.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

name file to open

mode desired access mode (see above)

tags tag list containing additional options (see above)

RESULTS

handle handle to refer to this file later or NULL on error

Chapter 25: DOSBase functions 237

25.17 hw FPutC

NAME
hw FPutC – write single character to file (V5.0)

SYNOPSIS
int ok = hw_FPutC(APTR handle, int ch);

FUNCTION
This function writes the specified character to the specified file handle. It returns True
on success or False on failure.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

handle file handle returned by hw_FOpen()

ch character to write to file (0-255)

RESULTS

ok True to indicate success, False on failure

25.18 hw FRead

NAME
hw FRead – read file data into memory buffer (V5.0)

SYNOPSIS
int read = hw_FRead(APTR handle, APTR buf, ULONG size);

FUNCTION
This function reads the specified number of bytes into the memory buffer specified in
parameter 2. It returns the number of bytes actually read.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

handle file handle returned by hw_FOpen()

buf pointer to memory buffer to receive the data read

size number of bytes to read from file handle

RESULTS

read number of bytes actually read

238 Hollywood SDK

25.19 hw FSeek

NAME
hw FSeek – seek file to new position (V5.0)

SYNOPSIS
ULONG oldpos = hw_FSeek(APTR handle, ULONG pos, int mode);

FUNCTION
This function seeks the file handle’s read/write cursor to the specified position. Addi-
tionally, it returns the position of the read/write cursor before the seek operation. The
specified position is relative to the seek mode passed in parameter 3. This can be one of
the following modes:

HWFSEEKMODE_CURRENT:

New seek position is relative to the current position.

HWFSEEKMODE_BEGINNING:

New seek position is relative to the beginning of the file.

HWFSEEKMODE_END:

New seek position is relative to the end of the file.

To find out the current position of the read/write cursor, call hw_FSeek() with a 0 zero
position and HWFSEEKMODE_CURRENT.

If there was an error, hw_FSeek() return -1.

Note that hw_FSeek() currently isn’t able to handle negative seek positions. Thus, the
value you pass in parameter 2 must always be positive.

Starting with Hollywood 6.0 there is also a 64-bit version of this command: See
Section 25.20 [hw FSeek64], page 238, for details.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

handle file handle returned by hw_FOpen()

pos destination seek position; this must not be negative!

mode seek mode (see above)

RESULTS

oldpos previous position of file cursor or -1 on error

25.20 hw FSeek64

NAME
hw FSeek64 – seek file to new position (V6.0)

SYNOPSIS
DOSINT64 oldpos = hw_FSeek64(APTR handle, DOSINT64 pos, int mode);

Chapter 25: DOSBase functions 239

FUNCTION
This function does the same as hw_FSeek() but uses 64-bit integers to be able to deal
with large files. See Section 25.19 [hw FSeek], page 238, for details.

Note that hw_FSeek64() currently isn’t able to handle negative seek positions. Thus,
the value you pass in parameter 2 must always be positive.

Please note that the AmigaOS 3 and WarpOS versions of Hollywood don’t support large
file handling. On these systems, the DOSINT64 type will be mapped to a 32-bit integer
automatically.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

handle file handle returned by hw_FOpen()

pos destination seek position; this must not be negative!

mode seek mode (see above)

RESULTS

oldpos previous position of file cursor or -1 on error

25.21 hw FStat

NAME
hw FStat – obtain information about open file (V6.0)

SYNOPSIS
int ok = hw_FStat(APTR fh, ULONG flags, struct hwos_StatStruct *st,

struct hwTagList *tags);

FUNCTION
This function writes information about the file handle passed in parameter 1 to the
structure pointer passed in parameter 3. struct hwos_StatStruct looks like this:

struct hwos_StatStruct

{

int Type; // [out]

DOSINT64 Size; // [out]

ULONG Flags; // [out]

struct hwos_DateStruct Time; // [out]

struct hwos_DateStruct LastAccessTime; // [out]

struct hwos_DateStruct CreationTime; // [out]

STRPTR FullPath; // [out]

STRPTR Comment; // [out]

int LinkMode; // [out]

STRPTR Container; // [out]

};

The following information is written to the individual structure members:

240 Hollywood SDK

Type: This will always be set to HWSTATTYPE_FILE.

Size: This will be set to the size of the file in bytes or -1 if the size is not known,
for example because the file is being streamed from a network source.

Flags: Combination of flags describing the file’s attributes. See Section 2.13 [File
attributes], page 14, for a list of supported attributes.

Time: Time stamp indicating when this file was last modified.

LastAccessTime:

Time stamp indicating when this file was last accessed.

CreationTime:

Time stamp indicating when this file was created.

FullPath:

This will be set to a fully qualified path to the file. The string pointer
used here will stay valid until the next call to hw_FStat(). If you set the
HWSTATFLAGS_ALLOCSTRINGS flag, hw_FStat() will not use a static string
buffer but allocate a new private string pointer for this structure member.
You will have to call hw_TrackedFree() on this string when you’re done
with it in that case. This is useful if you need to use hw_FStat() in a
multithreaded environment.

Comment: Comment stored for this file in the file system. The string pointer returned
here will stay valid until the next call to hw_FStat(). This may be NULL

if the file system does not support comments for its objects. If you set the
HWSTATFLAGS_ALLOCSTRINGS flag, hw_FStat() will not use a static string
buffer but allocate a new private string pointer for this structure member.
You will have to call hw_TrackedFree() on this string when you’re done
with it in that case. This is useful if you need to use hw_FStat() in a
multithreaded environment.

LinkMode:

Currently unused. May contain random data.

Container:

Currently unused. May contain random data.

The following flags are supported by hw_FStat():

HWSTATFLAGS_ALLOCSTRINGS:

If you set this flag, hw_FStat() will not use static string buffers for the
FullPath and Comment structure members but allocate new private string
buffers for them. You will have to call hw_TrackedFree() on these buffers
once you’re done with them in that case. This flag is useful if you need to
use hw_FStat() in a multithreaded environment.

hw_FStat() returns True on success or False on failure.

This function is only thread-safe if you set the HWSTATFLAGS_ALLOCSTRINGS flag.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

Chapter 25: DOSBase functions 241

INPUTS

handle file handle returned by hw_FOpen()

flags combination of flags (see above)

st pointer to a struct hwos_StatStruct for storing information about the file

tags reserved for future use (pass NULL)

RESULTS

ok True on success, False otherwise

25.22 hw FWrite

NAME
hw FWrite – write data to file handle (V5.0)

SYNOPSIS
int written = hw_FWrite(APTR handle, APTR buf, ULONG size);

FUNCTION
This function writes the specified number of bytes from the memory buffer specified in
parameter 2 to the file handle passed in parameter 1. It returns the number of bytes
actually written.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

handle file handle returned by hw_FOpen()

buf source memory buffer

size number of bytes to write to file handle

RESULTS

written number of bytes actually written

25.23 hw GetCurrentDir

NAME
hw GetCurrentDir – get path to current directory (V5.0)

SYNOPSIS
void hw_GetCurrentDir(STRPTR buf, int len);

FUNCTION
This function copies a fully-qualified path specification to the current directory to the
specified memory buffer.

This function is thread-safe.

242 Hollywood SDK

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

buf buffer to receive current directory

len size of that buffer

25.24 hw Lock

NAME
hw Lock – lock a file system object for examination (V5.0)

SYNOPSIS
APTR handle = hw_Lock(STRPTR name, int mode);

FUNCTION
This function can be used to lock a file system object for further examination via the
hw_ExLock() call. If the file system object is a directory, you may also iterate through
its entries using hw_NextDirEntry().

The following bits are currently supported by the mode parameter:

HWLOCKMODE_READ_LEGACY:

Open the file system object for reading. This must be set. Please note that
this flag is actually set to 0 for compatibility reasons. This means that hw_
Lock() cannot use the bitwise AND-operator to check if it is set. Instead,
it will check if the HWLOCKMODE_WRITE flag is set and in case it isn’t set, the
file system object will be opened in read mode. You should only use this
flag if you also need to target Hollywood 5. For Hollywood 6.0 and higher,
use HWLOCKMODE_READ instead (see below).

HWLOCKMODE_WRITE:

Open the file system object for writing. Currently unsupported. Do not use
this.

HWLOCKMODE_READ:

File system object should be opened for reading. Please note that this flag
requires Hollywood 6.0. If you want to open file system objects for reading
with earlier Hollywood versions, use HWLOCKMODE_READ_LEGACY. See above
for details. (V6.0)

HWLOCKMODE_NOADAPTER:

If this flag is set, hw_Lock() will skip all file and directory adapters and use
Hollywood’s inbuilt handlers. Use this only if you have a good reason to skip
the file and directory adapters. (V6.0)

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

Chapter 25: DOSBase functions 243

INPUTS

name file system object to open

mode locking mode (see above)

RESULTS

handle handle to refer to this object later or NULL on error

25.25 hw NameFromLock

NAME
hw NameFromLock – get fully qualified path to file system object (V6.0)

SYNOPSIS
int ok = hw_NameFromLock(APTR handle, STRPTR buf, int size);

FUNCTION
This function copies the fully-qualified path of the specified file system object opened by
hw_Lock() to the memory buffer provided in parameter 2.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

handle object handle returned by hw_Lock()

buf pointer to memory buffer to receive the path specification

size size of the buffer in bytes

RESULTS

ok True on success, False otherwise

25.26 hw NextDirEntry

NAME
hw NextDirEntry – return next directory object (V5.0)

SYNOPSIS
int ok = hw_NextDirEntry(APTR handle, APTR dirhandle, struct

hwos_ExLockStruct *exlock);

FUNCTION
This function reads the next file system object from the specified directory handle. This
handle must have been opened by hw_Lock(). You also have to pass the handle returned
to you by hw_BeginDirScan(). If hw_NextDirEntry() returns False, then all entries
have been read. If it returns True, then you can read information about the file system
object from the struct hwos_ExLockStruct which has to be passed in parameter 2.
struct hwos_ExLockStruct looks like this:

244 Hollywood SDK

struct hwos_ExLockStruct

{

int nStructSize; // [in]

STRPTR Name; // [out]

int Type; // [out]

ULONG Size; // [out]

ULONG Flags; // [out]

};

Here’s a description of the individual structure members:

nStructSize:

This must be set by you to sizeof(struct hwos_ExLockStruct) before
calling hw_NextDirEntry().

Name: This contains the name of the file system object without any path specifica-
tion. This pointer will be valid until the next call to hw_NextDirEntry().

Type: This will be set to one of the following types:

HWEXLOCKTYPE_FILE:

The file system object is a file.

HWEXLOCKTYPE_DIRECTORY:

The file system object is a directory.

Size: Size of object in bytes if it is a file, otherwise 0.

Flags: Combination of flags describing the file system object attributes. See
Section 2.13 [File attributes], page 14, for a list of supported attributes.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

handle handle returned by hw_Lock()

dirhandle

handle returned by hw_BeginDirScan()

exlock pointer to a struct hwos_ExLockStruct for storing information about the
file system object

RESULTS

ok True if an object could be read, False if there are no more objects

25.27 hw PathPart

NAME
hw PathPart – return a pointer to the end of the penultimate path component (V5.0)

SYNOPSIS
STRPTR p = hw_PathPart(STRPTR path);

Chapter 25: DOSBase functions 245

FUNCTION
This function returns a pointer to the end of the penultimate path component. This
is usually a slash or backslash. The idea is that you can write a 0 to the pointer that
is returned by hw_PathPart() in order to separate file and path components in a path
specification. If there is only one component in the path specification, hw_PathPart()
will return a pointer to the beginning of the string.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

path path specification

RESULTS

p pointer to the end of the penultimate path component

25.28 hw Rename

NAME
hw Rename – rename a file system object (V5.0)

SYNOPSIS
int ok = hw_Rename(STRPTR oldname, STRPTR newname);

FUNCTION
This function renames the specified file system object to the new name. It can be used
to rename either a file or a directory.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

oldname file system object to rename

newname new name for file system object

RESULTS

ok True on success, False otherwise

25.29 hw Stat

NAME
hw Stat – examine a file system object (V6.0)

SYNOPSIS
int ok = hw_Stat(STRPTR name, ULONG flags, struct hwos_StatStruct *st,

struct hwTagList *tags);

246 Hollywood SDK

FUNCTION
This function examines the file system object specified in parameter 1 and writes informa-
tion about it to the structure pointer passed in parameter 3. struct hwos_StatStruct

looks like this:

struct hwos_StatStruct

{

int Type; // [out]

DOSINT64 Size; // [out]

ULONG Flags; // [out]

struct hwos_DateStruct Time; // [out]

struct hwos_DateStruct LastAccessTime; // [out]

struct hwos_DateStruct CreationTime; // [out]

STRPTR FullPath; // [out]

STRPTR Comment; // [out]

int LinkMode; // [out]

STRPTR Container; // [out]

};

The following information is written to the individual structure members:

Type: This will be set to one of the following types:

HWSTATTYPE_FILE:

The file system object examined is a file.

HWSTATTYPE_DIRECTORY:

The file system object examined is a directory.

Size: Size of object in bytes if it is a file, 0 for directories. Note that this can also
be set to -1 in case the file size isn’t know, for example because the file is
being streamed from a network source.

Flags: Combination of flags describing the file system object attributes. See
Section 2.13 [File attributes], page 14, for a list of supported attributes.

Time: Time stamp indicating when this file system object was last modified.

LastAccessTime:

Time stamp indicating when this file system object was last accessed.

CreationTime:

Time stamp indicating when this file system object was created.

FullPath:

Fully qualified path to the file system object. The string pointer used here
will stay valid until the next call to hw_Stat(). If you set the HWSTATFLAGS_
ALLOCSTRINGS flag, hw_Stat() will not use a static string buffer but allocate
a new private string pointer for this structure member. You will have to call
hw_TrackedFree() on this string when you’re done with it in that case. This
is useful if you need to use hw_Stat() in a multithreaded environment.

Comment: Comment stored for this object in the file system. The string pointer re-
turned here will stay valid until the next call to hw_Stat(). This may be

Chapter 25: DOSBase functions 247

NULL if the file system does not support comments for its objects. If you set
the HWSTATFLAGS_ALLOCSTRINGS flag, hw_Stat() will not use a static string
buffer but allocate a new private string pointer for this structure member.
You will have to call hw_TrackedFree() on this string when you’re done
with it in that case. This is useful if you need to use hw_Stat() in a multi-
threaded environment.

LinkMode:

Currently unused. May contain random data.

Container:

Currently unused. May contain random data.

The following flags are supported by hw_Stat():

HWSTATFLAGS_NOFILEADAPTER:

If this flag is set, Hollywood will skip all file adapters and use its inbuilt file
handler for examining this file system object. Use only if you have a good
reason for overriding file adapters.

HWSTATFLAGS_ALLOCSTRINGS:

If you set this flag, hw_Stat() will not use static string buffers for the
FullPath and Comment structure members but allocate new private string
buffers for them. You will have to call hw_TrackedFree() on these buffers
once you’re done with them in that case. This flag is useful if you need to
use hw_Stat() in a multithreaded environment.

hw_Stat() returns True on success or False on failure.

hw_Stat() can be used to find out whether a certain file system object is a file or
a directory or to resolve relative file name specifications into absolute, fully-qualified
paths.

This function is only thread-safe if you set the HWSTATFLAGS_ALLOCSTRINGS flag.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

name name of file system object to examine

flags combination of flags (see above)

st pointer to a struct hwos_StatStruct for storing information about the file
system object

tags reserved for future use (pass NULL)

RESULTS

ok True on success, False otherwise

248 Hollywood SDK

25.30 hw TmpNam

NAME
hw TmpNam – generate temporary file (V5.0)

SYNOPSIS
void hw_TmpNam(STRPTR buf);

FUNCTION
This function will create a temporary file for you and copy its path to the specified buffer.
Make sure that this buffer is at least 4096 bytes in size.

Before Hollywood 6.0, hw_TmpNam() only returned a file name and didn’t actually create
it. Since 6.0 the file is created now to prevent other applications from trying to use a
temporary file of the same name.

Note that on AmigaOS and compatibles this function might create a temporary filename
in RAM. If you don’t want this because you need to write large portions of data to
the file, use the new hw_TmpNamExt() function. See Section 25.31 [hw TmpNamExt],
page 248, for details.

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

buf pointer to a buffer receiving the file name; must be at least 4096 bytes

25.31 hw TmpNamExt

NAME
hw TmpNamExt – generate temporary file with options (V6.0)

SYNOPSIS
void hw_TmpNamExt(STRPTR buf, int useram);

FUNCTION
This function will create a temporary file for you and copy its path to the specified buffer.
Make sure that this buffer is at least 4096 bytes in size. If the argument useram is set to
False, hw_TmpNamExt() will never create a file in RAM on AmigaOS and compatibles.
On all other systems there is no difference between hw_TmpNamExt() and hw_TmpNam().

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

buf pointer to a buffer receiving the file name; must be at least 4096 bytes

useram True to allow temporary files in RAM, False to forbid them; this is only
respected on AmigaOS and compatibles

Chapter 25: DOSBase functions 249

25.32 hw TranslateFileName

NAME
hw TranslateFileName – translate a virtual file name (V5.3)

SYNOPSIS
int ok = hw_TranslateFileName(STRPTR name, STRPTR buf, int bufsize,

ULONG *offset, ULONG *size);

FUNCTION
This function can be used to translate a virtual file specification into a physical file
name. Hollywood supports special virtual file specifications in order to be able to load
files that have been linked to other files, for example applets or executables. Only
Hollywood functions like hw_FOpen() will be able to deal with these special virtual file
name specifications transparently. If you pass them to a function like fopen() instead,
it will fail to open the file. That’s why you should always use the functions from DOSBase

when dealing with files. See Section 2.12 [File IO information], page 14, for details.

If you cannot use the functions from DOSBase to do your file IO for some particular
reason, you can use hw_TranslateFileName() to break down a virtual file specification
into a physical one. You’ll then be able to open the virtual file using functions like
fopen() as well. Hollywood’s virtual files are always part of a physical file or memory
block. hw_TranslateFileName() only supports the first type, i.e. virtual files that are
part of a physical file. If you want your plugin to be able to handle memory block-based
virtual files as well, you will have to use the hw_TranslateFileNameExt() function which
has been available since Hollywood 6.0.

hw_TranslateFileName() will return the name of the physical container file as well as
the offset and size of the virtual file within that physical file. For example, there might be
a virtual file named ‘intro.png’ inside the physical file ‘gamedata.bin’ at offset 1048576
from the start of the file taking up 65536 bytes inside ‘gamedata.bin’.

If the specified name does not describe a virtual file, hw_TranslateFileName() will
return 0xFFFFFFFF in both offset and size and simply copy the specified file name to
the buffer specified in parameter 2.

Note that this function does not support all features of Hollywood’s virtual files. If you
need fine-tuned control over virtual file specification analysis, you might want to use
hw_TranslateFileNameExt() instead. See Section 25.33 [hw TranslateFileNameExt],
page 250, for details.

You can use hw_ChunkToFile() to easily save a virtual file to a physical file. See
Section 25.4 [hw ChunkToFile], page 228, for details.

This function is thread-safe.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

name file name specification containing either a virtual or a physical file

buf memory buffer to receive the physical file

bufsize size of the memory buffer

250 Hollywood SDK

offset pointer to a ULONG to receive the offset in bytes where the virtual file starts
within the physical file returned in buf

size pointer to a ULONG to receive the size in bytes of the virtual file

RESULTS

ok True on success, False otherwise

25.33 hw TranslateFileNameExt

NAME
hw TranslateFileNameExt – translate a virtual file name with extended options (V6.0)

SYNOPSIS
int ok = hw_TranslateFileNameExt(STRPTR name, struct hwTranslateFileInfo

*tf, struct hwTagList *tags);

FUNCTION
This function does the same as hw_TranslateFileName() but supports additional op-
tions. Like hw_TranslateFileName(), it can be used to translate a virtual file specifi-
cation into a physical file name. Hollywood supports special virtual file specifications in
order to be able to load files that have been linked to other files, for example applets or
executables. Only Hollywood functions like hw_FOpen() will be able to deal with these
special virtual file name specifications transparently. If you pass them to a function like
fopen() instead, it will fail to open the file. That’s why you should always use the
functions from DOSBase when dealing with files. See Section 2.12 [File IO information],
page 14, for details.

If you cannot use the functions from DOSBase to do your file IO for some particular reason,
you can use hw_TranslateFileNameExt() to break down a virtual file specification into a
physical one. You’ll have to pass a pointer to a struct hwTranslateFileInfo structure
to this function. struct hwTranslateFileInfo looks like this:

struct hwTranslateFileInfo

{

STRPTR File; // [in/out]

int FileLen; // [in]

STRPTR FileExt; // [in/out]

int FileExtLen; // [in]

STRPTR RealFile; // [in/out]

int RealFileLen; // [in]

APTR MemoryBlock; // [out]

DOSINT64 Offset; // [out]

DOSINT64 Length; // [out]

};

Here’s a description of the individual structure members:

File: If this is non-NULL, Hollywood will copy the name of the virtual file to this
string buffer. You will also have to provide the size of this buffer in the
FileLen argument.

Chapter 25: DOSBase functions 251

FileLen: If File is non-NULL, you’ll have to set this member to the size of the buffer
passed in File.

FileExt: If this is non-NULL, Hollywood will copy the extension of the virtual file to
this string buffer. You will also have to provide the size of this buffer in the
FileExtLen argument.

FileExtLen:

If FileExt is non-NULL, you’ll have to set this member to the size of the
buffer passed in FileExt.

RealFile:

If this is non-NULL, Hollywood will copy the name of the file that contains
the virtual file to this string buffer. For example, there might be a virtual file
named ‘intro.png’ inside the physical file ‘gamedata.bin’ at offset 1048576
from the start of the file taking up 65536 bytes inside ‘gamedata.bin’. In case
the virtual file doesn’t have a container file but is stored within a memory
block, Hollywood will set this member to an empty string and will store a
pointer to the memory block that contains the virtual file in MemoryBlock.
Note that if you set RealFile, you will also have to provide the size of the
buffer in the RealFileLen argument.

RealFileLen:

If RealFile is non-NULL, you’ll have to set this member to the size of the
buffer passed in RealFile.

MemoryBlock:

In case the virtual file doesn’t have a container file but is stored within a
memory block, Hollywood will set this structure member to a pointer to the
memory block that contains the virtual file.

Offset: Hollywood will store the offset of the virtual file inside the container file
here. This is always 0 in case the virtual file is memory-based.

Length: Hollywood will store the length of the virtual file here.

You can use hw_ChunkToFile() to easily save a virtual file to a physical file. See
Section 25.4 [hw ChunkToFile], page 228, for details.

This function is thread-safe.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

name file name specification containing a virtual file

tf pointer to a struct hwTranslateFileInfo initialized as described above

tags reserved for future use, pass NULL for now

RESULTS

ok True on success, False otherwise

252 Hollywood SDK

25.34 hw UnLock

NAME
hw UnLock – close a file system object lock (V6.0)

SYNOPSIS
void hw_UnLock(APTR handle);

FUNCTION
This function closes the specified file system object lock allocated by hw_Lock().

This function is thread-safe.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

handle object handle returned by hw_Lock()

Chapter 26: GfxBase functions 253

26 GfxBase functions

26.1 Overview

GfxBase contains a number of functions to deal with the graphics-oriented functionality of
Hollywood.

GfxBase is available since Hollywood 5.0.

26.2 hw AddBrush

NAME
hw AddBrush – create a new brush (V5.3)

SYNOPSIS
int error = hw_AddBrush(lua_State *L, lua_ID *id, int width, int height,

struct hwAddBrush *ctrl);

FUNCTION
This function can be used to create a new brush and make it available to the Hollywood
script. You have to pass the desired object identifier for the brush as a lua_ID. See
Section 2.17 [Object identifiers], page 19, for details. Additionally, you have to specify
the brush’s width and height as well as a pointer to a struct hwAddBrush which contains
further information. struct hwAddBrush looks like this:

struct hwAddBrush

{

ULONG *Data;

int LineWidth;

ULONG Transparency;

ULONG Flags;

APTR Image;

ULONG *(*GetImage)(APTR handle, struct LoadImageCtrl *ctrl);

void (*FreeImage)(APTR handle);

int (*TransformImage)(APTR handle, struct hwMatrix2D *m,

int width, int height);

};

You need to provide the following information in this structure:

Data: This is only used if you want to create a raster brush, i.e. the HWABFLAGS_

VECTORBRUSH flag is not set. In that case, you can set this structure member
to a pointer to an array of 32-bit ARGB pixels that contain the image data for
the new brush. hw_AddBrush() will only take the alpha byte into account
if the HWABFLAGS_USEALPHA flag has been set. Otherwise the alpha byte
is ignored. The pixel array specified here must contain exactly as many
pixels per row as passed in the LineWidth member. If you set Data to
NULL and HWABFLAGS_VECTORBRUSH isn’t set, hw_AddBrush() will create an
uninitialized raster brush for you, i.e. it will be filled with random pixel
data.

254 Hollywood SDK

LineWidth:

This must only be set if you want to create a raster brush and Data is not
NULL. In that case, you have to set this structure member to the number of
pixels per row in the Data pixel array. This can be different from the value
passed in the width parameter of hw_AddBrush() in case the pixel array you
specified in Data contains some padding bytes. Please note that LineWidth
must be specified in pixels, not in bytes.

Transparency:

If the HWABFLAGS_USETRANSPARENCY flag has been set, this member contains
a 24-bit RGB color that should be made transparent. Hollywood will scan
through the pixel array passed in Data and create a monochrome mask for
the new brush in which all pixels which match the RGB color specified here
are transparent. This member is only supported for raster brushes.

Flags: This member controls several attributes for the new brush. It can be set to
a combination of the following flags:

HWABFLAGS_USEALPHA:

The brush uses alpha channel transparency. If this flag is set,
the pixel array specified in Data has to contain transparency
information in the alpha byte. If a vector brush is created,
your GetImage() implementation must return transparency in-
formation in the alpha byte as well. If this flag is not set, hw_
AddBrush() will ignore whatever is in the alpha byte. This flag
and HWABFLAGS_USETRANSPARENCY are mutually exclusive.

HWABFLAGS_USETRANSPARENCY:

This is only supported if you create a raster brush and a pixel
array has been passed in Data. In that case, setting this flag indi-
cates that you want hw_AddBrush() to create a mask in which all
pixels that match the color specified in Transparency are made
transparent. That is why you also need to set the Transparency
member if you set this flag. This flag and HWABFLAGS_USEALPHA

are mutually exclusive.

HWABFLAGS_VECTORBRUSH:

If this flag is set, hw_AddBrush() will create a vector brush for
you. Vector brushes can be transformed without any quality loss
and whenever the script wants to have a vector brush scaled,
rotated, or transformed, Hollywood will call into your plugin to
apply this transformation to your vector brush. That is why you
need to provide several callbacks when creating a vector brush
(see below).

Image: This must only be set if you want to create a vector brush. In that case,
it must be set to a handle that you want Hollywood to pass to your vector
brush callbacks whenever it needs something done.

Chapter 26: GfxBase functions 255

GetImage:

This must only be set if you want to create a vector brush. In that case,
it must be set to a callback function that returns the raw pixel data of the
vector brush. The function that you specify here has to work exactly like the
GetImage() function of image plugins. See Section 7.3 [GetImage], page 43,
for details.

FreeImage:

This must only be set if you want to create a vector brush. In that case, it
must be set to a callback function that frees any data that your plugin has
allocated for your vector brush. The function that you specify here has to
work exactly like the FreeImage() function of image plugins. See Section 7.2
[FreeImage], page 43, for details.

TransformImage:

This must only be set if you want to create a vector brush. In that case,
it must be set to a callback function that applies transformation to a vec-
tor brush. The function that you specify here has to work exactly like the
TransformImage() function of image plugins. See Section 7.6 [TransformIm-
age], page 48, for details.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

L pointer to the lua_State

id object identifier for the new brush

width desired pixel width for the new brush

height desired pixel height for the new brush

ctrl pointer to a struct hwAddBrush containing additional information

RESULTS

error error code or 0 on success

26.3 hw AttachDisplaySatellite

NAME
hw AttachDisplaySatellite – create a new display satellite (V5.2)

SYNOPSIS
APTR handle = hw_AttachDisplaySatellite(lua_ID *id, int (*dispatcher)

(APTR handle, int op, APTR opdata, APTR userdata),

APTR userdata, struct hwTagList *tags);

FUNCTION
This function can be used to attach a new satellite to the specified display. A display
satellite is an object which receives all the graphics output that is being done to its
root display so that the satellite always mirrors the graphics of its root display. The

256 Hollywood SDK

satellite can then choose what to do with these graphics: It could save them to a file,
upload them to the internet or another application, display them using a custom device,
etc. There are many possible use cases for display satellites. A big advantage of display
satellites is that they also work while their root display is hidden. This makes it possible
to create some sort of light display adapter using satellites by hiding the display opened
by Hollywood and using a custom display managed by the satellite instead. In this case,
however, Hollywood will still run its inbuilt event processor so you cannot switch to
entirely different toolkits as you can do with a display adapter. See Section 16.1 [Display
adapter plugins], page 103, for details. Furthermore, the satellite can also post events
to its root display. This is done by calling the hw_PostSatelliteEvent() function. See
Section 24.24 [hw PostSatelliteEvent], page 203, for details.

You have to pass the object identifier of the display the new satellite shall attach to.
The object identifier must be passed as a lua_ID. See Section 2.17 [Object identifiers],
page 19, for details.

You also have to pass a pointer to a dispatcher function which will be called whenever
Hollywood draws something to the satellite’s root display. In that case, Hollywood will
first draw to the root display and then immediately call your satellite’s dispatcher so
that it is informed about the draw operation. The prototype of this dispatcher function
looks like this:

int dispatcher(APTR handle, int op, APTR opdata, APTR userdata);

Hollywood will pass a handle to the display satellite in the first parameter and it will
pass the user data that you specified in your call to hw_AttachDisplaySatellite() in
the fourth parameter. Parameters 2 and 3 contain the information about the operation
that Hollywood wants your satellite to execute. The data passed in opdata depends
on the actual operation passed in parameter 2. The following operations are currently
recognized:

HWSATOP_BLTBITMAP:

Hollywood wants your satellite to blit a bitmap to its graphics buffer. opdata
will get a pointer to a struct hwSatelliteBltBitMap which contains all in-
formation you need to do the blit operation. struct hwSatelliteBltBitMap

looks like this:

struct hwSatelliteBltBitMap

{

APTR BitMap; // [in]

int BitMapType; // [in]

int BitMapWidth; // [in]

int BitMapHeight; // [in]

int BitMapModulo; // [in]

int BitMapPixFmt; // [in]

UBYTE *Mask; // [in]

int MaskModulo; // [in]

int SrcX; // [in]

int SrcY; // [in]

int DstX; // [in]

int DstY; // [in]

Chapter 26: GfxBase functions 257

int Width; // [in]

int Height; // [in]

};

The structure members will be initialized as follows:

BitMap: This will be set to a pointer to the bitmap that shall be blitted.
The actual type of the bitmap specified here is specified in the
BitMapType member (see below).

BitMapType:

This contains the type of the bitmap pointer passed in the
BitMap member. The following types are currently supported:

HWSATBMTYPE_AMIGABITMAP:

HWSATBMTYPE_AMIGABITMAP indicates that the bit-
map is an AmigaOS bitmap, i.e. a struct BitMap

allocated by graphics.library/AllocBitMap().
This can only happen on AmigaOS based systems.

HWSATBMTYPE_PIXELBUFFER:

The bitmap is a raw pixel buffer. The actual format
of the raw pixels is specified in the BitMapPixFmt

structure member.

HWSATBMTYPE_VIDEOBITMAP:

The bitmap is a video bitmap allocated by your plu-
gin’s AllocVideoBitMap() function. (V6.0)

HWSATBMTYPE_BITMAP:

The bitmap is a Hollywood bitmap. Use
hw_LockBitMap() to access its pixels. (V6.0)

BitMapWidth:

Contains the bitmap’s width in pixels.

BitMapHeight:

Contains the bitmap’s height in pixels.

BitMapModulo:

Contains the bitmap’s modulo width in pixels, i.e. the pixel of
one row of image data. This is often more than what is passed
in BitMapWidth because row padding is used. BitMapModulo

only contains a meaningful value if BitMapType has been set to
HWSATBMTYPE_PIXELBUFFER.

BitMapPixFmt:

Contains the pixel format of the raw pixels passed in the BitMap
structure member. This only contains a meaningful value if
BitMapType has been set to HWSATBMTYPE_PIXELBUFFER. See
Section 2.15 [Pixel format information], page 16, for a list of
pixel formats.

258 Hollywood SDK

MaskData:

If this does not equal NULL, Hollywood wants you to take this
mask into account when blitting. MaskData points to an array
of raw mask bits then (1 bit per pixel). This array matches the
size of the bitmap passed in the BitMap member. Hollywood
masks only know two different states: visible (1) and invisible
(0) pixels. The bits are stored from left to right in chunks of one
byte, i.e. the most significant bit of the first byte describes the
transparency setting of the first pixel. The number of bytes per
row is stored in the MaskModulo member (see below).

MaskModulo:

If MaskData contains a mask pointer, this member will be set
to the number of bytes that is used for one row of mask data.
Note that this value is specified in bytes and often contains some
padding.

SrcX: Contains the source x-offset of the blit operation.

SrcY: Contains the source y-offset of the blit operation.

DstX: Contains the destination x-offset of the blit operation.

DstY: Contains the destination y-offset of the blit operation.

Width: Contains the number of columns to blit.

Height: Contains the number of rows to blit.

Please note that you do not have to do any clipping. Hollywood will clip all
coordinates against your satellite root display’s boundaries before invoking
your dispatcher.

HWSATOP_RECTFILL:

Hollywood wants your satellite to draw a rectangle to its graphics
buffer. opdata will get a pointer to a struct hwSatelliteRectFill

which contains all information you need to do this operation. struct

hwSatelliteRectFill looks like this:

struct hwSatelliteRectFill

{

int X;

int Y;

int Width;

int Height;

ULONG Color;

};

The structure members will be initialized as follows:

X: Start x-offset of the rectangle to fill.

Y: Start y-offset of the rectangle to fill.

Width: Width in pixels of the area to fill.

Chapter 26: GfxBase functions 259

Height: Height in pixels of the area to fill.

Color: Filling color specified as a 24-bit RGB value.

Please note that you do not have to do any clipping. Hollywood will clip all
coordinates against your satellite root display’s boundaries before invoking
your dispatcher.

HWSATOP_LINE:

Hollywood wants your satellite to draw a line to its graphics buffer. opdata
will get a pointer to a struct hwSatelliteLine which contains all infor-
mation you need to do this operation. struct hwSatelliteLine looks like
this:

struct hwSatelliteLine

{

int X1;

int Y1;

int X2;

int Y2;

ULONG Color;

};

The structure members will be initialized as follows:

X1: Start x-offset for the line.

Y1: Start y-offset for the line.

X2: End x-offset for the line.

Y2: End y-offset for the line.

Color: Desired line color specified as a 24-bit RGB value.

Please note that you do not have to do any clipping. Hollywood will clip all
coordinates against your satellite root display’s boundaries before invoking
your dispatcher.

HWSATOP_WRITEPIXEL:

Hollywood wants your satellite to draw a single pixel to its graphics
buffer. opdata will get a pointer to a struct hwSatelliteWritePixel

which contains all information you need to do this operation. struct

hwSatelliteWritePixel looks like this:

struct hwSatelliteWritePixel

{

int X;

int Y;

ULONG Color;

};

The structure members will be initialized as follows:

X: Pixel’s x-offset.

Y: Pixel’s y-offset.

260 Hollywood SDK

Color: Pixel color specified as a 24-bit RGB value.

Please note that you do not have to do any clipping. Hollywood will clip all
coordinates against your satellite root display’s boundaries before invoking
your dispatcher.

HWSATOP_RESIZE:

Hollywood wants your display satellite to resize. opdata will get a pointer
to a struct hwSatelliteResize which contains all information you need to
do this operation. struct hwSatelliteResize looks like this:

struct hwSatelliteResize

{

int Width;

int Height;

};

The structure members will be initialized like this:

Width: This member contains the new display satellite width in pixels.

Height: This member contains the new display satellite height in pixels.

HWSATOP_VWAIT:

This opcode is only sent if your display satellite has explicitly requested to
be notified whenever its root display is asked to wait for the vertical blank
interrupt by setting the HWADS_DISPATCHVWAIT tag to True. If that is the
case, you will receive this opcode whenever a vertical blank wait is executed
on the satellite’s root display. This notification can come in handy in case
the root display is hidden and doesn’t execute any vertical blank waits. You
could then do this job in your satellite dispatcher to prevent Hollywood from
running too fast. (V6.0)

Finally, hw_AttachDisplaySatellite() also accepts a tag list which allows you to con-
figure some further options. The following tags are currently recognized:

HWADS_WIDTH:

If you specify this tag, you need to set its pData member to a pointer to
an int. hw_AttachDisplaySatellite() will then write the root display’s
pixel width to this int.

HWADS_HEIGHT:

If you specify this tag, you need to set its pData member to a pointer to
an int. hw_AttachDisplaySatellite() will then write the root display’s
pixel height to this int.

HWADS_DISPATCHVWAIT:

This tag allows you to control whether or not you want to be notified when
the root display waits for the vertical blank. By default, you won’t be
notified about this event but if you set the iData member of this tag to
True, Hollywood will dispatch the HWSATOP_VWAIT operation to your satellite
dispatcher whenever its root display waits for the vertical blank interrupt
(see above). (V6.0)

Chapter 26: GfxBase functions 261

Note that Hollywood versions prior to 6.0 did not check the tag list pointer against NULL
so make sure to pass a tag list even if there are no tags in it.

To detach your satellite from its root display, call the hw_DetachDisplaySatellite()

function. See Section 26.6 [hw DetachDisplaySatellite], page 263, for details. The user
won’t be able to free the root display until all satellites have been detached.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

id object identifier of the display you want to attach to

dispatcher

function to handle satellite actions (see above)

userdata userdata to be passed to the dispatcher function

tags taglist containing additional arguments; should not be NULL (see above)

RESULTS

handle handle to the display satellite or NULL on error

26.4 hw BitMapToARGB

NAME
hw BitMapToARGB – convert Hollywood bitmap to ARGB pixel buffer (V6.0)

SYNOPSIS
ULONG *rgb = hw_BitMapToARGB(APTR bmap, APTR mask, APTR alpha,

struct hwTagList *tags);

FUNCTION
This function can be used to get the pixels of a Hollywood bitmap as a 32-bit ARGB
pixel buffer. Optionally, this function can also take an additional mask or alpha channel
bitmap into account and combine its transparency information into the pixel buffer it
returns. The advantage over functions like hw_LockBitMap() is that hw_BitMapToARGB()
will convert the pixels to the 32-bit ARGB format automatically so you don’t have to
be able to deal with dozens of different pixel formats. This conversion, however, means
overhead which makes hw_BitMapToARGB() slower than hw_LockBitMap().

hw_BitMapToARGB() accepts a tag list that allows you to fine-tune its behaviour. The
following tags are currently recognized:

HWBM2ARGBTAG_X:

If you set the iData member of this tag to an x-offset within your bitmap
boundaries, hw_BitMapToARGB() will start fetching pixels at this offset. This
tag allows you to convert only a part of the bitmap to a pixel buffer. Defaults
to 0.

HWBM2ARGBTAG_Y:

If you set the iData member of this tag to an y-offset within your bitmap
boundaries, hw_BitMapToARGB() will start fetching pixels at this offset. This

262 Hollywood SDK

tag allows you to convert only a part of the bitmap to a pixel buffer. Defaults
to 0.

HWBM2ARGBTAG_WIDTH:

If you only want to convert a part of the bitmap to an ARGB pixel buffer, set
the iData member of this tag to the number of columns to convert. Defaults
to bitmap width.

HWBM2ARGBTAG_HEIGHT:

If you only want to convert a part of the bitmap to an ARGB pixel buffer,
set the iData member of this tag to the number of rows to convert. Defaults
to bitmap height.

Please note that alpha byte will always be set, even if you didn’t pass a mask or alpha
channel bitmap. In that case the alpha byte for every pixel will be set to 255, i.e. fully
opaque.

The memory buffer that is returned by this function must be freed by using the hw_

TrackedFree() function. See Section 24.38 [hw TrackedFree], page 224, for details.

Note that hw_BitMapToARGB() can only be used with software bitmaps. It is not possible
to get the raw pixels of hardware (video) bitmaps.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

bmap source bitmap

mask mask bitmap or NULL

alpha alpha channel bitmap or NULL

tags pointer to a taglist specifying additional options (see above)

RESULTS

rgb raw 32-bit ARGB pixel buffer or NULL on error

26.5 hw ChangeRootDisplaySize

NAME
hw ChangeRootDisplaySize – change size of satellite’s root display (V5.2)

SYNOPSIS
int error = hw_ChangeRootDisplaySize(APTR handle, int width, int height,

struct hwTagList *tags);

FUNCTION
This function can be used to force a size change of the satellite’s root display. Please note
that this will not trigger a HWSATOP_RESIZE operation for your satellite’s dispatcher. It is
assumed that the satellite has already been resized when it calls this function. Calling hw_
ChangeRootDisplaySize(), however, will trigger a satellite refresh so your dispatcher
will get some drawing events like HWSATOP_BLTBITMAP.

See Section 26.3 [hw AttachDisplaySatellite], page 255, for details.

Chapter 26: GfxBase functions 263

DESIGNER COMPATIBILITY
Unsupported

INPUTS

handle satellite handle allocated by hw_AttachDisplaySatellite()

width desired new width for root display in pixels

height desired new height for root display in pixels

tags reserved for future use; pass NULL for the time being

RESULTS

error error code or 0 on success

26.6 hw DetachDisplaySatellite

NAME
hw DetachDisplaySatellite – detach satellite from display (V5.2)

SYNOPSIS
void hw_DetachDisplaySatellite(APTR handle);

FUNCTION
This function can be used to detach the specified satellite handle from its root display.
After that the satellite’s dispatcher function will no longer be called. See Section 26.3
[hw AttachDisplaySatellite], page 255, for details.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

handle satellite handle allocated by hw_AttachDisplaySatellite()

26.7 hw FindDisplay

NAME
hw FindDisplay – find display handle or identifier (V6.0)

SYNOPSIS
APTR rhandle = hw_FindDisplay(lua_ID *id, APTR handle);

FUNCTION
This function can be used to get a display handle from an object identifier or an object
identifier from a display handle. If you pass a display handle in the second parameter,
hw_FindDisplay() will return its object identifier in the lua_ID passed in the first
parameter. If the second parameter is NULL, hw_FindDisplay() will return the display
handle that matches the specified object identifier. See Section 2.17 [Object identifiers],
page 19, for details.

DESIGNER COMPATIBILITY
Unsupported

264 Hollywood SDK

INPUTS

lua_ID pointer to a lua_ID containing or receiving an object identifier

handle handle to a display or NULL

RESULTS

rhandle display handle

26.8 hw FreeARGBBrush

NAME
hw FreeARGBBrush – free raw brush pixels (V5.2)

SYNOPSIS
void hw_FreeARGBBrush(ULONG *buffer);

FUNCTION
This function must be used to free the pixel buffer returned by hw_GetARGBBrush(). See
Section 26.11 [hw GetARGBBrush], page 265, for details.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

buffer pixel buffer allocated by hw_GetARGBBrush()

26.9 hw FreeIcons

NAME
hw FreeIcons – free application icon list (V6.0)

SYNOPSIS
void hw_FreeIcons(struct hwIconList *list);

FUNCTION
This function frees an application icon list allocated by hw_GetIcons(). See
Section 26.14 [hw GetIcons], page 268, for details.

Note that this function must not be used to free individual icons. You must always free
the complete list.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

list icon list allocated by hw_GetIcons()

Chapter 26: GfxBase functions 265

26.10 hw FreeImage

NAME
hw FreeImage – free image handle (V5.0)

SYNOPSIS
void hw_FreeImage(APTR handle);

FUNCTION
This function frees an image handle returned by hw_LoadImage(). See Section 26.18
[hw LoadImage], page 271, for details.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

handle image handle returned by hw_LoadImage()

26.11 hw GetARGBBrush

NAME
hw GetARGBBrush – get raw brush pixels (V5.2)

SYNOPSIS
ULONG *rgb = hw_GetARGBBrush(lua_ID *id, struct hwTagList *tags);

FUNCTION
This function can be used to get a copy of the specified brush’s pixels. In contrast
to hw_LockBrush() hw_GetARGBBrush() will convert the pixels to the 32-bit ARGB
format automatically and it will also mix any potential alpha channel or monochrome
transparency mask into the pixel map. All this is of course overhead which makes hw_
GetARGBBrush() slower than hw_LockBrush(). You have to pass the object identifier of
the brush whose pixels you want to obtain. The object identifier must be passed as a
lua_ID. See Section 2.17 [Object identifiers], page 19, for details.

Additionally, you can specify a taglist in the second parameter. The following tags are
currently recognized:

HWGAB_WIDTH:

If you specify this tag, you must set its pData member to a pointer to an
int. hw_GetARGBBrush() will then write the brush’s width in pixels to this
int.

HWGAB_HEIGHT:

If you specify this tag, you must set its pData member to a pointer to an
int. hw_GetARGBBrush() will then write the brush’s height in pixels to this
int.

HWGAB_OPAQUE:

If you specify this tag, you must set its pData member to a pointer to an
int. hw_GetARGBBrush() will then write True to this int if the brush
doesn’t have a mask or an alpha channel, or False otherwise.

266 Hollywood SDK

Note that currently you always have to pass a taglist to this function as it does not
check against NULL. So just pass an empty taglist if you don’t need to use any of the
tags above.

Please note that alpha byte will always be set, even if the brush doesn’t have any trans-
parency information. In that case the alpha byte for every pixel will be set to 255, i.e.
fully opaque.

The memory buffer that is returned by this function must be freed by using the hw_

FreeARGBBrush() function. See Section 26.8 [hw FreeARGBBrush], page 264, for de-
tails.

Note that hw_GetARGBBrush() can only be used with software brushes. It is not possible
to get the raw pixels of hardware brushes.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

id object identifier of brush whose pixels you want to get

tags pointer to a taglist specifying additional options (see above); this must not
be NULL

RESULTS

rgb raw 32-bit ARGB pixel buffer or NULL on error

26.12 hw GetBitMapAttr

NAME
hw GetBitMapAttr – query bitmap attribute (V6.0)

SYNOPSIS
int v = hw_GetBitMapAttr(APTR handle, int attr, struct hwTagList *tags);

FUNCTION
This function returns the requested information about the specified bitmap. The attr

parameter specifies which information you want to have. The following attributes are
currently recognized:

HWBMATTR_WIDTH:

Return the bitmap’s width in pixels.

HWBMATTR_HEIGHT:

Return the bitmap’s height in pixels.

HWBMATTR_BYTESPERROW:

Return the bitmap’s bytes per row.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

handle handle to a bitmap

Chapter 26: GfxBase functions 267

attr attribute to query (see above)

tags reserved for future use; pass NULL

RESULTS

v value of the attribute

26.13 hw GetDisplayAttr

NAME
hw GetDisplayAttr – query display attribute(s) (V6.0)

SYNOPSIS
int c = hw_GetDisplayAttr(APTR handle, struct hwTagList *tags);

FUNCTION
This function can be used to query the current state of one or more attributes from the
specified display. You have to pass a handle to the display as well as a tag list. The
following tags are currently recognized:

HWDISPATTR_RAWWIDTH:

This tag will return the display’s raw width, i.e. the physical width of the
display on the screen in pixels. The return value will be written to the pData
member of this tag. You must set pData to an int pointer for this purpose.

HWDISPATTR_RAWHEIGHT:

This tag will return the display’s raw height, i.e. the physical height of the
display on the screen in pixels. The return value will be written to the pData
member of this tag. You must set pData to an int pointer for this purpose.

HWDISPATTR_BUFFERWIDTH:

This tag will return the width of the display’s back buffer. This can be dif-
ferent from HWDISPATTR_RAWWIDTH in case autoscaling is active. The return
value will be written to the pData member of this tag. You must set pData
to an int pointer for this purpose.

HWDISPATTR_BUFFERHEIGHT:

This tag will return the height of the display’s back buffer. This can be
different from HWDISPATTR_RAWHEIGHT in case autoscaling is active. The
return value will be written to the pData member of this tag. You must set
pData to an int pointer for this purpose.

HWDISPATTR_FLAGS:

This tag will return all flags that are set for this display. See Section 16.31
[OpenDisplay], page 130, for a list of flags. The return value will be written
to the pData member of this tag. You must set pData to an ULONG pointer
for this purpose.

HWDISPATTR_SCALEWIDTH:

This tag will return the current scale width set for the display. Note that
a value different than 0 here doesn’t automatically mean that auto or layer

268 Hollywood SDK

scaling is active. You still need to check the respective flag to tell that scaling
is active. The return value will be written to the pData member of this tag.
You must set pData to an int pointer for this purpose.

HWDISPATTR_SCALEHEIGHT:

This tag will return the current scale height set for the display. Note that
a value different than 0 here doesn’t automatically mean that auto or layer
scaling is active. You still need to check the respective flag to tell that scaling
is active. The return value will be written to the pData member of this tag.
You must set pData to an int pointer for this purpose.

HWDISPATTR_SCALEMODE:

This tag will return the current scale mode set for the display. Currently
supported are 0 for hard scaling and 1 for interpolated scaling. The return
value will be written to the pData member of this tag. You must set pData
to an int pointer for this purpose.

hw_GetDisplayAttr() returns the number of attributes successfully handled.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

handle handle to a display

tags pointer to a taglist specifying the attributes to query

RESULTS

c number of attributes successfully queried

26.14 hw GetIcons

NAME
hw GetIcons – get application icons (V6.0)

SYNOPSIS
struct hwIconList *list = hw_GetIcons(void);

FUNCTION
This function returns a list of all application icons that are currently available. This list
may contain user-defined icons that have been specified using the @APPICON preprocessor
command, inbuilt default Hollywood icons or icons that have been linked to an applet
or executable.

This function is especially useful for display adapters which redirect Hollywood’s output
to a custom display device and want to register the script’s icons with this custom
display device or toolkit. By calling hw_GetIcons() display adapters can easily obtain
a list with all icons currently defined by the script. hw_GetIcons() will return a pointer
to a struct hwIconList which looks like this:

struct hwIconList

{

Chapter 26: GfxBase functions 269

struct hwIconList *Succ;

ULONG *Data;

int Width;

int Height;

ULONG Flags;

};

For each node in the list, struct hw_IconList will be initialized as follows:

Succ: Contains a pointer to the next list node or NULL if this node is the last one.

Data: This will be set to a 32-bit ARGB pixel buffer containing the icon’s image
data. The alpha byte will always be set for every pixel. The pixel buffer’s
size will be exactly width * height * 4. No row padding will be used. The
pixel buffer pointer will be valid until you call hw_FreeIcons().

Width: Contains the icon’s width.

Height: Contains the icon’s height.

Flags: This contains a combination of flags for this icon. The following flags are
currently supported:

HWICONFLAGS_DEFAULT:

This flag marks the default icon. Hollywood’s @APPICON pre-
processor command allows scripts to designate an icon as the
default one. It’s up to you how you interpret and handle the
default icon. On most systems you can probably ignore this
flag because icons are chosen depending on the current screen
resolution.

HWICONFLAGS_SELECTED:

If this flag is set, the image in this list node describes a selected
icon state. On AmigaOS and compatibles, icons usually have
two states: normal and selected. You can get the image of the
selected icon state by checking if this flag is set.

The list that is returned by this function must be freed using the hw_FreeIcons()

function. See Section 26.9 [hw FreeIcons], page 264, for details.

Do not expect this list to be sorted. The individual icons can be stored in an order that
is completely random inside this list.

DESIGNER COMPATIBILITY
Unsupported

INPUTS
none

RESULTS

list a list containing all available icons

270 Hollywood SDK

26.15 hw GetImageData

NAME
hw GetImageData – get image pixel data (V5.0)

SYNOPSIS
ULONG *rgb = hw_GetImageData(APTR handle);

FUNCTION
This function returns the raw 32-bit ARGB pixel data of the image handle allocated by
hw_LoadImage(). The alpha byte will always be set, even if the image doesn’t contain
an alpha channel. In that case the alpha byte will be set to 255 (i.e. fully opaque) for
every pixel. The pointer returned by this function is valid until you call hw_FreeImage()
on this image.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

handle image handle returned by hw_LoadImage()

RESULTS

rgb pointer to the raw 32-bit ARGB pixel data

26.16 hw GetRGB

NAME
hw GetRGB – convert pixel format to RGB (V6.0)

SYNOPSIS
ULONG rgb = hw_GetRGB(ULONG color, int infmt);

FUNCTION
This function converts the specified color from the specified pixel format to RGB. See
Section 2.15 [Pixel format information], page 16, for details.

To convert a color from RGB to an arbitrary pixel format, use hw_MapRGB(). See
Section 26.21 [hw MapRGB], page 276, for details.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

color color to convert

infmt pixel format of source color

RESULTS

rgb converted color

Chapter 26: GfxBase functions 271

26.17 hw IsImage

NAME
hw IsImage – check if file is in a supported image format (V5.0)

SYNOPSIS
int ok = hw_IsImage(STRPTR file, int *width, int *height, int *alpha);

FUNCTION
This function checks if the specified file is in a supported image format and if it is, hw_
IsImage() will return its dimensions in pixels as well as a boolean value that indicates
whether or not the image uses alpha channel transparency.

hw_IsImage() is the preferred way of checking if a file is in a supported image format
as it just scans the file header and is thus very fast.

Use hw_LoadImage() to load the image. See Section 26.18 [hw LoadImage], page 271,
for details.

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

file file to check

width pointer to an int that receives the image’s width in pixels on success

height pointer to an int that receives the image’s height in pixels on success

alpha pointer to an int that receives the image’s alpha channel setting on success
(either True or False)

RESULTS

ok True if the file was recognized as an image file, False otherwise

26.18 hw LoadImage

NAME
hw LoadImage – load image (V5.0)

SYNOPSIS
APTR handle = hw_LoadImage(STRPTR filename, struct hwTagList *tags,

int *width, int *height, int *alpha);

FUNCTION
This function loads the specified image file and returns a handle to it. If this function
succeeds, you can call hw_GetImageData() to get a pointer to the raw 32-bit ARGB
pixel data of this image. See Section 26.15 [hw GetImageData], page 270, for details.
On success, hw_LoadImage() will also return the image dimensions in pixels as well as a
boolean value that indicates whether or not the image uses alpha channel transparency.

When you’re done with the image, call hw_FreeImage() on it. See Section 26.10
[hw FreeImage], page 265, for details.

272 Hollywood SDK

DESIGNER COMPATIBILITY
Supported since Designer 4.0

INPUTS

file image file to load

tags currently unused (set to NULL)

width pointer to an int that receives the image’s width in pixels on success or NULL
if you don’t want this information

height pointer to an int that receives the image’s height in pixels on success or
NULL if you don’t want this information

alpha pointer to an int that receives the image’s alpha channel setting on success
(either True or False) or NULL if you don’t want this information

RESULTS

handle handle to the image if it was successfully loaded, else NULL

26.19 hw LockBitMap

NAME
hw LockBitMap – gain access to the raw pixels of a bitmap (V6.0)

SYNOPSIS
APTR handle = hw_LockBitMap(APTR bmap, ULONG flags, struct

hwos_LockBitMapStruct *bmlock, struct hwTagList *tags);

FUNCTION
This function locks the specified bitmap and allows you to access its raw pixel data.
The bitmap can be either a color bitmap, a monochrome mask bitmap or an alpha
channel bitmap. You have to pass a pointer to a struct hwos_LockBitMapStruct which
will be filled with all the information you need by hw_LockBitMap(). struct hwos_

LockBitMapStruct looks like this:

struct hwos_LockBitMapStruct

{

APTR Data; // [out]

int Modulo; // [out]

int PixelFormat; // [out]

int BytesPerPixel; // [out]

int Width; // [out]

int Height; // [out]

};

hw_LockBitMap() will write the following values to the structure members:

Data: This member will be set to a pointer to the raw pixel data. The actual for-
mat used by the individual pixels is determined by the PixelFormat mem-
ber. Please note that even if a 32-bit pixel format is used, Data will never
contain any alpha channel information because Hollywood always stores the

Chapter 26: GfxBase functions 273

alpha channel separately in order to be compatible with 15-bit and 16-bit
screenmodes. See Section 2.14 [Bitmap information], page 16, for details.

Modulo: This contains the bitmap’s row modulo, i.e. the number of pixels or bytes
in a single row of image data. This can be more than returned in Width be-
cause Hollywood might choose to allocate some padding bytes for optimized
blitting. Please note that the value in Modulo is returned in pixels for color
bitmaps and in bytes for mask and alpha channel bitmaps.

PixelFormat:

This member is set to the pixel format used by the pixel array written to
the Data member. See Section 2.15 [Pixel format information], page 16, for
details.

BytesPerPixel:

This will be set to the number of bytes that are needed to represent one
pixel in the Data array. If the bitmap is a monochrome mask, this member
will be set to 1 although in reality only 1 bit is needed for a single pixel in
case of a monochrome mask.

Width: This will be set to the bitmap’s actual width, without any row padding.

Height: This will be set to the bitmap’s actual height.

The following tags can be passed in tag list parameter:

HWLBMAPTAG_READONLY:

If you set the iData member of this tag item to True, the bitmap will be
locked for read-only access. This might be faster with some bitmap backends.
By default, the bitmap is locked for read and write access.

Do not hold bitmap locks longer than necessary. In particular, do not return control
to the script while holding a bitmap lock because the script might try to modify the
bitmap then and this will lead to trouble in case the bitmap is still locked. You should
call hw_UnLockBitMap() as soon as possible.

Note that hw_LockBitMap() can only be used with software bitmaps. It is not possible
to access the raw pixels of hardware bitmaps.

If you only need to read a bitmap’s raw pixel data, it might be more convenient to
use the hw_BitMapToARGB() function instead. This will give you the pixels as readily
formatted 32-bit ARGB values as it also takes potential mask and alpha channel bitmaps
into account. The downside is that hw_BitMapToARGB() is slower because it needs to
copy and convert the pixels first. See Section 26.4 [hw BitMapToARGB], page 261, for
details.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

bmap bitmap to lock

flags reserved for future use; pass 0 for now

bmlock pointer to a struct hwos_LockBitMapStruct that is to be filled by this
function

274 Hollywood SDK

tags pointer to a taglist specifying additional options (see above) or NULL

RESULTS

handle handle to the locked bitmap or NULL on error

26.20 hw LockBrush

NAME
hw LockBrush – gain access to the raw pixels of a brush (V5.0)

SYNOPSIS
APTR handle = hw_LockBrush(lua_ID *id, struct hwTagList *tags,

struct hwos_LockBrushStruct *brlock);

FUNCTION
This function locks the specified brush and allows you to access its raw pixel data.
You have to pass the object identifier of the brush you want to lock as a lua_ID. See
Section 2.17 [Object identifiers], page 19, for details.

You also have to pass a pointer to a struct hwos_LockBrushStruct which will be filled
with all the information you need by hw_LockBrush(). struct hwos_LockBrushStruct

looks like this:

struct hwos_LockBrushStruct

{

APTR RGBData; // [out]

int RGBModulo; // [out]

UBYTE *AlphaData; // [out]

int AlphaModulo; // [out]

UBYTE *MaskData; // [out]

int MaskModulo; // [out]

int PixelFormat; // [out]

int BytesPerPixel; // [out]

int Width; // [out]

int Height; // [out]

};

hw_LockBrush() will write to the structure members as follows:

RGBData: This member will be set to a pointer to the raw RGB pixel data. The ac-
tual format used by the individual pixels is determined by the PixelFormat
member. Please note that even if a 32-bit pixel format is used, RGBData
will never contain any alpha channel information because Hollywood always
stores the alpha channel separately in order to be compatible with 15-bit
and 16-bit screenmodes. See Section 2.14 [Bitmap information], page 16, for
details.

RGBModulo:

This contains the number of pixels in a single row. This can be more than
returned in Width because Hollywood might choose to allocate some padding

Chapter 26: GfxBase functions 275

bytes for optimized blitting. Note that the value returned in RGBModulo is
specified in pixels, not in bytes.

AlphaData:

If the brush contains an alpha channel, this member is set to the raw alpha
channel data as an array of unsigned bytes. Otherwise this member will be
set to NULL.

AlphaModulo:

If the brush contains an alpha channel, this member will be set to the number
of pixels stored in one row of the AlphaData array. This can be more than
what has been returned in the Width member because Hollywood might use
padding bytes for optimized blitting.

MaskData:

If the brush contains a mask, this member will be set to the raw mask bits.
Otherwise it is set to NULL. Hollywood masks only know two different states:
visible (1) and invisible (0) pixels. The bits are stored from left to right in
chunks of one byte, i.e. the most significant bit of the first byte describes
the transparency setting for the first pixel.

MaskModulo:

If the brush contains a mask, this member will be set to the number of bytes
that is used for one row of mask data. Note that this value is specified in
bytes and often contains some padding.

PixelFormat:

This member is set to the pixel format used by the pixel array written to
the RGBData member. See Section 2.15 [Pixel format information], page 16,
for details.

BytesPerPixel:

This will be set to the number of bytes that are needed to represent one
pixel in the RGBData array.

Width: This will be set to the brush’s actual width, without any row padding.

Height: This will be set to the brush’s actual height.

The following tags can be passed in tag list parameter:

HWLBRSHTAG_READONLY:

If you set the iDatamember of this tag item to True, the brush will be locked
for read-only access. This might be faster with some bitmap backends. By
default, the brush is locked for read and write access. (V6.0)

Do not hold brush locks longer than necessary. In particular, do not return control to
the script while holding a brush lock because the script might try to modify the brush
then and this will lead to trouble in case the brush is still locked. You should call
hw_UnLockBrush() as soon as possible.

Note that hw_LockBrush() can only be used with software brushes. It is not possible to
access the raw pixels of hardware brushes.

276 Hollywood SDK

If you only need to read a brush’s raw pixel data, it might be more convenient to use the
hw_GetARGBBrush() function instead. This will give you the pixels as readily formatted
32-bit ARGB values. The downside is that hw_GetARGBBrush() is slower because it needs
to copy and convert the pixels first. See Section 26.11 [hw GetARGBBrush], page 265,
for details.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

id object identifier of brush to be locked

tags pointer to a taglist specifying additional options (see above) or NULL

brlock pointer to a struct hwos_LockBrushStruct that is to be filled by this func-
tion

RESULTS

handle handle to the locked brush or NULL on error

26.21 hw MapRGB

NAME
hw MapRGB – convert RGB color to pixel format (V6.0)

SYNOPSIS
ULONG color = hw_MapRGB(ULONG rgb, int outfmt);

FUNCTION
This function converts the specified RGB color to the specified pixel format. See
Section 2.15 [Pixel format information], page 16, for details.

To convert a color from an arbitrary pixel format to RGB, use hw_GetRGB(). See
Section 26.16 [hw GetRGB], page 270, for details.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

rgb RGB color to convert

outfmt output pixel format

RESULTS

color converted color

26.22 hw RawBltBitMap

NAME
hw RawBltBitMap – blit source to destination pixel buffer (V6.0)

Chapter 26: GfxBase functions 277

SYNOPSIS
void hw_RawBltBitMap(APTR src, APTR dst, struct hwRawBltBitMapCtrl *ctrl,

ULONG flags, struct hwTagList *tags);

FUNCTION
This function can be used to blit data from a source to a destination raw pixel buffer.
Note that this function does not accept Hollywood bitmaps, but expects you to pass
raw pixel buffers only. This makes it possible to use hw_RawBltBitMap() in lots of
different contexts. If you want to use hw_RawBltBitMap() on Hollywood bitmaps, you
need to lock those bitmaps first using hw_LockBitMap() and then pass the raw pixel
buffer pointer obtained by hw_LockBitMap() to hw_RawBltBitMap().

Optionally, hw_RawBltBitMap() can take a mask or alpha channel pixel buffer into ac-
count. In case an alpha channel pixel buffer is specified, hw_RawBltBitMap() will also
do the blending for you.

You have to pass source and destination pixel buffer pointers as well as a pointer to a
struct hwRawBltBitMapCtrl to this function. struct hwRawBltBitMapCtrl looks like
this:

struct hwRawBltBitMapCtrl

{

int SrcX; // [in]

int SrcY; // [in]

int DstX; // [in]

int DstY; // [in]

int Width; // [in]

int Height; // [in]

int PixFmt; // [in]

UBYTE *MaskData; // [in]

UBYTE *AlphaData; // [in]

int SrcModulo; // [in]

int DstModulo; // [in]

int MaskModulo; // [in]

int AlphaModulo; // [in]

};

Here’s an explanation of the individual structure members:

SrcX: Contains the x position in the source buffer that marks the start offset for
the copy operation. This is relative to the upper-left corner of the source
buffer.

SrcY: Contains the y position in the source buffer that marks the start offset for
the copy operation. This is relative to the upper-left corner of the source
buffer.

DstX: Contains the destination x position relative to the upper-left corner.

DstY: Contains the destination y position relative to the upper-left corner.

Width: Contains the number of columns to copy.

Height: Contains the number of rows to copy.

278 Hollywood SDK

PixFmt: Contains the pixel format used by the source and destination pixel buffers.
Both buffers must use the same pixel format. See Section 2.15 [Pixel format
information], page 16, for details.

SrcModulo:

This must be set to the number of pixels per row in the source buffer. This
can be more than the actual image width in case there are padding pixels.

DstModulo:

This must be set to the number of pixels per row in the destination buffer.
This can be more than the actual destination image width in case there are
padding pixels.

MaskData:

This can be set to a pointer containing an array of raw mask bits. Hollywood
masks only know two different states: visible (1) and invisible (0) pixels.
The bits are stored from left to right in chunks of one byte, i.e. the most
significant bit of the first byte describes the transparency setting for the first
pixel. The buffer provided here must be exactly MaskModulo bytes wide and
must match the source buffer’s height. If you don’t want to use masked
blitting, set this to NULL.

MaskModulo:

If you specify a mask bitplane in MaskData, you need to set this member
to the number of bytes that is used for one row of mask data. Note that
this value is specified in bytes and often needs to use some padding. For
example, if the source buffer is 123 pixels wide, the MaskModulo value would
usually be set to 16 because 15 bytes are not enough for 123 pixels.

AlphaData:

This member can be set to an array containing alpha channel values for
every pixel. This array must use one byte for every pixel and must match
the source buffer’s height. The width of the alpha channel array can be
specified by setting the AlphaModulo member (see below). If this member
is specified, hw_RawBltBitMap() will do blit the source pixel buffer to the
destination pixel buffer with alpha blending. If you don’t want to use alpha
blending, set this to NULL.

AlphaModulo:

If AlphaData has been provided, this member must be set to the number of
pixels stored in one row of the AlphaData array. This can be more than the
source buffer’s width in case you need padding.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

src pointer to source raw pixel buffer

dst pointer to destination raw pixel buffer

ctrl pointer to a struct hwRawBltBitMapCtrl containing the blit parameters

Chapter 26: GfxBase functions 279

flags reserved for future use; pass 0

tags reserved for future use; pass NULL

26.23 hw RawLine

NAME
hw RawLine – draw line to pixel buffer (V6.0)

SYNOPSIS
void hw_RawLine(APTR dst, int x1, int y1, int x2, int y2, ULONG color,

ULONG flags, struct hwTagList *tags);

FUNCTION
This function can be used to draw a line to a raw pixel buffer. Note that this function does
not draw to a Hollywood bitmap, but to a raw pixel buffer only. This makes it possible
to use hw_RawLine() in lots of different contexts. If you want to use hw_RawLine() on a
Hollywood bitmap, you need to lock the bitmap first using hw_LockBitMap() and then
pass the raw pixel buffer pointer obtained by hw_LockBitMap() to hw_RawLine().

The following tags are recognized by hw_RawLine():

HWRLITAG_PIXFMT:

This tag can be used to set the pixel format hw_RawLine() should use when
drawing into the pixel buffer. You have to pass a pixel format constant in
the iData member of this tag. See Section 2.15 [Pixel format information],
page 16, for details. This tag defaults to HWOS_PIXFMT_ARGB32.

HWRLITAG_DSTWIDTH:

This tag must be specified. You have to pass the number of pixels per row
in the destination buffer in the iData member of this tag. If you don’t pass
this tag, hw_RawLine() won’t work.

Additionally, hw_RawLine() supports the following flags:

HWRLIFLAGS_BLEND:

If this flag is set, then hw_RawLine() will draw a line with alpha-blending
to the destination pixel buffer. The blend intensity is taken from the upper
8 bits in the color parameter that you’ve passed to hw_RawLine(). If this
flag is not set, then hw_RawLine() will just draw with a static color.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

dst pointer to destination raw pixel buffer

x1 start x offset for the line

y1 start y offset for the line

x2 end x offset for the line

y2 end y offset for the line

280 Hollywood SDK

color ARGB color to use; the A component is only used if HWRLIFLAGS_BLEND has
been set

flags additional drawing flags (see above)

tags additional drawing tags (see above)

26.24 hw RawRectFill

NAME
hw RawRectFill – draw filled rectangle to pixel buffer (V6.0)

SYNOPSIS
void hw_RawRectFill(APTR dst, int x, int y, int width, int height,

ULONG color, ULONG flags, struct hwTagList *tags);

FUNCTION
This function can be used to draw a filled rectangle to a raw pixel buffer. Note that
this function does not draw to a Hollywood bitmap, but to a raw pixel buffer only.
This makes it possible to use hw_RawRectFill() in lots of different contexts. If you
want to use hw_RawRectFill() on a Hollywood bitmap, you need to lock the bitmap
first using hw_LockBitMap() and then pass the raw pixel buffer pointer obtained by
hw_LockBitMap() to hw_RawRectFill().

The following tags are recognized by hw_RawRectFill():

HWRRFTAG_PIXFMT:

This tag can be used to set the pixel format hw_RawRectFill() should use
when drawing into the pixel buffer. You have to pass a pixel format constant
in the iDatamember of this tag. See Section 2.15 [Pixel format information],
page 16, for details. This tag defaults to HWOS_PIXFMT_ARGB32.

HWRRFTAG_DSTWIDTH:

This tag must be specified. You have to pass the number of pixels per row
in the destination buffer in the iData member of this tag. If you don’t pass
this tag, hw_RawRectFill() won’t work.

Additionally, hw_RawRectFill() supports the following flags:

HWRRFFLAGS_BLEND:

If this flag is set, then hw_RawRectFill() will draw a rectangle with
alpha-blending to the destination pixel buffer. The blend intensity is
taken from the upper 8 bits in the color parameter that you’ve passed to
hw_RawRectFill(). If this flag is not set, then hw_RawRectFill() will just
draw with a static color.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

dst pointer to destination raw pixel buffer

x start x-offset of rectangle

Chapter 26: GfxBase functions 281

y start y-offset of rectangle

width number of columns to draw

height number of rows to draw

color ARGB color to use; the A component is only used if HWRRFFLAGS_BLEND has
been set

flags additional drawing flags (see above)

tags additional drawing tags (see above)

26.25 hw RawWritePixel

NAME
hw RawWritePixel – draw a single pixel to buffer (V6.0)

SYNOPSIS
void hw_RawWritePixel(APTR dst, int x, int y, ULONG color, ULONG flags,

struct hwTagList *tags);

FUNCTION
This function can be used to draw a single pixel to a raw pixel buffer. Note that this
function does not draw to a Hollywood bitmap, but to a raw pixel buffer only. This
makes it possible to use hw_RawWritePixel() in lots of different contexts. If you want
to use hw_RawWritePixel() on a Hollywood bitmap, you need to lock the bitmap first
using hw_LockBitMap() and then pass the raw pixel buffer pointer obtained by hw_

LockBitMap() to hw_RawWritePixel().

The following tags are recognized by hw_RawWritePixel():

HWRWPTAG_PIXFMT:

This tag can be used to set the pixel format hw_RawWritePixel() should
use when drawing into the pixel buffer. You have to pass a pixel format
constant in the iData member of this tag. See Section 2.15 [Pixel format
information], page 16, for details. This tag defaults to HWOS_PIXFMT_ARGB32.

HWRWPTAG_DSTWIDTH:

This tag must be specified. You have to pass the number of pixels per row
in the destination buffer in the iData member of this tag. If you don’t pass
this tag, hw_RawWritePixel() won’t work.

Additionally, hw_RawWritePixel() supports the following flags:

HWRWPFLAGS_BLEND:

If this flag is set, then hw_RawWritePixel() will plot a pixel with
alpha-blending to the destination pixel buffer. The blend intensity is
taken from the upper 8 bits in the color parameter that you’ve passed to
hw_RawWritePixel(). If this flag is not set, then hw_RawWritePixel()

will just draw with a static color.

DESIGNER COMPATIBILITY
Unsupported

282 Hollywood SDK

INPUTS

dst pointer to destination raw pixel buffer

x pixel’s x-offset

y pixel’s y-offset

color ARGB color to use; the A component is only used if HWRWPFLAGS_BLEND has
been set

flags additional drawing flags (see above)

tags additional drawing tags (see above)

26.26 hw RefreshDisplay

NAME
hw RefreshDisplay – redraw display contents (V6.0)

SYNOPSIS
int error = hw_RefreshDisplay(APTR handle, ULONG flags,

struct hwTagList *tags);

FUNCTION
This function forces a complete refresh on the specified display handle. Useful to call
when the operating system tells you that you have to redraw yourself.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

handle display handle

flags currently unused; set to 0

tags currently unused; set to NULL

RESULTS

error error code or 0 for success

26.27 hw RefreshSatelliteRoot

NAME
hw RefreshSatelliteRoot – force refresh of satellite’s root display (V5.2)

SYNOPSIS
void hw_RefreshSatelliteRoot(APTR handle);

FUNCTION
This function can be used to force a refresh of the specified satellite’s root display. This,
in turn, will lead to Hollywood calling the satellite’s dispatcher to refresh as well. See
Section 26.3 [hw AttachDisplaySatellite], page 255, for details.

Chapter 26: GfxBase functions 283

DESIGNER COMPATIBILITY
Unsupported

INPUTS

handle satellite handle allocated by hw_AttachDisplaySatellite()

26.28 hw SetDisplayAdapter

NAME
hw SetDisplayAdapter – install a display adapter (V6.0)

SYNOPSIS
int error = hw_SetDisplayAdapter(hwPluginBase *self, ULONG flags,

struct hwTagList *tags);

FUNCTION
This function can be used to activate a plugin that has the HWPLUG_CAPS_

DISPLAYADAPTER capability flag set. This function must only be called from inside
your RequirePlugin() implementation. If this function succeeds, Hollywood’s inbuilt
display driver will be completely replaced by the display driver provided by your plugin
and Hollywood will call into your plugin whenever it needs to deal with displays. In the
first parameter, you have to pass a pointer to the hwPluginBase that Hollywood has
passed to your plugin’s InitPlugin() function. The second parameter must be set to a
combination of flags. The following flags are currently defined:

HWSDAFLAGS_PERMANENT:

If this flag is set, the display adapter will be made permanent. This means
that other plugins won’t be able to overwrite this display adapter with
their own one. If HWSDAFLAGS_PERMANENT is set, all subsequent calls to
hw_SetDisplayAdapter() will fail and your display adapter will persist.

HWSDAFLAGS_TIEDVIDEOBITMAP:

Set this flag to indicate that your video bitmaps depend on your display,
i.e. they cannot exist without the display. This is normally true for
all device-dependent bitmaps. If this flag is set and the user closes
the display, Hollywood will call your ReadVideoPixels() function to
convert the device-dependent bitmaps (DDBs) into device-independent
bitmaps (DIBs). Once the user opens the display again, Hollywood
will call your AllocVideoBitMap() function to convert the DIBs back
into DDBs. Obviously, this flag is only meaningful if you also set the
HWSDAFLAGS_VIDEOBITMAPADAPTER flag.

HWSDAFLAGS_SOFTWAREFALLBACK:

Set this flag if you want your display adapter to fall back to software bit-
maps if hardware bitmaps (i.e. video bitmaps) cannot be allocated for some
reason, e.g. out of memory. If this flag is set and Hollywood cannot allo-
cate a hardware bitmap, it will simply allocate a software bitmap instead.
Obviously, this flag is only meaningful if you also set the HWSDAFLAGS_

VIDEOBITMAPADAPTER flag.

284 Hollywood SDK

HWSDAFLAGS_CUSTOMSCALING:

Set this flag to indicate that your display adapter wants to do scaling on its
own in case autoscaling mode is active. If this flag is not set, Hollywood will
do the autoscaling for you but this might be slower then. See Section 16.6
[BltBitMap], page 109, for details.

HWSDAFLAGS_VIDEOBITMAPADAPTER:

Set this flag to indicate that your display adapter supports custom hard-
ware (video) bitmaps. Hollywood will then call your AllocVideoBitMap()
function whenever it needs to allocate a hardware bitmap. See Section 16.4
[AllocVideoBitMap], page 106, for details. If you set this flag, you should
also provide the HWSDATAG_VIDEOBITMAPCAPS tag to fine-tune the capabili-
ties of your video bitmap adapter (see below).

HWSDAFLAGS_BITMAPADAPTER:

Set this flag to indicate that your display adapter wants to allocate all soft-
ware bitmaps on its own. Hollywood will then call your AllocBitMap()

function whenever it needs to allocate a software bitmap. Hollywood’s in-
built software bitmap handler will never be used if this flag is set. See
Section 16.3 [AllocBitMap], page 105, for details.

HWSDAFLAGS_DOUBLEBUFFERADAPTER:

Set this flag if your display adapter wants to offer a custom hardware
double buffering mode. If this flag is set, Hollywood will call your
plugin’s BeginDoubleBuffer() function when the user calls Hollywood’s
BeginDoubleBuffer() function with the optional argument set to True.
See Section 16.5 [BeginDoubleBuffer], page 109, for details.

HWSDAFLAGS_ALPHADRAW:

Set this flag to indicate that your implementations of RectFill(), Line(),
and WritePixel() support alpha-blending. If this flag isn’t set, Hollywood
will do any alpha-blending on its own and your implementations of func-
tions like RectFill() will only have to be able to draw static colors. See
Section 16.33 [RectFill], page 134, for details.

HWSDAFLAGS_SLEEP:

Set this flag to indicate that you want Hollywood to call your plugin’s
Sleep() function whenever it needs to sleep for a certain amount of time.
See Section 16.40 [Sleep], page 139, for details.

HWSDAFLAGS_VWAIT:

Set this flag to indicate that you want Hollywood to call your plugin’s
VWait() function whenever it needs to wait for the vertical blank. See
Section 16.42 [VWait], page 140, for details.

HWSDAFLAGS_MONITORINFO:

Set this flag to indicate that your display adapter provides its own func-
tions to query information about all available monitors. If this flag is set,
Hollywood will call your plugin’s GetMonitorInfo() function to obtain in-
formation about monitors available to the system. See Section 16.23 [Get-
MonitorInfo], page 122, for details.

Chapter 26: GfxBase functions 285

HWSDAFLAGS_GRABSCREEN:

Set this flag to indicate that your plugin provides custom routines for grab-
bing the desktop screen pixels. If this flag is set, Hollywood will call your
plugin’s GrabScreenPixels() function whenever it needs to grab the desk-
top screen’s pixels. If this flag isn’t set, Hollywood will use its inbuilt screen
grabber. See Section 16.26 [GrabScreenPixels], page 125, for details.

Additionally, hw_SetDisplayAdapter() accepts a tag list that allows you to configure
further settings for the new display adapter. The following tags are currently recognized:

HWSDATAG_PIXELFORMAT:

This tag allows you to set the pixel format that should be used when allocat-
ing bitmaps. Hollywood will allocate all of its software bitmaps in the pixel
format specified in the iData member of this tag. See Section 2.15 [Pixel
format information], page 16, for a list of available pixel formats. Please
note that this tag doesn’t have any effect if you provide your own bitmap
adapter by setting the HWSDAFLAGS_BITMAPADAPTER. Obviously, the pixel
format specified here doesn’t have any effect on hardware (video) bitmaps
either.

HWSDATAG_BITMAPHOOK:

This tag can be used to provide custom routines for drawing to software
bitmaps. You have to set the iData member of this tag to a combination of
the following flags:

HWBMAHOOK_BLTBITMAP:

Indicates that your BltBitMap() implementation wants to be
called whenever Hollywood needs to blit a bitmap that doesn’t
have an accompanying mask or alpha channel to a software
bitmap. Your BltBitMap() implementation has to do this
blit operation then instead of Hollywood. See Section 16.6
[BltBitMap], page 109, for details. Hollywood will pass the
HWBBFLAGS_DESTBITMAP flag to BltBitMap() so that it knows
that the specified destination handle is a software bitmap.

HWBMAHOOK_BLTMASKBITMAP:

Indicates that your BltBitMap() implementation wants to be
called whenever Hollywood needs to blit a bitmap that has an
accompanying mask to a software bitmap. Your BltBitMap()

implementation has to do this blit operation then instead of
Hollywood. See Section 16.6 [BltBitMap], page 109, for de-
tails. Hollywood will pass the HWBBFLAGS_DESTBITMAP flag to
BltBitMap() so that it knows that the specified destination han-
dle is a software bitmap.

HWBMAHOOK_BLTALPHABITMAP:

Indicates that your BltBitMap() implementation wants to be
called whenever Hollywood needs to blit a bitmap that has an
an accompanying alpha channel to a software bitmap. Your
BltBitMap() implementation has to do this blit operation then

286 Hollywood SDK

instead of Hollywood. See Section 16.6 [BltBitMap], page 109,
for details. Hollywood will pass the HWBBFLAGS_DESTBITMAP flag
to BltBitMap() so that it knows that the specified destination
handle is a software bitmap.

HWBMAHOOK_RECTFILL:

Indicates that your RectFill() implementation wants to be
called whenever Hollywood needs draw a filled rectangle to a
software bitmap. Your RectFill() implementation has to do
this operation then instead of Hollywood. See Section 16.33
[RectFill], page 134, for details. Hollywood will pass the
HWRFFLAGS_DESTBITMAP flag to RectFill() so that it knows
that the specified destination handle is a software bitmap.

HWBMAHOOK_WRITEPIXEL:

Indicates that your WritePixel() implementation wants to be
called whenever Hollywood needs plot a single pixel to a soft-
ware bitmap. Your WritePixel() implementation has to do
this operation then instead of Hollywood. See Section 16.44
[WritePixel], page 142, for details. Hollywood will pass the
HWWPFLAGS_DESTBITMAP flag to WritePixel() so that it knows
that the specified destination handle is a software bitmap.

HWBMAHOOK_LINE:

Indicates that your Line() implementation wants to be called
whenever Hollywood needs draw a line to a software bitmap.
Your Line() implementation has to do this operation then in-
stead of Hollywood. See Section 16.28 [Line], page 127, for de-
tails. Hollywood will pass the HWLIFLAGS_DESTBITMAP flag to
Line() so that it knows that the specified destination handle is
a software bitmap.

HWSDATAG_VIDEOBITMAPCAPS:

If you’ve enabled video bitmap support for this display adapter by setting
the HWSDAFLAGS_VIDEOBITMAPADAPTER flag, the iData member of this tag
configures the exact capability set of your video bitmap adapter. This must
be set to a combination of the following flags:

HWVBMCAPS_SCALE:

Set this to indicate that your video bitmap adapter supports
bitmap scaling. See Section 16.4 [AllocVideoBitMap], page 106,
for details.

HWVBMCAPS_TRANSFORM:

Set this to indicate that your video bitmap adapter supports
bitmap transformation. See Section 16.4 [AllocVideoBitMap],
page 106, for details.

HWVBMCAPS_OFFSCREENCOLOR:

Set this to indicate that your BltBitMap(), RectFill(),
Line(), and WritePixel() functions can draw to off-screen

Chapter 26: GfxBase functions 287

video bitmaps in color mode. Hollywood will pass one of
the HWxxFLAGS_DESTVIDEOBITMAP flags to these functions to
indicate that the destination is a video bitmap.

HWVBMCAPS_OFFSCREENALPHA:

Set this to indicate that your BltBitMap(), RectFill(),
Line(), and WritePixel() functions can draw to the alpha
channel of off-screen video bitmaps. Hollywood will pass the
HWxxFLAGS_DESTVIDEOBITMAP and the HWxxFLAGS_ALPHAONLY

flags to these functions to indicate that the destination is a
video bitmap and that the function must only draw to the
alpha channel.

See Section 16.1 [Display adapter plugins], page 103, for information on how to write
display adapter plugins.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

self hwPluginBase pointer passed to InitPlugin()

flags combination of flags (see above)

tags tag list specifying further options (see above)

RESULTS

error error code or 0 for success

26.29 hw UnLockBitMap

NAME
hw UnLockBitMap – release bitmap lock (V6.0)

SYNOPSIS
void hw_UnLockBitMap(APTR handle);

FUNCTION
This function releases the specified bitmap lock. You need to call this function as
soon as you’re finished with accessing a bitmap’s raw pixel data. After the call to
hw_UnLockBitMap() you must no longer access the pixel data pointer returned by hw_

LockBitMap(). See Section 26.19 [hw LockBitMap], page 272, for details.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

handle bitmap lock obtained by hw_LockBitMap()

288 Hollywood SDK

26.30 hw UnLockBrush

NAME
hw UnLockBrush – release brush lock (V5.0)

SYNOPSIS
void hw_UnLockBrush(APTR handle);

FUNCTION
This function releases the specified brush lock. You need to call this function as
soon as you’re finished with accessing a brush’s raw pixel data. After the call to
hw_UnLockBrush() you must no longer access any of the pixel data pointers returned
by hw_LockBrush(). See Section 26.20 [hw LockBrush], page 274, for details.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

handle brush lock obtained by hw_LockBrush()

Chapter 27: AudioBase functions 289

27 AudioBase functions

27.1 Overview

AudioBase contains a number of functions to deal with the audio related functionality of
Hollywood.

AudioBase is available since Hollywood 5.0.

27.2 hw LockSample

NAME
hw LockSample – gain access to the raw PCM data of a sample (V5.0)

SYNOPSIS
APTR handle = hw_LockSample(lua_ID *id, int readonly, struct hwTagList *

tags, struct hwos_LockSampleStruct *smplock);

FUNCTION
This function locks the specified sample and allows you to access its raw PCM data.
You have to pass the object identifier of the sample you want to lock as a lua_ID. See
Section 2.17 [Object identifiers], page 19, for details.

You also have to pass a pointer to a struct hwos_LockSampleStruct which
will be filled with all the information you need by hw_LockSample(). struct

hwos_LockSampleStruct looks like this:

struct hwos_LockSampleStruct

{

APTR Buffer; // [out]

int BufferSize; // [out]

int Samples; // [out]

int Channels; // [out]

int Bits; // [out]

int Frequency; // [out]

ULONG Flags; // [out]

};

hw_LockSample() will write to the structure members as follows:

Buffer: This will point to a buffer which contains the raw PCM samples.

BufferSize:

This will be set to the total size of the PCM buffer passed in Buffer in
bytes.

Samples: The total number of PCM frames in the sample. Note that this value is
specified in PCM frames, not in bytes.

Channels:

The number of channels used by the sample. This will be either 1 (mono)
or 2 (stereo).

Bits: The number of bits per PCM sample. This will be either 8 or 16.

290 Hollywood SDK

Frequency:

The number of PCM frames that should be played per second. Usually 44100
or 48000.

Flags: A combination of the following flags describing additional properties of the
sample:

HWSNDFLAGS_BIGENDIAN

The PCM samples are stored in big endian format. This flag is
only meaningful if the bit resolution is 16.

HWSNDFLAGS_SIGNEDINT

The PCM samples are stored as signed integers. This is typically
set.

If you do not want to write to the raw PCM buffer, pass True in the readonly parameter.
hw_LockSample() will be faster than as it does not have to update the sample data in
the sound card memory.

Do not hold sample locks longer than necessary. In particular, do not return control
to the script while holding a sample lock because the script might try to modify the
sample then and this will lead to trouble in case the sample is still locked. You should
call hw_UnLockSample() as soon as possible.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

id object identifier of sample to be locked

readonly True for read-only access, False for read/write access

tags reserved for future use; pass NULL for now

smplock pointer to a struct hwos_LockSampleStruct that is to be filled by this
function

RESULTS

handle handle to the locked sample or NULL on error

27.3 hw SetAudioAdapter

NAME
hw SetAudioAdapter – install an audio adapter (V6.0)

SYNOPSIS
int error = hw_SetAudioAdapter(hwPluginBase *self, ULONG flags,

struct hwTagList *tags);

FUNCTION
This function can be used to activate a plugin that has the HWPLUG_CAPS_AUDIOADAPTER
capability flag set. This function must only be called from inside your RequirePlugin()

Chapter 27: AudioBase functions 291

implementation. If this function succeeds, Hollywood’s inbuilt audio driver will be com-
pletely replaced by the audio driver provided by your plugin and Hollywood will call into
your plugin whenever it needs to output audio. In the first parameter, you have to pass a
pointer to the hwPluginBase that Hollywood has passed to your plugin’s InitPlugin()
function. The second parameter must be set to a combination of flags. The following
flags are currently defined:

HWSAAFLAGS_PERMANENT:

If this flag is set, the audio adapter will be made permanent. This means
that other plugins won’t be able to overwrite this audio adapter with their
own one. If HWSAAFLAGS_PERMANENT is set, all subsequent calls to hw_

SetAudioAdapter() will fail and your audio adapter will persist.

HWSAAFLAGS_UPDATE:

If this flag is set, Hollywood won’t install an audio adapter but update
the parameters of an existing audio adapter. This is only supported if the
hwPluginBase passed to hw_SetAudioAdapter() equals the currently in-
stalled audio adapter. The only parameter that can currently be updated is
the HWSAATAG_BUFFERSIZE attribute. Many audio drivers might not know
the optimal buffer size before actually opening the audio device so they
might need to adjust the audio adapter’s buffer size later. This is what the
HWSAAFLAGS_UPDATE tag is here for.

Additionally, hw_SetAudioAdapter() accepts a tag list which recognizes the following
tags:

HWSAATAG_BUFFERSIZE:

This must be set to size of your audio adapter’s playback buffer in bytes.
This value should be really small for low latency audio. If your buffer size is
too large, it will take a long time until changes in volume or pitch take effect
and pause is not very accurate. If you don’t know about the optimal buffer
size for your audio device at the time you call hw_SetAudioAdapter(), you
may also adjust the buffer size later on by calling hw_SetAudioAdapter()

again, but this time with the HWSAAFLAGS_UPDATE flag set (see above). By
default, Hollywood uses an audio buffer size of 2048 bytes.

HWSAATAG_CHANNELS:

This must be set to the number of channels your audio driver wants to offer.
This defaults to 8.

See Section 21.1 [Audio adapter plugins], page 175, for information on how to write audio
adapter plugins.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

self hwPluginBase pointer passed to InitPlugin()

flags combination of flags (see above)

tags tag list specifying further parameters (see above)

292 Hollywood SDK

RESULTS

error error code or 0 for success

27.4 hw UnLockSample

NAME
hw UnLockSample – release sample lock (V5.0)

SYNOPSIS
void hw_UnLockSample(APTR handle);

FUNCTION
This function releases the specified sample lock. You need to call this function as
soon as you’re finished with accessing a sample’s raw PCM data. After the call to
hw_UnLockSample() you must no longer access the PCM data pointers returned by hw_

LockSample(). See Section 27.2 [hw LockSample], page 289, for details.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

handle sample lock obtained by hw_LockSample()

Chapter 28: RequesterBase functions 293

28 RequesterBase functions

28.1 Overview

RequesterBase contains a number of functions that deal with Hollywood’s support for
several system requesters.

RequesterBase is available since Hollywood 5.0.

28.2 hw EasyRequest

NAME
hw EasyRequest – pop up a system requester (V5.0)

SYNOPSIS
int r = hw_EasyRequest(STRPTR title, STRPTR body, STRPTR gadgets,

struct hwTagList *tags);

FUNCTION
This function will show a system requester, also known as a message box. You have to
pass title and body text for the requester as well as a string containing the name of at
least one button to show in the requester. If you want to have multiple buttons, you
have to separate them by a vertical bar character, e.g. "OK|Cancel".

hw_EasyRequest() will return the id of the button that has been pressed. The right-most
button always has the id 0. If there is only one button, it will also have the id 0. The ids
of the other buttons are counted from left to right starting at 1. This arrangement has
been chosen so that in case there are two buttons like "OK|Cancel" or "Yes|No", the
affirmative button’s id will correspond to True whereas the negative response button’s
id will correspond to False.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

title string to show in the requester’s title

body body text for the requester

gadgets string containing the name of at least one button to show in the requester

tags reserved for future use; pass NULL

RESULTS

r id of the button pressed by the user

28.3 hw FileRequest

NAME
hw FileRequest – pop up a file requester (V5.0)

294 Hollywood SDK

SYNOPSIS
int ok = hw_FileRequest(STRPTR title, STRPTR buf, int len,

struct hwTagList *tags);

FUNCTION
This function will open a file requester (also known as an open dialog box or file chooser
dialog) that prompts the user to select a file for opening. The function will then copy
the path to the string buffer passed in the second parameter. If the user cancels the
requester, hw_FileRequest() will return False and the string buffer won’t be modified.
If the user selects a file and acknowledges the requester, True is returned.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

title string to show in the requester’s title

buf string buffer to receive user’s selection

len size of the string buffer in bytes

tags reserved for future use; pass NULL

RESULTS

ok True or False indicating whether the user selected a file or not

28.4 hw PathRequest

NAME
hw PathRequest – pop up a path requester (V5.0)

SYNOPSIS
int ok = hw_PathRequest(STRPTR title, STRPTR buf, int len,

struct hwTagList *tags);

FUNCTION
This function will open a path requester (also known as a browse for folder dialog) that
prompts the user to select a directory. The function will then copy this directory’s path
to the string buffer passed in the second parameter. If the user cancels the requester,
hw_PathRequest() will return False and the string buffer won’t be modified. If the
user selects a path and acknowledges the requester, True is returned.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

title string to show in the requester’s title

buf string buffer to receive user’s selection

len size of the string buffer in bytes

tags reserved for future use; pass NULL

Chapter 28: RequesterBase functions 295

RESULTS

ok True or False indicating whether the user selected a path or not

28.5 hw SetRequesterAdapter

NAME
hw SetRequesterAdapter – install a requester adapter (V6.0)

SYNOPSIS
int error = hw_SetRequesterAdapter(hwPluginBase *self, ULONG flags,

struct hwTagList *tags);

FUNCTION
This function can be used to activate a plugin that has the HWPLUG_CAPS_

REQUESTERADAPTER capability flag set. This function must only be called from inside
your RequirePlugin() implementation. If this function succeeds, Hollywood’s inbuilt
requester handler will be completely replaced by the requester handler provided by your
plugin. In the first parameter, you have to pass a pointer to the hwPluginBase that
Hollywood has passed to your plugin’s InitPlugin() function. The second parameter
must be set to a combination of flags.

Please note that Hollywood will only call your plugin for the requester types that your
plugin has explicitly declared as supported by setting the respective flag (see below).
This way it is possible that your plugin chooses to replace only a certain set of Holly-
wood’s requesters and not all of them. For example, if your plugin just wants to over-
ride Hollywood’s file and path requesters, then you would have to set the HWSRAFLAGS_

FILEREQUEST and HWSRAFLAGS_PATHREQUEST flags below. In that case, Hollywood would
only call your plugin when it has to show a file or path requester - all other types would
be handled by Hollywood itself.

The following flags are currently recognized:

HWSRAFLAGS_PERMANENT:

If this flag is set, the requester adapter will be made permanent. This
means that other plugins won’t be able to overwrite this requester adapter
with their own one. If HWSRAFLAGS_PERMANENT is set, all subsequent calls to
hw_SetRequesterAdapter() will fail and your requester adapter will persist.

HWSRAFLAGS_SYSTEMREQUEST:

Set this flag if your plugin provides a custom implementation of
SystemRequest(). See Section 18.9 [SystemRequest], page 156, for details.

HWSRAFLAGS_FILEREQUEST:

Set this flag if your plugin provides a custom implementation of
FileRequest(). See Section 18.3 [FileRequest], page 149, for details.

HWSRAFLAGS_PATHREQUEST:

Set this flag if your plugin provides a custom implementation of
PathRequest(). See Section 18.7 [PathRequest], page 153, for details.

296 Hollywood SDK

HWSRAFLAGS_STRINGREQUEST:

Set this flag if your plugin provides a custom implementation of
StringRequest(). See Section 18.8 [StringRequest], page 154, for details.

HWSRAFLAGS_LISTREQUEST:

Set this flag if your plugin provides a custom implementation of
ListRequest(). See Section 18.6 [ListRequest], page 152, for details.

HWSRAFLAGS_FONTREQUEST:

Set this flag if your plugin provides a custom implementation of
FontRequest(). See Section 18.4 [FontRequest], page 150, for details.

HWSRAFLAGS_COLORREQUEST:

Set this flag if your plugin provides a custom implementation of
ColorRequest(). See Section 18.2 [ColorRequest], page 148, for details.

See Section 18.1 [Requester adapter plugins], page 147, for information on how to write
requester adapter plugins.

DESIGNER COMPATIBILITY
Unsupported

INPUTS

self hwPluginBase pointer passed to InitPlugin()

flags combination of flags (see above)

tags reserved for future use; set it to NULL for now

RESULTS

error error code or 0 for success

Chapter 29: FontBase functions 297

29 FontBase functions

29.1 Overview

FontBase contains functions to work with font files.

FontBase is available since Hollywood 5.0.

29.2 hw FindTTFFont

NAME
hw FindTTFFont – find a TrueType font file (V5.0)

SYNOPSIS
STRPTR file = hw_FindTTFFont(STRPTR name, int weight, int slant, int

fileonly, int *offset, int *len, int *tmp);

FUNCTION
This function can be used to find a matching TrueType font file for the specified font
attributes. You have to pass a font family name in parameter 1. Additionally, you have
to pass one of the following font weight constants in parameter 2:

#define HWFONTWEIGHT_THIN 0

#define HWFONTWEIGHT_EXTRALIGHT 40

#define HWFONTWEIGHT_ULTRALIGHT 40

#define HWFONTWEIGHT_LIGHT 50

#define HWFONTWEIGHT_BOOK 75

#define HWFONTWEIGHT_NORMAL 80

#define HWFONTWEIGHT_REGULAR 80

#define HWFONTWEIGHT_MEDIUM 100

#define HWFONTWEIGHT_SEMIBOLD 180

#define HWFONTWEIGHT_DEMIBOLD 180

#define HWFONTWEIGHT_BOLD 200

#define HWFONTWEIGHT_EXTRABOLD 205

#define HWFONTWEIGHT_ULTRABOLD 205

#define HWFONTWEIGHT_HEAVY 210

#define HWFONTWEIGHT_BLACK 210

#define HWFONTWEIGHT_EXTRABLACK 215

#define HWFONTWEIGHT_ULTRABLACK 215

If you pass -1 in the weight argument, hw_FindTTFFont() will ignore both the weight

and the slant parameters. The slant parameter may be set to one of the following
special constants:

#define HWFONTSLANT_ROMAN 0

#define HWFONTSLANT_ITALIC 100

#define HWFONTSLANT_OBLIQUE 110

If the fileonly parameter is set to True, hw_FindTTFFont() will only return stand-alone
TrueType font files. If fileonly is set to False, hw_FindTTFFont() might also return
TrueType fonts that have been linked into other files. In that case, hw_FindTTFFont()

298 Hollywood SDK

will write the TrueType font’s location and its size inside the container file to the offset
and len integer pointers that you have to pass as parameters 5 and 6.

Finally, if fileonly is False, hw_FindTTFFont() might also extract a TrueType font
from a TTC file, write it to a temporary file and return this temporary file to you. If
that is the case, hw_FindTTFFont() will write True to the tmp integer pointer that is the
last parameter of this function. So if you find out that hw_FindTTFFont() has written
True to the integer pointer you’ve passed as the last parameter, you will have to delete
the temporary file when you’re done with it.

INPUTS

name family name of the font file to find

weight desired font weight or -1 (see above)

slant desired font slant (see above)

fileonly set this to True if you only want to have stand-alone files and no files-within-
files or temporary TrueType fonts extracted by Hollywood (see above)

offset must be set to an integer pointer that receives the offset of linked fonts in
bytes

len must be set to an integer pointer that receives the length of linked fonts in
bytes

tmp must be set to an integer pointer that is set to True or False depending on
whether this function has created a temporary file

DESIGNER COMPATIBILITY
Supported since Designer 4.0

RESULTS

file fully-qualified path to a TrueType font file that matches your request or
NULL if no font could be found

Chapter 30: FT2Base functions 299

30 FT2Base functions

30.1 Overview

FT2Base contains most functions from the FreeType2 library. If you want to use any of
these functions, you’ll need the FreeType2 header files. Make sure to use compatible header
files only. Hollywood uses version 2.3.12 of FreeType2 so you need to use the header files
from exactly this version if you plan to use functions from the FT2Base library.

Please consult your FreeType2 documentation for information on the individual functions
supported by FT2Base.

The implementations of FT2Base in Hollywood Designer and Hollywood are identical.

Chapter 31: LuaBase functions 301

31 LuaBase functions

31.1 Overview

LuaBase contains functions to deal with the Lua VM that is at the heart of Hollywood.
You will have to use these functions when writing plugins that add new commands and
constants to Hollywood’s script language. These plugins need to have the HWPLUG_CAPS_

LIBRARY capability flag set. See Section 6.1 [Library plugins], page 37, for details.

Hollywood is based on Lua 5.0.2, although it isn’t compatible with the Lua language. See
Section 2.16 [Differences between Hollywood and Lua], page 18, for details.

Most functions that are offered by LuaBase are identical to their Lua counterparts. These
ones aren’t documented here. Please consult the Lua 5.0.2 manual for information on these
functions. The following documentation only covers the functions that behave differently
than their Lua counterparts or are Hollywood-specific additions.

Please note that many Lua functions jump directly into Hollywood’s error handler in
case something goes wrong. For example, functions like luaL_checklstring(), luaL_

checktable(), or luaL_checknumber() will never return control to you if something goes
wrong. They will always jump into Hollywood’s error handler directly using the longjmp()
API. Thus, you need take some care when it comes to managing resources that have been
allocated by your function because you often do not get the chance to free them if an error
occurs because the Lua functions jump directly into Hollywood’s error handler. You need
to find another way of making sure that resources get freed in case of an error as well so
that you don’t leak any memory.

LuaBase is available since Hollywood 5.0.

Note that LuaBase is not available in Hollywood Designer.

31.2 luaL checkfilename

NAME
luaL checkfilename – get filename from the stack (V5.3)

SYNOPSIS
const char *name = luaL_checkfilename(lua_State *L, int numArg);

FUNCTION
This is not an official Lua API but a Hollywood extension. luaL_checkfilename()

checks if there is a filename at the given stack index. When working with files,
you should always use this function instead of luaL_checklstring() because
luaL_checkfilename() is able to work with linked files as well. For example, if the user
passes the filename ‘menulogo.png’ to your function and this file does not physically
exist, but has been linked to your applet or executable using Hollywood’s ‘-linkfiles’
option, luaL_checkfilename() will automatically set up a special virtual file name
specification that is understood by hw_FOpen() and hw_TranslateFileName() and
return it to you. luaL_checklstring(), however, would just return the string
‘menulogo.png’ to you, leading to a failure as soon as you try to open this non-existent
file.

302 Hollywood SDK

Please note that like all other luaL_checkxxx() functions, this function will immediately
jump into Hollywood’s error handler if an error occurs. It will never return NULL. If
luaL_checkfilename() returns, then it has been successful as well. If there is an error,
luaL_checkfilename() won’t return control to you at all.

INPUTS

L pointer to the lua_State

numArg stack index to examine

RESULTS

name file name specification

31.3 luaL checknewid

NAME
luaL checknewid – get new object identifier from the stack (V5.3)

SYNOPSIS
void luaL_checknewid(lua_State *L, int numArg, lua_ID *id);

FUNCTION
This is not an official Lua API but a Hollywood extension. luaL_checknewid() can
be used from functions that add a new Hollywood object to a user-defined object
list registered using the hw_RegisterUserObject() function. See Section 24.30
[hw RegisterUserObject], page 214, for details.

As you might know, the Hollywood standard for functions that create new Hollywood
objects is that the user can either pass a numerical value that the object should use
or he can pass Nil to make the function choose a vacant identifier for the new object
on its own. See Section 2.17 [Object identifiers], page 19, for details. What luaL_

checknewid() does is simply to see if a numerical value is on the stack or Nil. In case
Nil is at the specified stack index, luaL_checknewid() will set the ptr member of the
lua_ID structure to (void *) 1. This is of course not a valid identifier. It is only a
temporary set up to tell your function that the user has passed Nil. Your function then
has to set the ptr member to the real object identifier and push it into the stack using
lua_pushlightuserdata(). If ptr is NULL, however, your function simply has to use
the identifier passed in the num member of the lua_ID structure and return nothing.

See Section 2.17 [Object identifiers], page 19, for details.

INPUTS

L pointer to the lua_State

numArg stack index to examine

id pointer to a lua_ID to receive the object identifier passed by the user

Chapter 31: LuaBase functions 303

31.4 luaL checkid

NAME
luaL checkid – get object identifier from the stack (V5.0)

SYNOPSIS
void luaL_checkid(lua_State *L, int numArg, lua_ID *id);

FUNCTION
This is not an official Lua API but a Hollywood extension. luaL_checkid() checks
if there is a Hollywood object identifier at the given stack index. If there is, it will be
written to the lua_ID that has been passed to this function. Otherwise, luaL_checkid()
will jump directly into Hollywood’s error handler.

A Hollywood object identifier can either be a numerical value or a value of the LUA_

TLIGHTUSERDATA type. See Section 2.17 [Object identifiers], page 19, for details.

INPUTS

L pointer to the lua_State

numArg stack index to examine

id pointer to a lua_ID to receive the object identifier

31.5 lua pcall

NAME
lua pcall – run a Lua function in protected mode (V5.0)

SYNOPSIS
int error = lua_pcall(lua_State *L, int nargs, int nrvals, int errfunc);

FUNCTION
This function does the same as Lua’s lua_pcall() function except that it returns a
Hollywood error code if something goes wrong. On success, 0 is returned which is the
same behaviour as in Lua’s lua_pcall().

Furthermore, the errfunc parameter is not supported and must be 0. The Hollywood
version of lua_pcall() also won’t push the error message on the stack.

Finally, you should always set HWMCP_SETCALLBACKMODE to True before calling
lua_pcall() and reset it to False when lua_pcall() returns. See Section 24.20
[hw MasterControl], page 193, for details.

INPUTS

L pointer to the lua_State

nargs number of arguments on the stack

nrvals number of return values

errfunc unsupported; must be 0

RESULTS

error Hollywood error code or 0 on success

304 Hollywood SDK

31.6 lua throwerror

NAME
lua throwerror – throw an error (V5.0)

SYNOPSIS
void lua_throwerror(lua_State *L, int error);

FUNCTION
This is not an official Lua API but a Hollywood extension. lua_throwerror() allows
you to jump directly into Hollywood’s error handler, forcing it to show the message
associated with the specified error code. Internally, lua_throwerror() uses longjmp()
to jump directly into the error handler.

Use this function only if you have very good reason to do so. The normal way of
indicating an error is to have your function return its error code back to Hollywood.
If this is not possible, maybe because the error has occurred in a callback that doesn’t
allow you to delegate an error code to the main function in a convenient way, you may
call lua_throwerror() to cause an immediate error exit. Make sure that you free any
resources that your function has allocated before calling lua_throwerror(), though,
since this function never returns.

INPUTS

L pointer to the lua_State

error error code to throw; must not be 0

Chapter 32: MiscBase functions 305

32 MiscBase functions

32.1 Overview

MiscBase contains various functions and data that doesn’t fit anywhere else. It currently
looks like this:

typedef struct _hwMiscBase

{

UBYTE *VeraSans;

UBYTE *VeraMono;

UBYTE *VeraSerif;

int sizeof_VeraSans;

int sizeof_VeraMono;

int sizeof_VeraSerif;

} hwMiscBase;

Here’s a description of the individual structure members:

VeraSans:

Contains a pointer to the raw data of the Bitstream Vera Sans TrueType font.
The size of this buffer is stored in the sizeof_VeraSans member. Bitstream
Vera Sans is a font that is free for commercial use as long as the font license is
included.

VeraMono:

Contains a pointer to the raw data of the Bitstream Vera Sans Mono TrueType
font. The size of this buffer is stored in the sizeof_VeraMono member. Bit-
stream Vera Sans Mono is a font that is free for commercial use as long as the
font license is included.

VeraSerif:

Contains a pointer to the raw data of the Bitstream Vera Serif TrueType font.
The size of this buffer is stored in the sizeof_VeraSerif member. Bitstream
Vera Serif is a font that is free for commercial use as long as the font license is
included.

MiscBase is available since Hollywood 5.0.

The implementations of MiscBase in Hollywood Designer and Hollywood are identical.

Chapter 33: ZBase functions 307

33 ZBase functions

33.1 Overview

ZBase contains most functions from the zlib library. If you want to use any of these func-
tions, you’ll need the correct zlib header files. Make sure to use compatible header files
only. Hollywood uses version 1.2.5 of zlib so you need to use the header files from exactly
this version if you plan to use functions from the ZBase library.

Please consult your zlib documentation for information on the individual functions sup-
ported by ZBase.

Please note that you need to check for Hollywood version 5.3 or later before trying to access
ZBase. It is not supported by earlier Hollywood versions.

The implementations of ZBase in Hollywood Designer and Hollywood are identical.

Chapter 34: JPEGBase functions 309

34 JPEGBase functions

34.1 Overview

JPEGBase contains most functions from the libjpeg library. If you want to use any of these
functions, you’ll need the correct libjpeg header files. Make sure to use compatible header
files only. Hollywood uses version 6b of libjpeg so you need to use the header files from
exactly this version if you plan to use functions from the JPEGBase library.

Please consult your libjpeg documentation for information on the individual functions sup-
ported by JPEGBase.

Please note that you need to check for Hollywood version 5.3 or later before trying to access
JPEGBase. It is not supported by earlier Hollywood versions.

The implementations of JPEGBase in Hollywood Designer and Hollywood are identical.

Chapter 35: PluginBase functions 311

35 PluginBase functions

35.1 Overview

PluginBase contains functions to deal with plugins. For example, it allows plugins to
expose interfaces to other plugins and disable plugins.

Please note that you need to check for Hollywood version 6.0 or later before trying to access
PluginBase. It is not supported by earlier Hollywood versions.

35.2 hw DisablePlugin

NAME
hw DisablePlugin – enable or disable a plugin (V6.0)

SYNOPSIS
void hw_DisablePlugin(hwPluginBase *plugin, int disable);

FUNCTION
This function can be used to enable or disable the specified plugin. Please note that not
all plugins can be disabled. Disabling plugins is only supported for plugins that provide
loaders and savers for additional formats. It is not supported for plugins that replace
complete core components inside Hollywood, e.g. by providing a custom display adapter.
These plugins cannot be disabled.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

plugin plugin to be disabled or enabled

disable True to disable the plugin, False to enable it again

35.3 hw FreePluginList

NAME
hw FreePluginList – free plugin list (V6.0)

SYNOPSIS
void hw_FreePluginList(struct hwPluginList *list);

FUNCTION
This function frees a plugin list allocated by hw_GetPluginList(). See Section 35.4
[hw GetPluginList], page 312, for details.

Note that this function must not be used to free individual plugin nodes. You must
always free the complete list.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

list plugin list allocated by hw_GetPluginList()

312 Hollywood SDK

35.4 hw GetPluginList

NAME
hw GetPluginList – get plugin list (V6.0)

SYNOPSIS
struct hwPluginList *list = hw_GetPluginList(struct hwTagList *tags);

FUNCTION
This function returns a list of all plugins that have been loaded by Hollywood. This is
useful if you want to disable other plugins or get access to their user pointer which can
be used to expose a public interface to other plugins.

hw_GetPluginList() will return a pointer to a struct hwPluginList which looks like
this:

struct hwPluginList

{

struct hwPluginList *Succ;

hwPluginBase *Plugin;

};

For each node in the list, struct hw_PluginList will be initialized as follows:

Succ: Contains a pointer to the next list node or NULL if this node is the last one.

Plugin: Contains a pointer to the plugin’s hwPluginBase. You can get all necessary
information about the plugin by examining the members of this structure.
See Section 4.3 [InitPlugin], page 29, for a description of the individual
structure members.

The list that is returned by this function must be freed using the hw_FreePluginList()
function. See Section 35.3 [hw FreePluginList], page 311, for details.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

tags reserved for future use; pass NULL

RESULTS

list a list containing all loaded plugins

35.5 hw GetPluginUserPointer

NAME
hw GetPluginUserPointer – get custom data from plugin (V6.0)

SYNOPSIS
APTR userdata = hw_GetPluginUserPointer(hwPluginBase *plugin);

FUNCTION
This function allows you to get the value of a plugin’s user pointer. This is the value that
has been set by calling the hw_SetPluginUserPointer() function. The user pointer can

Chapter 35: PluginBase functions 313

be used to expose a public interface or custom data structures to other plugins. See
Section 35.6 [hw SetPluginUserPointer], page 313, for details.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

plugin plugin whose user pointer should be obtained

RESULTS

userdata user pointer of the specified plugin

35.6 hw SetPluginUserPointer

NAME
hw SetPluginUserPointer – associate custom data with plugin (V6.0)

SYNOPSIS
void hw_SetPluginUserPointer(hwPluginBase *plugin, APTR userdata);

FUNCTION
This function can be used to store a custom value in the plugin’s user pointer. This value
can later be obtained by other plugins by calling the hw_GetPluginUserPointer()

function. This enables plugins to expose a public interface or custom data structures
to other plugins. Other plugins can make use of your plugin by first looking
for it using hw_GetPluginList() and, if found, accessing its interface using
hw_GetPluginUserPointer().

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

plugin plugin to use

userdata user data to store in the plugin’s user pointer

Chapter 36: UtilityBase functions 315

36 UtilityBase functions

36.1 Overview

UtilityBase contains some general purpose utility functions that are needed quite often.

Please note that you need to check for Hollywood version 6.0 or later before trying to access
UtilityBase. It is not supported by earlier Hollywood versions.

36.2 hw CRC32

NAME
hw CRC32 – compute CRC32 checksum (V6.0)

SYNOPSIS
ULONG crc = hw_CRC32(UBYTE *data, int len);

FUNCTION
This function computes the CRC32 checksum of the data passed in the first parameter
and returns it.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

data pointer to arbitrary memory data

len number of bytes to read from pointer

RESULTS

crc the data’s CRC32 checksum

36.3 hw DecodeBase64

NAME
hw DecodeBase64 – decode Base64 data (V6.0)

SYNOPSIS
int ok = hw_DecodeBase64(UBYTE *src, int srclen, UBYTE *dst, int *dstlen,

struct hwTagList *tags);

FUNCTION
This function decodes Base64 data stored in the src memory buffer to the memory buffer
passed in the dst parameter. Make sure that the dst buffer is large enough to hold the
decoded data. On success, hw_DecodeBase64() will return True, otherwise False.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

src pointer to Base64 encoded data

316 Hollywood SDK

srclen length of Base64 data

dst buffer to receive the decoded Base64 data

dstlen pointer to an int which will receive the length of the decoded data

tags reserved for future use, pass NULL for now

RESULTS

ok True for success, False if there was a decoding error

36.4 hw EncodeBase64

NAME
hw EncodeBase64 – encode data into the Base64 format (V6.0)

SYNOPSIS
void hw_EncodeBase64(UBYTE *src, int srclen, UBYTE *dst, int *dstlen,

struct hwTagList *tags);

FUNCTION
This function reads arbitrary data from a memory buffer and encodes it into the Base64
format. The data will be read from src up until srclen bytes have been read. The
encoded bytes will be written to the dst buffer. Make sure that this buffer is large
enough to hold the encoded Base64 data. After encoding, hw_EncodeBase64() will also
write the output length to dstlen.

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

src pointer to arbitrary memory data

srclen number of bytes to read from pointer

dst buffer to receive the encoded Base64 data

dstlen pointer to an int which will receive the length of the encoded data

tags reserved for future use, pass NULL for now

36.5 hw MD5

NAME
hw MD5 – compute MD5 checksum (V6.0)

SYNOPSIS
void hw_MD5(UBYTE *data, int len, STRPTR dest);

FUNCTION
This function computes the MD5 checksum of the data passed in the first parameter
and writes the MD5 checksum to the string buffer passed in dest. The MD5 checksum
is written as a 32-byte hexadecimal hash so make sure that the buffer you pass in dest

can store at least 33 bytes.

Chapter 36: UtilityBase functions 317

DESIGNER COMPATIBILITY
Supported since Designer 4.5

INPUTS

data pointer to arbitrary memory data

len number of bytes to read from pointer

dest pointer to memory buffer to receive the MD5 hash

Appendix A: Licenses 319

Appendix A Licenses

A.1 Lua license

Lua 5.0 license

Copyright c© 1994-2004 Tecgraf, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

A.2 OpenCV license

Copyright c© 2000, Intel Corporation, all rights reserved. Third party copyrights are prop-
erty of their respective owners.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

− Redistribution’s of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

− Redistribution’s in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

− The name of Intel Corporation may not be used to endorse or promote products derived
from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express
or implied warranties, including, but not limited to, the implied warranties of merchantabil-
ity and fitness for a particular purpose are disclaimed. In no event shall Intel or contributors
be liable for any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services; loss of use, data,
or profits; or business interruption) however caused and on any theory of liability, whether
in contract, strict liability, or tort (including negligence or otherwise) arising in any way
out of the use of this software, even if advised of the possibility of such damage.

A.3 ImageMagick license

The authoratitive ImageMagick license can be found at http://www.imagemagick.org/

script /license .php and ImageMagick notices at http: / /www .imagemagick .org /

script/notice.php.

Before we get to the text of the license lets just review what the license says in simple terms:

It allows you to:

• freely download and use ImageMagick software, in whole or in part, for personal, com-
pany internal, or commercial purposes;

http://www.imagemagick.org/script/license.php
http://www.imagemagick.org/script/license.php
http://www.imagemagick.org/script/notice.php
http://www.imagemagick.org/script/notice.php

320 Hollywood SDK

• use ImageMagick software in packages or distributions that you create.

It forbids you to:

• redistribute any piece of ImageMagick-originated software without proper attribution;

• use any marks owned by ImageMagick Studio LLC in any way that might state or
imply that ImageMagick Studio LLC endorses your distribution;

• use any marks owned by ImageMagick Studio LLC in any way that might state or
imply that you created the ImageMagick software in question.

It requires you to:

• include a copy of the license in any redistribution you may make that includes Im-
ageMagick software;

• provide clear attribution to ImageMagick Studio LLC for any distributions that include
ImageMagick software.

It does not require you to:

• include the source of the ImageMagick software itself, or of any modifications you may
have made to it, in any redistribution you may assemble that includes it;

• submit changes that you make to the software back to the ImageMagick Studio LLC
(though such feedback is encouraged).

A few other clarifications include:

• ImageMagick is freely available without charge;

• you may include ImageMagick on a CD-ROM as long as you comply with the terms of
the license;

• you can give modified code away for free or sell it under the terms of the ImageMagick
license or distribute the result under a different license, but you need to acknowledge
the use of the ImageMagick software;

• the license is compatible with the GPL.

The legally binding and authoritative terms and conditions for use, reproduction, and dis-
tribution of ImageMagick follow:

Copyright 1999-2009 ImageMagick Studio LLC, a non-profit organization dedicated to mak-
ing software imaging solutions freely available.

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 10 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that
is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control,
are controlled by, or are under common control with that entity. For the purposes of
this definition, "control" means (i) the power, direct or indirect, to cause the direction
or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted
by this License.

Appendix A: Licenses 321

"Source" form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation
of a Source form, including but not limited to compiled object code, generated documenta-
tion, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made avail-
able under the License, as indicated by a copyright notice that is included in or attached
to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based
on (or derived from) the Work and for which the editorial revisions, annotations, elabora-
tions, or other modifications represent, as a whole, an original work of authorship. For the
purposes of this License, Derivative Works shall not include works that remain separable
from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works
thereof.

"Contribution" shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by
an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written
communication intentionally sent to the Licensor by its copyright holder or its representa-
tives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Li-
censor for the purpose of discussing and improving the Work, but excluding communication
that is conspicuously marked or otherwise designated in writing by the copyright owner as
"Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within the
Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non- exclusive, no-charge, royalty-
free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly dis-
play, publicly perform, sublicense, and distribute the Work and such Derivative Works in
Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non- exclusive, no-charge, royalty-
free, irrevocable patent license to make, have made, use, offer to sell, sell, import, and
otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s) was
submitted.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or Object
form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of this
License; and

322 Hollywood SDK

b. You must cause any modified files to carry prominent notices stating that You changed
the files; and

c. You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any Deriva-
tive Works that You distribute must include a readable copy of the attribution notices
contained within such NOTICE file, excluding those notices that do not pertain to any part
of the Derivative Works, in at least one of the following places: within a NOTICE text file
distributed as part of the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated by the Deriva-
tive Works, if and wherever such third-party notices normally appear. You may add Your
own attribution notices within Derivative Works that You distribute, alongside or as an
addendum to the NOTICE text from the Work.

You may add Your own copyright statement to Your modifications and may provide ad-
ditional or different license terms and conditions for use, reproduction, or distribution of
Your modifications, or for any such Derivative Works as a whole, provided Your use, repro-
duction, and distribution of the Work otherwise complies with the conditions stated in this
License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under the
terms and conditions of this License, without any additional terms or conditions. Notwith-
standing the above, nothing herein shall supersede or modify the terms of any separate
license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and
customary use in describing the origin of the Work and reproducing the content of the
NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Li-
censor provides the Work (and each Contributor provides its Contributions) on an "AS IS"
BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PUR-
POSE. You are solely responsible for determining the appropriateness of using or redis-
tributing the Work and assume any risks associated with Your exercise of permissions under
this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or consequential damages
of any character arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such
Contributor has been advised of the possibility of such damages.

Appendix A: Licenses 323

9. Accepting Warranty or Additional Liability. While redistributing the Work or Deriva-
tive Works thereof, You may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights consistent with this License.

A.4 GD Graphics Library license

Portions copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 by Cold Spring
Harbor Laboratory. Funded under Grant P41-RR02188 by the National Institutes of Health.

Portions copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 by Boutell.Com, Inc.

Portions relating to GD2 format copyright 1999, 2000, 2001, 2002 Philip Warner.

Portions relating to PNG copyright 1999, 2000, 2001, 2002 Greg Roelofs.

Portions relating to gdttf.c copyright 1999, 2000, 2001, 2002 John Ellson (ellson@lucent.
com).

Portions relating to gdft.c copyright 2001, 2002 John Ellson (ellson@lucent.com).

Portions copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Pierre-Alain Joye
(pierre@libgd.org).

Portions relating to JPEG and to color quantization copyright 2000, 2001, 2002, Doug
Becker and copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, Thomas G.
Lane. This software is based in part on the work of the Independent JPEG Group. See the
file README-JPEG.TXT for more information.

Portions relating to WBMP copyright 2000, 2001, 2002 Maurice Szmurlo and Johan Van
den Brande.

Permission has been granted to copy, distribute and modify gd in any context without fee,
including a commercial application, provided that this notice is present in user-accessible
supporting documentation.

This does not affect your ownership of the derived work itself, and the intent is to assure
proper credit for the authors of gd, not to interfere with your productive use of gd. If you
have questions, ask. "Derived works" includes all programs that utilize the library. Credit
must be given in user-accessible documentation.

This software is provided "AS IS." The copyright holders disclaim all warranties, either
express or implied, including but not limited to implied warranties of merchantability and
fitness for a particular purpose, with respect to this code and accompanying documentation.

Although their code does not appear in gd, the authors wish to thank David Koblas, David
Rowley, and Hutchison Avenue Software Corporation for their prior contributions.

A.5 Bitstream Vera fonts license

The fonts have a generous copyright, allowing derivative works (as long as "Bitstream" or
"Vera" are not in the names), and full redistribution (so long as they are not *sold* by
themselves). They can be be bundled, redistributed and sold with any software.

The fonts are distributed under the following copyright:

Copyright c© 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark
of Bitstream, Inc.

ellson@lucent.com
ellson@lucent.com
ellson@lucent.com
pierre@libgd.org

324 Hollywood SDK

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts
accompanying this license ("Fonts") and associated documentation files (the "Font Soft-
ware"), to reproduce and distribute the Font Software, including without limitation the
rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and
to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in
all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of
glyphs or characters in the Fonts may be modified and additional glyphs or characters may
be added to the Fonts, only if the fonts are renamed to names not containing either the
words "Bitstream" or the word "Vera".

This License becomes NULL and void to the extent applicable to Fonts or Font Software that
has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or
more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER
RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR
FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and
Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Font Software without prior written authorization from the Gnome
Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome
dot org.

A.6 Pixman license

The following is the MIT license, agreed upon by most contributors. Copyright holders of
new code should use this license statement where possible. They may also add themselves
to the list below.

Copyright 1987, 1988, 1989, 1998 The Open Group
Copyright 1987, 1988, 1989 Digital Equipment Corporation
Copyright 1999, 2004, 2008 Keith Packard
Copyright 2000 SuSE, Inc.
Copyright 2000 Keith Packard, member of The XFree86 Project, Inc.
Copyright 2004, 2005, 2007, 2008, 2009, 2010 Red Hat, Inc.
Copyright 2004 Nicholas Miell
Copyright 2005 Lars Knoll & Zack Rusin, Trolltech
Copyright 2005 Trolltech AS

Appendix A: Licenses 325

Copyright 2007 Luca Barbato
Copyright 2008 Aaron Plattner, NVIDIA Corporation
Copyright 2008 Rodrigo Kumpera
Copyright 2008 Andrea Tupinambai
Copyright 2008 Mozilla Corporation
Copyright 2008 Frederic Plourde
Copyright 2009, Oracle and/or its affiliates. All rights reserved.
Copyright 2009, 2010 Nokia Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice (including the next paragraph) shall
be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

A.7 LGPL license

GNU LESSER GENERAL PUBLIC LICENSE Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is
permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and con-
ditions of version 3 of the GNU General Public License, supplemented by the additional
permissions listed below.

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser General Public License,
and the "GNU GPL" refers to version 3 of the GNU General Public License.

"The Library" refers to a covered work governed by this License, other than an Application
or a Combined Work as defined below.

An "Application" is any work that makes use of an interface provided by the Library, but
which is not otherwise based on the Library. Defining a subclass of a class defined by the
Library is deemed a mode of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an Application with the
Library. The particular version of the Library with which the Combined Work was made
is also called the "Linked Version".

http://fsf.org/

326 Hollywood SDK

The "Minimal Corresponding Source" for a Combined Work means the Corresponding
Source for the Combined Work, excluding any source code for portions of the Combined
Work that, considered in isolation, are based on the Application, and not on the Linked
Version.

The "Corresponding Application Code" for a Combined Work means the object code and/or
source code for the Application, including any data and utility programs needed for repro-
ducing the Combined Work from the Application, but excluding the System Libraries of
the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound
by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function
or data to be supplied by an Application that uses the facility (other than as an argument
passed when the facility is invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the
event an Application does not supply the function or data, the facility still operates, and
performs whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable
to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is
part of the Library. You may convey such object code under terms of your choice, provided
that, if the incorporated material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in
length), you do both of the following:

a) Give prominent notice with each copy of the object code that the Library is used in it
and that the Library and its use are covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effec-
tively do not restrict modification of the portions of the Library contained in the Combined
Work and reverse engineering for debugging such modifications, if you also do each of the
following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in
it and that the Library and its use are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the
copyright notice for the Library among these notices, as well as a reference directing the
user to the copies of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the
Corresponding Application Code in a form suitable for, and under terms that permit, the

Appendix A: Licenses 327

user to recombine or relink the Application with a modified version of the Linked Version
to produce a modified Combined Work, in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable mech-
anism is one that (a) uses at run time a copy of the Library already present on the user’s
computer system, and (b) will operate properly with a modified version of the Library that
is interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to pro-
vide such information under section 6 of the GNU GPL, and only to the extent that such
information is necessary to install and execute a modified version of the Combined Work
produced by recombining or relinking the Application with a modified version of the Linked
Version. (If you use option 4d0, the Installation Information must accompany the Minimal
Corresponding Source and Corresponding Application Code. If you use option 4d1, you
must provide the Installation Information in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single
library together with other library facilities that are not Applications and are not covered
by this License, and convey such a combined library under terms of your choice, if you do
both of the following:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities, conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it
specifies that a certain numbered version of the GNU Lesser General Public License "or
any later version" applies to it, you have the option of following the terms and conditions
either of that published version or of any later version published by the Free Software
Foundation. If the Library as you received it does not specify a version number of the GNU
Lesser General Public License, you may choose any version of the GNU Lesser General
Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions
of the GNU Lesser General Public License shall apply, that proxy’s public statement of
acceptance of any version is permanent authorization for you to choose that version for the
Library.

Index 329

Index

A
ActivateDisplay . 104
AllocAudioChannel . 175
AllocBitMap . 105
AllocVideoBitMap . 106

B
BeginAnimStream . 91
BeginDoubleBuffer . 109
BltBitMap . 109

C
ChangeBufferSize . 113
CloseAnim . 51
CloseAudio . 177
CloseDir . 171
CloseDisplay . 114
CloseFont . 63
ClosePlugin . 29
CloseStream . 57
CloseVideo . 75
Cls . 114
ColorRequest . 147
CreatePointer . 115
CreateVectorFont . 63

D
DecodeAudioFrame . 75
DecodeVideoFrame . 76
DetermineBorderSizes . 115
DoVideoBitMapMethod . 116
DrawPath . 64

E
EndDoubleBuffer . 117

F
FClose . 159
FEof . 159
FFlush . 160
FGetC . 160
FileRequest . 148
FinishAnimStream . 92
Flip . 117
FlushAudio . 78
FlushVideo . 79
FontRequest . 150
FOpen . 161
ForceEventLoopIteration 118

FPutC . 163
FRead . 163
FreeAudioChannel . 177
FreeBitMap . 118
FreeFrame . 51
FreeGrabScreenPixels . 119
FreeImage . 43
FreeLibrary . 37
FreeMonitorInfo . 119
FreePacket . 79
FreePointer . 120
FreeRequest . 152
FreeScript . 35
FreeTimer . 145
FreeVectorFont . 70
FreeVideoBitMap . 120
FreeVideoPixels . 120
FSeek . 164
FStat . 164
FWrite . 167

G
GetBaseTable . 38
GetBitMapAttr . 121
GetCommands . 38
GetConstants . 39
GetCurrentPoint . 70
GetExtensions . 179
GetFormatName . 57
GetFrameDelay . 51
GetImage . 43
GetLibraryCount . 40
GetMonitorInfo . 121
GetMousePos . 123
GetPathExtents . 71
GetQualifiers . 124
GetScript . 35
GetVideoFormat . 79
GetVideoFrames . 80
GrabScreenPixels . 125

H
HandleEvents . 125
hw_AddBrush . 253
hw_AddLoaderAdapter . 183
hw_AddPart . 227
hw_AddTime . 184
hw_AllocSemaphore . 185
hw_AttachDisplaySatellite 255
hw_BeginDirScan . 227
hw_BitMapToARGB . 261
hw_ChangeRootDisplaySize 262
hw_ChunkToFile . 228

330 Hollywood SDK

hw_CmpTime . 185
hw_ConfigureLoaderAdapter 186
hw_ConvertString . 187
hw_CRC32 . 315
hw_CreateDir . 229
hw_DecodeBase64 . 315
hw_Delay . 187
hw_DeleteFile . 229
hw_DetachDisplaySatellite 263
hw_DisableCallback . 188
hw_DisablePlugin . 311
hw_EasyRequest . 293
hw_EncodeBase64 . 316
hw_EndDirScan . 230
hw_ExLock . 230
hw_FClose . 231
hw_FEof . 232
hw_FFlags . 232
hw_FFlush . 233
hw_FGetC . 233
hw_FilePart . 234
hw_FileRequest . 293
hw_FindDisplay . 263
hw_FindTTFFont . 297
hw_FOpen . 234
hw_FOpenExt . 236
hw_FPutC . 236
hw_FRead . 237
hw_FreeARGBBrush . 264
hw_FreeIcons . 264
hw_FreeImage . 264
hw_FreeObjectData . 188
hw_FreePluginList . 311
hw_FreeSemaphore . 188
hw_FreeString . 189
hw_FSeek . 237
hw_FSeek64 . 238
hw_FStat . 239
hw_FWrite . 241
hw_GetARGBBrush . 265
hw_GetBitMapAttr . 266
hw_GetCurrentDir . 241
hw_GetDate . 189
hw_GetDateStamp . 190
hw_GetDisplayAttr . 267
hw_GetErrorName . 190
hw_GetIcons . 268
hw_GetImageData . 269
hw_GetPluginList . 311
hw_GetPluginUserPointer 312
hw_GetRGB . 270
hw_GetSysTime . 191
hw_HandleEvents . 191
hw_IsImage . 270
hw_LoadImage . 271
hw_Lock . 242
hw_LockBitMap . 272
hw_LockBrush . 274

hw_LockSample . 289
hw_LockSemaphore . 192
hw_LogPrintF . 193
hw_MapRGB . 276
hw_MasterControl . 193
hw_MasterServer . 195
hw_MD5 . 316
hw_NameFromLock . 243
hw_NextDirEntry . 243
hw_PathPart . 244
hw_PathRequest . 294
hw_PostEvent . 196
hw_PostEventEx . 202
hw_PostSatelliteEvent . 203
hw_RawBltBitMap . 276
hw_RawLine . 279
hw_RawRectFill . 280
hw_RawWritePixel . 281
hw_RefreshDisplay . 282
hw_RefreshSatelliteRoot 282
hw_RegisterCallback . 207
hw_RegisterError . 208
hw_RegisterEventHandler 208
hw_RegisterEventHandlerEx 209
hw_RegisterFileType . 212
hw_RegisterUserObject . 214
hw_RemoveLoaderAdapter . 220
hw_Rename . 245
hw_RunTimerCallback . 220
hw_SetAudioAdapter . 290
hw_SetDisplayAdapter . 283
hw_SetErrorCode . 221
hw_SetErrorString . 221
hw_SetPluginUserPointer 313
hw_SetRequesterAdapter . 295
hw_SetTimerAdapter . 222
hw_Stat . 245
hw_SubTime . 223
hw_TmpNam . 247
hw_TmpNamExt . 248
hw_TrackedAlloc . 223
hw_TrackedFree . 224
hw_TranslateFileName . 248
hw_TranslateFileNameExt 250
hw_UnLock . 251
hw_UnLockBitMap . 287
hw_UnLockBrush . 287
hw_UnLockSample . 292
hw_UnLockSemaphore . 224
hw_UnregisterCallback . 225
hw_WaitEvents . 225

I
InitLibrary . 41
InitPlugin . 29
IsImage . 44

Index 331

L
Line . 127
ListRequest . 152
LoadFrame . 52
LoadImage . 45
LockBitMap . 128
lua_pcall . 303
lua_throwerror . 303
luaL_checkfilename . 301
luaL_checkid . 302
luaL_checknewid . 302

M
MovePointer . 130

N
NextDirEntry . 171
NextPacket . 80

O
OpenAnim . 53
OpenAudio . 177
OpenDir . 173
OpenDisplay . 130
OpenFont . 72
OpenStream . 58
OpenVideo . 81

P
PathRequest . 153

R
ReadVideoPixels . 133
RectFill . 134
RegisterAnimSaver . 92
RegisterImageSaver . 87

RegisterSampleSaver . 97
RegisterTimer . 145
RequirePlugin . 101

S
SaveImage . 89
SaveSample . 98
SeekStream . 60
SeekVideo . 84
SetChannelAttributes . 178
SetCurrentLibrary . 41
SetDisplayAttributes . 136
SetDisplayTitle . 136
SetPointer . 137
ShowHideDisplay . 137
ShowHidePointer . 138
SizeMoveDisplay . 138
Sleep . 139
Stat . 168
StreamSamples . 60
StringRequest . 154
SystemRequest . 156

T
TransformImage . 48
TranslatePath . 73

U
UnLockBitMap . 139

V
VWait . 140

W
WaitEvents . 140
WriteAnimFrame . 94
WritePixel . 141

	General information
	Introduction
	Terms and conditions
	Requirements
	Examples
	History
	Contact

	Conceptual overview
	Getting started
	Plugin types and Hollywood APIs
	What is a Hollywood plugin?
	Basic plugin design
	Auto and manual init plugins
	Compiling plugins
	Error codes
	Data types
	Version compatibility
	Tag lists
	String encoding
	File IO information
	File attributes
	Bitmap information
	Pixel formats
	Differences between Hollywood and Lua
	Object identifiers
	Designer compatibility
	Multithreading
	Legacy plugins

	AmigaOS peculiarities
	Glue code
	C runtime limitations
	clib2 versus newlib
	__saveds keyword
	Building for 68881 and 68882
	Building for WarpOS

	Base plugin functions
	Overview
	ClosePlugin
	InitPlugin

	Convert script plugins
	Overview
	FreeScript
	GetScript

	Library plugins
	Overview
	FreeLibrary
	GetBaseTable
	GetCommands
	GetConstants
	GetLibraryCount
	InitLibrary
	SetCurrentLibrary

	Image plugins
	Overview
	FreeImage
	GetImage
	IsImage
	LoadImage
	TransformImage

	Anim plugins
	Overview
	CloseAnim
	FreeFrame
	GetFrameDelay
	LoadFrame
	OpenAnim

	Sound plugins
	Overview
	CloseStream
	GetFormatName
	OpenStream
	SeekStream
	StreamSamples

	Vectorgraphics plugins
	Overview
	CloseFont
	CreateVectorFont
	DrawPath
	FreeVectorFont
	GetCurrentPoint
	GetPathExtents
	OpenFont
	TranslatePath

	Video plugins
	Overview
	CloseVideo
	DecodeAudioFrame
	DecodeVideoFrame
	FlushAudio
	FlushVideo
	FreePacket
	GetVideoFormat
	GetVideoFrames
	NextPacket
	OpenVideo
	SeekVideo

	Image saver plugins
	Overview
	RegisterImageSaver
	SaveImage

	Animation saver plugins
	Overview
	BeginAnimStream
	FinishAnimStream
	RegisterAnimSaver
	WriteAnimFrame

	Sample saver plugins
	Overview
	RegisterSampleSaver
	SaveSample

	Require hook plugins
	Overview
	RequirePlugin

	Display adapter plugins
	Overview
	ActivateDisplay
	AllocBitMap
	AllocVideoBitMap
	BeginDoubleBuffer
	BltBitMap
	ChangeBufferSize
	CloseDisplay
	Cls
	CreatePointer
	DetermineBorderSizes
	DoVideoBitMapMethod
	EndDoubleBuffer
	Flip
	ForceEventLoopIteration
	FreeBitMap
	FreeGrabScreenPixels
	FreeMonitorInfo
	FreePointer
	FreeVideoBitMap
	FreeVideoPixels
	GetBitMapAttr
	GetMonitorInfo
	GetMousePos
	GetQualifiers
	GrabScreenPixels
	HandleEvents
	Line
	LockBitMap
	MovePointer
	OpenDisplay
	ReadVideoPixels
	RectFill
	SetDisplayAttributes
	SetDisplayTitle
	SetPointer
	ShowHideDisplay
	ShowHidePointer
	SizeMoveDisplay
	Sleep
	UnLockBitMap
	VWait
	WaitEvents
	WritePixel

	Timer adapter plugins
	Overview
	FreeTimer
	RegisterTimer

	Requester adapter plugins
	Overview
	ColorRequest
	FileRequest
	FontRequest
	FreeRequest
	ListRequest
	PathRequest
	StringRequest
	SystemRequest

	File adapter plugins
	Overview
	FClose
	FEof
	FFlush
	FGetC
	FOpen
	FPutC
	FRead
	FSeek
	FStat
	FWrite
	Stat

	Directory adapter plugins
	Overview
	CloseDir
	NextDirEntry
	OpenDir

	Audio adapter plugins
	Overview
	AllocAudioChannel
	CloseAudio
	FreeAudioChannel
	OpenAudio
	SetChannelAttributes

	Extension plugins
	Overview
	GetExtensions

	CRTBase functions
	Overview

	SysBase functions
	Overview
	hw_AddLoaderAdapter
	hw_AddTime
	hw_AllocSemaphore
	hw_CmpTime
	hw_ConfigureLoaderAdapter
	hw_ConvertString
	hw_Delay
	hw_DisableCallback
	hw_FreeObjectData
	hw_FreeSemaphore
	hw_FreeString
	hw_GetDate
	hw_GetDateStamp
	hw_GetErrorName
	hw_GetSysTime
	hw_HandleEvents
	hw_LockSemaphore
	hw_LogPrintF
	hw_MasterControl
	hw_MasterServer
	hw_PostEvent
	hw_PostEventEx
	hw_PostSatelliteEvent
	hw_RegisterCallback
	hw_RegisterError
	hw_RegisterEventHandler
	hw_RegisterEventHandlerEx
	hw_RegisterFileType
	hw_RegisterUserObject
	hw_RemoveLoaderAdapter
	hw_RunTimerCallback
	hw_SetErrorCode
	hw_SetErrorString
	hw_SetTimerAdapter
	hw_SubTime
	hw_TrackedAlloc
	hw_TrackedFree
	hw_UnLockSemaphore
	hw_UnregisterCallback
	hw_WaitEvents

	DOSBase functions
	Overview
	hw_AddPart
	hw_BeginDirScan
	hw_ChunkToFile
	hw_CreateDir
	hw_DeleteFile
	hw_EndDirScan
	hw_ExLock
	hw_FClose
	hw_FEof
	hw_FFlags
	hw_FFlush
	hw_FGetC
	hw_FilePart
	hw_FOpen
	hw_FOpenExt
	hw_FPutC
	hw_FRead
	hw_FSeek
	hw_FSeek64
	hw_FStat
	hw_FWrite
	hw_GetCurrentDir
	hw_Lock
	hw_NameFromLock
	hw_NextDirEntry
	hw_PathPart
	hw_Rename
	hw_Stat
	hw_TmpNam
	hw_TmpNamExt
	hw_TranslateFileName
	hw_TranslateFileNameExt
	hw_UnLock

	GfxBase functions
	Overview
	hw_AddBrush
	hw_AttachDisplaySatellite
	hw_BitMapToARGB
	hw_ChangeRootDisplaySize
	hw_DetachDisplaySatellite
	hw_FindDisplay
	hw_FreeARGBBrush
	hw_FreeIcons
	hw_FreeImage
	hw_GetARGBBrush
	hw_GetBitMapAttr
	hw_GetDisplayAttr
	hw_GetIcons
	hw_GetImageData
	hw_GetRGB
	hw_IsImage
	hw_LoadImage
	hw_LockBitMap
	hw_LockBrush
	hw_MapRGB
	hw_RawBltBitMap
	hw_RawLine
	hw_RawRectFill
	hw_RawWritePixel
	hw_RefreshDisplay
	hw_RefreshSatelliteRoot
	hw_SetDisplayAdapter
	hw_UnLockBitMap
	hw_UnLockBrush

	AudioBase functions
	Overview
	hw_LockSample
	hw_SetAudioAdapter
	hw_UnLockSample

	RequesterBase functions
	Overview
	hw_EasyRequest
	hw_FileRequest
	hw_PathRequest
	hw_SetRequesterAdapter

	FontBase functions
	Overview
	hw_FindTTFFont

	FT2Base functions
	Overview

	LuaBase functions
	Overview
	luaL_checkfilename
	luaL_checknewid
	luaL_checkid
	lua_pcall
	lua_throwerror

	MiscBase functions
	Overview

	ZBase functions
	Overview

	JPEGBase functions
	Overview

	PluginBase functions
	Overview
	hw_DisablePlugin
	hw_FreePluginList
	hw_GetPluginList
	hw_GetPluginUserPointer
	hw_SetPluginUserPointer

	UtilityBase functions
	Overview
	hw_CRC32
	hw_DecodeBase64
	hw_EncodeBase64
	hw_MD5

	Licenses
	Lua license
	OpenCV license
	ImageMagick license
	GD Graphics Library license
	Bitstream Vera fonts license
	Pixman license
	LGPL license

	Index

