Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Application Note

Multimedia Processor for Mobile Applications

Camera Interface

EMMA Mobile1

Document No.S19892EJ1V0AN00Date PublishedAug. 2009

© NEC Electronics Corporation 2009 Printed in Japan

PREFACE

Purpose	The purpose of this document is to specify the usage of EMMA Mobile1
	Camera interface.

Organization	This docume	ent includes the following:
	 Introduction 	tion
	Usage of	of Camera Interface
	Example	e of Camera Interface Operation
	Camera	Driver Function
Notation	Here explair	ns the meaning of following words in text:
	Note	Explanation of item indicated in the text
	Caution	Information to which user should afford special attention
	Remark	Supplementary information

Related document The following tables list related documents.

Reference Document

Document Name	Version/date	Description
S19265EJ1V0UM00_ASMUGIO.pdf	1st Edition	SMU&GPIO user's manual
S19268EJ1V0UM00_1chip.pdf	1st Edition	1 chip user's manual
S19285EJ1V0UM00_CAMERA.pdf	1st Edition	Camera Interface user's manual
S19907EJ1V0AN00_GD.pdf	1st Edition	GD Spec
S19905EJ1V0AN00_I2C.pdf	1st Edition	Application Note
S19899EJ1V0AN00_LCD.pdf	1st Edition	Application Note
S19906EJ1V0AN00_IMC.pdf	1st Edition	Application Note

Disclaimers

• The information contained in this document is subject to change without prior notice in the future. Refer to the latest applicable data sheet(s) and user manual when designing a product for mass production.

 No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this documents or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customers' equipment shall be done under the full responsibility of the customer. NEC Electronics assume no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.

Note)

- 1. "NEC Electronics" as used in this document means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- 2. "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above)

CONTENTS

Chapter 1 Introduction	8
1.1 Outline	8
1.2 Development Environment	8
Chapter 2 Usage of Camera Interface	9
2.1 Camera Interface Function	9
2.2 Operation Flow	11
2.3 Details	12
2.3.1 Camera Initialization	12
2.3.2 Set Camera Timing	14
2.3.3 Set Input/Output Size	16
2.3.4 Set Frame Address	17
2.3.5 Set Reduction	19
2.3.6 Set Transfer Processing	20
2.3.7 Set Level Adjustment	21
2.3.8 Open Camera Interrupt	21
2.3.9 Start DMA Transfer	21
2.3.10 IMC/LCD Setting for Display	22
2.3.11 Camera DMA Transfer	22
2.3.12 Stop DMA Transfer	22
2.3.13 Close Camera Interrupt	22
2.3.14 Stop LCD Display	22
Chapter 3 Example of Camera Interface Operation	23
3.1 Hardware Connection	23
3.2 Initialization	24
3.2.1 Operation Flow	24
3.2.2 Operation Detail	25
3.2.2.1 Config Camera Interface as Default	25
3.2.2.2 Init Camera Sensor Module	28
3.2.2.3 Init IMC/LCD for Display	28
3.3 Example of Preview Function	29
3.3.1 Operation Flow	29
3.3.2 Operation Detail	30
3.3.2.1 Preview Start	30
3.3.2.2 Preview Stop	30
3.4 Example of Mirror Function	31
3.4.1 Operation Flow	31
3.4.2 Operation Detail	31
3.5 Example of Level Adjustment Function	32
3.5.1 Operation Flow	32
3.5.2 Operation Detail	32

3.6 Example of Reduction Function	33
3.6.1 Operation Flow	33
3.6.2 Operation Detail	34
APPENDIX A Camera Driver Function	36
A.1 Function List	
A.2 Global Variable Define	
A.3 Structure Define	
A.3.1 em1_cam_gain_t	
A.3.2 em1_cam_size_t	
A.3.3 em1_cam_frame_t	
A.3.4 em1_cam_sensor_t	
A.3.5 em1_cam_data_t	
A.4 Function Details	39
A.4.1 Camera Initialization Function	39
A.4.2 Camera Gain/Offset Setting Function	40
A.4.3 Camera Gain/Offset Setting Function	41
A.4.4 Camera Frame Setting Function	42
A.4.5 Camera Timing Setting Function	43
A.4.6 Camera Mirror Setting Function	
A.4.7 Enable/Disable Camera Interface Function	
A.4.8 Camera DMA Start Function	
A.4.9 Camera DMA Stop Function	
A.4.10 Camera Interrupt Open Function	
A.4.11 Camera Interrupt Close Function	
A.4.12 Camera Interrupt Handler Function	50
ANNEX Modification History	51
-	

LIST OF TABLES

Table 1-1 Hardware Environment	8
Table 1-2 Software Environment	8
Table 2-1 Basic Capture Function	9
Table 2-2 Reduction Function	9
Table 2-3 Flipping Function	9
Table 2-4 Level Adjustment Function	10
Table 2-5 Parameters of Camera Timing	14
Table 2-6 Discription of Input/Output Size	16
Table 2-7 Description of Frame Address	17
Table 2-8 Description of Transfer Processing	20
Table 3-1 Description of Camera Interface Initialization	25
Table 3-2 Description of Camera Timing Setting	26
Table 3-3 Description of Camera Input/Output Size Setting	26
Table 3-4 Description of Frame Address Setting	26
Table 3-5 Description of Transfer Processing Setting	27
Table 3-6 Description of Level Adjustment	27
Table A-1 LCD Driver Function List	36
Table A-2 Global Variable Define	36
Table A-3 Structure Define	37
Table A-4 Structure of em1_cam_gain_t	37
Table A-5 Structure of em1_cam_size_t	37
Table A-5 Structure of em1_cam_frame_t	37

LIST OF FIGURES

Figure 2-1 Display Progress When Use IMC	11
Figure 3-1 Connection between EMMA Mobile 1's Evaluation Board and Camera Bo	ard23
Figure 3-2 Initialization before Test	24
Figure 3-3 Operation Flow of Preview Start Function	29
Figure 3-4 Operation Flow of Mirror Function	31
Figure 3-5 Operation Flow of Level Adjustment Function	32
Figure 3-6 Operation Flow of Scale Down Function	33
Figure A-1 Camera Controller Initialization	39
Figure A-2 Camera Gain/Offset Setting	40
Figure A-3 Camera Gain/Offset Setting	41
Figure A-4 Camera Frame Setting	42
Figure A-5 Camera Timing Setting	43
Figure A-6 Camera Mirror Setting	44

Figure A-7 Camera Interface Enable/Disable Setting	45
Figure A-8 Camera DMA Start	46
Figure A-9 Camera DMA Stop	47
Figure A-10 Open Camera Interrupt	48
Figure A-10 Open Camera Interrupt	49
Figure A-12 Camera Interrupt Handler	50

Chapter 1 Introduction

1.1 Outline

This document will show users how to operate Camera interface on EMMA Mobile1 evaluation board.

More details about Camera interface feature please refer to EMMA Mobile 1 Camera interface user's manual.

1.2 Development Environment

• Hardware environment of this project is listed as below.

Table 1-1 Hardware Environment

Name	Version	Maker
EMMA Mobile 1 evaluation board (PSKCH2Y-	-	NEC Electronics
S-0016-01)		
PARTNER-Jet ICE ARM	M20	Kyoto Microcomputer Co. Ltd

• Software used in this project is listed as below.

Table 1-2 Software Environment

Name	Version	Maker
GNUARM Toolchain	V4.3.2	GNU
WJETSET-ARM	V5.10a	Kyoto Microcomputer Co. Ltd

Chapter 2 Usage of Camera Interface

2.1 Camera Interface Function

EMMA Mobile 1 Camera interface supports following function.

1) Basic capture function

Item	Description	
Image size	Max: 4088 pixels (horizontal) x 4092 pixels (vertical)	
Input data format	YUV422	
	(Support two orders: U0Y0V0Y1 or Y0U0Y1V0)	
Output data format	YUV 422 Interleave	
	YUV 420/422 Semi-Planar	
	YUV 420/422 Planar	
Data sampling	Rising edge	
	Falling edge	
	Both edges	
Sampling mode	Vertical/horizontal sync signal sampling	
	Enable signal sampling	
	ITU-R BT.656 encoding	
Byte lane switch	Big/little endian or 32-bit units specification	

2) Reduction

Table 2-2 Reduction Function

Item	Description	
Sampling method	Nearest-neighbor sampling	
Range	1 to 1/16 (can be set to any size)	

3) Horizontal/vertical flip

Table 2-3 Flipping Function

Item	Description		
Flipping mode	No flip		
	Horizontal flip		
	Vertical flip		
	Horizontal and vertical flip (180º rotation)		

4) Level adjustment

Item	Description
Gain range	Y _{gain} : 0 to 255/128
	U _{gain} : 0 to 255/128
	V _{gain} : 0 to 255/128
Offset range	Y _{offset} : -128 to 127
	U _{offset} : -128 to 127
	V _{offset} : -128 to 127

Table 2-4 Level Adjustment Function

Note:

Following formulary shows the relationship between input Y/U/V value and output Y/U/V value.

$$\begin{split} Y_{out} &= Y_{in} * Y_{gain} + Y_{offset} \\ U_{out} &= U_{in} * U_{gain} + U_{offset} \\ V_{out} &= V_{in} * V_{gain} + V_{offset} \end{split}$$

2.2 Operation Flow

Following figure shows the flow chart of camera.

Figure 2-1 Flow Chart of Camera Operation

2.3 Details

2.3.1 Camera Initialization

Camera initialization progress includes two steps:

1) Camera module initialization

This step is different according to the type of camera module. For details, please refer the User's Manual of camera sensor module.

2) Camera interface initialization

EMMA Mobile 1 camera interface initialization including following sequences:

• Switch pins to camera function

Register list: CHG_PINSEL_G00 CHG_PINSEL_G64 CHG_PINSEL_SD1 CHG_PINSEL_G80

• Enable input function and pull-down setting for camera pins Register list:

CHG_PULL_G72 CHG_PULL2 CHG_PULL_G88

 Driver capability setting: Register list: CHG_DRIVE0 CHG_DRIVE1

CHG_DRIVE2

Clock setting

Register list:

ASMU_GCLKCTRL0 ASMU_AHBCLKCTRL0 ASMU_APBCLKCTRL0 ASMU_DIVCAMSCLK^{Note}

Note:

The source clock of CAM_SCLK can be selected as PLL2 (default value is 499.712MHz) or PLL3 (default value is 229.376MHz). $f_{cam_sclk} = f_{source} / DIV$ The DIV range is from 1 to 32. Reset and cancel reset camera Register list:

> ASMU_RESETREQ0ENA ASMU_RESETREQ0

2.3.2 Set Camera Timing

The camera timing of EMMA Mobile 1 should be setting according to connected sensor module's features.

About mainly parameters of camera timing, please refer Table 2-5.

Table 2-5 Parameters of Camera Timing

Item	Description	Related Register
Input data	U0Y0V0Y1	DATA_ID = 0 (CA_CSR)
format Note	Y0U0Y1V0	DATA_ID = 1 (CA_CSR)
Output data	YUV 422 Interleave	PIXELMODE = 1 (CA_CSR)
format Note		PIXEL_YUV = 0 (CA_CSR)
		MAINYUV = 0 (CA_DMACNT)
	YUV 422 Semi-Planar	PIXELMODE = 0 (CA_CSR)
		PIXEL_YUV = 0 (CA_CSR)
		MAINYUV = 0 (CA_DMACNT)
	YUV 422 Planar	PIXEL_YUV = 1 (CA_CSR)
		MAINYUV = 0 (CA_DMACNT)
	YUV 420 Semi-Planar	PIXELMODE = 0 (CA_CSR)
		PIXEL_YUV = 0 (CA_CSR)
		MAINYUV = 1 (CA_DMACNT)
	YUV 420 Planar	PIXEL_YUV = 1 (CA_CSR)
		MAINYUV = 1 (CA_DMACNT)
Data sampling	Rising edge	VS_DET = 0 (CA_CSR)
2 and 6 an p.m.g		HS_DET = 0 (CA_CSR)
		DATA_DET = 0 (CA_CSR)
		CLK_DEGE = 0 (CA_CSR)
	Falling edge	VS_DET = 1 (CA_CSR)
		HS_DET = 1 (CA_CSR)
		DATA_DET = 1 (CA_CSR)
		CLK_DEGE = 0 (CA_CSR)
	Both edges	VS_DET = 0 (CA_CSR)
		HS_DET = 0 (CA_CSR)
		CLK_DEGE = 1 (CA_CSR)
Sampling mode	VS/HS signal sampling	SYNCTYPE = 0 (CA_CSR)
1 0		SYNCMODE = 0 (CA_CSR)
	Enable signal sampling	SYNCTYPE = 0 (CA_CSR)
		SYNCMODE = 1 (CA_CSR)
	ITU-R BT.656 encoding	SYNCTYPE = 1 (CA_CSR)
		SYNCMODE = 0 (CA_CSR)
Signal polarity	Positive logic	For VS:
5 4 1 4 9		$VS_POL = 0 (CA_CSR)$
		For HS:
		$HS_POL = 0 (CA_CSR)$
	Negative logic	For VS:
		VS_POL = 1 (CA_CSR)
		For HS:
		HS_POL = 1 (CA_CSR)
Limit value of	Conforms to ITU-R BT.656	LIMITSEL = 0 (CA_CSR)
YUV output data	(Y: 16 to 235, U and V: 16 to 240)	
rov output data	(1. 10 to 255, 0 and V. 10 to 240)	

ltem	Description	Related Register
	All 8 bits are valid	LIMITSEL = 1 (CA_CSR)
	(Y, U and V: 0 to 255)	
Byte lane	For YUV 422 Interleave:	YUV_OD_BYTELANE
switch Note	Select the range of Y0, Y1, U0, V0.	(CA_OD_BYTELANE2) Y_BYTELANE(CA_OD_BYTELANE2)
	For YUV 420/422 Semi-Planar:	DATA_OD (CA_CSR)
	(1) Select the range of Y0, Y1, Y2, Y3	Y_BYTELANE and UV_BYTELANE
	(2) Select the range of U0, V0, U1, V1	(CA_OD_BYTELANE2)
	For YUV 420/422 Planar:	Y_BYTELANE
	(1) Select the range of Y0, Y1, Y2, Y3	
	(2) Select the range of U0/V0, U1/V1,	(CA_OD_BYTELANE2)
	U2/V2, U3/V3	

Note:

More details about the data format and byte lane switch please refer to "**4.10 Data Format**" of EMMA Mobile 1 Camera Interface User's Manual.

Register list:

CA_CSR CA_DMACNT CA_OD_BYTELANE CA_OD_BYTELANE2

2.3.3 Set Input/Output Size

Table 2-6 shows the description of input/output size.

ltem	Description
Input	For VS/HS sync signal sampling:
size ^{Note}	When rising or falling edge:
	CA_X1R = HS blank * 2 CA_X2R = CA_X1R + input width * 2
	CA_Y1R = VS blank CA_Y2R = CA_Y1R + input height
	When both-edge:
	CA_X1R = HS blank CA_X2R = CA_X1R + input width
	CA_Y1R = VS blank CA_Y2R = CA_Y1R + input height
	Note:
	The value set to CA_X3R is ignored. More details, please refer to "4.9.1
	Vertical/horizontal synchronization signal sampling" of EMMA Mobile 1 Camera
	Interface User's Manual. For enable signal sampling: (Normal)
	When rising or falling edge:
	$CA_X1R = 0$ $CA_X2R = input width * 2 CA_X3R = input width * 2$
	$CA_Y1R = 0$ $CA_Y2R = input height$
	When both-edge:
	$CA_X1R = 0$ $CA_X2R = input width$ $CA_X3R = input width$
	CA_Y1R = 0 CA_Y2R = input height
	For enable signal sampling: (Cropping)
	When rising or falling edge:
	CA_X1R = Cropping starting pixel * 2 CA_X2R = Cropped image X size * 2
	CA_X3R = Effective image X size * 2 CA_Y1R = Cropping starting line
	CA_Y2R = Cropped image Y size + CA_Y1R
	When both-edge:
	CA_X1R = Cropping starting pixel CA_X2R = Cropped image X size
	CA_X3R = Effective image X size CA_Y1R = Cropping starting line
	CA_Y2R = Cropped image Y size + CA_Y1R
	Note:
	Be sure to set CA_X3R. More details, please refer to "4.9.2 Enable signal sampling" of
	EMMA Mobile 1 Camera Interface User's Manual.
	For ITU-R BT.656 signal sampling: When NTSC:
	CA_X1R = 272 CA_X2R = 1712 CA_Y1R = 0 CA_Y2R = 243
	When PAL:
	CA_X1R = 284 CA_X2R = 1724 CA_Y1R = 0 CA_Y2R = 288
	Note:
	The value set to CA_X3R is ignored. More details, please refer to "4.9.3 ITU-R BT.656
	signal sampling" of EMMA Mobile 1 Camer a Interface User's Manual.

Table 2-6 Discription of Input/Output Size

Application Note S19892EJ1V0AN00

ltem	Description
Output size ^{Note}	CA_DMAX_MAIN = output width CA_DMAY_MAIN = output height
	For YUV 422 Interleave mode: CA_LINESIZE_MAIN = output width * 2
	For YUV Semi-Planar and YUV Planar mode: CA_LINESIZE_MAIN = output width

Note:

More details about input size setting, please refer to "4.9 Restrictions on Data Transfer Range Values" of EMMA Mobile 1 Camera Interface User's Manual.

More details about output size setting, please refer to "4.8 Data Transfer Range

Specification" of EMMA Mobile 1 Camera Interface User's Manual.

Register list:

CA_X1R CA_X2R CA_X3R CA_Y1R CA_Y2R CA_DMAX_MAIN CA_DMAY_MAIN CA_LINESIZE_MAIN

2.3.4 Set Frame Address

Camera Interface of EMMA Mobile 1 supports two frames: A/B frame. The parameters of frame address include YPLANE_A/B (the transfer destination address of Y plane data), UVPLANE_A/B (the transfer destination address of UV plane data) and VPLANE_A/B (the transfer destination address of V plane data).

Table 2 -7 shows the description of frame address setting according to data format type.

Data Format	Frame Address	
YUV422 interleave	Only set YPLANE_A/B	
YUV 420/422 Semi-Planar	Need set YPLANE_A/B and UVPLANE_A/B	
YUV 420/422 Planar	Need set YPLANE_A/B, UVPLANE_A/B and VPLANE_A/B	

Table 2-7 Description of Frame Address

Register list:

CA_YPLANE_A CA_YPLANE_B CA_UVPLANE_A CA_UVPLANE_B CA_VPLANE_A CA_VPLANE_B CA_MAINFRM

Remark:

More details about frame address setting, please refer to "4.10.2 Memory mapping" of EMMA Mobile 1 Camera Interface User's Manual.

2.3.5 Set Reduction

The reduction method of EMMA Mobile 1 is nearest-neighbor sampling, which copies the nearest neighbor pixels of an original image to the pixel positions of a reduced image.

Following show the reduction formulary.

Output size = Input size * 64 / (64 + RATIO)

The range of RATIO is 0 to 959, so the reduction ratio is 1 to 1/16.

Register list:

CA_XRATIO_MAIN CA_YRATIO_MAIN CA_DMACNT

Remark:

More details about reduction setting please refer to "4.7 Reduction Method" of EMMA Mobile 1 Camera Interface User's Manual.

2.3.6 Set Transfer Processing

The transfer processing of EMMA Mobile 1 includes 3 functions: frame skipping, transfer mode and horizontal/vertical flip control.

Table 2-8 shows the description of transfer processing setting.

Function	Description		
Frame skipping	Including 4 types:		
	(1) No skipping		
	(2) 1/2 skipping		
	(3) 1/3 skipping		
	(4) 1/4 skipping		
Transfer mode	Including 3 types:		
	(1) Single transfer		
	(2) Repeat transfer (frame fixed)		
	(3) Repeat transfer (double)		
Horizontal/vertical flip control	Including 4 types:		
	(1) No flip		
	(2) Horizontal flip		
	(3) Vertical flip		
	(4) Horizontal and vertical flip (180° rotation)		

Table 2-8 Description of Transfer Processing

Register list:

CA_DMACNT CA_MIRROR

Remark:

More details about transfer processing setting, please refer to "4.11 Transfer Processing" of EMMA Mobile 1 Camera Interface User's Manual.

2.3.7 Set Level Adjustment

Level adjustment function is used to adjust gain and offset for the input data level. More details about lever adjustment, please refer to "**4.6 Level Adjustment**" of EMMA Mobile 1 Camera Interface User's Manual.

Register list:

CA_BNZR CA_BNGR CA_CBZR CA_CBGR CA_CRZR CA_CRGR

2.3.8 Open Camera Interrupt

Camera interrupt of EMMA Mobile 1 has 4 types:

- 1) main frame overrun
- 2) main frame transfer completion
- 3) transfer error
- 4) vertical synchronization

More details about camera interrupt, please refer to "**3.2.1 Interrupt registers**" of EMMA Mobile 1 Camera Interface User's Manual.

Register list: CA_ENSET

> CA_ENCLR CA_FFCLR INTC_IT0_IEN0 SEC_IT0_IENS0

Remark:

More details about INTC_IT0_IEN0 and SEC_IT0_IENS0 register, please refer to EMMA Mobile 1 One Chip User's Manual.

2.3.9 Start DMA Transfer

Issue camera DMA request to start DMA transfer

Register list: CA_DMAREQ

2.3.10 IMC/LCD Setting for Display

Through IMC/LCD setting, camera image data will be displayed on LCD panel.

Remark:

More detail about IMC and LCD setting, please refer to EMMA Mobile 1 IMC User's Manual and EMMA Mobile 1 LCDC User's Manual.

2.3.11 Camera DMA Transfer

After issue camera DMA request, camera interface will start to capture image data from external camera sensor module and save data in specified frame address. In this step, some interrupts should be issued and registered interrupt handler function will be called to handle issued interrupt.

Register list: CA_STATUS CA_FFCLR

2.3.12 Stop DMA Transfer

Cancel camera DMA request to stop DMA transfer

Register list: CA_DMASTOP

2.3.13 Close Camera Interrupt

This step will clear all camera interrupts.

Register list: CA_ENSET CA_ENCLR CA_FFCLR INTC_IT0_IEN0 SEC_IT0_IENS0

2.3.14 Stop LCD Display

This step will stop LCD display.

Remark:

More detail about LCD setting, please refer to EMMA Mobile 1 LCDC User's Manual.

Chapter 3 Example of Camera Interface Operation

This chapter will show users how to realize following functions.

- Preview function
- Mirror function
- Level adjustment function
- Reduction function

3.1 Hardware Connection

On EMMA Mobile 1 evaluation board (PSKCH2Y-S-0016-01), there is a JP11 connection which includes all pins of camera interface. For camera evaluation, EMMA Mobile 1 camera board is designed. This board includes:

- 1) an external camera sensor module
- 2) power supply circuit for sensor module
- 3) a connection which is suitable for JP11

Figure 3-1 shows the connection of EMMA Mobile 1 evaluation board and EMMA Mobile camera board.

Figure 3-1 Connection between EMMA Mobile 1's Evaluation Board and Camera Board

Note:

For evaluation of EMMA Mobile 1 camera interface, the original EMMA Mobile 1 evaluation board has been modified. Please confirm the number of evaluation board is bigger than 50th.

3.2 Initialization

3.2.1 Operation Flow

Figure 3-2 shows the operation flow of initialization before test.

3.2.2 Operation Detail

3.2.2.1 Config Camera Interface as Default

This step will init camera interface, set camera timing, set input/output size, set reduction, set frame address, set transfer processing, set level adjustment and open camera interrupt.

1) Init Camera Interface

Table 3-1 shows the description of camera interface initialization.

Sequence	Registers Description		
(1) Switch pins to	CHG_PINSEL_G00[9:8] = 11b (CAM_SCLK)		
camera function	CHG_PINSEL_G64[31:22] = 1111_111_11b (CAM_YUV[4:0])		
	CHG_PINSEL_SD1[1:0] = 10b (CAM_YUV[7:5], CAM_VS, CAM_HS)		
	CHG_PINSEL_G80[25:24] = 10b (CAM_CLKI)		
(2) Enable pins input	CHG_PULL_G72[31:12] = 0100_0100_0100_0100_0100b		
function	(CAM_YUV[4:0])		
	CHG_PULL2 [23:12] = 0100_0100_0100b		
	(CAM_YUV[7:5], CAM_VS, CAM_HS)		
	CHG_PULL_G88 [19:16] = 0100b (CAM_CLKI)		
(3) Driver capability	Set driver capability to max value		
setting	CHG_DRIVE0[29:28] = 11b		
	CHG_DRIVE1[21:20] = 11b		
	CHG_DRIVE1[13:12] = 11b		
	CHG_DRIVE2[1:0] = 11b		
(4) Clock setting	Set division of CAM_SCLK		
	ASMU_DIVCAMSCLK = 0x113		
	bit[9:8] = 01b - Set PLL3 (229.376MHz) as source clock		
	bit[4:0] = 0x13 - Division ratio is 20. $f_{cam_{sclk}}$ = 229.376MHz/20 =11.468MHz		
	close camera clock		
	ASMU_AHBCLKCTRL0[12] = 0b (disable automatic control of CAMLP)		
	ASMU_APBCLKCTRL0[3] = 0b (disable automatic control of CAMPCLKLP)		
	ASMU_GCLKCTRL0[22:20] = 000b (stop clock supply for camera interface)		
	open camera clock		
	ASMU_GCLKCTRL0[22:20] = 111b (supply clock for camera interface)		
	ASMU_AHBCLKCTRL0[12] = 1b (enable automatic control of CAMLP)		
	ASMU_APBCLKCTRL0[3] = 1b (enable automatic control of CAMPCLKLP		
(5) reset camera	ASMU_RESETREQ0ENA[12] = 1b (enable camera reset)		
	ASMU_RESETREQ0[12] = 0b (reset camera)		
	ASMU_RESETREQ0[12] = 1b (cancel reset of camera)		
	ASMU_RESETREQ0ENA[12] = 0b (disable camera reset)		

 Table 3-1 Description of Camera Interface Initialization

2) Set Camera Timing

Table 3-2 shows the description of camera timing setting.

Item	Description	Related Register	
Input data format	U0Y0V0Y1	DATA_ID = 0 (CA_CSR)	
Output data format	YUV 420 Planar	PIXEL_YUV = 1 (CA_CSR)	
		MAINYUV = 1 (CA_DMACNT)	
Data sampling	Rising edge	VS_DET = 0 (CA_CSR)	
	0 0	HS_DET = 0 (CA_CSR)	
		DATA_DET = 0 (CA_CSR)	
		CLK_DEGE = 0 (CA_CSR)	
Sampling mode	Enable signal sampling	SYNCTYPE = 0 (CA_CSR)	
		SYNCMODE = 1 (CA_CSR)	
Signal polarity	Positive logic	For VS:	
	0	VS_POL = 0 (CA_CSR)	
		For HS:	
		HS_POL = 0 (CA_CSR)	
Limit value of	Conforms to ITU-R BT.656	LIMITSEL = 0 (CA_CSR)	
YUV output data	(Y: 16 to 235, U and V: 16 to 240)		
Byte lane switch	No use	No setting	

Table 3-2 Descri	ption of Camera	a Timina	Settina
		· · · · · · · · · · · · · · · · · · ·	e eeg

3) Set Input/Output Size

Table 3-3 shows the description of input/output size setting.

Table 3-3 Description of Camera Input/Outp	out Size Setting
--	------------------

ltem	Description	Related Register
Input size	Input width = 640	CA_X1R = 0 CA_X2R = 1280
	Input height = 480	CA_X3R = 1280 CA_Y1R = 0
		CA_Y2R = 640
Output size	Output width = 640	CA_DMAX_MAIN = 640
	Output height = 480	CA_DMAY_MAIN = 480
		CA_LINESIZE_MAIN = 640

4) Set Frame Address

Table 3-4 shows the description of frame address setting.

Data Format	Frame Address
YUV 420 Planar	YPLANE_A = 0x32000000 YPLANE_B = 0x32100000
	UVPLANE_A = 0x3204B000 UVPLANE_B = 0x3214B000
	VPLANE_A= 0x3205DC00 VPLANE_B= 0x3215DC00

Table 3-4 Description of Frame Address Setting

5) Set Reduction

Because the input size is same with output size, reduction function is not used as default. The related register setting is as following.

CA_DMACNT[3] = 0b - does not resize main frames

6) Set Transfer Processing

Table 3-5 shows the description of transfer processing setting.

Table 3-5 Description of Transfer Processing Setting

ltem	Description	Related Register
Frame skipping	No skipping	PCULLR = 00b (CA_DMACNT)
Transfer mode	Repeat transfer (double)	MAINMODE = 11b (CA_DMACNT)
Flip control	No flip	MAIN_MIRROR = 00b (CA_MIRROR)

7) Set Level Adjustment

Table 3-6 shows the description of level adjustment setting.

Item	Description	Related Register
Gain value	$Y_{gain} = U_{gain} = V_{gain} = 128$	CA_BNGR = 0x80
		CA_CBGR = 0x80
		CA_CRGR = 0x80
Offset value	$Y_{offset} = U_{offset} = V_{offset} = 0$	CA_BNZR = 0
		$CA_CBZR = 0$
		CA_CRZR = 0

Table 3-6 Description of Level Adjustment

8) Open camera Interrupt

This step will cancel camera interrupt masking, clear camera interrupt and enable camera interrupt.

The setting of related registers is as following.

CA_ENSET = 0x0E - cancel overrun/transfer completion/transfer error interrupt masking

CA_FFCLR = 0x0F - clear all interrupt

INTC_IT0_IEN0[21] = 0b & SEC_IT0_IENS0[21] = 0b - enable camera interrupt

3.2.2.2 Init Camera Sensor Module

For initialization of camera sensor module, IIC2 interface of EMMA Mobile 1 is used to write/read registers of camera sensor module. About the usage of IIC2 interface of EMMA Mobile 1, please refer to "EMMA Mobile 1 IIC Application Note".

More details about registers of camera sensor module please refer to the User's Manual of camera sensor module.

3.2.2.3 Init IMC/LCD for Display

In this sample, LCD and IMC module will be called to display the rotated image. So need to initialize LCD and IMC module.

More detail about these two modules, please refer to "EMMA Mobile 1 IMC Application Note" and "EMMA Mobile 1 LCDC Application Note".

3.3 Example of Preview Function

3.3.1 Operation Flow

Figure 3-3 Operation Flow of Preview Start Function

More details about the functions used in this example please refer to "APPENDIX A Camera Driver Function"

3.3.2 Operation Detail

3.3.2.1 Preview Start

1) Enable Camera Interface

It will call "em1_cam_enable()" function. In this function, following operations are executed.

Step 1: cancel camera hardware reset

CA_MODULECONT = 0x01

Step 2: Start camera DMA transfer CA_DMAREQ = 0x01

2) Start LCD Display

This step will call "em1_lcd_start()" function. More detail about this function, please refer to "EMMA Mobile 1 LCDC Application Note".

3.3.2.2 Preview Stop

In this step, will call "em1_cam_enable()" function. In this function, following operations are executed.

Step 1: wait until DMA transfer stop.

Read the CA_DMAREQ register. If register bit0 is 0, it means that DMA transfer has been stopped.

Step 2: camera hardware reset CA_MODULECONT = 0x0

3.4 Example of Mirror Function

3.4.1 Operation Flow

Figure 3-4 Operation Flow of Mirror Function

Note:

Please confirm that preview has been started before mirror function test.

3.4.2 Operation Detail

Mirror function of EMMA Mobile 1 Camera Interface has 4 types:

- 1) No flip
- 2) Horizontal flip
- 3) Vertical flip
- 4) Horizontal and vertical flip (180° rotation)

In this example, users will choose the mirror type and then call "em1_cam_set_mirror()" function to setup camera mirror. In this function, will set following registers.

CA_MIRROR[3:2] (set flip mode)

- 00b No flip
- 01b Horizontal flip
- 10b Vertical flip
- 11b Horizontal and vertical flip (180° rotation)

CA_UPDATE = 0x01 (update flip mode setting)

3.5 Example of Level Adjustment Function

3.5.1 Operation Flow

Figure 3-5 Operation Flow of Level Adjustment Function

Note:

Please confirm that preview has been started before level adjustment function test.

3.5.2 Operation Detail

About the range value of gain/offset, please refer to "Table 2-4 Level Adjustment Function". In this example, users will change the gain/offset value and then call "em1_cam_set_gain()" function to setup level adjustment. In this function, will set following registers.

CA_BNZR CA_BNGR CA_CBZR CA_CBGR CA_CRZR CA_CRGR CA_UPDATE = 0x01 (update gain/offset setting)

3.6 Example of Reduction Function

3.6.1 Operation Flow

Figure 3-6 Operation Flow of Scale Down Function

Note:

Please confirm that preview has been started before scale down function test.

3.6.2 Operation Detail

1) Modify Output Size

About the reduction range, please refer to "Table 2-2 Reduction Function".

In this example, the limit value of output size is as following.

Max width: 640	max height: 480
Min width: 128	min height: 96
Width step: 32	height step: 24

2) Hide Display of Camera Image

This step will call "em1_imc_hide()" function and "em1_imc_refresh()" function. More detail about this function, please refer to "EMMA Mobile 1 IMC Application Note".

3) Stop Camera DMA Transfer

This step will call "em1_cam_dma_stop()" function. In this function, will set following registers.

- CA_DMASTOP = 0x01 (stop DMA transfer)
- Read the CA_DMAREQ register until DMA transfer has been stopped. If register bit0 is 0, it means DMA transfer have been stopped.
- CA_FFCLR = 0x0F (clear all interrupt)

4) Setup Output Size

This step will set reduction function and following registers are used.

- CA_DMAX_MAIN (set the number of horizontal pixels to be transferred)
 CA_DMAX_MAIN = output width
- CA_DMAY_MAIN (set the number of lines to be transferred vertically) CA_DMAY_MAIN = output height
- CA_XRATIO_MAIN (set the reduction ratio in the horizontal direction) XRATIO = 64 * input width/output size – 64
- CA_YRATIO_MAIN (set the reduction ratio in the vertical direction)
 YRATIO = 64 * input height/output height 64
- CA_LINESIZE_MAIN (set the number of horizontal pixels to be transferred) Because the data format of camera sensor module is YUV 420 Planar mode, set the value of output width to CA_LINESIZE_MAIN
- CA_DMACNT[3] (set resize or doesn't resize)
 It the output size is same with input size, set CA_DMACNT[3] to 0b.
 It the output size is smaller than input size, set CA_DMACNT[3] to 1b.

5) Start Camera DMA Transfer

This step will call "em1_cam_dma_start()" function. In this function, will set following register.

• CA_DMAREQ = 0x01 (start DMA transfer)
6) Show Display of Camera Image

This step will call "em1_imc_l2x_config" function, "em1_imc_show()" function and "em1_imc_refresh()" function. More detail about this function, please refer to "EMMA Mobile 1 IMC Application Note".

APPENDIX A Camera Driver Function

A.1 Function List

The following table shows the camera driver interface functions:

Table A-1 LCD Driver Function List

Class	Function Name	Function Detail
	em1_cam_init	Camera interface initialization
	em1_cam_set_gain	Gain/offset parameters setting
	em1_cam_set_size	Input/output size parameters setting
	em1_cam_set_frame	Frame parameters setting
	em1_cam_set_timing	Timing parameters setting
External	em1_cam_set_mirror	Mirror parameters setting
function	em1_cam_enable	Enable/disable camera interface
	em1_cam_dma_start	Start camera DMA transfer
	em1_cam_dma_stop	Stop camera DMA transfer
	em1_cam_set_INT_on	Open camera interrupt
	em1_cam_set_INT_off	Close camera interrupt
	INT_cam_irq	Camera interrupt handler

A.2 Global Variable Define

Table A-2 Global Variable Define

Variable Name	Detail
g_frame_count	Count the frame number of camera DMA transfer

A.3 Structure Define

Table A-3 Structure Define

Structure Name	Detail
em1_cam_gain_t	Gain/offset parameters setting structure
em1_cam_size_t	Input/output size parameters setting structure
em1_cam_frame_t	Frame parameters setting structure
em1_cam_sensor_t	Sensor parameters setting structure
em1_cam_data_t	Camera parameters setting structure

A.3.1 em1_cam_gain_t

Table A-4 Structure of em1_cam_gain_t

Member	Detail
uchar y_gain	Y gain value
uchar u_gain	U gain value
uchar v_gain	V gain value
char y_offset	Y offset value
char u_offset	U offset value
char v_offset	V offset value

A.3.2 em1_cam_size_t

Table A-5 Structure of em1_cam_size_t

Member	Detail
int width	Width size
int height	Height size

A.3.3 em1_cam_frame_t

Table A-5 Structure of em1_cam_frame_t

Member	Detail
uchar framenum	The number of total frame
uint A_y_addr	Y data address of A frame
uint A_uv_addr	UV data address of A frame
int A_v_addr	V data address of A frame
uint B_y_addr	Y data address of B frame
uint B_uv_addr	UV data address of B frame
uint B_v_addr	V data address of B frame

A.3.4 em1_cam_sensor_t

Member	Detail
uint hblank	The blank value of CAM_HS signal
uint vblank	The blank value of CAM_VS signal
uchar sample_mode	The sampling mode
uchar yuv_format	YUV data format
BOOL data_id	Input data format
BOOL data_od	Output data format
BOOL limit_set	Data limit setting
BOOL vs_det	CAM_VS detect timing
BOOL hs_det	CAM_HS detect timing
BOOL clk_edge	CAM_CLKI detect timing
BOOL data_det	Detect timing of data sampling
BOOL vs_pol	Polarity of CAM_VS
BOOL hs_pol	Polarity of CAM_HS

A.3.5 em1_cam_data_t

Member	Detail	
em1_cam_sensor_t sensor	Sensor parameters setting structure	
em1_cam_size_t in_size	Input size parameters setting structure	
em1_cam_size_t out_size	Output size parameters setting structure	
em1_cam_gain_t gain	Gain/offset parameters setting structure	
em1_cam_frame_t frame	Frame parameters setting structure	
uchar transfer_mode	Camera transfer mode	
uchar mirror_mode	Camera mirror mode	
uchar skip_mode	Camera skip mode	

A.4 Function Details

A.4.1 Camera Initialization Function

[Function Name]

em1_cam_init

[Format]

void em1_cam_init (void);

[Argument]

None

[Function Return]

None

[Flow Chart]

Figure A-1 Camera Controller Initialization

[Note]

A.4.2 Camera Gain/Offset Setting Function

[Function Name]

em1_cam_set_gain

[Format]

void em1_cam_set_gain(em1_cam_gain_t *gain);

[Argument]

em1_cam_gain_t *gain - the structure pointer for gain/offset parameters

[Function Return]

None

[Flow Chart]

Figure A-2 Camera Gain/Offset Setting

[Note]

A.4.3 Camera Input/Output Size Setting Function

[Function Name]

em1_cam_set_size

[Format]

uchar em1_cam_set_size(em1_cam_data_t *cam);

[Argument]

em1_cam_data_t *cam - the structure pointer for camera parameters

[Function Return]

DRV_OK

DRV_ERR_PARAM

[Flow Chart]

Figure A-3 Camera Gain/Offset Setting

[Note]

A.4.4 Camera Frame Setting Function

[Function Name]

em1_cam_set_frame

[Format]

void em1_cam_set_frame(em1_cam_frame_t *frame);

[Argument]

em1_cam_frame_t *frame - the structure pointer for frame parameters

[Function Return]

None

[Flow Chart]

Figure A-4 Camera Frame Setting

[Note]

A.4.5 Camera Timing Setting Function

[Function Name]

em1_cam_set_timing

[Format]

uchar em1_cam_set_timing(em1_cam_sensor_t *sensor);

[Argument]

em1_cam_sensor_t *sensor - the structure pointer for sensor parameters

[Function Return]

None

[Flow Chart]

[Note]

A.4.6 Camera Mirror Setting Function

[Function Name]

em1_cam_set_mirror

[Format]

void em1_cam_set_mirror(uchar mirror);

[Argument]

uchar mirror - mirror mode

[Function Return]

None

[Flow Chart]

Figure A-6 Camera Mirror Setting

[Note]

A.4.7 Enable/Disable Camera Interface Function

[Function Name]

em1_cam_enable

[Format]

void em1_cam_enable(BOOL flag);

[Argument]

BOOL flag - enable/disable flag

[Function Return]

None

[Flow Chart]

Figure A-7 Camera Interface Enable/Disable Setting

[Note]

About "em1_cam_dma_start()" function and "em1_cam_dma_stop()" function, please refer

"A.4.8 Camera DMA Start Function" and "A.4.9 Camera DMA Stop Function".

A.4.8 Camera DMA Start Function

[Function Name]

em1_cam_dma_start

[Format]

void em1_cam_dma_start(void);

[Argument]

None

[Function Return]

None

[Flow Chart]

[Note]

A.4.9 Camera DMA Stop Function

[Function Name]

em1_cam_dma_stop

[Format]

void em1_cam_dma_stop(void);

[Argument]

None

[Function Return]

None

[Flow Chart]

[Note]

A.4.10 Camera Interrupt Open Function

[Function Name]

em1_cam_set_INT_on

[Format]

void em1_cam_set_INT_on(void);

[Argument]

None

[Function Return]

None

[Flow Chart]

Figure A-10 Open Camera Interrupt

[Note]

A.4.11 Camera Interrupt Close Function

[Function Name]

em1_cam_set_INT_off

[Format]

void em1_cam_set_INT_off(void);

[Argument]

None

[Function Return]

None

[Flow Chart]

[Note]

A.4.12 Camera Interrupt Handler Function

[Function Name]

INT_cam_irq

[Format]

void INT_cam_irq(void);

[Argument]

None

[Function Return]

None

[Flow Chart]

Figure A-12 Camera Interrupt Handler

[Note]

ANNEX Modification History

Number	Modification Contents	Author	Date
Ver 1.00	New version		Aug,4,2009