
© 2013  Altera Corporation 

Document Revision History 

  

Date Version Description 

March 8, 2013 1.0 Released 

 

  

  
 

Embedded Linux 

Getting Started Guide 
 

GSG-Linux-VT-2.01  

 

User Guide  

 



 Page 2 

March 2013  Altera Corporation 

Contents 

Document Revision History............................................................................................................. 1 

Overview ......................................................................................................................................... 3 

Introduction................................................................................................................................. 3 

Release Contents and Location ................................................................................................... 3 

Prerequisites................................................................................................................................ 4 

Build Yocto ...................................................................................................................................... 5 

Host Setup ................................................................................................................................... 5 

CentOS .................................................................................................................................... 5 

Ubuntu .................................................................................................................................... 5 

Setup Yocto ................................................................................................................................. 6 

Build kernel/rootfs/u-boot .......................................................................................................... 6 

Programming Flash ......................................................................................................................... 8 

Requirements .............................................................................................................................. 8 

Usage ........................................................................................................................................... 8 

Booting Linux on the SoC FPGA CV Devkit .................................................................................... 11 

“Hello World” Linux application using solo Linaro toolchain ....................................................... 15 

Build “Hello World” Linux application ....................................................................................... 15 

Debug “Hello World” Linux application .................................................................................... 16 

 



 Page 3 

March 2013  Altera Corporation 

Overview 

Introduction 

This document walks through the basic software flow to have a “Hello World” Linux application 

running on the Cortex-A9 processors in the Cyclone V SoC FPGA development kit. This guide 

focuses purely on getting a basic Linux application running and has no interaction with 

programmable logic (FPGA) portion of SoC FPGA. Hence, to simplify things, we use: 

 No FPGA design 

 Pre-built bootloader/Linux software images for the Cyclone V SoC FPGA development kit 

For topics such as hardware flow for custom logic and preloader customization, please see 

other documentations such as “Golden System Reference Design User Guide”. 

Release Contents and Location 

Altera provides Linux BSP support for the Cyclone V SoC FPGA Development Kit, and provides 

the following:  

 Linux kernel 3.7  

 Preloader  

 u-boot version 2012.10  

 Yocto version 'Danny' 

 The packages for the root file system.  

 The tool chain (Linaro-GCC, v4.7)  

Yocto is used to build the sources of the kernel, the u-boot and the root file system. There are 

many source code packages available under the Yocto project. Should you enable a package 

that is not provided with our BSP, it will be downloaded (SVN, GIT, etc). If you are behind a 

proxy, you need to make sure the network configuration of your Linux host is ready.  

The Linux BSP release is composed of three packages: documentation, sources and binaries. 

Package Name  Contents  

linux-socfpga-13.02-src.bsx  Source code (self extracting)  

linux-socfpga-13.02-bin.tar.gz  Binaries  

Embedded Linux Getting Started Guide (this doc) 

Documentation 
Linux BSP User Manual - 13.02.pdf 

Linux BSP Release Notes - 13.02.pdf 

Yocto Danny User Manual - 13.02.pdf 



 Page 4 

March 2013  Altera Corporation 

You can find the release at:  http://software.altera.com/linux_socfpga.  

Prerequisites 

SoC EDS 13.0 or above installed from (http://software.altera.com/soceds) 

http://software.altera.com/linux_socfpga
http://software.altera.com/soceds


 Page 5 

March 2013  Altera Corporation 

Build Yocto  

Host Setup 

The recommended development platform is a PC computer with minimum 2GB RAM and 20GB 

hard drive, with one of the following OS-es installed: 

 CentOS 6.3, 

 Ubuntu 12.04 LTS. 

We have tested the Yocto package with above distributions. Be warned that Ubuntu has been 

tested with Yocto but is not an officially supported distribution for Altera ACDS. Other 

distributions may work as well but not guaranteed to be work-free. Generally the latest version 

is preferred. 

CentOS 

These are the required packages that need to be installed on a fresh DVD-based installation of 

CentOS 6.3. If a different installation method was used (e.g. from a CD) then more packages 

might be necessary. 

$ sudo yum update 

$ sudo yum groupinstall "Development Tools" 

$ sudo yum install texi2html texinfo glibc-devel chrpath 

If the host machine runs the 64bit version of the OS, then the following additional packages 

need to be installed: 

$ sudo yum install glibc.i686 libgcc.i686 libstdc++.i686 glibc-

devel.i686 ncurses-libs.i686 zlib.i686 

Ubuntu  

These are the required packages that need to be installed on a fresh DVD-based installation of 

Ubuntu 12.04 LTS.  

$ sudo apt-get update 

$ sudo apt-get upgrade 

$ sudo apt-get install sed wget cvs subversion git-core 

coreutils unzip texi2html texinfo libsdl1.2-dev docbook-utils 

gawk python-pysqlite2 diffstat help2man make gcc build-essential 

g++ desktop-file-utils chrpath libgl1-mesa-dev libglu1-mesa-dev 

mercurial autoconf automake groff libtool xterm 

$ sudo apt-get install uboot-mkimage 



 Page 6 

March 2013  Altera Corporation 

 

If a different installation method was used (e.g from a CD) then more packages might be 

necessary. 

If the host machine runs the 64bit version of the OS, then the following additional packages 

need to be installed: 

$ sudo apt-get install ia32-libs 

Setup Yocto 

1. Download the linux-socfpga-13.02-src.bsx source package. 

2. Install the package. It should be installed in a publicly accessible location, as this step can be 

shared by all users on the system (or on the filesystem if your company is using a network 

share). The default install location is /opt/altera-linux. However, if you wish to use this 

location, you will likely need root access in order to access this directory.  

$ <path_to_downloaded_file>/linux-socfpga-13.02-src.bsx 

/opt/altera-linux 

3. Install a local set of yocto recipes. This could be done in a shared location, but if someone 

wants or needs to modify them they should have their own version. The default install 

location for this is within your home directory.  

$ /opt/altera-linux/bin/install_altera_socfpga_src.sh ~/yocto-

13.02 

4. Create a build directory. By keeping this separate from your yocto source you can erase 

your entire build without fear of deleting your yocto sources. Also, you can have several 

build directories, each with its own configuration, all based on the same yocto source. The 

script serves 2 purposes. First, it creates the new build directory using Altera’s default 

configuration. Secondly, it sets some shell variables that are required for building. If you 

start a new shell you will need to run these commands to set these shell variables again.  

$ cd ~/yocto-13.02/ 

$ source altera-init ~/yocto-13.02/build 

Build kernel/rootfs/u-boot 

In order to build u-boot from within the build directory:  

$ bitbake u-boot  

In order to build linux from within the build directory:  

$ bitbake linux-altera  

In order to build the root filesystem:  



 Page 7 

March 2013  Altera Corporation 

$ bitbake altera-image  

The first time may take up to several hours depending on your host machine. Once finished, all 

images should be generated in ~/build/tmp/deploy/images. 

 



 Page 8 

March 2013  Altera Corporation 

Programming Flash 

To boot the linux images on SoC FPGA development kit, you need to write the images you just 

built with Yocto into one of the three Flash devices: SDMMC, NAND and QSPI. For this guide, we 

will use SDMMC due to its easy detachability. For SDMMC boot, all boot images will be located 

inside SD/MMC card. 

A script is provided with the release that will create an SD card image, ready to be deployed. 

Requirements 

The script relies on a tool, named mkpimage, which creates the correct preloader image that 

the SoCFPGA Boot ROM accepts.  This tool is provided with the SoCEDS release and must be on 

your search path (PATH). To find out, run: 

$ which mkpimage 

The SoC EDS toolset provides the embedded_command_shell.sh script that sets all necessary 

PATH entries for the included tools. Please run it if the mkpimage is not in the PATH. 

The SD image script needs to be run with root privileges, using sudo command. By default, 

when sudo is invoked, it uses a default PATH variable, which may not have the SoC EDS PATH 

entries. In this case the tool would fail reporting it could not find the mkpimage tool. In order to 

avoid this problem, please instruct sudo to preserve the current PATH, by executing the 

following command: 

$ sudo viso 

and removing resetting environment and adding the PATH to the list of environment variables 

to be kept: 

#Defaults env_reset 

Defaults  env_keep = "... PATH" 

Alternatively the sudo can be instructed from command line to keep the current path: 

$ sudo PAT=$PATH … 

Usage 

The provided tool, named make_sdimage.sh, will create a 2GB SD card image, with three 

partitions: 

 p1, being a FAT partition when the kernel and the device tree are located, 

 p2, the Linux root file system, as an ext3 partition, 



 Page 9 

March 2013  Altera Corporation 

 p3, the partition used by the SoCFPGA ROM to load the preloader. The same partition is 

used by the preloader to load the u-boot image. 

Here's how the script is used: 

$ sudo make_sdimage.sh \ 

        -k uImage,socfpga.dtb \ 

        -p u-boot-spl-socfpga_cyclone5.bin \ 

        -b u-boot-socfpga_cyclone5.img \ 

        -r fs \ 

        -o sd_image.bin 

Where: 

-k accepts a comma separated list of files. Here, we show the kernel and the device tree 

blob. 

-p the preloader raw binary, as generated by Yocto or the U-Boot Makefile 

-b the bootloader image, as generated by Yocto or the U-Boot Makefile 

-r the directory where the file system is located. 

-o the image name 

In case you need help, please run: 

$ make_sdimage.sh -h. 

The following presents a complete script usage: 

$ cd ~/yocto/build/tmp/deploy/images 

$ sudo /opt/altera-linux/bin/make_sdimage.sh \ 

-k uImage,socfpga_cyclone5.dtb \ 

-p u-boot-spl-socfpga_cyclone5.bin \ 

-b u-boot-socfpga_cyclone5.img \ 

-r ~/yocto/build/tmp/work/socfpga_cyclone5-poky-linux-

gnueabi/altera-image-1.0-r0/rootfs \ 

-o sd_image.bin 

The log messages will be similar with the following: 

make_sdimage.sh: info: creating image file... 

make_sdimage.sh: info: creating partition table... 

make_sdimage.sh: info: clean up... 

make_sdimage.sh: info: creating preloader/bootloader image... 

make_preloader_img.sh: info: using preloader 

/home/dumitru/yocto/build/tmp/deploy/images/u-boot-spl-

socfpga_cyclone5.bin 

make_preloader_img.sh: info: clean up... 



 Page 10 

March 2013  Altera Corporation 

make_preloader_img.sh: info: done. 

make_sdimage.sh: info: copying preloader image and bootloader to 

partition... 

make_sdimage.sh: info: copying OS files, etc... 

make_sdimage.sh: info: creating root file system... 

make_sdimage.sh: info: cleaning up (rfs)... 

 



 Page 11 

March 2013  Altera Corporation 

Booting Linux on the SoC FPGA CV Devkit 

1. Make sure that following shunts/shorting jumpers are installed as described below. Pictures 

are shown for clarity here as well.   

 Clock select CLKSELx:  

o J26, J27: set toward the power switch  

 Boot select BOOTSELx: 

o J28, J29: set toward the power switch 

o J30: set away from the power switch  

 Rest of jumper settings: 
 

Number Name Setting 

J5 9V Open 

J6 JTAG_HPS_SEL Open 

J8 JTAG_SEL Shorted 

J9 UART Signals Open 

J13 OSC1_CLK_SEL Shorted 

J15 JTAG_MIC_SEL Open 

J31 SPI_I2C Open 

 

 



 Page 12 

March 2013  Altera Corporation 

 

2. Make sure the DIP switches are configured as described below and shown in the following 

pictures:  

 SW1 = all switches set toward the board edge.  

 SW2 = all switches set away from the corner of the board.  

 SW3 = all switches set toward the board edge.  

 SW4 = JTAG ENABLE.  

o Each switch enables a connection to the scan chain when its corresponding 

switch is set away from the board edge (off).  

o Set for programming the FPGA using the on-board USB Blaster II = 

ON/OFF/ON/OFF, leaving the FPGA and MAX connected to JTAG.  

 

 



 Page 13 

March 2013  Altera Corporation 

 

3. Use a mini-USB to USB cable to connect “UART” on the board to the host PC (May need to 

install Cypress UART-to-USB driver) 

4. Power on the board (19V power supply!)  

5. Open a serial terminal program (i.e. minicom) and set the baudrate to 57600/8-N-1 

6. With the microSD card slotted in, observe Linux booting on the UART console. 



 Page 14 

March 2013  Altera Corporation 

 

7. Login as “root” with no password and you are good to go! 

 



 Page 15 

March 2013  Altera Corporation 

 “Hello World” Linux application using solo Linaro toolchain 

Build “Hello World” Linux application 

1. In your host linux machine, write a simple Hello World application called helloworld.c 

 

#include <stdio.h> 

 

int main(int argc, 

void** argv){ 

    printf(“Hello 

World!\n”); 

    return 0; 

} 

 

2. Set up linux host environment for linaro cross-compiler. Ex 

% export PATH=<your extracted bsp package location>/linaro/gcc-

linaro-arm-linux-gnueabihf-4.7-2012.11-20121123_linux/bin>:$PATH 

An example of the command if you installed at the default /opt/altera-linux: 

% export PATH=/opt/altera-linux/linaro/gcc-linaro-arm-linux-

gnueabihf-4.7-2012.11-20121123_linux/bin:$PATH 

3. Build helloworld.c with the Linaro cross-compiler 

% arm-linux-gnueabihf-gcc –o helloworld helloworld.c 

4. Connect the target board to the same network as your host machine 

5. Set up Ethernet interface on the target (if the DHCP server in your network did not 

automatically configured an IP address) 

% ifconfig eth0 <static IP address in the same subnet as your 

host machine and not used> 

6. Set up TFTP server on the host and copy helloworld ELF file to the server folder (e.g. 

/tftpboot) 

7. Transfer helloworld ELF to the running eLinux by issuing following command on the target 

% tftp –g <host IP> -r helloworld 

8. Run helloworld on the target: 

% chmod +x helloworld 



 Page 16 

March 2013  Altera Corporation 

% ./helloworld 

Debug “Hello World” Linux application 

1. Run GDBSERVER on the helloworld ELF in the target  

% cd <directory of helloworld ELF> 

% /usr/bin/gdbserver host:<port of your choice> ./helloworld 

2. Run GDB client in the host 

% cd <directory of helloworld ELF> 

% arm-linux-gnueabihf-gdb ./helloworld 

3. In GDB command line, connect to the target via TCP/IP 

% target remote <target IP>:<the port you chose> 

4. Now you can use execute standard GDB operations such as breakpoint and single stepping. 

Typical commands are: 

 ‘s’ for step into a function 

 ‘n’ for next instruction 

 ‘b’ for breakpoint 

 


	Document Revision History
	Overview
	Introduction
	Release Contents and Location
	Prerequisites

	Build Yocto
	Host Setup
	CentOS
	Ubuntu

	Setup Yocto
	Build kernel/rootfs/u-boot

	Programming Flash
	Requirements
	Usage

	Booting Linux on the SoC FPGA CV Devkit
	“Hello World” Linux application using solo Linaro toolchain
	Build “Hello World” Linux application
	Debug “Hello World” Linux application


