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Chapter 1

Introduction

TheMIPS64 5K Processor Core Family Integrator’s Guideis targeted for the ASIC designer who is integrating a
version of the MIPS64 5K processor core into his/her system ASIC. This document is applicable to both those inte
who are using a hard core and those who are integrating a soft core.

The following chapters describe the interface to the 5K core, including descriptions of the pins of the core as w
description of the protocols used:

• Chapter2 describes the external system bus, EC™ interface, of the core.

• Chapter3  describes the general system control signals used by the core.

• Chapter4  describes the COP interface used by the core for attaching tightly coupled coprocessor units.

• Chapter5  describes the EJTAG interface used by the core, including the EJTAG TAP interface and controller

• Chapter6  describes the internal scan and memory test interface used by the core for production test.

• Chapter7  describes how to properly clock and reset the core. Reset and power management is also covered
chapter.
MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 1
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Chapter 2

EC Interface

This chapter describes the 5K EC interface, which allows the 5K core access to instruction and data memory as
I/O devices. It contains the following sections:

• Section 2.1, "Introduction"

• Section 2.2, "EC Interface Signal Descriptions"

• Section 2.3, "Interface Transactions"

• Section 2.4, "External Write Buffers"

• Section 2.5, "Endianess"

• Section 2.6, "Lower Address Bits"

2.1 Introduction

The EC interface is implemented in the 5K core as follows:

• Data buses are 64 bits wide

• Address lines EB_A[35:3] are used

• The maximum number of outstanding transactions is 16 (8 reads and 8 writes).

Also note the following 5K-specific feature: on a WAIT instruction, the 5K core waits until the internal write buffe
empty before entering low-power mode.

2.1.1 Features

The 64-bit implementation of the EC interface has the following features:

• 64-bit data buses

• 36-bit addressing

• Separate read and write data buses

• All signals are unidirectional—no bidirectional or 3-state buses

• Fully registered, synchronous interface to the 5K core

• Separate read and write bus error indications

• Separate address and data phases allow pipelining on the interface

• No limit on the number of outstanding transactions

• Number of outstanding transactions can be limited by the external logic

• Support for variable burst length

• Sequential or sub-block ordering burst address sequences

• Indication of first and last address phase of a burst

• Request for emptying external write buffers and indication of external write buffers being empty
MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 3
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• Byte enable indication

• Indication of instruction read (fetch)

• Address and data phases can complete the same cycle they are initiated (zero wait states)

• No limit on the number of wait states in address and data phases

• Independent read and write data phases. A read transaction can overtake a write transaction and vice versa

• Only one 5K core and one external logic

2.1.2 Basic Operation

All inputs to the 5K core are sampled at the rising edge of the SI_ClkIn signal. Further the outputs from the 5K
change with respect to a rising edge of the SI_ClkIn signal.

The EC interface does not include a signal to indicate reset. Therefore to reset the EC interface, reset the 5K c
the external logic simultaneously. Whenever the EC interface is reset, all transactions are aborted and the bus re
the idle state. EB_ARdy, EB_AValid, EB_WDRdy, EB_RdVal, EB_Burst, EB_BFirst, EB_BLast, EB_RBErr, and
EB_WBErr must be driven inactive during reset.

Each transaction on the EC interface has anaddress phase and adata phase, which can have a number of wait states.

A wait state in the address phase is named anaddress wait state and is defined as a clock cycle where EB_AValid is
asserted and EB_ARdy was sampled deasserted in the beginning of the cycle.

An address phase begins in the clock cycle where the 5K core asserts EB_AValid. An address phase ends on the
clock edge following an asserted sample of EB_ARdy. For maximum speed (no address wait states), EB_ARd
be sampled asserted on the positive clock edge preceding the beginning of the address phase. During an addre
all signals driven by the 5K core are unchanged and stable (except from the write data bus, EB_WData).

Due to the separate read and write data buses, two types of data phases exist: the read data phase and the write d

A wait state in a data phase is named adata wait state. It is defined as a clock cycle where the corresponding addre
phase has been started (and possibly ended) and:

• For a write data phase, EB_WDRdy is sampled deasserted at the beginning of the cycle

• For a read data phase, EB_RdVal is sampled deasserted at the end of the cycle

A read data phase begins in the clock cycle where the 5K core starts the corresponding read address phase. Ho
there are outstanding read data phases when the read address phase begins, the corresponding read data pha
start until all of the preceding read data phases have ended. The read data phase ends at the positive clock ed
EB_RdVal is sampled asserted. It can not end earlier than when the corresponding address phase ends.

A write data phase begins in the clock cycle where the 5K core starts the corresponding write address phase. H
if there are outstanding write data phases when the write address phase begins, the corresponding write data ph
not start until all of the preceding write data phases have ended. The write data phase ends at the positive cloc
following the positive clock edge where EB_WDRdy is sampled asserted. For maximum speed (no data wait st
EB_WDRdy must be asserted on the positive clock edge preceding the beginning of the corresponding address p
cannot end earlier than the corresponding address phase ends.

From these definitions, for a given transaction the number of data wait states must be greater than or equal to the
of address wait states.
4 MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01



2.2 EC Interface Signal Descriptions

s. A
2.2 EC Interface Signal Descriptions

This section describes the signals of the 5K processor core’s EC Interface.Table 2-1 provides the pin direction key for
the signal descriptions. Note that all outputs are driven directly from flops and all inputs are input directly to flop
clock cycle begins on a rising edge and ends just before the next rising edge.

The signals are described inTable 2-2. Note that the signals are listed alphabetically.

Table 2-1 Signal Direction Key

Dir Description

I Input to the 5K core. Unless otherwise noted, input signals are sampled on the rising edge of
the appropriate CLK signal.

O Output from the 5K core. Unless otherwise noted, output signals are driven on the rising edge
of the appropriate CLK signal.

SI Static input to the 5K core. These signals are normally tied to either power or ground and should
not change state while SI_Reset is deasserted.

Table 2-2 EC Interface Signals

Signal Name Dir Description

EB_A[35:3] O Address bus. Only valid when EB_AValid is asserted.

EB_ARdy I
Assertion of this signal indicates whether the external logic is ready for a new
address. The 5K core does not complete the address phase until the clock cycle
after EB_ARdy is sampled asserted.

EB_AValid O
Assertion of this signal indicates that the values on the address bus and access
type lines are valid (signifying an address phase is ongoing). EB_AValid is
always valid and cannot be deasserted between address phases within a burst.
MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 5
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EB_BE[7:0] O

Indicates which bytes of the EB_RData or EB_WData buses are involved in the
data phase corresponding to the current address phase. If an EB_BE signal is
asserted, the associated byte is being read or written. EB_BE lines are only valid
while EB_AValid is asserted.

During bursts all lines must be asserted.

The table below lists the values that EB_BE can take.

EB_BFirst O Assertion of this signal indicates the address phase is the first address phase of
a burst. EB_BFirst is always valid.

EB_BLast O
Assertion of this signal indicates the address phase is the last address phase of
a burst. Note that the time for assertion of EB_BLast is determined by use of
EB_Burst, EB_BFirst, and EB_BLen. EB_BLast is always valid.

EB_BLen[1:0] O

EB_BLen[1:0] indicate the length (number of address/data phases) of the burst.
This signal is an implementation-specific static output.

EB_Burst O Assertion of this signal indicates that the current address phase is for a cache fill
or a write burst. EB_Burst is always valid.

EB_BusClkActive I Must be driven HIGH

EB_EWBE I

Indicates that all external write buffers are empty. The external write buffers
must deassert EB_EWBE in the cycle following the assertion of the
corresponding EB_WDRdy and keep EB_EWBE deasserted until the external
write buffers are empty. SeeSection 2.4, "External Write Buffers" on page 22
for more details.

Table 2-2 EC Interface Signals (Continued)

Signal Name Dir Description

Byte enables supported

00000001 00000010 00000100 00001000

00010000 00100000 01000000 10000000

11000000 00110000 00001100 00000011

11100000 01110000 00001110 00000111

11110000 00001111 11111000 00011111

11111100 00111111 11111110 01111111

11111111

EB_BE
Signal

Read Data Bits
Sampled

Write Data Bits
Driven Valid

EB_BE[0] EB_RData[7:0] EB_WData[7:0]

EB_BE[1] EB_RData[15:8] EB_WData[15:8]

EB_BE[2] EB_RData[23:16] EB_WData[23:16]

EB_BE[3] EB_RData[31:24] EB_WData[31:24]

EB_BE[4] EB_RData[39:32] EB_WData[39:32]

EB_BE[5] EB_RData[47:40] EB_WData[47:40]

EB_BE[6] EB_RData[55:48] EB_WData[55:48]

EB_BE[7] EB_RData[63:56] EB_WData[63:56]

EB_BLength[1:0] Burst Length

0 reserved

1 4

2 reserved

3 reserved
6 MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01
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2.3 Interface Transactions

The 5K core implements a unidirectional data-bus mode that uses separate busses for each direction. EB_RD
is used for read operations, and EB_WData[63:0] is used for write operations. The address phase of a bus tran
(all signals except the data transfer and bus error indication) is separated from the data phase (data transfer and
indication), that is, the address phase of a transaction can complete before the corresponding data phase beg

The bus transactions listed below are described in the following subsections:

• Fastest read

• Single read with wait states

• Fastest write

• Single write with wait states

• Back-to-back read

• Back-to-back write

EB_Instr O Assertion of this signal indicates that the address is for an instruction fetch as
opposed to a data read. EB_Instr is only valid when EB_AValid is asserted.

EB_RBErr I Bus error indicator for read transactions. EB_RBErr is always valid. Only assert
it in the same cycle that the corresponding EB_RdVal is asserted.

EB_RData[63:0] I Read data bus. Valid at the end of a read data phase (on the rising clock edge
where EB_RdVal is sampled asserted).

EB_RdVal I

Assertion of this signal indicates that the external logic is driving read data on
EB_RData (it ends a read data phase). EB_RdVal must always be valid.
EB_RdVal must never be asserted until after the corresponding EB_ARdy is
sampled asserted.

EB_SBlock SI
When this signal is asserted, sub-block ordering is used for addressing bursts.
When this signal is deasserted, sequential addressing is used. SeeSection 2.3.7,
"Burst Transactions" on page 18 for details.

EB_WBErr I
Bus error indicator for write transactions. EB_WBErr is always valid. Only
assert it in the cycle following an asserted sample of the corresponding
EB_WDRdy.

EB_WData[63:0] O
Write data bus. Kept unchanged and stable during a write data phase until the
write data phase ends (the positive clock edge following an asserted sample of
EB_WDRdy).

EB_WDRdy I

Assertion of this signal indicates that the external logic is ready to process a
write; it ends a write data phase and the EB_WData can change after the
positive clock edge that follows the positive clock edge where EB_WDRdy is
sampled asserted. EB_WDRdy is not sampled until the rising edge where the
corresponding EB_ARdy is sampled asserted.

EB_Write O
Assertion of this signal indicates that the address phase is for a write.
Deassertion of this signal indicates that the address phase is for a read. This
signal is only valid when EB_AValid is asserted.

EB_WWBE O

Assertion of this signal indicates that the 5K core is waiting for external write
buffers to empty. EB_WWBE can be asserted when EB_EWBE is asserted, but
if EB_EWBE is deasserted and EB_WWBE is asserted, EB_EWBE must be
asserted eventually. SeeSection 2.4, "External Write Buffers" on page 22 for
more details.

Table 2-2 EC Interface Signals (Continued)

Signal Name Dir Description
MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 7
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• Read followed by write

• Read followed by write with reordering

• Write followed by read

• Write followed by read with reordering

• Burst read

• Burst write

The 5K core supports the following outstanding bus transactions (adding up to a maximum of 16 outstanding
transactions):

• 1 burst data read (4 reads) or a single data read

• 1 burst instruction read (4 reads) or a single instruction read

• 1 eviction of a dirty line (4 writes)

• 1 accelerated write burst (4 writes) or 4 single writes

2.3.1 Single Read Transactions

Figure 2-1shows the basic timing relationships between signals during a simple (fastest) read transaction. When
core is ready to begin a bus transaction (cycle 3), the address is driven on EB_A, the associated control inform
driven on EB_Instr, EB_Burst, EB_BFirst, EB_BLast, EB_BLen, EB_Write, and EB_BE, and EB_AValid is asse
On the same rising clock edge that these signals are driven out (end of cycle 2), the EB_ARdy signal state is s
If EB_ARdy is sampled deasserted, the 5K core maintains the transaction values on the previously mentioned 
The 5K core continues driving valid and stable values on these interface signals until the rising clock edge followi
one that the EB_ARdy signal is sampled asserted.

Starting in the same cycle as the read transaction is initiated, the 5K core samples EB_RdVal, EB_RData, and
EB_RBErr. These signals are sampled on each rising clock edge until the EB_RdVal signal is sampled asserted. T
values sampled with this asserted EB_RdVal are considered valid. However, if EB_RBErr was sampled asserted
cycle, the transaction is considered failed.

Note that the data phase cannot end earlier than the corresponding address phase. EB_ARdy must be sampled
at least one clock cycle before the corresponding EB_RdVal is sampled asserted.
8 MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01
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Figure 2-1 Fastest Single Read Transaction Timing
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Figure 2-2shows an example of a read transaction with three wait states in the data phase (indicated by the dea
of EB_RdVal for three clock cycles). EB_RdVal is sampled deasserted on the rising edges at the beginning of cy
5, and 6 and then is asserted on cycle 7.

Figure 2-2 Single Read Transaction Timing (3 Data Wait States)

2.3.2 Single Write Transactions

Figure 2-3 shows a zero wait state (fastest) write transaction. Like the read transaction when a write request is 
(cycle 3), the address and control information for the transaction are driven on EB_A, EB_Instr, EB_Burst, EB_B
EB_BLast, EB_BLen, EB_Write, and EB_BE. These signals remain unchanged until the rising clock edge afte
EB_ARdy signal is sampled asserted.

The write data is driven on the write data bus, EB_WData, in same cycle as the address is driven on EB_A. Th
data is held on the bus until the rising clock edge after EB_WDRdy is sampled asserted.
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ted. If

d asserted
EB_WBErr is sampled on the first rising clock edge after the rising clock edge that EB_WDRdy is sampled asser
EB_WBErr is asserted at this time, the bus transaction is considered failed.

Note that the data phase cannot end earlier than the corresponding address phase. EB_WDRdy must be sample
on the same clock edge or later than the clock edge where the corresponding EB_ARdy is sampled asserted.

Figure 2-3 Fastest Single Write Transaction Timing
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Figure 2-4 shows an example of a write transaction with four data wait states, indicated by the deassertion of th
EB_WDRdy signal. EB_WDRdy is deasserted for four clock cycles, and then asserted. Note that the address p
prolonged by one clock cycle because EB_ARdy is deasserted for one clock cycle (sampled deasserted at the end
2).

Figure 2-4 Single Write Transaction Timing (1 Address Wait State and 4 Data Wait States)
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2.3.3 Back-to-back Read Transactions

Figure 2-5 shows an example of two consecutive read transactions, which shows the ability to pipeline read add
independent of data wait states. Through manipulation of the EB_ARdy signal, the external logic can limit the de
the address pipelining.

Figure 2-5 Back-to-back Read Transaction Timing

RD1

1 2 3 4 5 6 7 8 109

SI_ClkIn

EB_A

EB_Instr

EB_AValid

EB_ARdy

EB_BE

Cycle #

EB_Write

A1

Valid

BE1

EB_Burst

EB_BFirst

EB_BLast

EB_BLen Valid

EB_RData

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr

EB_WDRdy

RD2

Valid

A2

BE2

Valid
MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 13



Chapter 2 EC Interface

write
2.3.4 Back-to-back Write Transactions

Figure 2-6shows an example of two consecutive write transactions. Similar to the read transactions, pipelining of
addresses can occur regardless of data wait states.

Figure 2-6 Back-to-back Write Transaction Timing
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2.3.5 Read Transaction Followed by a Write Transaction

Figure 2-7 shows the relationship between a read transaction and a subsequent write transaction. A write trans
following a read transaction behaves as described for the single write transaction. Completion of these transacti
of order is allowed.

Figure 2-7 Read Transaction Followed by a Write Transaction
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s
Figure 2-8 shows an example of a read transaction followed by a write transaction where the write transaction i
completed prior to the read transaction (out of order).

Figure 2-8 Read Transaction Followed by a Write Transaction with Reordering
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2.3.6 Write Transaction Followed by a Read Transaction

Figure 2-9shows an example of a write transaction followed by a read. As in the case of a write following a read, a
transaction following a write transaction is not affected by the behavior of the write transaction. Completion of t
transactions out of order is allowed.

Figure 2-9 Write Transaction Followed by a Read Transaction
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 the last
Figure 2-10 shows an example of a write transaction followed by a read transaction where the read transaction 
completed prior to the write transaction (out of order).

Figure 2-10 Write Transaction Followed by a Read Transaction with Reordering

2.3.7 Burst Transactions

A burst transaction initiates the transfer of multiple related transfers. Read bursts are used to read data to be p
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address phase and is deasserted with all prior address phases. Apart from EB_Burst, EB_BFirst and EB_BLast b
and the deterministic address sequence, the multiple transfers of a burst transaction behave like that of back-t
single transactions, which simplifies interfacing to systems that do not support burst transactions. Note that it is p
in the presence of data wait states, for all of the burst address phases to complete before the first data phase of
(or even of a preceding transaction) has completed. If this behavior is undesirable, EB_ARdy can be used to con
pace at which the addresses are transferred.

Note that EB_AValid cannot be deasserted between address phases within a burst and that all bits in EB_BE m
asserted in all address phases within a burst.

Figure 2-11 shows an example of a read burst transaction. EB_BLen indicates the length of the burst (seeSection 2.2,
"EC Interface Signal Descriptions" on page 5 for further information on EB_BLen). The data requested is always a
aligned block according to the EB_BLen signal. The order of the words within the block varies depending on which
in the block is being requested and the value of EB_SBlock (seeTable 2-3andTable 2-4for further information on the
refill scheme).
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Figure 2-11 Burst Read Transaction Timing

Table 2-3 andTable 2-4 show the possible sequences for the least significant address bits during a burst.

Table 2-3 Burst Order for Sequential Ordering (4 Beat Bursts)

ReqDWord
Address

(EB_A[4:3]) Sequence

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2
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Table 2-4 Burst Order for Sub-block Ordering (4 Beat Bursts)

ReqDWord
Address

(EB_A[4:3]) Sequence

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0
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Figure 2-12shows a burst write. Burst write transactions are used to empty write buffers. Write burst addresses a
start at the lowest address of an address block according to the EB_BLen indication.

Note that like single transactions, burst read and write transactions can complete out of order. Burst reads can o
burst writes and vice versa.

Figure 2-12 Burst Write Transaction Timing
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two-signal interface that allows software to have some control over the external write buffers. The SYNC instruct
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of a SYNC instruction, the 5K core completes all pending read requests and flush the internal write buffer. The 5K
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also asserts EB_WWBE to signal to the system that it is Waiting for the Write Buffer Empty signal. The SYNC
instruction does not complete until the EB_EWBE input is asserted.

In most systems you can tie EB_EWBE high. Just using EB_WWBE does not ensure coherency. If a write is in
external write buffer, the core can generate a read request to the given address without asserting EB_WWBE (
the core has no knowledge of the external write buffers). Therefore, any write buffers in the system must maint
coherency with reads.

The EB_WWBE/EB_EWBE interface can be used to make SYNCs “harder” by forcing the flush of the external
buffers in addition to flushing internal write buffers.

This method is a system/software design issue—you need to decide what if anything you want the system to do
SYNC instruction is executed.

2.5 Endianess

To help understand the use of endianess,Table 2-5 shows some cases of how stores appear on the EC interface in
little-endian and big-endian mode.

Table 2-5 Endian Examples

Internal
Addr[2:0]

Big-endian Little-endian

EB_D[63:0] EB_BE
[7:0]

EB_D[63:0] EB_BE
[7:0]

lui t0, 0x0123
ori t0, t0, 0x4567
dsll t0, t0, 16
ori t0, t0, 0x89ab
dsll t0, t0, 16
ori t0, t0, 0xcdef

sb t0, 0x0(r0) 0 0xefXXXXXXXXXXXXXX 10000000 0xXXXXXXXXXXXXXXef 00000001

sb t0, 0x1(r0) 1 0xXXefXXXXXXXXXXXX 01000000 0xXXXXXXXXXXXXefXX 00000010

sb t0, 0x2(r0) 2 0xXXXXefXXXXXXXXXX 00100000 0xXXXXXXXXXXefXXXX 00000100

sb t0, 0x3(r0) 3 0xXXXXXXefXXXXXXXX 00010000 0xXXXXXXXXefXXXXXX 00001000

sb t0, 0x4(r0) 4 0xXXXXXXXXefXXXXXX 00001000 0xXXXXXXefXXXXXXXX 00010000

sb t0, 0x5(r0) 5 0xXXXXXXXXXXefXXXX 00000100 0xXXXXefXXXXXXXXXX 00100000

sb t0, 0x6(r0) 6 0xXXXXXXXXXXXXefXX 00000010 0xXXefXXXXXXXXXXXX 01000000

sb t0, 0x7(r0) 7 0xXXXXXXXXXXXXXXef 00000001 0xefXXXXXXXXXXXXXX 10000000

sh t0, 0x0(r0) 0 0xcdefXXXXXXXXXXXX 11000000 0xXXXXXXXXXXXXcdef 00000011

sh t0, 0x2(r0) 2 0xXXXXcdefXXXXXXXX 00110000 0xXXXXXXXXcdefXXXX 00001100

sh t0, 0x4(r0) 4 0xXXXXXXXXcdefXXXX 00001100 0xXXXXcdefXXXXXXXX 00110000

sh t0, 0x6(r0) 6 0xXXXXXXXXXXXXcdef 00000011 0xcdefXXXXXXXXXXXX 11000000

swl t0, 0x1(r0) 1 0xXX89abcdXXXXXXXX 01110000 0xXXXXXXXXXXXX89ab 00000011

swl t0, 0x2(r0) 2 0xXXXX89abXXXXXXXX 00110000 0xXXXXXXXXXX89abcd 00000111

swl t0, 0x5(r0) 5 0xXXXXXXXXXX89abcd 00000111 0xXXXX89abXXXXXXXX 00110000
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2.6 Lower Address Bits

Figure 2-13 shows a Verilog example of how the lower address bits can be generated for use with a SysAD inte
Note that this case requires that only the default EB_BE patterns are used.

swl t0, 0x6(r0) 6 0xXXXXXXXXXXXX89ab 00000011 0xXX89abcdXXXXXXXX 01110000

swr t0, 0x1(r0) 1 0xcdefXXXXXXXXXXXX 11000000 0xXXXXXXXXabcdefXX 00001110

swr t0, 0x2(r0) 2 0xabcdefXXXXXXXXXX 11100000 0xXXXXXXXXcdefXXXX 00001100

swr t0, 0x5(r0) 5 0xXXXXXXXXcdefXXXX 00001100 0xabcdefXXXXXXXXXX 11100000

swr t0, 0x6(r0) 6 0xXXXXXXXXabcdefXX 00001110 0xcdefXXXXXXXXXXXX 11000000

sw t0, 0x0(r0) 0 0x89abcdefXXXXXXXX 11110000 0xXXXXXXXX89abcdef 00001111

sw t0, 0x4(r0) 4 0xXXXXXXXX89abcdef 00001111 0x89abcdefXXXXXXXX 11110000

sdl t0, 0x1(r0) 1 0xXX0123456789abcd 01111111 0xXXXXXXXXXXXX0123 00000011

sdl t0, 0x2(r0) 2 0xXXXX0123456789ab 00111111 0xXXXXXXXXXX012345 00000111

sdl t0, 0x3(r0) 3 0xXXXXXX0123456789 00011111 0xXXXXXXXX01234567 00001111

sdl t0, 0x4(r0) 4 0xXXXXXXXX01234567 00001111 0xXXXXXX0123456789 00011111

sdl t0, 0x5(r0) 5 0xXXXXXXXXXX012345 00000111 0xXXXX0123456789ab 00111111

sdl t0, 0x6(r0) 6 0xXXXXXXXXXXXX0123 00000011 0xXX0123456789abcd 01111111

sdr t0, 0x1(r0) 1 0xcdefXXXXXXXXXXXX 11000000 0x23456789abcdefXX 11111110

sdr t0, 0x2(r0) 2 0xabcdefXXXXXXXXXX 11100000 0x456789abcdefXXXX 11111100

sdr t0, 0x3(r0) 3 0x89abcdefXXXXXXXX 11110000 0x6789abcdefXXXXXX 11111000

sdr t0, 0x4(r0) 4 0x6789abcdefXXXXXX 11111000 0x89abcdefXXXXXXXX 11110000

sdr t0, 0x5(r0) 5 0x456789abcdefXXXX 11111100 0xabcdefXXXXXXXXXX 11100000

sdr t0, 0x6(r0) 6 0x23456789abcdefXX 11111110 0xcdefXXXXXXXXXXXX 11000000

sd t0, 0x0(r0) 0 0x0123456789abcdef 11111111 0x0123456789abcdef 11111111

Table 2-5 Endian Examples (Continued)

Internal
Addr[2:0]

Big-endian Little-endian

EB_D[63:0] EB_BE
[7:0]

EB_D[63:0] EB_BE
[7:0]
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Figure 2-13 Example of Generating Low Address Bits

// Low address bit generation
   wire [2:0]  my_a_2_0 = (BigEndian == 1’b1
                          ?
                                // big endian
                                (EB_BE[7] ? 2’d0 :
                                 EB_BE[6] ? 2’d1 :
                                 EB_BE[5] ? 2’d2 :
                                 EB_BE[4] ? 2’d3 :
                                 EB_BE[3] ? 2’d4 :
                                 EB_BE[2] ? 2’d5 :
                                 EB_BE[1] ? 2’d6 :
                                            2’d7)
                          :
                                // little endian
                                (EB_BE[0] ? 2’d0 :
                                 EB_BE[1] ? 2’d1 :
                                 EB_BE[2] ? 2’d2 :
                                 EB_BE[3] ? 2’d3 :
                                 EB_BE[4] ? 2’d4 :
                                 EB_BE[5] ? 2’d5 :
                                 EB_BE[6] ? 2’d6 :
                                            2’d7)
                          ;
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Chapter 3

System Interface

This chapter describes the 5K System Interface. It contains the following sections:

• Section 3.1, "Introduction"

• Section 3.2, "System Interface Signal Descriptions"

3.1 Introduction

The 5K core’s system interface provides communication between the 5K core and external logic:

• System clock input and PLL locking feedback

• Reset and external interrupts

• Reduced power indicators

• Static configuration input signals

• Performance monitoring indicators

The 5K core implements the same bus interface as the MIPS32 4K processor cores, with the following excepti

• The 5K core has the input SI_PRIdOpt[7:0] and the 4K core does not. These inputs are loaded into the uppe
bits of the CP0 PrID register. On the 4K core, this information was a compile-time option. On the 5K core, custo
can change the values when they hook up the core.

• The 5K core does not have the SI_MergeMode input and the 4K core does. This input is not needed becaus
core does not implement transaction merging on the EC Interface.

3.2 System Interface Signal Descriptions

This section describes the signal interface of the 5K processor core. The pin direction key for the signal descript
shown inTable 3-1.

The signals are listed by function inTable 3-2 below.

Table 3-1 Signal Direction Key

Dir Description

I Input to the 5K core. Unless otherwise noted, input signals are sampled on the rising edge of
the appropriate CLK signal.

O Output from the 5K core. Unless otherwise noted, output signals are driven on the rising edge
of the appropriate CLK signal.

S Static input to the 5K core. These signals are normally tied to either power or ground and do
not change state while SI_ColdReset is deasserted.
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Table 3-2 System Interface Signal Descriptions

Signal Name Type Description

System Interface

SI_ClkIn I
Clock input. All inputs and outputs, except a few of the EJTAG
signals, are sampled and/or driven relative to the rising edge of
this signal.

SI_ClkOut O
Reference clock for the External Bus Interface. This clock signal
provides a reference for de-skewing any clock insertion delay
created by the internal clock buffering in the 5K core.

SI_ColdReset I

Hard reset signal. This signal must be asserted during either a
power-on reset or a cold reset. The assertion of SI_ColdReset
completely initializes the internal state machines of the 5K core
without saving any state information. To get predictable results
during a reset operation, the power supply must be stable and the
SI_ClkIn input clock to the 5K core running before
SI_ColdReset is deasserted. When SI_ColdReset is deasserted, a
reset exception is taken by the 5K core.

SI_Endian S

Indicates the base endianess of the 5K core.

SI_SimpleBE[1:0] S Reserved, must be tied to 2’b00.

SI_ERL O

This signal reflects the state of the ERL bit in the CP0 Status
register and indicates the error level. The 5K core asserts SI_ERL
whenever a Reset, Soft Reset, NMI, or Cache Error exception is
taken.

SI_EXL O

This signal represents the state of the EXL bit in the CP0 Status
register and indicates the exception level. The 5K core asserts
SI_EXL whenever a non-debug, Reset, Soft Reset, NMI, or
Cache Error exception is taken.

SI_Int[5:0] I When asserted, these signals indicate the corresponding interrupt
request to the 5K core.

SI_NMI I

When first sampled asserted, this signal causes the 5K core to
take an NMI exception. After the NMI exception is taken,
SI_NMI must be deasserted before it can cause another NMI
exception.

SI_PRIdOpt[7:0] I These signals are used as the upper eight bits of the CP0 PrID
register.

SI_Reset I

Warm reset signal. This signal must be asserted for a warm reset
When asserted, a soft reset exception is asserted to the 5K core.
A warm reset operation restarts the 5K core but preserves some
internal states.

SI_RP O This signal represents the state of the RP bit in the CP0 Status
register.

SI_SimpleBE[1:0] S Reserved. Must be tied to ground.

SI_Sleep O
The 5K core asserts this signal whenever the WAIT instruction is
executed. The assertion of this signal indicates that the clock has
stopped and that the 5K core is in power-down mode.

EB_Endian Base Endian Mode

0 Little Endian

1 Big Endian
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SI_TimerInt O
This signal is asserted when the Count and Compare registers
first match and is deasserted when the compare register is
written.

Performance Monitoring Interface

PM_DCacheHit O This signal is asserted whenever there is a data cache hit.

PM_DCacheMiss O This signal is asserted whenever there is a data cache miss.

PM_DTLBHit O This signal is asserted whenever there is a data TLB hit.

PM_DTLBMiss O This signal is asserted whenever there is a data TLB miss.

PM_ICacheHit O This signal is asserted whenever there is an instruction cache hit.

PM_ICacheMiss O This signal is asserted whenever there is an instruction cache
miss.

PM_InstnComplete O This signal is asserted each time an instruction completes in the
pipeline.

PM_ITLBHit O This signal is asserted whenever there is an instruction TLB hit.

PM_ITLBMiss O This signal is asserted whenever there is an instruction TLB
miss.

PM_JTLBHit O This signal is asserted whenever there is a JTLB hit.

PM_JTLBMiss O This signal is asserted whenever there is a JTLB miss.

Table 3-2 System Interface Signal Descriptions

Signal Name Type Description
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Chapter 4

Coprocessor Interface

This chapter describes the coprocessor interfaces that the 5K microprocessor core supports. It contains the fo
sections:

• Section 4.1, "Introduction"

• Section 4.2, "Coprocessor Instructions"

• Section 4.3, "Coprocessor Interface Signal Descriptions"

• Section 4.4, "Coprocessor Attachment to the 5K Family"

• Section 4.5, "Interface Protocols"

4.1 Introduction

The 5K coprocessor interface allows for connection of coprocessors as follows:

• The 5Kc processor allows a single coprocessor, either Coprocessor 1 (COP1) or Coprocessor 2 (COP2), to 
connected to the integer unit.

• The 5Kf processor allows a single Coprocessor 2 (COP2) to be connected to the integer unit.

Coprocessor 1 supports floating-point operations. The function of Coprocessor 2 is undefined; it is intended to
special-purpose engines, such as a graphics accelerator, to be integrated into the architecture.

The coprocessor interface has the following features:

• The interface is easy to understand. By keeping the interface as simple as possible, designers can concentra
coprocessor’s functionality rather than its interface.

• Performance is not compromised. The coprocessor interface is compatible with the high-performance feature
5K microprocessor core.

• Minimal interface logic is required, which reduces area and power overhead.

• The interface is highly configurable:

– 32-bit or 64-bit data transfers

– COP1 or COP2 supported

– 0 or 1 out-of-order data transfers

• Fully compliant to the MIPS Core Coprocessor Interface standard.

– Supports Limited Dual Issue using two issue groups

4.2 Coprocessor Instructions

The Coprocessor Interface supports all coprocessor instructions currently defined in the MIPS32™, MIPS64™
MIPS-3D™ architecture specifications.
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These coprocessor instructions are divided into three classes.

• Instructions that perform arithmetic operations (calledArithmetic COP Ops)

• Instructions that move data into the Coprocessor (calledFrom COP Ops)

• Instructions that move data out of the Coprocessor (calledTo COP Ops)

The explicit classification of the opcodes is given below.

Arithmetic COP Ops:

• COP1 arithmetic instructions (including COP1X and MDMX instructions)

• IR[31:26] = 010001 AND IR[25] = 1

• IR[31:26] = 010011 AND IR[5:4] != 00

• IR[31:26] = 011110

• COP2 arithmetic instructions

• IR[31:26] = 010010 AND IR[25] = 1

• COP1 branch instructions (BC1 instructions)

• IR[31:26] = 010001 AND IR[25:24] = 01

• COP2 branch instructions (BC2 instructions)

• IR[31:26] = 010010 AND IR[25:24] = 01

• Conditional COP1 movement instructions (MOVF, MOVT instructions)

• IR[31:26] = 000000 AND IR[5:0] = 000001

Above COP1 arithmetic instructions include instructions that test integer processor core registers:
ALNV.PS, ALNV.fmt, MOVN.fmt and MOVZ.fmt

Above BC1, BC2, MOVF and MOVT are instructions that test coprocessor condition bits.

For the remainder of this document, the terms ’Arithmetic COP Op’ and ’arithmetic instruction’ are used
interchangeably.

From COP Ops:

• COP1 From instructions (including COP1X instructions)

• IR[31:26] = 111001

• IR[31:26] = 111101

• IR[31:26] = 010001 AND IR[25:23] = 000

• IR[31:26] = 010011 AND IR[5:3] = 001 AND IR[2:0] !=111

• COP2 From instructions

• IR[31:26] = 111010

• IR[31:26] = 111110

• IR[31:26] = 010010 AND IR[25:23] = 000
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Of the above definedFrom COP Ops, following are 32-bit instructions

– COP1: MFC1, CFC1, SWC1, SWXC1

– COP2: MFC2, CFC2, SWC2

Of the above definedFrom COP Ops, following are 64-bit instructions

– COP1: DMFC1, SDC1, SDXC1, SUXC1

– COP2: DMFC2, SDC2

Remaining instructions are reserved opcodes.

To COP Ops:

• COP1 To instructions (including COP1X instructions)

• IR[31:26] = 110001

• IR[31:26] = 110101

• IR[31:26] = 010001 AND IR[25:23] = 001

• IR[31:26] = 010011 AND IR[5:3] = 000

• COP2 To instructions

• IR[31:26] = 110010

• IR[31:26] = 110110

• IR[31:26] = 010010 AND IR[25:23] = 001

Of the above definedTo COP Ops, following are 32-bit instructions

– COP1: MTC1, CTC1, LWC1, LWXC1

– COP2: MTC2, CTC2, LWC2

Of the above definedTo COP Ops, following are 64-bit instructions

– DMTC1, LDC1, LDXC1, LUXC1

– DMTC2, LDC2

Remaining instructions are reserved opcodes.

For a detailed description of above listed instructions, refer to the MIPS ISA definition or theMIPS64 5K Software
User’s Manual.

4.3 Coprocessor Interface Signal Descriptions

All of the coprocessor interface signals are described inTable 4-3, Table 4-4, Table 4-5, Table 4-6, Table 4-7, andTable
4-8. Note that the signals are grouped according to their logical function, rather than alphabetically or by their exp
physical location. The interactions of signals within these functional groups are described inSection 4.5, "Interface
Protocols".

A separate clock signal is not included in the coprocessor interface. All signals are synchronous to the 5K core
clock,SI_ClkIn .
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The following tables describe the various attributes of the signals.Table 4-1shows the direction of the I/O signal relative
to the integer processor core.Table 4-2describes how the prefix of a signal determines whether it is required for CO
COP2, or both.

Table 4-3to Table 4-8describe the 5Kc interface. Information for how to derive the COP2 interface for 5Kf can be fo
i Table 4-2. When the description of the CP_ signals in the following tables refer to signals with CP1_ prefix these s
be ignored for the 5Kf implementation.

Table 4-1 Signal Direction Key

Dir Description

In Input to the 5K core.

Out Output of the 5K core.

SIn Static Input to the 5K core. These signals are normally tied to either power or ground.

SOut Static Output of the 5K core. These signals are tied to either power or ground.

Table 4-2 Signal Coprocessor Category

Prefix Description

CP_ Always present..
These signals exist as is on 5Kc. On 5Kf these signals change prefix to CP2_.

CP1_ Only present on 5Kc.

CP2_ Always present.

Table 4-3 Combined Issue Group 0 Signals - Used for both COP1 and COP2

Signal Name Dir Description

Instruction Dispatch

CP_ir_0[31:0] Out Coprocessor Instruction Word.This bus is valid in the cycle beforeCP1_as_0 ,
CP2_as_0 , CP1_ts_0 , CP2_ts_0 , CP1_fs_0 , orCP2_fs_0  is asserted.

CP_irenable_0 Out

Enable Instruction Registering. When this signal is deasserted, no instruction
strobes are asserted in the following cycle. When this signal is asserted, there can
be an instruction strobe asserted in the following cycle. Instruction strobes include
CP1_as_0 , CP1_ts_0 , CP1_fs_0 , CP2_as_0 , CP2_ts_0 , CP2_fs_0 .

CP_order_0[2:0] Out

Coprocessor Dispatch Order. This signal signifies the program order of
instructions when more than one instruction is issued in a single cycle. Each
instruction dispatched has an order value associated with it. There must always be
one instruction whose order value is 0. Order values must increment by 1 when
more than one instruction is issued in a cycle. This signal is valid when
CP1_as_0 , CP2_as_0 , CP1_ts_0 , CP2_ts_0 , CP1_fs_0 , orCP2_fs_0
is asserted.

CP_inst32_0 Out

MIPS32 Compatibility Mode - Instructions. When this signal is asserted, the
dispatched instruction is restricted to the MIPS32 subset of instructions. Please
refer to the MIPS64 ISA specification for a complete description of MIPS32
compatibility mode. This signal is valid the cycle beforeCP1_as_0 , CP2_as_0 ,
CP1_fs_0 , CP2_fs_0 , CP1_ts_0 , orCP2_ts_0  is asserted.

CP_endian_0 Out

Big-Endian Byte Ordering. When this signal is asserted, the processor is using
big-endian byte ordering for the dispatched instruction. When this signal is
deasserted, the processor is using little-endian byte ordering. This signal is valid
the cycle beforeCP1_as_0 , CP2_as_0 , CP1_fs_0 , CP2_fs_0 , CP1_ts_0 ,
or CP2_ts_0  is asserted.
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To Coprocessor Data (For all To COP Ops)

CP_tds_0 Out Coprocessor To Data Strobe.Asserted when To COP Op data is available on
CP_tdata_0 .

CP_torder_0[2:0] Out

Coprocessor To Order. Specifies for which outstanding To COP Op the data is.
The 5K core never drives this signal to a value greater than 3’b001. This signal is
valid only whenCP_tds_0  is asserted.

CP_tordlim_0[2:0] SIn

To Coprocessor Data Out-of-Order Limit. This signal forces the integer
processor core to limit how much it can reorder To COP Data. The value on this
signal corresponds to the maximum allowed value to be used on
CP_torder_0[2:0] .

CP_tdata_0[63:0] Out
To Coprocessor Data.Data to be transferred to the coprocessor. For single-word
transfers, data is valid onCP_tdata_0[31:0] . This bus is valid when
CP_tds_0  is asserted.

From Coprocessor Data (For all From COP Ops)

CP_fds_0 In Coprocessor From Data Strobe.Asserted when From COP Op data is available
onCP_fdata_0 .

CP_forder_0[2:0] In

Coprocessor From Order. Specifies for which outstanding From COP Op the
data is. The 5K core does not support values greater than 3’b001. This signal is
valid only whenCP_fds_0  is asserted.

CP_fordlim_0[2:0] SOut

From Coprocessor Data Out-of-Order Limit. This signal forces the coprocessor
to limit how much it can reorder From COP Data. The value on this signal
corresponds to the maximum allowed value to be used onCP_forder_0[2:0] .
The 5K core drives this signal to 3’b001.

CP_fdata_0[63:0] In
From Coprocessor Data. Data to be transferred from coprocessor. For
single-word transfers, data is valid onCP_fdata_0[31:0] . This bus is valid
whenCP_fds_0  is asserted.

Table 4-3 Combined Issue Group 0 Signals - Used for both COP1 and COP2

Signal Name Dir Description

CP_torder_0 Order

3’b000 Oldest outstanding To COP Op data transfer

3’b001 2nd oldest To COP Op data transfer

3’b010 Reserved

3’b011 Reserved

3’b100 Reserved

3’b101 Reserved

3’b110 Reserved

3’b111 Reserved

CP_forder_0 Order

3’b000 Oldest outstanding From COP Op data
transfer

3’b001 Second oldest From COP Op data transfer

3’b010 Reserved

3’b011 Reserved

3’b100 Reserved

3’b101 Reserved

3’b110 Reserved

3’b111 Reserved
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Coprocessor Condition Code Check (Only for BC1, MOVCI, BC2 Ops)

CP_cccs_0 In Coprocessor Condition Code Check Strobe. Asserted when condition code
check results are available onCP_ccc_0 .

CP_ccc_0 In

Coprocessor Condition Code Check. This signal is valid whenCP_cccs_0  is
asserted. When this signal is asserted, the instruction checking the condition code
should proceed with its execution (branch or move data). When this signal is
deasserted, the instruction should not execute its conditional operation (do not
branch and do not move data).

Coprocessor Exceptions

CP_excs_0 In Coprocessor Exception Strobe.Asserted when coprocessor exception signalling
is available onCP_exc_0 .

CP_exc_0 In

Coprocessor Exception. When this signal is deasserted, the coprocessor is not
causing an exception. Assertion of this signal signifies that the coprocessor is
causing an exception. The type of exception is encoded on the signal
CP_exccode_0[4:0] . This signal is valid whenCP_excs_0  is asserted.

CP_exccode_0[4:0] In

Coprocessor Exception Code.This signal is valid whenCP_excs_0 is asserted
andCP_exc_0  is asserted.

Instruction Nullification

CP_nulls_0 Out Coprocessor Null Strobe. Asserted when a nullification signal is available on
CP_null_0 .

CP_null_0 Out

Nullify Coprocessor Instruction. When this signal is deasserted, the integer
processor core is signalling that the instruction is not nullified. When this signal is
asserted, the integer processor core is signalling that the instruction is nullified.
This signal is valid whenCP_nulls_0  is asserted.

Instruction Killing

CP_kills_0 Out Coprocessor Kill Strobe. Asserted when kill signalling is available on
CP_kill_0 .

Table 4-3 Combined Issue Group 0 Signals - Used for both COP1 and COP2

Signal Name Dir Description

CP_exccode_0 Exception

5’b01010 Reserved Instruction Exception

5’b01111 Floating-Point Exception

5’b10000 Available for implementation-specific use

5’b10001 Available for implementation-specific use

5’b10010 COP2 Exception

other values Reserved.
If other values are signalled, the operation of
the integer processor core is
UNPREDICTABLE.
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CP_kill_0[1:0] Out

Kill Coprocessor Instruction. This signal is valid whenCP_kills_0  is
asserted.

Miscellaneous

CP_reset Out Coprocessor Reset.Asserted when the integer processor core performs a hard or
soft reset. At a minimum, this signal is asserted for two cycles.

CP_idle In

Coprocessor Idle.Asserted when the coprocessor logic is idle. Enables the integer
processor core to go into sleep mode and shut down the internal integer processor
core clock. This signal is valid only ifCP1_fppresent , CP1_mdmxpresent ,
or CP2_present  is asserted.

Table 4-4 Combined Issue Group 0 Signals - Used only for COP1

Signal Name Dir Description

Instruction Dispatch

CP1_as_0 Out

Coprocessor 1 Arithmetic Instruction Strobe. Asserted in the cycle after an
Arithmetic COP1 Op instruction is available onCP_ir_0 . If CP1_abusy_0  was
asserted in the previous cycle, this signal is not asserted. In any cycle, at most one of the
following signals can be asserted at a time:CP1_as_0 , CP2_as_0 , CP1_ts_0 ,
CP2_ts_0 , CP1_fs_0 , CP2_fs_0 .

CP1_abusy_0 In
Coprocessor 1 Arithmetic Busy. When this signal is asserted, a coprocessor 1
arithmetic instruction is not dispatched.CP1_as_0 is not asserted in the cycle after this
signal is asserted.

CP1_ts_0 Out

Coprocessor 1 To Strobe. Asserted in the cycle after a To COP1 Op instruction is
available onCP_ir_0 . If CP1_tbusy_0 was asserted in the previous cycle, this signal
is not asserted. In any cycle, at most one of the following signals can be asserted at a
time:CP1_as_0 , CP2_as_0 , CP1_ts_0 , CP2_ts_0 , CP1_fs_0 , CP2_fs_0 .

CP1_tbusy_0 In To Coprocessor 1 Busy.When this signal is asserted, a To COP1 Op is not dispatched.
CP1_ts_0  is not asserted in the cycle after this signal is asserted.

CP1_fs_0 Out

Coprocessor 1 From Strobe.Asserted in the cycle after a From COP1 Op instruction is
available onCP_ir_0 . If CP1_fbusy_0 was asserted in the previous cycle, this signal
is not asserted. In any cycle, at most one of the following signals can be asserted at a
time:CP1_as_0 , CP2_as_0 , CP1_ts_0 , CP2_ts_0 , CP1_fs_0 , CP2_fs_0 .

CP1_fbusy_0 In From Coprocessor 1 Busy. When this signal is asserted, a From COP1 Op is not
dispatched.CP1_fs_0  is not asserted in the cycle after this signal is asserted.

CP1_fr32_0 Out
MIPS32 Compatibility Mode - Registers.When this signal is asserted, the dispatched
instruction uses the MIPS32-compatible register file. This signal is valid the cycle before
CP1_as_0 , CP1_fs_0  or CP1_ts_0  is asserted.

GPR Data (Only for ALNV.PS, ALNV.fmt, MOVN.fmt, MOVZ.fmt Arithmetic COP1 Ops)

CP1_gprs_0 Out GPR Strobe.Asserted when additional general-purpose register information is available
onCP1_gpr_0 .

Table 4-3 Combined Issue Group 0 Signals - Used for both COP1 and COP2

Signal Name Dir Description

CP_kill_0[1:0] Type of Kill

2’b00 Instruction is not killed and can commit
its results

2’b01

2’b10 Instruction is killed.
(not due toCP_exc_0 )

2’b11 Instruction is killed
(due toCP_exc_0 )
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CP1_gpr_0[3:0] Out

GPR Data.Supplies additional data from the integer general-purpose register file.
CP1_gpr_0[2:0]  is valid whenCP1_gprs_0  is asserted and only for ALNV.PS
and ALNV.fmt instructions.CP1_gpr_0[3] is valid whenCP1_gprs_0 is asserted
and only for MOVN.fmt and MOVZ.fmt instructions.

Miscellaneous

CP1_fppresent SIn COP1 FPU Present.Must be asserted when COP1 FPU hardware is connected to the
Coprocessor Interface.

CP1_mdmxpresent SIn COP1 MDMX Present.Must be asserted when COP1 MDMX hardware is connected
to the Coprocessor Interface.

Table 4-5 Combined Issue Group 0 Signals - Used only for COP2

Signal Name Dir Description

Arithmetic Dispatch

CP2_as_0 Out

Coprocessor 2 Arithmetic Instruction Strobe.Asserted in the cycle after an Arithmetic
COP1 Op instruction is available onCP_ir_0 . If CP2_abusy_0  was asserted in the
previous cycle, this signal is not asserted. In any cycle, at most one of the following signals
can be asserted at a time:CP1_as_0 , CP2_as_0 , CP1_ts_0 , CP2_ts_0 , CP1_fs_0 ,
CP2_fs_0 .

CP2_abusy_0 In
Coprocessor 2 Arithmetic Busy.When this signal is asserted, a coprocessor 2 arithmetic
instruction is not dispatched.CP2_as_0  is not asserted in the cycle after this signal is
asserted.

CP2_ts_0 Out

Coprocessor 2 To Strobe.Asserted in the cycle after a To COP2 Op instruction is available
onCP_ir_0 . If CP2_tbusy_0  was asserted in the previous cycle, this signal is not
asserted. In any cycle, at most one of the following signals can be asserted at a time:
CP1_as_0 , CP2_as_0 , CP1_ts_0 , CP2_ts_0 , CP1_fs_0 , CP2_fs_0 .

CP2_tbusy_0 In To Coprocessor 2 Busy.When this signal is asserted, a To COP2 Op is not dispatched.
CP2_ts_0  is not asserted in the cycle after this signal is asserted.

CP2_fs_0 Out

Coprocessor 2 From Strobe.Asserted in the cycle after a From COP2 Op instruction is
available onCP_ir_0 . If CP2_fbusy_0  was asserted in the previous cycle, this signal is
not asserted. In any cycle, at most one of the following signals can be asserted at a time:
CP1_as_0 , CP2_as_0 , CP1_ts_0 , CP2_ts_0 , CP1_fs_0 , CP2_fs_0 .

CP2_fbusy_0 In From Coprocessor 2 Busy.When this signal is asserted, a From COP2 Op is not dispatched.
CP2_fs_0  is not be asserted in the cycle after this signal is asserted.

Miscellaneous

CP2_present SIn COP2 Present.Must be asserted when COP2 hardware is connected to the Coprocessor
Interface.

CP2_tx32 SIn Coprocessor 32-bit Transfers. When this signal is asserted, the integer unit signals an RI
exception for 64-bit COP2 TF instructions. This input is static and must always be valid.

Table 4-4 Combined Issue Group 0 Signals - Used only for COP1

Signal Name Dir Description

CP1_gpr_0[2:0] RS
(Valid only for ALNV.PS, ALNV.fmt)

Binary encoded Lower 3 bits of RS register contents

CP1_gpr_0[3] RT Zero Check
(Valid only for MOVN.fmt, MOVZ.fmt)

0 RT!= 0

1 RT==0
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Table 4-6 Arithmetic Issue Group 1 Signals - Used for both COP1 and COP2

Signal Name Dir Description

Instruction Dispatch

CP_ir_1[31:0] Out Coprocessor Instruction Word. This bus is valid in the cycle beforeCP1_as_1
or CP2_as_1  is asserted.

CP_irenable_1 Out

Enable Instruction Registering. When this signal is deasserted, no instruction
strobes are asserted in the following cycle. When this signal is asserted, there can be
an instruction strobe asserted in the following cycle. Instruction strobes include
CP1_as_1  andCP2_as_1 .

CP_order_1[2:0] Out

Coprocessor Dispatch Order. This signal signifies the program order of
instructions when more than one instruction is issued in a single cycle. Each
instruction dispatched has an order value associated with it. There must always be
one instruction whose order value is 0. Order values must increment by 1 when more
than one instruction is issued in a cycle.This signal is valid whenCP1_as_1  or
CP2_as_1  is asserted.

CP_adisable_1 SIn
Inhibit Arithmetic Dispatch. When this signal is asserted, arithmetic instructions
are dispatched using Issue Group 0. When this signal is deasserted, arithmetic
instructions are dispatched using Issue Group 1.

CP_inst32_1 Out

MIPS32 Compatibility Mode - Instructions. When this signal is asserted, the
dispatched instruction is restricted to the MIPS32 subset of instructions. Please refer
to the MIPS64 architecture specification for a complete description of MIPS32
compatibility mode. This signal is valid the cycle beforeCP1_as_1 orCP2_as_1
is asserted.

CP_endian_1 Out

Big-Endian Byte Ordering. When this signal is asserted, the processor is using
big-endian byte ordering for the dispatched instruction. When this signal is
deasserted, the processor is using little-endian byte ordering. This signal is valid the
cycle beforeCP1_as_1  or CP2_as_1  is asserted.

Coprocessor Condition Code Check (Only for BC1, MOVCI, BC2 Ops)

CP_cccs_1 In Coprocessor Condition Code Check Strobe.Asserted when condition code check
results are available onCP_ccc_1 .

CP_ccc_1 In

Coprocessor Condition Code Check.This signal is valid whenCP_cccs_1  is
asserted. When this signal is asserted, the instruction checking the condition code
must proceed with its execution (branch or move data). When this signal is
deasserted, the instruction must not execute its conditional operation (do not branch
and do not move data).

Coprocessor Exceptions

CP_excs_1 In Coprocessor Exception Strobe.Asserted when coprocessor exception signalling is
available onCP_exc_1 .

CP_exc_1 In

Coprocessor Exception. When this signal is deasserted, the coprocessor is not
causing an exception. Assertion of this signal signifies that the coprocessor is
causing an exception. The type of exception is encoded on the signal
CP_exccode_1[4:0] . This signal is valid whenCP_excs_1  is asserted.
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CP_exccode_1[4:0] In

Coprocessor Exception Code.This signal is valid whenCP_excs_1  is asserted
andCP_exc_1  is asserted.

Instruction Nullification

CP_nulls_1 Out Coprocessor Null Strobe.Asserted when a nullification signal is available on
CP_null_1 .

CP_null_1 Out

Nullify Coprocessor Instruction. When this signal is deasserted, the integer
processor core is signalling that the instruction is not nullified. When this signal is
asserted, the integer processor core is signalling that the instruction is nullified. This
signal is valid whenCP_nulls_1  is asserted.

Instruction Killing

CP_kills_1 Out Coprocessor Kill Strobe.Asserted when kill signalling is available on
CP_kill_1 .

CP_kill_1[1:0] Out

Kill Coprocessor Instruction. This signal is valid whenCP_kills_1 is asserted.

Table 4-7 Arithmetic Issue Group 1 Signals - Used only for COP1

Signal Name Dir Description

Instruction Dispatch

CP1_as_1 Out

Coprocessor 1 Arithmetic Instruction Strobe.Asserted in the cycle after an arithmetic
coprocessor 1 instruction is available onCP_ir_1 . If CP1_abusy_1 was asserted in
the previous cycle, this signal is not asserted. In any cycle, at most one of the following
signals can be asserted at a time in a particular issue group:CP1_as_1 or CP2_as_1 .

CP1_abusy_1 In
Coprocessor 1 Arithmetic Busy. When this signal is asserted, a coprocessor 1
arithmetic instruction is not dispatched.CP1_as_1 is not asserted in the cycle after this
signal is asserted.

CP1_fr32_1 Out
MIPS32 Compatibility Mode - Registers.When this signal is asserted, the dispatched
instruction uses the MIPS32-compatible register file. This signal is valid the cycle before
CP1_as_1  is asserted.

Table 4-6 Arithmetic Issue Group 1 Signals - Used for both COP1 and COP2

Signal Name Dir Description

CP_exccode_1 Exception

5’b01010 Reserved Instruction Exception

5’b01111 Floating-Point Exception

5’b10000 Available for implementation-specific use

5’b10001 Available for implementation-specific use

5’b10010 COP2 Exception

other values Reserved.
If other values are signalled, the operation of
the integer processor core is
UNPREDICTABLE.

CP_kill_1[1:0] Type of Kill

2’b00 Instruction is not killed and can commit
its results

2’b01

2’b10 Instruction is killed.
(not due toCP_exc_1 )

2’b11 Instruction is killed
(due toCP_exc_1 )
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4.4 Coprocessor Attachment to the 5K Family

The coprocessor interface is designed to allow a coprocessor to be connected to the 5K integer processor core
core enables various coprocessors to be interfaced as described in this section.

The simple block diagram inFigure 4-1shows how the coprocessor interface connects a single coprocessor to an in
processor core.

Figure 4-1 Block Diagram of Coprocessor Interface

GPR Data (Only for ALNV.PS, ALNV.fmt, MOVN.fmt, MOVZ.fmt Arithmetic COP1 Ops)

CP1_gprs_1 Out GPR Strobe.Asserted when additional general-purpose register information is available
onCP1_gpr_1 .

CP1_gpr_1[3:0] Out

GPR Data.Supplies additional data from the integer general-purpose register file.
CP1_gpr_1[2:0]  is valid whenCP1_gprs_1  is asserted and only for ALNV.PS
and ALNV.fmt instructions.CP1_gpr_1[3] is valid whenCP1_gprs_1 is asserted
and only for MOVN.fmt and MOVZ.fmt instructions.

Table 4-8 Arithmetic Issue Group 1 Signals - Used only for COP2

Signal Name Dir Description

Arithmetic Dispatch

CP2_as_1 Out

Coprocessor 2 Arithmetic Instruction Strobe.Asserted in the cycle after an arithmetic
coprocessor 2 instruction is available onCP_ir_1 . If CP2_abusy_1  was asserted in the
previous cycle, this signal is not asserted. In any cycle, at most one of the following signals
can be asserted at a time in a particular issue group:CP1_as_1  or CP2_as_1 .

CP2_abusy_1 In
Coprocessor 2 Arithmetic Busy.When this signal is asserted, a coprocessor 2 arithmetic
instruction is not dispatched.CP2_as_1  is not asserted in the cycle after this signal is
asserted.

Table 4-7 Arithmetic Issue Group 1 Signals - Used only for COP1

Signal Name Dir Description

CP1_gpr_1[2:0] RS
(Valid only for ALNV.PS, ALNV.fmt)

Binary encoded Lower 3 bits of RS register contents

CP1_gpr_1[3] RT Zero Check
(Valid only for MOVN.fmt, MOVZ.fmt)

0 RT!= 0

1 RT==0

Integer

Processor Core
COP

COP I/F
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4.4.1 5Kc Coprocessor Attachment

The 5Kc processor allows a single coprocessor, either Coprocessor 1 (COP1) or Coprocessor 2 (COP2), to be co
to the integer unit.

COP1 is reserved for a floating-point coprocessor in the MIPS architecture. The coprocessor interface support
COP1, COP1X, MDMX, and MIPS-3D instructions as defined by the MIPS ISA.

The function of Coprocessor 2 is user definable and is intended to allow special-purpose engines, such as gra
accelerators, to be integrated into the architecture.

When attaching a COP1 to the 5Kc coprocessor interface, only signals with prefix CP_ and CP1_ should be us

When attaching a COP2 to the 5Kc coprocessor interface, only signals with prefix CP_ and CP2_ should be us

Unused input signals to the 5K core must be connected to their inactive states.

4.4.2 5Kf Coprocessor Attachment

The 5Kf processor allows a single Coprocessor 2 (COP2) to be connected to the integer unit.

The function of Coprocessor 2 is user definable and is intended to allow special-purpose engines, such as gra
accelerators, to be integrated into the architecture.

When attaching a COP2 to the 5Kc coprocessor interface, only signals with prefix CP_ and CP2_ should be used.
prefixed by CP_ are renamed to CP2_.

Unused input signals to the 5K core must be connected to their inactive states.

4.4.3 COP2 Data Transfer Width

The 5K core can be used with COP2 coprocessors that support either 64-bit or 32-bit data transfer widths. The
CP2_tx32  static input to the 5K core determines the width of transfers. WhenCP2_tx32  is deasserted, the 5K core
supports 64-bit transfers.

WhenCP2_tx32 is asserted, the 5K core implements 32-bit transfers. Furthermore, theCP_fdata_0[31:0] output
from the COP2 coprocessor must be connected to bothCP_fdata_0[31:0]  andCP_fdata_0[63:32]  of the
integer processor core.

Note: WhenCP2_tx32is asserted, instructions that transfer 64bits of data cause a reserved instruction exception
signalled by the integer processor core. These instructions include DMFC2, DMTC2, LDC2, and SDC2.

4.4.4 Out-of-Order Data Transfers

The 5K core supports out-of-order data transfers on both the To COP Data and From COP Data transfer interf
addition, the coprocessor interface includes handshake signals that allow the 5K core to work with coprocessors
not support out-of-order data transfers and those coprocessors that support greater out-of-order data transfers

For To COP Data, the 5K core can reorder data for one instruction. That is, the 5K core can transfer data for the
oldest outstanding data transfer as well as the oldest outstanding data transfer. However, it must limit this out-o
data transfer according toCP_tordlim_0[2:0] . By driving this signal to 3’b000, the coprocessor can disable
out-of-order To COP Data transfers.
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Similarly for From COP Data, a coprocessor can return data for up to one instruction out of order. To limit this
reordering, the 5K core drivesCP_fordlim_0[2:0] =3’b001. This signal works in a similar manner to
CP_tordlim_0 .

4.4.5 Limited Dual Issue

The 5K core employs a performance-enhancing dual issue dispatch scheme, known as “Limited Dual Issue”. Wh
possible, Arithmetic COP1/COP2 instructions will be dispatched in parallel with To/From COP1/COP2 instructio
instructions to the integer pipeline. The software aspect of this is described in depth in MIPS64 5K Processor C
Family Software User’s Manual, chapter 2.

The Limited Dual Issue scheme is implemented by duplicating certain signals of the coprocessor interface. This
specifies in detail exactly which signals were duplicated. In general, the following rules apply:

• Signals are grouped together to form an “issue group”.

• The 5K core has two issue groups:

– Issue Group 0 is a combined issue group. It includes all signals used for both arithmetic and To/From instr

– Issue Group 1 is an arithmetic issue group. It includes only signals used for arithmetic instructions.

• The signals of a particular issue group are delineated by a unique suffix of the form “_m”, wherem is the number of
the issue group. Thus, on the 5K core, all signals named <signal>_0 belong to Issue Group 0, the combined
group. All signals named <signal>_1 belong to Issue Group 1, the arithmetic issue group.

• Signals that are not associated with an issue group do not have the “_m” suffix.

The coprocessor can be designed to work in one of two modes, whichCP_adisable_1  controls.

• If CP_adisable_1  is asserted, then Issue Group 1 is disabled. Arithmetic coprocessor instructions are issu
using Issue Group 0. All instructions are single issued. Issue Group 1 input signals to the 5K core must be con
to their inactive states.

• If CP_adisable_1  is deasserted, then Issue Group 1 is enabled. Arithmetic coprocessor instructions are is
using Issue Group 1. Instructions are dual issued whenever possible.

When allowing the 5K core to dual issue COP1 or COP2 instructions, the attached coprocessor must comply to fol
rule:

When dual issuing, all transfers from the coprocessor for the youngest instruction may NOT depend on the kill tr
for the oldest instruction.

This is illustrated by following example where MUL.s and MFC1 are dual issued. The MUL.s is the oldest instruc
the MFC1 is the youngest instruction.

mul.s   fp16, fp17, fp17 // Dispatched to Issue Group 1
mfc1    r12, fp16 // Dispatched to Issue Group 0

In this example, the data transfer for the MFC1 from the coprocessor to the 5K core may NOT depend on whe
MUL.s instruction was killed and thus committed its state. The data transfer must - if necessary - happen before
information arrives from the 5K core. Otherwise the 5K core will halt.

4.5 Interface Protocols

The coprocessor interface is composed of several simple transfers:
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• Instruction Dispatch - Starts coprocessor instructions

• To COP Data - Transfers data to the coprocessor

• From COP Data - Transfers data from the coprocessor

• Coprocessor Condition Code Check- Transfers coprocessor condition check result to the 5K core

• GPR Data - Transfers additional data from the 5K general-purpose register file to the coprocessor

• Coprocessor Exceptions - Notifies the 5K core if any coprocessor exceptions happened for an instruction

• Instruction Nullification  - Notifies coprocessor if instructions are nullified or not

• Instruction Killing  - Notifies coprocessor when instructions can commit state or not

All transfers use the following protocol:

• All transfers are synchronously strobed; that is, a transfer is only valid for one cycle (when the strobe signal i
asserted). The strobe signal is a synchronous signal; do not use it to clock registers.

• There is no handshake confirmation of transfer.

• Except for instruction dispatch, there is no flow control.

• Except for To/From COP data transfers, out-of-order transfers are not allowed. All transfers of a given type, e
To/From COP data transfers, in the same issue group must be in dispatch order.

• Ordering of different types of transfers for the same instruction is not restricted.

After an instruction is dispatched, additional information about that instruction must be later transferred betwee
coprocessor and the integer processor core. The additional information and the transfers required are summar
Table 4-9.

Note: For each dispatch type given in the table, all listed transfers arerequired to be done. No transfers are optional.
However, after an instruction is killed or nullified, any transfers that have not already happened will not happen. In
words, once an instruction is killed or nullified, no further transfers for that instruction can happen.

Table 4-9 Transfers Required for Each Dispatch

Dispatch Type Required Transfers Direction
Core <—> COP

To COP Op

• Instruction nullification

• To Coprocessor data transfer

• Coprocessor exceptions

• Instruction killing

—>

—>

<—

—>

From COP Op

• Instruction nullification

• From Coprocessor data transfer

• Coprocessor exceptions

• Instruction killing

—>

<—

<—

—>

Arithmetic COP Op

• Instruction nullification

• Coprocessor exceptions

• Instruction killing

—>

<—

—>
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Each transfer can occur as early as one cycle after dispatch; there is no maximum limit on how late the transfer ca
Only the dispatch interfaces have flow control. Thus, once dispatched, all transfers can occur immediately.

All transfers are strobed. The data is not buffered and is transferred in the cycle that the strobe signal is asserted
strobe signal is asserted for two cycles, then two transfers occur. For instruction dispatches, the strobe signal is
in the cycle after the instruction is dispatched in order to insulate the signals from poor timing.

Figure 4-2 shows examples of the transfer of nullification information. All non-dispatch transfers follow the same
protocol.

Figure 4-2 General Transfer Example

On edge 4,CP_nulls_m is asserted, signifying the null transfer for instruction A. BecauseCP_null_m is deasserted
on edge 4, instruction A is not nullified. Instruction B is dispatched on edge 4 and it receives the null transfer in th
cycle at edge 5. Because it is the cycle after dispatch, this is the earliest possible time any transfer for instruction B
happen. Instruction C is dispatched at edge 5. However, the nullification transfer is delayed for some reason un
10.

For all transfers except To COP Data and From COP Data, the ordering of the transfers is simple: all transfers
specific type (for example, nullification transfers) in a specific issue group must be in the same order as the order in
the instructions were dispatched. However, other kinds of transfers can be interspersed; for example, if four ar
instructions were dispatched, there could be two nullification transfers, followed by four exception transfers, fol
by two nullification transfers.

If an instruction is killed or nullified, no remaining transfers for that instruction occur. In the cycle that the instructio
being killed or nullified, transfers can occur, but they are ignored.

The coprocessor interface is designed to operate with coprocessors of any pipeline structure and latency; if the
requires a specific transfer by a certain cycle, the 5K core stalls until the transfer has completed.

Additionally for
BC1a

BC2a

MOVFa

MOVTa

• Condition code check results <—

Additionally for
MOVZ.fmta

MOVN.fmta

ALNV.PSa

ALNV.fmt a

• GPR Data —>

a. For a description of this instruction, refer to the MIPS ISA definition.

Table 4-9 Transfers Required for Each Dispatch (Continued)

Dispatch Type Required Transfers Direction
Core <—> COP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CP1_as_m

CP_ir_m[31:0] BA C

CP_nulls_m

CP_null_m

Clock
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For transfers from the coprocessor to the integer unit, the allowable latencies are shown inTable 4-10. The “Stage
Needed” column shows the integer unit pipeline stage where the data is used; if data is not available by the en
stage, the integer pipeline will stall. The “Min” column shows the minimum time after dispatch that the integer uni
accept the data (always one cycle). The “Max” column shows the maximum time after dispatch that the integer uni
receive the data (always an infinite number of cycles). The “Max Without Stalling” column shows the longest time
dispatch that the integer unit could receive the data without stalling.

Because of its pipeline structure, the 5K core does not generate all allowable latencies for transfers from the integ
to the coprocessor.Table 4-11summarizes these latencies. The “Stage Sent” column shows the integer unit pipeline
in which the transfer is performed. The “Min” column shows the shortest amount of time after dispatch that the in
unit sends the data. The “Max” column shows the longest time after dispatch that the data could be sent.

The “Max” latency is given in dispatches and thus defines the number of pending transfers to be made. It is the n
of pending transfers that defines the interface logic required in the coprocessor. Note that the ’Max’ values are for a
issue group. If the coprocessor supports dispatch of arithmetic instructions to issue group no. 1 (m= 1), then dual issue
may happen, and the number of outstanding transfers is doubled.

Table 4-10 Allowable Interface Latencies from a Coprocessor to the 5K Core

From To Stage
Needed

Min
(cycles)

Max
(cycles)

5K Max
Without Stalling

(cycles)

Arithmetic Dispatch From Coprocessor Data
Transfer

N/A N/A N/A N/A

To/From COP Dispatch Ea

a. CFC, MFC, and DMFC instructions can be scheduled in the integer unit. Thus, if the data transfer does not occur by the E-stage, it still
might not stall if subsequent instructions do not cause a data dependency.

1 • 2

Arithmetic Dispatch Coprocessor
Exceptions

M 1 • 3

To/From COP Dispatch M 1 • 3

Arithmetic Dispatch Coprocessor
Condition Code Check

R 1 • 1

To/From COP Dispatch N/A N/A N/A N/A

Table 4-11 Interface Latencies From the 5K Core to a Coprocessor

From To Stage
Sent

Min
(cycles)

Max
(per issue group)

Arithmetic Dispatch Instruction
Nullification

E 2 1 dispatch later (2 outstanding transfer)

To/From COP Dispatch E 2 1 dispatch later (2 outstanding transfer)

Arithmetic Dispatch
GPR Data

M 3 2 dispatches later (3 outstanding transfers)

To/From COP Dispatch N/A N/A N/A

Arithmetic Dispatch To Coprocessor
Data Transfer

N/A N/A N/A

To/From COP Dispatch Ma

a. Instructions that require a To COP data transfer may be scheduled in the integer unit; thus, the data transfer may occur later than the
M-stage. This causes the ’Max’ value to be 3 dispatches / 4 outstanding transfers.

3 3 dispatches later (4 outstanding transfers)

Arithmetic Dispatch Instruction
Killing

M+1 4 3 dispatches later (4 outstanding transfers)

To/From COP Dispatch M+1 4 3 dispatches later (4 outstanding transfers)
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Note: A coprocessor should be able to handle ’Min’ values down to 1 cycle after dispatch in order to comply wi
specification. This allows for later attachment of the coprocessor to other MIPS processor cores.

4.5.1 Instruction Dispatch

This transfer is used to signal the coprocessor to start coprocessor instructions. Data transfer instructions includ
that move data to the coprocessor from the integer processor core (To COP Ops), and those which move data
coprocessor to the integer processor core (From COP Ops).

Because data transfers for the To COP and From COP instructions occur later than the dispatch of the instruct
coprocessor itself must keep track of data hazards and stall its pipeline accordingly. The integer processor core d
track coprocessor data hazards.

In the 5K, instructions are dispatched to the coprocessor in the last cycle of the D-stage of the integer pipeline. Al
the interface allows the coprocessor and integer pipelines to operate independently, it is important that dispatch o
both in the same cycle to ensure that all subsequent transfers are properly synchronized. Furthermore, the 5K c
not dispatch a coprocessor instruction when the integer pipeline is stalled in order to allow proper CP0 excepti
handling.

CP1_as_0 , CP2_as_0 , CP1_as_1 , CP2_as_1 , CP1_ts_0 , CP2_ts_0 , CP1_fs_0 , andCP2_fs_0  are
asserted in the cycle after the instruction is driven. These signals are delayed strobe signals, and although this
complicates the functional interface, it enables the processor to achieve very good timing on these signals—with
delay, these signals would have been timing-critical.

Because the above instruction strobes are delayed, the coprocessor is normally required to registerCP_ir_0  and
CP_ir_1  in every cycle and conditionally use them in the following cycle depending on the instruction strobes.
protocol has the side effect of registering non-coprocessor instructions and partially processing them, thus pote
increasing power consumption. TheCP_irenable_0  andCP_irenable_1  signals compensate for this effect by
enabling the coprocessor to avoid registering instructions that will never be dispatched to it.

Only one of the instruction strobes in an issue group can ever be asserted at the same time:CP1_as_m, CP2_as_m,
CP1_ts_m , CP2_ts_m , CP1_fs_m , andCP2_fs_m , wherem=0 or 1.

By controllingCP_adisable_1 , coprocessors can control to which issue group arithmetic instructions will be
dispatched. WhenCP_adisable_1  is asserted, arithmetic instructions are dispatched using Issue Group 0. Wh
CP_adisable_1  is deasserted, arithmetic instructions are dispatched using Issue Group 1.CP_adisable_1  also
controls the Limited Dual Issue ability, refer toSection 4.4.5, "Limited Dual Issue".

If the proper Coprocessor Enable bit is not set in the CP0Statusregister, the 5K core can still dispatch the instruction t
the coprocessor. If it is dispatched, the integer processor core subsequently kills the instruction (refer toSection 4.5.8,
"Instruction Killing").

When the processor is operating in MIPS32-compatibility mode according to the User/Supervisor/Kernel/Debug
and theKX, SX, UX, andPXbits of the CP0Status register, theCP_inst32_0  andCP_inst32_1  signals are
asserted.CP_inst32_m  is asserted during dispatch to notify the coprocessor that the integer processor core is
operating in MIPS32-compatibility mode. The coprocessor would then signal a Reserved Instruction exception f
arithmetic instruction that was not MIPS32 compatible.

CP1_fr32_0  andCP1_fr32_1  can be asserted during dispatch to notify the coprocessor that MIPS32-compa
floating-point registers are enabled. Normally the coprocessor would then change the behavior of some instruc
correctly operate using the MIPS32-compatible register file.CP1_fr32_m  is asserted according to theFR bit in the
CP0Statusregister.
MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 47



Chapter 4 Coprocessor Interface

per

same,

 is

d.

 COP Ops
atched.

der from

nsfer or
TheCP_endian_0  andCP_endian_1  signals are asserted during dispatch to notify the coprocessor of the pro
byte-ordering mode to use, which is needed for the ALNV.PS and ALNV.fmt instructions.

Figure 4-3shows example waveforms for a coprocessor 1 dispatch. Dispatch of coprocessor 2 instructions is the
although the signal names differ.

Figure 4-3 Arithmetic Coprocessor Dispatch Waveform

On edge 2, instruction A is dispatched. On edge 3,CP1_as_1  is asserted, validating the previous cycle’s dispatch.
Instruction strobes are always asserted in the cycle after the instruction word is driven. On edge 3, instruction K
dispatched. (CP1_fs_0  is asserted on edge 4.)

On edge 5, instruction B is dispatched. On edge 6, instruction C is driven ontoCP_ir_1 , and instruction L is driven
ontoCP_ir_0 . Instruction C is not dispatched becauseCP1_abusy_1 was asserted. But instruction L was dispatche
For instruction C, the integer processor core will not assertCP1_as_1  until the coprocessor can accept it (until
CP1_abusy_1  is deasserted). Instruction C is finally dispatched on edge 9.

On edge 12, both Instructions D and M are dispatched at the same time (dual issued).CP_order_0andCP_order_1are
valid on edge 13 and indicate that Instruction M was functionally before Instruction D.

4.5.2 To Coprocessor Data Transfer

The coprocessor interface transfers data to the coprocessor after a To COP Op has been dispatched. Only To
utilize this transfer. The coprocessor must have a buffer available for this data after the To COP Op has been disp
If no buffers are available, the coprocessor must prevent dispatch by assertingCP1_tbusy_0  or CP2_tbusy_0 , as
appropriate.

The coprocessor interface allows out-of-order data transfers. Data can be sent to the coprocessor in a different or
the order in which the instructions were dispatched. When data is sent to the coprocessor, theCP_torder_0[2:0]
signal is also sent. This signal tells the coprocessor if the data word is for the oldest outstanding To COP data tra
the second oldest. The coprocessor can prevent the 5K core from reordering To COP Data by driving
CP_tordlim_0[2:0] =3’b000.

Note: The 5K core implements at most one out-of-order data transfer. Thus, the core never drives
CP_torder_0[2:0]  with a value greater than 3’b001.

CP1_as_1

CP_ir_1[31:0]

CP1_abusy_1

C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A B

16

CP1_fs_0

CP_ir_0[31:0]

CP1_tbusy_0
LK

CP1_ts_0

D

M

CP_endian_0,CP1_fr32_0,CP_inst32_0
CP_order_0[2:0]

CP1_fbusy_0

CP_endian_1,CP1_fr32_1,CP_inst32_1

0 00

CP_order_1[2:0] 0 10 01

CP_irenable_1

CP_irenable_0

Clock
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The valid bits on the bus are determined by the type of instruction dispatched:

• 32-bit transfer: The 32-bit data word is driven onCP_tdata_0[31:0] .

• 64-bit transfer: The 64-bit data word is driven onCP_tdata_0[63:0] .

The integer unit transfers data to the coprocessor in the cycle after it is received from the memory subsystem. The
unit can schedule some To COP Ops, thus potentially transferring data many cycles after dispatch.

Figure 4-4shows waveforms for an example To Coprocessor data transfer. Three instructions are dispatched: A,
C, on edges 2, 4, and 6, respectively. Data for instruction A is sent on edge 6. At that time, it is the oldest outst
transfer, soCP_torder_0 is driven Low. On edge 10, data for instruction C is returned. Because it is the second o
outstanding transfer,CP_torder_0 is driven High. In the following cycle, data for instruction B is finally transferred
That instruction is now the oldest outstanding instruction, soCP_torder_0  is again driven Low.

Figure 4-4 To Coprocessor Data Transfer Waveform

4.5.3 From Coprocessor Data Transfer

The coprocessor interface transfers data from the coprocessor to the integer processor core after a From COP
been dispatched. Only From COP Ops utilize this transfer. Note that the 5K core has buffers for this data that ena
transfer to occur as early as the cycle after dispatch.

The coprocessor interface allows out-of-order transfers of data. That is, data can be sent from the coprocessor
different order from the order in which the instructions were dispatched. When data is sent from the coprocess
CP_forder_0[2:0]  signal is also sent. This signal tells the integer processor core if the data is for the oldes
outstanding From COP data transfer or the second oldest. The 5K core supports a maximum of one out-of-order
and drivesCP_fordlim_0[2:0]  = 3’b001 accordingly.

Note: It is illegal for a coprocessor to driveCP_forder_0[2:0]  > 3’b001.

For single-word transfers, the coprocessor must drive the 32-bit value on bothCP_fdata_0[31:0]  and
CP_fdata_0[63:32] , which makes the transfer independent of the byte ordering (big or little endian).

For memory stores, the integer pipeline stalls if data is not available by the E-stage because the data to be stored i
early in the following M-stage, and by receiving the data in the E-stage, the coprocessor interface can have non-
timing. The integer unit can, however, schedule MFC/DMFC/CFC instructions; these instructions will not stall u
the data is required by a subsequent instruction.

Figure 4-5shows waveforms for an example From Coprocessor data transfer. The A, B, and C instructions are disp
on edges 2, 3, and 4, respectively. The coprocessor returns the data for instruction A on edge 4.

CP1_ts_0

CP_ir_0[31:0] Ai

CP_tds_0

CP_tdata_0[63:0]
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Ci

Cd

CP_torder_0[2:0]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

00 1

Bd

Clock
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Figure 4-5 From Coprocessor Data Transfer Waveform

On edge 5, the data for instruction C is returned. Note that this is before the data for instruction B and is thus out-o
as is signified byCP_forder_0 =3’b001.

Instruction D is dispatched on edge 9. At the same time, the data for instruction B is sent. At edge 10, data for inst
D is sent. Edge 10 is one cycle after dispatch, which is the fastest data return possible.

4.5.4 Condition Code Checking

The coprocessor interface provides signals for transferring the result of a condition code check from the coproce
the integer processor core. Only the BC1, BC2, and MOVCI instructions utilize this transfer. These instructions
dispatched to both the integer processor core and the coprocessor.

For each instruction dispatched, a result is sent back to the integer processor core that says whether or not to exe
instruction. For branches, the coprocessor tells the integer processor core whether or not to branch. For condit
moves, the coprocessor tells the integer processor core whether or not to do the move.

For this reason, the coprocessor must interpret the type of instruction to decide whether or not to execute it.
Customer-defined BC2 instructions are thus possible.

The integer unit requires the condition code data by the R-stage of the instruction; otherwise, it will stall becau
condition is evaluated in the E-stage. Having the data available in the previous R-stage allows the interface to 
non-critical timing. As the instruction kill transfer is sent from the integer core later than the R stage, the coproc
must not wait for this transfer before sending the conditional code data.

Condition code check transfers follow the generic example given inFigure 4-2 on page 45. The signals used are
CP_cccs_m andCP_ccc_m instead ofCP_nulls_m  andCP_null_m  as shown in the figure.

4.5.5 GPR Data

The integer processor core transfers the results of a check that RT==64’b0 for two special arithmetic coproces
instructions: MOVN.fmt and MOVZ.fmt. It also transfers the lower three bits of the RS operand for the ALNV.PS
ALNV.fmt coprocessor 1 instructions. When these instructions are dispatched to the coprocessor, they are also
dispatched to the integer pipeline. In this way, the integer processor core can properly bypass RS as well as ch
RT value against zero.

The integer unit transfers this information during the M-stage of its pipeline. Thus, the integer unit will not dispatch
than two subsequent instructions before sending the GPR data for the first instruction.

GPR data transfers follow the generic example given inFigure 4-2 on page 45. The signals used areCP1_gprs_m and
CP1_gpr_m[3:0]  instead ofCP_nulls_m  andCP_null_m  as shown in the figure.
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4.5.6 Coprocessor Exceptions

All instructions dispatched utilize the coprocessor exception transfer. It is used to signal if an instruction caused
exception in the coprocessor. This transfer must happen even if the instruction did not cause an exception in th
coprocessor.

When a coprocessor instruction causes an exception, the coprocessor must signal this occurrence to the integer p
core so the integer processor core can start execution from the exception vector. The coprocessor can signal a R
Instruction exception for any instruction dispatched to it. However, the coprocessor should only signal FPE exce
for COP1 and C2E exceptions for COP2. The coprocessor can also signal one of two implementation-specific ex
codes. These exception codes can be used to trigger special software exception handling routines.

Note: A coprocessor can signal an exception for To/From COP Ops. Except for instructions CTC1 and CTC2, t
exception cannot depend on the associated data.

Signalling for Reserved Instruction exceptions is divided between the integer processor core and the coproces
follows:

• The integer processor core signals Reserved Instruction exceptions for non-arithmetic coprocessor instructio
are not valid To COP Ops or From COP Ops.

• The coprocessor hardware must signal Reserved Instruction exceptions for all arithmetic coprocessor instruc

The integer processor core detects Coprocessor Unusable exceptions and MDMX Unusable exceptions for all
coprocessor instructions.

The integer unit can accept the exception transfer as late as the M-stage without stalling.

If imprecise coprocessor exceptions are allowed, the coprocessor can use the “No exception” signal immediate
dispatch. This will prevent stalling in the integer pipeline while waiting for precise results; if an exception does o
for that instruction, a subsequent coprocessor instruction can be flagged as exceptional (although imprecise), or
interrupt could be signalled through the normal integer processor core interrupt inputs.

Exception transfers follow the generic example given inFigure 4-2 on page 45. The signals used areCP_excs_m,
CP_exc_m, andCP_exccode_m[4:0]  instead ofCP_nulls_m  andCP_null_m  as shown in the figure.

4.5.7 Instruction Nullification

All instructions dispatched utilize the instruction nullification transfer. It is used to signal if an instruction was nulli
in the integer processor core. This transfer must happen even if an instruction was not nullified so that the cop
knows when it can begin operation of subsequent operations that depend on the result of the current instructio

Normally, an instruction is killed only when the pipeline is being flushed because an exception occurred. In this ca
subsequent instructions in the pipeline are also killed. An instruction can also be killed because it is in the delay
a branch-likely instruction that did not branch. This type of killing is calledinstruction nullification. In this case,
subsequent instructions in the pipeline are unaffected by the nullification.

Nullification is performed in an early stage of the pipeline to ensure that subsequent instructions can begin with
correct operands.

In the cycle that an instruction is nullified, other transfers for that instruction can still occur, but no further transfe
that instruction can occur in subsequent cycles. The integer processor core masks exceptions caused by nullifi
instructions.

Nullification transfers follow the generic example given inFigure 4-2 on page 45.
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4.5.8 Instruction Killing

All instructions dispatched utilize the instruction killing transfer. It is used to signal if an instruction can commit sta
not. This transfer must happen even if an instruction is not being killed so that the coprocessor knows when it c
writeback results for the instruction.

Due to various exceptional conditions, any instruction might need to be killed. The integer processor core contain
that tells the coprocessor when to kill coprocessor instructions.

When a coprocessor instruction is being killed because of a coprocessor-signalled exception, the coprocessor mi
to perform special operations. For example, if a floating-point instruction is killed because of a Floating-point exce
the coprocessor must update exception status bits in the coprocessor’s FCSR register. On the other hand, if th
instruction was killed because of a higher-priority exception, those status bits must not be updated. For this rea
part of the kill transfer, the integer processor core tells the coprocessor if the instruction is killed due to a
coprocessor-signalled exception.

When a coprocessor arithmetic instruction is killed, all subsequent coprocessor arithmetic instructions and To/F
COP Ops that have been dispatched on that issue group are also killed. This killing is necessary because the 
instruction(s) might affect the operation of subsequent instructions (for example, because of bypassing). In the c
which an instruction is killed, other transfers might occur, but after that cycle, no further transfers occur for any
killed instructions. A side-effect is that the other instructions that are killed do not have a kill transfer of their ow
effect, they are immediately killed and thus their remaining transfers cannot be sent, including their own kill tra
Previously nullified instructions do not have a kill transfer either, because once nullified, no further transfers can

Note: If the integer processor core dispatches a coprocessor instruction in the same cycle that a kill is being signa
the coprocessor, then that instruction must also be killed.

Killing transfers follow the generic example given inFigure 4-2 on page 45. The signals used areCP_kills_m  and
CP_kill_m[1:0]  instead ofCP_nulls_m  andCP_null_m  as shown in the figure.

4.5.9 Hardware Present Signaling

Three Coprocessor Interface static inputs (CP1_fppresent, CP1_mdmxpresent, andCP2_present) enable the integer
processor core to know what type of hardware is connected to the Coprocessor Interface. If one of these signa
asserted and the respective hardware is not available to handle the instructions, the operation isUNDEFINED , and the
integer processor core might hang.

The three signals drives theFP, MD andC2bits of the CP0Config1register, respectively. If eitherFP or MD is set, the
CU1bit in the CP0Statusregister can be set by software. IfC2 is set, theCU2bit in the CP0Statusregister can be set
by software.

If the CU1bit in the CP0Statusregister is cleared the execution of a COP1 instruction will cause the integer proce
core to signal a Coprocessor Unusable exception. Likewise, a clearedCU2 bit in theStatus register will cause a
Coprocessor Unusable exception when executing a COP2 instruction.

If CP1_mdmxpresentis deasserted, the execution of an MDMX instruction will cause the integer processor core to s
a Reserved Instruction exception. IfCU1 is deasserted (but the MDMX hardware is present) an MDMX instruction w
cause a Coprocessor Unusable exception. Likewise, if the MDMX hardware is present, but the MX bit in CP0Status
register is deasserted, then an MDMX Unusable exception will be signalled.
52 MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01



4.5 Interface Protocols

s. When
ernal

broken;

cessor

is gives
rocessor
r

4.5.10 Coprocessor Idle

The coprocessor interface also includes an idle indication from the coprocessor,CP_idle . The coprocessor must
deassert this signal whenever it is performing a calculation, and assert it when there are no instructions in progres
asserted,CP_idle allows the integer processor core to enter a low-power mode, potentially shutting down the int
integer processor core clock.CP_idle  is ignored if no coprocessor is using the coprocessor interface (when
CP1_fppresent , CP1_mdmxpresent , andCP2_present  are all deasserted).

4.5.11 Reset

When the integer processor core is reset, it assertsCP_reset . On reset, the coprocessor must stop all in-progress
operations and reset all control state machines to their idle states. When asserted, any in-progress protocols are
all transfers immediately stop. All signals must reset to their inactive states by the cycleCP_reset  is deasserted.

Note: CP_reset can be asserted for as little as two cycles, although longer assertions are legal. Thus the copro
must properly reset even whenCP_reset  is asserted for only two cycles.

After CP_reset is deasserted, no transactions are started on the coprocessor interface for at least four cycles. Th
the coprocessor extra time to reset its state machines before a new instruction is dispatched. However, all cop
interface signals must still be deasserted by the cycle thatCP_reset  is deasserted so that both the integer processo
core and the coprocessor start transfers cleanly after reset.
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Chapter 5

EJTAG Interface

This chapter describes the EJTAG interface supported by the 5K microprocessor core. It contains the following se

• Section 5.1, "Introduction"

• Section 5.2, "EJTAG Interface Signal Descriptions"

• Section 5.3, "Test Access Port Interface Descriptions"

• Section 5.4, "Reset from Probe"

5.1 Introduction

The EJTAG interface is the external interface to the debug functionality of the 5K core. The interface provides c
of the EJTAG debug features:

• A Test Access Port (TAP) that connects to a debug probe through the five-pin TAP interface

• A Debug interrupt request that can cause a debug exception and thereby get the processor into Debug Mode
external event

• A Debug Mode indicator that indicates whether the processor is in Debug or Non-Debug Mode

• A Device ID register value that provides the value for the Device ID register accessed through the TAP

• A System implementation dependent output that provides reset control depending on the external system

The EJTAG interface signals and protocol of the 5K core are similar to those of the 4K core.

Consult the “EJTAG Specification” listed below and related application notes for information about timing and vo
level requirements when the five-pin TAP interface is connected to external chip pins and to the external EJTAG
connector.

The following documents have background information for the description in this chapter:

• “EJTAG Specification”, rev. 2.5-1 or later, MIPS Technologies document number MD00047

• “EJTAG Implementation Application Note”, rev. 1.00 or later, MIPS Technologies document number MD0007

• IEEE Std. 1149.1-1990, “IEEE Standard Test Access Port and Boundary-Scan Architecture”

5.2 EJTAG Interface Signal Descriptions

This section describes EJTAG-related signal interface on the 5K processor core. Registers referenced in this cha
described in detail in the “EJTAG Debug Feature” chapter of theMIPS64 5K Processor Core Family Software User's
Manual.
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Table 5-1 defines the signal directions for the EJTAG signal descriptions.

Table 5-2 describes the signals according to function; the signals are defined alphabetically by function.

Table 5-1 Signal Direction Key

Direction Description

I Input to the 5K core. Unless otherwise noted, input signals are sampled on the
rising edge of the processor clock signal.

O Output from the 5K core. Unless otherwise noted, output signals are driven on
the rising edge of the processor clock signal.

S Static input to the 5K core. These signals are normally tied to either power or
ground; they must not change state while SI_ColdReset is deasserted.

Table 5-2 System Interface Signal Descriptions

Signal Name Dir Description

Test Access Port (TAP) Interface

These signals comprise the EJTAG TAP. These signals are unused if the core does not implement the TAP
controller. The EJ_TCK clock signal is used as reference for these TAP signals.

EJ_TCK I

Test Clock Input for the EJTAG TAP. EJ_TCK is the TAP clock
signal that controls updating of the TAP controller and the
shifting of data through the Instruction or selected data
register(s). EJ_TCK is independent of the processor clock, with
respect to both frequency and phase.

EJ_TDI I

Test Data Input for the EJTAG TAP. EJ_TDI is the test data input
to the Instruction or selected data register(s). This signal is
sampled on the rising edge of EJ_TCK in some TAP controller
states (seeSection 5.3.2, "TAP Controller").

EJ_TDO O

Test Data Output for the EJTAG TAP. EJ_TDO is the test data
output from the Instruction or data register(s). This signal
changes on the falling edge of EJ_TCK. Use the EJ_TDOzstate
signal to control the driver of a TDO off-chip pin.

EJ_TDOzstate O

Drive indication for EJ_TDO output on the EJTAG TAP at chip
level. This signal changes on the falling edge of EJ_TCK; it is
only deasserted when data is shifted out. The encoding for this
signal is:

HIGH: The TDO output at chip level must be in the Z-state.

LOW: The TDO output at chip level must be driven to the value
of EJ_TDO.

IEEE Standard 1149.1-1990 defines a TDO off-chip pin as a
3-stated signal. The 5K core outputs this signal to control a 3-state
buffer for the off-chip pin.

EJ_TMS I
Test Mode Select Input for the EJTAG TAP. EJ_TMS is the
control signal for the TAP controller. This signal is sampled on
the rising edge of EJ_TCK.
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EJ_TRST_N I

Active-Low Test Reset Input for the EJTAG TAP. Assertion
(LOW) of EJ_TRST_N causes the TAP controller to be reset
asynchronously.

At power-up, the TAP must be reset through assertion of
EJ_TRST_N before the processor reset is deasserted.
EJ_TRST_N is asserted either as an off-chip pin on which a
power-on reset is generated or through an on-chip power-on reset
generator.

Note that having the EJ_TRST_N signal as an off-chip pin is
optional.

Debug Interrupt

EJ_DINT I

A Debug Interrupt exception is requested when this signal is
asserted in a processor clock period after being deasserted in the
previous processor clock period. The request is cleared when
Debug Mode is entered. Requests from within Debug Mode are
ignored.

EJ_DINTsup S

Value of DINTsup for the TAP Implementation register. A HIGH
on this signal indicates that the EJTAG probe can use the DINT
signal to interrupt the processor.

Assert this signal if the DINT pin on the EJTAG probe header is
connected to the EJ_DINT input of the core.

Debug Mode Indication

EJ_DebugM O

Asserted when the core is in Debug Mode. Use EJ_DebugM to
bring the core or chip out of a low power mode. In systems with
multiple processor cores, this signal can be used to synchronize
several cores when debugging.

Device ID Register Value

These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller is not
implemented, these inputs are not connected. These inputs are always available for soft core customers. On
hard cores, the core hardener may set these inputs to their own values

EJ_ManufID[10:0] S

Value of the ManufID[10:0] field in the Device ID register. As per
IEEE 1149.1-1990 section 11.2, the Manufacturers Identity Code
is a compressed form of the JEDEC standard Manufacturers
Identification Code in the JEDEC Publications 106, which can be
found at: http://www.jedec.org/

ManufID[6:0] bits are derived from the last byte of the JEDEC
code (discarding the parity bit). ManufID[10:7] bits provide a
binary count of the number of continuation character bytes
(0x7F) in the JEDEC code. If the number of continuation
characters exceeds 15, ManufID[10:7] contain the modulo-16
count of the number of continuation characters.

MIPS can provide a value for ManufID on request for users
without a JEDEC standard Manufacturers Identification Code.

EJ_PartNumber[15:0] S Value of the PartNumber[15:0] field in the Device ID register.

EJ_Version[3:0] S Value of the Version[3:0] field in the Device ID register.

Table 5-2 System Interface Signal Descriptions (Continued)

Signal Name Dir Description
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5.3 Test Access Port Interface Descriptions

This section describes the pin level interface and protocol for the Test Access Port (TAP) interface. Only the low
signal interface and state machine for the TAP are described here. TAP instruction and data register encoding, lay
values are described in the “EJTAG Debug Feature” chapter of theMIPS64 5K Processor Core Family Software User'
Manual.

Please refer to the “EJTAG Specification”, rev. 2.5-1 or later, MIPS Technologies document number MD00047,
associated application notes for details about off-chip timing and connection.

Figure 5-1 shows an overview of the elements in the TAP.

Figure 5-1 Test Access Port (TAP) Overview

The TAP consists of the following signals: Test Clock (EJ_TCK), Test Mode (EJ_TMS), Test Data In (EJ_TDI), 
Data Out (EJ_TDO), and Test Reset (EJ_TRST_N). EJ_TCK and EJ_TMS control the state of the TAP controller,
controls access to the Instruction or selected data register(s). The Instruction register controls selection of data re
Access to the Instruction and data register(s) occurs serially through EJ_TDI and EJ_TDO. EJ_TRST_N is an
asynchronous reset signal to the TAP.

System Implementation Dependent Outputs

These outputs come from EJTAG control registers. They have no effect on the core, but can be used to give
additional control over the system to EJTAG debugging software.

EJ_PerRst O

Peripheral Reset. EJTAG can assert this signal to request the reset
of some or all of the peripheral devices in the system. The signal
has no reset effect on the 5K core internally, but the external logic
may apply reset throgh the ordinary reset signals for the core.

EJ_PrRst O

Processor Reset. EJTAG can assert this signal to request that the
core be reset. The signal has no reset effect on the 5K core
internally, but the external logic may apply reset throgh the
ordinary reset signals for the core.

EJ_SRstE O
Soft Reset Enable. EJTAG can deassert this signal if it wants to
mask soft resets. If this signal is deasserted, none, some, or all soft
reset sources are masked.

Table 5-2 System Interface Signal Descriptions (Continued)

Signal Name Dir Description

Instruction Register

Selected Data Register(s)

EJ_TDI

EJ_TDO (gated by EJ_TDOzstate)

E
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A
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EJ_TCK

EJ_TMS

EJ_TRST_N

TAP controller
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Access through the TAP does not interfere with the operation of the processor, unless features specifically desc
do so are used.

5.3.1 TAP Reset

EJ_TRST_N is the test reset input that asynchronously resets the TAP. At power-up, the TAP must be reset thr
EJ_TRST_N before the processor reset is deasserted. EJ_TRST_N must be asserted either as an off-chip pin
a power-on reset is generated or through an on-chip power-on reset generator for the signal.

Assertion of EJ_TRST_N has the following immediate effects:

• The TAP controller is put into the Test-Logic-Reset state

• The Instruction register is loaded with the IDCODE instruction

• Any EJTAGBOOT indication is cleared

• The EJ_TDO output is 3-stated through use of the EJ_TDOzstate signal

EJ_TRST_N does not reset other parts of the TAP or processor. Thus this type of reset does not affect the proces
the processor reset does not have any effect on the above parts of the TAP.

5.3.2 TAP Controller

The TAP controller is a state machine whose active state controls TAP reset and access to the Instruction regis
data registers.

The state transitions in the TAP controller occur either on the rising edge of EJ_TCK or when EJ_TRST_N is ass
The EJ_TMS signal determines the transition at the rising edge of EJ_TCK.Figure 5-2shows the state diagram for the
TAP controller; it also shows the EJ_TMS values when changing between different states.

Figure 5-2 TAP Controller State Diagram

The behavior of the functional states shown inFigure 5-2is described in the following subsections. The non-function
states are intermediate states in which no registers in the TAP change; these states are not described here.
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Events are described in the following subsections with relation to the rising and falling edges of EJ_TCK. The des
events take place when the TAP controller is in the corresponding state when the clock changes.

5.3.2.1 Test-Logic-Reset State

When the Test-Logic-Reset state is entered, the Instruction register is loaded with the IDCODE instruction, and
EJTAGBOOT indication is cleared. This state ensures that the TAP does not interfere with the normal operation
processor.

The TAP controller always reaches this state after five rising edges on EJ_TCK when EJ_TMS is held HIGH.

When EJ_TRST_N is asserted, it immediately places the TAP controller in this state asynchronous to EJ_TCK

5.3.2.2 Capture-IR State

In the Capture-IR state, the Instruction register is loaded with the value 000012 at the rising edge of EJ_TCK.

5.3.2.3 Shift-IR State

In the Shift-IR state, the LSB of the five-bit Instruction register is output on EJ_TDO on the falling edge of EJ_T
The Instruction register is shifted one position from MSB to LSB on the rising edge of EJ_TCK, with the MSB sh
in from EJ_TDI. The value in the Instruction register does not take effect until the Update-IR state.Figure 5-3shows the
shifting direction for the Instruction register.

Figure 5-3 EJ_TDI to EJ_TDO Path when in Shift-IR State

The value loaded in the Capture-IR state is used as the initial value for the Instruction register when shifting start
it is not possible to read out the previous value of the Instruction register.

5.3.2.4 Update-IR State

In the Update-IR state, the value in the Instruction register takes effect on the rising edge of EJ_TCK.

5.3.2.5 Capture-DR State

In the Capture-DR state, the value of the selected data register(s) is captured on the rising edge of EJ_TCK. T
Capture-DR state reads the data in order to output it in the Shift-DR state.

The Instruction register selects one of the following data register(s): Bypass, Device ID, Implementation, EJTAG
Control, Address, and Data register(s).

5.3.2.6 Shift-DR State

In the Shift-DR state, the LSB of the selected data register(s) is output on EJ_TDO on the falling edge of EJ_TCK
selected data register(s) is shifted one position from MSB to LSB on the rising edge of EJ_TCK, with EJ_TDI s
in at the MSB. The value(s) shifted into the register(s) does not take effect until the Update-DR state.Figure 5-4shows
the shifting direction for the selected data register.

EJ_TDI
Instruction Register

4 / MSB 0 / LSB

EJ_TDO
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Figure 5-4 EJ_TDI to EJ_TDO Path for Selected Data Register(s) when in Shift-DR State

The Address, Data, and EJTAG Control data registers are selected at once with the ALL instruction, as shown inFigure
5-5.

Figure 5-5 EJ_TDI to EJ_TDO Path when in Shift-DR State and ALL Instruction is Selected

The length of the shift path depends on the selected data register(s).

5.3.2.7 Update-DR State

In the Update-DR state, the update of the selected data register(s) with the value from the Shift-DR state occu
falling edge of EJ_TCK. This update writes the selected register(s).

5.3.3 TAP Operation Example

Figure 5-6 shows an example of a TAP operation. EJ_TRST_N is assumed to be deasserted.

Figure 5-6 TAP Operation Example

The five-bit Instruction register is initially loaded with 000012. The first bit shifted out of the Instruction register is a 
followed by four 0’s. IR0 to IR4 indicate the new value for the Instruction register. IR0, the new LSB, is shifted in fi
because it will be at the LSB position once all five bits are shifted in.
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Figure 5-6 also shows the EJ_TDOzstate signal, which can be used to 3-state EJ_TDO on an off-chip pin.

This example is similar for the selected data register.

5.4 Reset from Probe

While asserted, the RST* signal from the probe must generate a reset or soft reset to the system. Therefore RS
connect to either SI_ColdReset or SI_Reset within the system.

The SRstE bit in the Debug Control Register (DCR), provided on the EJ_SRstE signal, can not mask this sourc
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Chapter 6

Production Test Interface

This chapter describes the production test interface for the 5K core. It contains the following sections:

• Section 6.1, "Introduction"

• Section 6.2, "Production Test Interface Signal Descriptions"

• Section 6.3, "Internal Scan Interface"

• Section 6.4, "User-Implemented RAM BIST Interface"

• Section 6.5, "Integrated Memory BIST for Cache RAMs Interface"

6.1 Introduction

The 5K core provides several interfaces related to production testing, which support testing with internal scan and
of internal memories. The interfaces are divided into the following groups:

• Internal scan testing interface to support scan logic inserted in the design.

• User-implemented RAM BIST interface, providing user-definable top-level pins on the core for access to RAM
controllers implemented by the user for example with a commercial tool.

• Integrated memory BIST interface for cache RAMs, which controls the optional cache memory BIST solution
provided with the 5K core.

Details about implementation of the different kind of production test features are described in the “Testability” ch
of theMIPS64 5K Processor Core Family Implementor’s Guide.

6.2 Production Test Interface Signal Descriptions

This section describes the production test signal interface of the 5K processor core. The pin direction key for the
descriptions is shown inTable 6-1.

The signals are listed by function inTable 6-2 below.

Table 6-1 Signal Direction Key

Dir Description

I Input to the 5K core. Unless otherwise noted, input signals are sampled on the rising edge of the
appropriate clock signal.

O Output from the 5K core. Unless otherwise noted, output signals are driven on the rising edge of the
appropriate clock signal.

S Static input to the 5K core. These signals are normally tied to either power or ground and should not
change state while SI_ColdReset is deasserted.
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6.3 Internal Scan Interface

The ScanMode signal controls the enable and disable of internal scan logic. This signal must be asserted durin
testing and deasserted during normal operation of the core.

The ScanEnable signal selects between connecting flops in the scan chain for loading and unloading of the sca
and normal operation which is also used for capture. This signal must be deasserted during normal operation of t

The ScanIn[] and ScanOut[] signals are used to input and output the scan chains. The M5KC_SCAN_IN_OUT_W
configuration parameter controls the width of these signals, which must be set accordingly in the scan insertion

6.4 User-Implemented RAM BIST Interface

The functionality of this interface is user-defined. The width of the BistIn[] and BistOut[] signals is controlled by
M5KC_RB_IN_WIDTH and M5KC_RB_OUT_WIDTH configuration parameters. Internal modules with user defi
contents make it possible to connect these signals all then way down to the RAMs.

The clock for the cache RAMs must be running when the memory test is applied for the cache RAMs, to allow up
of the RAMs during the memory test. The 5K core supports this requirement when integrated memory BIST is no

Table 6-2 Production Test Interface Signal Descriptions

Signal Name Type Description

Internal Scan Interface

ScanEnable

I

Assert this signal while loading and unloading the scan chains; deassert
it at capture clock.

The ScanEnable signal must be deasserted during normal operation of the
core.

ScanIn[] I Configurable width bus used for scan chain inputs.

ScanMode

S

Assert this signal during all scan testing, both while loading and
unloading the scan chains and during capture clocks.

The ScanMode signal must be deasserted during normal operation of the
core.

ScanOut[] O Configurable width bus used for scan chain outputs.

User-Implemented RAM BIST Interface

BistIn[] I Configurable width bus for user-implemented BIST of internal RAMs.

BistOut[] O Configurable width bus for user-implemented BIST of internal RAMs.

Integrated Memory BIST for Cache RAMs Interface

MemBistDone O Done signal for integrated memory BIST of internal cache RAMs.

MemBistFail O Fail signal for integrated memory BIST of internal cache RAMs.

MemBistInvoke
I

Invoke signal for integrated memory BIST of internal cache RAMs.

The MemBistInvoke signal must be deasserted during normal operation
of the core.
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The MemBistInvoke must then be asserted while reset is applied, whereby the cache RAM clocks are free-runnin
at most 5 clocks on the SI_ClkIn clock signal.

The clock for the register file RAM is running when reset is applied.

Do not apply the memory testing methods of user-implemented RAM BIST and integrated memory BIST for ca
RAMs at the same time, but can coexist in an implementation.

6.5 Integrated Memory BIST for Cache RAMs Interface

This interface controls the integrated memory BIST solution provided as an configuration option with the 5K co

The integrated memory test must occur while reset is applied to the core, either through use of the SI_ColdRese
the SI_Reset signal. The 5K core must be properly reset before the memory test is initiated. Such a reset occu
reset is applied for the appropriate number of cycles while MemBistInvoke is deasserted. The memory test is th
initiated when the MemBistInvoke signal is asserted.

Finished test is indicated when the core asserts MemBistDone. The duration of the test depends on the configur
cache and memory test algorithm. The result of the test is indicated on the MemBistFail signal. Failure of the te
indicated when the MemBistFail signal is asserted; successful test is indicated when the MemBistFail signal is
deasserted and the MemBistDone signal is asserted. The MemBistFail signal provides a single indication for a
cache memories in the core, and failure is indicated if one or more of the memories fails.

Timing of the signals is shown onFigure 6-1, which is an example where failure is indicated.

Figure 6-1 Protocol for Use of Integrated Memory BIST for Cache RAMs

When memory test has been applied to the 5K core, then the core has to be properly reset before normal oper
resume. Reset occurs when SI_Reset and/or SI_ColdReset is asserted for the appropriate number of cycles w
MemBistInvoke is deasserted.

Only very few signals need to be well-defined when running this memory test. The signals that must be well-defin
SI_ClkIn, SI_Reset, SI_ColdReset, ScanMode, ScanEnable, and MemBistInvoke. The ScanMode and ScanEn
signals must be deasserted during the memory test.

MemBistInvoke must be deasserted during normal operation of the core, as described in Table 6-2.

Note that the integrated memory BIST interface is also used for user-implemented RAM BIST in order to ensur
the cache RAM clocks are running during the memory test. SeeSection 6.4, "User-Implemented RAM BIST Interface"
for more information.

Do not apply the memory testing methods of user-implemented RAM BIST and integrated memory BIST for ca
RAMs at the same time, but can coexist in an implementation.

SI_Reset

MemBistInvoke

MemBistFail

SI_ClkIn

MemBistDone
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Chapter 7

Clocking, Reset, and Power

This chapter describes how to clock and reset the 5K core. It also describes the interface for running with reduced
This chapter contains the following sections:

• Section 7.1, "Introduction"

• Section 7.2, "Clocking"

• Section 7.3, "Core Reset and NMI"

• Section 7.4, "Power Management"

7.1 Introduction

This chapter describes the clocking and initialization interface on a MIPS64 5K processor core when the core i
integrated into a system environment. The power-reduction features available on a 5K core are also discussed

7.2 Clocking

There are up to two input clocks that must be generated and driven to the 5K core:

• The main clock input is named SI_ClkIn.

• An optional clock input called EJ_TCK is only present if an EJTAG TAP controller is implemented within the c

Both clocks are used internally at 1x their respective input frequencies; no frequency multiplication or division i
performed internally. No phase-locked loop is present within the 5K core. No minimum frequency is required, s
frequency of the input clocks can be quickly changed or stopped as long as edge rate integrity is maintained.

The following discussion describes general clocking characteristics of the 5K core implemented with a standard
physical design methodology. It is possible that a specific hard core implementation might differ from the general
guidelines discussed here; for example, dynamic circuit implementation techniques might mandate that a minim
clock frequency be met for a particular hard core. So the general clocking assumptions described here must be v
for the specific 5K core that is being integrated before proceeding with system clock design.

7.2.1 SI_ClkIn Clock

SI_ClkIn is the primary 1x input clock to the 5K core. It is used to enable the vast majority of sequential logic within
5K core as well as time the synchronous SRAMs normally used to implement the caches.

All logic inside the core is clocked using the positive edge of the SI_ClkIn clock. Only the Data Cache RAMs an
latches capturing the data from these RAMs are clocked using the negative edge of SI_ClkIn. Furthermore, in 
achieve maximum performance, these RAM clocks are normally manually tuned. Thus the duty-cycle requirem
depends on the specific 5K core implementation.

Because no dynamic logic or PLL is present, the minimum frequency is 0 MHz; that is, SI_ClkIn can be stoppe
desired. The maximum SI_ClkIn frequency depends on the specific 5K core implementation.
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7.2.2 EJ_TCK Clock

EJ_TCK is an optional 1x clock input to the 5K core, which only exists if the core implements an EJTAG TAP contr
EJ_TCK is the test input clock used to synchronize the serial shifting of data into and out of the TAP controller.
EJ_TCK clock is completely asynchronous to the SI_ClkIn clock, in terms of both frequency and phase.

The minimum frequency of EJ_TCK is 0 MHz so this clock can be stopped when the TAP controller is not used
maximum frequency is specified as 40 MHz (25 ns period), due to limitations of the probes that usually interface
EJTAG TAP port. Both the rising and falling edges of EJ_TCK are used to control flops. The minimum clock high
low times are specified as 10 ns, yielding a duty cycle requirement of 40 to 60% at 40 MHz.

7.2.3 Handling Clock Insertion Delay

When a 5K core is implemented, clock trees are usually created to buffer and distribute the SI_ClkIn and EJ_TCK
throughout the core. These clock trees impart a finite delay from the primary clock inputs to the eventual usage
buffered clocks at the sequential elements within the core. The exact amount of clock insertion delay is a charac
of each specific 5K core implementation.

The clock insertion delay presents an issue that must be managed when the 5K core is instantiated in the rest
system. Any clock insertion delay from the clock input to the actual clock usage at the sequential elements for 
primary inputs and outputs of the core reduces the primary input setup times but increases the input hold times
as the clock-> out delays on the primary outputs. Because the 5K core inputs and outputs are received or gene
directly by flops and the remaining have only little logic in the path for a flop, the setup and hold times for the prim
inputs and outputs can be balanced at the system level.

Several different techniques can be used to manage the 5K core’s internal clock insertion delay:

• Tolerate the core clock insertion delay at the system level, if possible, within the system logic that interfaces 
5K core. This may entail adding delay elements when driving inputs, so that hold times are not violated, and
receiving “late” outputs, which reduces the number of logic stages that can exist in the same cycle the outpu
driven because the clock insertion delay is visible. This step might not be acceptable for all system designs, 
usually the simplest approach.

• When creating the system clock tree for the sequential logic that interfaces to the 5K core, match this system c
the core’s internal insertion delay. Clock tree generation tools have the ability to match relative clock delays, 
knowing the core’s internal clock insertion delay will allow the internal clocks to be specified as matching poin
(within reasonable skew limits). With this approach, input hold times and output delays can be minimized wh
allows more time in the cycle for useful work.

• Use a de-skewing phase-locked loop. SI_ClkOut is an output of the 5K core which is tapped from the interna
tree so that it is identical (within reasonable skew limits) to the clock seen by the sequential elements within 
core. The difference between SI_ClkIn and SI_ClkOut represents the clock insertion delay of the primary clock
within the 5K core. (Note that there is no corresponding reference clock output for the EJ_TCK clock, so this
technique cannot be applied to that clock domain.) Due to loading limitations, the SI_ClkOut clock cannot be
directly to control system logic that interfaces to the core, but it can be used as the reference clock to a PLL 
system to “hide” the core’s clock insertion delay.

7.3 Core Reset and NMI

Hardware initialization is accomplished through the SI_ColdReset and SI_Reset pins. This section describes ho
pins are typically used in systems. These reset input pins must always be driven to the 5K core (either to a logic
“0”), and they must not be left floating or indeterminate. Each of these inputs trigger a different type of exception w
the 5K core; theMIPS64 5K Processor Core Software User’s Manual describes more details about these exceptions
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The initialization process for a 5K core requires a combination of hardware and software. This section describes th
hardware initialization interface. In accordance with the MIPS64 architecture, only a minimal amount of state is
by hardware; much of the internal states, like the Translation Look-Aside Buffer (TLB) and the cache tag arrays
be initialized via software before being used. TheMIPS64 5K Processor Core Software User’s Manual describes the
software initialization requirements of a 5K core.

7.3.1 SI_ColdReset

The SI_ColdReset input is a hard reset signal that initializes the internal hardware state of the 5K core without
any state information. It is active high, and must be asserted for a minimum of 5 SI_ClkIn cycles. The falling ed
triggers a reset exception, which is taken by the core as the highest priority. Typically, SI_ColdReset is driven b
power-on-reset circuit in the system. For reliable operation, the power supply must be stable and the SI_ClkIn cloc
be running before SI_ColdReset is deasserted.

7.3.2 SI_Reset

The SI_Reset input is a soft reset input to the 5K core. It is active high and must be asserted for a minimum of 5 SI
cycles. The falling edge triggers a soft reset exception, which is taken by the core. Typically, SI_Reset is driven
reset “button” in the system. For reliable operation, the power supply must be stable and the SI_ClkIn clock mu
running before SI_Reset is deasserted.

Note:Historically, MIPS processors have required Reset to be asserted during a ColdReset. The 5K core does no
this, so an assertion of SI_ColdReset does not need to force the assertion of SI_Reset.

7.3.3 SI_NMI

The SI_NMI input signals a non-maskable interrupt (NMI). This signal is active high and rising-edge sensitive; it
be asserted for a minimum of one clock cycle in order to be recognized. The sampling of the rising edge triggers a
exception that the core takes. Typically SI_NMI is used to indicate time-critical information, like impending loss
power in the system.

7.4 Power Management

Two primary mechanisms exist for managing system power with a 5K core: the hardware method of slowing dow
stopping) the primary SI_ClkIn clock and the software method of initiating “sleep” mode via the execution of the W
instruction.

7.4.1 Reducing SI_ClkIn Frequency

The most global method to control power is to reduce the primary SI_ClkIn to a lower frequency (or turn it off) w
the 5K core is not in use, if desired by your system logic. The 5K core is internally fully static so the clock can be
either high or low, and the input frequency can be changed from maximum to a lower frequency, including zero
vice-versa) in a single cycle because there is no internal PLL.

The core outputs some pins that the system logic can use, if desired, to control entry or exit to this low-power sta
SI_RP output is directly driven from the internal CP0 Status register as an external indication that it is desirable to
the 5K core in a low-power state by reducing the clock frequency. When software sets the RP bit in the Status 
system logic can detect the assertion of the SI_RP output and then choose to place the 5K core in a lower power
reducing the clock frequency. Additionally, the SI_ERL and SI_EXL outputs (derived from the ERL and EXL bits in
Status register) indicate that an exception has been taken, and can be sensed to speed the clock frequency up
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desired. EJ_DebugM indicates that the processor operates in Debug Mode. This can also be used to speed the c
up. These output pins need not be used to control the core’s clock frequency, if other system logic is available to in
that the 5K core is not being used.

7.4.2 Software-Induced Sleep Mode

Upon execution of the software WAIT instruction, the 5K core enters a low-power state once all outstanding instru
and bus activity have completed. Most of the clocks in the 5K core are stopped, but a handful of flops remains ac
sense an external hardware event that will awaken the core again. The external events that can wake the core ba
any enabled interrupt, NMI, debug interrupt (via EJ_DINT), or reset. Power is reduced since the global gated c
which goes to the vast majority of flops within the 5K core is held idle during this sleep mode. The SI_Sleep pin
asserted when the core enters this low power mode. This can be used by the system logic to achieve further p
savings. There is no bus activity while the core is in sleep mode, so the system bus logic that interfaces to the 
could be placed into a low power state as well.
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Chapter 8

Simulation Models

This chapter discusses the cycle-exact simulation model included in your MIPS64 5K core release. A 5K VMC
is available if cycle-exact simulation is required. VMC is a tool from Synopsys that compiles RTL into a protected b
executable. This resulting executable can then be linked into a SWIFT R41 compatible RTL simulator to simula
MIPS64 5K processor core.

This chapter contains the following sections:

• Section 8.1, "Installing the VMC Model"

• Section 8.2, "Verifying the VMC Installation"

• Section 8.3, "SWIFT Template Generation"

• Section 8.4, "Back-annotating with SDF Timing"

• Section 8.5, "Register Windows"

• Section 8.6, "VMC Simulation Configuration"

• Section 8.7, "Multiple VMC Instances"

• Section 8.8, "Assertion Checks"

8.1 Installing the VMC Model

Currently the 5K VMC model is only supported on the Sun Solaris Unix platform. Contact MIPS Technologies, Inc
email atsupport@mips.com  if you require another platform.  A text similar to this one can be found at
$PROJECT/vmc/<model>_vmc_release/readme/readme.txt . Below <model> refers to m5kc, corresponding to
a MIPS64 5Kc processor core. For other releases, this text might contain other instructions than those found belo
the following steps to install the VMC model:

1. The 5K VMC model is a SWIFT R-41 compatible model. This model can be loaded into a site-wide R41
LMC_HOME tree or into its own stand-alone LMC_HOME tree. As appropriate, set the LMC_HOME
environment variable to the location you want the installation to reside (sourcing the file
$PROJECT/vmc/scrits/sourceme_vmc  from the$PROJECT directory will do this.):

% setenv LMC_HOME <your_install_path>

2. Now invoke the admin install tool, which is supplied in the top level of the release package for the VMC mo

% $PROJECT/vmc/m5kc_vmc_release/sl_admin.csh

3. A dialog box labeled “Install From...” will pop up.

4. Make sure the text input box points to the package, “m5kc_vmc_release”.

5. Click “Open” to continue.

6. Now you should see another dialog box that selects the models to install. Only one choice is available in th
release: a model called “m5kc_vmc_model” followed by a version number. Click on that model to bring it into
“Models to Install” window.

7. Click “Continue” to close this dialog box.
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8. Next you will see another dialog box that selects the platforms for this model installation. Because this releas
supports the Sun Solaris platform, the platform default should be correct. You will also need to specify the
appropriate simulator package you will be using under the “EDAV Packages” heading. If you are using VCS
simulator, then the default push-button selection of “Other” is appropriate. If your simulator is Verilog-XL,
NC-Verilog, or ModelSim, then select the “Cadence Design Systems” push-button, as the support package
for all of these simulators is identical. Or if you are using one of the other simulators listed, choose that
push-button. Then press “Install” to continue.

9. You will get an “Install complete” message in the main message window. You can exit from the sl_admin to

During the installation, a documentation directory is created at$LMC_HOME/doc. The PDF files in this directory
structure contain additional details about the installation process, administering and using SmartModels, and li

The 5K VMC model requires a GLOBEtrotter FLEXlm license in order to run. You can get this license from MIP
through your IP vendor. For details on how to install the license, see the “Network Licensing” chapter of
$LMC_HOME/doc/smartmodel/manuals/install.pdf .

8.2 Verifying the VMC Installation

A utility called swiftcheck is available in the VMC installation to ensure that your model, environment variables,
FLEXlm license key are set up properly. Run this command before attempting to simulate with the 5K VMC mo
Invocation is as follows:

% $LMC_HOME/bin/swiftcheck m5kc_vmc_model

The above command produces the fileswiftcheck.out . Check it to verify that there are no errors as reported at t
end of the file.

8.3 SWIFT Template Generation

In order to instantiate the 5K VMC model in your RTL simulation environment, you need to create a SWIFT tem
of the 5K VMC model, which is then instantiated in your RTL design. This template file provides a conversion from
VMC model to your simulator’s SWIFT interface. The SWIFT template is simulator-specific, so your simulator
documentation should provide additional details on creating a SWIFT template and including the template in yo
design.

To create a SWIFT template under Synopsys VCS, use the following command:

% vcs -lmc-swift-template m5kc_vmc_model

To generate a SWIFT template for Verilog-XL, NC-Verilog, and ModelSim, use a script calledvsg , which is included
in the$LMC_HOME/bin area of your installed VMC area is used. The invocation is:

% vsg -z m5kc_vmc_model

For reference, two SWIFT templates for the 5K VMC model are included in each release under the directory
vmc/m5kc_vmc_release/template . Templates are included for the VCS and Verilog-XL Verilog simulators in
separate directories.

If you are using thevsg script to create your SWIFT template, the module it creates leaves the bits of a bus as indiv
ports in the input/output header rather than a single unit or "busified". The instantiation of the SWIFT template is u
more convenient if the bits of a bus are concatenated together in the module’s port header. An example of thevsg output,
which has been modified to concatenate bus bits in the port header, is provided in the file
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s done
s called
vmc/m5kc_vmc_release/template/m5kc_vmc_model.vsg.v . If you runvsg directly, however, you will need to
perform the bus concatenation manually if you desire it for your SWIFT template.

The SWIFT template created by VCS (version 5.1 and later) automatically busifies the port header.

The make script used for verification ($PROJECT/verification/Makefile ) will try to make a proper template in the
$PROJECT/vmc/template  directory.  Make sure this directory exists or modify the make script to reflect your
installation.

8.4 Back-annotating with SDF Timing

This feature is not currently supported.

8.5 Register Windows

This feature is not currently supported.

8.6 VMC Simulation Configuration

The VMC model is configurable so that all 5K cores can be run. The available options are shown inTable 8-1and include
the processor model 5Kc core, cache config, and configuration of optional EJTAG features. The configuration i
by setting up a memory file that is read in and used to select between the different modules. The memory file i
memory.m5kc_config  and needs to be in the following swift readmem format:

#Comment
<Address>/<Data>;

Table 8-1 VMC Configuration Options

Name Addr
(hex)

Description Legal Values Default

ICacheAssoc 6 Associativity of the instruction cache. 1,2,3,4 4

ICacheWaySize 7 Size of each way of instruction cache (in KB).  4, 8, 16 10

DCacheAssoc 9 Associativity of the data cache. 1,2,3,4 4

DCacheWaySize A Size of each way of data cache (in KB). 4, 8, 16 10

CacheParity B Cache parity check enable. 0 – Disable
1 – Enable 1

ICacheEnable 5 Instruction cache enable. 0 – Disable
1 – Enable 1

DCacheEnable 8 Data cache enable. 0 – Disable
1 – Enable 1

InitCacheRam 11 Magically flush caches at time 0 to avoid simulation
cycles for software cache initialization.

0 – No Magic Init
1 – Magic Init 1

TLBLIMIT 4 Size of TLB in number of entries. 16, 32, 48 30

BATMMU 3 Select Fixed Block Address Translation or TLB. 0 – Use TLB
1 – Use Fixed MMU 0
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An examplememory.m5kc_config  file is shown below:

#CONFIG_STRING:5Kc-etp-ehb-p-i4w-i16k-d4w-d16k
# Memory Image File containing simulation configuration information
# Variable Number/Variable Value

#TLBLIMIT
4/30;
#BATMMU
3/0;
#InitCacheRam
11/1;
#DCacheAssoc
9/4;
#DCacheWaySize
a/10;
#ICacheWaySize
7/10;
#ICacheAssoc
6/4;
#ICacheEnable
5/1;
#DCacheEnable
8/1;
#bus_trace
f/0;
#CacheParity
b/1;
#EHBModule
1/1;
#ETPModule
2/1;
#dumpTrace
10/1;

EHBModule 1 EJTAG HW breakpoints enable. 0 – No Breakpoints
1 – Use Breakpoints 2

ETPModule 2 Use EJTAG TAP module. 0 – No TAP
1 – Use TAP 1

InstanceID C Unique instance identifier. Tags output messages and
trace files to more easily support multiple instances.0-63 0

DisplayEnable D Display Enable. Controls printing of warning or error
messages coming from the VMC model.

0 – No messages
1 – Messages 1

HaltControl E Controls stopping of VMC model. Determines which
conditions will cause a $finish within the model.

0 – Never stop
1 – Stop on FATAL errors
2 – Stop on any warning or error

1

bus_trace F Enables logging of all transactions on the core’s EC
interface (external bus).

0 – No log
1 – Log bus transactions 0

dumpTrace 10 Instruction trace enable. 0 – No tracing
1 – Trace file will be created 1

Table 8-1 VMC Configuration Options (Continued)

Name Addr
(hex)

Description Legal Values Default
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8.7 Multiple VMC Instances

It is possible to instantiate multiple VMC models to simulate a multi-CPU system. The SWIFT template file is
parameterized to control which configuration file is read in. By reading a unique configuration file, each instance
configured differently. By specifying unique instance tags in the memory file, the log output and trace files from
different models can be distinguished.

The following example shows how this multiple instantiation can be accomplished. The following Verilog code
instantiates two VMC models with instance names “vmc1” and “vmc2”, which read thememory1.m5kc_config and
memory2.m5kc_config configuration files, respectively. Note that you must manually create the unique configura
files with the desired options for each instance, as described inSection 8.6, "VMC Simulation Configuration".

m5kc_vmc_model vmc1 (....);
defparam vmc1.InstanceName = “vmc1”;
defparam vmc1.MemoryFile = “memory1”

m5kc_vmc_model vmc2 (...);
defparam vmc2.InstanceName = “vmc2”;
defparam vmc2.MemoryFile = “memory2”;

8.8 Assertion Checks

A variety of assertion checks are embedded within the 5K VMC model. These checks look for error conditions 
unknown states on critical signals. These checks are divided into the following basic categories:

• Fatal HW Errors – These errors should never occur and indicate a problem with the CPU. Contact MIPS sup
(support@mips.com ) with the details of the problem.

• Fatal SW Errors – These errors indicate that the chip cannot proceed due to unknown states on internal signals
errors can be caused by faulty software or incorrect chip hook-up.

• XWarning – This warning indicates an unknown state inside the chip from which it is theoretically possible to
recover. Typically, these warnings will give a more descriptive message and a better point to start debugging
than the eventual Fatal SW Error.

• I/O Warning – This warning indicates that the chip possibly is not hooked up correctly. For example, this warn
occurs if the reset inputs are asserted for more than 2000 cycles, which is symptomatic of someone assuming
reset inputs are active low rather than active high, but it might be the desired behavior in the system testbenc
simulation environment. Thus these events are classified as warnings and not fatal errors.

• Fatal I/O Errors – These errors indicate illegal conditions on the primary I/O. Examples of this error include und
inputs or insufficient reset pulse width.

Recall that configuration options are available to enable or disable the display of these assertion messages, and t
whether or not a fatal error will stop simulation. SeeSection 8.6, "VMC Simulation Configuration" on page 73for more
details.
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Appendix A

Revision History

Revision Date Description

02.00 January 15, 2001 Major update & release.

02.01 June 28, 2001 Updated COP Interface to cover both 5Kc and 5Kf cores.

Added note to COP Interface, about additional instructions getting COP
instruction strobes. This can only happen if they are subsequently nullified or
killed.
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