MII— S

TECHNOLOGIES

MIPS64 5K™ Processor Core Family
Integrator’s Guide

Document Number: MD00106
Revision 02.01
June 28, 2001

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 1999-2001 MIPS Technologies, Inc. All rights reserved.
Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any
copying, modifyingor use of this information (in whole or in part) which is not expressly permitted in writing by MIPS
Technologies or a contractually-authorized third party is strictly prohibited. Ata minimum, this information is protected
under unfair competition laws and the expression of the information contained herein is protected under federal
copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in
this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
the application or use of this information. Any license under patent rights or any other intellectual property rights owned
by MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third
party in a separate license agreement between the parties.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or any contractually-authorized third party.

MIPS, R3000, R4000, R5000, R8000 and R10000 are among the registered trademarks of MIPS Technologies, Inc., and
R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS |, MIPS II, MIPS Ill, MIPS IV, MIPS V, MDMX,

SmartMIPS, 4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, EC, MGB, SOC-it, SEAD, YAMON, ATLAS, JALGO, CoreLV

and MIPS-based are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

Table of Contents

(O gF=To] (] g N [o (oo [UT{ 1o o PP UPUT TR 1
Chapter 2 EC INLEITACEeiiie ittt e e e e bt e e e e bt e e e e s aab e e e e e s bbbt e e e e anbbe e e e e anbbeeeesanneee 3
280 I [1o o {1 T3 1T o SO 3
P I B o LU = PP PP PO PP PPPRPPPPPRR 3
P A =T] o @] o 1= - 11T [PPSR 4
2.2 EC Interface Signal DESCIIPLIONScoiiiiiiiiieiiiiiie ettt st e e sab e e e s s ssreee s e nbbe e e e e annbeas 5
A [a1 (T i = o] =T I = FSY= (o 1 o] PSSR 7
2.3.1 Single Read TraNSACHONSoiiiiiiiiiii ittt ettt s bt e e s ettt e e s st e e e s sanee e e e ensbbeeeeeannres 8
2.3.2 SiNgle WIE TrANSACHONS ...ccoiiiiiiiieeiiiiiie ettt ettt e et e e e e st e e s e sabe e e e s ssabbe e e e s e nnees 10
2.3.3 Back-to-back Read TranSacCtioNSc..ccoiiiiiiiiiiiiiiiieee ettt e eesmmm e s e e 13
2.3.4 Back-to-back Wrte TranSaCHONS oeiiiiiiiiiei ittt e eeme e e e e e e e 14
2.3.5 Read Transaction Followed by a Write TranSactionccccovcuiiieiiiiiiiie e 15.
2.3.6 Write Transaction Followed by a Read TranSactionccccoocuiiieiiiiiiiie it 17.
2.3.7 BUISE TFANSACHIONS ..eiiiiiiiiiieiitiite e e ittt e e s sttt e e sttt e e e e sttt e e s sbb et e e e s abbb e e e e e sabbeeeeemneeeeeeanneesabbeeeeesanes 18
2.4 EXternal WIE BUFTEIS ..ottt e mmeee e mmn e e e e nbb e e e e s e nnbbeas 22
PSR =l Lo 1= T =T RO P PP PP PRPR P 23
2.6 LOWET AQAIESS BitS ..iiiiiiiiiiiiiiiiiiiiiii et e e e e s s sttt e e et e e e e e e s st e et eeeeeesssassnese e e e e s mmmmmmmmmmmns s s e e e e e eeeeeeesannnsnns 24
Chapter 3 SYStEM INTEITACEcii it e e e e e e e e e e e e e s et s et e et s mmmmmmmmmmmmm s s s eseeeeeeaaeeeesesannnnes 27
0 A [o1 oo [U T 1 o] o TP PSP UP PP PPPPPP 27
3.2 System Interface Signal DESCIIPLIONSc.uiiiiiiiiiie e e e e e e e e e s s mmmmeeemeemmm— e e e e s e e eane 27
Chapter 4 COProCESSOr INTEITACEiiiiiiiiiiiiii ettt e e e e e e e et et et e e e e s eammmmneeeeeeeassnbbseeeeeaaaeaesaaanns
0 R o (o To L8 [ox 1 o] o KPP UP P PPPRURPT
4.2 COProCeSSOr INSIFUCLIONSeiiiiiiiiieiiee ettt e et e e e e e e e e e e e e saaebe b e e e o
4.3 Coprocessor Interface Signal Descriptions
4.4 Coprocessor Attachment to the 5K Family
4.4.1 5Kc Coprocessor AtTACHMENT ... e oo e
4.4.2 5Kf Coprocessor AACNIMENTooiiiiiiii et e e e e e e e s smmmmmmmmmneees s e e
4.4.3 COP2 Data Transfer WIth ...ttt e e mmnne e e e e
4.4.4 Out-of-Order Data TranSTEIS ... it e e e e e e e e e e e s
4. 4.5 LIMITEA DUAI ISSUE eiieeiiiiieiee ittt ettt e e e e e e e e s b e ettt et e e e e e e s smmmmmemmeeeeessseeeeaaaaaeeanan
R a1 =] g = (ot (0] (ool o] PO PPUTTPPT
4.5.1 INSErUCHION DISPALCH ...ttt e e e e e e s et bttt et emmmmmmmmmmmmnt e e e e e e e e e e e an
4.5.2 TO Coprocessor Data TranSIer ...t e e e e rmmme e e e e e e e e e esbeee e
4.5.3 From Coprocessor Data TraNSTEIeuieiiiiiiie it e e
4.5.4 Condition Code CRECKINGcciiiiiiiiiiiitie ittt e e e e e e s e anae e e e e e e aaaaee e s
RN] o o D - | = N PSPPI PPPPPP PP
4.5.6 COProCESSOr EXCEPLIONS ...iiiiiiiiiiiiie ettt e ettt et e e e e e e e e bbbttt e e e e aa e e e e e e ansbanssrneeeaaaaaaaeesaannnnns
4.5.7 InStruction NUIFICAIONooiii et e eman e nb e
4.5.8 INSIIUCTION KIllNG ..eeeieeiiiiee ettt e e et e e e e e e s memeemanm e e e e e s nnnnbeeeees
4.5.9 Hardware Present SIgNaliNgccc.eeuieiiiiiiiiaae ettt e e e et mmneeaeeaeeaaaaa e e e s
4.5.10 COPIrOCESSON IO ...ttt e et e e et e e s e bbb b et e et e e e e e e s smmmmmemmeeeeeesseeeeeaaaaeeaean
T B T = PO TP PP PP UUPPPPPPPPRPPUPON
Chapter 5 EIJTAG INLEITACEeiiiiiiiiiiie ettt ettt e e sttt e e e st et e e e s abbe e e e e saabeeeeeesaabbeeeesabbeeeeeanne 55
LS00 A [o o {1210 o PRSP 55
5.2 EJTAG Interface Signal DESCIIPLIONSoiiiiiiieiiiiiiie ittt ettt s e e s s b e e 55
5.3 Test Access Port Interface DESCHPLIONS iuveiiiiiiiiiiie ettt e e s s snr e e s neees 58
5.3 1 TAP RESEL ..ttt e e e e et et et e e e e e e e e e mmeeee e rr e et e e e e e e na e e 59
LR I 7N = o o 11)| = SRR 59

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 iii

5.3.3 TAP Operation EXAMPIE ..ottt ettt e e e e e e e e e s e nr e e e e e e e aaaaaaeaaas 61
5.4 Reset from Probe

Chapter 6 Production Test Interface
200 o o [T 1o o PRSP
6.2 Production Test Interface Signal Descriptions
6.3 INternal SCAN INTEITACEccoi it e e e e e e s s e et eeeeeeeesaasanennereeaeeeeeeannnnnns
6.4 User-Implemented RAM BIST INTEIfACEccvviiiiiiiiiiii e
6.5 Integrated Memory BIST for Cache RAMs Interface

Chapter 7 Clocking, RESEt, aNA POWETcccuuiiiiiiiiiiie ettt e e e e e e e e st e e e e e e e e e e s smmmmnmmeeeessanseseeaaeeessesnnnnnnes 67
7.1 Introduction

472 @1 0TV S
7.2.1 SI_CIkIn Clock

7.2.2 EJ_TCK Clock

7.2.3 Handling Clock INSErtioN DEIAYccceeeeiiiiiiiiiiieie ettt e e e s e e e e e e e eemmnmnneeee s e e ennns 68
7.3 Core RESEE ANA NIMI ...t e et e e e sttt e e e s sn bt e e e e e sbeeeeesaseeeeessnbeeeaesasbneeaeans 68
T S Y I e] (o | =Y SRR 69

7.3.2 SI_Reset
7.3.3 SI_NMI

A o T Y F= T g P=To =T o T o SRR 69
A = To [N o g Yo IS 1L T =T [0 1= o R 69

7.4.2 Software-INduced SIEEP MOUEcoooiiiiee e e e e e e e e s eeeeeeeessanmn e ennes 70
Chapter 8 SIMUIAION IMOUEISueeeiiiiieiee ettt e e e e e e e e bbbttt et e e e s mmmemeeeaeaesaeeeeesaaaannnbbbeeeeaaaaans 71
8.1 Installing the VIMC MOEI ...ttt eeee e s e e enbbeeee e 71

8.2 Verifying the VMC INSTAlIALION cooiiiiieee ittt e e e e e e mmmmmeneenn e e e e e e e e e e ennnnnes 72

8.3 SWIFT Template GENEIALIONc..uueiiiiiiiiiaaee ettt e e e e e e e e et e e et e e e e e e s e s s nbbe b s e e eesammmmnn s s e s nnbebeees 72

8.4 Back-annotating With SDF TIMING ...ccoooaiiiiiiiiiiiie e e e e e e e e e s sammnneeeeeeeaannnbeeeeeas 73

8.5 REQGISTEI WINUOWS ...ttt e et oottt e e e e e e e e e s e abb bt be e et e e s Smmmmmmmmmmme £ s e e e e e e aeeeeesaannnnes 73

8.6 VMC Simulation CONfIQUIALIONueiiiiiiieiiie ittt e e e e e e e e bbb e s emmmmmmmmmmms e e e e e e e e e es 73

8.7 MUILIPIE VIMC INSEANCES ...ttt e e ettt e e e e e oo e e ettt e et e e e e e e s e s asab bt be e e cmmmmmmmmeaenseeeeeeaaasaesanannns 75

8.8 ASSEITION CRNECKSeeiiieiiitiiiie ettt ettt e ettt e e e sttt e e s b bttt e skt e et e e e mnn e e e e aanne et e e s annbn e e e s annreeees 75
APPENTIX A REVISION HISTOMY ...vviiiiiiiieiiiiiiciie et e s e et e e e e s e s s e st e e e e e eee e e s s rmmmmmmmmmomt oo oo e e s e s snseraeeeneeaeens 77

iv MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

List of Figures

Figure 2-1: Fastest Single Read TranSaCtioN TiMINGccuiiia it e e e e smmmmmemeememnt 2o enne
Figure 2-2: Single Read Transaction Timing (3 Data Wait States)..........ccccuuiiiiiiiiiiii e e e
Figure 2-3: Fastest Single Write Transaction TIMINGooouuiiiiiiiiiiae e eeeeessssmmme e e
Figure 2-4: Single Write Transaction Timing (1 Address Wait State and 4 Data Wait States)....
Figure 2-5: Back-to-back Read TranSaction TiMiNGeeeiiiai ittt s e e
Figure 2-6: Back-to-back Write Transaction TiMINGoeai it e e e cmeeeeememnms s nnee
Figure 2-7: Read Transaction Followed by a Write TranSacCtioncccooieiiiiiiiiiiiiiiiieeee e
Figure 2-8: Read Transaction Followed by a Write Transaction with Reorderingcccovveeiiiiiiiiniiiiceeeennee
Figure 2-9: Write Transaction Followed by a Read Transaction
Figure 2-10: Write Transaction Followed by a Read Transaction with Reorderingueeeiiiiiiiiiiiis o
Figure 2-11: Burst Read TranSaction TiMING.........uuuuiieiiiiaaaaiiiiiiie e e e e e e et e e e e e e e e e s sommmmeeeeeeeesseeeeaeaaeeaeaanns
Figure 2-12: Burst Write TranSaction TiMNQceeeiiea ittt e e e e e e e e e s e s b e e e e e e aaaasesseeeeaeaaaeaeaanns
Figure 2-13: Example of Generating LOW AdAreSS BilScooiiiiiiiiiiiiiiiiiaee et e e
Figure 4-1: Block Diagram of Coprocessor INtEITACEcooi ittt e e
Figure 4-2: General TranSfer EXAMIPIEou ettt s £ b5 22222222 e s
Figure 4-3: Arithmetic Coprocessor DispatCh WavefOrM...........ooo i ecmmmmme e
Figure 4-4: To Coprocessor Data Transfer Waveform
Figure 4-5: From Coprocessor Data Transfer WavefOrmco e o e+
Figure 5-1: Test ACCESS POrt (TAP) OVEIVIEWeeiiiiiaiiiaiiiiteie et e e e e ettt e e e e e e e e s e asnsereeeeeaaaessaaannnbeseeees
Figure 5-2: TAP CoNtroller Stat@ DIGGIAMueeeiia ittt e e e e e e et e et e e e e e e e s e s aas b s mememnnmmnmnn s s s sssbsbeeeeeeas
Figure 5-3: EJ_TDI to EJ_TDO Path when in Shift-IR Statecccccooiiiiiiiiiiiie e ecmmmmmmee e
Figure 5-4: EJ_TDI to EJ_TDO Path for Selected Data Register(s) when in Shift-DR Stateccccceeeenee
Figure 5-5: EJ_TDI to EJ_TDO Path when in Shift-DR State and ALL Instruction is Selected........................
Figure 5-6: TAP Operation EXAMIPIEcooiiiiiiiiiiiieet ettt ettt e e e e e e e s e e e e e aeeeamnnnbbbbeeeeeaaaaaaans
Figure 6-1: Protocol for Use of Integrated Memory BIST for Cache RAMScooiiiiiiiiiiiiiiieieee e

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 v

vi

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

List of Tables

Table 2-1: SigNal DIFECHON K@Yccoiiiieiiiieii ettt e e e e e e e e s s e mmene ettt eeeeaaa e e e e aaannabeeeeees 5
Table 2-2: EC INTEIfACE SIGNQAISueiiiiiiiiiaiiiieie ettt e e e e e e e et e e e e e e e e e e s e anteeeeeeaaaeeesaannnnbeneeees 5
Table 2-3: Burst Order for Sequential Ordering (4 Beat BUISES)oooiiiiiiiiiiiiiiiee e ee e e 20
Table 2-4: Burst Order for Sub-block Ordering (4 Beat BUISES)uuiiiiiiiiiiiiiiiiieiieee e e e 21
Table 2-5: ENAIAN EXAMIPIES ..ottt e e e e e e ettt e e et e e e e e e s s ammmmeeeeeeeaateeaeeeeesesaaansnrrnseeeas 23
Table 3-1: SIgNal DIFECHON K@Ycoii ittt et e e e e e e s e b e mmmne e e e e eeeaeae e e e e e s nbnbbeseeeas 27
Table 3-2: System Interface Signal DESCIIPLIONSuuuiiiiiiiiiii ittt e e e e s eeeeeeeeeeaaaan s e e nnnbeeeees 28
Table 4-1: Signal DIFECHON K@Y ..ottt et e e e e e e s e e mee e e e e eeeaaea e e e e s s nnnbbeseeeas 34
Table 4-2: Signal COPrOCESSOr CAlEQOIYuuueitteiiaaaaeiiaiitttteeeeeaaa e e s e e e e iaebeeaeeetaaaaaaaaaaaetbnaeaaeaaaaaaaaseeeeeaaasessannsnes 34
Table 4-3: Combined Issue Group 0 Signals - Used for both COP1 and COP2........cccooiiiiiiiiiiiiiiiieeee e s 34....
Table 4-4: Combined Issue Group 0 Signals - Used only for COPL.........ccoiiiiiiiiiiiiiiiiieeeee e meeee e e
Table 4-5: Combined Issue Group 0 Signals - Used only for COP2.........ccoiiiiiiiiiiiiiiieeee e emeeee e
Table 4-6: Arithmetic Issue Group 1 Signals - Used for both COP1 and COP2 ...
Table 4-7: Arithmetic Issue Group 1 Signals - Used only for COPL.........ooiiiiiiiiiiiiaeeiiiieee s e e
Table 4-8: Arithmetic Issue Group 1 Signals - Used only for COP2.........ooiiiiiiiiiiiiaeeiieeeee e e
Table 4-9: Transfers Required for EQCh DISPAtCRcooiiiieiiiiiiiie et
Table 4-10: Allowable Interface Latencies from a Coprocessor to the 5K Corecccvvveeeeeieeiiieiiniiis ceeenenn
Table 4-11: Interface Latencies From the 5K Core t0 8 COPIrOCESSONuuiiiiiiiaaaiaiiiiiiieeeeeeaeaeeee s s s

Table 5-1: Signal DIFeCHON KEY......ccoo ettt mmme e e e e e e e e e e e e e e an

Table 5-2: System Interface Signal DESCIIPLIONSuuiiiiiiiiiii it e e e e e e s eeeeeeeeeeaaaan s e e e eennbereees
Table 6-1: SIgNal DIFECHON K@Yccii ittt ettt et e e e e e e s et e mmnee e e e e eeeaeaae e s e e s nnabbeeneeas
Table 6-2: Production Test Interface Signal DeSCIPLIONSceiiiiiaaiiiiiiiiiiiie e cmmmeneeeeeeee e e e e e
Table 8-1: VIMC Configuration OPLIONSuieeiiiiiaieaaiei ittt e et e e et e e e e e e s e s aeb b saaammmmmmms s e bbeeeeeaaaeeeaean

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 vii

viii MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

Chapter 1

IE— |

Introduction

TheMIPS64 5K1 Processor Core Family Integrator's Guidketargeted for the ASIC designer who is integrating a
version of the MIPS64 5K processor core into his/her system ASIC. This document is applicable to both those integrators
who are using a hard core and those who are integrating a soft core.

The following chapters describe the interface to the 5K core, including descriptions of the pins of the core as well as a
description of the protocols used:

» Chapter2 describes the external system bus, EC™ interface, of the core.

» Chapter3 describes the general system control signals used by the core.

» Chapterd describes the COP interface used by the core for attaching tightly coupled coprocessor units.

» Chapters describes the EJTAG interface used by the core, including the EJTAG TAP interface and controller.

» Chapter6 describes the internal scan and memory test interface used by the core for production test.

» Chapter7 describes how to properly clock and reset the core. Reset and power management is also covered in this
chapter.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 1

Chapter 1 Introduction

2 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

Chapter 2

EC Interface

This chapter describes the 5K EC interface, which allows the 5K core access to instruction and data memory as well as
I/O devices. It contains the following sections:

» Section 2.1, "Introduction"

» Section 2.2, "EC Interface Signal Descriptions"
» Section 2.3, "Interface Transactions"

» Section 2.4, "External Write Buffers"

» Section 2.5, "Endianess"

» Section 2.6, "Lower Address Bits"

2.1 Introduction

The EC interface is implemented in the 5K core as follows:

+ Data buses are 64 bits wide

» Address lines EB_A[35:3] are used

e The maximum number of outstanding transactions is 16 (8 reads and 8 writes).

Also note the following 5K-specific feature: on a WAIT instruction, the 5K core waits until the internal write buffer is
empty before entering low-power mode.

2.1.1 Features

The 64-bit implementation of the EC interface has the following features:
* 64-bit data buses

» 36-bit addressing

» Separate read and write data buses

« All signals are unidirectional—no bidirectional or 3-state buses

« Fully registered, synchronous interface to the 5K core

» Separate read and write bus error indications

» Separate address and data phases allow pipelining on the interface

» No limit on the number of outstanding transactions

* Number of outstanding transactions can be limited by the external logic
» Support for variable burst length

» Sequential or sub-block ordering burst address sequences

« Indication of first and last address phase of a burst

» Request for emptying external write buffers and indication of external write buffers being empty

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 3

Chapter 2 EC Interface

» Byte enable indication

* Indication of instruction read (fetch)

» Address and data phases can complete the same cycle they are initiated (zero wait states)

* No limit on the number of wait states in address and data phases

 Independent read and write data phases. A read transaction can overtake a write transaction and vice versa.

» Only one 5K core and one external logic

2.1.2 Basic Operation

All inputs to the 5K core are sampled at the rising edge of the SI_CIkin signal. Further the outputs from the 5K core
change with respect to a rising edge of the SI_Clkin signal.

The EC interface does not include a signal to indicate reset. Therefore to reset the EC interface, reset the 5K core anc
the external logic simultaneously. Whenever the EC interface is reset, all transactions are aborted and the bus returns tc
the idle state. EB_ARdy, EB_AValid, EB_WDRdy, EB_RdVal, EB_Burst, EB_BFirst, EB_BLast, EB_RBErr, and
EB_WBErr must be driven inactive during reset.

Each transaction on the EC interface haaddress phasand adata phasewhich can have a number of wait states.

A wait state in the address phase is nameadaness wait statand is defined as a clock cycle where EB_AValid is
asserted and EB_ARdy was sampled deasserted in the beginning of the cycle.

An address phase begins in the clock cycle where the 5K core asserts EB_AValid. An address phase ends on the positive
clock edge following an asserted sample of EB_ARdy. For maximum speed (no address wait states), EB_ARdy has to
be sampled asserted on the positive clock edge preceding the beginning of the address phase. During an address phas
all signals driven by the 5K core are unchanged and stable (except from the write data bus, EB_WData).

Due to the separate read and write data buses, two types of data phases exist: the read data phase and the write data phe

A wait state in a data phase is namethta wait statelt is defined as a clock cycle where the corresponding address
phase has been started (and possibly ended) and:

» For a write data phase, EB_WDRdy is sampled deasserted at the beginning of the cycle

» For a read data phase, EB_RdVal is sampled deasserted at the end of the cycle

A read data phase begins in the clock cycle where the 5K core starts the corresponding read address phase. However, i
there are outstanding read data phases when the read address phase begins, the corresponding read data phase does
start until all of the preceding read data phases have ended. The read data phase ends at the positive clock edge whe
EB_RdVal is sampled asserted. It can not end earlier than when the corresponding address phase ends.

A write data phase begins in the clock cycle where the 5K core starts the corresponding write address phase. However,
if there are outstanding write data phases when the write address phase begins, the corresponding write data phase doe
not start until all of the preceding write data phases have ended. The write data phase ends at the positive clock edge
following the positive clock edge where EB_WDRdy is sampled asserted. For maximum speed (no data wait states),
EB_WDRdy must be asserted on the positive clock edge preceding the beginning of the corresponding address phase. |
cannot end earlier than the corresponding address phase ends.

From these definitions, for a given transaction the number of data wait states must be greater than or equal to the numbe
of address wait states.

4 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

2.2 EC Interface Signal Descriptions

2.2 EC Interface Signal Descriptions

This section describes the signals of the 5K processor core’s EC Int@ghlze2-1provides the pin direction key for
the signal descriptions. Note that all outputs are driven directly from flops and all inputs are input directly to flops. A
clock cycle begins on a rising edge and ends just before the next rising edge.

Table 2-1 Signal Direction Key

Dir Description

Input to the 5K core. Unless otherwise noted, input signals are sampled on the rising egige of
the appropriate CLK signal.

Output from the 5K core. Unless otherwise noted, output signals are driven on the rising edge
of the appropriate CLK signal.

S| Static input to the 5K core. These signals are normally tied to either power or ground and ghould
not change state while SI_Reset is deasserted.

The signals are describedTiable 2-2 Note that the signals are listed alphabetically.

Table 2-2 EC Interface Signals

Signal Name Dir Description

EB_A[35:3] O | Address bus. Only valid when EB_AValid is asserted.

Assertion of this signal indicates whether the external logic is ready for ajnew
EB_ARdy | address. The 5K core does not complete the address phase until the clocK cycle
after EB_ARdy is sampled asserted.

Assertion of this signal indicates that the values on the address bus and access
EB_Avalid O | type lines are valid (signifying an address phase is ongoing). EB_AValid is
always valid and cannot be deasserted between address phases within g burst.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 5

Chapter 2 EC Interface

Table 2-2 EC Interface Signals (Continued)

Signal Name Dir Description
Indicates which bytes of the EB_RData or EB_WData buses are involved in the
data phase corresponding to the current address phase. If an EB_BE signal is
asserted, the associated byte is being read or written. EB_BE lines are onlyvalid
while EB_AValid is asserted.
During bursts all lines must be asserted.
The table below lists the values that EB_BE can take.
Byte enables supported
00000001 00000010 00000100 00001000
00010000 00100000 01000000 10000000
11000000 00110000 00001100 00000011
11100000 01110000 00001110 00000111
11110000 00001111 11111000 00011111
EB_BE[7:0] o 11111100 00111111 11111110 01111111
11111111
EB_BE Read Data Bits Write Data Bits
Signal Sampled Driven Valid
EB_BE[O0] EB_RData[7:0] EB_WData[7:0]
EB_BE[1] EB_RData[15:8] EB_WData[15:8]
EB_BE[2] EB_RData[23:16] EB_WData[23:16]
EB_BE[3] EB_RData[31:24] EB_WData[31:24]
EB_BE[4] EB_RData[39:32] EB_WData[39:32]
EB_BE[5] EB_RData[47:40] EB_WData[47:40]
EB_BE[6] EB_RData[55:48] EB_WData[55:48]
EB_BE[7] EB_RData[63:56] EB_WData[63:56]
EB BFirst o Assertion of this signal indicates the address phase is the first address phase of
— a burst. EB_BFirst is always valid.
Assertion of this signal indicates the address phase is the last address phase of
EB_BLast O | aburst. Note that the time for assertion of EB_BLast is determined by use of
EB_Burst, EB_BFirst, and EB_BLen. EB_BLast is always valid.
EB_BLen[1:0] indicate the length (number of address/data phases) of the burst.
This signal is an implementation-specific static output.
EB_BLength[1:0] Burst Length
EB_BLen[1:0] o 0 reserved
1 4
2 reserved
3 reserved
EB Burst o) Assertion of this signal indicates that the current address phase is for a cache fill
— or a write burst. EB_Burst is always valid.
EB_BusClIkActive I Must be driven HIGH
Indicates that all external write buffers are empty. The external write buffers
must deassert EB_EWBE in the cycle following the assertion of the
EB_EWBE I corresponding EB_WDRdy and keep EB_EWBE deasserted until the external
write buffers are empty. S&ection 2.4, "External Write Buffers" on page 22
for more details.

6 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

2.3 Interface Transactions

Table 2-2 EC Interface Signals (Continued)

Signal Name Dir

Description

EB_Instr O

Assertion of this signal indicates that the address is for an instruction fetg
opposed to a data read. EB_lInstr is only valid when EB_AValid is asserte

h as
d.

EB_RBEIT [

Bus error indicator for read transactions. EB_RBEtrr is always valid. Only ag
it in the same cycle that the corresponding EB_RdVal is asserted.

sert

EB_RData[63:0] |

Read data bus. Valid at the end of a read data phase (on the rising clock
where EB_RdVal is sampled asserted).

edge

EB_RdVal |

Assertion of this signal indicates that the external logic is driving read dat
EB_RData (it ends a read data phase). EB_RdVal must always be valid.

EB_RdVal must never be asserted until after the corresponding EB_ARd
sampled asserted.

a on

y is

EB_SBlock Sl

When this signal is asserted, sub-block ordering is used for addressing b
When this signal is deasserted, sequential addressing is useseSam 2.3.7,
"Burst Transactions" on page i@ details.

ursts.

EB_WBErr [

Bus error indicator for write transactions. EB_WBErr is always valid. Only
assert it in the cycle following an asserted sample of the corresponding
EB_WDRdy.

EB_WData[63:0] (0]

Write data bus. Kept unchanged and stable during a write data phase un
write data phase ends (the positive clock edge following an asserted sam
EB_WDRdy).

til the
ble of

EB_WDRdy |

Assertion of this signal indicates that the external logic is ready to proces
write; it ends a write data phase and the EB_WData can change after the
positive clock edge that follows the positive clock edge where EB_WDRd
sampled asserted. EB_WDRdy is not sampled until the rising edge wher
corresponding EB_ARdy is sampled asserted.

y is
b the

EB_Write (0]

Assertion of this signal indicates that the address phase is for a write.
Deassertion of this signal indicates that the address phase is for a read.
signal is only valid when EB_AValid is asserted.

This

EB_WWBE o)

Assertion of this signal indicates that the 5K core is waiting for external
buffers to empty. EB_WWBE can be asserted when EB_EWBE is asserteq
if EB_EWBE is deasserted and EB_WWABE is asserted, EB_EWBE musf]
asserted eventually. S8ection 2.4, "External Write Buffers" on pagefag
more details.

rite
, but
be

2.3 Interface Transactions

The 5K core implements a unidirectional data-bus mode that uses separate busses for each direction. EB_RData[63:C
is used for read operations, and EB_WData[63:0] is used for write operations. The address phase of a bus transaction
(all signals except the data transfer and bus error indication) is separated from the data phase (data transfer and bus errc
indication), that is, the address phase of a transaction can complete before the corresponding data phase begins.

The bus transactions listed below are described in the following subsections:

 Fastest read

* Single read with wait states
 Fastest write

* Single write with wait states
» Back-to-back read

* Back-to-back write

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01

Chapter 2 EC Interface

* Read followed by write

» Read followed by write with reordering

» Write followed by read

» Write followed by read with reordering

* Burst read

* Burst write

The 5K core supports the following outstanding bus transactions (adding up to a maximum of 16 outstanding
transactions):

» 1 burst data read (4 reads) or a single data read

1 burst instruction read (4 reads) or a single instruction read
« 1 eviction of a dirty line (4 writes)

» 1 accelerated write burst (4 writes) or 4 single writes

2.3.1 Single Read Transactions

Figure 2-1shows the basic timing relationships between signals during a simple (fastest) read transaction. When the 5K
core is ready to begin a bus transaction (cycle 3), the address is driven on EB_A, the associated control information is
driven on EB_Instr, EB_Burst, EB_BFirst, EB_BLast, EB_BLen, EB_Write, and EB_BE, and EB_AValid is asserted.
On the same rising clock edge that these signals are driven out (end of cycle 2), the EB_ARdy signal state is sampled
If EB_ARdy is sampled deasserted, the 5K core maintains the transaction values on the previously mentioned signals.
The 5K core continues driving valid and stable values on these interface signals until the rising clock edge following the
one that the EB_ARdy signal is sampled asserted.

Starting in the same cycle as the read transaction is initiated, the 5K core samples EB_RdVal, EB_RData, and
EB_RBErr. These signals are sampled on each rising clock edge until the EB_RdVal signal is sampled asserted. The date
values sampled with this asserted EB_RdVal are considered valid. However, if EB_RBErr was sampled asserted in same
cycle, the transaction is considered failed.

Note that the data phase cannot end earlier than the corresponding address phase. EB_ARdy must be sampled assert
at least one clock cycle before the corresponding EB_RdVal is sampled asserted.

8 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

2.3 Interface Transactions

Cycle # 1 2 3 4 5 6 7 8 9 10

si_Clkin|] | | | | | | | | |

EB_ARdy|X

EB_A AL

EB_AValid

EB_Instr Valid

EB_Write

EB_BE BE1

EB_Burst B

EB_BFirst |

EB_BlLast|

EB_BLen Valid

EB_RData RDlW

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr|

EB_WDRdy><

Figure 2-1 Fastest Single Read Transaction Timing

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 9

Chapter 2 EC Interface

Figure 2-2shows an example of a read transaction with three wait states in the data phase (indicated by the deassertion
of EB_RdVal for three clock cycles). EB_RdVal is sampled deasserted on the rising edges at the beginning of cycles 4,
5, and 6 and then is asserted on cycle 7.

Cycle # 1 2 3 4 5 6 7 8 9 10

SI_Clkin | | | | | | | | | |

EB_ARdy|X

EB_A AL

EB_AValid

EB_Instr Valid

EB_Write

EB_BE BE1

EB_Burst B

EB_BFirst |

EB_BlLast|

EB_BLen Valid

EB_RData RDlW

EB_RBErr

EB_RDVal

EB_WData

EB_WBErr|

EB_WDRdy><

Figure 2-2 Single Read Transaction Timing (3 Data Wait States)

2.3.2 Single Write Transactions

Figure 2-3shows a zero wait state (fastest) write transaction. Like the read transaction when a write request is issued
(cycle 3), the address and control information for the transaction are driven on EB_A, EB_Instr, EB_Burst, EB_BFirst,
EB_BLast, EB_BLen, EB_Write, and EB_BE. These signals remain unchanged until the rising clock edge after the
EB_ARAdy signal is sampled asserted.

The write data is driven on the write data bus, EB_WData, in same cycle as the address is driven on EB_A. The write
data is held on the bus until the rising clock edge after EB_WDRdy is sampled asserted.

10 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

2.3 Interface Transactions

EB_WBETrr is sampled on the first rising clock edge after the rising clock edge that EB_WDRdy is sampled asserted. If
EB_WABErr is asserted at this time, the bus transaction is considered failed.

Note that the data phase cannot end earlier than the corresponding address phase. EB_WDRdy must be sampled assert
on the same clock edge or later than the clock edge where the corresponding EB_ARdy is sampled asserted.

Cycle # 1 2 3 4 5 6 7 8 9 10

SI_Clkin | | | | | | | | | |

EB_ARdy|X

EB_A Al

EB_AValid

EB_Instr Valid

EB_Write

EB_BE BE1

EB_Burst B

EB_BFirst|

EB_BlLast|

EB_BLen Valid

EB_RData

EB_RBErr|

EB_RDVal|

EB_WData wD1

EB_WBErr

EB_WDRdy| X

Figure 2-3 Fastest Single Write Transaction Timing

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 11

Chapter 2 EC Interface

Figure 2-4shows an example of a write transaction with four data wait states, indicated by the deassertion of the
EB_WDRdy signal. EB_WDRAdy is deasserted for four clock cycles, and then asserted. Note that the address phase is
prolonged by one clock cycle because EB_ARdy is deasserted for one clock cycle (sampled deasserted at the end of cycle
2).

Cycle # 1 2 3 4 5 6 7 8 9 10

SI_Clkin | | | | | | | | | |

EB_ARdy|X

EB_A AL

EB_AValid

EB_Instr alid

EB_Write

EB_BE BE1

EB_Burst|

EB_BFirst|

EB_BLast

EB_BLen alid

EB_RData

EB_RBErr|

EB_RDVal|

EB_WData wD1

EB_WBErr

EB_WDRdy| X

Figure 2-4 Single Write Transaction Timing (1 Address Wait State and 4 Data Wait States)

12 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

2.3 Interface Transactions

2.3.3 Back-to-back Read Transactions

Figure 2-5shows an example of two consecutive read transactions, which shows the ability to pipeline read addresses
independent of data wait states. Through manipulation of the EB_ARdy signal, the external logic can limit the depth of
the address pipelining.

Cycle # 1 2 3 4 5 6 7 8 9 10

SI_Clkin | | | | | | | | | |

EB_ARdy|X

EB_A Al A2

EB_Avalid

EB_Instr Valid alid

EB_Write

EB_BE BE1 BE2

EB_Burst|

EB_BFirst |

EB_BlLast|

EB_BLen Valid alid

EB_RData »(RD1 RD2></

EB_RBErr X

EB_RDVal

EB_WData

EB_WBErr|

EB_WDRdy><

Figure 2-5 Back-to-back Read Transaction Timing

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 13

Chapter 2 EC Interface

2.3.4 Back-to-back Write Transactions

Figure 2-6shows an example of two consecutive write transactions. Similar to the read transactions, pipelining of write
addresses can occur regardless of data wait states.

Cycle # 1 2 3 4 5 6 7 8 9 10

SI_Clkin | | | | | | | | | |

EB_ARdy|X

EB_A AL A2

EB_Avalid

EB_Instr alid Valid

EB_Write

EB_BE BEL BE2

EB_Burst|

EB_BFirst |

EB_BlLast|

EB_BLen alid Valid

EB_RData

EB_RBErr|

EB_RDVal|

EB_WData wD1 WD2

EB_WBEr"

EB_WDRdy| X __

Figure 2-6 Back-to-back Write Transaction Timing

14 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

2.3 Interface Transactions

2.3.5 Read Transaction Followed by a Write Transaction

Figure 2-7shows the relationship between a read transaction and a subsequent write transaction. A write transaction
following a read transaction behaves as described for the single write transaction. Completion of these transactions out
of order is allowed.

Cycle # 1 2 3 4 5 6 7 8 9 10

SI_Clkin | | | | | | | | | |

EB_ARdy|X

EB_A AL A2

EB_Avalid

EB_Instr Valid Valid

EB_Write

EB_BE BE1 BE2

EB_Burst|

EB_BFirst |

EB_BlLast|

EB_BLen Valid Valid

EB_RData RDlW

EB_RBErr

EB_RDVal

EB_WData WwD2

EB_WBEr"

EB_WDRdy><

Figure 2-7 Read Transaction Followed by a Write Transaction

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 15

Chapter 2 EC Interface

Figure 2-8shows an example of a read transaction followed by a write transaction where the write transaction is
completed prior to the read transaction (out of order).

Cycle # 1 2 3 4 5 6 7 8 9 10

SI_Clkin | | | | | | | | | |
EB_ARdy|X

EB_A AL A2

EB_AValid

EB_Instr Valid Valid

EB_Write

EB_BE BE1 BE2

EB_Burst B

EB_BFirst|

EB_BlLast|

EB_BLen Valid Valid

EB_RData RDlW

EB_RBErr

EB_RDVal

EB_WData WD2

EB_WBErr

EB_WDRdy><

Figure 2-8 Read Transaction Followed by a Write Transaction with Reordering

16 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

2.3 Interface Transactions

2.3.6 Write Transaction Followed by a Read Transaction

Figure 2-9shows an example of a write transaction followed by a read. As in the case of a write following a read, a read
transaction following a write transaction is not affected by the behavior of the write transaction. Completion of these
transactions out of order is allowed.

Cycle # 1 2 3 4 5 6 7 8 9 10

SI_Clkin | | | | | | | | | |

EB_ARdy|X

EB_A AL A2

EB_AValid

EB_Instr Valid Valid

EB_Write

EB_BE BE1 BE2

EB_Burst B

EB_BFirst|

EB_BlLast|

EB_BLen Valid Valid

EB_RData RDZW

EB_RBErr

EB_RDVal

EB_WData wD1

EB_WBErr

EB_WDRdy| X

Figure 2-9 Write Transaction Followed by a Read Transaction

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 17

Chapter 2 EC Interface

Figure 2-10shows an example of a write transaction followed by a read transaction where the read transaction is
completed prior to the write transaction (out of order).

Cycle #

SI_Clkin

EB_ARdy

1

2

3

4

5

6

10

X

EB_A Al A2

EB_Avalid

EB_Instr Valid Valid

EB_Write

EB_BE BE1 BE2

EB_Burst B

EB_BFirst |

EB_BlLast|

EB_BLen Valid Valid

EB_RData RDZW

EB_RBErr

EB_RDVal

EB_WData ND1

EB_WBErr

EB_WDRdy| X

Figure 2-10 Write Transaction Followed by a Read Transaction with Reordering

2.3.7 Burst Transactions

A burst transaction initiates the transfer of multiple related transfers. Read bursts are used to read data to be placed ir
the instruction or data cache. Write bursts are used to empty the contents of the write buffers.

Note that initiated bursts are always completed. The burst transaction cannot be aborted before reaching the burst bee
count (indicated by EB_BLen) except in the case where the EC interface is reset.

EB_Burstis asserted during the entire burst address sequence. EB_BFirstis driven asserted during the first address phas
of the burst and is deasserted with each of the remaining address phases. EB_BLast is driven asserted during the last

18 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

2.3 Interface Transactions

address phase and is deasserted with all prior address phases. Apart from EB_Burst, EB_BFirst and EB_BLast behavior,
and the deterministic address sequence, the multiple transfers of a burst transaction behave like that of back-to-back
single transactions, which simplifies interfacing to systems that do not support burst transactions. Note that it is possible
in the presence of data wait states, for all of the burst address phases to complete before the first data phase of the burs
(or even of a preceding transaction) has completed. If this behavior is undesirable, EB_ARdy can be used to control the
pace at which the addresses are transferred.

Note that EB_AValid cannot be deasserted between address phases within a burst and that all bits in EB_BE must be
asserted in all address phases within a burst.

Figure 2-11shows an example of a read burst transaction. EB_BLen indicates the length of the b8sttisee.2,

"EC Interface Signal Descriptions" on pagbfurther information on EB_BLen). The data requested is always an
aligned block according to the EB_BLen signal. The order of the words within the block varies depending on which word
in the block is being requested and the value of EB_SBlockTabke 2-3andTable 2-4for further information on the

refill scheme).

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 19

Chapter 2 EC Interface

Cycle # 1 2 3 4 5 6 7 8 9 10

si_Clkin|] | | | | | | | | |

EB_ARdy|X

EB_A Al A2 A3 A4

EB_Avalid

EB_Instr Valid Valid Valid Valid

EB_Write

EB_BE All asserted

EB_Burst

EB_BFirst

EB_BLast

EB_BLen alid

EB_RData />< RD1 RDZW />< RD3 RD4><ZZ:
EB_RBErr >< ><

EB_RDVal

EB_WData

EB_WBErr|

EB_WDRdy><

Figure 2-11 Burst Read Transaction Timing

Table 2-3andTable 2-4show the possible sequences for the least significant address bits during a burst.
Table 2-3 Burst Order for Sequential Ordering (4 Beat Bursts)

Req DWord (EB_AJ4:3]) Sequence
Address
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

20 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

2.3 Interface Transactions

Table 2-4 Burst Order for Sub-block Ordering (4 Beat Bursts)

Req DWord (EB_A[4:3]) Sequence
Address
0 1 2
1 0 3
2 3 0
3 2 1

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01

21

Chapter 2 EC Interface

Figure 2-12shows a burst write. Burst write transactions are used to empty write buffers. Write burst addresses always
start at the lowest address of an address block according to the EB_BLen indication.

Note that like single transactions, burst read and write transactions can complete out of order. Burst reads can overtake
burst writes and vice versa.

Cycle # 1 2 3 4 5 6 7 8 9 10

SI_Clkin | | | | | | | | | |

EB_ARdy|X

EB_A Al A2 A3 Ad

EB_AValid

EB_Instr Valid Valid Valid Valid

EB_Write

EB_BE All asserted

EB_Burst

EB_BFirst

EB_BLast

EB_BLen alid

EB_RData

EB_RBErr|

EB_RDVal|

EB_WData WD1 WD2 WD3 WD4

EB_WBEIr _><_
EB_WDRdy| X _/___

Figure 2-12 Burst Write Transaction Timing

2.4 External Write Buffers

Some systems might have external write buffers to increase bus efficiency and system performance. The 5K core has a
two-signal interface that allows software to have some control over the external write buffers. The SYNC instruction is
intended to form a barrier between load/store instructions before and after it in the instruction stream. Upon execution
of a SYNC instruction, the 5K core completes all pending read requests and flush the internal write buffer. The 5K core

22 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

2.5 Endianess

also asserts EB_WWABE to signal to the system that it is Waiting for the Write Buffer Empty signal. The SYNC
instruction does not complete until the EB_EWBE input is asserted.

In most systems you can tie EB_EWBE high. Just using EB_WWBE does not ensure coherency. If a write is in the
external write buffer, the core can generate a read request to the given address without asserting EB_WWBE (becaus
the core has no knowledge of the external write buffers). Therefore, any write buffers in the system must maintain
coherency with reads.

The EB_WWBE/EB_EWBE interface can be used to make SYNCs “harder” by forcing the flush of the external write
buffers in addition to flushing internal write buffers.

This method is a system/software design issue—you need to decide what if anything you want the system to do when a
SYNC instruction is executed.
2.5 Endianess

To help understand the use of endianéable 2-5shows some cases of how stores appear on the EC interface in
little-endian and big-endian mode.

Table 2-5 Endian Examples

Internal Big-endian Little-endian
Addr[2:0]
EB_DI[63:0] EB_BE EB_D[63:0] EB_BE
[7:0] [7:0]

lui t0, 0x0123
ori t0, t0, 0x4567
dsll t0, t0, 16
ori t0, t0, Ox89ab
dsll t0, t0, 16
ori t0, t0, Oxcdef
sb t0, 0x0(r0) 0 OXEFX XXX XX XXX XX XXX 10000000 | OXXXXXXXXXXXXXXXef (00000001
sb t0, 0x1(r0) 1 OXXXEfX XXX XXX XXXXX 01000000 | OXXXXXXXXXXXXXefXX 00000010
sb t0, 0x2(r0) 2 OXXXXXEfXXXXXXXXXX [00100000 | OXXXXXXXXXXXefXXXX (00000100
sb t0, 0x3(r0) 3 OXXXXXXXefX XXX XXXX 00010000 | OXXXXXXXXXefXXXXXX 00001000
sb t0, 0x4(r0) 4 OXXAX XXX XXX efX XX XXX 00001000 | OXXXXXXXefXXXXXXXX 100010000
sb t0, 0x5(r0) 5 OXX XXX XXX XXX efX XXX 00000100 | OXXXXXefXXXXXXXXXX 100100000
sb t0, 0x6(r0) 6 OXX XXX XXX XXX XXefX X 00000010 | OXXXefXXXXXXXXXXXX 101000000
sb t0, 0x7(r0) 7 OXX XXX XXX XXX XXX Xef 00000001 | OXefXXXXXXXXXXXXXX 10000000
sh t0, 0x0(r0) 0 0xcdefX X XXX XXX XXXX 11000000 | OXXXXXXXXXXXXXcdef 00000011
sh t0, 0x2(r0) 2 OXXXXXcdefX XXX XXXX 00110000 | OXXXXXXXXXcdefXXXX 00001100
sh t0, 0x4(r0) 4 OXXXXXXXXXcdefX XXX 00001100 | OxXXXXcdefXXXXXXXX 00110000
sh t0, 0x6(r0) 6 OXXX XXX XXX XXX Xcdef 00000011 | OxcdefXXXXXXXXXXXX 11000000
swl t0, 0x1(r0) 1 OxXX89abcd X XXXXXXX 01110000 | OXXXXXXXXXXXXX89ab 00000011
swi t0, 0x2(r0) 2 OXXXXX89abXXXXXXXX 00110000 | OXXXXXXXXXXX89abcd 00000111
swi t0, Ox5(r0) 5 OXXXXXXXXXXX89abcd 00000111 | OxXXXX89ahXXXXXXXX 00110000

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01

23

Chapter 2 EC Interface

Table 2-5 Endian Examples (Continued)

Internal Big-endian Little-endian
Addr[2:0]
EB_DI[63:0] EB_BE EB_D[63:0] EB_BE
[7:0] [7:0]

swi t0, 0x6(r0) 6 OXXXX XXX XXX XX X89ab 00000011 [OxXX89abcdXXXXXXXX 01110000
swr t0, 0x1(r0) 1 0xcdefX XXX XXXXXXXX 11000000 | OXXXXXXXXXabcdefXX 00001110
swr t0, 0x2(r0) 2 OxabcdefX XXX XXX XXX 11100000 [OXXXXXXXXXcdefXXXX 00001100
swr t0, Ox5(r0) 5 OXXXXXXXXXcdefX XXX 00001100 | OxabcdefXXXXXXXXXX 11100000
swr t0, Ox6(r0) 6 OXXXXXXXXXabcdefXX 00001110 [OxXcdefXXXXXXXXXXXX 11000000
sw 0, 0x0(r0) 0 0x89abcdef X XXXXXXX 11110000| OXXXXXXXXX89abcdef 00001111
sw 10, 0x4(r0) 4 OXXXXXXXXX89abcdef 00001111| 0x89abcdefXXXXXXXX 1111000
sdl t0, Ox1(r0) 1 0xXX0123456789abcd 01111111 OXXXXXXXXXXXXX0123, 000000111
sdl t0, 0x2(r0) 2 OXxXXXX0123456789ab 00111111 OxXXXXXXXXXXX012345 000001111
sdl t0, 0x3(r0) 3 OXXXXXXX0123456789 00011117 OxXXXXXXXX01234567 0000111
sdl t0, 0x4(r0) 4 OXXXXXXXXX01234567 00001111 OxXXXXXX0123456789 00011111
sdl 10, 0x5(10) 5 OXXXXXXXXXXX012345 00000111 | OxXXXX0123456789ab 00111114
sdl t0, 0x6(r0) 6 OXXXXXXXXXXXXX0123 00000011 | 0xXX0123456789abcd 011111171
sdr t0, Ox1(r0) 1 0xcdefX XXX XXXXXXXX 11000000 | 0x23456789abcdefXX 11111110
sdr t0, 0x2(r0) 2 OxabcdefX XXXXXXXXX 11100000 [0Ox456789abcdefX XXX 11111100
sdr t0, 0x3(r0) 3 0x89abcdefX X XXXXXX 11110000 O0x6789abcdefXXXXXX 11111000
sdr t0, Ox4(r0) 4 0x6789abcdefX XXXXX 11111000 0x89abcdefXXXXXXXX 11110000
sdr t0, 0x5(10) 5 0x456789abcdefX XXX 11111100 OxabcdefXXXXXXXXXX 1110000D
sdr t0, Ox6(r0) 6 0x23456789abcdefXX 11121111D OXcdefXXXXXX XXX XXX 11000000
sd t0, Ox0(r0) 0 0x0123456789abcdef 11111111 0x0123456789abcdef 11111111

2.6 Lower Address Bits

24

Figure 2-13shows a Verilog example of how the lower address bits can be generated for use with a SysAD interface.

Note that this case requires that only the default EB_BE patterns are used.

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

2.6 Lower Address Bits

/I Low address bit generation
wire [2:0] my_a_2_0 = (BigEndian == 1'b1
?

// big endian
(EB_BE[7] ? 2'd0 :
EB_BE[6] ? 2'd1 :
EB_BE[5] ? 2'd2 :
EB_BE[4] ? 2°d3 :
EB_BE[3] ? 2'd4 :
EB_BE[2] ? 2'd5 :
EB_BE[1] ? 2'd6 :
2'd7)

/I little endian
(EB_BE[0] ? 2'd0 :
EB_BE[1] ? 2'd1 :
EB_BE[2] ? 2'd2 :
EB_BE[3] ? 2'd3:
EB_BE[4] ? 2'd4 :
EB_BE[5] ? 2'd5 :
EB_BE[6] ? 2'd6 :
2'd7)

Figure 2-13 Example of Generating Low Address Bits

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 25

Chapter 2 EC Interface

26 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

Chapter 3

System Interface

This chapter describes the 5K System Interface. It contains the following sections:
» Section 3.1, "Introduction”

» Section 3.2, "System Interface Signal Descriptions"

3.1 Introduction

The 5K core’s system interface provides communication between the 5K core and external logic:
» System clock input and PLL locking feedback

» Reset and external interrupts

» Reduced power indicators

« Static configuration input signals

» Performance monitoring indicators

The 5K core implements the same bus interface as the MIPS32 4K processor cores, with the following exceptions:

» The 5K core has the input SI_PRIdOpt[7:0] and the 4K core does not. These inputs are loaded into the upper eight
bits of the CPO PrID register. On the 4K core, this information was a compile-time option. On the 5K core, customers
can change the values when they hook up the core.

» The 5K core does not have the SI_MergeMode input and the 4K core does. This input is not needed because the 5k
core does not implement transaction merging on the EC Interface.

3.2 System Interface Signal Descriptions

This section describes the signal interface of the 5K processor core. The pin direction key for the signal descriptions is
shown inTable 3-1

Table 3-1 Signal Direction Key

Dir Description

| Input to the 5K core. Unless otherwise noted, input signals are sampled on the rising efige of
the appropriate CLK signal.

o Output from the 5K core. Unless otherwise noted, output signals are driven on the rising edge
of the appropriate CLK signal.

s Static input to the 5K core. These signals are normally tied to either power or ground and do
not change state while SI_ColdReset is deasserted.

The signals are listed by functionTable 3-2below.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 27

Chapter 3 System Interface

Table 3-2 System Interface Signal Descriptions

Signal Name

Type

Description

System Interface

SI_Clkin

Clock input. All inputs and outputs, except a few of the EJTA
signals, are sampled and/or driven relative to the rising edg
this signal.

AG
b of

SI_CIkOut

Reference clock for the External Bus Interface. This clock sig
provides a reference for de-skewing any clock insertion deld
created by the internal clock buffering in the 5K core.

hal
y

SI_ColdReset

Hard reset signal. This signal must be asserted during eithe
power-on reset or a cold reset. The assertion of SI_ColdRe
completely initializes the internal state machines of the 5K ¢

during a reset operation, the power supply must be stable an
SI_CIkIn input clock to the 5K core running before
SI_ColdReset is deasserted. When SI_ColdReset is deasse
reset exception is taken by the 5K core.

without saving any state information. To get predictable resfts

ra

set

bre
the

ed, a

S|_Endian

Indicates the base endianess of the 5K core.

EB_Endian Base Endian Mode

0 Little Endian

1 Big Endian

S|_SimpleBE[1:0]

Reserved, must be tied to 2'b00.

SI_ERL

This signal reflects the state of the ERL bit in the CPO Statu
register and indicates the error level. The 5K core asserts Sl_|
whenever a Reset, Soft Reset, NMI, or Cache Error exceptio
taken.

[

FRL
nis

SI_EXL

This signal represents the state of the EXL bit in the CPO St
register and indicates the exception level. The 5K core asse
SI_EXL whenever a non-debug, Reset, Soft Reset, NMI, or
Cache Error exception is taken.

tus
rts

SI_Int[5:0]

When asserted, these signals indicate the corresponding inte
request to the 5K core.

rrupt

SI_NMI

When first sampled asserted, this signal causes the 5K corg
take an NMI exception. After the NMI exception is taken,
SI_NMI must be deasserted before it can cause another NN
exception.

to

f

SI_PRIdOpt[7:0]

These signals are used as the upper eight bits of the CPO H
register.

D

=

S|_Reset

Warm reset signal. This signal must be asserted for a warmr
When asserted, a soft reset exception is asserted to the 5K
A warm reset operation restarts the 5K core but preserves g
internal states.

pset
core.
ome

SI_RP

This signal represents the state of the RP bit in the CPO Stg
register.

tus

SI_SimpleBE[1:0]

Reserved. Must be tied to ground.

SI_Sleep

The 5K core asserts this signal whenever the WAIT instructio
executed. The assertion of this signal indicates that the clock

nis
has

stopped and that the 5K core is in power-down mode.

28

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

3.2 System Interface Signal Descriptions

Table 3-2 System Interface Signal Descriptions

Signal Name Type Description
This signal is asserted when the Count and Compare regist
SI_Timerint (0] first match and is deasserted when the compare register is

written.

ers

Performance Monitoring Interface

ne

the

hit.

PM_DCacheHit (0] This signal is asserted whenever there is a data cache hit.
PM_DCacheMiss 0] This signal is asserted whenever there is a data cache mis
PM_DTLBHit This signal is asserted whenever there is a data TLB hit.
PM_DTLBMiss This signal is asserted whenever there is a data TLB miss.
PM_ICacheHit This signal is asserted whenever there is an instruction cac
PM_ICacheMiss o m;sssgnal is asserted whenever there is an instruction cac
PM_InstnComplete o This signal is asserted each time an instruction completes in
pipeline.
PM_ITLBHit 0] This signal is asserted whenever there is an instruction TLB
PM_ITLBMiss o 'In'{i]issssignal is asserted whenever there is an instruction TLB
PM_JTLBHit This signal is asserted whenever there is a JTLB hit.
PM_JTLBMiss This signal is asserted whenever there is a JTLB miss.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01

ne hit.

29

Chapter 3 System Interface

30 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

Chapter 4

Coprocessor Interface

This chapter describes the coprocessor interfaces that the 5K microprocessor core supports. It contains the following
sections:

Section 4.1, "Introduction”

Section 4.2, "Coprocessor Instructions"

Section 4.3, "Coprocessor Interface Signal Descriptions"
Section 4.4, "Coprocessor Attachment to the 5K Family"

Section 4.5, "Interface Protocols"

4.1 Introduction

The 5K coprocessor interface allows for connection of coprocessors as follows:

The 5Kc processor allows a single coprocessor, either Coprocessor 1 (COP1) or Coprocessor 2 (COP2), to be
connected to the integer unit.

The 5Kf processor allows a single Coprocessor 2 (COP2) to be connected to the integer unit.

Coprocessor 1 supports floating-point operations. The function of Coprocessor 2 is undefined; it is intended to allow
special-purpose engines, such as a graphics accelerator, to be integrated into the architecture.

The coprocessor interface has the following features:

The interface is easy to understand. By keeping the interface as simple as possible, designers can concentrate on tf
coprocessor’s functionality rather than its interface.

Performance is not compromised. The coprocessor interface is compatible with the high-performance features of the
5K microprocessor core.

Minimal interface logic is required, which reduces area and power overhead.
The interface is highly configurable:

— 32-bit or 64-bit data transfers

— COP1 or COP2 supported

— 0 or 1 out-of-order data transfers

Fully compliant to the MIPS Core Coprocessor Interface standard.

— Supports Limited Dual Issue using two issue groups

4.2 Coprocessor Instructions

The Coprocessor Interface supports all coprocessor instructions currently defined in the MIPS32™, MIPS64™, and
MIPS-3D™ architecture specifications.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 31

Chapter 4 Coprocessor Interface

These coprocessor instructions are divided into three classes.

* Instructions that perform arithmetic operations (cafeithmetic COP Ops
* Instructions that move data into the Coprocessor (ckieth COP Op}

* Instructions that move data out of the Coprocessor (catletiOP Op}

The explicit classification of the opcodes is given below.

Arithmetic COP Ops:
e COPL1 arithmetic instructions (including COP1X and MDMX instructions)
« IR[31:26] = 010001 AND IR[25] = 1
« IR[31:26] = 010011 AND IR[5:4] != 00
« IR[31:26] = 011110
* COP2 arithmetic instructions
« IR[31:26] = 010010 AND IR[25] = 1
e COPL1 branch instructions (BC1 instructions)
« IR[31:26] = 010001 AND IR[25:24] = 01
e COP2 branch instructions (BC2 instructions)
« IR[31:26] = 010010 AND IR[25:24] = 01
« Conditional COP1 movement instructions (MOVF, MOVT instructions)
« IR[31:26] = 000000 AND IR[5:0] = 000001

Above COP1 arithmetic instructions include instructions that test integer processor core registers:
ALNV.PS, ALNV.fmt, MOVN.fmt and MOVZ.fmt

Above BC1, BC2, MOVF and MOVT are instructions that test coprocessor condition bits.

For the remainder of this document, the terms 'Arithmetic COP Op’ and 'arithmetic instruction’ are used
interchangeably.

From COP Ops:
* COP1 From instructions (including COP1X instructions)

« IR[31:26] = 111001

« IR[31:26] = 111101

« IR[31:26] = 010001 AND IR[25:23] = 000

« IR[31:26] = 010011 AND IR[5:3] = 001 AND IR[2:0] =111
* COP2 From instructions

« IR[31:26] = 111010

« IR[31:26] = 111110

« IR[31:26] = 010010 AND IR[25:23] = 000

32 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

4.3 Coprocessor Interface Signal Descriptions

Of the above definedrom COP Opsfollowing are 32-bit instructions
— COP1: MFC1, CFC1, SWC1, SWXC1
— COP2: MFC2, CFC2, SWC2

Of the above definedrom COP Opsfollowing are 64-bit instructions
— COP1: DMFC1, SDC1, SDXC1, SUXC1
— COP2: DMFC2, SDC2

Remaining instructions are reserved opcodes.

To COP Ops:
e COPL1 To instructions (including COP1X instructions)
« IR[31:26] = 110001
« IR[31:26] = 110101
« IR[31:26] = 010001 AND IR[25:23] = 001
« IR[31:26] = 010011 AND IR[5:3] = 000
« COP2 To instructions
« IR[31:26] = 110010
« IR[31:26] = 110110
« IR[31:26] = 010010 AND IR[25:23] = 001

Of the above definetio COP Opsfollowing are 32-bit instructions
— COP1: MTC1, CTC1, LWC1, LWXC1
— COP2: MTC2, CTC2, LWC2

Of the above definetio COP Opsfollowing are 64-bit instructions
— DMTC1, LDC1, LDXC1, LUXC1
— DMTC2, LDC2

Remaining instructions are reserved opcodes.

For a detailed description of above listed instructions, refer to the MIPS ISA definition\diRBé4 5K Software
User's Manual

4.3 Coprocessor Interface Signal Descriptions

All of the coprocessor interface signals are describekhivle 4-3 Table 4-4 Table 4-5 Table 4-6 Table 4-7 andTable

4-8. Note that the signals are grouped according to their logical function, rather than alphabetically or by their expected
physical location. The interactions of signals within these functional groups are descBleetion 4.5, "Interface
Protocols®

A separate clock signal is not included in the coprocessor interface. All signals are synchronous to the 5K core input
clock, SI_Clkin

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 33

Chapter 4 Coprocessor Interface

34

The following tables describe the various attributes of the sigiialse 4-1shows the direction of the I/O signal relative
to the integer processor corable 4-2describes how the prefix of a signal determines whether it is required for COP1,
COP2, or both.

Table 4-3to Table 4-8describe the 5Kc interface. Information for how to derive the COP2 interface for 5Kf can be found
i Table 4-2When the description of the CP__signals in the following tables refer to signals with CP1_ prefix these should

be ignored for the 5Kf implementation.

Table 4-1 Signal Direction Key

Dir Description

In Input to the 5K core.

Out Output of the 5K core.

Sin Static Input to the 5K core. These signals are normally tied to either power or ground.

SOut Static Output of the 5K core. These signals are tied to either power or ground.

Table 4-2 Signal Coprocessor Category

Prefix Description
cP Always present.. .) .
- These signals exist as is on 5Kc. On 5Kf these signals change prefix to CP2_.
CP1_ Only present on 5Kc.
CP2_ Always present.

Table 4-3 Combined Issue Group 0 Signals - Used for both COP1 and COP2

Signal Name Dir Description

Instruction Dispatch

; . Coprocessor Instruction Word. This bus is valid in the cycle befo®P1_as 0,
CP_ir_0[31:0] Out CP2_as 0,CP1 ts 0,CP2_ts 0,CP1 fs 0,0rCP2_fs_0 is asserted.

Enable Instruction Registering. When this signal is deasserted, no instructiop
strobes are asserted in the following cycle. When this signal is asserted, thefe can
be an instruction strobe asserted in the following cycle. Instruction strobes inglude

CP1 _as 0,CP1 ts 0,CP1_fs 0,CP2 as 0,CP2_ts 0,CP2 fs 0.

CP_irenable 0 Out

Coprocessor Dispatch OrderThis signal signifies the program order of
instructions when more than one instruction is issued in a single cycle. Each
instruction dispatched has an order value associated with it. There must alwgys be
CP_order_0[2:0] Out | one instruction whose order value is 0. Order values must increment by 1 when
more than one instruction is issued in a cycle. This signal is valid when
CP1 _as 0,CP2 as 0,CP1 ts 0,CP2 ts 0,CP1_fs 0,orCP2 fs 0
is asserted.

MIPS32 Compatibility Mode - Instructions. When this signal is asserted, the
dispatched instruction is restricted to the MIPS32 subset of instructions. Plejase
CP_inst32_0 Out | refer to the MIPS64 ISA specification for a complete description of MIPS32
compatibility mode. This signal is valid the cycle bef@fP1_as 0,CP2_as 0,
CP1 fs 0,CP2 fs 0,CP1_ts 0,orCP2_ts O is asserted.

Big-Endian Byte Ordering. When this signal is asserted, the processor is usjng
big-endian byte ordering for the dispatched instruction. When this signal is
CP_endian_0 Out | deasserted, the processor is using little-endian byte ordering. This signal is jvalid
the cycle before€P1_as 0,CP2_as 0,CP1 fs 0,CP2 fs 0,CP1_ts O,
or CP2_ts O is asserted.

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

4.3 Coprocessor Interface Signal Descriptions

Table 4-3 Combined Issue Group 0 Signals - Used for both COP1 and COP2

Signal Name Dir Description

To Coprocessor Data (For all To COP Ops)

Coprocessor To Data StrobeAsserted when To COP Op data is available on|

CP_tds 0 Out CP tdata 0 .
Coprocessor To Order.Specifies for which outstanding To COP Op the data |is.
The 5K core never drives this signal to a value greater than 3'b001. This signal is
valid only whenCP_tds 0 is asserted.
CP_torder_0O Order
3'b000 Oldest outstanding To COP Op data trangfer
3'b001 2nd oldest To COP Op data transfer
CP_torder_0[2:0] Out 3'b010 Reserved
3'b011 Reserved
3'b100 Reserved
3'b101 Reserved
3'b110 Reserved
3'bll1 Reserved

To Coprocessor Data Out-of-Order Limit. This signal forces the integer

; . processor core to limit how much it can reorder To COP Data. The value on|this
CP_tordlim_0[2:0] Sin signal corresponds to the maximum allowed value to be used on
CP_torder_0[2:0]

To Coprocessor DataData to be transferred to the coprocessor. For single-wprd
CP_tdata_0[63:0] Out | transfers, data is valid aBP_tdata _0[31:0] . This bus is valid when
CP_tds 0 is asserted.

From Coprocessor Data (For all From COP Ops)

CP fds 0 In Coprocessor From Data StrobeAsserted when From COP Op data is availahle
== on CP_fdata O .

Coprocessor From Order.Specifies for which outstanding From COP Op the
data is. The 5K core does not support values greater than 3'b001. This signal is
valid only whenCP_fds O is asserted.

CP_forder_0 Order
3'b000 Oldest outstanding From COP Op data
transfer
CP_forder 0[2:0] In 3'b001 Second oldest From COP Op data trangfer
3'b010 Reserved
3'b011 Reserved
3'b100 Reserved
3'b101 Reserved
3'b110 Reserved
3'b11l Reserved

=

From Coprocessor Data Out-of-Order Limit. This signal forces the coprocessg
; . to limit how much it can reorder From COP Data. The value on this signal

CP_fordlim_0[2:0] SOut corresponds to the maximum allowed value to be use@@nforder_0[2:0]

The 5K core drives this signal to 3'b001.

From Coprocessor DataData to be transferred from coprocessor. For
CP_fdata_0[63:0] In single-word transfers, data is valid 6 _fdata 0[31:0] . This bus is valid
whenCP_fds 0 is asserted.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 35

Chapter 4 Coprocessor Interface

Table 4-3 Combined Issue Group 0 Signals - Used for both COP1 and COP2

Signal Name Dir Description

Coprocessor Condition Code Check (Only for BC1, MOVCI, BC2 Ops)

Coprocessor Condition Code Check StrobeéAsserted when condition code

CP_cces 0 In check results are available @ _ccc 0.

Coprocessor Condition Code CheckThis signal is valid whe®P_cccs O is
asserted. When this signal is asserted, the instruction checking the condition code
CP_ccc 0 In should proceed with its execution (branch or move data). When this signal is
deasserted, the instruction should not execute its conditional operation (do pot
branch and do not move data).

Coprocessor Exceptions

Coprocessor Exception StrobeAsserted when coprocessor exception signalling

CP_excs 0 In is available orCP_exc 0.
Coprocessor ExceptionWhen this signal is deasserted, the coprocessor is rjot
CP exc 0 In causing an exception. Assertion of this signal signifies that the coprocessor|is
— = causing an exception. The type of exception is encoded on the signal
CP_exccode_0[4:0] . This signal is valid whe®@P_excs_0 is asserted.
Coprocessor Exception CodeThis signal is valid whetCP_excs_0 is asserted
andCP_exc_0 is asserted.
CP_exccode_0 Exception
5'b01010 Reserved Instruction Exception
5'b01111 Floating-Point Exception
CP_exccode_0[4:0] In 5'b10000 Available for implementation-specific use
5’10001 Available for implementation-specific use
5’10010 COP2 Exception
other values Reserved.
If other values are signalled, the operation| of
the integer processor core is
UNPREDICTABLE.

Instruction Nullification

CP _nulls 0 out (é%pr,;)gl(/esgor Null Strobe Asserted when a nullification signal is available on

Nullify Coprocessor Instruction. When this signal is deasserted, the integer
processor core is signalling that the instruction is not nullified. When this signgl is
asserted, the integer processor core is signalling that the instruction is nullifled.
This signal is valid whe®P_nulls_0 is asserted.

CP_null_0 Out

Instruction Killing

CP kills 0 out Cé%p?(oiﬁegsor Kill Strobe.Asserted when kill signalling is available on

36 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

4.3 Coprocessor Interface Signal Descriptions

Table 4-3 Combined Issue Group 0 Signals - Used for both COP1 and COP2

Signal Name

CP_kill_0[1:0]

Dir Description
Kill Coprocessor Instruction. This signal is valid whe®@P_kills 0 is
asserted.
CP_kill_0[1:0] Type of Kill
2'b00 Instruction is not killed and can commjit
Out b0l its results
2'b10 Instruction is killed.
(not due toCP_exc_0)
2'b11 Instruction is killed
(due toCP_exc_0)

Miscellaneous

Coprocessor ResetAsserted when the integer processor core performs a hard or

CF_reset Out soft reset. At a minimum, this signal is asserted for two cycles.
Coprocessor Idle Asserted when the coprocessor logic is idle. Enables the inte¢ger
cP idle In processor core to go into sleep mode and shut down the internal integer progessor
- core clock. This signal is valid only €P1_fppresent , CP1_mdmxpresent ,
or CP2_present s asserted.
Table 4-4 Combined Issue Group 0 Signals - Used only for COP1
Signal Name Dir Description
Instruction Dispatch
Coprocessor 1 Arithmetic Instruction Strobe.Asserted in the cycle after an
Arithmetic COP1 Op instruction is available 8#_ir 0 . If CP1_abusy 0 was
CP1_as 0 Out | asserted in the previous cycle, this signal is not asserted. In any cycle, at most one of the
following signals can be asserted at a ti@f1_as 0, CP2_as 0,CP1_ts O,
CP2 ts 0,CP1_fs 0,CP2 fs 0.
Coprocessor 1 Arithmetic Busy When this signal is asserted, a coprocessor 1
CP1_abusy 0 In arithmetic instruction is not dispatche@P1_as 0 is not asserted in the cycle after this
signal is asserted.
Coprocessor 1 To StrobeAsserted in the cycle after a To COP1 Op instruction is
CP1 ts O out available orCP_ir_0 .If CP1_tbusy 0 was asserted inthe previous cycle, this signal
— = is not asserted. In any cycle, at most one of the following signals can be asserted at a
time: CP1_as 0,CP2_as 0,CP1_ts 0,CP2 ts 0,CP1 fs 0,CP2 fs 0.
To Coprocessor 1 BusyWhen this signal is asserted, a To COP1 Op is not dispatched.
CP1 _tbusy O In ; - N .
— - CP1_ts 0 is not asserted in the cycle after this signal is asserted.
Coprocessor 1 From StrobeAsserted in the cycle after a From COP1 Op instruction is
CcP1 fs O out available onCP_ir_0 .If CP1_fbusy 0 was asserted inthe previous cycle, this signal
— = is not asserted. In any cycle, at most one of the following signals can be asserted at a
time: CP1_as 0,CP2 _as 0,CP1 ts 0,CP2 ts 0,CP1 fs 0,CP2 fs 0.
CP1 fbusy 0 In From Coprocessor 1 BusyWhen this signal is asserted, a From COP1 Op is not
— v dispatchedCP1_fs_0 is not asserted in the cycle after this signal is asserted.
MIPS32 Compatibility Mode - Registers.When this signal is asserted, the dispatched
CP1 fr32 0 Out | instruction uses the MIPS32-compatible register file. This signal is valid the cycle before
CP1_as 0,CP1 fs 0 orCPI1_ts O is asserted.
GPR Data (Only for ALNV.PS, ALNV.fmt, MOVN.fmt, MOVZ.fmt Arithmetic COP1 Ops)
GPR Strobe.Asserted when additional general-purpose register information is available
CP1_gprs 0 Out onCP1_gpr 0.
MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 37

Chapter 4 Coprocessor Interface

38

Table 4-4 Combined Issue Group 0 Signals - Used only for COP1

Signal Name

Dir Description

CP1_gpr _0[3:0]

CP1_gpr_0[2:0] RS
(Valid only for ALNV.PS, ALNV.fmt)
Out Binary encoded Lower 3 bits of RS register contents
CP1_gpr_0[3] RT Zero Check
(Valid only for MOVN.fmt, MOVZ.fmt)
RT!=0
RT==0

GPR Data. Supplies additional data from the integer general-purpose register file
CP1 _gpr_0[2:0] isvalid whenCP1 _gprs O is asserted and only for ALNV.PS
and ALNV.fmtinstructionsCP1_gpr_0[3] is valid whenCP1_gprs O is asserted
and only for MOVN.fmt and MOVZ.fmt instructions.

Miscellaneous

COP1 FPU PresentMust be asserted when COP1 FPU hardware is connected tq the
CP1_fppresent Sin Coprocessor Interface.
COP1 MDMX Present. Must be asserted when COP1 MDMX hardware is connedted
CP1_mdmxpresent Sin to the Coprocessor Interface.
Table 4-5 Combined Issue Group 0 Signals - Used only for COP2
Signal Name Dir Description
Arithmetic Dispatch
Coprocessor 2 Arithmetic Instruction Strobe.Asserted in the cycle after an Arithmetic
COP1 Op instruction is available @P_ir_0 . If CP2_abusy 0 was asserted in the
CP2 _as 0 Out | previous cycle, this signal is not asserted. In any cycle, at most one of the following signals
can be asserted at atin®”1_as 0,CP2 _as 0,CP1 ts 0,CP2 ts 0,CP1 fs O,
CP2 fs 0.
Coprocessor 2 Arithmetic BusyWhen this signal is asserted, a coprocessor 2 arithmetic
CP2_abusy 0 In instruction is not dispatche@P2_as_0 is not asserted in the cycle after this signal is
asserted.
Coprocessor 2 To StrobeAsserted in the cycle after a To COP2 Op instruction is availaple
CP2 ts 0 out | o0 CP_ir_ 0 .If CP2_tbusy O was asserted in the previous cycle, this signal is not
— = asserted. In any cycle, at most one of the following signals can be asserted at a time:
CP1 _as 0,CP2_as 0,CP1_ts 0,CP2 ts 0,CP1 fs 0,CP2 fs O .
CP2 thusy 0 In To Coprocessor 2 BusyWhen this signal is asserted, a To COP2 Op is not dispatched
— - CP2_ts 0 is not asserted in the cycle after this signal is asserted.
Coprocessor 2 From StrobeAsserted in the cycle after a From COP2 Op instruction is|
CcP2 fs 0 out available onCP_ir_0 . If CP2_fbusy 0 was asserted in the previous cycle, this signa| is
— = not asserted. In any cycle, at most one of the following signals can be asserted at a time:
CP1_as 0,CP2_as 0,CP1_ts 0,CP2 ts 0,CP1 fs 0,CP2 fs 0.
CP2 fbusy 0 In From Coprocessor 2 BusyWhen this signal is asserted, a From COP2 Op is not dispatched.
— - CP2_fs_0 is not be asserted in the cycle after this signal is asserted.
Miscellaneous
CP2 present Sin COP2 PresentMust be asserted when COP2 hardware is connected to the Coprocessor
P Interface.
CP2 tx32 Sin Coprocessor 32-bit TransfersWhen this signal is asserted, the integer unit signals an Rl
— exception for 64-bit COP2 TF instructions. This input is static and must always be valid.

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

4.3 Coprocessor Interface Signal Descriptions

Table 4-6 Arithmetic Issue Group 1 Signals - Used for both COP1 and COP2

Signal Name

Dir

Description

Instruction Dispatch

CP_ir_1[31:0]

Out

Coprocessor Instruction Word. This bus is valid in the cycle befoé&P1_as 1
or CP2_as_1 is asserted.

CP_irenable_1

Out

Enable Instruction Registering.When this signal is deasserted, no instruction
strobes are asserted in the following cycle. When this signal is asserted, there

an instruction strobe asserted in the following cycle. Instruction strobes incluge

CP1 as 1 andCP2 as 1.

can be

CP_order_1[2:0]

Out

Coprocessor Dispatch OrderThis signal signifies the program order of
instructions when more than one instruction is issued in a single cycle. Each
instruction dispatched has an order value associated with it. There must alw3g
one instruction whose order value is 0. Order values mustincrement by 1 when
than one instruction is issued in a cycle.This signal is valid \@iigh as_1 or
CP2_as 1 is asserted.

1ys be
more

CP_adisable_1

Sin

Inhibit Arithmetic Dispatch. When this signal is asserted, arithmetic instructio
are dispatched using Issue Group 0. When this signal is deasserted, arithme|
instructions are dispatched using Issue Group 1.

ns
tic

CP_inst32 1

Out

MIPS32 Compatibility Mode - Instructions. When this signal is asserted, the
dispatched instruction is restricted to the MIPS32 subset of instructions. Please
to the MIPS64 architecture specification for a complete description of MIPS3
compatibility mode. This signal is valid the cycle bef@f1_as 1 orCP2_as 1
is asserted.

refer

CP_endian_1

Out

Big-Endian Byte Ordering. When this signal is asserted, the processor is usir]
big-endian byte ordering for the dispatched instruction. When this signal is
deasserted, the processor is using little-endian byte ordering. This signal is val
cycle beforeCP1_as 1 or CP2_as_1 is asserted.

g
dthe

Coprocessor Condition Code Check (Only for BC1, MOVCI, BC2 Ops)

x~

code

anch

causing an exception. The type of exception is encoded on the signal
CP_exccode_1[4:0] . This signal is valid whe®P_excs_1 is asserted.

CP cces 1 In Coprocessor Condition Code Check StrobeAsserted when condition code cheg
- — results are available aBP_ccc 1.
Coprocessor Condition Code CheckThis signal is valid whe®@P_cccs 1 is
asserted. When this signal is asserted, the instruction checking the condition
CP_ccc 1 In must proceed with its execution (branch or move data). When this signal is
deasserted, the instruction must not execute its conditional operation (do not b)
and do not move data).
Coprocessor Exceptions
CP excs 1 In Coprocessor Exception StrobeAsserted when coprocessor exception signalling is
- — available onCP_exc_1.
Coprocessor ExceptionWhen this signal is deasserted, the coprocessor is ng
CP exc 1 In causing an exception. Assertion of this signal signifies that the coprocessor i

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01

39

Chapter 4 Coprocessor Interface

40

Table 4-6 Arithmetic Issue Group 1 Signals - Used for both COP1 and COP2

Signal Name Dir Description
Coprocessor Exception CodeThis signal is valid whel®P_excs_1 is asserted
andCP_exc 1 is asserted.
CP_exccode_1 Exception
501010 Reserved Instruction Exception
5'b01111 Floating-Point Exception
CP_exccode_1[4:0] In 5’10000 Available for implementation-specific use
5'b10001 Available for implementation-specific use
5'b10010 COP2 Exception
other values Reserved.
If other values are signalled, the operation| of
the integer processor core is
UNPREDICTABLE.
Instruction Nullification
CP_nulls 1 out Coprocessor Null Strobe Asserted when a nullification signal is available on
CP_null_1
Nullify Coprocessor Instruction. When this signal is deasserted, the integer
cP null 1 out | Processor core is signalling that the instruction is not nullified. When this sigrj
— = asserted, the integer processor core is signalling that the instruction is nullified
signal is valid wherCP_nulls_1 is asserted.
Instruction Killing
CP kills 1 out Coprocessor Kill Strobe.Asserted when kill signalling is available on
- CP_kill_1
Kill Coprocessor Instruction. This signal is valid wher€P_kills_1 is asserted.
CP_kill_1[1:0] Type of Kill
2'b00 Instruction is not killed and can comnjit
CP_kill_1[1:0] out 2501 its results
2'b10 Instruction is killed.
(not due toCP_exc_1)
2'b11 Instruction is killed
(due toCP_exc_1)

alis
This

Table 4-7 Arithmetic Issue Group 1 Signals - Used only for COP1

Signal Name

Dir

Description

Instruction Dispatch

CP1 _as 1

Out

Coprocessor 1 Arithmetic Instruction Strobe.Asserted in the cycle after an arithmet
coprocessor 1 instruction is available 6®_ir_1 . If CP1_abusy 1 was asserted in
the previous cycle, this signal is not asserted. In any cycle, at most one of the follo
signals can be asserted at a time in a particular issue g&Rp:as_1 or CP2_as 1.

9]

wing

CP1 _abusy 1

Coprocessor 1 Arithmetic BusyWhen this signal is asserted, a coprocessor 1
In arithmetic instruction is not dispatchedP1_as 1 is not asserted in the cycle after th
signal is asserted.

CP1_fr32 1

MIPS32 Compatibility Mode - Registers.When this signal is asserted, the dispatch

ed

Out | instruction uses the MIPS32-compatible register file. This signal is valid the cycle before

CP1_as 1 is asserted.

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

4.4 Coprocessor Attachment to the 5K Family

Table 4-7 Arithmetic Issue Group 1 Signals - Used only for COP1

Signal Name Dir

Description
GPR Data (Only for ALNV.PS, ALNV.fmt, MOVN.fmt, MOVZ.fmt Arithmetic COP1 Ops)
GPR Strobe.Asserted when additional general-purpose register information is available
CP1_gprs_1 Out onCP1 gpr 1.

GPR Data. Supplies additional data from the integer general-purpose register file
CP1_gpr_1[2:0] s valid whenCP1_gprs 1 is asserted and only for ALNV.PS

and ALNV.fmt instructionsCP1_gpr 1[3] isvalid whenCP1_gprs 1 is asserted
and only for MOVN.fmt and MOVZ.fmt instructions.

CP1_gpr_1[2:0] RS
(Valid only for ALNV.PS, ALNV.fmt)
CP1 _gpr_1[3:0] Out Binary encoded Lower 3 bits of RS register contents
CP1_gpr_1[3] RT Zero Check
(Valid only for MOVN.fmt, MOVZ.fmt)
0 RT!=0
RT==0

Table 4-8 Arithmetic Issue Group 1 Signals - Used only for COP2

Signal Name Dir Description

Arithmetic Dispatch

Coprocessor 2 Arithmetic Instruction Strobe.Asserted in the cycle after an arithmetic
CP2 as 1 out | coprocessor 2 instruction is available@R_jr_1 . If CP2_abusy_1 was asserted in the
- previous cycle, this signal is not asserted. In any cycle, at most one of the following si

gnals
can be asserted at a time in a particular issue gfoBp: as 1 or CP2_as 1.
Coprocessor 2 Arithmetic BusyWhen this signal is asserted, a coprocessor 2 arithmetic
CP2_abusy 1 In instruction is not dispatche@P2_as_1 is not asserted in the cycle after this signal is
asserted.

4.4 Coprocessor Attachment to the 5K Family

The coprocessor interface is designed to allow a coprocessor to be connected to the 5K integer processor core. The 5K
core enables various coprocessors to be interfaced as described in this section.

The simple block diagram iRigure 4-1shows how the coprocessor interface connects a single coprocessor to an integer
processor core.

Integer COP I/F
COP
Processor Core P

Figure 4-1 Block Diagram of Coprocessor Interface

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 41

Chapter 4 Coprocessor Interface

42

4.4.1 5Kc Coprocessor Attachment

The 5Kc processor allows a single coprocessor, either Coprocessor 1 (COP1) or Coprocessor 2 (COP2), to be connecte
to the integer unit.

COP1 is reserved for a floating-point coprocessor in the MIPS architecture. The coprocessor interface supports all
COP1, COP1X, MDMX, and MIPS-3D instructions as defined by the MIPS ISA.

The function of Coprocessor 2 is user definable and is intended to allow special-purpose engines, such as graphics
accelerators, to be integrated into the architecture.

When attaching a COP1 to the 5Kc coprocessor interface, only signals with prefix CP_ and CP1_ should be used.
When attaching a COP2 to the 5Kc coprocessor interface, only signals with prefix CP_ and CP2_ should be used.

Unused input signals to the 5K core must be connected to their inactive states.

4.4.2 5Kf Coprocessor Attachment

The 5Kf processor allows a single Coprocessor 2 (COP2) to be connected to the integer unit.

The function of Coprocessor 2 is user definable and is intended to allow special-purpose engines, such as graphics
accelerators, to be integrated into the architecture.

When attaching a COP2 to the 5Kc coprocessor interface, only signals with prefix CP_and CP2_ should be used. Signals
prefixed by CP_ are renamed to CP2_.

Unused input signals to the 5K core must be connected to their inactive states.

4.4.3 COP2 Data Transfer Width

The 5K core can be used with COP2 coprocessors that support either 64-bit or 32-bit data transfer widths. The
CP2_tx32 static input to the 5K core determines the width of transfers. Wh tx32 is deasserted, the 5K core
supports 64-bit transfers.

WhenCP2_tx32 is asserted, the 5K core implements 32-bit transfers. Furthermor@Rhtlata_0[31:0] output
from the COP2 coprocessor must be connected to®BtHdata 0[31:0] andCP_fdata_0[63:32] of the
integer processor core.

Note: WhenCP2_tx34s asserted, instructions that transfer 64bits of data cause a reserved instruction exception to be
signalled by the integer processor core. These instructions include DMFC2, DMTC2, LDC2, and SDC2.

4.4.4 Out-of-Order Data Transfers

The 5K core supports out-of-order data transfers on both the To COP Data and From COP Data transfer interfaces. In
addition, the coprocessor interface includes handshake signals that allow the 5K core to work with coprocessors that do
not support out-of-order data transfers and those coprocessors that support greater out-of-order data transfers.

For To COP Data, the 5K core can reorder data for one instruction. That is, the 5K core can transfer data for the second
oldest outstanding data transfer as well as the oldest outstanding data transfer. However, it must limit this out-of-order
data transfer according ©P_tordlim_0[2:0] . By driving this signal to 3'b000, the coprocessor can disable
out-of-order To COP Data transfers.

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

4.5 Interface Protocols

Similarly for From COP Data, a coprocessor can return data for up to one instruction out of order. To limit this
reordering, the 5K core drivesP_fordlim_0[2:0] =3'b001. This signal works in a similar manner to
CP_tordlim_0

4,45 Limited Dual Issue

The 5K core employs a performance-enhancing dual issue dispatch scheme, known as “Limited Dual Issue”. Whenever
possible, Arithmetic COP1/COP2 instructions will be dispatched in parallel with To/From COP1/COP2 instructions or
instructions to the integer pipeline. The software aspect of this is described in depth in MIPS64 5K Processor Core
Family Software User's Manual, chapter 2.

The Limited Dual Issue scheme is implemented by duplicating certain signals of the coprocessor interface. This section
specifies in detail exactly which signals were duplicated. In general, the following rules apply:
« Signals are grouped together to form an “issue group”.
» The 5K core has two issue groups:
— Issue Group 0 is a combined issue group. It includes all signals used for both arithmetic and To/From instructions.
— Issue Group 1 is an arithmetic issue group. It includes only signals used for arithmetic instructions.

» The signals of a particular issue group are delineated by a unique suffix of the fitrwherem is the number of
the issue group. Thus, on the 5K core, all signals named <signal>_0 belong to Issue Group 0, the combined issue
group. All signals named <signal>_1 belong to Issue Group 1, the arithmetic issue group.

« Signals that are not associated with an issue group do not haverheuffix.

The coprocessor can be designed to work in one of two modes, @Ricidisable_1 controls.

» If CP_adisable 1 is asserted, then Issue Group 1 is disabled. Arithmetic coprocessor instructions are issued
using Issue Group 0. All instructions are single issued. Issue Group 1 input signals to the 5K core must be connected
to their inactive states.

» If CP_adisable 1 is deasserted, then Issue Group 1 is enabled. Arithmetic coprocessor instructions are issued
using Issue Group 1. Instructions are dual issued whenever possible.

When allowing the 5K core to dual issue COP1 or COP2 instructions, the attached coprocessor must comply to following
rule:

When dual issuing, all transfers from the coprocessor for the youngest instruction may NOT depend on the kill transfer
for the oldest instruction.

This is illustrated by following example where MUL.s and MFC1 are dual issued. The MUL.s is the oldest instruction,
the MFC1 is the youngest instruction.

mul.s fpl16, fpl7, fpl7 // Dispatched to Issue Group 1
mfcl rl2, fpl6 /I Dispatched to Issue Group 0

In this example, the data transfer for the MFC1 from the coprocessor to the 5K core may NOT depend on whether the
MUL.s instruction was killed and thus committed its state. The data transfer must - if necessary - happen before the kill
information arrives from the 5K core. Otherwise the 5K core will halt.

4.5 Interface Protocols

The coprocessor interface is composed of several simple transfers:

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 43

Chapter 4 Coprocessor Interface

44

Instruction Dispatch - Starts coprocessor instructions

To COP Data- Transfers data to the coprocessor

From COP Data - Transfers data from the coprocessor

Coprocessor Condition Code Check Transfers coprocessor condition check result to the 5K core

GPR Data- Transfers additional data from the 5K general-purpose register file to the coprocessor
Coprocessor Exceptions Notifies the 5K core if any coprocessor exceptions happened for an instruction
Instruction Nullification - Notifies coprocessor if instructions are nullified or not

Instruction Killing - Notifies coprocessor when instructions can commit state or not

All transfers use the following protocol:

All transfers are synchronously strobed; that is, a transfer is only valid for one cycle (when the strobe signal is
asserted). The strobe signal is a synchronous signal; do not use it to clock registers.

There is no handshake confirmation of transfer.
Except for instruction dispatch, there is no flow control.

Except for To/From COP data transfers, out-of-order transfers are not allowed. All transfers of a given type, except
To/From COP data transfers, in the same issue group must be in dispatch order.

Ordering of different types of transfers for the same instruction is not restricted.

After an instruction is dispatched, additional information about that instruction must be later transferred between the
coprocessor and the integer processor core. The additional information and the transfers required are summarized in
Table 4-9

Note: For each dispatch type given in the table, all listed transfersquieedto be done. No transfers are optional.
However, after an instruction is killed or nullified, any transfers that have not already happened will not happen. In other
words, once an instruction is killed or nullified, no further transfers for that instruction can happen.

Table 4-9 Transfers Required for Each Dispatch

Dispatch Type Required Transfers Direction
Core <—> COP
* Instruction nullification —>
» To Coprocessor data transfer —>
To COP Op]
» Coprocessor exceptions <—
« Instruction killing —>
* Instruction nullification —>
» From Coprocessor data transfer <—
From COP Op)
+ Coprocessor exceptions <—
* Instruction killing —>
* Instruction nullification —>
Arithmetic COP Op » Coprocessor exceptions <—
* Instruction killing —>

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

4.5 Interface Protocols

Table 4-9 Transfers Required for Each Dispatch (Continued)

Dispatch Type Required Transfers Direction
Core <—> COP

Additionally for » Condition code check results <—
BC1?
BC2
MOVF2
MOVT2

AdditionallX for * GPR Data —>
MOVZ.fmt
MOVN.fmt2
ALNV.PS?
ALNV.fmt2

a. For a description of this instruction, refer to the MIPS ISA definition.

Each transfer can occur as early as one cycle after dispatch; there is no maximum limit on how late the transfer can occur.
Only the dispatch interfaces have flow control. Thus, once dispatched, all transfers can occur immediately.

All transfers are strobed. The data is not buffered and is transferred in the cycle that the strobe signal is asserted—if the
strobe signal is asserted for two cycles, then two transfers occur. For instruction dispatches, the strobe signal is assertec
in the cycle after the instruction is dispatched in order to insulate the signals from poor timing.

Figure 4-2shows examples of the transfer of nullification information. All non-dispatch transfers follow the same

protocol.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Clock [] L L L L
CP1_as m N\
CP_ir_m[31:0] I XA B
CP_nulls_m / /]
CP_null_m ‘ \ /[I— / \ ‘

Figure 4-2 General Transfer Example

Onedge 4CP_nulls_m is asserted, signifying the null transfer for instruction A. Beca@Benull_m is deasserted

on edge 4, instruction A is not nullified. Instruction B is dispatched on edge 4 and it receives the null transfer in the next
cycle at edge 5. Because it is the cycle after dispatch, this is the earliest possible time any transfer for instruction B could
happen. Instruction C is dispatched at edge 5. However, the nullification transfer is delayed for some reason until edge
10.

For all transfers except To COP Data and From COP Data, the ordering of the transfers is simple: all transfers of a
specific type (for example, nullification transfers) in a specific issue group must be in the same order as the order in which
the instructions were dispatched. However, other kinds of transfers can be interspersed; for example, if four arithmetic
instructions were dispatched, there could be two nullification transfers, followed by four exception transfers, followed
by two nullification transfers.

If an instruction is killed or nullified, no remaining transfers for that instruction occur. In the cycle that the instruction is
being killed or nullified, transfers can occur, but they are ignored.

The coprocessor interface is designed to operate with coprocessors of any pipeline structure and latency; if the 5K core
requires a specific transfer by a certain cycle, the 5K core stalls until the transfer has completed.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 45

Chapter 4 Coprocessor Interface

46

For transfers from the coprocessor to the integer unit, the allowable latencies are shaiwe 4310 The “Stage

Needed” column shows the integer unit pipeline stage where the data is used; if data is not available by the end of this
stage, the integer pipeline will stall. The “Min” column shows the minimum time after dispatch that the integer unit can
accept the data (always one cycle). The “Max” column shows the maximum time after dispatch that the integer unit could
receive the data (always an infinite number of cycles). The “Max Without Stalling” column shows the longest time after
dispatch that the integer unit could receive the data without stalling.

Table 4-10 Allowable Interface Latencies from a Coprocessor to the 5K Core

From To Stage Min Max 5K Max
Needed | (cycles) | (cycles)| Without Stalling
(cycles)
Arithmetic Dispatch From Coprocessor Datz N/A N/A N/A N/A
To/From COP Dispatch Transfer & 1 . 2
Arithmetic Dispatch Coprocessor M 1 . 3
To/From COP Dispatch Exceptions M 1 . 3
Arithmetic Dispatch Coprocessor R 1 . 1
To/From COP Dispatch | Condition Code Check |, N/A N/A N/A

a. CFC, MFC, and DMFC instructions can be scheduled in the integer unit. Thus, if the data transfer does not occur by the E-stage, it still
might not stall if subsequent instructions do not cause a data dependency.

Because of its pipeline structure, the 5K core does not generate all allowable latencies for transfers from the integer unit
to the coprocessorable 4-11summarizes these latencies. The “Stage Sent” column shows the integer unit pipeline stage
in which the transfer is performed. The “Min” column shows the shortest amount of time after dispatch that the integer
unit sends the data. The “Max” column shows the longest time after dispatch that the data could be sent.

Table 4-11 Interface Latencies From the 5K Core to a Coprocessor

From To Stage Min Max
Sent | (cycles) (per issue group)
Arithmetic Dispatch Instruction E 2 1 dispatch later (2 outstanding transfer)
To/From COP Dispatch Nullification E 2 1 dispatch later (2 outstanding transfer)
Arithmetic Dispatch M 3 2 dispatches later (3 outstanding transfers
GPR Data
To/From COP Dispatch N/A N/A N/A
Arithmetic Dispatch To Coprocessor N/A N/A N/A
To/From COP Dispatch Data Transfer M 3 3 dispatches later (4 outstanding transfers
Arithmetic Dispatch Instruction M+1 4 3 dispatches later (4 outstanding transfers
To/From COP Dispatch Killing M+1 4 3 dispatches later (4 outstanding transfers)

a. Instructions that require a To COP data transfer may be scheduled in the integer unit; thus, the data transfer may occur later than the
M-stage. This causes the 'Max’ value to be 3 dispatches / 4 outstanding transfers.

The “Max” latency is given in dispatches and thus defines the number of pending transfers to be made. It is the number
of pending transfers that defines the interface logic required in the coprocessor. Note that the 'Max’ values are for a single
issue group. If the coprocessor supports dispatch of arithmetic instructions to issue groumedl)] then dual issue

may happen, and the number of outstanding transfers is doubled.

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

4.5 Interface Protocols

Note: A coprocessor should be able to handle 'Min’ values down to 1 cycle after dispatch in order to comply with the
specification. This allows for later attachment of the coprocessor to other MIPS processor cores.

4.5.1 Instruction Dispatch

This transfer is used to signal the coprocessor to start coprocessor instructions. Data transfer instructions include those
that move data to the coprocessor from the integer processor core (To COP Ops), and those which move data from th
coprocessor to the integer processor core (From COP Ops).

Because data transfers for the To COP and From COP instructions occur later than the dispatch of the instructions, th
coprocessor itself must keep track of data hazards and stall its pipeline accordingly. The integer processor core does not
track coprocessor data hazards.

In the 5K, instructions are dispatched to the coprocessor in the last cycle of the D-stage of the integer pipeline. Although
the interface allows the coprocessor and integer pipelines to operate independently, it is important that dispatch occur to
both in the same cycle to ensure that all subsequent transfers are properly synchronized. Furthermore, the 5K core will
not dispatch a coprocessor instruction when the integer pipeline is stalled in order to allow proper CP0O exception
handling.

CP1 as 0,CP2 as 0,CP1 as 1,CP2 as 1,CP1 ts 0,CP2 ts 0,CP1 fs 0,andCP2 fs 0 are

asserted in the cycle after the instruction is driven. These signals are delayed strobe signals, and although this delay
complicates the functional interface, it enables the processor to achieve very good timing on these signals—without this
delay, these signals would have been timing-critical.

Because the above instruction strobes are delayed, the coprocessor is normally required t6/egister and

CP_ir_1 in every cycle and conditionally use them in the following cycle depending on the instruction strobes. This
protocol has the side effect of registering non-coprocessor instructions and partially processing them, thus potentially
increasing power consumption. TB¥ _irenable 0 andCP_irenable_1 signals compensate for this effect by
enabling the coprocessor to avoid registering instructions that will never be dispatched to it.

Only one of the instruction strobes in an issue group can ever be asserted at the saGfltiame:m CP2_as _m
CP1 ts m,CP2 ts m, CP1 _fs m,andCP2_fs_m, wherem=0 or 1.

By controllingCP_adisable 1 , coprocessors can control to which issue group arithmetic instructions will be
dispatched. Whe®P_adisable 1 s asserted, arithmetic instructions are dispatched using Issue Group 0. When
CP_adisable 1 is deasserted, arithmetic instructions are dispatched using Issue G&@Rpatlisable 1 also
controls the Limited Dual Issue ability, referSection 4.4.5, "Limited Dual Issue”

If the proper Coprocessor Enable bit is not set in the SRBusregister, the 5K core can still dispatch the instruction to
the coprocessor. If it is dispatched, the integer processor core subsequently kills the instructiorSgefemd.5.8,
"Instruction Killing").

When the processor is operating in MIPS32-compatibility mode according to the User/Supervisor/Kernel/Debug mode
and theKX, SX UX, andPX bits of the CP(tatusregister, theCP_inst32 0 andCP_inst32_1 signals are
assertedCP_inst32_m is asserted during dispatch to notify the coprocessor that the integer processor core is
operating in MIPS32-compatibility mode. The coprocessor would then signal a Reserved Instruction exception for any
arithmetic instruction that was not MIPS32 compatible.

CP1_fr32_ 0 andCP1_fr32_1 can be asserted during dispatch to notify the coprocessor that MIPS32-compatible
floating-point registers are enabled. Normally the coprocessor would then change the behavior of some instructions to
correctly operate using the MIPS32-compatible register@Gifel_fr32_m is asserted according to tRR bit in the
CPOStatugregister

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 47

Chapter 4 Coprocessor Interface

48

The CP_endian_0 andCP_endian_1 signals are asserted during dispatch to notify the coprocessor of the proper
byte-ordering mode to use, which is needed for the ALNV.PS and ALNV.fmt instructions.

Figure 4-3shows example waveforms for a coprocessor 1 dispatch. Dispatch of coprocessor 2 instructions is the same,
although the signal names differ.

Figure 4-3 Arithmetic Coprocessor Dispatch Waveform

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1€
Clock [| eSS EEEEE . .

CP_irenable_1
CP1 as 1

CP_ir_1[31:0] >CKP< C X X
CP1_abusy 1 / \ / _
CP_endian_1,CP1_fr32 1,CP_inst32 1 >C:)< X X X
CP_order_1/[2:0] : @ : ! o‘ X i X : 6 ‘ X : ! 1‘ X :

CP_irenable_0

CP1 ts O

CP1 fs 0 T\

CP_ir_0[31:0] X KX L X M X

CP1_tbusy 0

CP1_fbusy 0
CP_endian_0,CP1_fr32_0,CP_inst32_0 ‘ ‘X ‘ X ‘X ‘ X‘ _ ‘X ‘X I

CP_order_0[2:0] \ \ \ X :O X \ \ X ? X \ \ \ \ \X 0\ X \ \

On edge 2, instruction A is dispatched. On edgéR_as_1 is asserted, validating the previous cycle’s dispatch.
Instruction strobes are always asserted in the cycle after the instruction word is driven. On edge 3, instruction K is
dispatched.CP1_fs O is asserted on edge 4.)

On edge 5, instruction B is dispatched. On edge 6, instruction C is drive@Bnio 1 , and instruction L is driven
ontoCP_ir_O .Instruction Cis not dispatched becaud@1 abusy 1 was asserted. Butinstruction L was dispatched.
For instruction C, the integer processor core will not ag3@ft as 1 until the coprocessor can accept it (until
CP1_abusy 1 is deasserted). Instruction C is finally dispatched on edge 9.

On edge 12, both Instructions D and M are dispatched at the same time (dual i€fieobder _0andCP_order_lare
valid on edge 13 and indicate that Instruction M was functionally before Instruction D.

4.5.2 To Coprocessor Data Transfer

The coprocessor interface transfers data to the coprocessor after a To COP Op has been dispatched. Only To COP O
utilize this transfer. The coprocessor must have a buffer available for this data after the To COP Op has been dispatched.
If no buffers are available, the coprocessor must prevent dispatch by asS&1intpusy 0 or CP2_tbusy 0 , as
appropriate.

The coprocessor interface allows out-of-order data transfers. Data can be sent to the coprocessor in a different order from
the order in which the instructions were dispatched. When data is sent to the coproce€sdrtdlaer_0[2:0]

signal is also sent. This signal tells the coprocessor if the data word is for the oldest outstanding To COP data transfer or
the second oldest. The coprocessor can prevent the 5K core from reordering To COP Data by driving
CP_tordlim_0[2:0] =3'b000.

Note: The 5K core implements at most one out-of-order data transfer. Thus, the core never drives
CP_torder _0[2:0] with a value greater than 3'b001.

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

4.5 Interface Protocols

The valid bits on the bus are determined by the type of instruction dispatched:
» 32-bit transfer: The 32-bit data word is driven©R_tdata 0[31:0]
* 64-bit transfer: The 64-bit data word is driven©R_tdata _0[63:0]

The integer unit transfers data to the coprocessor in the cycle after it is received from the memory subsystem. The integer
unit can schedule some To COP Ops, thus potentially transferring data many cycles after dispatch.

Figure 4-4shows waveforms for an example To Coprocessor data transfer. Three instructions are dispatched: A, B, and
C, on edges 2, 4, and 6, respectively. Data for instruction A is sent on edge 6. At that time, it is the oldest outstanding
transfer, saCP_torder O is driven Low. On edge 10, data for instruction C is returned. Because it is the second oldest
outstanding transfe€P_torder 0 is driven High. In the following cycle, data for instruction B is finally transferred.

That instruction is now the oldest outstanding instructiorGBotorder 0 is again driven Low.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Clock [] L L L L Ly
CP1_ts 0
CP_ir_0[31:0] [i | T X
CP_tds 0
CP_tdata_0[63:0] — X A‘d X B X_Q B
CP_torder_0[2:0] I— ‘X 9 X‘ ‘ ‘X }

Figure 4-4 To Coprocessor Data Transfer Waveform

4.5.3 From Coprocessor Data Transfer

The coprocessor interface transfers data from the coprocessor to the integer processor core after a From COP Op ha:s
been dispatched. Only From COP Ops utilize this transfer. Note that the 5K core has buffers for this data that enable the
transfer to occur as early as the cycle after dispatch.

The coprocessor interface allows out-of-order transfers of data. That is, data can be sent from the coprocessor in a
different order from the order in which the instructions were dispatched. When data is sent from the coprocessor, the
CP_forder 0[2:0] signal is also sent. This signal tells the integer processor core if the data is for the oldest
outstanding From COP data transfer or the second oldest. The 5K core supports a maximum of one out-of-order transfer
and drivesCP_fordlim_0[2:0] = 3'b001 accordingly.

Note: It is illegal for a coprocessor to driveP_forder 0[2:0] > 3'b001.

For single-word transfers, the coprocessor must drive the 32-bit value o@MBoftlata 0[31:0] and
CP_fdata 0[63:32] , which makes the transfer independent of the byte ordering (big or little endian).

For memory stores, the integer pipeline stalls if data is not available by the E-stage because the data to be stored is neede
early in the following M-stage, and by receiving the data in the E-stage, the coprocessor interface can have non-critical
timing. The integer unit can, however, schedule MFC/DMFC/CFC instructions; these instructions will not stall unless
the data is required by a subsequent instruction.

Figure 4-5shows waveforms for an example From Coprocessor data transfer. The A, B, and C instructions are dispatched
on edges 2, 3, and 4, respectively. The coprocessor returns the data for instruction A on edge 4.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 49

Chapter 4 Coprocessor Interface

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Clock] L L L L L L L L L
CP1 fs 0 |
CP_ir_0[31:0] XA XBi XCi X Di X
CP_fds 0 / \ / \

CP_fdata_0[63:0] — ‘XA‘d S) S ‘X'B‘]
CP_forder 0[2:0] N ‘XC‘) ‘ ‘ ‘)(C‘) I

Figure 4-5 From Coprocessor Data Transfer Waveform

On edge 5, the data for instruction C is returned. Note that this is before the data for instruction B and is thus out-of-order
as is signified byCP_forder 0 =3'b001.

Instruction D is dispatched on edge 9. At the same time, the data for instruction B is sent. At edge 10, data for instruction
D is sent. Edge 10 is one cycle after dispatch, which is the fastest data return possible.

4.5.4 Condition Code Checking

The coprocessor interface provides signals for transferring the result of a condition code check from the coprocessor to
the integer processor core. Only the BC1, BC2, and MOVCI instructions utilize this transfer. These instructions are
dispatched to both the integer processor core and the coprocessor.

For each instruction dispatched, a result is sent back to the integer processor core that says whether or not to execute the
instruction. For branches, the coprocessor tells the integer processor core whether or not to branch. For conditional
moves, the coprocessor tells the integer processor core whether or not to do the move.

For this reason, the coprocessor must interpret the type of instruction to decide whether or not to execute it.
Customer-defined BC2 instructions are thus possible.

The integer unit requires the condition code data by the R-stage of the instruction; otherwise, it will stall because the
condition is evaluated in the E-stage. Having the data available in the previous R-stage allows the interface to have
non-critical timing. As the instruction kill transfer is sent from the integer core later than the R stage, the coprocessor
must not wait for this transfer before sending the conditional code data.

Condition code check transfers follow the generic example givEigime 4-2 on page 43 he signals used are
CP_cccs_m andCP_ccc_minstead ofCP_nulls m andCP_null_m as shown in the figure.

4.5.5 GPR Data

The integer processor core transfers the results of a check that RT==64'b0 for two special arithmetic coprocessor 1
instructions: MOVN.fmt and MOVZ.fmt. It also transfers the lower three bits of the RS operand for the ALNV.PS and
ALNV.fmt coprocessor 1 instructions. When these instructions are dispatched to the coprocessor, they are also
dispatched to the integer pipeline. In this way, the integer processor core can properly bypass RS as well as check the
RT value against zero.

The integer unit transfers this information during the M-stage of its pipeline. Thus, the integer unit will not dispatch more
than two subsequent instructions before sending the GPR data for the first instruction.

GPR data transfers follow the generic example givefigure 4-2 on page 49 he signals used a@P1_gprs_m and
CP1_gpr m[3:0] instead ofCP_nulls_m andCP_null_m as shown in the figure.

50 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

4.5 Interface Protocols

4.5.6 Coprocessor Exceptions

All instructions dispatched utilize the coprocessor exception transfer. It is used to signal if an instruction caused an
exception in the coprocessor. This transfer must happen even if the instruction did not cause an exception in the
COprocessor.

When a coprocessor instruction causes an exception, the coprocessor must signal this occurrence to the integer process
core so the integer processor core can start execution from the exception vector. The coprocessor can signal a Reserve
Instruction exception for any instruction dispatched to it. However, the coprocessor should only signal FPE exceptions
for COP1 and C2E exceptions for COP2. The coprocessor can also signal one of two implementation-specific exception
codes. These exception codes can be used to trigger special software exception handling routines.

Note: A coprocessor can signal an exception for To/From COP Ops. Except for instructions CTC1 and CTC2, this
exception cannot depend on the associated data.

Signalling for Reserved Instruction exceptions is divided between the integer processor core and the coprocessor as
follows:

» The integer processor core signals Reserved Instruction exceptions for non-arithmetic coprocessor instructions that
are not valid To COP Ops or From COP Ops.

» The coprocessor hardware must signal Reserved Instruction exceptions for all arithmetic coprocessor instructions.

The integer processor core detects Coprocessor Unusable exceptions and MDMX Unusable exceptions for all
coprocessor instructions.

The integer unit can accept the exception transfer as late as the M-stage without stalling.

If imprecise coprocessor exceptions are allowed, the coprocessor can use the “No exception” signal immediately after
dispatch. This will prevent stalling in the integer pipeline while waiting for precise results; if an exception does occur
for that instruction, a subsequent coprocessor instruction can be flagged as exceptional (although imprecise), or else ar
interrupt could be signalled through the normal integer processor core interrupt inputs.

Exception transfers follow the generic example giveRigure 4-2 on page 49 he signals used a@_excs_m,
CP_exc_m, andCP_exccode_m[4:0] instead ofCP_nulls_m andCP_null_m as shown in the figure.

4.5.7 Instruction Nullification

All instructions dispatched utilize the instruction nullification transfer. It is used to signal if an instruction was nullified
in the integer processor core. This transfer must happen even if an instruction was not nullified so that the coprocesso
knows when it can begin operation of subsequent operations that depend on the result of the current instruction.

Normally, an instruction is killed only when the pipeline is being flushed because an exception occurred. In this case, all
subsequent instructions in the pipeline are also killed. An instruction can also be killed because it is in the delay slot of
a branch-likely instruction that did not branch. This type of killing is calsgtuction nullification In this case,

subsequent instructions in the pipeline are unaffected by the nullification.

Nullification is performed in an early stage of the pipeline to ensure that subsequent instructions can begin with the
correct operands.

In the cycle that an instruction is nullified, other transfers for that instruction can still occur, but no further transfers for
that instruction can occur in subsequent cycles. The integer processor core masks exceptions caused by nullified
instructions.

Nullification transfers follow the generic example giverrigure 4-2 on page 45

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 51

Chapter 4 Coprocessor Interface

52

4.5.8 Instruction Killing

Allinstructions dispatched utilize the instruction killing transfer. It is used to signal if an instruction can commit state or
not. This transfer must happen even if an instruction is not being killed so that the coprocessor knows when it can
writeback results for the instruction.

Due to various exceptional conditions, any instruction might need to be killed. The integer processor core contains logic
that tells the coprocessor when to kill coprocessor instructions.

When a coprocessor instruction is being killed because of a coprocessor-signalled exception, the coprocessor might neec
to perform special operations. For example, if a floating-point instruction is killed because of a Floating-point exception,
the coprocessor must update exception status bits in the coprocessor's FCSR register. On the other hand, if that same
instruction was killed because of a higher-priority exception, those status bits must not be updated. For this reason, as
part of the kill transfer, the integer processor core tells the coprocessor if the instruction is killed due to a
coprocessor-signalled exception.

When a coprocessor arithmetic instruction is killed, all subsequent coprocessor arithmetic instructions and To/From
COP Ops that have been dispatched on that issue group are also killed. This killing is hecessary because the killed
instruction(s) might affect the operation of subsequent instructions (for example, because of bypassing). In the cycle in
which an instruction is killed, other transfers might occur, but after that cycle, no further transfers occur for any of the
killed instructions. A side-effect is that the other instructions that are killed do not have a kill transfer of their own. In
effect, they are immediately killed and thus their remaining transfers cannot be sent, including their own Kkill transfer.
Previously nullified instructions do not have a kill transfer either, because once nullified, no further transfers can occur.

Note: If the integer processor core dispatches a coprocessor instruction in the same cycle that a kill is being signalled to
the coprocessor, then that instruction must also be killed.

Killing transfers follow the generic example giverFigure 4-2 on page 453 he signals used a@P_kills_m and
CP_kill_m[1:0] instead ofCP_nulls_m andCP_null_m as shown in the figure.

4.5.9 Hardware Present Signaling

Three Coprocessor Interface static inp@B1_fppresentCP1_mdmxpresenandCP2_presentenable the integer
processor core to know what type of hardware is connected to the Coprocessor Interface. If one of these signals is
asserted and the respective hardware is not available to handle the instructions, the op&satioBF4$NED , and the
integer processor core might hang.

The three signals drives tikg>, MD andC2 bits of the CPConfiglregister, respectively. If eithéiP or MD is set, the
CU1 bit in the CPQStatusregister can be set by softwaredfis set, theCU2 bit in the CPOStatusregister can be set
by software.

If the CU1 bit in the CPOStatusregister is cleared the execution of a COP1 instruction will cause the integer processor
core to signal a Coprocessor Unusable exception. Likewise, a c@d@it in theStatusregister will cause a
Coprocessor Unusable exception when executing a COP2 instruction.

If CP1_mdmxpreserg deasserted, the execution of an MDMX instruction will cause the integer processor core to signal
a Reserved Instruction exceptiond81is deasserted (but the MDMX hardware is present) an MDMX instruction will
cause a Coprocessor Unusable exception. Likewise, if the MDMX hardware is present, but the MX biat@P0
register is deasserted, then an MDMX Unusable exception will be signalled.

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

4.5 Interface Protocols

4.5.10 Coprocessor Idle

The coprocessor interface also includes an idle indication from the coproc&Rsitle . The coprocessor must

deassert this signal whenever it is performing a calculation, and assert it when there are no instructions in progress. When
assertedCP_idle allows the integer processor core to enter a low-power mode, potentially shutting down the internal
integer processor core cloadkP _idle is ignored if no coprocessor is using the coprocessor interface (when
CP1_fppresent , CP1_mdmxpresent ,andCP2_present are all deasserted).

45.11 Reset

When the integer processor core is reset, it asSéttgeset . On reset, the coprocessor must stop all in-progress
operations and reset all control state machines to their idle states. When asserted, any in-progress protocols are broken
all transfers immediately stop. All signals must reset to their inactive states by th€RByekset is deasserted.

Note: CP_reset can be asserted for as little as two cycles, although longer assertions are legal. Thus the coprocessor
must properly reset even whé®_reset is asserted for only two cycles.

After CP_reset is deasserted, no transactions are started on the coprocessor interface for at least four cycles. This gives
the coprocessor extra time to reset its state machines before a new instruction is dispatched. However, all coprocesso
interface signals must still be deasserted by the cycle¥Rateset is deasserted so that both the integer processor

core and the coprocessor start transfers cleanly after reset.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 53

Chapter 4 Coprocessor Interface

54 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

Chapter 5

EJTAG Interface

This chapter describes the EJTAG interface supported by the 5K microprocessor core. It contains the following sections:
» Section 5.1, "Introduction"

» Section 5.2, "EJTAG Interface Signal Descriptions"

» Section 5.3, "Test Access Port Interface Descriptions"

» Section 5.4, "Reset from Probe"

5.1 Introduction
The EJTAG interface is the external interface to the debug functionality of the 5K core. The interface provides control
of the EJTAG debug features:
» A Test Access Port (TAP) that connects to a debug probe through the five-pin TAP interface

« A Debug interrupt request that can cause a debug exception and thereby get the processor into Debug Mode upon ar
external event

« A Debug Mode indicator that indicates whether the processor is in Debug or Non-Debug Mode
« A Device ID register value that provides the value for the Device ID register accessed through the TAP

« A System implementation dependent output that provides reset control depending on the external system
The EJTAG interface signals and protocol of the 5K core are similar to those of the 4K core.

Consult the “EJTAG Specification” listed below and related application notes for information about timing and voltage
level requirements when the five-pin TAP interface is connected to external chip pins and to the external EJTAG probe
connector.

The following documents have background information for the description in this chapter:

» “EJTAG Specification”, rev. 2.5-1 or later, MIPS Technologies document number MD00047

« “EJTAG Implementation Application Note”, rev. 1.00 or later, MIPS Technologies document number MD0O0071

« |IEEE Std. 1149.1-1990, “IEEE Standard Test Access Port and Boundary-Scan Architecture”

5.2 EJTAG Interface Signal Descriptions

This section describes EJTAG-related signal interface on the 5K processor core. Registers referenced in this chapter are
described in detail in the “EJTAG Debug Feature” chapter diitRsS64 5K Processor Core Family Software User's
Manual

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 55

Chapter 5 EJTAG Interface

Table 5-1defines the signal directions for the EJTAG signal descriptions.

Table 5-1 Signal Direction Key

Direction Description
I Input to the 5K core. Unless otherwise noted, input signals are sampled on the
rising edge of the processor clock signal.
0] Output from the 5K core. Unless otherwise noted, output signals are driven on
the rising edge of the processor clock signal.
S Static input to the 5K core. These signals are normally tied to either power or
ground; they must not change state while SI_ColdReset is deasserted.

Table 5-2describes the signals according to function; the signals are defined alphabetically by function.

Table 5-2 System Interface Signal Descriptions

Signal Name

Dir

Description

Test Access Port (TAP) Interface

These signals comprise the EJTAG TAP. These signals are unused if the core does not implement
controller. The EJ_TCK clock signal is used as reference for these TAP signals.

the TAP

EJ_TCK

Test Clock Input for the EJTAG TAP. EJ_TCK is the TAP clo
signal that controls updating of the TAP controller and the
shifting of data through the Instruction or selected data
register(s). EJ_TCK is independent of the processor clock, v
respect to both frequency and phase.

ith

EJ_TDI

Test Data Input for the EJTAG TAP. EJ_TDI is the test data input

to the Instruction or selected data register(s). This signal is
sampled on the rising edge of EJ_TCK in some TAP controll
states (se8ection 5.3.2, "TAP Controllex"

er

EJ_TDO

Test Data Output for the EJTAG TAP. EJ_TDO is the test da
output from the Instruction or data register(s). This signal
changes on the falling edge of EJ_TCK. Use the EJ_TDOzs
signal to control the driver of a TDO off-chip pin.

Q

ate

EJ _TDOzstate

Drive indication for EJ_TDO output on the EJTAG TAP at ch
level. This signal changes on the falling edge of EJ_TCK; it i
only deasserted when data is shifted out. The encoding for t
signal is:

HIGH: The TDO output at chip level must be in the Z-state.

LOW: The TDO output at chip level must be driven to the val
of EJ_TDO.

IEEE Standard 1149.1-1990 defines a TDO off-chip pin as 4
3-stated signal. The 5K core outputs this signal to control a 3-5|
buffer for the off-chip pin.

p
5

his

tate

EJ_TMS

Test Mode Select Input for the EJTAG TAP. EJ_TMS is the
control signal for the TAP controller. This signal is sampled @
the rising edge of EJ_TCK.

>

56

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

5.2 EJTAG Interface Signal Descriptions

Table 5-2 System Interface Signal Descriptions (Continued)

Signal Name

Dir

Description

EJ_TRST_N

Active-Low Test Reset Input for the EJTAG TAP. Assertion
(LOW) of EJ_TRST_N causes the TAP controller to be reset
asynchronously.

At power-up, the TAP must be reset through assertion of
EJ_TRST_N before the processor reset is deasserted.
EJ_TRST_N is asserted either as an off-chip pin on which a
power-on reset is generated or through an on-chip power-on i
generator.

Note that having the EJ_TRST_N signal as an off-chip pin is
optional.

eset

Debug Interrupt

EJ_DINT

A Debug Interrupt exception is requested when this signal is|
asserted in a processor clock period after being deasserted i
previous processor clock period. The request is cleared whe
Debug Mode is entered. Requests from within Debug Mode
ignored.

N the

=]

are

EJ_DINTsup

Value of DINTsup for the TAP Implementation register. A HIG
on this signal indicates that the EJTAG probe can use the D
signal to interrupt the processor.

Assert this signal if the DINT pin on the EJTAG probe heade
connected to the EJ_DINT input of the core.

zZ
—

is

Debug Mode Indication

EJ_DebugM

Asserted when the core is in Debug Mode. Use EJ_DebugM
bring the core or chip out of a low power mode. In systems |
multiple processor cores, this signal can be used to synchro
several cores when debugging.

to
ith
hize

Device ID Register Value

These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller i
implemented, these inputs are not connected. These inputs are always available for soft core custor
hard cores, the core hardener may set these inputs to their own values

5 not
ners. On

EJ_ManuflD[10:0]

Value of the ManuflD[10:0] field in the Device ID register. As pée
IEEE 1149.1-1990 section 11.2, the Manufacturers Identity C
is a compressed form of the JEDEC standard Manufacturers
Identification Code in the JEDEC Publications 106, which can
found at: http://www.jedec.org/

ManufID[6:0] bits are derived from the last byte of the JEDE
code (discarding the parity bit). ManufID[10:7] bits provide a
binary count of the number of continuation character bytes
(Ox7F) in the JEDEC code. If the number of continuation
characters exceeds 15, ManufID[10:7] contain the modulo-1
count of the number of continuation characters.

MIPS can provide a value for ManufID on request for users
without a JEDEC standard Manufacturers Identification Cod

bde

be

|99

EJ_PartNumber[15:0]

Value of the PartNumber[15:0] field in the Device ID regist

EJ_Version[3:0]

Value of the Version[3:0] field in the Device ID register.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01

57

Chapter 5 EJTAG Interface

Table 5-2 System Interface Signal Descriptions (Continued)

Signal Name Dir Description

System Implementation Dependent Outputs

These outputs come from EJTAG control registers. They have no effect on the core, but can be used to give
additional control over the system to EJTAG debugging software.

Peripheral Reset. EJTAG can assert this signal to request the reset

EJ PerRst o of some or all of the peripheral devices in the system. The signal
- has no reset effect on the 5K core internally, but the external Iqgic

may apply reset throgh the ordinary reset signals for the core.

Processor Reset. EJTAG can assert this signal to request that the
EJ PrRst o | core be reset. The signal has no reset effect on the 5K core

— internally, but the external logic may apply reset throgh the
ordinary reset signals for the core.

Soft Reset Enable. EJTAG can deassert this signal if it want$ to
EJ_SRstE O | masksoftresets. If this signal is deasserted, none, some, or all soft
reset sources are masked.

5.3 Test Access Port Interface Descriptions

This section describes the pin level interface and protocol for the Test Access Port (TAP) interface. Only the low-level
signal interface and state machine for the TAP are described here. TAP instruction and data register encoding, layout and
values are described in the “EJTAG Debug Feature” chapter dfitR&64 5K Processor Core Family Software User's

Manual

Please refer to the “EJTAG Specification”, rev. 2.5-1 or later, MIPS Technologies document number MD00047, and
associated application notes for details about off-chip timing and connection.

Figure 5-1shows an overview of the elements in the TAP.

EJ_TCK
_ >

EJ_TMS

EJ_TDO (gated by EJ_TDOzstate)
l

EJTAG TAP interface

Instruction Register
EJ_TDI

Selected Data Register(s)

EJ_TRST_N
e

Figure 5-1 Test Access Port (TAP) Overview

The TAP consists of the following signals: Test Clock (EJ_TCK), Test Mode (EJ_TMS), Test Data In (EJ_TDI), Test
Data Out (EJ_TDO), and Test Reset (EJ_TRST_N). EJ_TCK and EJ_TMS control the state of the TAP controller, which
controls access to the Instruction or selected data register(s). The Instruction register controls selection of data registers.
Access to the Instruction and data register(s) occurs serially through EJ_TDI and EJ_TDO. EJ_TRST_N is an
asynchronous reset signal to the TAP.

58 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

5.3 Test Access Port Interface Descriptions

Access through the TAP does not interfere with the operation of the processor, unless features specifically described to
do so are used.

5.3.1 TAP Reset

EJ_TRST_N is the test reset input that asynchronously resets the TAP. At power-up, the TAP must be reset through
EJ_TRST_N before the processor reset is deasserted. EJ_TRST_N must be asserted either as an off-chip pin on whic
a power-on reset is generated or through an on-chip power-on reset generator for the signal.

Assertion of EJ_TRST_N has the following immediate effects:

» The TAP controller is put into the Test-Logic-Reset state

» The Instruction register is loaded with the IDCODE instruction

* Any EJTAGBOOT indication is cleared

» The EJ_TDO output is 3-stated through use of the EJ_TDOzstate signal

EJ_TRST_N does not reset other parts of the TAP or processor. Thus this type of reset does not affect the processor, anc
the processor reset does not have any effect on the above parts of the TAP.

5.3.2 TAP Controller

The TAP controller is a state machine whose active state controls TAP reset and access to the Instruction register and
data registers.

The state transitions in the TAP controller occur either on the rising edge of EJ_TCK or when EJ_TRST_N is asserted.
The EJ_TMS signal determines the transition at the rising edge of EJ_HiGite 5-2shows the state diagram for the
TAP controller; it also shows the EJ_TMS values when changing between different states.

EJ_TMS=1

C Test-Logic-Reset

b
) 1
Crmo B || Crser D
Exit2-DR Exit2-IR
1 1,
Update-DR Update-IR
0 1 0
h ,

Figure 5-2 TAP Controller State Diagram

The behavior of the functional states showrrigure 5-2is described in the following subsections. The non-functional
states are intermediate states in which no registers in the TAP change; these states are not described here.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 59

Chapter 5 EJTAG Interface

60

Events are described in the following subsections with relation to the rising and falling edges of EJ_TCK. The described
events take place when the TAP controller is in the corresponding state when the clock changes.

5.3.2.1 Test-Logic-Reset State

When the Test-Logic-Reset state is entered, the Instruction register is loaded with the IDCODE instruction, and any
EJTAGBOOT indication is cleared. This state ensures that the TAP does not interfere with the normal operation of the
processor.

The TAP controller always reaches this state after five rising edges on EJ_TCK when EJ_TMS is held HIGH.

When EJ_TRST_N is asserted, it immediately places the TAP controller in this state asynchronous to EJ_TCK.

5.3.2.2 Capture-IR State

In the Capture-IR state, the Instruction register is loaded with the value (00 rising edge of EJ_TCK.

5.3.2.3 Shift-IR State

In the Shift-IR state, the LSB of the five-bit Instruction register is output on EJ_TDO on the falling edge of EJ_TCK.
The Instruction register is shifted one position from MSB to LSB on the rising edge of EJ_TCK, with the MSB shifted
in from EJ_TDI. The value in the Instruction register does not take effect until the Update-IR-sgate 5-3shows the
shifting direction for the Instruction register.

EJ_TDI Instruction Register EJ_TDO

4/ MSB 0/LSB

Figure 5-3 EJ_TDI to EJ_TDO Path when in Shift-IR State

The value loaded in the Capture-IR state is used as the initial value for the Instruction register when shifting starts; thus
it is not possible to read out the previous value of the Instruction register.

5.3.2.4 Update-IR State

In the Update-IR state, the value in the Instruction register takes effect on the rising edge of EJ_TCK.

5.3.2.5 Capture-DR State

In the Capture-DR state, the value of the selected data register(s) is captured on the rising edge of EJ_TCK. The
Capture-DR state reads the data in order to output it in the Shift-DR state.

The Instruction register selects one of the following data register(s): Bypass, Device ID, Implementation, EJTAG
Control, Address, and Data register(s).

5.3.2.6 Shift-DR State

In the Shift-DR state, the LSB of the selected data register(s) is output on EJ_TDO on the falling edge of EJ_TCK. The
selected data register(s) is shifted one position from MSB to LSB on the rising edge of EJ_TCK, with EJ_TDI shifted
in at the MSB. The value(s) shifted into the register(s) does not take effect until the Update-DRigtat 5-4shows

the shifting direction for the selected data register.

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

5.3 Test Access Port Interface Descriptions

EJ_TDI : EJ_TDO
4’| Selected Data Register(s) |—>

MSB 0/LSB

Figure 5-4 EJ_TDI to EJ_TDO Path for Selected Data Register(s) when in Shift-DR State

The Address, Data, and EJTAG Control data registers are selected at once with the ALL instruction, as Slguva in
5-5.

EJ TDI EJ TDO
—4P| Address register |—P| Data register |—P| EJTAG Control register }——P

MSB 0/LSB MSB 0/LSB MSB 0/LSB

Figure 5-5 EJ_TDI to EJ_TDO Path when in Shift-DR State and ALL Instruction is Selected
The length of the shift path depends on the selected data register(s).

5.3.2.7 Update-DR State

In the Update-DR state, the update of the selected data register(s) with the value from the Shift-DR state occurs on the
falling edge of EJ_TCK. This update writes the selected register(s).

5.3.3 TAP Operation Example

Figure 5-6shows an example of a TAP operation. EJ_TRST_N is assumed to be deasserted.

EJ_TMS
= - =
2) < 8 |
E 8 &% @ @ 8 a o
TAP B x| |2 z o lx | o
controller i ol ol = = 5122 £
c o @ ©] o o < 7]
2 2135 | O o2
o o) o o] O
n AP n
EJ_TDI IRO [IR1 | IR2 | IR3 | IR4 DRO|DR1|DR2

EJ_TDOzstate \ /—\—
£1.700 Y\ A X0

Figure 5-6 TAP Operation Example

The five-bit Instruction register is initially loaded with 0090The first bit shifted out of the Instruction register is a 1
followed by four 0’s. IRO to IR4 indicate the new value for the Instruction register. IR0, the new LSB, is shifted in first,
because it will be at the LSB position once all five bits are shifted in.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 61

Chapter 5 EJTAG Interface

Figure 5-6also shows the EJ_TDOzstate signal, which can be used to 3-state EJ_TDO on an off-chip pin.

This example is similar for the selected data register.

5.4 Reset from Probe

While asserted, the RST* signal from the probe must generate a reset or soft reset to the system. Therefore RST* must
connect to either SI_ColdReset or SI_Reset within the system.

The SRstE bit in the Debug Control Register (DCR), provided on the EJ_SRstE signal, can not mask this source.

62 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

Chapter 6

Production Test Interface

This chapter describes the production test interface for the 5K core. It contains the following sections:
» Section 6.1, "Introduction"

 Section 6.2, "Production Test Interface Signal Descriptions"

» Section 6.3, "Internal Scan Interface"

» Section 6.4, "User-Implemented RAM BIST Interface"

» Section 6.5, "Integrated Memory BIST for Cache RAMs Interface"

6.1 Introduction

The 5K core provides several interfaces related to production testing, which support testing with internal scan and testing
of internal memories. The interfaces are divided into the following groups:

« Internal scan testing interface to support scan logic inserted in the design.

« User-implemented RAM BIST interface, providing user-definable top-level pins on the core for access to RAM BIST
controllers implemented by the user for example with a commercial tool.

« Integrated memory BIST interface for cache RAMs, which controls the optional cache memory BIST solution
provided with the 5K core.

Details about implementation of the different kind of production test features are described in the “Testability” chapter
of theMIPS64 5K Processor Core Family Implementor’'s Guide

6.2 Production Test Interface Signal Descriptions

This section describes the production test signal interface of the 5K processor core. The pin direction key for the signal
descriptions is shown ifable 6-1

Table 6-1 Signal Direction Key

Dir Description

| Input to the 5K core. Unless otherwise noted, input signals are sampled on the rising edge of the
appropriate clock signal.

o Output from the 5K core. Unless otherwise noted, output signals are driven on the rising edge of the
appropriate clock signal.

s Static input to the 5K core. These signals are normally tied to either power or ground and should|not
change state while SI_ColdReset is deasserted.

The signals are listed by functionTable 6-2below.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 63

Chapter 6 Production Test Interface

Table 6-2 Production Test Interface Signal Descriptions

Signal Name Type Description

Internal Scan Interface

ScanEnable Assert this signal while loading and unloading the scan chains; degssert
it at capture clock.

The ScanEnable signal must be deasserted during normal operation pf the
core.

Scanln[] | Configurable width bus used for scan chain inputs.

ScanMode Assert this signal during all scan testing, both while loading and
unloading the scan chains and during capture clocks.

The ScanMode signal must be deasserted during normal operation ¢f the
core.

ScanOut[] (0] Configurable width bus used for scan chain outputs.

User-Implemented RAM BIST Interface

BistIn(] I Configurable width bus for user-implemented BIST of internal RAM

T

BistOut]] 0] Configurable width bus for user-implemented BIST of internal RAMs.

Integrated Memory BIST for Cache RAMs Interface

MemBistDone (0] Done signal for integrated memory BIST of internal cache RAMSs.
MemBistFail 0] Fail signal for integrated memory BIST of internal cache RAMs.
MemBistinvoke Invoke signal for integrated memory BIST of internal cache RAMs.

The MemBistIinvoke signal must be deasserted during normal opergtion
of the core.

6.3 Internal Scan Interface

The ScanMode signal controls the enable and disable of internal scan logic. This signal must be asserted during scan
testing and deasserted during normal operation of the core.

The ScanEnable signal selects between connecting flops in the scan chain for loading and unloading of the scan chain,
and normal operation which is also used for capture. This signhal must be deasserted during normal operation of the core

The ScanlIn[] and ScanOut][] signals are used to input and output the scan chains. The M5KC_SCAN_IN_OUT_WIDTH
configuration parameter controls the width of these signals, which must be set accordingly in the scan insertion scripts.

6.4 User-Implemented RAM BIST Interface

64

The functionality of this interface is user-defined. The width of the Bistin[] and BistOut[] signals is controlled by the
M5KC_RB_IN_WIDTH and M5KC_RB_OUT_WIDTH configuration parameters. Internal modules with user defined
contents make it possible to connect these signals all then way down to the RAMs.

The clock for the cache RAMs must be running when the memory test is applied for the cache RAMs, to allow updates
of the RAMSs during the memory test. The 5K core supports this requirement when integrated memory BIST is not used.

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

6.5 Integrated Memory BIST for Cache RAMs Interface

The MemBistinvoke must then be asserted while reset is applied, whereby the cache RAM clocks are free-running after
at most 5 clocks on the SI_Clkin clock signal.

The clock for the register file RAM is running when reset is applied.

Do not apply the memory testing methods of user-implemented RAM BIST and integrated memory BIST for cache
RAMs at the same time, but can coexist in an implementation.

6.5 Integrated Memory BIST for Cache RAMSs Interface

This interface controls the integrated memory BIST solution provided as an configuration option with the 5K core.

The integrated memory test must occur while reset is applied to the core, either through use of the SI_ColdReset and/or
the SI_Reset signal. The 5K core must be properly reset before the memory test is initiated. Such a reset occurs wher
reset is applied for the appropriate number of cycles while MemBistinvoke is deasserted. The memory test is then
initiated when the MemBistinvoke signal is asserted.

Finished test is indicated when the core asserts MemBistDone. The duration of the test depends on the configuration of
cache and memory test algorithm. The result of the test is indicated on the MemBistFail signal. Failure of the test is
indicated when the MemBistFail signal is asserted; successful test is indicated when the MemBistFail signal is
deasserted and the MemBistDone signal is asserted. The MemBistFail signal provides a single indication for all the
cache memories in the core, and failure is indicated if one or more of the memories fails.

Timing of the signals is shown dfigure 6-1 which is an example where failure is indicated.

SI_Clkin ||||||_||_||_|::J|_|::JI_IL
SI_Reset X X X X X :: X X :: : :

En i et
1

./ -

MemBistInvoke

MemBistFail

MemBistDone

Figure 6-1 Protocol for Use of Integrated Memory BIST for Cache RAMs

When memory test has been applied to the 5K core, then the core has to be properly reset before normal operation ce
resume. Reset occurs when SI_Reset and/or SI_ColdReset is asserted for the appropriate number of cycles while
MemBistinvoke is deasserted.

Only very few signals need to be well-defined when running this memory test. The signals that must be well-defined are
SI_CIkIn, SI_Reset, SI_ColdReset, ScanMode, ScanEnable, and MemBistinvoke. The ScanMode and ScanEnable
signals must be deasserted during the memory test.

MemBistinvoke must be deasserted during normal operation of the core, as described in Table 6-2.

Note that the integrated memory BIST interface is also used for user-implemented RAM BIST in order to ensure that
the cache RAM clocks are running during the memory test.Setion 6.4, "User-Implemented RAM BIST Interface"

for more information.

Do not apply the memory testing methods of user-implemented RAM BIST and integrated memory BIST for cache
RAMSs at the same time, but can coexist in an implementation.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 65

Chapter 6 Production Test Interface

66 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

Chapter 7

Clocking, Reset, and Power

This chapter describes how to clock and reset the 5K core. It also describes the interface for running with reduced power.
This chapter contains the following sections:

» Section 7.1, "Introduction”
» Section 7.2, "Clocking"
» Section 7.3, "Core Reset and NMI"

 Section 7.4, "Power Management"

7.1 Introduction

This chapter describes the clocking and initialization interface on a MIPS64 5K processor core when the core is
integrated into a system environment. The power-reduction features available on a 5K core are also discussed.

7.2 Clocking

There are up to two input clocks that must be generated and driven to the 5K core:
» The main clock input is named SI_CIkIn.

» An optional clock input called EJ_TCK is only present if an EJTAG TAP controller is implemented within the core.

Both clocks are used internally at 1x their respective input frequencies; no frequency multiplication or division is
performed internally. No phase-locked loop is present within the 5K core. No minimum frequency is required, so the
frequency of the input clocks can be quickly changed or stopped as long as edge rate integrity is maintained.

The following discussion describes general clocking characteristics of the 5K core implemented with a standard ASIC
physical design methodology. It is possible that a specific hard core implementation might differ from the general clock
guidelines discussed here; for example, dynamic circuit implementation techniques might mandate that a minimum
clock frequency be met for a particular hard core. So the general clocking assumptions described here must be validated
for the specific 5K core that is being integrated before proceeding with system clock design.

7.2.1 SI_ClIkin Clock

SI_ClkInis the primary 1x input clock to the 5K core. It is used to enable the vast majority of sequential logic within the
5K core as well as time the synchronous SRAMs normally used to implement the caches.

All logic inside the core is clocked using the positive edge of the SI_CIkin clock. Only the Data Cache RAMs and the
latches capturing the data from these RAMs are clocked using the negative edge of SI_CIkIn. Furthermore, in order to
achieve maximum performance, these RAM clocks are normally manually tuned. Thus the duty-cycle requirement
depends on the specific 5K core implementation.

Because no dynamic logic or PLL is present, the minimum frequency is 0 MHz; that is, SI_CIkin can be stopped, if
desired. The maximum SI_CIkIn frequency depends on the specific 5K core implementation.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 67

Chapter 7 Clocking, Reset, and Power

7.2.2 EJ_TCK Clock

EJ_TCKis an optional 1x clock input to the 5K core, which only exists if the core implements an EJTAG TAP controller.
EJ_TCK is the test input clock used to synchronize the serial shifting of data into and out of the TAP controller. The
EJ_TCK clock is completely asynchronous to the SI_CIkIn clock, in terms of both frequency and phase.

The minimum frequency of EJ_TCK is 0 MHz so this clock can be stopped when the TAP controller is not used. The
maximum frequency is specified as 40 MHz (25 ns period), due to limitations of the probes that usually interface to the
EJTAG TAP port. Both the rising and falling edges of EJ_TCK are used to control flops. The minimum clock high and
low times are specified as 10 ns, yielding a duty cycle requirement of 40 to 60% at 40 MHz.

7.2.3 Handling Clock Insertion Delay

When a 5K core is implemented, clock trees are usually created to buffer and distribute the SI_Clkin and EJ_TCK clocks
throughout the core. These clock trees impart a finite delay from the primary clock inputs to the eventual usage of the
buffered clocks at the sequential elements within the core. The exact amount of clock insertion delay is a characteristic
of each specific 5K core implementation.

The clock insertion delay presents an issue that must be managed when the 5K core is instantiated in the rest of the
system. Any clock insertion delay from the clock input to the actual clock usage at the sequential elements for the
primary inputs and outputs of the core reduces the primary input setup times but increases the input hold times as wel
as the clock-> out delays on the primary outputs. Because the 5K core inputs and outputs are received or generated
directly by flops and the remaining have only little logic in the path for a flop, the setup and hold times for the primary
inputs and outputs can be balanced at the system level.

Several different techniques can be used to manage the 5K core’s internal clock insertion delay:

 Tolerate the core clock insertion delay at the system level, if possible, within the system logic that interfaces to the
5K core. This may entail adding delay elements when driving inputs, so that hold times are not violated, and
receiving “late” outputs, which reduces the number of logic stages that can exist in the same cycle the outputs are
driven because the clock insertion delay is visible. This step might not be acceptable for all system designs, but is
usually the simplest approach.

* When creating the system clock tree for the sequential logic that interfaces to the 5K core, match this system clock to
the core’s internal insertion delay. Clock tree generation tools have the ability to match relative clock delays, so
knowing the core’s internal clock insertion delay will allow the internal clocks to be specified as matching points
(within reasonable skew limits). With this approach, input hold times and output delays can be minimized which
allows more time in the cycle for useful work.

» Use a de-skewing phase-locked loop. SI_ClkOut is an output of the 5K core which is tapped from the internal clock
tree so that it is identical (within reasonable skew limits) to the clock seen by the sequential elements within the 5K
core. The difference between SI_Clkin and SI_ClkOut represents the clock insertion delay of the primary clock used
within the 5K core. (Note that there is no corresponding reference clock output for the EJ_TCK clock, so this
technique cannot be applied to that clock domain.) Due to loading limitations, the SI_CIlkOut clock cannot be used
directly to control system logic that interfaces to the core, but it can be used as the reference clock to a PLL in the
system to “hide” the core’s clock insertion delay.

7.3 Core Reset and NMI

Hardware initialization is accomplished through the SI_ColdReset and SI_Reset pins. This section describes how these
pins are typically used in systems. These reset input pins must always be driven to the 5K core (either to a logic “1” or
“0"), and they must not be left floating or indeterminate. Each of these inputs trigger a different type of exception within
the 5K core; thMIPS64 5K Processor Core Software User's Mardedcribes more details about these exceptions.

68 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

7.4 Power Management

The initialization process for a 5K core requires a combination of hardware and software. This section describes the basic
hardware initialization interface. In accordance with the MIPS64 architecture, only a minimal amount of state is reset
by hardware; much of the internal states, like the Translation Look-Aside Buffer (TLB) and the cache tag arrays, must
be initialized via software before being used. MH@S64 5K Processor Core Software User's Mardescribes the

software initialization requirements of a 5K core.

7.3.1 SI_ColdReset

The SI_ColdReset input is a hard reset signal that initializes the internal hardware state of the 5K core without saving
any state information. It is active high, and must be asserted for a minimum of 5 SI_CIKkIn cycles. The falling edge
triggers a reset exception, which is taken by the core as the highest priority. Typically, SI_ColdReset is driven by a
power-on-reset circuit in the system. For reliable operation, the power supply must be stable and the SI_CIkIn clock must
be running before SI_ColdReset is deasserted.

7.3.2 SI_Reset

The SI_Resetinput is a soft reset input to the 5K core. Itis active high and must be asserted for a minimum of 5 SI_Clkin
cycles. The falling edge triggers a soft reset exception, which is taken by the core. Typically, SI_Reset is driven by the
reset “button” in the system. For reliable operation, the power supply must be stable and the SI_CIkin clock must be
running before SI_Reset is deasserted.

Note: Historically, MIPS processors have required Reset to be asserted during a ColdReset. The 5K core does not require
this, so an assertion of SI_ColdReset does not need to force the assertion of SI_Reset.

7.3.3 SI_NMI

The SI_NMI input signals a non-maskable interrupt (NMI). This signal is active high and rising-edge sensitive; it must
be asserted for a minimum of one clock cycle in order to be recognized. The sampling of the rising edge triggers an NMI
exception that the core takes. Typically SI_NMI is used to indicate time-critical information, like impending loss of
power in the system.

7.4 Power Management

Two primary mechanisms exist for managing system power with a 5K core: the hardware method of slowing down (or
stopping) the primary SI_CIkin clock and the software method of initiating “sleep” mode via the execution of the WAIT
instruction.

7.4.1 Reducing SI_CIkIn Frequency

The most global method to control power is to reduce the primary SI_Clkin to a lower frequency (or turn it off) when
the 5K core is not in use, if desired by your system logic. The 5K core is internally fully static so the clock can be held
either high or low, and the input frequency can be changed from maximum to a lower frequency, including zero, (and
vice-versa) in a single cycle because there is no internal PLL.

The core outputs some pins that the system logic can use, if desired, to control entry or exit to this low-power state. The
S|_RP output is directly driven from the internal CPO Status register as an external indication that it is desirable to place
the 5K core in a low-power state by reducing the clock frequency. When software sets the RP bit in the Status register
system logic can detect the assertion of the SI_RP output and then choose to place the 5K core in a lower power state by
reducing the clock frequency. Additionally, the SI_ERL and SI_EXL outputs (derived from the ERL and EXL bits in the
Status register) indicate that an exception has been taken, and can be sensed to speed the clock frequency up again,

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 69

Chapter 7 Clocking, Reset, and Power

desired. EJ_DebugM indicates that the processor operates in Debug Mode. This can also be used to speed the clock bac
up. These output pins need not be used to control the core’s clock frequency, if other system logic is available to indicate
that the 5K core is not being used.

7.4.2 Software-Induced Sleep Mode

Upon execution of the software WAIT instruction, the 5K core enters a low-power state once all outstanding instructions
and bus activity have completed. Most of the clocks in the 5K core are stopped, but a handful of flops remains active to
sense an external hardware event that will awaken the core again. The external events that can wake the core back up ar
any enabled interrupt, NMI, debug interrupt (via EJ_DINT), or reset. Power is reduced since the global gated clock
which goes to the vast majority of flops within the 5K core is held idle during this sleep mode. The SI_Sleep pin is
asserted when the core enters this low power mode. This can be used by the system logic to achieve further power
savings. There is no bus activity while the core is in sleep mode, so the system bus logic that interfaces to the 5K core
could be placed into a low power state as well.

70 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

Chapter 8

Simulation Models

This chapter discusses the cycle-exact simulation model included in your MIPS64 5K core release. A 5K VMC model
is available if cycle-exact simulation is required. VMC is a tool from Synopsys that compiles RTL into a protected binary
executable. This resulting executable can then be linked into a SWIFT R41 compatible RTL simulator to simulate a
MIPS64 5K processor core.

This chapter contains the following sections:

» Section 8.1, "Installing the VMC Model"

» Section 8.2, "Verifying the VMC Installation”

» Section 8.3, "SWIFT Template Generation"

» Section 8.4, "Back-annotating with SDF Timing"
» Section 8.5, "Register Windows"

» Section 8.6, "VMC Simulation Configuration”

» Section 8.7, "Multiple VMC Instances"

» Section 8.8, "Assertion Checks"

8.1 Installing the VMC Model

Currently the 5K VMC model is only supported on the Sun Solaris Unix platform. Contact MIPS Technologies, Inc. via
email atsupport@mips.com if you require another platform. A text similar to this one can be found at
$PROJECT/vmc/<model>_vmc_release/readme/readme.txt . Below <model> refers to m5kc, corresponding to

a MIPS64 5Kc processor core. For other releases, this text might contain other instructions than those found below. Use
the following steps to install the VMC model:

1. The 5K VMC model is a SWIFT R-41 compatible model. This model can be loaded into a site-wide R41
LMC_HOME tree or into its own stand-alone LMC_HOME tree. As appropriate, set the LMC_HOME
environment variable to the location you want the installation to reside (sourcing the file
$PROJECT/vmc/scrits/sourceme_vmc from the$PROJECTdirectory will do this.):

% setenv LMC_HOME <your_install_path>

2. Now invoke the admin install tool, which is supplied in the top level of the release package for the VMC model:

% $PROJECT/vmc/m5ke_vmc_release/sl_admin.csh
A dialog box labeled “Install From...” will pop up.
Make sure the text input box points to the package, “m5kc_vmc_release”.

Click “Open” to continue.

o o M w

Now you should see another dialog box that selects the models to install. Only one choice is available in this
release: a model called “m5kc_vmc_model” followed by a version number. Click on that model to bring it into the
“Models to Install” window.

7. Click “Continue” to close this dialog box.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 71

Chapter 8 Simulation Models

8. Nextyou will see another dialog box that selects the platforms for this model installation. Because this release only
supports the Sun Solaris platform, the platform default should be correct. You will also need to specify the
appropriate simulator package you will be using under the “EDAV Packages” heading. If you are using VCS as a
simulator, then the default push-button selection of “Other” is appropriate. If your simulator is Verilog-XL,
NC-Verilog, or ModelSim, then select the “Cadence Desigh Systems” push-button, as the support package needed
for all of these simulators is identical. Or if you are using one of the other simulators listed, choose that
push-button. Then press “Install” to continue.

9. You will get an “Install complete” message in the main message window. You can exit from the sl_admin tool.

During the installation, a documentation directory is creatédNaC_HOME/doc The PDF files in this directory
structure contain additional details about the installation process, administering and using SmartModels, and licensing

The 5K VMC model requires a GLOBEtrotter FLEXIm license in order to run. You can get this license from MIPS
through your IP vendor. For details on how to install the license, see the “Network Licensing” chapter of
$LMC_HOME/doc/smartmodel/manuals/install.pdf

8.2 Verifying the VMC Installation

A utility called swiftcheck is available in the VMC installation to ensure that your model, environment variables, and
FLEXIm license key are set up properly. Run this command before attempting to simulate with the 5K VMC model.
Invocation is as follows:

% $LMC_HOME/bin/swiftcheck m5kc_vmc_model

The above command produces thedléftcheck.out . Check it to verify that there are no errors as reported at the
end of the file.

8.3 SWIFT Template Generation

72

In order to instantiate the 5K VMC model in your RTL simulation environment, you need to create a SWIFT template
of the 5K VMC model, which is then instantiated in your RTL design. This template file provides a conversion from the
VMC model to your simulator's SWIFT interface. The SWIFT template is simulator-specific, so your simulator
documentation should provide additional details on creating a SWIFT template and including the template in your
design.

To create a SWIFT template under Synopsys VCS, use the following command:
% vcs -Imc-swift-template m5kc_vmc_model

To generate a SWIFT template for Verilog-XL, NC-Verilog, and ModelSim, use a scriptesjledhich is included
in the$LMC_HOME/bin area of your installed VMC area is used. The invocation is:

% vsg -z m5kc_vmc_model

For reference, two SWIFT templates for the 5K VMC model are included in each release under the directory
vmc/m5ke_vmc_release/template . Templates are included for the VCS and Verilog-XL Verilog simulators in
separate directories.

If you are using thesg script to create your SWIFT template, the module it creates leaves the bits of a bus as individual
ports in the input/output header rather than a single unit or "busified". The instantiation of the SWIFT template is usually
more convenient if the bits of a bus are concatenated together in the module’s port header. An examydg afutpaut,

which has been modified to concatenate bus bits in the port header, is provided in the file

MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

8.4 Back-annotating with SDF Timing

vmc/m5ke_vmc_release/template/m5kc_vmc_model.vsg.v

perform the bus concatenation manually if you desire it for your SWIFT template.

The SWIFT template created by VCS (version 5.1 and later) automatically busifies the port header.

The make script used for verificatiopRROJECT/verification/Makefile

$PROJECT/vmc/template
installation.

8.4 Back-annotating with SDF Timing

This feature is not currently supported.

8.5 Register Windows

This feature is not currently supported.

8.6 VMC Simulation Configuration

. If you runvsg directly, however, you will need to

) will try to make a proper template in the

directory. Make sure this directory exists or modify the make script to reflect your

The VMC model is configurable so that all 5K cores can be run. The available options are sH@abteiB-1and include

the processor model 5Kc core, cache config, and configuration of optional EJTAG features. The configuration is done
by setting up a memory file that is read in and used to select between the different modules. The memory file is called

memory.m5kc_config

and needs to be in the following swift readmem format:

#Comment
<Address>/<Data>;
Table 8-1 VMC Configuration Options
Name Addr Description Legal Values Default
(hex)
ICacheAssoc 6 Associativity of the instruction cache. 1,2,3,4 4
ICacheWaySize 7 Size of each way of instruction cache (in KB). 4,8, 16 1
DCacheAssoc Associativity of the data cache. 1,2,3,4 4
DCacheWaySize A Size of each way of data cache (in KB). 4,8,16 1
: . 0 — Disable
CacheParity B Cache parity check enable. 1 — Enable 1
. 0 — Disable
ICacheEnable 5 Instruction cache enable. 1 — Enable 1
0 — Disable
DCacheEnable 8 Data cache enable. 1 — Enable 1
: Magically flush caches at time 0 to avoid simulation 0 — No Magic Init
InitCacheRam 11 cycles for software cache initialization. 1 — Magic Init 1
TLBLIMIT 4 Size of TLB in number of entries. 16, 32, 48 30
. . 0—-Use TLB
BATMMU 3 Select Fixed Block Address Translation or TLB. 1 — Use Fixed MMU 0

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01

73

Chapter 8 Simulation Models

Table 8-1 VMC Configuration Options (Continued)

Name Addr Description Legal Values Default
(hex)
EHBModule 1 EJTAG HW breakpoints enable. 8: ngBé?gl;ESgilésts 2
0 — No TAP
ETPModule 2 Use EJTAG TAP module. 1 — Use TAP 1
Unique instance identifier. Tags output messages angd
InstancelD c trace files to more easily support multiple instances.rﬁi(‘:’3 0
: Display Enable. Controls printing of warning or errgr 0 — No messages
DisplayEnable D messages coming from the VMC model. 1 - Messages 1
) . . | 0 — Never stop
Controls stopping of VMC model. Determines which
HaltControl E | conditions will cause a $finish within the model. % _ gttgg gr?;r@vAvlérﬁriL%r%r errdr 1
Enables logging of all transactions on the core’s ECO — No log
bus_trace F interface (external bus). 1 - Log bus transactions 0
: 0 — No tracing
dumpTrace 10 Instruction trace enable. 1 — Trace file will be created 1

An examplememory.m5kc_config file is shown below:

#CONFIG_STRING:5Kc-etp-ehb-p-i4w-i16k-d4w-d16k
Memory Image File containing simulation configuration information
Variable Number/Variable Value

#TLBLIMIT
4/30;

#BATMMU

3/0;
#InitCacheRam
11/1;
#DCacheAssoc
9/4;
#DCacheWaySize
a/10;
#ICacheWaySize
7/10;
#1CacheAssoc
6/4;
#1CacheEnable
5/1;
#DCacheEnable
8/1;

#bus_trace

f/0;
#CacheParity
b/1;
#EHBModule
1/1;
#ETPModule
2/1;
#dumpTrace
10/1;

74 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

8.7 Multiple VMC Instances

8.7 Multiple VMC Instances

It is possible to instantiate multiple VMC models to simulate a multi-CPU system. The SWIFT template file is
parameterized to control which configuration file is read in. By reading a unique configuration file, each instance can be
configured differently. By specifying unique instance tags in the memory file, the log output and trace files from the
different models can be distinguished.

The following example shows how this multiple instantiation can be accomplished. The following Verilog code
instantiates two VMC models with instance names “vmcl” and “vmc2”, which reachéineryl.m5kc_config and
memory2.m5kc_config configuration files, respectively. Note that you must manually create the unique configuration
files with the desired options for each instance, as descritgsttion 8.6, "VMC Simulation Configuratian”

m5kc_vmc_model vmel (....);
defparam vmcl.InstanceName = “vmc1”;
defparam vmcl.MemoryFile = “memoryl”

m5kc_vmc_model vme2 (...);
defparam vmc2.InstanceName = “vmc2”;
defparam vmc2.MemoryFile = “memory2”;

8.8 Assertion Checks

A variety of assertion checks are embedded within the 5K VMC model. These checks look for error conditions and
unknown states on critical signals. These checks are divided into the following basic categories:

» Fatal HW Errors — These errors should never occur and indicate a problem with the CPU. Contact MIPS support
(support@mips.com) with the details of the problem.

» Fatal SW Errors — These errors indicate that the chip cannot proceed due to unknown states on internal signals. These
errors can be caused by faulty software or incorrect chip hook-up.

» XWarning — This warning indicates an unknown state inside the chip from which it is theoretically possible to
recover. Typically, these warnings will give a more descriptive message and a better point to start debugging from
than the eventual Fatal SW Error.

* /O Warning — This warning indicates that the chip possibly is not hooked up correctly. For example, this warning
occurs if the reset inputs are asserted for more than 2000 cycles, which is symptomatic of someone assuming that the
reset inputs are active low rather than active high, but it might be the desired behavior in the system testbench or
simulation environment. Thus these events are classified as warnings and not fatal errors.

 Fatal I/O Errors — These errors indicate illegal conditions on the primary 1/0. Examples of this error include undriven
inputs or insufficient reset pulse width.

Recall that configuration options are available to enable or disable the display of these assertion messages, and to contro
whether or not a fatal error will stop simulation. S&ection 8.6, "VMC Simulation Configuration" on pagefé8more
details.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01 75

Chapter 8 Simulation Models

76 MIPS64 5K™ Processor Core Family Integrator’'s Guide, Revision 02.01

Appendix A

Revision History

Revision Date Description
02.00 January 15, 2001 Major update & release.
02.01 June 28, 2001 Updated COP Interface to cover both 5Kc and 5Kf cores.

Added note to COP Interface, about additional instructions getting COP
instruction strobes. This can only happen if they are subsequently nullified or
killed.

MIPS64 5K™ Processor Core Family Integrator’s Guide, Revision 02.01

7

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	EC Interface
	2.1� Introduction
	2.1.1� Features
	2.1.2� Basic Operation

	2.2� EC Interface Signal Descriptions
	2.3� Interface Transactions
	2.3.1� Single Read Transactions
	2.3.2� Single Write Transactions
	2.3.3� Back-to-back Read Transactions
	2.3.4� Back-to-back Write Transactions
	2.3.5� Read Transaction Followed by a Write Transaction
	2.3.6� Write Transaction Followed by a Read Transaction
	2.3.7� Burst Transactions

	2.4� External Write Buffers
	2.5� Endianess
	2.6� Lower Address Bits

	System Interface
	3.1� Introduction
	3.2� System Interface Signal Descriptions

	Coprocessor Interface
	4.1� Introduction
	4.2� Coprocessor Instructions
	Arithmetic COP Ops:
	From COP Ops:
	To COP Ops:

	4.3� Coprocessor Interface Signal Descriptions
	4.4� Coprocessor Attachment to the 5K Family
	4.4.1� 5Kc Coprocessor Attachment
	4.4.2� 5Kf Coprocessor Attachment
	4.4.3� COP2 Data Transfer Width
	4.4.4� Out-of-Order Data Transfers
	4.4.5� Limited Dual Issue

	4.5� Interface Protocols
	4.5.1� Instruction Dispatch
	4.5.2� To Coprocessor Data Transfer
	4.5.3� From Coprocessor Data Transfer
	4.5.4� Condition Code Checking
	4.5.5� GPR Data
	4.5.6� Coprocessor Exceptions
	4.5.7� Instruction Nullification
	4.5.8� Instruction Killing
	4.5.9� Hardware Present Signaling
	4.5.10� Coprocessor Idle
	4.5.11� Reset

	EJTAG Interface
	5.1� Introduction
	5.2� EJTAG Interface Signal Descriptions
	5.3� Test Access Port Interface Descriptions
	5.3.1� TAP Reset
	5.3.2� TAP Controller
	5.3.2.1� Test-Logic-Reset State
	5.3.2.2� Capture-IR State
	5.3.2.3� Shift-IR State
	5.3.2.4� Update-IR State
	5.3.2.5� Capture-DR State
	5.3.2.6� Shift-DR State
	5.3.2.7� Update-DR State

	5.3.3� TAP Operation Example

	5.4� Reset from Probe

	Production Test Interface
	6.1� Introduction
	6.2� Production Test Interface Signal Descriptions
	6.3� Internal Scan Interface
	6.4� User-Implemented RAM BIST Interface
	6.5� Integrated Memory BIST for Cache RAMs Interface

	Clocking, Reset, and Power
	7.1� Introduction
	7.2� Clocking
	7.2.1� SI_ClkIn Clock
	7.2.2� EJ_TCK Clock
	7.2.3� Handling Clock Insertion Delay

	7.3� Core Reset and NMI
	7.3.1� SI_ColdReset
	7.3.2� SI_Reset
	7.3.3� SI_NMI

	7.4� Power Management
	7.4.1� Reducing SI_ClkIn Frequency
	7.4.2� Software-Induced Sleep Mode

	Simulation Models
	8.1� Installing the VMC Model
	8.2� Verifying the VMC Installation
	8.3� SWIFT Template Generation
	8.4� Back-annotating with SDF Timing
	8.5� Register Windows
	8.6� VMC Simulation Configuration
	8.7� Multiple VMC Instances
	8.8� Assertion Checks

	Revision History

