Yuma User Manual

YANG-Based Unified Modular Automation Tools

Common User Manual

Version 2.2

Last Updated January 26, 2012

Yuma User Manual

Table Of Contents

Yuma User Manual

I o = = o = PP 3
1.1 Legal Statements. . .. 3
1.2 AddItioNal RESOUICES. .. vttt e 3

B R L Y | =TT 3
1.2.2 MailiNg LiStS e ittt 4
1.3 Conventions Used in this DOCUMENT.... ..o 4

P81 01 01 1= o2 PP 5
P A1 o o o S W [o 0 = 1 PP 5
2.2 INtENAEA AUIENCE. .. it 6

1 o Yo U T oY o 10 7
3.1 SystemM COMPONENES. . 7

700 N 47 9
T 0 A1 I 1 PP 11
3.1.3 YANG-based AULOMatioN. ...t 14
3.1.4 YANG Language EXEENSIONS.ccuuiiiiiiiiei et e e e e e 19
T) 47N\ [o o 0 o 11 1= P 20
3.1.6 YANG MOAUIE LiDIaryccu ettt e e e e e e e e e e e enees 20
T R A Y 1\ [1 = PP 23
I S N o L@]\) o (Y =] =T 1= 23
3.1, NETCONF AQENTES. .. ittt et e et e e e et e e e a e e e e e et en e e e eenas 23

4 System CoNfIQUIatION e 25

4.1 ENVIironment Variables. 25
.11 SHOME. ... it 26
4.1.2 SYUMA HOME. ... ittt e et e et e e e e et e e ea e eaneeene 26
4.1.3 SYUMA IN ST ALL. ettt e e e e r et e e e e et r e e e et e e e e eneens 27
4.1.4 SYUMA MODPATH. ..ttt enaennes 27
4.1.5 SYUMA DATAPATH. ..ttt e e e e e et et et e e e e eaeenns 28
4.1.6 SYUMA RUNPATH. ..ce ittt et e e e et e e e eneens 29

4.2 SearcChing for FIles. ... e 29
4.2.1 YUMQA WOIK Dir@CEOIY .. cuiiiiiiiei ettt et e e e et et e e en e ens 31
4.2.2 Parameter SEarCR@S. 31
4.2.3 IMPOrt/INCIUAE SEAICNES. e eneens 32
4.2.4 File SEarch Paths. ... 33

4.3 ConfiQUration FileS. ... i e 35
4.3.1 XML Configuration FileS.... .. 36
4.3.2 Text Configuration Fil@S... ... e 37

T N Yo Yo 5] o = o I O I PRSPPI 39

4.5 Configuration Parameters. ... 39
4.5, 1 Parameter SYNTAX. . .. 39
4.5.2 NOXICH EXEONSION ...ttt e et et e e e e e ens 40
4.5.3 nex:default-parm EXEENSION. 40

5 X Path RE O BN C . . e i 41
o T I - 1 o o 10 TP 42

o I A | I N =T 0 g T<E] o = ol T PP 42
5.2 YANG Specific XPath Benavior........couiiiiiiii e 43

Page 1 Version 2.2

Yuma User Manual

5.3 CUSEOM XPAth Variables. ... e eeas 43

o T 0 R U 1 o 43

I A O UL o 0 a1 € 2= 1 o T U Tt o) o 1 43
o R 0 g Yo Yo [=T [Y= T <Y 1 43
Y A Yo LA (=i =) a1=] o] [=Tc I 44

LI =L o Tl TS =1 =] 1ot 46
I A = o g\ 1T oY= T < PP 46

Page 2 Version 2.2

Yuma User Manual

1 Preface

1.1 Legal Statements

Copyright 2009 - 2012, Andy Bierman, All Rights Reserved.

1.2 Additional Resources

This document assumes you have successfully set up the software as described in the printed
document:

Yuma Installation Guide

Other documentation includes:
Yuma Quickstart Guide
Yuma netconfd Manual
Yuma yangcli Manual
Yuma yangdiff Manual
Yuma yangdump Manual

Yuma Developer Manual

To obtain additional support you may join the yuma-users group on sourceforge.net and send email to
this e-mail address:

yuma-users@lists.sourceforge.net

The SourceForge.net Support Page for Yuma can be found at this WEB page:
http://sourceforge.net/projects/yuma/support

There are several sources of free information and tools for use with YANG and/or NETCONF.

The following section lists the resources available at this time.

1.2.1 WEB Sitses

+ Netconf Central
o http://www.netconfcentral.org/
o Yuma Home Page

= Free information on NETCONF and YANG, tutorials, on-line YANG module validation and
documentation database

+ Yuma SourceFource OpenSource Project
o http://sourceforge.net/projects/yuma/

Page 3 Version 2.2

http://sourceforge.net/projects/yuma/
http://www.netconfcentral.org/

Yuma User Manual

= Download Yuma source and binaries; project forums and help

+ Yang Central

o http://www.yang-central.org

o Free information and tutorials on YANG, free YANG tools for download
- NETCONF Working Group Wiki Page

o http://trac.tools.ietf.org/wg/netconf/trac/wiki

o Free information on NETCONF standardization activities and NETCONF implementations
- NETCONF WG Status Page

o http://tools.ietf.org/wg/netconf/

o |ETF Internet draft status for NETCONF documents
+ libsmi Home Page

o http://www.ibr.cs.tu-bs.de/projects/libsmi/

o Free tools such as smidump, to convert SMIv2 to YANG

1.2.2 Maiing Lists

+ NETCONF Working Group
o http://www.ietf.org/html.charters/netconf-charter.htmi

o Technical issues related to the NETCONF protocol are discussed on the NETCONF WG mailing
list. Refer to the instructions on the WEB page for joining the mailing list.

« NETMOD Working Group
o http://www.ietf.org/html.charters/netmod-charter.html

o Technical issues related to the YANG language and YANG data types are discussed on the
NETMOD WG mailing list. Refer to the instructions on the WEB page for joining the mailing
list.

1.3 Conventions Used in this Document

The following formatting conventions are used throughout this document:

Documentation Conventions

Convention Description

--foo CLI parameter foo

<foo> XML parameter foo

foo yangcli command or parameter

$FOO Environment variable FOO

$$foo yangcli global variable foo

some text Example command or PDU
some text Plain text

Page 4 Version 2.2

http://www.ietf.org/html.charters/netmod-charter.html
http://www.ibr.cs.tu-bs.de/projects/libsmi/
http://trac.tools.ietf.org/wg/netconf/trac/wiki
http://www.yang-central.org/

Yuma User Manual

2 Summary

2.1 What is Yuma?

Yuma is a set of programs providing a complete network management system and development
environment, which implements the following standards:

« Network Configuration Protocol (RFC 4741)
+ NETCONF over SSH (RFC 4742)

- NETCONF Notifications (RFC 5277)

« Partial Lock RPC for NETCONF (RFC 5717)

+ YANG Data Modeling Language (RFC 6020)
« Common YANG Data Types (RFC 6021)

« NETCONF Monitoring Schema (RFC 6022)

- With-defaults capability for NETCONF (RFC TBD)
+ SSH2 (RFC 4252 - 4254)

-« XML1.0

+ XPath 1.0

« YANG Data modeling language (RFC 6020)

The following programs are included in the Yuma suite:

+ yangdump: validates YANG modules and uses them to generate other formats, such as HTML,

XSD, SQL, and C source code

- yangdiff: reports semantic differences between two revisions of a YANG module, and
generates YANG revision statements

« yangcli: NETCONF over SSH client, providing a simple but powerful command line interface for

management of any NETCONF content defined in YANG

« netconfd: NETCONF over SSH server, providing complete and automated support for the YANG

content accessible with the NETCONF protocol

+ netconf-subsystem: thin client used to allow OpenSSH to communicate with the netconfd
program. This is documented as part of the netconfd program, since they must be used
together.

Although any arbitrary YANG file can be automatically supported by Yuma, the following content (YANG

modules) is built into the netconfd server, and supported by the yangcli client:

+ yuma-netconf.yang: all the NETCONF protocol operations, including all YANG extensions to

the NETCONF protocol (RFC 4741). This file contains meta-data used in the yangcli and
netconfd programs, which is not available in the ietf-netconf.yang version.

- ietf-yang-types.yang: the standard derived types library in progress for YANG. This module is

being developed by the NETMOD WG. (RFC 6021)

Page 5 Version 2.2

2.2

Yuma User Manual

ietf-inet-types.yang: the standard Internet address types library in progress for YANG. This
module is being developed by the NETMOD WG. (RFC 6021)

ietf-netconf-monitoring.yang: the standard NETCONF monitoring module in progress by the
NETCONF WG (RFC 6022)

ietf-netconf-partial-lock.yang: the standard NETCONF module for multiple concurrent partial
database locks (RFC 5717).

ietf-with-defaults.yang: the standard NETCONF default value control module in progress by
the NETCONF WG (draft-ietf-netconf-with-defaults-10.txt)

yuma-interfaces.yang: interfaces monitoring and configuration scaffolding.
yuma-mysession.yang: NETCONF session customization operations

notifications.yang: the standard NETCONF create-subscription command to start receiving
NETCONF notifications (RFC 5277)

nc-notifications.yang: the standard NETCONF notifications (RFC 5277)

yuma-proc.yang: /proc file system monitoring information

yuma-system.yang: Proprietary system group and common notifications
yuma-nacm.yang: Proprietary NETCONF Access Control Model

test/pass/*.yang: Several modules are included for testing YANG and NETCONF behavior.
test/fail/*.yang: Several modules with errors are included for testing YANG compiler behavior

Intended Audience

This document is intended for users of the programs in the Yuma suite.

It contains the following information:

Page 6

Introduction to YANG and NETCONF based Network Management
Yuma Configuration

Yuma User Guides

Yuma CLI Reference

Yuma Error Reference

Version 2.2

Yuma User Manual

3 Introduction

The Yuma Tools suite provides automated support for development and usage of network management
information.

All management data is defined with the YANG data modeling language.

All management operations are encoded in XML 1.0 and performed with standard NETCONF protocol
operations.

3.1 System Components

Software Components

NETCONEF client NETCONTF server
yangcli netconfd .
libssh2.so ——m AR | libtoaster
lib
libmgr libagt :
libtecla —® libfoo

YANG tools \ / netcont-

subsystem
yangdift / libncx.so

yangdump
opensshd

libxml2.so libc.so

SSH2 server

The following external program is used by Yuma, and needs to be pre-installed:
+ opensshd
o The SSH2 server code does not link with Yuma. Instead, the netconf-subsystem program

is invoked, and local connections are made to the netconfd server from this SSH2
subsystem.

Page 7 Version 2.2

Yuma User Manual
The following external libraries are used by Yuma, and need to be pre-installed. They are usually
installed by default and do not need to be installed by you:
- libc6
o unix system library
+ ncurses
o Curses terminal support (needed on Fedora platforms only)
« libxml2
o xmlTextReader XML parser

o pattern support

The following external library is built within Yuma and does not need to be pre-installed:
+ libtecla
o command line support for yangcli

The following shared (or static) library is built by Yuma and used by almost all of its programs:
- libnex

o YANG parser

o YANG validation

o basic NETCONF support

o XPath support

o configuration database support

The following libraries are built by Yuma, and used within executables:

- libagt

o NETCONF server support
- libmgr

o NETCONF client support
« libydump

o yangdump translation functionality
The following binaries are built by Yuma:
- netconfd
o NETCONF server
- netconf-subsystem
o thin client between opensshd and NETCONF server
- yangcli
o NETCONF client
- yangdump
o YANG validation
- yangdiff
o YANG compare

Page 8 Version 2.2

Yuma User Manual

The following sample netconfd module instrumentation library is provided as an example. These
libraries (e.q., libfoo.so) can only be created with the Yuma SDK. Refer to the Yuma Developer's Guide
for details on creating server instrumentation libraries.

+ libtoaster

- Server instrumentation code for the YANG module libtoaster.yang.

3.1.1 YANG

A YANG module define the semantics and syntax of a specific management feature. They are similar to
SMIv2 (MIB) modules, but much more powerful and extensible. YANG provides the ability to define a
detailed programmatic interface utilizing all protocol features:

+ reusable derived data types

« reusable groupings of objects
« RPC operations

+ database objects

- notifications

Network management software developers creating a new management feature start by defining the
YANG module(s) for the NETCONF representation of the feature. This can include any mixture of new
operations, data, and notifications. Existing YANG modules can be augmented as well.

YANG provides complex nested data structures and choices, which allows data modelers to design
management interfaces which closely resemble the native data structures within the server
implementation.

It is easy to get started with YANG, and there are many optional advanced features that can be utilized
as well. YANG provides many machine-readable constructs which allow Yuma to automate many
aspects of network management software development.

YANG modules

,

module X module X

revision 1 revision 2
deviation A l

< submodule Y submodule Y
revision 1 revision 2
deviation B
\ submodule Z
revision 1

Page 9

Yuma User Manual

Semantics and details that are usually only found in 'description’ clauses can be understood and
implemented automatically by the software tools.

A YANG module can be a single file, or it can be split into an arbitrary number of files, using sub-
modules. A YANG submodule is essentially the same as a main module, except that the namespace
URI value is shared between the main module and all its submodules.

A submodule is referenced with the include statement instead of the import statement.

Submodules can also include other submodules, except a loop may not be formed by the include
statements.

Conceptually, the module is not nested. All definitions in submodules appear at the top level of the
YANG module, even submodules included by other submodules.

All YANG modules and submodules have revision dates. The example shows a simple version number,
but the actual revision strings are date strings in the form 'YYYY-MM-DD".

Yuma programs support concurrent usage of different revisions of the same module or submodule.
This can occur via groupings from external modules within the YANG language. Only one revision of a
module can be imported into a single module or submodule, but any of these files may in turn import
other modules. It is possible that a different version of the same module could be indirectly imported
in this case.

Deviation modules are normal YANG modules, except they only contain deviation statements. These
deviation statements are used to alter (patch) the YANG modules with implementation-specific
differences.

A deviation module can contain any number of deviation statements, and they can apply to an
arbitrary number of objects, from any module. Multiple deviation statements for the same target will
be combined by the server before using them, and all deviate statements for the same object will be
validated together, as if they were all contained in the same deviation statement. The order of the
deviation statements is irrelevant.

Deviations modules are processed first, and the deviation statements save for later. The import
statements are ignored, unlike real module processing.

Since deviation modules are not identified in any way, Yuma programs use the --module parameter to
refer to a normal YANG module or submodule, and the --deviation parameter to refer to a deviation
module.

Page 10 Version 2.2

Yuma User Manual

YANG features

feature A module foo

feature B / \

container Y
if-feature B;

| !

container X

Teaf 7 list YY
if-feature A; / l
leaf YY2
key leaf YY1 if-feature A;

The YANG feature statement is used to define a conceptual partition within the module.
Objects that contain the if-feature statement for the corresponding feature are part of the feature.

If the server does not advertise a feature in its <capabilities>, then it is not supported, and all the
objects that are part of the feature are not supported.

Multiple if-feature statements form a logical AND expression. All the referenced features must be

enabled for the object to be available. In the example above, leaf 'YY2' is not present unless feature A
and B are both advertised by the server.

3.1.2 NETCONF

The mandatory components of the NETCONF protocol are defined in RFC 4741 and RFC 4742.

Page 11 Version 2.2

Yuma User Manual

NETCONF Conceptual Layers

NETCONF Protocol
YANG is used to define the
syntax and the semantics
of this layer . Content

(Config data, notit.)

Operations

Client L (Methods) L erersesesesesetn

RPC 1

NETCONF
Configuration
Database

Transport

Y,

YANG is used to define the syntax
and the semantics of the data
in this database

The NETCONF protocol is used to provide secure access all YANG content. The server maintains a
database which is accessed as if it was an XML instance document.

Page 12 Version 2.2

Yuma User Manual

NETCONF Concepts (Top-down)

Top Level : Remote Procedure Call Model

| RPCMethods |

Key
VAR
Standard Vendor

Operations Operations

2" Level : RPC Parameters \ /

I RPC Parameters I

3 Level : Database Access l

Configuration
Data

Data can be retrieved with XML (subtree) or XPath filters. Changes can be validated before being
activated. Databases can be locked to prevent multiple managers from interfering with each other.
Custom operations can be used to perform complex actions and perhaps return some data as well.

Page 13 Version 2.2

Yuma User Manual

NETCONF Concepts (Bottom-up)

Types are abstractions (like TCs in SMI),

I Types I which represent templates for leafs.
l Leafs represent the smallest unit of conceptual
I Leafs I data that the NETCONF protocol can manipulate.

This corresponds to an XML simple type.

Complex Leaf-lists, containers, lists, and choices provide
Constructs important data manipulation capabilities
l v I .
I Notifications I Notifications can contain data of any type
I RPCs I Remote procedure calls are used for all

direct manager access to NETCONF databases

NETCONF can utilize several secure transport protocols. The mandatory transport (SSH2) is used by
Yuma. The OpenSSH server is used in the netconfd implementation, and libssh2 library is used in
the yangcli implementation, to provide all SSH2 layer support.

By default, TCP port 830 (netconf-over-ssh) is used for all NETCONF communications between yangcli
and netconfd. TCP port 22 (ssh) is also supported by default, and additional TCP ports can be
configured.

NETCONF security is session-based. Privileges are granted to a session based on the username
provided in the SSH connection setup.

Access control is configurable (via yuma-nacm.yang), based on group membership. The access
control rules permit or deny access to one or more groups, to a subset of the YANG content. Separate
defaults for read, write, and exec (RPC operation) access are provided.

3.1.3 YANG-BAsSeD AUTOMATION

Yuma is a 100% “native YANG” implementation. This means that YANG modules are used directly by
all the tools to control all aspects of NETCONF protocol usage. There are no lossy translations, or
complicated configuration steps, in order to use a YANG module. Simply load a module and start using
it.

The automation concepts will be familiar to SNMP developers who use SMIv2 to write MIB modules.

The SMIv2 language contains enough machine-readable clauses so a client and server can automate
certain aspects of the SNMP protocol implmentation.

Page 14 Version 2.2

Yuma User Manual

YANG does the same thing for NETCONF developers, only 10 times better.

YANG as Source Code

User Docs \\ / Server Code

WEB Apps Client Code

- >

Test Code / \‘ CLI Code

There are many more machine-readable constructs in YANG, and more powerful data modeling

features. The complicated YANG features are optional, so traditional 'DESCRIPTION clause' based
semantics are still supported.

The more machine-readable YANG clauses that are used, the more the yangcli client and netconfd
server can automate the entire NETCONF protocol implementation.

Page 15 Version 2.2

Yuma User Manual

NETCONF Development Costs

Flatform
instrumentation

Netw orking
feature

NETCONF
database Platform
access instrumentation
Model dependent
Model independent Model dependent
Model independent
Common Common
NE.TC‘DNF protocol stack protocol stack
operations
Without automation With YANG automation

The YANG language includes many ways to specify conditions for database validity, which traditionally
are only documented in DESCRIPTION clauses:

YANG Automation Constructs

YANG statement description

config boolean; The config statement indicates if the object is
writable, or read-only. The server uses this
information when automatically skipping
config=false entries for the <get-config> operation.

default string; The default statement specifies the mandatory-to-
use default value, if no leaf is provided. Unlike
SMIv2 DEFVAL, it is not a suggestion, and the client
can rely on it. Defaults can be specified in typedef
or leaf statements. If both are defined, then the leaf
default will be used.

deviation deviation- The deviation statement allows any YANG object be
target-path { ... } customized for a particular platform or
implementation.. The tools can automatically
support the altered objects, based on the sub-
statements within the deviation statement. These
changes can be of any nature, even those normally
not allowed in YANG. The intent of the deviation
statement os to accurately describe the object
implementation, so the tools can automate the
protocol operations correctly, even for non-standard

Page 16 Version 2.2

Yuma User Manual

implementations.

error-app-tag apptag-
string;

The error-app-tag statement can be used within
the range, length, and pattern statements. If a
value is invalid due to the corresponding error, then
the <error-app-tag> field in the <rpc-error> sent by
the server will be set to the 'apptag-string' value.

error-message errmsg-
string;

The error-message statement can be used within
the range, length, and pattern statements. If a
value is invalid due to the corresponding error, then
the <error-message> field in the <rpc-error> sent
by the server will be set to the 'errmsg-string' value.

extension

The extension statement allows a vendor to add
language extensions, and all YANG implementations
must be able to parse the extension correctly.
However, only implementations which actually
understand the extension will support it. All others
will simply ignore the extension.

feature

The feature statement allows a module to be
conceptually partitioned into mandatory and
conditional object groups. All objects with the
corresponding if-feature statement will be present
only if the feature is supported by the server.

if-feature feature-name;

Construct containing the if-feature statement is
only included if the specified feature is supported by
the server. Otherwise, the object does not exist on
the server.

import (by revision)

The import statement allows definitions from other
modules to be used. A specific revision date can be
used within the entire module. However, it is
possible that different versions of imported typedefs
and groupings can be used, if one imported module
also imports some modules.

include (by revision)

The include statement provides the exact same
features as the import statement, except it applied
to sub-modules included within a module (or other
sub-modules), instead of other modules. It allows
multiple sub-modules to be combined to create one
conceptual YANG module.

key key-leaf-list;

The key statement indicates a set of one or more
top-level leafs within the list that are used to name a
specific instance of the particular list object. All
protocol operations, such as <edit-config>, can be
fully automated, based on the information in this
statement.

length length-spec-string;

The length statement is exactly like the range
statement, except it limits the length of string leaf
and leaf-list objects.

mandatory boolean;

The mandatory statement indicates that the choice,
list or leaf must be provided by the client. It will not
be created by the server. Most parameters are not
mandatory however, so the default is 'false' if this

Page 17

Version 2.2

Yuma User Manual

statement is missing.

max-elements
number | 'unbounded' ;

Specifies the maximum number of instances that a
list or leaf-list object can have in a valid database.
The default is 'unbounded', if this statement is not
present.

min-elements number;

Specifies the minimum number of instances that a
list or leaf-list object must have in a valid
database. The default is zero, if this statement is not
present.

must xpath-expr;

If the object containing the must statement exists,
then the XPath expression must evaluate to 'true' for
the database to be valid. This provides referential
integrity checks among related parameters.

pattern pattern-string ;

The pattern statement specifies a regular
expression that must evaluate to 'true' in order for
the corresponding string leaf or leaf-list object to
be valid. Multiple patterns encountered in a nested
typedef chain must all evaluate to 'true' for the
object to be valid.

range range-spec-string ;

The type statement can specify the range of a
numeric type. Since typedefs can be nested in
YANG, the range statements are nested also, and
constitute an AND expression (i.e., all the range
tests must pass in the chain of type definitions.) THe
keywords 'min' and 'max’' indicate the minimum and
maximum values from the parent typedef (if any),
not the built-in type.

refine refine-target-path {

.}

The refine statement is defined within a uses
statement, and allows the specific grouping to be
customized for each individual copy of the grouping
contents. The tools can automatically support the
refined objects, based on the sub-statements within
the refine statement.

revision revision-date { ...

}

The revision statement identifies the most current
version of a YANG module or sub-module. Multiple
versions at once are supported in YANG.

unique unique-node-list;

The unique statement indicates an arbitrary tuple of
descendant nodes within a list, which have to be
unique within the list. These nodes are not keys,
and can be nested anywhere within a single list
entry.

uses grouping-name,;

The uses statement inserts an instance of a
reusable grouping, replacing the uses node within
the conceptual data tree.

when xpath-expr;

The object containing the when statement is only
allowed to exist if the XPath expression evaluates to
'true'. This provides a SPARSE AUGMENTS
capability when combined with the augment
statement.

Page 18

Version 2.2

Yuma User Manual

3.1.4 YANG LancuaGce EXTENSIONS

There are several YANG extensions that are supported by Yuma. They are all defined in the YANG file
named yuma-ncx.yang. They are used to 'tag’' YANG definitions for some sort of automatic
processing by Yuma programs. Extensions are position-sensitive, and if not used in the proper context,
they will be ignored. A YANG extension statement must be defined (somewhere) for every extension
used in a YANG file, or an error will be occur.

Most of these extensions apply to netconfd server behavior, but not all of them. For example, the
ncx:hidden extension will prevent yangcli from displaying help for an object containing this
extension. Also, yangdump will skip this object in HTML output mode.

The following table describes the supported YANG language extensions. All other YANG extension
statements will be ignored by Yuma, if encountered in a YANG file:

YANG Language Extensions

extension description

ncx:hidden; Declares that the object definition should be
hidden from all automatic documentation
generation. Help will not be available for the
object in yangcli.

ncx:metadata Defines a qualified XML attribute in the module
“attr-type namespace.
attr-name”; Allowed within an RPC input parameter.
attr-type is a valid type name with optional
YANG prefix.

attr-name is the name of the XML attribute.

ncx:no-duplicates; Declares that the nex:xsdlist data type is not
allowed to contain duplicate values. The default
is to allow duplicate token strings within an
ncx:xsdlist value.

ncx:password; Declares that a string data type is really a
password, and will not be displayed or matched
by any filter.

ncx:gname; Declares that a string data type is really an XML

qualified name. XML prefixes will be properly
generated by yangcli and netconfd.

ncx:root; Declares that the container parameter is really
a NETCONF database root, like <config> in the
<edit-config> operations. The child nodes of
this container are not specified in the YANG file.
Instead, they are allowed to contain any top-
level object from any YANG file supported by
the server.

ncx:schema-instance; Declares that a string data type is really an
special schema instance identifier string. Itis
the same as an instance-identifier built-in type
except the key leaf predicates are optional. For
example, missing key values indicate wild cards
that will match all values in nacm <data-rule>
expressions.

Page 19 Version 2.2

Yuma User Manual

nacm:secure; Declares that the database object is a secure
object.

If the object is an rpc statement, then only the
netconfd 'superuser' will be allowed to invoke
this operation by default.

Otherwise, only read access will be allowed to
this object by default, Write access will only be
allowed by the 'superuser’, by default.

ncx:user-write <bits>; Declares the user write permissions that will be
allowed for a config=true data node. The bits
parameter contains the write permissions that
will be allowed for the object (create, update,
delete).

nacm:very-secure; Declares that the database object is a very
secure object.

Only the 'superuser' will be allowed to access
the object, by default.

ncx:xsdlist “list-type”; Declares that a string data type is really an XSD
style list.

list-type is a valid type name with optional
YANG prefix.

List processing within <edit-config> will be
automatically handled by netconfd.

ncx:xpath,; Declares that a string data type is really an
XPath expression. XML prefixes and all XPath
processing will be done automatically by
yangcli and netconfd.

3.1.5 YANG ComPILER

The Yuma programs all use the same centralized YANG language parser.

The complete YANG language is supported, as defined in the latest version (draft-ietf-netmod-yang-
13.txt). The file naming conventions defined in this specification must be used, along with all the
language definition rules.

Definitions can be contained in modules and/or sub-modules.

Any number of revisions of a module or submodule can be used concurrently, The import-by-
revision and include-by-revision features of YANG are fully supported, Refer to the section
'Searching for Files' for more details.

All extension usage within YANG files is supported and saved. The application data is available to all
Yuma programs, including netconfd server instrumentation. Refer to the 'YANG User Guide' for details
on writing YANG files and using the extensions built into Yuma.

Note: The smidump is not part of Yuma, but it can be utilized to convert MIB modules written in SMiv2
into YANG modules, which can then be implemented in netconfd, and managed with yangcli. The
freely available libsmi library contains the smidump program.

3.1.6 YANG MobuLe LiBRARY

Page 20 Version 2.2

Yuma User Manual

The central system component is the set of YANG data model modules which define all available
management information. This set of modules is expected to grow over time, and there is usually a
high degree of reuse and inter-dependence between the modules.

YANG modules can import other modules to reuse any definitions, and to augment objects in other
modules. Each module represents one unique XML namespace used within the NETCONF protocol. A
module can be partitioned into any number of submodules, each in a separate YANG file. The
submodules are conceptually combined, and only the entire module is accessible to other modules.

Directory Layout

Yuma can utilize several directories to store files used during operation. By default, a 'root' directory
and all of its sub-directories are searched for these files. Several different roots can be searched.
Generally, there is one centralized root (YUMA_INSTALL) shared by all users, and one or more 'project’
roots (YUMA HOME), which can be shared but may belong to a single user.

The Yuma programs need to find and store the following types of files during operations:
+ YANG modules and submodules (*.yang):
- XML and text data files (usually *.txt or *.xml)
- command scripts for yangcli
« command-line-history file for yangcli
The search paths used to find these files are discussed in detail in the System Configuration section.

Default Directory Layout

$YANG_INSTALL

data modules scripts

startup-cfg xml

ietf netconfcentral yang

Module Revisions

Page 21 Version 2.2

Yuma User Manual

YANG has extensive module lifecycle support. Each module or submodule has a revision date, and
multiple revisions of the same module or submodule may be used at once within the same server.

The YANG module repository is the authoritative source of common management information for the
netconfd server. However, different platform implementations of the same data model need to be
'adjusted’ slightly to reflect differences in the feature support available on each platform.

Yuma has an extensive set of mechanisms to automate the maintenance of these platform-specific
'special requirements'. A single YANG module (plus 'patches' and deviations as needed for each
platform) can be published, instead of a separate version of the YANG module for each platform.

Cooked Modules

Platform X Platform X Platform X
Language Extensions Enabled Features Object Deviations
YANG module Exact module
(common source) |'=---- + YANG merge [===-= + for platform X
Platform X Platform X Platform X

Enabled Capabilites Module Revision XPath Variables

Platform-specific schema created automatically

Module Naming Conventions

YANG module names are usually lower-case. Hyphen (-), underscore (_) and period (.) characters are
allowed, after the first character, which must be a letter. It is suggested that only the at sign (@)
character be used as a separator between module name string components. YANG files must use the
suffix '.yang'. YIN files must use the suffix 'yin'.

There are two forms of YANG file names: with and without a revision date.

module.yang
ietf-netconf-monitoring.yang (no revision or unspecified revision)

module@revision-date.yang
ietf-netconf-monitoring@2009-04-17.yang (must be the 2009-04-17 version)

Page 22 Version 2.2

Yuma User Manual

These naming conventions are important when Yuma needs to resolve an 'import' or 'include’
statement in a YANG file. Refer to section 4.2 for more details on YANG module search paths and the
'import-by-revision' feature of YANG.

3.1.7 YANG FiLes

YANG modules and submodules are text files encoded in UTF-8. . There is also an alternate XML
encoding called YIN. Sometimes the term YANG module is used to refer to the conceptual module,
whether it is encoded in YANG format or YIN format.

All Yuma Tools programs will accept either encoding format, however line and column numbers are not
correct in log messages for YIN encoded modules. Instead, each XML node is given a monotonically
increasing value, and the XML document order is used instead of line numbers in error/warning
messages for YIN files. The column number is always '1' for YIN files.

A module can be validated and checked for possible programming mistakes, by using the yangdump
program. Many 'reports' can also be generated:

+ exported symbols (--exports)
« imported modules (--dependencies)
+ object identifiers (--identifiers)
The yangdump program is also used to generate other files, derived from the YANG content:

« XML Schema Document (XSD): extends the NETCONF XSD with the YANG content layer
definitions (--format=xsd)

« HTML <div> or full file output: hyper-linked, color-coded formatting of YANG modules to
support netconf-central or other WEB-based documentation system. There are several options
for configuring the output, and all formatting is done with Cascading style-sheets (CSS) (--
format=html)

+ netconf-central documentation SQL database input file: supports the automated online
documentation of YANG content (--format=sqldb). Refer to the netconfcentral.sql file for details
on this output, in the Developer Manual.

+ server instrumentation code-stubs: the instrumentation callback functions, used in
netconfd for activating specific YANG content, can be generated. This procedure is described
in more detail in the Developer Manual.

« canonical YANG: a YANG file can be reformatted so all statements are indented uniformly, and
always appear in the same order. Objects maked as hidden (see the 'hidden' extension in
yuma-ncx.yang) will not be generated. (--format=yang)

+ copy-YANG-and-set-name: A YANG module can be validated and then copied (if no errors) to
another location, adding the revision-date to the file name. (--format=copy)

3.1.8 NETCONF MANAGERS

The NETCONF client is an application that initiates and utilizes NETCONF sessions to control and
monitor a NETCONF server.

Yuma includes the yangcli application for this purpose. It can be used as a stand-alone tool with any
NETCONF server.

3.1.9 NETCONF Acents

Page 23 Version 2.2

Yuma User Manual

The NETCONF server is a server application that is always running on the managed device. It listens
for NETCONF session requests from a NETCONF client, and allows specific users to access specific
subsets of the available content (operations, database access, and notifications). It processes all

incoming protocol operation requests from the client, and insulates all the instrumentation code from
these protocol operations.

Yuma includes the netconfd application for this purpose. It can be run on several different platforms,
or easily adapted to embedded platforms.

Page 24 Version 2.2

Yuma User Manual

4 System Configuration

The Yuma programs use YANG to define its configuration parameters.

The 'ncx:cli' extension is used within a container with the same name as the program to define all CLI
parameters. Some parameters are shared (see yuma-app-common.yang), so they are not located
directly in the container.

container yangcli {
ncx:cli;
// yangcli CLI parameters defined as choices and leafs here

The following YANG modules are provided, which contain all the configuration parameters for Yuma:
+ yuma-types.yang: contains common data types used in the Yuma applications
+ yuma-app-common.yang: contains common CLI parameters used in all Yuma applications

+ yuma-ncx.yang: contains YANG extensions used in any YANG module, including Yuma
application modules

+ yangdump.yang: configuration parameters for the yangdump application

- yangdiff.yang: configuration parameters for the yangdiff application

- yangcli.yang: configuration parameters and local commands for the yangcli application
- netconfd.yang: configuration parameters for the netconfd server

- The netconf-subsystem program does not have any configuration parameters at this time, so
there is no YANG file defined for it.

- The openssh SSH server is configured separately, using the sshd_config file.

- The libtecla library, used by the yangcli program for command line editing support, has its own
configuration file ~/.tecla, to override the default (emacs) editing key assignments.

Yuma applications can accept configuration parameters from 3 sources, checked in the following order:
1. environment variables
2. command line parameters
3. configuration file

4.1 Environment Variables

The Yuma programs utilize system environment variables to customize and simplify configuration and
operation of the programs.

These environment variables typically specify file search paths or default directory locations.

Page 25 Version 2.2

Yuma User Manual

The following environment variables are used within Yuma:
- HOME
+ YUMA HOME
+ YUMA INSTALL
+ YUMA MODPATH
+ YUMA DATAPATH
+ YUMA RUNPATH

4.1.1 $HOME

The $HOME environment variable contains the directory specification of the user's home directory,
and is expected to be set by the system shell before use. The Yuma programs expect (by default) that
sub-directories and files contained in this directory will be readable and writable.

Default value: none
CLI override: none

C shell example:

setenv HOME /home/andy

Bash shell example:

export HOME=/home/andy

4.1.2 $YUMA_HOME

The $YUMA_HOME environment variable contains the directory specification of the current Yuma
project root directory. This is the path to the 'netconf' directory, within a Yuma source tree.

Default value: none
CLI override: --yuma-home
CLI example:

- -yuma-home=/home/andy/swdev/yuma/trunk/netconf

C shell example:

Page 26 Version 2.2

Yuma User Manual

setenv YUMA HOME /home/andy/swdev/yuma/trunk/netconf

Bash shell example:

export YUMA HOME=/home/andy/swdev/yuma/trunk/netconf

4.1.3 $YUMA_INSTALL

The $YUMA_INSTALL environment variable contains the directory specification of the Yuma
installation root directory.

Default value: /usr/share/yuma
CLI override: none

C shell example:

setenv YUMA INSTALL /sw/yuma

Bash shell example:

export YUMA INSTALL=/sw/yuma

4.1.4 $YUMA_MODPATH

The $YUMA_MODPATH environment variable contains a list of directory specifications that should be
searched (in order) to find YANG or YIN modules and submodules. It can be used to extend the search
path beyond the default locations.

The syntax for this parameter is a string containing the desired directory paths, separated by colon (:)
characters. If the trailing forward slash (/) character is missing, then it will be added when searching
for files.

By default, each entire directory and all its sub-directory contents will be searched for the requested
file. This can be overridden with the --subdirs parameter. Refer to the Command Line Parameter
Reference for more details. If --subdirs=false is used, then only the specified directory will be
searched instead.

Note: This parameter specifies the exact directory locations when searching for files. This is different
than the $HOME, $YUMA HOME, and $YUMA_INSTALL environment variables, which specify a Yuma
root directory.

Default value: none
CLI override: --modpath

CLI example:

Page 27 Version 2.2

Yuma User Manual

- -modpath="$HOME/modules2:/usr/local/modules”

C shell example:

setenv YUMA MODPATH “$HOME/modules2:/usr/local/modules”

Bash shell example:

export YUMA MODPATH=“$HOME/modules2:/usr/local/modules”

4.1.5 $YUMA _DATAPATH

The $YUMA _DATAPATH environment variable contains a list of directory specifications that should be
searched (in order) to find data files used by Yuma applications. It can be used to extend the search
path beyond the default locations.

Data files used by the yangcli program are affected by this environment variable.

The location where the netconfd program keeps the file startup-cfg.xml is also affected by this
environment variable. This file contains the contents of the non-volatile <startup> database, which is
loaded into the <running> database when the server boots.

The syntax for this parameter is a string containing the desired directory paths, separated by colon (:)
characters. If the trailing forward slash (/) character is missing, then it will be added when searching
for files.

By default, each entire directory and all its sub-directory contents will be searched for the requested
file. This can be overridden with the --subdirs parameter. Refer to the Command Line Parameter
Reference for more details. If --subdirs=false is used, then only the specified directory will be
searched instead.

Note: This parameter specifies the exact directory locations when searching for files. This is different
than the $HOME, $YUMA HOME, and $YUMA_INSTALL environment variables, which specify a Yuma
root directory.

Default value: none
CLI override: --datapath
CLI example:

- -datapath="$HOME/mydata: $HOME/projectl/data”

C shell example:

setenv YUMA DATAPATH “$HOME/mydata:$HOME/projectl/data”

Page 28 Version 2.2

Yuma User Manual
Bash shell example:

export YUMA DATAPATH=“$HOME/mydata:$HOME/projectl/data”

4.1.6 $YUMA_RUNPATH

The $YUMA_RUNPATH environment variable contains a list of directory specifications that should be
searched (in order) to find script files used by Yuma applications. It can be used to extend the search
path beyond the default locations.

Script files used by the yangcli program are affected by this environment variable.

The syntax for this parameter is a string containing the desired directory paths, separated by colon (:)
characters. If the trailing forward slash (/) character is missing, then it will be added when searching
for files.

By default, each entire directory and all its sub-directory contents will be searched for the requested
file. This can be overridden with the --subdirs parameter. Refer to the Command Line Parameter
Reference for more details. If --subdirs=false is used, then only the specified directory will be
searched instead.

Note: This parameter specifies the exact directory locations when searching for files. This is different
than the $HOME, $YUMA_HOME, and $YUMA_INSTALL environment variables, which specify a Yuma
root directory.

Default value: none
CLI override: --runpath
CLI example:

--runpath="$HOME/scripts:/usr/local/scripts”
C shell example:

setenv YUMA RUNPATH “$HOME/scripts:/usr/local/scripts”
Bash shell example:

export YUMA RUNPATH=“$HOME/scripts:/usr/local/scripts”

4.2 Searching for Files

All Yuma programs search for YANG and other files in the same manner, using the same configuration
parameters. The current working directory is included in this search path, so it is important to consider

Page 29 Version 2.2

Yuma User Manual

the directory in which a Yuma program is invoked. The search ends as soon as a suitable matching file
is found.

There are two types of module searches:
1. searches on behalf of configuration parameters
2. searches on behalf of YANG import or include statements

The first term in a path specification may contain special character sequences:

« If the first character is the forward slash ('/'), then the entire path specification is used as an
absolute path specification.

/usr/share/yang/modules

« If the first character is not the forward slash ('/'), and no special characters are found instead,
then the entire path specification is used as an relative path specification, starting from the
current working directory.

../more-modules/test7.yang
./this-dir/my-module.yang
testmodule.yang
old-modules/version7/

« If the first character is the tilde ('~') character, followed by the forward slash ('/') character, then
the file search will start in the current user's $HOME directory .

~/modules/test/test.yang

« If the first character is the tilde ('~') character, followed by a user name, and then the forward
slash ('/') character, then the file search will start in the specified user's $HOME directory . If the
user is unknown, then the path specification is invalid.

~andy/modules/test/test.yang
~fred/scripts

- If the first character is the dollar sign ('$') character, followed by an environment variable name,
and then the forward slash ('/') character, then the file search will start in the directory indicated
by the contents of the environment variable. If the variable is unknown, or its contents do not
represent a valid directory location, then the path specification is invalid.

$WORKDIR/tests/test-all-interfaces
$YUMA HOME/data/startup-cfg.xml

Note: Whenever Yuma searches a directory, it checks for the expected file type, but ignores the
following:

« all files and sub-directories that begin with the period (.) character

Page 30 Version 2.2

Yuma User Manual

« any directory named 'CVS'
« symbolic links for regular files
The following environment variables affect file searches:
- $HOME
- $YUMA HOME
+ $YUMA MODPATH
+ $YUMA DATAPATH
+ $YUMA RUNPATH
The following configuration parameters affect file searches:
+ --yuma-home
+ --modpath
+ --datapath
+ --runpath
« --subdirs

4.2.1 Yuma Work DIRECTORY

There is a directory ($HOME/.yuma) created by yangcli or netconfd for data files and temporary
files. Itis called .yuma, and it is created in the users home directory, if the $HOME environment
variable is defined.

This directory will be used as the default location to save the startup-cfg.xml file by netconfd, if no
startup file is specified in the CLI parameters, and no existing startup file is found in the data file search
path.

This directory is also used as the default location to store the .yangcli_history file for yangcli
command line history recall.

The $HOME/.yuma/tmp directory is used by yangcli to create session-specific sub-directories where
all the YANG modules from the server for the current session are stored. If the --autoload=false
parameter is used, then these temporary directories will not be created by yangcli.

4.2.2 PARAMETER SEARCHES

A parameter search is started on behalf of a CLI parameter, such as the --module parameter, used by
the yangdump program. A search of this type can include directory path and file extension in the
search parameter. If a filename with a file extension (must be '.yang') is given, then only that exact file
will be checked. The current working directory will be used in this case, if no directory path (or a
relative directory path) is provided.

--module=test.yang
--module=../more-modules/test3@2009-04-01.yang

If the exact filename is not found, then the search failed.

Page 31 Version 2.2

Yuma User Manual

If a parameter based search does not have any directory path or file extension fields present, then a
parameter search is the same as an import/include search.

4.2.3 IMmporT/INCLUDE SEARCHES

An import or include search is started on behalf of a YANG 'import' or 'include' statement. A search of
this type includes only the module or submodule name, with no directory or file extension present. An
optional 'revision-date' statement can be used in YANG, which means only a version of the YANG file
with that exact current revision date will be used.

There are separate search algorithms, depending on whether the revision-date is used in the YANG
import or include statement, and whether the imported or included module has a current revision
statement.

Mode 1: import-by-revision

In this example, an import statement is causing a search for a module named 'foo' with a revision date
of '2009-01-15".

If a revision-date is used in the import or include statement, then the module search path will be
checked as follows:

First, find a file with the same revision-date in the file name:

import foo {
revision-date “2009-01-15";
prefix foo;

If the file 'f00.2009-01-15.yang' is found, and the current revision statement in the module is equal to
'2009-01-15', then the search is successfully terminated.

// file f00.2009-01-15.yang
module foo {

namespace “http://example.com/ns/foo0”;
prefix foo;

// rest of header follows
revision 2009-01-15 {

description “Initial version.”;
}

// rest of module follows

If the file is not found, or the most current revision date is not correct, then the module search is
repeated for 'foo.yang'. If the file 'foo.yang' is found, and the current revision statement in the module
is equal to '2009-01-15', then the search is successfully terminated.

Page 32 Version 2.2

http://example.com/ns/foo

Yuma User Manual

// file foo.yang
module foo {

namespace “http://example.com/ns/fo0”;
prefix foo;

// rest of header follows
revision 2009-01-15 {

description “Initial version.”;
}

// rest of module follows

If the file is not found, or the most current revision date is not correct, then the module search failed.

Mode 2: import any revision

If no file name with the specified revision-date value is found, then the module search path is checked
for a file with no revision-date in the file name:

import foo {
prefix foo;
b

If the file 'foo.yang' is found, then it is used, regardless of the most current revision date (if any) found
in the module. If it is not found then the module search failed.

Note: The first instance of 'foo.yang' in the module search path will be used, even if a more current
version is available, later in the search path.

4.2.4 FiLe SEARcH PATHS

Yuma uses configurable search paths to find the various files that are needed during operation.
Module Search Path

« If the module parameter is specified with a path or file suffix, the that filespec is tried, relative
to the current working directory. If it is not found, or not the correct revision date, then the
search terminates in failure.

--module=../test.yang

Page 33 Version 2.2

http://example.com/ns/foo

Yuma User Manual

- If the module is specified without any path or file extension fields, then the module search path
is checked, in order. The first step which produces a match terminates the search successfully.
If all steps are exhauted and no match is found then the search terminates in failure.

--module=foo

1. The current working directory is checked. No sub-directories are checked, if any are
present.

2. Each directory specified in the $YUMA_MODPATH environment variable, or set with the -
modpath configuration parameter, is checked.

= |f the --subdirs=false parameter is set, then only each top-level directory will be
checked. If itis not set, then sub-directories will be searched.

3. The $HOME/modules directory is checked.

= |If the --subdirs=false parameter is set, then only each top-level directory will be
checked. If it is not set, then sub-directories will be searched.

4. The $YUMA_HOME/modules directory is checked.

= |If the --subdirs=false parameter is set, then only each top-level directory will be
checked. If it is not set, then sub-directories will be searched.

5. The $YUMA_INSTALL/modules directory is checked.

= |[f the --subdirs=fasle parameter is set, then only each top-level directory will be
checked. If itis not set, then sub-directories will be searched.

Data Search Path

Yuma programs can store data used during operation.

An example of a data file is the startup configuration file used by netconfd, usually called startup-
cfg.xml.

1. If the file name has an absolute path specification, then that exact file location is tried. If no
match is found, then the search will terminate in failure.

2. Each directory specified in the $YUMA_DATAPATH environment variable, or set with the -
datapath configuration parameter, is checked.

1. If the --subdirs=false parameter is set, then only each top-level directory will be
checked. If itis not set, then sub-directories will be searched.

3. The current working directory is checked. No sub-directories are checked, if any are present
The $HOME/data directory is checked.

1. If the --subdirs=false parameter is set, then only each top-level directory will be
checked. If itis not set, then sub-directories will be searched.

5. The $YUMA_HOME/data directory is checked.

1. If the --subdirs=false parameter is set, then only each top-level directory will be
checked. Ifitis not set, then sub-directories will be searched.

Page 34 Version 2.2

Yuma User Manual

6. The $HOME/.yuma directory is checked.
7. The $YUMA INSTALL/data directory is checked.

1. If the --subdirs=false parameter is set, then only each top-level directory will be
checked. If it is not set, then sub-directories will be searched.

8. The /usr/share/yuma/data directory is checked.

1. If the --subdirs=false parameter is set, then only each top-level directory will be
checked. Ifitis not set, then sub-directories will be searched.

9. The /etc/yuma directory is checked.

Script Search Path

The yangcli program can store script files used during operation.

1. If the file name has an absolute path specification, then that exact file location is tried. If no
match is found, then the search will terminate in failure.

2. The current working directory is checked. No sub-directories are checked, if any are present.

Each directory specified in the $YUMA_RUNPATH environment variable, or set with the -
runpath configuration parameter, is checked.

= |If the --subdirs=false parameter is set, then only each top-level directory will be
checked. If it is not set, then sub-directories will be searched.

2. The $HOME/scripts directory is checked.

= |[f the --subdirs=false parameter is set, then only each top-level directory will be
checked. If itis not set, then sub-directories will be searched.

3. The $YUMA _HOME/scripts directory is checked.

= |[f the --subdirs=false parameter is set, then only each top-level directory will be
checked. Ifitis not set, then sub-directories will be searched.

4. The $YUMA_INSTALL/scripts directory is checked.

= [f the --subdirs=false parameter is set, then only each top-level directory will be
checked. Ifitis not set, then sub-directories will be searched.

4.3 Configuration Files

The Yuma program configuration parameters can be stored in text or XML files.

The --config parameter is used to specify that configuration parameters should be retrieved from a file
instead of the command line.

Any other configuration parameter (except --config) can be stored in a configuration file used for
program input.

Page 35 Version 2.2

Yuma User Manual

Default Linux Data Directories

CLI config files YANG, XML, other files
letclyuma lusrisharelyuma

netconfd.conf
yangcli.conf
yangdump.conf
yangdiff.conf

modules data scripts

/NN

4.3.1 XML ConricuraTion FiLEs

The XML format for these files follows the structure of the NETCONF <config> element. Each
parameter is stored within a container identifying the application which it is being configured. The
netconfd stores its non-volatile <startup> database in this format. XML configuration file contents

can appear in any order.

The following configuration parameters affect the generation and display of XML configuration files by
netconfd:

« --indent

+ --with-defaults
The following configuration parameter affects the location of XML configuration files by netconfd:

+ --datapath
- $YUMA DATAPATH environment variable

Page 36 Version 2.2

Yuma User Manual

Note : The IETF may standardize this container format soon. Do not rely on the top-level namespace
URI. Any top-level element name <config>, in any namespace (even none), should be expected to
contain a complete NETCONF database, or a subset of a NETCONF database.

The following example show some database objects from the NETCONF Access Control Model (yuma-
nacm.yang), in XML configuration file format.

// file startup-cfg.xml
<?xm version="1.0" encodi ng="UTF- 8" ?>
<nd: config xm ns: nd="http://netconfcentral . org/ns/netconfd">
<nacm nacm xm ns: nacn¥"http://netconfcentral . org/ ns/yuma-nacni >
<nacm gr oups>
<nacm gr oup>
<nacm groupl denti ty>nacm adm n</ nacm groupl dentity>
<nacm user Nane>andy</ nacm user Nane>
<nacm user Nane>f r ed</ nacm user Nanme>
<nacm user Nane>bar ney</ nacm user Nane>
</ nacm gr oup>
</ nacm gr oups>
<nacmrul es>
<nacm nodul eRul e>
<nacm nodul eName>net conf </ nacm nodul eNanme>
<nacm al | oned-rights>ead wite exec</nacm al | owed-
rights>
<nacm al | owed- gr oup>nacm adni n</ nacm al | owed- gr oup>
</ nacm nmodul eRul e>
</ nacm rul es>
</ nacm nacn®
</ nd: confi g>

4.3.2 Texr ConFiGuraTioN FiLEs

The Yuma text configuration file format is based on some common Unix .conf file formats:
« A hash mark until EOLN is treated as a comment

this is a comment
log-level info # this is also a comment

« All text is case-sensitive
« Whitespace before or within a line is not significant

+ The 'end a line' (EOLN) character ('\n') is used to end a command, so whitespace at the end of a
line is significant.

+ To enter a command on multiple lines, use an escaped EOLN (backslash-EOLN) for all but the
last line

Page 37 Version 2.2

Yuma User Manual

this is a command line
this is the start \

of a long \

three line command
this is a new command

« A YANG container parameter is represented by the container name, followed by a left curly
brace ('{'), zero or more child nodes, and then a right curly brace ('}").

yangdump {
set some display control parameters
log-level debug2
warn-linelen 72
indent 4

+ A YANG list parameter is represented by the list name, followed by a whitespace separated

sequence of key leaf values, followed by a left curly brace ('{'), zero or more child nodes, and
then a right curly brace ('}").

ifStackEntry 11 42 {
the key leafs will also printed here
ifStackHigherLayer 11
ifStackLowerLayer 42
ifStackStatus active

« Configuration files which are used with command line parameters may include program
parameters for multiple applications.

o Only the top-level container that matches the name of the program will be used.
o Any other top-level containers will be ignored

o Only the first instance of the desired program container will be used. Any additional
containers will be ignored.

// test.conf
yangdump {
common yangdump parameters here

}
yangdiff {

common yangdiff parameters here
}

Page 38 Version 2.2

Yuma User Manual

- Configuration file parameters can appear in any order. Only list index strings need to appear in
their defined order.

« The following configuration parameters affect generation and display of text configuration files
o --indent
o --with-defaults
o --display-mode

4.4 Bootstrap CLI

Since Yuma programs use YANG to define CLI parameters, there needs to be an initial bootstrap CLI
phase, in order to process parameters which affect the way YANG files are processed.

The bootstrap CLI is not as flexible as the main CLI processor, and the syntax is more strict.
Parameters must be entered in either of the following forms:

+ --name
+ --name=value

If parameters are not entered in this format, then they will be skipped until the main CLI parameter
processing is done. This may cause undesirable changes in key parameters, such as the module
search path.

The following configuration parameters are also bootstrap parameters, and will take affect
immediately, if entered from the command line:

+ =--log: log messages to the specified file instead of STDOUT
+ =--log-level: set the logging verbosity level
- --log-append: use the existing log file (if any) instead of overwriting it

- --modpath: use the specified module search path. This will override the $YUMA_MODPATH
environment variable, if it is set

- --yuma-home: use the specified project root. This will override the $YUMA_HOME
environment variable, if it is set

Refer to the Yuma CLI Reference for more details. on these configuration parameters.

4.5 Configuration Parameters

Command line parameters are used to provide input to Yuma programs when they are invoked. They
are also used extensively by the yangcli program, to represent RPC method input parameters and
database nodes which are part of NETCONF operation content, such as the <config> parameter within
the <edit-config> operation.

4.5.1 PaArRAMETER SYNTAX

A CLI parameter has 2 forms:
« Parameter contains a YANG type of 'empty' or a zero-length 'string":
<prefix><parameter-name>
« Everything else:

<prefix><parameter-name><separator><value>

Page 39 Version 2.2

Yuma User Manual

There are up to 4 components in a CLI parameter:
1. prefix: consists of 0, 1, or 2 consecutive dash characters.
2. parameter name: name of the parameter. A partial name may be used if it is unique.

3. separator: either consists of the 'equals sign' character ('="), which may be preceded or
followed by whitespace, or just whitespace with no equals sign character.

4. value: a quoted or unquoted string, an empty string is only allowed if quotes are entered.

The following example shows some ways the leaf 'foo' could be entered as a CLI parameter:

leaf foo {
type uint32;

foo=7
-foo=7
--foo=7
--foo =

foo
-foo
-foo
--foo
--foo "7"

foo 7

7

NN

4.5.2 ncx:cu ExTENsION

The nex:cli extension is used in in YANG container definitions, which represent the program CLI
parameters, not NETCONF database parameters. It does not take any parameters, and is defined in
yuma-ncx.yang.

container yangcli {
ncx:cli;

// all the yangcli CLI parameters

If this extension is present, then netconfd will ignore the container when loading the database object
definitions. Only the program with the same name as the container will use the CLI parameter
definition.

4.5.3 Ncx:DErFAULT-PARM EXTENSION

The ncx:default-parm extension is used within a container with an nex:cli extension, or within an
'input’ section of an RPC operation definition. It is defined in yuma-ncx.yang.

Page 40 Version 2.2

Yuma User Manual

If no parameter name is found when processing CLI parameter input, and the ncx:default-parm
extension is present in the container or RPC input being processed, then the specified parameter name
will be used instead of generating an error. The value must be valid for the parameter syntax,
according to its YANG definition. This means that for the default parameter, only the <value>
component of the complete parameter syntax may be used, as well as the normal forms.

container yangdump {
ncx:cli;
ncx:default-parm module;

// all the yangdump CLI parameters

When invoking the yangdump program, the default CLI parameter is --module. These two command
lines are equivalent:

yangdump —-module=testl —-module=test2
yangdump testl test2

A string that does not start with any dashes will still be tried as a parameter name, before trying the
default parameter. If the value used for a default parameter conflicts with another parameter name,
then the normal form must be used, instead of this form.

yangdump log-app testl

Even if there was a module named 'log-app’, it would not be tried as a --module parameter, since it
also matches the --log-append parameter.

Note: the default parameter form is can be used in conjunction with shell wildcard characters,
depending on the shell.

yangdump *.yang

yangdump --subtree=.

These commands are equivalent in the yangdump program.

5 XPath Reference

The XPath 1.0 path specification language is supported in all Yuma Tools programs, as specified in the
YANG language specification. There are also some additional variables and XPath functions, available
in all XPath expressions.

Page 41 Version 2.2

Yuma User Manual

A custom XPath implementation is used, which is based on the internal data structures maintained
within the program (i.e., object tree or data tree). No CPU or memory is wasted converting these data
structures to actual XML documents for XPath processing.

5.1 XPath 1.0

All functionality defined in the XPath 1.0 specification is supported.
There are some restrictions, which are specific to the YANG standard:
- The 'attribute' and 'processing-instruction' axes are always empty.

« YANG identityref leaf values need to be entered within quotes or they will be interpreted as XML
qualified node names.

+ The server may not maintain consistent XML document order for system-ordered data. This
affects expressions which rely on XML document order to be precise and completely static. A
NETCONF server is only required to maintain XML document order for user-ordered lists and
leaf-lists, and only relative to a particular object, not the entire document.

5.1.1 XML NAMESPACES

The XPath implementation allows a more liberal syntax than the XPath 1.0 specification allows.

Specifically, if a node identifier does is unqualified (i.e., there is no namespace specified with a default
namespace or an explicit namespace declaration), then all known XML namespaces known by the
program will be checked for a top-level element with the same name.

- If XML namespaces are used, they must be used correctly.

Example request using XML namespaces in an XPath expression:

<?xml version="1.0" encoding="UTF-8"?>

<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="2"
xmlns:sys="http://netconfcentral.org/ns/yuma-system">
<nc:get>

<nc:filter type="xpath" select="/sys:system"/>

</nc:get>

</nc:rpc>

Note the text:

xmlns:sys="http://netconfcentral.org/ns/yuma-system"

This 'xmlins' attribute does not have to appear exactly as specified, or within the <rpc> element. It can
appear in any legal manner. Refer to the XML Namespaces 1.0 specification for more details.

Example request not using XML namespaces in an XPath expression:

<?xml version="1.0" encoding="UTF-8"?>
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

Page 42 Version 2.2

Yuma User Manual

message-id="3">
<nc:get>
<nc:filter type="xpath" select="/system"/>
</nc:get>
</nc:rpc>

If the 'yuma-system.yang' module is loaded within the program, and if the 'system' node is enabled
(e.g., not removed via a YANG deviation), then the XML prefix ('sys:' in this example) can be omitted.

5.2 YANG Specific XPath Behavior

The YANG language requires some minor changes and additions to the XPath 1.0 specification:
« The 'current' function from XPath 2.0 is supported.

+ The NULL XML namespace is mapped to the current YANG module XML namespace, when
processing an XPath expression within a YANG module (e.g., must statement).

« A NETCONF database is treated as a conceptual XML instance document with zero or more top-
level elements. This is consistent with XSLT behavior. XML 1.0 requires a single top-level
element,so external XML documents representing a NETCONF database always start with the
<nc:config> element (config element in the NETCONF XML namespace).

5.3 Custom XPath Variables

The XPath specification supports system variables to be accessed within XPath expressions.

Within the yangcli program, all user and system variables available to a script are also available as
XPath variables within XPath expression evaluation (e.qg., if, eval, and while commands).

For example, a variable named 'myvar' would be accessed within an XPath expression as '$myvar’.

5.3.1 user

An XPath variable called 'user' is supported in the yangcli and netconfd programs. It is equal to the
NETCONF user name associated with the session evaluating the XPath expression. It is provided to be
used in data rules within the NETCONF Access Control Model (NACM).

5.4 Custom XPath Functions

The following XPath functions are added to the XPath 1.0 Function Library, in addition to the 'current’
function from XPath 2.0.

5.4.1 MODULE-LOADED

The module-loaded function tests whether the specified module is loaded within the program.
boolean module-loaded (module-name [, revision-date])
Parameters:
« Parameter 1:
o Type: String
o Usage: Mandatory

Page 43 Version 2.2

Yuma User Manual

o Purpose: Specifies the module name to check.
- Parameter 2:
o Type: String
o Usage: Optional
o Purpose: Specifies the YANG revision date string for module indicated by parameter 1.
Returns: Boolean
« true: the specified module is loaded
- false: the specified module is not loaded, possibly not known
Errors:
« Missing parameter error if no parameters provided.
« Extra parameters error if more than 2 parameters provided.
« All unknown parameter values cause a 'false' result.
Example:

yangcli> if "module-loaded('yuma-system', '2009-12-27"')"

yangcli> log-info 'correct yuma-system module loaded'
yangcli> else
yangcli> log-error 'Wrong yuma-system module loaded'

yangcli> end

5.4.2 FEATURE-ENABLED

The feature-enabled function tests whether the specified YANG feature is enabled within the
program.

boolean feature-enabled (module-name, feature-name)
Parameters:
- Parameter 1:
o Type: String
o Usage: Mandatory
o Purpose: Specifies the module name to check.
- Parameter 2:
o Type: String
o Usage: Mandatory

o Purpose: Specifies the YANG feature name defined within the module indicated by
parameter 1.

Returns: Boolean

« true: the specified feature is enabled

- false: the specified feature is not enabled, possibly not known
Errors:

« Missing parameter error if less than 2 parameters provided.

« Extra parameters error if more than 2 parameters provided.

Page 44 Version 2.2

Yuma User Manual

« All unknown parameter values cause a 'false' result.

Example:

Page 45

yangcli>
yangcli>
yangcli>
yangcli>
yangcli>

if

els

end

"feature-enabled('mymodule', 'myfeature')"
log-info 'myfeature is enabled'

e

log-error 'myfeature is not enabled'

Version 2.2

Yuma User Manual

6 Error Reference

All Yuma programs use the same set of error numbers and error messages.

Error numbers are 3 digit unsigned integers in the range 1 to 999. The number 0 is reserved for the
NO_ERR constant, which is the same as the <ok/> status returned by the server.

Error Number Types

range description
100 to 199 system errors
200 to 399 user errors
400 to 899 warnings
900 to 999 informational messages

6.1 Error Messages

The current list of error numbers and default error messages can be obtained with the yangdump
program --show-errors parameter.

The default error message can be replaced for some error conditions with the YANG error-message
statement.

The following list shows the default error messages for all error numbers currently in use.

yangdump errors and warnings

yangdump 2.2-1 errors and warnings

0 ok

1 EOF reached

2 NULL pointer

3 malloc failed

4 invalid internal value

5 internal buffering failed
6 invalid queue deletion
7 wrong init sequence

8 queue node not header
9 queue node not data

10 invalid queue header

11 entry already queued
12 too many entries

13 libxml2 operation failed
100 cannot open file
101 cannot read file
102 cannot close file

Page 46 Version 2.2

Page 47

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

cannot write file
cannot change directory
cannot stat file

buffer overflow error
cannot delete file
cannot access file

db connect failed

db entry exists

db not found

db query failed

db delete failed

wrong checksum
wrong tag type

db read failed

db write failed

db init failed

beep init failed

beep init nc failed

xml reader internal
open directory failed
read directory failed
no config file

no source file

POST read input

bad drive

bad path

bad filename
duplicate value pair
page not handled

page access denied
missing form params
invalid form state
duplicate namespace
xml reader start failed
xml reader read failed
wrong XML node type
xml reader null name
xml reader null value
xml reader wrong name
xml reader wrong value
xml reader wrong element
xml reader extra nodes
xml reader EOF
wrong length

entry exists

duplicate entry

not found

missing file

unknown parameter
invalid name
unknown namespace
wrong namespace
wrong data type
wrong value

missing parameter
extra parameter

empty value

module not found
max length exceeded
invalid token

Yuma User Manual

Version 2.2

Yuma User Manual

239 unended quoted string
240 read failed

241 invalid number

242 invalid hex number
243 invalid real number

244 EOF reached

245 wrong token type
246 wrong token value
247 buffer overflow
248 invalid range

249 overlapping range

250 definition not found
251 definition segment not found
252 type not allowed in index

253 index type not found
254 type not mdata

255 meta-data not allowed
256 top not found

257 resource in use

258 invalid value

259 too big

260 missing attribute

261 bad attribute

262 unknown attribute

263 missing element

264 bad element

265 unknown element

266 unknown namespace
267 access denied

268 lock denied

269 resource denied

270 rollback failed

271 data exists

272 data missing

273 operation not supported
274 operation failed

275 partial operation

276 wrong namespace

277 wrong node depth

278 wrong owner

279 wrong element

280 wrong order

281 extra node

282 wrong node type

283 expecting complex node type
284 expecting string node type
285 wrong data type

286 wrong data value

287 invalid number length
288 value not in range

289 wrong number type
290 invalid enum value

291 value not in set

292 extra list string found
293 unknown object

294 extra parameter instance
295 extra case in choice
296 missing mandatory choice
297 wrong config state

298 unknown application

Page 48 Version 2.2

Yuma User Manual

299 unknown data type

300 access control violation

301 config locked

302 wrong config state

303 max-access exceeded

304 wrong index type

305 wrong instance type

306 missing index component

307 config not found

308 extra attribute instance(s) found
309 required attribute not found

310 required value instance not found
311 extra value instance(s) found

312 target is read only

313 invalid pattern

314 wrong version

315 connect failed

316 unknown host

317 session failed

318 authentication failed

319 end of comment not found

320 invalid string concatenation

321 import not found

322 missing typedef sub-section

323 restriction not allowed for this type
324 specified refinement not allowed
325 definition loop detected

326 default case contains mandatory object(s)

327 import loop
328 include loop

329 expecting module

330 expecting submodule

331 undefined prefix

332 imported module has errors

333 pattern match failed

334 invalid data type change

335 mandatory object not allowed
336 unique-stmt test failed

337 max-elements exceeded

338 min-elements not reached

339 must-stmt test failed

340 data restriction violation

341 missing instance for insert operation
342 object not config

343 invalid conditional object

344 using obsolete definition

345 invalid augment target

346 duplicate refine sub-clause

347 invalid deviate sub-clause

348 invalid XPath expression syntax
349 invalid instance-identifier syntax
350 require-instance test failed

351 key or select attribute not allowed
352 invalid unique-stmt node

353 invalid duplicate import-stmt
354 invalid duplicate include-stmt
355 ambiguous command

356 unknown module

357 unknown version

358 value not supported

Page 49 Version 2.2

Yuma User Manual

359 leafref path loop

360 variable not found

361 variable is read-only

362 decimal64 base number overflow

363 decimal64 fraction precision overflow

364 when-stmt tested false

365 no matches found

366 missing refine target

367 candidate cannot be locked, discard-changes needed
368 timeout occurred

369 multiple module revisions exist

370 XPath result not a nodeset

371 XPath node-set result is empty

372 node is protected by a partial lock

373 cannot perform the operation with confirmed-commit pending
374 cannot directly load a submodule

375 cannot write to a read-only object

376 cannot write to this configuration directly
377 YANG file missing right brace

378 invalid protocol framing characters received
379 base:1.1 protocol not enabled

380 persistent confirmed commit not active

381 multiple matches found

382 no schema default for this node

383 expected key leaf in list

384 top-level mandatory objects are not allowed
400 duplicate source

401 include file not found

402 invalid command line value

403 invalid command line option

404 command line option unknown

405 invalid command line syntax

406 missing command line value

407 invalid form input

408 invalid form

409 no instance found

410 session closed by remote peer

411 duplicate import

412 duplicate import with different prefix value
413 local typedef not used

414 local grouping not used

415 import not used

416 duplicate unique-stmt argument

417 statement ignored

418 duplicate include

419 include not used

420 revision date before 1970

421 revision date in the future

422 enum value order

423 bit position order

424 invalid status for child node

425 duplicate sibling node name from external augment
426 duplicate if-feature statement

427 using deprecated definition

428 XPath object predicate check limit reached
429 empty XPath result in must or when expr
430 no ancestor node available

431 no parent node available

432 no child node available

433 no descendant node available

Page 50 Version 2.2

Page 51

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

Yuma User Manual

no nodes available

bad revision-stmt order

duplicate prefix

identifier length exceeded

display line length exceeded

received unknown capability

invalid module capability URI

unknown child node, using anyxml

invalid value used for parm

changing object type to string

using a reserved name

conf file parm already exists

no valid revision statements found
dependency file has errors

top-level object is mandatory

file name does not match [sub]module name
unique-stmt component conditions do not match parent list

Version 2.2

	1 Preface
	1.1 Legal Statements
	1.2 Additional Resources
	1.2.1 WEB Sites
	1.2.2 Mailing Lists

	1.3 Conventions Used in this Document

	2 Summary
	2.1 What is Yuma?
	2.2 Intended Audience

	3 Introduction
	3.1 System Components
	3.1.1 YANG
	3.1.2 NETCONF
	3.1.3 YANG-based Automation
	3.1.4 YANG Language Extensions
	3.1.5 YANG Compiler
	3.1.6 YANG Module Library
	3.1.7 YANG Files
	3.1.8 NETCONF Managers
	3.1.9 NETCONF Agents

	4 System Configuration
	4.1 Environment Variables
	4.1.1 $HOME
	4.1.2 $YUMA_HOME
	4.1.3 $YUMA_INSTALL
	4.1.4 $YUMA_MODPATH
	4.1.5 $YUMA_DATAPATH
	4.1.6 $YUMA_RUNPATH

	4.2 Searching for Files
	4.2.1 Yuma Work Directory
	4.2.2 Parameter Searches
	4.2.3 Import/Include Searches
	4.2.4 File Search Paths

	4.3 Configuration Files
	4.3.1 XML Configuration Files
	4.3.2 Text Configuration Files

	4.4 Bootstrap CLI
	4.5 Configuration Parameters
	4.5.1 Parameter Syntax
	4.5.2 ncx:cli Extension
	4.5.3 ncx:default-parm Extension

	5 XPath Reference
	5.1 XPath 1.0
	5.1.1 XML Namespaces

	5.2 YANG Specific XPath Behavior
	5.3 Custom XPath Variables
	5.3.1 user

	5.4 Custom XPath Functions
	5.4.1 module-loaded
	5.4.2 feature-enabled

	6 Error Reference
	6.1 Error Messages

