	User Manual	Issue: 3 Revision: Date: 10/04/07	1 Page n. 1/
	Study:		
The Scientific Analysi	s of Limb Sounding Observations of	of the Upper Trop	osphere
Softw	MARSCHALS Level are User and Reference	2 e Manual	
	Issue 3 – Revision 1		
	10 April 2007		
Prepared by:			
Prepared by: Name	Institute		
Prepared by: Name G. Bazzini	Institute ASPER		
Prepared by: Name G. Bazzini B. Carli	Institute ASPER IFAC-CNR		
Prepared by: Name G. Bazzini B. Carli C. Cecchi Pestellini	Institute ASPER IFAC-CNR i IFAC-CNR		
Prepared by: Name G. Bazzini B. Carli C. Cecchi Pestellini S. Del Bianco	InstituteASPERIFAC-CNRIFAC-CNRASPER		
Prepared by: Name G. Bazzini B. Carli C. Cecchi Pestellini S. Del Bianco B.M. Dinelli	InstituteASPERIFAC-CNRIFAC-CNRASPERISAC-CNR		
Prepared by: Name G. Bazzini B. Carli C. Cecchi Pestellini S. Del Bianco B.M. Dinelli M. Gai	InstituteASPERIFAC-CNRIFAC-CNRASPERISAC-CNRASPERASPER		
Prepared by: Name G. Bazzini B. Carli C. Cecchi Pestellini S. Del Bianco B.M. Dinelli M. Gai L. Santurri	InstituteASPERIFAC-CNRIFAC-CNRASPERISAC-CNRASPERIFAC-CNRASPERIFAC-CNR		
Prepared by: Name G. Bazzini B. Carli C. Cecchi Pestellini S. Del Bianco B.M. Dinelli M. Gai L. Santurri For the comments of	InstituteASPERIFAC-CNRIFAC-CNRASPERISAC-CNRASPERIFAC-CNRASPERIFAC-CNR		
Prepared by: Name G. Bazzini B. Carli C. Cecchi Pestellini S. Del Bianco B.M. Dinelli M. Gai L. Santurri For the comments of Name	Institute ASPER IFAC-CNR IFAC-CNR ASPER ISAC-CNR ASPER IFAC-CNR F: IFAC-CNR IFAC-CNR		

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC Issue: 3 Revision: Date: 10/04/07	C_GA_2007_06_LS 1 Page n. 2/169
This page is intentionall	y left blank.		

CHANGE RECORD			
ISSUE	DATE		REASON FOR CHANGE AND AFFECTED SECTIONS
0.1	15/01/2004	First internal draft	First temporary draft.
0.2	10/08/2004	Second internal draft	The whole document has been changed according to a new software arrangement.
1.0	10/08/2004	First issue	Revision according to some internal comments.
2.0	10/05/2006	Second issue	Full revision and arrangement according to substantial changes in the code.
3.0	10/04/2007	Third issue	Revision according to some changes in the code.
3.1	10/04/2007	Forth issue	Some minor changes and corrections following MARC developer team observations.

OFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 4/169
This page is intentionall	y left blank.	1

5		MARSCHALS Level 2	Prog. Doc. N.: IFAC_(Issue: 3 Revision: 1	GA_2007_06_LS
<mark>IF</mark> AC		User Manual	Date: 10/04/07	Page n. 5/169
TABL	E OF CONTH	ENTS		
1 IN	TRODUCTIO	DN		9
1.1	Purpose			9
1.2	How to read th	is document		10
1.3	Relevant Docu	ment		11
1.4	Acronyms			12
1.5	Conventions			13
2 O'	VERVIEW O	F MARSCHALS L2 SOFTWA	ARE	15
2.1	Software modi	iles and codes		15
2.2	The used prog	ramming language		19
2.3	Hardware and	system requirement		20
2.4	The MARSCH	ALS L2 software files		21
2.4.	1 The code files			23
2	2.4.1.1 The sour	ce files		23
2	2.4.1.2 The bate	h files		23
2	2.4.1.3 The exec	utable files		23
2.4.	2 The data files			24
2	2.4.2.1 The setti	ngs files		24
2	2.4.2.2 The L1b	measurement files		24
2	2.4.2.3 The pre-	processed data files		24
, 2 , 2	2.4.2.4 The anci	llary data files		25
4	2.4.2.5 The auxi	liary data files		25 25
4	2.4.2.6 The outp	ut data mes		25
25	The here word	mes for the sequential in	and anttinga	25
2.5	The key-word	synux of the files with the user defi	neu seuings	20
3 IN	STALLATIO	N OF THE MARSCHALS L	2 CODES	27
3.1	The default ar	rangement of the files		28
3.1.	1 The default ar	rangement of the SAMM files		29
3.1.	2 The default ar	rangement of the MARC files		31
3.1.	3 The default ar	rangement of the OFM files		35
3.1.	4 How to change	e the default names of the subdirectories		38
4 SA	MM CODE			39
4.1	How to compil	e the source files of the SAMM code	6	40

6		MARSCHALS Level 2 Prog. Doc. N.: IFAC_G	A_2007_06_LS
ORAI		User Manual Issue: 3 Revision: 1 Date: 10/04/07	Page n. 6/169
4.3 7	The files need	led to run the SAMM code	42
4.3.1	The source fil	les	44
4.3.2	The batch file	2	45
4.3.3	The executab	le file	46
4.3.4	The measurer	nent files	47
4.3.5	The ancillary	data files	4 8
4.3.6	The auxiliary	data files	49
4.3.7	The settings f	ile	50
4.4 I	How to set the	e SAMM pre-processing	51
4.4.1	How to set the	e input/output namefiles	52
4.4.2	How to define	e the quantities to be extracted from the L1b data files.	53
4.4.3	How to select	the files generated by the pre-processor.	56
4.4.4	How to enable	e the output of files containing instrumental information.	58
4.4.5 4.4.6	SAMM extra- The contrast	features level	60 61
15 (Dutnut filos		63
7. 5 (151	The flight with	w dat file with the general information about the flight compaign	64
4.5.1	The jugni_vie	w.uai fue with the general information about the selected scan	65
4.5.3	The Scan_s_v The OCM &	lat file with the OCM images	66
4.5.4	The observati	on_§.dat files with the measured data	69
5 MAI	RC CODE		71
5.1 H	How to compi	le the source files of the MARC code	72
5.2 1	How to run M	IARC code	73
5.2.1	The run_mar	c file	74
5.3 7	The files need	led to run the MARC code	78
5.3.1	The source fil	les	80
5.3.2	The batch file	25	81
5.3.3	The executable	le file	82
5.3.4	The pre-proce	essed data files	83
5.3.5	The ancillary	data files	84
5.3.6 5.3.7	The auxiliary The setting fil	data files le	85 86
5 4 1	n , ,		07
5.4 I	iow to set up	ine marc coae execution	ð/
5.4.1	How to set the	e release of the run of the retrieval code	88
5.4.2	How to run th	te MARC code as a retrieval procedure or a simple forwara model	89
5.4.5 5.4.4	How to set the	e danas to de usea in the retrieval procedure	90
5.4.4 5.4.5	How to set the	e quantutes to be retrieved	91
5.4.5 5 <i>1 6</i>	How to set the	e renievul griu e atmospherie parameters	93 08
5.4.0 5 <i>A</i> 7	How to set in	the retrieval modality and techniques	90 101
548	How to set up	the Gauss and Marayardt iterations	101
5.4.9	How to set up	the regularization procedure	104
5.4.10	How to set up	the optimal estimation procedure	106
5.4.11	How to set the	e convergence and stop criteria for retrieval	107
5.4.12	How to set the	e use of the Variance Covariance Matrix (VCM) of the Forward Mod	lel 113
5.4.13	How to set the	e sequential fit procedure	114
5.4.14	How to set the	e internal Forward model of the MARC code	115
5.4.15	The setting of	the MSSF module	117
5.4.16	How to define	e the parameters for the advanced settings	118
5.5 (Output files		121

	MARSCHALS Level 2	Prog. Doc. N.: IFAC	GA_2007_06_LS
UIF AC	User Manual	Date: 10/04/07	Page n. 7/169
5.5.1 The relea	se string		126
6 OFM			127
6.1 How to con	mpile the source files of the SBDART ar	nd RTM code	130
6.2 How to rul	n the OFM		131
6.2.1 How to ru	ın SBDART code		131
6.2.2 How to ru	in the RTM code		132
6.3 Input files			133
6.3.1 The input	t of the RTM code		133
6.4 Settings fil	le of RTM code		134
6.4.1 How to de	efine the altitude of the receiver		134
6.4.2 How to de	efine the pointing angles		135
6.4.3 How to de	efine the receiver field of view		136
6.4.4 How to de	efine the latitude of the observations		137
6.4.5 How to in	esert an identifier of the computation		138
6.5 Output file	25		139
6.5.1 Output of	FRTM code		139
6.5.2 Log file			140
7 THE VISUA	LIZATION TOOL		141
7.1 How to rul	n the visualization tool		142
7.2 The visual	ization tool output		143
8 ANNEX 1: S	BDART DOCUMENTATION		145

วคุาม	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 8/169			
This page is intentionall	This page is intentionally left blank.				

1 Introduction

1.1 Purpose

Selection

The MARSCHALS L2 software is a suite of three codes developed for a Linux **platform** and devoted to the retrieval of the atmospheric constituents from a set of spectroscopic measurements coming from the Level 1b (L1b) of MARSCHALS project. Together with the retrieved profiles, also some auxiliary results are provided by the MARSCHALS Level 2 (L2) software.

The aim of this document is to provide the information needed to install and use the software (MARSCHALS Level 2 software) that has been developed in the framework of MARSCHALS L2 Project.

Please notices that the MARSCHALS Level 2 software is a suite composed by three codes, that have to be run in a sequence; this document is devoted to the description of the use of the overall suite and of all the single codes.

1.2 How to read this document

In the following chapters of this document information about the installation, the setting and the execution of the codes composing the MARSCHALS L2 software are given. In Chapter (0) the list of the applicable and reference documents is presented, together with the acronyms and the conventions used in this document. In Chapter 2 an overview of the MARSCHALS L2 software is provided; the list of the source files is also presented in Paragraph 2.4, with the whole list of the files the code needs of to perform the retrieval procedure. Chapter 3 is devoted to the description of the codes installation procedures, with the specific hardware and software requirements. A detailed description about the use of the codes is then given in chapter 4, 5 and 6; in these chapters the parameters setting opportunities are also explained. In chapter 7 a tool provided to visualize the results of the retrieval procedure id described.

The run of the MARSCHALS L2 software requires also the execution of the external (not developed by the MARSCHALS L2 team) SBDART code. In annex 1 (chapter 8) the original documentation of SBDART code is reported.

Please notices that, according to the contract, the MARSCHALS L2 software is provided to ESA in electronic form by means of a computer in which the source files are stored and compiled.

Thus, together with the source files, also an executable version of the software the user can directly run is provided. To use this executable version, it is not needed any installation and compilation procedure; in this case the user can skip the reading of the paragraph 2.2, 2.3 and 2.4 and the whole Chapter 3 (related to the installation) and the paragraph 4.1, 5.1 and 6.1 (related to the compilation of the codes).

(Trac	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 11/169
-------	----------------------------------	--

1.3 Relevant Document

RD 1	MARSCHALS Level 1 Product Format Specification (Issue 1 rel. 3, 29/09/2003)
RD 2	MARSCHALS Level 2 Algorithm Theoretical Baseline Document (IFAC_GA_2007_01_LS), issue 7 rel. 1, S. Baronti et al., 15 January 2007
RD 3	MARSCHALS Level 2 Architectural Design Document (IFAC_GA_2007_03_LS, issue 4 rel. 1, S. Baronti et al., 25 March 2007)
RD 4	MARSCHALS Level 2 Theoretical Retrieval Study (IFAC_GA_2007_05_LS, issue 5 rel. 1, G.Bazzini et al., 05 April 2007)
RD 5	Characterization of Millimetre-Wave Spectroscopic Signatures, ESTEC Contract No 16377/02/NL/FF
RD 6	Ricchiazzi et al 1998. (Bulletin of the American Meteorological Society, October 1998)

1.4 Acronyms

Acronyms list		
ADD	Advanced Detailed Description	
ATBD	MARSCHALS Level 2 Algorithm Theoretical Baseline Document	
ESA	European Space Agency	
IDL	Interactive Data Language	
FORTRAN	FORmula TRANslation	
L1b	Level 1 b (of MARSCHALS project)	
L2	Level 2 (of MARSCHALS project)	
MARC	Millimetre-wave Atmospheric Retrieval Code	
MARSCHALS	Millimetre wave Airborne Receivers for Spectroscopic CHaracterization of Atmospheric Limb Sounding	
MFM	Marschals Forward Model	
MSSF	Mie Scattering Source Function	
ОСМ	Optical Cloud Monitor	
OFM	OCM Forward Model	
OSM	Optical Sounding Module	
RTM	Radiative Transfer Model	
SAMM	Supervising Analyzer of MARSCHALS Measurements	
SBDART	Santa Barbara DISORT Atmospheric Radiative Transfer	
VMR	Volume Mixing Ratio	

6	MARSCHALS Level 2
UIF AC	User Manual

1.5 Conventions

	General Identifier String		
§	identifier indicating a generic MARSCHALS scan number		
β	<i>identifier indicating a generic string among the three band names (band_B, band_C, band_D)</i>		
\$	<i>identifier indicating a generic MARSCHALS band</i> (a letter among the band letters (B,C,D)		
%	identifier indicating a generic flight (campaign) of the instrument		
target	identifier indicating a generic retrieved quantity		
species	identifier indicating a generic molecule symbol of a retrieved species (e.g. H_2O)		
*	identifier indicating a generic namefile without extension		

This documentation uses the following general conventions:

Italic Font

Denotes the name of files, directories and subdirectories, codes or modules of codes.

Bold Font

Represents menus, windows names and tool buttons.

Bold Italic Font

Denotes book titles.

```
Plain Typewriter Font
```

Denotes code fragments, command lines, contents of files and command names.

```
Italic Typewriter Font
```

Represents a variable for which an actual value should be substituted.

Paths are in UNIX notation (Forward Slashes).

	MARSCHALS Level 2	Prog. Doc. N.: IFAC Issue: 3 Revision:	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1	
UIFAC	User Manual	Date: 10/04/07	Page n. 14/169	
This page is intentional	lly left blank.			

2 Overview of MARSCHALS L2 software

The MARSCHALS L2 software is a suite of codes oriented to the retrieval of the atmospheric constituents from a set of spectroscopic measurements. These measurements come from the L1b of MARSCHALS project and different elaborations are necessary in order to retrieve all the requested profiles, such as: a preliminary treatment of measurement data, the simulation of synthetic spectra, the iterative execution of an "inversion algorithm", a modeling of scattering contribution due to clouds, both in millimetre region and in near-infrared spectral range.

A set of modules have been thus developed, and arranged in executable codes.

2.1 Software modules and codes

The MARSCHALS L2 software is basically constituted by five modules:

- *Forward Model* module;
- <u>Retrieval</u> module;
- <u>Scattering Source Function</u> module;
- <u>*Pre-Processor*</u> module;
- <u>Optical Sounding</u> module.
- The <u>Forward Model</u> module is dedicated to the simulation of synthetic spectra, at a given atmospheric state; it is devoted to the computation of a whole set of spectroscopic limb measurements (as they would be acquired by the MARSCHALS instrument) starting from a given profile of atmospheric constituents, pressure and Temperature, and starting from a model of the instrument itself;
- the <u>Retrieval</u> module is devoted to the retrieval of the profile of atmospheric constituents, by processing a set of spectroscopic measured (or simulated) data;
- the <u>Scattering Source Function</u> module is dedicated to the computation of additional Source Function, due to the presence of aerosols;
- the <u>Pre-Processor</u> module is dedicated to a preliminary overview of measurement data, and to rearrange the data themselves in a suitable format;
- an <u>Optical Sounding</u> module is dedicated to the simulation of radiance, as it is received by OCM instrument.

วคุาป	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFA0 Issue: 3 Revision: Date: 10/04/07	C_GA_2007_06_LS 1 Page n. 16/169
The five modules are i • <u>SAMM</u> code; • <u>MARC</u> code; • <u>OFM</u> codes;	ntegrated in three different codes:		

- the <u>SAMM</u> code, whose name stands for *Supervising Analyzer of MARSCHALS Measurements* reads the L1b data and arranges measurement data in the proper format requested by MARC code; it works as a pre-processor of MARC, providing also some auxiliary data. It constitutes the Pre-Processor Module;
- the <u>MARC</u> code, whose name stands for *Millimetre-wave Atmospheric-Retrieval Code* is based on the *Retrieval* module, and performs the retrieval procedure. Actually the retrieval procedure uses the *Forward Model* module (performed by the *MFM MARSCHALS Forward Model* routine), to generate the synthetic spectra necessary to minimize the residuals; in case of retrieval on a "cloud-contamined" measurement, the *Scattering Source Function* module (performed by the *MSSF Mie Scattering Source Function* routine) is also called;
- the <u>OFM</u> codes, whose name stands for OCM Forward Model, performs a simulation of the radiance collected by the OCM instrument, and constitutes the Optical Sounding module.

The MARC code is the principal code of the MARSCHALS L2 suite, and performs the retrieval procedure on the data pre-processed by the SAMM code; it uses the *Retrieval* module and the *Forward* module. When necessary it uses also the results of the OFM code and the auxiliary *MSSF* module.

A Visualization Tool is also provided in order to plot the results of the retrieval.

The Figure 2-1 provides an overview of the developed modules, suggesting how these modules have been integrated to generate the MARSCHALS codes.

A retrieval procedure is performed by running the SAMM code on the L1b data, and then the MARC code on the output of the SAMM execution; in some conditions, also the execution of the OFM code is needed.

To compile and execute the SAMM code and the MARC code see Chapter 4 and Chapter 5 respectively. The compilation and execution of the OFM code is described in Chapter 6.

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 18/169
-------	----------------------------------	--

As previously noticed, the aim of the MARSHALS L2 developed software is to provide a retrieval of the atmospheric profile, that is the output of the MARC code; thus the simulated measurement produced by the forward model during the retrieval procedure would not be required as an output. Anyway, in order to better perform the test on the adopted forward model, the aforementioned simulated measurement can be obtained as an output and saved on a file by adequately setting the MARC configuration parameters; in this case the MARC code acts as a Forward Model, executing only the part of the code related to the *Forward Model* module. The setting of the MARC configuration is described in 5.4.

2.2 The used programming language

SAMM code has been developed in standard C language, whereas MARC and OFM codes are written in FORTRAN 90. About MARC and OFM codes the developers followed a given (FORTRAN 90 compatible) syntax in order to make possible the use of a tool for the automatic documentation of such codes. The visualization tool is written in IDL language.

2.3 Hardware and system requirement

The MARSCHALS L2 codes have been developed in order to run under a LINUX operating system.

The MARSCHALS L2 codes have been also tested on a Windows platform. To run under a Microsoft Windows Operating System, some changes have to be made in the sources of the code, in order to take into account for the different system variables. The description of these changes is out of the purpose of this document.

Some requirements have been identified for the computer devoted to run the MARSCHALS L2 codes.

The only mandatory requirement concerns the RAM memory that has to be not less then 2 Gbyte. Such an amount of RAM is the maximum amount of memory that a Linux system on a 32-bit machine can efficiently manage. The 2 Gbyte RAM should guarantee that paging (system swapping on disk) is minimized thus allowing for the maximum speed when running the code. An important suggestion concerns the clock speed. Due to the massive amount of computations such a speed has to be as high as possible (>3 GHz). The other hardware requirements (disk, CD-writer, network board, display, graphic card) are non-critical.

HARDWARE requirements: RAM > 2 Gbyte Processor Speed > 3 Ghz*

* Suggested

As an example, the MARSCHALS codes has been executed successfully on a computer with the following characteristics:

Processor:INTEL Pentium IVMemory:2 Gbyte RAMOperating System:Linux DEBIAN 2.4.23

At the present the code works under a LINUX operating system. A Windows version is also available; the two versions differ only for some commands inside some code routines.

2.4 The MARSCHALS L2 software files

IFAC

In this chapter, the set of the files needed to run the MARSCHALS L2 codes is introduced.

The executable version on the computer delivered to ESA is provided with all the files needed to run the codes.

As specified in Section 2.1, the MARSCHALS L2 suite is composed by three codes; each of thise is provided, in source version, by mean of a set of source files. Among the code files, also some batch files are provided to help the users in compiling and running the codes.

An executable version of the code (i.e. already set up and compiled) is also provided; trivially, the executable version is not "strictly" needed to run the code, since it can be originated by compiling the source codes. On the opposite hand, the source files are not requested if the executable version is used.

Each code operates on data stored in different data files. Trivially, to run the codes the user needs both the source files to be compiled and the adequate input data files.

The Pre-processed input data files are needed to run the MARC code, but, as for the executable files, they are not strictly needed because they can be originated by a run of the SAMM code on the measurement files.

The files needed to run the codes are briefly presented in the following Paragraphs, where files are introduced grouped according to their role in the execution of the codes; this functional subdivision of the MARSCHALS L2 files is schematized in Figure 2-2. A detailed list of the files needed to run the code is reported in Chapter 3.

As shown in Figure 2-2, the MARSCHALS suite is based on some code files, i.e. on a set of source and batch files; these source files are introduced in Paragraph 2.4.1. MARSCHALS L2 codes require some setting and parameters files (see 2.4.2); the data coming from the MARSCHALS measurements are trivially requested, and provided by the L1b measurement file (see 2.4.2.2). Furthermore, a set of adequate data files coming from the pre-processing of a L1b data file are requested as input file of the MARC code (see 2.4.2.3). A set of auxiliary files with auxiliary data (e.g. meteorological data) is also requested (see 2.4.2.5).

2.4.1 <u>The code files</u>

The set of code files is composed by the source files (see 2.4.1.1), to be compiled to generate the executable files, three makefiles (one for each code) that can be used to compile the codes (see 2.4.1.2) and three executable files, that is source codes compiled by the MARSCHALS L2 team (see 2.4.1.3).

2.4.1.1 <u>The source files</u>

The MARSCHALS L2 codes are based on a set of source files written in FORTRAN language (MARC code and OFM codes) and C language (SAMM code). The names of these files that have to be compiled to run the related codes are described in RD 3.

2.4.1.2 <u>The batch files</u>

The batch files are composed by three makefiles and three run files. The three makefile files are provided (one for each of the three codes of the MARSCHALS suite) to compile the source files of the related code. More details can be found in 4.1 (makefile to compile the SAMM code), 5.1 (makefile to compile the MARC code) and 6.1 (makefile to compile the OSM code).

The three run batch files (one for each code) are provided to run the codes. They are basically shell scripts where some indication of file names and paths is addressed. More details can be found in 4.2 (batch for the SAMM code), 5.2 (batch for the MARC code) and 6.2 (batch for the OSM code).

2.4.1.3 <u>The executable files</u>

Three executable files (one for each code) are provided. They are the results of a compilation of the source files of the code performed by the MARSCHALS L2 team.

2.4.2 <u>The data files</u>

IFAC

The data files contain the data processed by the MARSCHALS L2 code, together with some user-defined settings concerning the run of the codes. The set of data files is composed by:

- the settings files with the user-defined set-up of the code (see 2.4.2.1),
- the L1b measurement file with the measurement data coming from the MARSCHALS L1b team, (see 2.4.2.2),
- the Pre-processed input data files with the aforementioned L1b measurement file elaborated by the SAMM code, (see 2.4.2.3);
- the ancillary files, (see 2.4.2.4);
- the auxiliary files, (see 2.4.2.5);
- the output files, (see 2.4.2.6);
- the I/O files for the sequential fit (see 2.4.2.7).

2.4.2.1 <u>The settings files</u>

The MARSCHALS L2 software is built in order to offer to the user the opportunities to set many options and to activate some extra features, for the SAMM, the MARC and the OFM codes. These user-defined choices are stated by editing some ASCII settings files described in RD 3.

2.4.2.2 <u>The L1b measurement files</u>

The files used as input of the MARSCHALS L2 software (i.e. as input of the SAMM Pre-Processor) are the L1b data files coming from the MARSCHALS measurements. These files, listed in paragraph 4.3.4, are processed by the SAMM Pre-Processor, and thus they can be considered as input files of the overall MARSCHALS L2 software (together with the auxiliary and ancillary data files).

2.4.2.3 <u>The pre-processed data files</u>

At the present, the retrieval procedure performed by MARC code processes the single scan separately. Once the SAMM Pre-Processor is executed, the file *observations* <u>\$.dat</u> related to the scan [\$] to be processed must be manually renamed as *observ.dat*. Since the pre-processor can be run separately, the *observ.dat* file can be considered as the measurement input for MARC code. The same procedure has to be followed for the <u>OCM_\$.dat</u> file related to the scan under consideration, that has to be manually renamed as <u>OCM.dat</u>.

|--|

2.4.2.4 <u>The ancillary data files</u>

The MARC retrieval code of the MARSCHALS software needs also some ancillary files related to the processed measure. These files, described in RD 3, contain information provided by level 1 Analysis.

Please notice that a set of ancillary data files are provided together with the other files of the MARSCHALS L2 suite. They are referred to the provided test data; if the codes of the MARSCHALS L2 suite is run with different measurement data, the provided ancillary data could not be adequate to the new measurement scenario. In this case, a new and suitable set of ancillary data files have to be provided by the user.

2.4.2.5 <u>The auxiliary data files</u>

Some auxiliary files are needed to run MARC retrieval code of the MARSCHALS L2 suite. These files are not provided by the pre-processor, and have to be provided by the user. These files are described in RD 3.

Please notice that a set of auxiliary data files are provided together with the other files of the MARSCHALS L2 suite. They are referred to the provided test data; if the codes of the MARSCHALS L2 suite is run with different measurement data, the provided auxiliary data could not be adequate to the new measurement scenario. In this case, a new and suitable set of auxiliary data files have to be provided by the user.

2.4.2.6 <u>The output data files</u>

The results of the retrieval procedure are stored in some output data files; the format of these files are described in RD 3.

2.4.2.7 The I/O files for the sequential fit

If a sequential fit is adopted, the output data to be used as input data of the following step are stored in some I/O data files. These files are described in RD 3.

2.5 The key-word syntax of the files with the user defined settings

The settings files used by the MARSCHALS L2 codes contain data that can be edited or read by the user. To make the editing and the reading easier, the most part of these files are written in ASCII format, and are characterised by the following syntax (hereinafter *key-word syntax*).

In the settings file characterized by the *key-word syntax*, data are written in ASCII format and arranged in rows; inside a single data row, all data (in ASCII format) are separated by some blanks. The data the row is related to is specified in the previous row with a key-word.

Possible commented rows are preceded by a #.

IFAC

Data and commented rows can be separated by some blank rows that will not be considered.

A single data is specified in the following way:

a commented row (starting with a #) introduces the variable under definition; then a string (hereinafter *key-word*) identifying the variable to be defined is written in a not commented row between square brackets; the related quantity is reported in the following (not commented) data rows. Notice that the variable could be vectorial (i.e. a single data specification can occupied more than a single row in case of matricial data); moreover the format of the data can be different among the row elements (e.g. in the same row it is possible to find integer data together with real data and so on).

An example of a definition of a matricial quantity is reported in the following:

# comments				
[key-word]				
a ₁₁	a ₁₂		a _{1n}	
			•••	
a _{m1} ,	a _{m2} ,		a _{mn}	

Because of the presence of the key-word string, the order of the definition among different data is not matter of care; in any case.

3 Installation of the MARSCHALS L2 codes

IFAC

Please notices that the executable version provided to ESA with the delivered computer has been already installed and compiled by the MARSCHALS L2 team, and does not require any further installation procedure. The reading of this chapter is thus not needed to run the executable codes since the installation have to be performed only to transfer the software on another computer.

The MARSCHALS L2 software is composed by the SAMM code (written in C language), the MARC and the OFM codes; these last written in FORTRAN language.

- > The MARSCHALS L2 codes are provided by means of their source files.
- To run the MARSCHALS L2 codes the user needs of the source files (to be compiled) but also adequate sets of input data files, ancillary files and auxiliary files are requested.

The files needed to run the MARSCHALS L2 codes has been listed in 2.4.

To install the codes it is sufficient to copy the source files, the input data files, the auxiliary files and the ancillary files on the hard disk, according to a given arrangement described in Sect. 3.1.

All the aforementioned files have to be placed in a dedicated root directory, adequately arranged in subdirectories. The name of the root directory can be chosen by the user; hereinafter it will be referred as *MARSCHALS_L2* directory.

MARSCHALS software files can be arranged in a personalized manner on the hard disk, also different from the one proposed in Figure 3-2, Figure 3-3 and Figure 3-4.

The default arrangement of the files needed to run the three MARSCHALS L2 codes can be changed by the user; in this case, the run file of the related code have to be changed accordingly (see 3.1.4).

The name of the subdirectories in which the files are arranged have to be specified by the user in the *run* files of the related codes (see 2.4.1.2).

<u>Please notice that all the addresses specified in the default batch files</u> <u>are relative addresses referred to the subdirectory of the</u> <u>MARSCHALS_L2 root directory in which the source files are placed.</u>

Once the source files are stored, they have to be compiled with the related compiler, according to the procedure described in 4.1 (SAMM code) 5.1 (MARC code) and 6.1 (OFM codes).

3.1 The default arrangement of the files

IFAC

As a default option, we propose the following architecture for the arrangement of the files needed to run the three codes of the MARSCHALS L2 suite.

The user can change the default arrangement of the files needed to run the MARSCHALS L2 software by changing the name of the subdirectories (see 3.1.4).

According to this default arrangement, depicted in Figure 3-1, the files of the SAMM, the MARC and the OSM codes have to be stored on the hard disk in three dedicated subdirectory (named respectively *SAMM*, *MARC* and *OFM*) placed in a main MARSCHALS L2 directory named *MARSCHALS_L2*.

Figure 3-1. The overall default arrangement in three main subdirectories of the files composing the MARSCHALS L2 suite (in blue the subdirectories).

For each of the three proposed subdirectories a default arrangement of the files in a tree structure subdirectories is proposed, as reported in the following chapter 3.1.1 (SAMM code), 3.1.2 (MARC code) and 3.1.3 (OFM codes).

Please notice that a further IDL subdirectory is present. This subdirectory contains the IDL code files of a visualization tool that has been developed in the context of the MARSCHALS project by the MARSCHALS L2 team to make easier the presentation and the analysis of the retrieval results obtained by the MARSCHALS software. This tool is provided as it is as an IDL code, and requires an IDL licence in the computer in which it is executed. The description of this tools is provided in Chapter 7.

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_G Issue: 3 Revision: 1 Date: 10/04/07	A_2007_06_LS Page n. 29/169
-------	----------------------------------	---	--------------------------------

3.1.1 <u>The default arrangement of the SAMM files</u>

The default arrangement of the *SAMM* directory, containing the files needed to run the SAMM code, is depicted in Figure 3-2.

วคุฏ	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 30/169
The SAMM directory pr	esents three subdirectories:	
 the <i>BIN</i> subdired the <i>SAMM_SOU</i> the <i>WORKING_</i> 	etory; <i>RCE</i> subdirectory; DIR subdirectory.	
The <u>BIN</u> directory co	ontains:	
• the samm ex	ecutable files of the SAMM code;	
The <u>SAMM_SOURC</u>	<u><i>CE</i></u> directory contains:	
the source fithe <i>makefile</i>	les of the SAMM code; file to be used to compile the aforement	ioned source file.
The <u>WORKING_DI</u>	<u>R</u> directory contains:	
 the run_same the INP_FII the OUT_FI 	<i>m</i> script file to be used to run the SAMM <i>LES</i> subdirectory; <i>LES</i> subdirectory.	1 code;
The <u>INP_FI</u>	LES directory contains:	
 the s proc the meas the chara 	<i>ettings_samm</i> file to be used for the set edure (see 4.3.7); L1b_MARSCHALS file with the data surement. <i>l1b_instrument.lut</i> ASCII file contain acterization needed to the pre-processing	up of the preprocessing coming from the L1b ning some instrument operations.
The <u>OUT F</u>	<u>LES</u> directory contains:	
 the <i>j</i> the <i>f</i> the <i>s</i> the <i>s</i> the <i>c</i> infor 4.5.3 the <i>c</i> refer 	<i>Clight_view.dat</i> ASCII file reporting ger light campaign under consideration (see <i>can_§_view.dat</i> ASCII file reporting ger can (§) (see 4.5.2); <i>DCM_§.dat</i> ASCII file containing OCM mation about a given scan (§) in the biservations_§.dat ASCII file containing red to the scan (§); it is used as input of N	neral information about 4.5.1); neral information about l images and additional g given campaign. (see g all measurement data MARC.

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 32/169
The default arrangement MARC code is depicted	t of the <i>MARC</i> directory containing the fi in Figure 3-3. It is characterised by 5 su	iles needed to run the bdirectories:
 The <i>BIN</i> subdire the <i>MATH</i> subdi the <i>MARC_SOU</i> the <i>WORKING_</i> the <i>AUX</i> subdire 	ctory; rectory; <i>RCE</i> subdirectory; <i>DIR</i> subdirectory; ctory.	
The <u>BIN</u> director	y contains:	
• the marc	executable files of the MARC code;	
The <u>MATH</u> direc	tory contains:	
o a set of r	nathematical library files.	
The <u>MARC_SOU</u>	URCE directory contains:	
the sourcethe make	e files of the MARC code; <i>file</i> file to be used to compile the aforem	entioned source files.
The WORKING	<u>DIR</u> directory contains:	
• the <i>run_i</i> • the <i>INP_</i> • the <i>OUT</i>	<i>narc</i> script file to be used to run the MA _ <i>FILES</i> subdirectory; _ <i>FILES</i> subdirectory.	RC code;
The <u>INP</u>	<u>FILES</u> subdirectory contains:	
• th pr • th da	e <i>settings_marc.dat</i> file (with the datoccedure); e <i>observ.dat</i> file with the pre-processonta;	ta to set the retrieval ed MARSCHALS L1b
and fo	our files with data about the instrument:	
 in M fo M re fa ils M 	strument.dat file with general ARSCHALS instrument; v.dat file with general information al ARSCHALS instrument; jection.dat file with general informatic ctor for the image band of the MARSCH s.dat file with general information and ARSCHALS instrument.	l information about bout the FOV of the ion about the rejection IALS instrument; ibout the ILS of the
Furth with a	ermore the <i>INP_FILES</i> directory contain a set of files containing data for the possi	the <i>ATM</i> subdirectory ble sequential fit.

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 33/16

The <u>OUT_FILES</u> subdirectory contains:

- the *output files* (with the results of he retrieval);
- the *ATM* subdirectory.

The ATM directory contains:

• files with output data to be used when the sequential fit is adopted.

The \underline{AUX} directory contains the auxiliary and the ancillary data files arranged in the following subdirectory:

- *REF_IND;*
- IN_GUESS
- \circ *D_SPECT;*
- \circ CONT;
- o *IG*;
- ERROR_SPECTRA.

The <u>*REF_IND*</u> directory contains the *refind.dat* file with the refractive index table for ice and water.

The <u>IN_GUESS</u> directory contains a-priori data about the atmosphere; different atmospheres can be used, and for sake of clarity different subdirectories can be used for atmospheres with different characteristics. At the present it contains:

- the *Mid_Lat* subdirectory with data about a mid latitude atmosphere. The *MidLat* subdirectory contains:
 - a set of *vmr_[species]* files, (one for each species *species*), containing the a-priori vmr profiles of the species;
 - the file *in_zpt.dat* with the a-priori values of pressure and temperature profiles.

The <u>*D_SPECT*</u> directory contains:

- the file *imaster.my2* with the spectroscopic database coming from the MASTER study;
- the *dspect_sideband_B.dat*, *dspect_sideband_C.dat* and *dspect_sideband_D.dat* files with the spectroscopic database from HITRAN to be used for the *sideband B*, *sideband C* and *sideband D* respectively;
- the *isotopic_ratio.dat* with data about the isotopes.

The <u>CONT</u> directory contains three files:

• cont_band_B, cont_band_C and cont_band_D with the continuum profiles for the three bands.

The <u>IG</u> directory contains:

• the *marschals.grd* file with the irregular frequency grid.

The <u>ERROR_SPECTRA</u> directory contains:

• a set of files with information about error spectra data.

3.1.3 <u>The default arrangement of the OFM files</u>

The default arrangement of the *OFM* directory containing the files needed to run the OFM codes is depicted in Figure 3-4.

Figure 3-4. The arrangement of the OFM codes data and source files. The names of the subdirectories are those of the default arrangement.

The OFM directory contains 4 subdirectories:

- the *BIN* subdirectory;
- the *SBDART_SOURCE* subdirectory;
- the *RTM_SOURCE* subdirectory;
- the WORKING_DIR subdirectory.

The <u>BIN</u> directory contains 2 executable files:

- the *sbdart* executable file of the SBDART code;
- o the RTM executable file of the RTM code.

The <u>SBDART_SOURCE</u> directory contains:

- o the source files of the SBDART code;
- the *makefile* batch file for the compilation of the SBDART code.

The <u>*RTM_SOURCE*</u> directory contains:

- the source files of the SBDART code;
- o the *makefile* batch file for the compilation of the RTM code.

Please notices that the OFM is composed by two subcodes, the SBDART code and the RTM code, that have to be run in sequence. Where possible, the related files are maintained separated in different subdirectories.

The <u>WORKING_DIR</u> directory contains two files and two subdirectories:

- o the SBDART subdirectory;
- the RTM subdirectory.

<u>Please notices two subdirectories with the same name (SBDART) are</u> present at different level inside the OFM directory.

The <u>SBDART</u> subdirectory placed in the *WORKING_DIR* directory contains:

- the *atmos.dat* and the INPUT files with the userdefined SBDART settings;
- the *sbdart.dat* file with simulated OCM measurement.

The <u>RTM</u> subdirectory placed in the *WORKING_DIR* directory contains:

- the *run_rtm* batch file for the execution of the RTM code;
- the *INP_FILES* subdirectory;
- the *OUT_FILES* subdirectory.
| MARSCHALS Level 2
User Manual | Issue: 3 Revision: 1
Date: 10/04/07 Page n. 37/169 |
|--|--|
| The <i>INP_FILES</i> directory con | ntains: |
| the atmosphere_rt the settings_rtm.d RTM settings. | <i>m.dat</i>
at file with the user-defined |
| The OUT_FILES directory co | ontains: |
| the radiance_rtm. simulated OCM RTM. | <i>dat</i> OFM output file with the radiance produced by the |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | The INP_FILES directory con |

On

3.1.4 <u>How to change the default names of the subdirectories</u>

The user can change the default arrangements of the subdirectories by moving and changing the name of the subdirectories.

Please notice that if a change is made in the default arrangement of the files, some changes have to be made also to the provided batch files: the batch files to be used to run the codes, i.e. *run_marc* (see 5.2), stored as a default in the *MARC_working* sub-directories, have to be changed accordingly by the user. If used, also the *makefile* files that are provided together with the source codes of the MARSCHALS L2 codes in order to make easier the compilation of the codes have to be changed accordingly (see 4.1 for the SAMM code, 5.1 for the MARC code, 6.1 for the OFM code).

4 SAMM code

This chapter aims to describe the use of SAMM Pre-Processor code with its implemented features. The SAMM Pre Processor is intended as a tool to plan the activity of data analysis and should be used to perform a first selection of the MARSCHALS measurements and transferring them into a suitable format, readable by MARC code.

The SAMM Pre-Processor will allow tackling changes in the format of the input data without any changes in the MARC code; in such a way a new validation of the Retrieval Code will be not necessary in case of changes in input data format.

An important functionality of SAMM is to provide to the user an overview of the measurement scans available from the analysed campaign data, comprehensive of those information which could help the user in the selection of a specific scan. Subsequently the user can indicate which measurement he is interested in, evaluating a set of parameters, such as quality indicators from Level 1, OCM information, and so on.

In order to reach this goal, in addition to the main functionality of selection/transcription of data, SAMM Pre-Processor performs the elaboration of other information, not properly necessary for the execution of MARC retrieval, but useful to plan the strategy of MARC elaboration. Some examples are: measurement geolocation from Level 1 and rejection of lines of sight from scan measurements due to low contrast in spectrum.

The SAMM code can also be used to produce the ancillary data files (i.e. *fov.dat*, *ils.dat*, *instrument.dat* and *rejection.dat*) required by the MARC code, by considering some data files that are provided by the L1b team with the related measurement data files. The aforementioned ancillary files can be also directly created by the user; in any case they must be present to run the MARC code.

In the following paragraphs the input files necessary for SAMM Pre-Processor execution (see 4.3), the output files resulting from the Pre Processing procedure (see 4.5), a list of modalities and functionalities of the code and some indications on the available user-defined choices (see 4.3.5) will be addressed, together with the instruction to compile (see 4.1) and run (see 4.2) the code.

4.1 How to compile the source files of the SAMM code

The SAMM code is composed by some source files written in standard C language.

Please notices that the executable code installed on the computer delivered to ESA has been already compiled by the MARSCHALS L2 team; if no change has been made to the source codes, to run the executable version a compilation is not required.

The source files of the SAMM code can be compiled in the usual way by means of whatever C compiler. The Linux operating system residing on the computer delivered to ESA is provided with the standard *gcc* compiler that is able to perform this compilation task.

Once the compilation is completed, the executable code has to be moved in the adequate directory, that is, in the proposed standard configuration, the *BIN* one.

The compilation procedure can be performed by using an adequate *makefile* file provided by the MARSCHALS L2 team together with the code files; this *makefile* file, residing in the *SAMM_SOURCE* subdirectory, can be executed by means of the usual *make* command.

Once the compilation is performed, the *makefile* automatically moves the executable file in the right standard subdirectory (*BIN*).

To use the *makefile* file, please move to the directory in which the code files and the *makefile* file are stored (the *SAMM_SOURCE* subdirectory in the standard configuration) and, at the prompt, type:

make

IFAC

and then press the "**enter**" button.

Please notice that the make commands works according to the standard arrangement of the file (as reported in 3.1.1); the user can change this arrangement, but in this case, to use the make command, the *makefile* file have to be edited accordingly to the new user defined arrangement of the files.

4.2 How to run SAMM code

Together with the executable MARSCHALS L2 software installed on the computer delivered to ESA a batch file is provided to run the SAMM code

The user can run the SAMM code by using the batch file *run_samm*, stored as a default in the *SAMM/WORKING_DIR* subdirectory.

To run the SAMM code by directly using the *samm* executable file, please move to the work directory (the *SAMM/WORKING_DIR* in the default arrangement) and at the prompt type:

where name_file_settings is the name of the settings file with the relative path with respect to the work directory

(i.e. ./INP_FILES/settings_samm.dat in the default arrangement).

Alternatively, to run the SAMM code by using the batch file, please move to the subdirectory in which the *run_samm* batch file is stored (the *SAMM/WORKING_DIR* in the default arrangement) and, at the prompt, type:

./run_samm

and then press the "**enter**" button.

The user can change the default arrangements of the subdirectories in which the files needed to execute the *SAMM* code are stored.

If a change is made the in the default arrangement of the files (as reported in 3.1.1), the batch file *run_samm*, stored as a default in the *SAMM/WORKING_DIR* subdirectory, have to be changed accordingly by the user.

Please notice that SAMM code files are arranged in subdirectories. These subdirectories are contained in a "main directory" (named, as a default, "*SAMM*") that is user defined; all the paths are thus defined in a relative way with respect to the work directory (that is the *SAMM/WORKING_DIR* one in the default configuration).

The *run_samm* environment file contains information about the name of the setting file to be considered

^{../}BIN/samm name_file_settings

4.3 The files needed to run the SAMM code

IFAC

To run the SAMM code some files of different kind are requested. These files are listed and classified in Table 4-1.

The data file needed to run the SAMM code		
File classification	Name of file	
source files ⁽¹⁾	*. <i>c</i> (source files) and *. <i>h</i> (include files) standard C language files. The whole list is reported in RD 3.	
batch file	<i>makefile</i> - makefile to compile the SAMM source files (see 4.1 for the SAMM compilation procedure and RD 3 for the format file).	
	$run_samm^{(2)}$ - batch file to run the SAMM code.	
executable file	samm - executable file of he SAMM code.	
measurement files	<i>L1B_MARSCHALS_file</i> (the name of this file changes according to an internal MARSCHALS L1B syntax).	
ancillary data files	L1B_instrument.lut file	
auxiliary data files	 The pre-processor can be used to generate the fill (<i>fov.dat, ils.dat, instrument.dat</i> and <i>rejection.da</i> containing the instrument characterizations needed to the retrieval code. In this case the following L1b auxiliary files a needed: files containing <i>spectral response</i> (for ear channel and each band); files containing <i>the fov (acap)</i> (for each band) 	
settings file	settings_samm.dat	
 (1) These files are needed to create the <i>samm</i> executable code; anyway a <i>samm</i> executable file has been already created and installed in the delivered package; thus these files are not requested to run the provided default version of the SAMM code . (2) Actually this file is not mandatory to run the code, since it is only a batch file to run in an easier way the related codes. 		

 Table 4-1. The data file needed to run the SAMM code.

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 43/169
-------	----------------------------------	--

The aforementioned files have to be stored in the hard disk of the computer devoted to run the SAMM code, according to a given files arrangement. A default arrangement suggested by the MARSCHALS L2 team is described in paragraph 3.1.

The computer delivered to ESA is provided with the entire set of files needed to run the SAMM code, stored according to the default arrangement presented in paragraph 3.1.

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 44/169
-------	----------------------------------	--

4.3.1 <u>The source files</u>

The SAMM code is based on a set of source files (*.c source files , *.h include files) written in standard C language. The whole list is reported in RD 3.

4.3.2 <u>The batch file</u>

The *makefile* batch file can be used to compile the source files and, after the compilation of the source files, to move the executable in the right directory, according to the default arrangement described in chapter 3.1.1 (for the compilation procedure of the SAMM code, please see 4.1)

Please notices that the *samm* executable file has been already produced and installed in the computer delivered to ESA; thus to run the proposed default code a compilation is not required.

The batch file *run_samm* is provided for the running of the SAMM executable code stored in the *samm* file.

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 46/169
-------	----------------------------------	--

4.3.3 <u>The executable file</u>

The *samm* executable file, obtained by compiling the SAMM code source files according to the default setting, is provided inside the computer delivered to ESA (stored in the *SAMM/BIN* directory) and in the related package.

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 47/169
-------	----------------------------------	--

4.3.4 <u>The measurement files</u>

SAMM receives as input the data from Level 1B. These data are expected to be stored in the following data file:

• L1B_MARSCHALS_file : this is a binary file containing the MARSCHALS L1B measurement; its name follows an internal L1B syntax (see RD 1);

Together with the input data coming from the L1b, also some auxiliary (see 4.3.5) and ancillary (see 4.3.6) files are needed to run the SAMM code. Trivially, to execute the SAMM code, the executable file is needed.

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_ Issue: 3 Revision: 1 Date: 10/04/07 P	2007_06_LS age n. 48/169
-------	----------------------------------	---	-----------------------------

4.3.5 <u>The ancillary data files</u>

Together with the L1B data file, the L1 team provides some auxiliary information about the instrument; these information are stored in the following file:

• *L1B_instrument.lut* file : this is an ASCII file containing some instrument characterization needed to the pre-processing operations.

4.3.6 <u>The auxiliary data files</u>

IFAC

No auxiliary data files are requested for the basic run of the SAMM code. If SAMM code is used to produce the MARC ancillary files (i.e. *fov.dat*, *ils.dat*, *instrument.dat* and *rejection.dat* files) the following L1b data files are needed:

- files containing *spectral response* (for each channel and each band);
- files containing *the fov (acap)* (for each band).

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_G. Issue: 3 Revision: 1 Date: 10/04/07	A_2007_06_LS Page n. 50/169
-------	----------------------------------	--	--------------------------------

4.3.7 <u>The settings file</u>

The user-defined options available for the run of the SAMM code are specified in the *settings_samm* file. These options are described in the following paragraph 4.4.

4.4 How to set the SAMM pre-processing

SAMM Pre-Processor provides many options and possible settings of the Pre-Processing procedure that can be specified by the user. As an example, the user can define:

- The name of the input/output files (see 4.4.1);
- The quantities to be extracted from the L1b data files (see 4.4.2);
- The set of MARSCHALS observation to be considered (see 4.4.2).

The user-defined choices are addressed to the code by means of a setting file (*setting_samm.dat*) in ASCII format, that can be easily edited by the user. In this file the possible choices are defined by means of parameters value specified in some dedicated rows; each row containing parameters is preceded by a row with a key-word inside square brackets (whose appearance is thus [key-word]), specifying the quantity defined in the following row.

The definition of a parameter will be thus as in the following example:

[keyword] parameter_value

Due to the presence of the key-word, the order of the couples of rows specifying the parameters is meaning-less, while the absence of a key-word will abort the process. In the following the description of all the available user-defined choices is reported,

4.4.1 <u>How to set the input/output namefiles</u>

The name of the input/output files can be defined by the user by setting the following parameters:

Key-words	related quantity	dim.	data type
[NAME_L1B_FILE] input_file_name	The string input_file_name, labelled by the key-word [NAME_L1B_FILE] specifies the name of the binary file (L1B_MARSCHALS_file) as received from Level 1B.	dimless	char (max 200 char)
[NAME_OUTPUT_DIRECTORY] output_directory_name	The variable output_directory_name specifies the directory in which SAMM will save the output files (path is requested).	dimless	char (max 200 char)
[NAME_LUT_FILES] name_file_L1B_LUT	name of the L1B file containing the instrument characterization.	dimless	char (max 200 char)

4.4.2 <u>How to define the quantities to be extracted from the L1b data files.</u>

The set of data to be extracted from the L1b data files are specified by defining the following parameters.

Key-words	related quantity	dim.	data type
[EXTRACTION_CRITERION] criterion_number	The variable criterion_number is a code number that indicates the criterion that the Pre Processor will use to extract data. The possible criteria to select are:		
	• criterion_number=1		
	Scan ordinal number.		
	The Pre Processor will select the measurements on the basis of the sequential number of the scan. The range of the sequential numbers is specified by the parameter labelled by the key- word [Scans_range_selection] defined in the following.	dimless	int
	• criterion_number=2		
	Aircraft coordinates.		
	The Pre Processor will select the measurements on the basis of the aircraft coordinates. The range of coordinates is specified by the parameter labelled by the key-word [Scans_coordinate_selection] defined in the following.		

วคุาม	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 54/169
-------	----------------------------------	--

Key-words	related quantity	dim.	data type
[SCANS_RANGE_SELECTION] scan_number_1, scan_number_2	The SAMM Pre Processor will extract those scans whose ordinal number lays in the range from <i>scan_number_1</i> to <i>scan_number_2</i> . This array defines the numerical range of the scans to be extracted. This field is read only if <i>extraction_criterion==1</i> .	dimless	2×int
[SCANS_COORDINATE_ SELECTION] latitude_1, longitude_1, latitude_2, longitude_2.	This array defines the coordinate range of the scan to be extracted. The SAMM Pre Processor will extract those scans for which aircraft coordinates lay in the indicated range. This field is read only if <i>extraction_criterion==2</i> .	degrees	4×double
[BAND_SELECTION] selector_first_band, selector_second_band, selector_third_band.	This array defines the band to be considered. The Pre Processor will select those scans whose measurements are performed inside the indicated band. All other measurements are discarded. All band combinations are possible; the combination is specified by three logical numbers, being the first one referred to the first band, the second to the second band and the third to the third band. The aforementioned order is that used in the L1B data file (please notices that the first band could not be the band B). If the logical number is set to one, the related band is considered, otherwise it is not selected.	dimless	3×int

CIFAC	MARSCHALS Level 2 Prog. User Manual Issue: Date: Date:				
Key-words		related quantity		dim.	data type
[LOS_RANGE_SELECTI altitude_los_1, altitude_los_2.	:ON]	This array defines the altit range of the scans to extracted. The Pre Processor extract data related to the Li Of Sight whose tangent altitud lay in the range fin altitude_los_1 to altitude_los_2.	ude be will ines ides rom	Km	double double
[CONTRAST_LEVEL_ THRES threshold	HOLD]	This value defines the accepta contrast range. The Pre Processor will se those scans whose spectra sh a contrast level greater t <i>threshold</i> . The contrast level value defined in the following. All the other measurements be discarded.	able lect now han is will	dimless	double
[NOISE_LEVEL_ THRES threshold	HOLD]	This value defines the accepta noise range. The Pre Processor will se those scans whose spectra sh a noise level greater t <i>threshold</i> . All the other measurements be discarded.	able lect now han will	dimless	double
[QUALITY_NUMBER_ THRES threshold	HOLD]	At the moment, this setti option is not available.	ngs	dimless	int

4.4.3 <u>How to select the files generated by the pre-processor.</u>

IFAC

The pre-processor can extract some general information about the measurement campaign, as well as the measurement data related to a selected scan. The different modalities of extraction with the related value of the extraction type variable are specified by the means of the following parameter.

Key-words	related quantity	dim.	data type
[EXTRACTION_TYPE] extraction_type	The value <i>extraction_type</i> is an integer that indicates the set of data the Pre processor will extract. The different modalities of extraction are reported in the following list, where § indicates the scan inside the considered flight. <i>extraction_type</i> = 1 The Pre processor performs an overview, extracting only general data referred to the flight. It generates the file <i>flight.view</i> (see 4.5.1). <i>extraction_type</i> = 2 The Pre processor performs an overview, extracting detailed data referred to the scan. It generates the file <i>scan_§.view</i> (see 4.5.2). <i>extraction_type</i> = 3 The Pre processor extracts MARSCHALS data. It generates all the files needed by MARC code, that is the <i>observation_§.dat</i> file (see 4.5.4); it also generates the file <i>scan_§.view</i> (see 4.5.2). <i>(continue in the next page)</i>	dimless	int

CIFAC	MARSCHALS Level 2 User Manual	Prog. Issue: Date:	Doc. N.: IFAC_ : 3 Revision: 1 10/04/07	GA_2007_06_LS Page n. 57/169
				-
Key-words	related quantity		dim.	data type
	extraction_type =	= 4		
	The Pre processor extr OCM data. It generates file OCM_§.dat (see 4.5.3)	racts the		
	extraction_type =	= 5		
	The Pre processor general all files	rates		

4.4.4 <u>How to enable the output of files containing instrumental information.</u>

The pre-processor can be used to generate some files containing instrument information to be used as auxiliary files for the retrieval code; particularly the pre-processor can generate the following files:

- *instrument.dat*;
- *rejection.dat*;
- *fov.dat*;

IFAC

• ils.dat.

This output is optional because these files contain instrument characterization data can be produced once for each flight.

Key-words	related quantity						
[CREATE_INSTRUMENT_DAT] flag	Flag used to create the auxiliary file " <i>instrument.dat</i> " 1 : the file is created; 0 : the file is NOT created. Data are extracted from <i>l1b_instrument.lut</i> file.	dimless	int				
[CREATE_REJECTION_DAT] flag	TE_REJECTION_DAT] Flag used to create the auxiliary file " <i>rejection.dat</i> ": 1 : the file is created; 0 : the file is NOT created. Data are extracted from <i>l1b_instrument.lut</i> file.						
[CREATE_ILS_DAT] flag	Flag used to create the auxiliary file " <i>ils.dat</i> ". 1 : the file is created; 0 : the file is NOT created.	dimless	int				
[CREATE_FOV_DAT] flag	Flag used to create the auxiliary file " <i>fov.dat</i> ": 1 : the file is created; 0 : the file is NOT created.	dimless	int				
[LIST_ SPECTRAL_RESPONS_B] name_file_list_BName of the file with spectral response in bar This file is generated b and contains the list of spectral response files. The pre-processor anal the files summarized in Note that this field is re CREATE_ILS_DAT =		dimless	char (max 200 char)				

CIFAC		MARSCHALS Level 2 User Manual	Prog. Issue: Date:	Doc. N.: IFAC_ : 3 Revision: 1 10/04/07	GA_2007_06_LS Page n. 59/169		
Key-words		related quantity		dim.	data type		
[LIST_ SPECTRAL_RESPONS_ name_file_list_C	2]	name of the file with the lis spectral response in band C. This file is generated by the u and contains the list of the I spectral response files The pre-processor analyses of the files summarized in this lin Note that this field is read online CREATE_ILS_DAT == 1	file with the list of inse in band C. enerated by the user the list of the L1B onse files dimless essor analyses only narized in this list. field is read only if $S_DAT == 1$				
[LIST_ SPECTRAL_RESPONS_ name_file_list_D	2]	name of the file with the lis spectral response in band D. This file is generated by the u and contains the list of the I spectral response files The pre-processor analyses of the files summarized in this li Note that this field is read onl CREATE_ILS_DAT == 1	t of user L1B only st. ly if	dimless	char (max 200 char)		
[FILE_FOV_B] name_file_fov_B		name of the L1B file contain the instrumental Field of V in band B. Note that this field is read onl CREATE_FOV_DAT == 1	ing iew ly if	dimless	char (max 200 char)		
[FILE_FOV_C] name_file_fov_C		name of the L1B file contain the instrumental Field of V in band C. Note that this field is read onl CREATE_FOV_DAT == 1	ing iew ly if	dimless	char (max 200 char)		
[FILE_FOV_D] name_file_fov_D		name of the L1B file contain the instrumental Field of V in band D. Note that this field is read onl CREATE_FOV_DAT == 1	ing iew y if	dimless	char (max 200 char)		

4.4.5 <u>SAMM extra-features</u>

To allow, during the first part of the code development, the testing of MARC code in presence of temporary input data characterized by some problems in the reported measurements, a series of extra-feature of the SAMM preprocessor code have been developed such as:

- manual selection of the LOS:

the user can exclude one or more LOS from the file of observations; this manual selection has been added to exclude LOS having large values of chi-square.

- computation of the average spectral error:

for each LOS, the preprocessor computes an average (rms) value for the spectral error; the user can decide to use the original error or the averaged one in the retrieval.

- treatment of spectra containing un-realistic values:

some spectra in band B contains channels having un-realistic values (NULL or very large values) in spectral data and/or in spectral data error; when the file of observations is produced, these channels can be replaced with values selected by the user. This feature of the preprocessor allows to exclude the un-realistic values by introducing a large value in the spectral error. The channels marked as un-realistic are not taken into account when the average spectral error is computed.

These extra-feature have not to be used with the "normal" MARSCHALS L1b data the code is developed for, and thus the description of their usage is out of the purpose of this document.

วคุาม	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_C Issue: 3 Revision: 1 Date: 10/04/07	GA_2007_06_LS Page n. 61/16
-------	----------------------------------	---	--------------------------------

4.4.6 <u>The contrast level</u>

The contrast level related to a given spectrum is defined as follows:

$$Contrast_Level = \frac{I_{peak}}{I_{valley}}$$

that is the ratio between two reference intensities, I_{peak} and I_{valley} . Reference intensities are evaluated by averaging the spectral intensity over given spectral intervals, each related to a specific band, as specified in the following.

For band B

 I_{peak} is evaluated as the mean value on the interval [301.6 - 302.0] GHz, for a total of three spectral points. This interval contains the strongest O₃ line.

 I_{valley} is evaluated as the mean value on the interval [295.6 - 296.4] GHz, for a total of five spectral points (see Figure 4-1).

Figure 4-1. The range in which the I_{valley} (green zone) and the I_{peak} (yellow zone) values are evaluated in the band B.

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 62/169
-------	----------------------------------	--

For band C:

 I_{peak} is evaluated as the mean value on the interval [324.9 - 325.3] GHz, for a total of three spectral points. This interval contains the strongest H₂O line.

 I_{valley} is evaluated as the mean value on the interval [322.5 - 323.3] GHz, for a total of five spectral points (see Figure 4-2).

Figure 4-2. The range in which the I_{valley} (green zone) and the I_{peak} (yellow zone) values are evaluated in the band C.

For band D :

 I_{peak} is evaluated as the mean value on the interval [343.0 - 343.4] GHz, for a total of three spectral points. This interval contains the strongest O₃ line.

 I_{valley} is evaluated as the mean value on the interval [347.6 - 348.4] GHz, for a total of five spectral points.

4.5 Output files

According to the user-defined setting specified by the parameter **[EXTRACTION_TYPE]** in the *settings_samm* file (see 4.4.3), the SAMM Pre Processor code is able to produce a set of output files, listed in **Table 4-2**, together with the related contents and the definition of the special character (§) used inside the filenames. This paragraph is devoted to the introduction of these output files.

Pre-processor product	
flight_view.dat	ASCII file reporting general information about the flight campaign under consideration (see 4.5.1).
scan_§_view.dat	ASCII file reporting general information about the scan (\S) (see 4.5.2).
OCM_§.dat	ASCII file containing OCM images and additional information about a given scan (§) in the given campaign. (see 4.5.3).
observations_§.dat	ASCII file containing all measurement data referred to the scan (§); it is used as input of MARC. (see 4.5.4).
where:	
§	Identifier of the scan (number of the scan).
Pre-processor auxiliary	product
instrument. dat	ASCII file containing some instrumental parameters; it is used as input of MARC (ancillary file).
rejection. dat	ASCII file containing some instrumental parameters; it is used as input of MARC (ancillary file).
ils. dat	ASCII file containing the frequency response of the channels; it is used as input of MARC (ancillary file).
fov. dat	ASCII file containing the antenna Field of View. it is used as input of MARC (ancillary file).

Table 4-2. The output files generated by the SAMM preprocessor.

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 64/169
-------	----------------------------------	--

4.5.1 <u>The *flight_view.dat* file with the general information about the flight</u> <u>campaign</u>

General information about the flight campaign are reported in the file named *flight_view.dat*. It reports information about the whole set of scans collected during the campaign, giving indication about which scans meet the selection criteria defined by the user. The *flight_view.dat* is an ASCII file in raw format. The content and the organization of this file is described in Table 4-3.

4.5.2 <u>The scan_§_view.dat_file with the general information about the selected</u> <u>scan</u>

General information about the selected scan are stored in the ASCII file named *scan_§_view.dat*, where § is a string referred to the specific scan. This file reports information related to the selected scan, giving also the indication about which lines of sight meet the selection criteria defined by the user.

The content and the organization of the file are detailed in Table 4-4.

4.5.3 <u>The OCM_§.dat file with the OCM images</u>

The OCM data are stored in the file named *OCM_§.dat*, where § indicates the specific scan.

A dedicate elaboration is necessary for extracting information from OCM images. The Pre-Processor arranges a wrapped profile of radiance, made by segments of profiles provided by each individual OCM image referred to a specific line of sight. For more details see RD 3.

	nc				MAR	SCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 67/169
						1	
16			total numbers of atmosphe ric lines	of sight			
15			number of LOS quality flags greater	threshold			
14)f Sight	number of LOS noise level less than the	threshold			
13		Lines C	number of LOS constrast level greater	threshold			
12			number of LOS tangent point inside	range			shold
11			number of selected lines of	4. Q			ge; nold; xted thres
10		nt	longitude of the mean refracted tangent	point		n [Km]; [Km];	deg]; eg]; [deg]; itude ran ed threst shold; the selec the selec
6		tangent poi	latitude of the mean refracted tangent	point		g the sca	e scan [d s scan [d he scan ected alt ne select ter than ter than
8		tion of the	azimuth of the mean refracted tangent	point		[Km]; [deg]; an [deg]; int durin	during th luring the t during t scan; e the sel ber grea ber grea
7		verage loca	minimu m altitude of the refracted	point		the scan the scan g the scan ngent pc	In point of point of the point of the alls insid is greate ess than f sight
6		A	maximu m altitude of the refracted	point		rr during ver durin ver durin racted ta	ed tange ed tange sight (los nt point f, ast level level is le flags ar ic lines c
5		of the	mean longitude of the receiver			e receive e receive the receive of the refr	In refract n refracte an refr
4		ge location instrument	mean latitude of the receiver			ber; stamp; ude of the itude of th altitude of altitude o	the mea the meau of the mea los whos los whos los whos ers of at
3		Avera	mean altitude of the receiver			can numl ean time ean altitu ean latitu aximum a	zimuth of titude of ngitude of umber of umber of umber of tal numb
2		time	mean time stamp			σĒĒĒĒĒ	ל ב ב ב ב ב <u>ה</u> מ
1		pI	Scan number			ל ט ט 4 ט ט ל יט ט ל	8 9 7 7 7 7 9 9 8 9 4 7 7 7 7 7 9

 Table 4-3. The structure of the *flight_view.dat* file.

1 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	IF AC		MA	RSCH User	ALS Man	5 Lev ual	el 2				Pro Issu Dat	g. Do e: 3 e: 10	oc. N. Re /04/0	: IFA visio 7	4C_ n: 1	GA_2007_06_I Page n. 68/1	.69		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 10 10 11 12 13 14 15 16 17 18 19 20 1 10 10 11 12 13 14 15 16 17 18 19 20 1 10 10 11 12 13 14 16 17 16 17 16 17 16 17 16 17 16																			
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 10 10 11 12 13 14 15 16 17 18 10 10 10 10 10 11 12 13 14 15 16 17 18 10 10 </th <th>20</th> <th></th> <th>L1B flags</th> <th></th>	20		L1B flags																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19	flags	Noise																
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Iosianite points mmmentanion insertisian mmmentanion insertisian mmercianion insertisian inseriserisian insertiseriserisian	18	Quality	Contr ast																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17		Conti n.																
2 3 4 5 6 7 8 9 10 11 12 13 14 15 105 interiment perime interment fontion intermet fo	16		Longit .																
2 3 4 5 6 7 8 9 10 11 12 13 14 Ios itentifier pointing Insecrispin Insecrispin <td>15</td> <td>t point</td> <td>Latit.</td> <td></td>	15	t point	Latit.																
2 3 4 5 6 7 8 9 10 11 12 13 Integration in the integration in the integration in the integration in the integration integratinteget integrationtintegration integration inte	14	Tangen	range																
2 3 4 5 6 7 8 9 10 11 12 Image: Translet in the stand in the st	13		Altit.										MKm						
2 3 4 5 6 7 8 9 10 11 LOS identifier ponting instrument location Instrument location </td <td>12</td> <td></td> <td>Zenith stdv</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>auisitic</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	12		Zenith stdv										auisitic	-					
2 3 4 5 6 7 8 9 10 Image of the second in the sec	11	Sight	Zenith point.								[geg]		the ac					18	
2 3 4 5 6 7 8 9 Ios identifier ponting Instrument location Instrument location Instrument location Ios identifier ponting Time Zemith Alit Longit azimut Ios identifier ponting Time Zemith Alit Longit azimut index Time Zemith Alit Lait Longit azimut index Time Zemith Alit Lait Longit azimut index itsam mominal Alit Lait Longit azimut index of the line of sight index of the record in L1B file L ander of receiver [deg] index of the record in L1B file L1B file L ander of receiver [deg] index of the record in L1B file L aritude of receiver [deg] index of the record in L1B file L aritude of receiver [deg] index of the record in L1B file L aritude of receiver [deg] index of the record in L1B file L aritude of receiver [deg] index of the record in L1B file L aritude of receiver [deg] index of the record in C1B file L aritude of receiver [deg] <td>10</td> <td>Line of</td> <td>azimut h stdv</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>deg]</td> <td>I signt</td> <td>[6</td> <td>durina</td> <td>)</td> <td></td> <td></td> <td></td> <td>oy leve</td> <td></td>	10	Line of	azimut h stdv							deg]	I signt	[6	durina)				oy leve	
2 3 4 5 6 7 8 Image: Los identifier ponting Instrument location Instrument location Los identifier ponting Altit Lafit Longit Index record index stamp stamp Zenith nominal Altit Lafit Longit Los identifier nominal Zenith stamp Altit Lafit Longit Index record index stamp cominal Altit Lafit Longit Index termer comter nominal Altit Lafit Longit Index termer faiture faiture faiture faiture faiture Index of the line of sight index of the line of sight faiture faiture faiture Index of the record in L1B file L1B faiture of receiver [Km] faiture faiture Index of the record in L1B file latitude of receiver [Km] faiture faiture faiture Index of the record in L1B faiture faiture faiture faiture Index of the receiver [Am] latitude of receiver [Am] latitude of receiver [Am] faiture Indicated darget darget dangent pointing and facit facility of the geometrical	6		azimut h point.							of sight	e III e o	gle [de	nt point					oorted t	
2 3 4 5 6 7 LOS identifier ponting Instrument locating LOS identifier ponting Instrument locating LOS Time Zentih Altit LOS record stamp Instrument locating LOS record stamp Instrument locating Index stamp nominal Altit Latit Index stamp nominal Altit Latit Index of the line of sight Index of the record in L1B file L1B time stamp [s] nominal zenithal pointing angle [de Index of the record in L1B file L1B time stamp [s] nominal zenithal pointing angle [de] Index of the record in L1B file L1B time stamp [s] nominal zenithal pointing angle [de] Index of the record of receiver [Km] latitude of receiver [Km] latitude of receiver [deg] Inditude of receiver [Km] latitude of receiver [deg] standard deviation of zenithal pointing angle [deg] Inditude of refracted tangent point longitude of refracted tangent point longitude of refracted tangent point Inditude of the continuum level [K] value of the continuum level [K] Value of the noise level [K] <td>æ</td> <td>u</td> <td>Longit .</td> <td></td> <td></td> <td></td> <td>[be</td> <td></td> <td></td> <td>e line c</td> <td></td> <td>iting an</td> <td>[Km] I tangel</td> <td>[deg]</td> <td>nt [deg]</td> <td></td> <td></td> <td>s as re</td> <td></td>	æ	u	Longit .				[be			e line c		iting an	[Km] I tangel	[deg]	nt [deg]			s as re	
2 3 4 5 6 IOS identifier ponting Instru- Instru- Index ponting Instru- Instru- Index Alti. Ios LOS Time index Time stamp Zenith nominal Alti. Index Istamp Stamp Istamp Alti. Index Inter of the record in L1B f L1B filter L1B filter Index of the record in L1B f L1B time stamp [s] nominal zenithal pointing an altitude of receiver [deg] Index of the record in L1B f L1B time stamp [s] nominal zenithal pointing an altitude of receiver [deg] Index of the continuum and deviation of zenith altitude of receiver [deg] mean value of refracted tangen range variability of the geor latitude of refracted tangen value of the contrast level value of the contrast level value of the noise level [K]	۲	ment locati	Latit.			ile	ngle [de			le of th	urn ang IÌ	al poin	t point metrica	t point	ent poir			ity flag	
2 3 4 5 IOS identifier LOS identifier ponting LOS identifier ponting Iodex Index tamp Index stamp atamp Index of the line of sindex of the line of sindex of the line of sindex of the record in L1B time stamp [s] nominal zenithal pointing and standard deviation of the contrast value of the contrast value of the noise le number of the positival number number of the positival number number of the positival number nu	6	Instr	Altit.		idht	יוש רבו ר	nting aı	(m] Jeal	[deg]	uth ang	r azımı ile [dec	fzenit	tangen ne deor	tangen	d tang∈ m leve	level	vel [K]	ve qual	
2 3 4 LOS identifier LOS identifier LOS LOS identifier Idex Time index stamp index stamp index of the I index of the I index of the I index of the I index of the I index of the I index of the I index of the I index of the I index of the I index of the I index of the I index of the I index of the I index of the I index of the I index of the I index of the I of the of red index of the I of the of red index of the I of the of red index of the O value of red	s	ponting	Zenith nominal		ine of s	ecord i ecord i mp [s]	thal poi	ceiver [ceiver [₍	eceiver	of azimu	ting and	iation o	racted	racted	efracte	contrast	noise le	e positi	
2 3 1000 1000 10000 1000	4		Time stamp		 er of the I	of the r me stal	al zenii	e of rec e of rec	r Jo apr	value o	ara aev al point	ard dev	e of ref variabi	e of ref	of the of r	of the c	of the r	er of th	
L Lo	e	S identifier	L1B record index		counte	index 1 1B ti	nomin	altitud	longitu	mean	standa	standa	altitud	latitud	longitu	value	value	numbe	
	7	23	LOS index																
- -	-		pr		- <i></i>	1 vò 4	۰ų	9	φ	ې م	- - - - -	-12		-15	-16	- 4-	-19	-20	

 Table 4-4. The structure of the scan_\$_view.dat
 file.

4.5.4 The observation_§.dat files with the measured data

Measurement data are reported in the file named *observation_§.dat*, where § is a string referred to the specific scan. This file contains all fundamental data necessary for the execution of MARC retrieval process. It collects in a unique solution spectral data and geometric information of measurement, separated for band, and, inside a single band, arranged for line of sight. The file refers to a single measurement scan.

The following list recalls the structure of data inside the file; a detailed description of the format is given in RD 3. At the beginning of the file, an auxiliary block of data is placed: it provides a technical description of the scan and summarizes the number of bands extracted from L1b data and the number of lines of sight contained in the scan itself. Then for each band the file reports the number of spectral points; furthermore for each line of sight (LOS) the following data are listed in the file:

- the index of LOS;
- the altitude of the instrument;
- the tangent altitude;
- the latitude and longitude of the instruments;
- the latitude and longitude of the tangent point;
- the zenithal pointing angle;
- the index of the line of sight that shares the calibration;

and finally the measured spectral points are reported in the file; for each spectral point the following information are extracted from L1B:

- frequency [GHz];
- spectrum intensity [K];
- error [K];
- gain;
- gain error;
- offset [K];
- offset error [K];
- gain-offset covariance;
- spectral data covariance..

Please notices that he pre-processed data are constituted by the L1b measured spectra rearranged by the pre-processor according to a format suitable for the MARC code. As a matter of fact, the pre-processor produces a set of files named *observation_§.dat* (see RD 3) by varying the scan number §. At the present, if the sequential fit is not set, the MARC code performs the retrieval procedure on a single scan, i.e. on data contained in one file of the set composed by the *observation_§.dat files*; once the scan is chosen, the related *observation_§.dat* file has to be renamed by the user as *observ.dat*, since MARC code in the standard configuration reads the measurement data from such a file.

6	MARSCHALS Level 2	Prog. Doc. N.: IFAC_GA_2007_06_L					
<u>UF</u> AC	User Manual	Date: 10/04/07	Page n. 70/169				
This page is intentior	ally left blank						
This page is intention	any fort oranic.						

5 MARC code

This chapter aims to describe the use of the MARC code with its implemented features. The MARC code is the core of the MARSCHALS suite, and it constitute the retrieval code, that performs the retrieval of the specified minor atmospheric constituents from the MARSCHALS L2 previously rearranged in a suitable way by the SAMM code. The retrieval is implemented as an iterative procedure based on a Forward Model, and together with the MARSCHALS L1b data, it requires also some auxiliary and ancillary data: The retrieval is characterized by a high flexibility, and thus, many parameters can be user-defined, and some feature can be adopted or not according to the user-defined settings.

The marc code is flexible, and an exhaustive user-defined setting of the retrieval is possible and easily achieved, according to user needs and measurement data quality. A default setting is in any case provided by means of a suitable setting file.

In the following paragraphs the input files necessary for MARC retrieval execution (see 5.3), the output files resulting from the Pre Processing procedure (see 5.5), a list of modalities and functionalities of the code and some indications on the available user-defined choices (see 5.4) will be addressed, together with the instruction to compile (see 5.1) and run (see 5.2) the code.

5.1 How to compile the source files of the MARC code

The MARC code is composed by some source files written in standard Fortran language.

Please notices that the executable code installed on the computer delivered to ESA has been already compiled by the MARSCHALS L2 team; if no change has been made to the source codes, to run the executable version a compilation is not required.

The source files of the MARC code can be compiled in the usual way by means of a whatever FORTRAN compiler. The computer delivered to ESA is provided with a FORTRAN compiler (from Portland company) that is able to perform this compilation task.

Once the compilation is completed, the executable code has to be moved in the adequate directory, that is, in the proposed standard configuration, the *BIN* one.

The compilation procedure can be performed by using an adequate *makefile* file provided by the MARSCHALS L2 team together with the code files; this *makefile* file, residing in the *MARC_SOURCE* subdirectory, can be executed by means of the usual *make* command.

To use the *makefile* file, please move to the directory in which the source files and the *makefile* file are stored (the *MARC_SOURCE* directory in the standard configuration) and at the prompt type:

make

ILU

and then press the "**enter**" button.

Please notice that the make command works according to the standard arrangement of the file; the user can change this arrangement, but in this case, to use the make and the make install command, the makefile file have to be edited accordingly to the user defined arrangement of the files.
5.2 How to run MARC code

Together with the executable MARSCHALS L2 software installed on the computer delivered to ESA, a batch file is provided to run the MARC code.

The user <u>must</u> run the MARC code by using the batch file *run_marc*, stored as a default in the MARC/WORKING_DIR subdirectory.

Please notice that the MARC code cannot be run directly from command line by means of itse executable file; as a matter of fact the use of the *run_marc* batch file is mandatory, since in such a file some user-defined parameter needed to run the code are specified.

To run the MARC code, please move to the subdirectory in which the *run_marc* batch file is stored (the MARC/WORKING_DIR one in the default arrangement) and at the prompt type:

./run_marc

and then press the "**enter**" button.

The user can change the default arrangements of the subdirectories in which the files needed to execute the *MARC* code are stored.

If a change is made in the default arrangement of the files (as reported in 3.1.2), the batch file *run_marc*, stored as a default in the MARC/WORKING_DIR subdirectory, have to be changed accordingly by the user.

Please notice that MARC code files are arranged in subdirectories. These subdirectories are contained in a "main directory" (named, as a default, "*MARC*") that is user defined; all the paths are thus defined in a relative way with respect to the subdirectory in which the executable files are contained, (that is the MARC/WORKING_DIR one in the default configuration).

The *run_marc* environment file contains information about the internal tree structure of the subdirectories in which the files needed to run the MARC code reside, thus, if a change is made to the delivered default configuration (as reported in 3.1.2), the *run_marc* file have to be changed accordingly by the user.

In the following the *run_marc* file is presented; each definition is shown and explained in the order of appearance inside the file. A default arrangement of the input files is described in 3.1.2.

5.2.1 <u>The run_marc file</u>

line in <i>run_marc</i> file	Related setting
export MARC_IODIR=[]	The MARC_IODIR variable indicates the path of the I/O files directory. The default configuration is:
export MARC_PT=[]	The MARC_PT variable indicates the path of the directory containing the file related to the temperature and pressure profiles of the atmosphere, that is the <i>in_zpt.dat</i> file. The default configuration is: export MARC_PT=/AUX/IN_GUESS/Mid_Lat/ and indicates that the files will be placed in the MARC/AUX/IN_GUESS/Mid_Lat directory.
export MARC_VMR= []	The MARC_VMR variable indicates the path of the directory containing the files related to the atmospheric VMR profiles of the species, that is set of vmr_[species].dat files. As an example: export MARC_VMR=AUX/IN_GUESS/Mid_Lat/ indicates that the atmospheric VMR profile files will be placed directly in the MARC/AUX/IN_GUESS/Mid_Lat directory.
export MARC_SPECT=[]	The MARC_SPECT variable indicates the path of the directory containing the files related to the spectroscopic database. As an example: export MARC_SPECT=/AUX/DSPECT/ indicates that the data files will be placed in the MARC/AUX/DSPECT directory.

F AC		MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06 Issue: 3 Revision: 1 Date: 10/04/07 Page n. 75
line in run_marc	ïle	Related setting	
export MARC_CONT	=[]	The MARC_CONT variable is directory containing the continuum used in the cont_band_[\$].dat. As an exa export MARC_CON indicates that the continuum in the MARC/AUX/CONT dir	indicates the path of the files related to the MARC retrieval, i.e. ample: NT=/AUX/CONT/ data files will be placed rectory.
export MARC_Error_Spect	ra=[]	The MARC_Error_Spectra path of the directory contain the error spectra used in the example:	variable indicates the ning the files related to MARC retrieval. As an cror_Spectra = SPECTRA/ iles will be placed in the <i>TRA</i> directory.
export IG_DIR= []	The IG_DIR variable ind directory containing the file grid to be used (when spe retrieval, i.e. the marschals.g export IG_DIR=. indicates that the irregular placed in the MARC/AUX/IG	icates the path of the related to the irregular ecified) in the MARC <i>rd</i> file. As an example: /AUX/IG/ grid data files will be directory.
export MARC_REFI	ND=[]	The MARC_REFIND variab the directory containing the t the refractive indexes of wa MARC retrieval. As an exam export MARC_ RE =/AUX/REF_INE indicates that the refractive placed in the MARC/AUX/R	le indicates the path of file <i>refind.dat</i> related to iter and ice used in the aple: EFIND = D/ e indexes file will be <i>EF_IND</i> directory.
export VERSION=	[]	The VERSION variable indic	cates the version of the

CIFAC		MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_0 Issue: 3 Revision: 1 Date: 10/04/07 Page n.	6_LS 76/169
line in run_marc file		Related setting		
/BIN/marc > log_marc.txt		This line specifies the stand reported on the left, the stand on log_marc.txt ASCII	lard output. In the case dard output is redirected file.	

Table 5-1. The parameters defined in the run file with their environment variables, and run of the MARC code.

5.3 The files needed to run the MARC code

To run the MARC code some files of different kind are requested. These files are listed and classified in:

The data file needed to run the MARC code		
File classification	Name of files	
source files ⁽¹⁾	*. <i>f</i> (source files) and *. <i>inc</i> (include files) standard FORTRAN language files. The whole list is reported in RD 3.	
batch file	<i>makefile</i> - makefile to compile the MARC source files (see 5.1 for the MARC compilation procedure and RD 3 for the file format).	
	<i>run_marc</i> - batch file to run the MARC code (see 5.3.2 and RD 3 for the file format).	
executable file	<i>marc</i> - executable file of he MARC code. (see 5.3.3 and RD 3 for the file format).	
pre-processed data files	<i>observ.dat</i> file with the pre-processed L1b data (see 5.3.4 and RD 3 for the file format).	
ancillary data files	 files with ancillary data (see 5.3.5 and RD 3 for the file format). <i>instrument.dat</i> <i>fov.dat</i> <i>rejection.dat</i> <i>ils.dat</i> 	
auxiliary data files	<pre>files with auxiliary data (see 5.3.6 and RD 3 for the file format). refind.dat imaster.my2 dspect_sideband_\$ isotopic_ratio.dat marschals.grd vmr_[species].dat in_zpt.dat cont_band_\$ T_band_[\$].dat [species]_band_[\$].dat [species]_g_band_[\$].dat continuum_band_[\$].dat pointing_band_[\$].dat. Error spectra data files (see RD 3)</pre>	

The data file needed to run the MARC code		
File classification	Name of files	
setting files	<i>settings_marc</i> file to set the MARC code run (see 5.3.7)	
(1) These files are needed to create the <i>marc</i> executable file; anyway a <i>marc</i> executable file has been already created and installed in the computer		

(1) These files are needed to create the *marc* executable file; anyway a *marc* executable file has been already created and installed in the computer delivered to ESA; thus these files are not requested to run the provided default version of the MARC code

Table 5-2. The data file needed to run the MARC code.

The aforementioned files have to be stored in the hard disk of the computer devoted to run the MARC code, according to a given files arrangement. A default arrangement suggested by the MARSCHALS L2 team is described in paragraph 3.1.

The computer delivered to ESA is provided with the entire set of files needed to run the MARC code, stored according to the default arrangement presented in paragraph 3.1

วคุา	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 80/169
------	----------------------------------	--

5.3.1 <u>The source files</u>

The MARC code is based on a set of source files (*.*f* source files , *.*inc* include files) written in standard FORTRAN language. The whole list is reported in RD 3.

5.3.2 <u>The batch files</u>

The *makefile* file can be used to compile the source files and, after the compilation, to move the executable in the right directory, according to the default arrangement described in chapter 3.1.2 (for the compilation procedure of the MARC code see 5.1).

Please notices that a *marc* executable file has been already produced and installed in the computer delivered to ESA; thus to run the proposed default code a compilation is not required.

The batch file *run_marc* is provided for the running of the executable code stored in the *marc* file (see 5.2).

The *run_marc* file the running of the executable code is provided with the other MARC files inside the computer delivered to ESA, stored (in the default configuration) in the *MARC/WORKING_DIR* subdirectory.

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 82/169
-------	----------------------------------	--

5.3.3 <u>The executable file</u>

The *marc* executable file, obtained by compiling the SAMM code source files according to the default setting is provided inside the computer delivered to ESA (stored in the *MARC/WORKING_DIR* subdirectory).

5.3.4 <u>The pre-processed data files</u>

The MARC code operates on the data coming from the L1b measurement, preprocessed by the SAMM code. As a matter of fact, it operates on the data stored in the *observ.dat* file, a file that is obtained by the user from the set of the *observation_§.dat* files produced by the SAMM code (being § the scan) by choosing one of these file (that related to the desired scan) and renaming it with the name *observ.dat*. For more details on these files see RD 3.

วกุาป	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC Issue: 3 Revision: Date: 10/04/07	C_GA_2007_06_LS 1 Page n. 84/169
-------	----------------------------------	---	--

5.3.5 <u>The ancillary data files</u>

The MARC code of the MARSCHALS software needs also some information related to the processed measure, i.e. to some parameters and data related to the acquisition of the data under consideration. This information is stored in four files:

- instrument.dat
- fov.dat
- rejection.da
- ils.dat

that, in the default configuration, are stored in the MARC/WORKING_DIR/INP_FILES subdirectory.

Please notice that a set of ancillary data files are provided together with the other files of the MARSCHALS L2 suite. They are referred to the provided test data; if the codes of the MARSCHALS L2 suite are run with different measurement data, the provided ancillary data could not be adequate to the new measurement scenario. In this case, a new and suitable set of ancillary data files have to be provided by the user.

5.3.6 <u>The auxiliary data files</u>

Some auxiliary files are needed to run MARC retrieval code. These files are not provided by the pre-processor, and have to be provided by the user. These files are listed in Table 5-3 and described in RD 3.

Please notice that a set of ancillary data files are provided together with the other files of the MARSCHALS L2 suite.

MARC auxiliary data files		
refind.dat	File with refractive index table for ice and water.	
imaster.my2	file with the spectroscopic database for the main bands.	
dspect_sideband_B dspect_sideband_C dspect_sideband_D	file with the spectroscopic database for the image bands.	
isotopic_ratio.dat	file with isotopic ratio information.	
vmr_[species].dat	files with information about VMR profile.	
in_zpt.dat	file with information about pressure and temperature profile.	
cont_band_B cont_band_C cont_band_D	files with information about atmospheric continuum profile.	
T_band_[\$].dat; [species] _band_[\$].dat; [species]_g_band_[\$].dat; continuum_band_[\$].dat; pointing_band_[\$].dat; Error spectra data files.	files with information about systematic errors.	
marschals.grd	file with information about frequency irregular grid.	

 Table 5-3. The list of the MARC auxiliary data files.

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_G. Issue: 3 Revision: 1 Date: 10/04/07	A_2007_06_LS Page n. 86/169
-------	----------------------------------	--	--------------------------------

5.3.7 <u>The setting file</u>

The user defined set up of the MARC code execution for the retrieval procedure are specified in the *settings_marc.dat* file. The set up options offered to the user are detailed in paragraph 5.4.

5.4 How to set up the marc code execution

The retrieval performed by the MARC code offers many options that can be set by the user; at the same time, to run the code, the user has to fix many parameters to set the algorithms of the retrieval procedure.

The selection of the possible options and the setting of the retrieval procedure has to be made by editing the related settings files in ASCII format with a common text editor.

In the following paragraphs of this chapter a selection of the most important settings is provided. As a general rule, it is possible to highlight that in the *settings_marc.dat* file the data are arranged in rows; all data are in ASCII format and are separated by a number of blanks. Commented rows are preceded by a #. Blank rows have not to be considered. The format of the data is the following:

a commented row (starting with a #) introduces the variable under definition; then a string that identifies the variable that is defined is written in a not commented row between square brackets; the related quantity is reported in the following single non commented row. Notice that the variable could be vectorial. A string "[end_file]" ends the file.

Because of the presence of the key-word string, the order of the definition is not matter of care; in any case, for sake of clarity, the parameters have been grouped according to their meanings.

5.4.1 How to set the release of the run of the retrieval code

The keyword [settings_key is used to define a string containing the file release.

Key-words	related quantity	dim.	data type
[settings_key]	String specifying the release of the file	dimless	char*10

Since the name of the setting file has to be the one specified in the *run_marc* file, it would not be easy to change this name inside a series of executions of the code. Thus, in order to allow a tracking of different runs of the code with different parameters (i.e. with different *settings_marc.dat* files), the key-word [settings_key] has been introduced in the file to distinguish different set up (i.e. different file with the same name *settings_marc.dat*). When a run of the code is repeated with a different set up specified in the *settings_marc.dat* file, the user can change the string associated to the key-word [settings_key]. A [settings_key] key-word is provided for each input file, the main code is able to take into account the version of all the files that are read during the run, and an array with these version numbers is available in the output data.

SAJI	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007 Issue: 3 Revision: 1 Date: 10/04/07 Page 1	_ 06_LS n. 89/169
------	----------------------------------	--	-----------------------------

5.4.2 <u>How to run the MARC code as a retrieval procedure or a simple forward</u> <u>model</u>

The MARC code is designed to perform a retrieval procedure, but it can be used also as a simple Forward Model.

The **[lmfm]** flag must be set to decide if the code has to be run as a simple Forward Model or a Retrieval Code.

Key-words	related quantity	dim.	data type
[lmfm]	 Flag (F/T) to define if the code is used as retrieval code or forward model: T → MARC works in forward model modality; F → MARC works in retrieval model modality. 	dimless	logical

าเกิดเร	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 90/16
---------	----------------------------------	---

5.4.3 How to set the bands to be used in the retrieval procedure

The MARC code performs a multi-band retrieval on the three MARSCHALS band (B, C and D), but it can also performs the retrieval on a whatever selection of the aforementioned bands. To select the bands on which the retrieval has to be performed the **[iband]** flag has to be set.

Key-words	related quantity	dim.	data type
[iband]	<pre>Array with three logical values (T/F) specifying the bands on which the retrieval is performed: T → the related band is considered; F → the related band is not considered. the order of the bands inside the array is the following: 1 → band_B; 2 → band_C; 3 → band_D. As an example, the setting: "" # [iband] TFT means that bands B and D are considered.</pre>	dimless	3×logical

This setting is considered also when the MARC code works as a simple Forward Model.

5.4.4 How to set the quantities to be retrieved

The MARC code is able to perform a multi-target retrieval of various atmospheric species and temperature at the same time. The quantities to be retrieved can be specified by settings the values of some key-words in the setting file. The specification is made by setting the following keyword:

Key-words related quantity dim. data type Switch (logical value F/T) for the retrieval of the temperature values: [ltempfit] dimless logical $T \rightarrow$ the temperature is retrieved; $F \rightarrow$ temperature is not retrieved. Switch (F/T) for the retrieval of the VMR values: [lvmrfit] dimless logical $T \rightarrow at least the VMR of one species$ is retrieved; $F \rightarrow VMRs$ are not retrieved. Number of gases whose VMR is retrieved. [NfitVMR] dimless integer Note that the NfitVMR value is read only if *lvmrfit* is *True*. the Array of integers with MARSCHALS/MASTER codes of the molecules to be retrieved. Note that only the first *nfitvmr* codes of the arrays are read. The MARSCHALS/MASTER code is Nfitvmr × [codefitVMR] dimless composed by numbers that indicate the integer species: matching number of the species is specified in the following Table 5-4. Retrieval tests have been performed for H₂O, O₃, HNO₃, CO, N₂O, CH₃Cl, (see RD 4).

วคุาม	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 92/169
-------	----------------------------------	--

The MARSCHALS/MASTER code corresponds to the HITRAN code, and is composed by numbers that indicate the species: matching number <-> species is specified in the Table 5-4:

Key-words	related quantity	dim.	data type
[lgvmrfit]	 Switch (logical value F/T) for the retrieval of the gradients values: T → at least the VMR gradient of one species is retrieved; F → the VMR gradients are not retrieved. 	dimless	logical
[NfitGRAD]	Number of species whose gradient is retrieved. Note that the $NfitGRAD$ value is read only if $lgvmrfit = =$ "T". If $lvmrfit$ is true, it has to be $NfitGRAD \leq NfitVMR$.	dimless	integer*4
[codefitGRAD]	Array of integers containing the MARSCHALS/MASTER code of the species whose gradients have to be retrieved. Note that only the first <i>NfitGRAD</i> codes of the arrays are read. The HITRAN code is that specified in Table 5-4. If <i>lvmrfit</i> is true, <i>codefitGRAD</i> has to be a subset of <i>codefitVMR</i> . Retrieval tests have been performed for gradient of O ₃ and gradient of H ₂ O (see RD 4).	dimless	nfitgrad × integer

U	IF	ค	С

Key-words	related quantity	dim.	data type
[lpoifit] Switch (logical value F/T) for point bias retrieval: [lpoifit] T → retrieval of pointing bias is performed; F → retrieval of pointing bias is performed.		dimless	logical
[ig_pointing]	Initial guess of pointing angle bias.	deg.	real
[lexcfit]	Switch (logical value F/T) for external continuum retrieval: T → retrieval of un-accounted continuum is performed; F → retrieval of un-accounted continuum is not performed.	dimless	logical
[loffsfit]	Switch for instrumental offset retrieval: T → retrieval of offset is performed; F → retrieval of offset is not performed.	dimless	logical
[ig_offset]	initial guess of the instrumental offset for each fitted band.	K	$3 \times real$
[lgainfit]	Switch for gain retrieval: T → retrieval of gain is performed; F → retrieval of gain is not performed.	dimless	logical
[ig_gain]	initial guess of gain for each fitted band.	dimless	$3 \times real$

This setting is considered also when the MARC code works as a simple Forward Model.

วคุาป	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFA Issue: 3 Revision Date: 10/04/07	C_GA_2007_06_LS : 1 Page n. 94/169
	MARSCHALS/MASTER (HITRAN) code	

MARSCHALS/MASTER (HITRAN) code				
$1 = H_2O$	$2 = CO_2$	$3 = O_3$	$4 = N_2O$	5 = CO
$6 = CH_4$	$7 = O_2$	8 = NO	$9 = SO_2$	$10 = NO_2$
$11 = NH_3$	$12 = HNO_3$	13 = OH	14 = HF	15 = HCl
16 = HBr	17 = H1	18 = ClO	19= OCS	20 = H2CO
21 = HOCl	$22 = N_2$	23 = HCN	$24 = CH_3C$	$25 = H_2O_2$
$26 = C_2 H_2$	$27 = C_2 H_6$	$28 = PH_3$	$29=\mathrm{COF}_2$	$30 = SF_6$
$31 = H_2S$	32 = HCOOH	$33 = HO_2$	34 = O	$35 = CIONO_2$
36 = NO+	37 = HOBr	$38 = C_2 H_4$	39= CH ₃ OH	40 = Br0

Table 5-4: the MARSCHALS/MASTER (HITRAN) code for the main molecules

Please notice that the order of the species to be retrieved is rearranged by the code using the following modality.

The list starts with the species for which both the VMR and the gradient are to be retrieved; among these species, the order is that specified by *codefitGRAD*. Then, the list goes on with the species whose gradient is not to be retrieved, listed according to the order specified in *codefitVMR*.

Trivially, if any gradient is not retrieved (lgvmrfit = F), the order is that specified by the user with *codefitVMR*; on the contrary, if for all the retrieved specie both the VMR and the gradient are retrieved, the order is the one specified in by *codefitGRAD*.

As an example of a generic case, if

codefitVMR = 12 3 1 5 4

and

codefitGRAD = 1 3

the resulting order will be:

1 3 12 5 4

5.4.5 <u>How to set the retrieval grid</u>

The MARC retrieval can be performed at the tangent altitudes or on a user defined altitude grid. In the last case, the user has to specify an overall altitude grid that is common for all the retrieved quantities; then a dedicated retrieval grid can be specified for each retrieved quantity as a subset of the common grid previously defined, by specifying this subset with a "mask" array.

The setting of the retrieval grid is made by set the following key-words:

Key-words	related quantity	dim.	data type
[ltangaltret]	 Switch (F/T) to specify the choice of the retrieval altitude grid: T → retrieval at tangent altitude; F → retrieval at user defined altitude grid. Please notice: in Forward Model option, when MARC is used in Forward Modality, the ltangaltret switch must be set to "F". 	dimless	logical
[nretrievalgrid]	Number of altitude points of the retrieval grids (user-defined and tangent-altitude grids).	dimless	integer
[rretrievalgrid]	Array (values) with the altitudes of the retrieval grid in decreasing order; available range (0,rulatm)). Note: only the first nretrievalgrid values in the array are read.	Km	nretrievalgrid × real

MARSCHALS Level 2 User Manual		Prog. Doc. N.: IFAC_GA_2007_0 Issue: 3 Revision: 1 Date: 10/04/07 Page n. 9	
Key-words	related quantity	dim.	data type
[ltmask]	 Array (T/F) with nretrievalgrid flag (one for each altitude of the retrieval grid) specifying the mask for temperature retrieval; T → the temperature is retrieved at the related altitude; F → the temperature is not retrieved at the related altitude. note: only the first nretrievalgrid codes in the array are read. 	dimless	nretrievalgrid × logical
[lvmrmask]	 Matrix with NfitVMR rows, one for each retrieved species (in the rearranged order specified in 5.4.4). Each row is composed by nretrievalgrid flag (one for each altitude of the retrieval grid) specifying the mask for the VMR retrieval: T → the VMR, the row is related to, is retrieved at the related altitude; F → the VMR, the row is related to, is not retrieved at the related at the related altitude. Note: only the first nretrievalgrid codes in the input line are read 	dimless	Nfitvmr × nretrievalgrid × logical
	 only <i>NfitVMR</i> lines corresponding to the fitted VMR are read. 		

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. Issue: 3 Date: 10/0	N.: IFAC_GA_2007_06_LS Revision: 1 4/07 Page n. 97/16
Key-words	related quantity	dim.	data type
[lvmrgmask]	 Matrix (logical values F/T) with NfitGRAD rows, one for each retrieved gradient (in the rearranged order specified in 5.4.4). Each row is composed by <i>nretrievalgrid</i> flag (one for each altitude of the retrieval grid) specifying the mask for the retrieval of the gradient of the VMRs: T → the VMR gradient, the row is related to, is retrieved at the related altitude; F → the VMR gradient, the row is related to is not retrieved at the related altitude. Note: only the first <i>nretrievalgrid</i> codes in the input line are read only <i>NfitGRAD</i> lines corresponding to the fitted gradient are read. 	dimless	logical
[lcmask]	Array (logical values F/T). This row is composed by <i>nretrievalgrid</i> flag (one for each altitude of the retrieval grid) specifying the mask for the retrieval of the un-accounted continuum: $T \rightarrow$ the un-accounted at the related altitude; $F \rightarrow$ the un-accounted continuum is not retrieved at the related altitude.	dimless	nretrievalgrid × logical

This setting is considered also when the MARC code works in Forward modality.

5.4.6 How to set the atmospheric parameters

The retrieval procedure is based on a forward model that uses an atmospheric model; the user can define some features and parameters of this atmospheric model, such as the used reference system, the boundaries of the atmosphere, the presence of horizontal gradient, the possibility to take into account the continuum of certain species, the imposition of the hydrostatic equilibrium, the presence of scattering phenomena and some instrument parameters.

The aforementioned settings have to be specified by defining the values related to the following key-words in the setting file.

related quantity	dim.	data type
 Switch (T/F) to impose (if True) the hydrostatic equilibrium: T → hydrostatic equilibrium is imposed; F → hydrostatic equilibrium is not imposed. 	dimless	logical
Number specifying the reference altitude for imposition of hydrostatic equilibrium.	Km	real
Switch (T/F) for the use of the Horizontal Gradients: T → horizontal gradients are used: (2D atmosphere); F → horizontal gradients are not used: (1D atmosphere).	dimless	logical
<pre>Switch (T/F) for the use of external continuum in the Forward Model procedure: T → the external continuum is used; F → the external continuum is not used.</pre>	dimless	logical
	related quantity Switch (T/F) to impose (if True) the hydrostatic equilibrium: T → hydrostatic equilibrium is imposed; F → hydrostatic equilibrium is not imposed. Number specifying the reference altitude for imposition of hydrostatic equilibrium. Switch (T/F) for the use of the Horizontal Gradients: T → horizontal gradients are used: (2D atmosphere); F → horizontal gradients are not used: (1D atmosphere). Switch (T/F) for the use of external continuum in the Forward Model procedure: T → the external continuum is used; F → the external continuum is not used.	related quantitydim.Switch (T/F) to impose (if True) the hydrostatic equilibrium: T \rightarrow hydrostatic equilibrium is imposed; F \rightarrow hydrostatic equilibrium is not imposed.dimlessNumber specifying the reference altitude for imposition of hydrostatic equilibrium.KmSwitch (T/F) for the use of the Horizontal Gradients: T \rightarrow horizontal gradients are used: (2D atmosphere); F \rightarrow horizontal gradients are not used: (1D atmosphere).dimlessSwitch (T/F) for the use of external continuum in the Forward Model procedure: T \rightarrow the external continuum is not used.dimless

วค <mark>า</mark>	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06 Issue: 3 Revision: 1 Date: 10/04/07 Page n. 99	
Key-words	related quantity	dim.	data type
[nullcont_above]	Altitude above which the atmospheric continuum is forced to 0. It has to be: nullcont_above < rulatm	Km	real
[originref]	Array defining the Reference Systems Origin ([<i>izref</i>]]; [<i>rzref</i>]). It is composed by one or two values; the former being [<i>izref</i>], the possible latter being [<i>rzref</i>]; both of them are defined in the following.		
[izref]	Integer specifying the kind of Reference System among some possibilities, according to the following code: Reference Vertical passing through the instrument location; Reference Vertical passing through the lowest tangent point, in geometrical approximation (greater then 0); Reference Vertical at intermediate tangent altitude; (in geometrical approximation); user defined (with respect to the instrument location). If the option 4 (user defined vertical reference) is specified, the user defined displacement with respect to the vertical of the instrument has to be defined; it is specified in the second element [rzref] of the array. Trivially, this element is present only if the option 4 is specified; if izref<4 rzref is 	dimless	integer

วค <mark>า]]</mark>	MARSCHALS Level 2 User Manual		IFAC_GA_2007_06_LS ision: 1 Page n. 100/10
Key-words	related quantity	dim.	data type
[rzref]	Displacement of the Reference Vertical with respect to the vertical of the instrument (in the sense of the line of sight).	degrees	real
[lmssf]	Switch (T/F) for the use of the Mie Scattering Source function (MSSF): $T \rightarrow MSSF$ data are used; $F \rightarrow MSSF$ data are not used.	dimless	logical

This setting is considered also when the MARC code works in Forward modality.

5.4.7 How to set up the retrieval modality and techniques

IFAC

The MARC code allows performing the retrieval procedure by using different techniques and modalities; in addiction to the Marquardt iteration techniques, also Regularization or an Optimal Estimation technique can be set. The user can specify the use of these techniques by defining the values related to the following key-words in the setting file.

Key-words	related quantity	dim.	data type
[imode]	Switch to select the retrieval mode; available range (1, 2, 3): 1 → Marquardt only; 2 → Regularization + Marquardt; 3 → Optimal Estimation + Marquardt. If option 2 is chosen, the set up of	dimless	integer*4
	the regularization has to be performed, by defining the related parameters.		

Then, the chosen modalities have to be set by defining the related parameters; these parameters have to be specified by setting the related key-words.

- To set up the Gauss and Marquardt iterations see 5.4.8;
- To set up the Regularization technique see 5.4.9;
- To set up the Optimal Estimation technique see 5.4.10.

5.4.8 How to set up the Gauss and Marquardt iterations

IFAC

The retrieval procedure is based onto two nested iterations, the Gauss one (macroiteration) and the Marquardt one (micro-iteration).

The following key-words have to be defined to set the Marquardt and the Gauss iterations:

Key-words	related quantity	dim.	data type
[rlambdat]	Initial value for lambda parameter in Marquardt iterations used for the retrieval of the Temperature.	dimless	real
[rlambdav]	Array containing the initial values for λ parameters in Marquardt iterations used for the VMRs retrieval; the λ parameter has been considered as gas dependent, thus a values is given for each retrieved VMR; the order inside this array is that defined in 5.4.4.	dimless	Nfitvmr × real
[rlambdavg]	Array containing the initial values for λ parameters in Marquardt iterations used for the retrieval of the VMR gradients; the λ parameter has been considered as gas dependent, thus a value is given for each retrieved gradient; the order inside this array is that defined in 5.4.4.	dimless	Nfitgrad × real
[rlambdapoi]	Initial value for the λ parameter in the Marquardt iterations used for the retrieval of the pointing angle offset.	dimless	real
[rlambdaexc]	Initial value for λ parameter in the Marquardt iterations used for the retrieval of the external continuum.	dimless	real
[rlambdaoff]	Initial value for λ parameter in the Marquardt iterations used for the retrieval of the instrumental offset.	dimless	real
[TIAMDOAOII]	retrieval of the instrumental offset.	aimless	real

วค <mark>าโ</mark>	MARSCHALS Level 2 User Manual		Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 103/10	
Key-words	related quantity	dim.	data type	
[rlambdagain]	Initial value for λ parameter in the Marquardt iterations used for the retrieval of the instrumental gain.	dimless	real	
[rgaussDumpingFac tor]	Dumping Factor for Gauss iterations (macro-iteration).	dimless	real	
[rMarquardtDumpi ngFactor]	Dumping Factor for Marquardt iterations (micro-iteration).	dimless	real	
[Threshold_on_ Weighted_ Chisq_increment]	Threshold to activate the Marquardt micro-iteration.	dimless	real	

5.4.9 How to set up the regularization procedure

The MARC retrieval code can be performed by considering a Regularization procedure. The Regularization can be separately applied to single retrieved quantities. To set up the Regularization procedure the following key-words have to be defined.

Key-words	related quantity	dim.	data type
[reg_tuning]	Parameter for tuning profile regularization.	dimless	real

TEMPERATURE

Key-words	related quantity	dim.	data type
[reg_diagT]	Switch (T/F) for the use of regularization matrix in temperature retrieval: T → regularization matrix is used in temperature retrieval; F → regularization matrix is not used in temperature retrieval.	dimless	logical

VMR

Key-words	related quantity	dim.	data type
	Array with the flags (T/F) related to the use of regularization matrix in VMR retrieval. A value is provided for each retrieved species, in the order specified in sect. 5.4.4:		
[reg_diagVMR]	 T → regularization matrix is used in VMR retrieval of the related species; F → regularization matrix is not used in VMR retrieval of the related species. 	dimless	logical

ดาก

VMR GRADIENT

Key-words	related quantity	dim.	data type
[reg_diagGRAD]	Array with the flags (T/F) related to the use of regularization matrix in VMR gradient retrieval. A value is provided for each retrieved species, in the order specified in 5.4.4: T → regularization matrix is used in VMR gradient retrieval of the related species; F → regularization matrix is not used in VMR gradient retrieval of the related species.	dimless	logical

UN-ACCOUNTED CONTINUUM

Key-words	related quantity	dim.	data type
[reg_diagCONT]	 Array with the flags (T/F) related to the use of regularization matrix in un-accounted continuum retrieval. A value is provided for each band: T → regularization matrix is used in un-accounted continuum retrieval of the related band; F → regularization matrix is not used in un-accounted continuum retrieval of the related band. 	dimless	logical

วคุาม	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_C Issue: 3 Revision: 1 Date: 10/04/07	GA_2007_06_LS Page n. 106/169
-------	----------------------------------	---	----------------------------------

5.4.10 How to set up the optimal estimation procedure

To set up the optimal estimation procedure, the following parameters have to be defined:

Key-words	related quantity	dim.	data type
[opt_pointing]	Absolute error on a priori information on pointing angle.	deg.	real
[opt_extCONT]	Absolute error on a priori information on Un-accounted Continuum.	cm ² x10 ²⁷	real
[opt_gain]	Absolute error on a priori information on gain.	dimless	real
[opt_ofs]	Absolute error on a priori information on offset.	K	real

5.4.11 How to set the convergence and stop criteria for retrieval

The MARC code performs a retrieval process based on a iterative procedure; five convergence criteria have been defined to check the convergence of the iterations. The user can choose which convergence criterion has to be used; a combination of more than one convergence criteria can be also defined (the selected criteria can be checked according to user-defined AND or OR logic operator). The user has to choose the convergence criteria that have to be used, and the logical combination of these criteria. The user has also to set some parameters of the selected convergence criteria. In order to avoid endless loop, a stop criterion to terminate the iterative procedure after a given number of Gauss or Marquardt iterations is also provided; the corresponding maximum number of allowed iterations is user-defined. When the maximum number of Marquardt iteration is reached, the code moves itself to the next Gauss iteration. Conversely, if the max number of Gauss iteration is reached, the iteration procedure is stopped even if the convergence is not reached.

The five implemented convergence criteria are the following:

 1^{st} convergence criterion (relative variation of χ^2)

The relative variation of the χ^2 function obtained in the present iteration with respect to the previous iteration is less than a fixed threshold t_1 , i.e.:

$$\left|\frac{\chi^2(\mathbf{x}^{iter-1}) - \chi^2(\mathbf{x}^{iter})}{\chi^2(\mathbf{x}^{iter})}\right| < t_1$$

where *iter* is the current iteration index.

A drawback of this criterion is that small variations of the χ^2 function, and even growth, may be caused by non-linearity.

 2^{nd} convergence criterion (maximum relative correction)

The maximum correction that has to be applied to the elements of the state vector is below a fixed threshold t_2 i.e.:

$$\operatorname{Max}_{j} \left| \frac{(\mathbf{x}^{iter-1})_{j} - (\mathbf{x}^{iter})_{j}}{(\mathbf{x}^{iter})_{j}} \right| < t_{2}$$

Different levels of sophistication can be applied to this criterion. A different threshold can be used for the different elements of the state vectors. The absolute variations can be considered instead of the relative variations, whenever an absolute accuracy requirement is present for the elements of the state vector. A distinction can be made between target elements (quantities for the determination of which the measurements are performed) and non-target elements (quantities that are determined in order to improve the quality of the fit, but are not the objective of the measurement, e.g. the instrument parameters). 3rd convergence criterion (maximum relative correction referred to error)

Since expression of the 2nd convergence criterion is singular whenever an element of the state vector is equal to zero, a modified expression that can be considered is:

$$\operatorname{Max}_{j} \left| \frac{(\mathbf{x}^{iter-1})_{j} - (\mathbf{x}^{iter})_{j}}{\sqrt{(\mathbf{S}_{iter}^{x})_{j,j}}} \right| < t_{3}$$

where $\sqrt{(\mathbf{S}_{iter}^x)}_{j,j}$ represents the error associated with the element of state vector $(\mathbf{x}^{iter})_j$ at iteration *iter*. The consideration that may prevent the unconditional use of the above expression instead of that of the 2nd criterion is that $\sqrt{(\mathbf{S}_{iter}^x)}_{j,j}$ does not really represent the error of the element $(\mathbf{x}^{iter})_j$ when the retrieval is still far from convergence.

4th convergence criteria (relative difference between χ^2 and linear χ^2

The difference between the current chi-square $\chi^2(\mathbf{x}^{iter})$ and the chi-square computed in the linear approximation (χ^2_{LIN}) is less than a fixed threshold t_4 :

$$\left| \frac{\chi^2(\mathbf{x}^{\text{iter}}) - \chi^2_{LIN}(\mathbf{x}^{\text{iter}})}{\chi^2(\mathbf{x}^{\text{iter}})} \right| < t_4$$

Where χ^2_{LIN} is computed using the expression:

$$((\mathbf{I} - \mathbf{KG})(\mathbf{y} - \mathbf{F}(\mathbf{b}, \tilde{\mathbf{x}})))^T (\mathbf{S}^M)^{-1} ((\mathbf{I} - \mathbf{KG})(\mathbf{y} - \mathbf{F}(\mathbf{b}, \tilde{\mathbf{x}})))$$

5th convergence criteria (Marquardt parameter)

The value of Marquardt parameter (λ_M) have to be less than a fixed threshold (t_5) , for each retrieved parameter.

$$\lambda_{M} i < t_5, \forall i \tag{5.4.1}$$

Convergence is reached only if each Marquardt parameter is less than the set threshold

Combination of the convergence criteria

The overall convergence criterion is obtained as a suitable combination of the above conditions.

In some case the convergence criteria can be satisfied also when the iterative process is still far from reaching convergence. In order to avoid this problem, if the computing time of an extra iteration does not pose problems, the requirement of a double contiguous occurrence of satisfied criterion may be required for convergence.
IFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: Issue: 3 Rev Date: 10/04/07	IFAC_GA_2007_06_ ision: 1 Page n. 109
To avoid endless loop, tw The adopted stop criteria	wo stop criteria have been considered.		
Stop criteria			
The code exit from the N when the maximum num	Marquardt iteration and moves itself to ber of Marquardt iteration (iMaxiterM)	the next Ga is reached:	uss iteration
iter $M \ge i$	MaxiterM		(5.4.2)
Being <i>iterM</i> the number	of Marquardt iteration:		
The code exit from the convergence is not rea (iMaxiterM) is reached	Gauss iteration and ends the retrieva ached when the maximum number d:	l procedure of Marqua	e even if the rdt iteration
$iterG \ge i$	MaxiterG		(5.4.3)
being <i>iterG</i> the numbe	r of Gauss iteration:		
The setting of the aforem values related to the following the set of the set	nentioned convergence and stop criteria owing key-words in the setting file.	is made by	setting the
The setting of the aforem values related to the follor 1 st Convergence Criteriu	nentioned convergence and stop criteria owing key-words in the setting file. m	is made by	setting the
The setting of the aforem values related to the follor <u>1st Convergence Criteriu</u> Key-words	nentioned convergence and stop criteria owing key-words in the setting file. <u>m</u> related quantity	is made by dim.	setting the data type
The setting of the aforem values related to the follo <u>1st Convergence Criteriu</u> Key-words [conv_criterium1]	nentioned convergence and stop criteria owing key-words in the setting file. m related quantity Array with two elements [[rthreshold1], [lconv1]].	is made by dim.	setting the data type
The setting of the aforem values related to the follo <u>1st Convergence Criteriu</u> Key-words [conv_criterium1] [rthreshold1]	nentioned convergence and stop criteria owing key-words in the setting file. m related quantity Array with two elements [[rthreshold1], [lconv1]]. Percent variation of the chisquare between two subsequent iterations.	is made by dim. dimless (%)	setting the data type real
The setting of the aforem values related to the follo <u>1st Convergence Criteriu</u> Key-words [conv_criterium1] [rthreshold1]	nentioned convergence and stop criteria owing key-words in the setting file. m related quantity Array with two elements [[rthreshold1], [lconv1]]. Percent variation of the chisquare between two subsequent iterations. Switch (T/F) for the convergence criterium:	dim.	setting the data type real

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 110/1
-------	----------------------------------	---

2nd Convergence Criterium

Key-words	related quantity	dim.	data type
[conv_criterium2]	Array with two elements [[rthreshold2], [lconv2]].		
[rthreshold2]	Maximum percent correction to state vector (in percentage).	dimless (%)	real
[lconv2]	Switch (T/F) for the convergence criteria. $T \rightarrow 2^{nd} \text{ Convergence Criterium}$ is considered; $F \rightarrow 2^{nd} \text{ Convergence Criterium}$ is not considered.	dimless	logical

3rd Convergence Criterium

Key-words	related quantity	dim.	data type
[conv_criterium3]	Array with two elements [[rthreshold3], [lconv3]].		
[rthreshold3]	Maximum percent correction to modified state array modified (in percentage).	dimless (%)	real
[lconv3]	Switch (T/F) for the convergence criteria. $T \rightarrow 3^{rd} \text{ Convergence}$ Criterium is considered; $F \rightarrow 3^{rd} \text{ Convergence Criterium}$ is not considered;	dimless	logical

OFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06 Issue: 3 Revision: 1 Date: 10/04/07 Page n. 11	_LS 11/169
------	----------------------------------	---	----------------------

4th Convergence Criterium

Key-words	related quantity	dim.	data type
[conv_criterium4]	Array with two elements [[rthreshold4], [lconv4]].		
[rthreshold4]	Percent variation between chisquare and LINEAR chisq (in percentage).	dimless (%)	real
[lconv4]	Switch (T/F) for the convergence criterium. $T \rightarrow 4^{th} \text{ Convergence Criterium}$ is considered; $F \rightarrow 4^{th} \text{ Convergence Criterium}$ is not considered.	dimless	logical

5th Convergence Criterium

Key-words	related quantity	dim.	data type
[conv_criterium5]	Array with two elements [[rthreshold5], [lconv5]].		
[rthreshold5]	Threshold on Marquardt parameter. Convergence is reached only if each Marquardt parameter is less than the set threshold	dimless	real
[lconv5]	Switch (T/F) for the convergence criterium. $T \rightarrow 5^{th} \text{ Convergence Criterium}$ is considered; $F \rightarrow 5^{th} \text{ Convergence Criterium}$ is not considered.	dimless	logical

วคุา	MARSCHALS Level 2 User Manual	Prog. Doc. N.: Issue: 3 Rev Date: 10/04/07	IFAC_GA_2007_06_LS ision: 1 / Page n. 112/169
Stop Criteria			
Key-words	related quantity	dim.	data type
[iMaxIterG]	Maximum number of allowed Gauss iterations (Macro-iteration).	dimless	int
[iMaxIterM]	Maximum number of allowed Marquardt iterations (Micro- iteration).	dimless	int

Combination of the Convergence Criteria

Key-words	related quantity	dim.	data type
[OR_AND]	 Switch for an "AND" or an "OR" combination of the convergence criteria: 0 → "AND" logic operation is performed among the results of the selected Convergence Criteria; 1 → "OR" logic operation is performed among the results of the selected Convergence Criteria. 	dimless	integer

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 113/169
-------	----------------------------------	---

5.4.12 <u>How to set the use of the Variance Covariance Matrix (VCM) of the</u> <u>Forward Model</u>

The use of the Variance Covariance Matrix can be specified by the user by setting the values related to the [lvcmfm] key-word in the setting file.

Key-words	related quantity	dim.	data type
[]	Switch (T/F) for the use of FM VCM:	d'un la sa	1
[IVCMEM]	$T \rightarrow FM VCM$ is used; F $\rightarrow FM VCM$ is not used.	dimless	logical

If lvcmfm is TRUE, MARC computes the VCM of the Forward Model using the files listed in RD 3. The default directory where these files are located in reported in **Figure 5-1**.

5.4.13 How to set the sequential fit procedure

IFAC

The MARC code is able to perform a sequential fit, i.e. to carries out a retrieval in which the initial guess is constituted by the result of the previous retrieval and a completed VCM of *a*-priori information is used.

To impose the sequential fit procedure, the user has to set to T the value related to the **[lseq]** key-word of the setting file.

Key-words	related quantity	dim.	data type
[lseq]	Switch (T/F) to select the sequential fit procedure: $T \rightarrow$ the sequential fit is performed; $F \rightarrow$ the usual (not sequential) fitting procedure is used.	dimless	logical

Notice that the sequential fit performs some actions:

- o it exports each retrieved profile in input format;
- it exports VCM for each retrieved profile;
- it reads VCM for each retrieved profile if found.

The default directory where these files are located in reported in Figure 5-1.

5.4.14 How to set the internal Forward model of the MARC code

The retrieval procedure of the MARC code is based on an internal Forward Model, that can be set by the user by adequately specifying the values related to the following keywords in the setting file.

The key-words of this section are read only if the Forward Modality is set (1mfm = "F").

Key-words	related quantity	dim.	data type
[itot]	Number of Lines of Sight (LOS) to be simulated.	dimless	integer
[fly_altitude]	Array containing the altitudes of the instrument for each LOS. Note: only <i>itot</i> values are read in the array.	Km	itot×real
[fly_angles]	Array containing the pointing limb view angles for each LOS.	deg.	itot×real
[kind_of_noise]	 Index to select the Noise Model to be superimposed on the simulated spectrum, according to the code above: 0 → no noise is superimposed; 1 → uniform completely random noise is superimposed; 2 → uniform standard random noise is superimposed; 3 → gaussian completely random noise is superimposed; 4 → gaussian standard random noise is superimposed. 	dimless	integer
[lradius]	Switch (T/F), to specify the model of the Earth Radius: $T \rightarrow computed from latitude;$ $F \rightarrow read below.$	dimless	logical
[rearad]	Local radius of the Earth.	Km	real

วค <mark>า</mark>	MARSCHALS Level 2 User Manual	Prog. Doc. N.: Issue: 3 Rev Date: 10/04/07	IFAC_GA_2007_06_LS ision: 1 Page n. 116/16
Key-words	related quantity	dim.	data type
[rlat]	Latitude of the simulations.	deg	real
[lref]	Switch (T/F) to define the export of the atmospheric profiles used for the simulations: T → external profiles are exported; F → external profiles are not exported.	dimless	logical

5.4.15 <u>The setting of the MSSF module</u>

The key-words of this section are read only if the Mie Scattering Source function is used (lmssf = "F").

Key-words	related quantity	dim.	data type
[ipol]	Switch polarization index for B, C, D band: -1 → polarization not defined; 0 → vertical polarization plane; 1 → horizontal polarization plane.	dimless	integer*4
[sizel]	Radius of water particles	cm	real*8
[size2]	Radius of ice particles.	cm	real*8
[chem]	Ice fraction.	dimless	real*8
[rzcloud]	Altitude of the top of the clouds.	Km	real*8
[rdzcloud]	Vertical geometrical thickness of the clouds.	Km	real*8
[rdncloud]	Numerical density of the particles inside the clouds.	cm ⁻³	real*8
[nag]	Parameter used to build the number of direction used to model the solid angle surrounding the clouds. As a matter of fact, the solid angle is sampled by means of $(2xnag+1)^2$ directions.	dimless	integer*4

5.4.16 How to define the parameters for the advanced settings

Some advanced settings can be selected in MARC code; these settings can be specified by the user by defining the values related to the following key-words in the setting file.

Key-words	related quantity	dim.	data type
[ldebug]	switch (T/F) to enable the DEBUG option: $T \rightarrow$ debug is ENABLED; $F \rightarrow$ debug is DISABLED.	dimless	logical
[rulatm]	Value specifying the altitude of the upper boundary of the atmosphere.	Km	real
[rdaup]	Altitude step to complete the base grid above retrieval altitudes.	Km	real
[rdzda]	 Array with two components: the former specifies the altitude step to be added to the maximum flight altitude to obtain the altitude under which the grid has to be thickened; the latter specifies the maximum step in the thickened grid. 	Km	real
[nfov]	Minimum number of pencil beams to be used in the FOV simulation inside the finer grid (should be an odd number). The value: 2*rfovamp/(nfov-1) gives the maximum distance between two pencil beams inside the higher precision region of the FOV.	dimless	integer

วคา	MARSCHALS Level 2 User Manual	Issue: 3 Rev Date: 10/04/07	ision: 1 Page n.
Key-words	related quantity	dim.	data type
[rfov]	Array with parameters related to the FOV function; it is constituted by three values: [rfov] = [[rfovampmax].[rfovamp].[rzdfov]].		
[rfovampmax]	Number specifying the maximum extension for the FOV convolution (Half Width).	deg.	real
[rfovamp]	Number specifying the amplitude of the finer description of the FOV- function (Half Width). (In the current version <i>rfovampmax</i> and <i>rfovamp</i> cannot be equal)	deg.	real
[rzdfov]	Number specifying step in altitude between pencil beam (at tangent point).	Km	real
[lcont]	Array containing three logical (T/F) switches to specify if the retrieval procedure has to be performed by taking into account for the continuum the contribute of the species H ₂ O, O ₂ and N ₂ respectively.	dimless	logical
[lirrgrd]	Switch (T/F) to choose the frequency grid for the fine spectrum simulation: $T \rightarrow$ irregular grid is used; $F \rightarrow$ regular grid is used.	dimless	logical
[lray]	 Switch (T/F) to define the ray tracing computation modality: T → computation is done for each iteration; F → computation is done only for the first evaluation of the FM (using the initial guess atmosphere). 	dimless	logical

วคาไ	MARSCHALS Level 2 User Manual	Prog. Doc. N.: Issue: 3 Revi Date: 10/04/07	IFAC_GA_2007_06_LS ision: 1 Page n. 120/169
Key-words	related quantity	dim.	data type
[deps]	Convergence criterion for the C.G. integrals.	dimless	real
[lainvbexp]	 Switch (T/F) to define the export of the A⁻¹B matrix: (A and B being the two matrices used in the retrieval according to the definition of the ATBD document): T → Matrix A⁻¹B is exported; F→ Matrix A⁻¹B is not exported. It is active only if <i>ldebug</i> is true (debug modality). 	dimless	logical
[ljac]	Switch (F/T) to select the exporting of the Jacobian matrix on a file: T → Jacobian matrix is exported; F→ Jacobian matrix is not exported.	dimless	logical
[lhisto]	Switch (F/T) to select the exporting of the <i>histo</i> structure containing all the retrieval details: $T \rightarrow histo$ structure is exported; $F \rightarrow histo$ structure is not exported.	dimless	logical

5.5 Output files

The MARC retrieval procedure generates as output some files that are detailed in the following.

The MARC code produces as output a set of files that are stored in the dedicated output directory (as default this directory is named OUT_FILES). Each output file is characterized by a string that gives information about the files used as input in the run of the code by which the output file has been produced(see 5.5.1). The set of output files change, according to the settings.

The whole set of output files can be arranged in some classes:

- The retrieved quantities files;
- The VCM files;
- The files with the data used to run the retrieval procedure;
- The results of the performed retrieval procedure.

In the following the aforementioned output files are introduced; a detailed description is presented in RD 3.

Standard output data when retrieval is performed without extra features

If the code is used as retrieval code without any extra features, the produced files are these described in Table 5-5:

The retrieved profiles are saved in a set of files, one for each retrieved species, named *[target].dat*, being *target* the chemical symbol of the related molecule (e.g. *h2o.dat* will contain the retrieved profile of the water). The *spectrum.dat* file contains the simulated measured spectrum (i.e. the foreseen of the spectrum that will be measured) related to the aforementioned retrieved profiles; this file also reports the simulated spectrum computed using the adopted initial guess atmosphere and the original measured spectrum.

The *iterationdetails.dat* file reports information about the details of the iterations of the retrieval procedure. The effectiveness of the single steps of the iteration is measured by the χ^2 value. Details about the observed χ^2 on each band and each geometry during the retrieval procedure are reported in the *chisquare.dat* file.

The retrieval procedure performs a check of some convergence criteria at the end of any iteration of the retrieval procedure; the *convergence.dat* file contains the values of the quantities that have been evaluated to verify the convergence criteria at the last iteration (both the values calculated over the retrieved data and the related thresholds used to evaluate the quality of the retrieval). Information about the Averaging Kernel Matrix and the related data are reported in the *AK_matrix.dat* file. Finally, the *total_correl.dat* file contains information about the total correlation existing between retrieved parameters and related data.

ORI

file	Data contained
AK_matrix.dat	information about the Averaging Kernel Matrix and the related data. For more details see RD 3.
chisquare.dat	information about the chi square on each band and each geometry during the retrieval procedure. For more details see RD 3.
convergence.dat	values that have been considered to verify the convergence criteria at each iteration. For more details see RD 3.
[target].dat	set of files (one for each retrieved target) with the retrieved information of the considered targets. For more details see RD 3.
iterationdetails.dat	information about the execution of the iterations of the iterative retrieval procedure. For more details see RD 3.
spectrum.dat	simulated/measured spectrum obtained from the retrieved atmosphere, measured spectrum obtained from the initial guess atmosphere and original measured spectrum. For more details see RD 3.
total_correl.dat	information about the total correlation between retrieved parameters and related data. For more details see RD 3.

Table 5-5. Standard output files of the MARC code when used as a retrieval code without any extra features.

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_ Issue: 3 Revision: 1 Date: 10/04/07 P	2007_06_LS Page n. 123/169
-------	----------------------------------	---	-------------------------------

The MARC code, when used in retrieval modality, generates a series of output files related to the targets chosen by the user.

The files the code is able to produce are reported in the following table, together with the related flags that have to be set to produce the aforementioned files.

file	contained data	flag to be set to produce the file
temperature.dat	retrieved profile of temperature and related data. For more details see RD 3.	ltempfit
[specie].dat	retrieved profile of gas specified by the string <i>[specie]</i> and related data. For more details see RD 3.	lvmrfit
[specie]_grad.dat	retrieved horizontal gradient of gas specified by the string <i>[specie]</i> and related data. For more details see RD 3.	lgvmrfit
pointing.dat	retrieved pointing value and related data. For more details see RD 3.	lpoifit
cont_band_[\$].dat	Retrieved profile of un-accounted continuum in the band specified by the key-word [\$] and related data. For more details see RD 3.	lexcfit
offset.dat	retrieved instrumental offset and related data. For more details see RD 3.	lofsfit
gain.dat	retrieved instrumental gain and related data. For more details see RD 3.	lgainfit

Table 5-6. Optional output files of the MARC code when used in Retrieval Modality.

Output data when sequential fit is performed

If the *lseq* flag is set *.T.*, the MARC code performs the sequential fit; in order to perform the retrieval in a sequential modality, some data have to be passed from the previously retrieval to the following one. To pass these data, for each retrieved quantities a set of files is produced. These files are output files of retrieval that begin input files of the following retrieval; they are introduced in the following and separately described in RD 3.

file	contained data
temperature_VCM.dat	VCM matrix of temperature and related data. For more details see RD 3.
[species]_VCM.dat	VCM matrix of species specified by the flag <i>[species]</i> and related data. For more details see RD 3.
[species]_grad_VCM.dat	VCM matrix of retrieved horizontal gradient of quantity specified by the <i>[species]</i> string and related data. For more details see RD 3.
cont_band_[\$]_VCM.dat	VCM Matrix of continuum of band specified by the flag [\$] and related data. For more details see RD 3.
vmr_[species].dat	Initial guess for the atmospheric species with their gradients; a dedicated file specified by the string [species] is provided. The errors of the VMR and gradient profiles are also reported. For more details see RD 3.
in_zpt.dat	Initial guess for the atmospheric profiles of temperature and pressure with the related gradients; the error of the temperature profile is also reported. For more details see RD 3.
cont_band_[\$].dat	Profile (with the altitude) of the continuum value for the band specified by the string [\$]. For more details see RD 3.

Table 5-7. Optional set of output files of the MARC code (one set for each retrieved quantity) when used in the Retrieval Modality and a sequential fit is adopted.

Notice that the *in_zpt.dat*, *vmr_[species].dat* and *cont_band_[\$].dat* are replied with the same format of the input files with the same names used for the retrieval procedure, and do not complain the key-word syntax.

The other files are produced in order to complain with the key-word syntax.

	MARSCHALS Level 2	Prog. Doc. N.: IFAC_GA_2007_0 Issue: 3 Revision: 1
FAC		Date: 10/04/07 Page n.
Output data when se	elf-standing Forward Model is perform	ned
If the MARC code is code produces in gene Other files are produc	used in forward modality, i.e. the flag 1 eral only the <i>observ.dat</i> file as a standard ced in the Forward Model modality if a f	<i>mfm</i> is set ON, the MARC l output. further flag is set <i>on</i> :
if <i>lref</i> = TRU	JE the <i>pt_ref.dat</i> , [s] <i>cont_band_</i> [\$]_ <i>ref.dat</i> files an the observ.dat file;	<i>pecies]_ref.dat</i> and re produced together with
if <i>lref</i> = FAL	SE only the <i>observ.dat</i> file is produce	ced.
if <i>lref</i> = FAL	SE only the <i>observ.dat</i> file is produce the files of the MARC code when used as 1	ced. Forward Model
if <i>lref</i> = FAL Output file	SE only the <i>observ.dat</i> file is product the files of the MARC code when used as a data contained	ced. Forward Model flag
if <i>lref</i> = FAL Output file <i>observ.dat</i>	SE only the <i>observ.dat</i> file is product the files of the MARC code when used as 1 data contained Spectral measurement and som parameters in the internal form MARC code. For more details see RD 3.	reed. Forward Model flag ne related nat of <i>lmfm</i>
if <i>lref</i> = FAL Output file observ.dat pt_ref.dat	SE only the <i>observ.dat</i> file is product t files of the MARC code when used as 1 data contained Spectral measurement and som parameters in the internal form MARC code. For more details see RD 3. For more details see RD 3.	reed. Forward Model flag ne related nat of <i>lmfm</i> <i>lmfm</i> and <i>lref</i>
if <i>lref</i> = FAL Output file observ.dat pt_ref.dat [species]_ref.dat	SE only the <i>observ.dat</i> file is product t files of the MARC code when used as 1 data contained Spectral measurement and som parameters in the internal form MARC code. For more details see RD 3. For more details see RD 3.	reed. Forward Model flag ne related nat of <i>lmfm</i> <i>lmfm</i> and <i>lref</i> <i>lmfm</i> and <i>lref</i>

Table 5-8. Output files of the MARC code when used in the Forward Model modality.

วคุาม	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_C Issue: 3 Revision: 1 Date: 10/04/07	GA_2007_06_LS Page n. 126/169
-------	----------------------------------	---	----------------------------------

5.5.1 <u>The release string</u>

All the output files are characterised by a data row that is preceded by the key-word *[input_key]*; e.g.:

```
[input_key]
|Simulation|001|001|001|001|001|
```

This data row reports the versions of the input files used in the run of the code that have originated the output data contained in the output file, according to the following list:

```
[input_key]
|k0|n1| n2| n3| n4| n5|
```

being:

k0	string with the name of the L1b data file
n1	number with the version of the <i>instrument.dat</i> file.
n2	number with the version of the <i>fov.dat</i> file.
n3	number with the version of the <i>ils.dat</i> file.
n4	number with the version of the <i>rejection.dat</i> file.
n5	number with the version of the <i>settings.dat</i> . file.

Table 5-9. Columns key-word for [input_key] data.

In case of use of simulated measurement this ${\tt k0}$ name is replaced with the string "simulation".

MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 127/169
----------------------------------	---

6 OFM

This chapter aims to describe the use of OFM with its implemented features.

The OFM is composed by two independents codes, being the first SBDART code and the second the RTM code developed by MARSCHALS team.

The output generated by SBDART module are used as input of the RTM code. The execution thus is performed in a sequence of the two components.

SBDART is a software tool that computes plane-parallel radiative transfer in clear and cloudy conditions within the Earth's atmosphere. For a general description and review of the program please refer to [RD 6]. The complete documentation and the original user manual of SBDART code is provided in the Annex 1 (Chapter 8).

The RTM code is developed by MARSCHALS team in order to use the output from SBDART and some other input data; then it computes the simulated radiance as it would received by the OCM receiver. In the Table 6-1 a list of all files needed for the execution of RTM code is presented.

The data file needed to run the RTM code		
File classification	Name of file	
hatch file	run_rtm ^(^) ;	
baten me	makefile.	
	*.f (source files) and *.inc (include files) standard	
source files	FORTRAN language; the whole list is reported in	
	RD 3.	
setting files	settings_rtm.dat	
auxiliary data files	atmosphere_rtm.dat	

 $^{(^{)}}$ This file is not actually mandatory to run the code, since it is a batch file to run in an easier way the related code.

 † These data are needed by the OCM code, but can be obtained by the output of the Pre-Processor; thus they are not really input data of the MARSCHALS software.

Table 6-1. The data file needed to run the RTM code.

6.1 How to compile the source files of the SBDART and RTM code

The SBDART and RTM code is composed by some source files written in standard Fortran language

Please notices that the executable code installed on the computer delivered to ESA has been already compiled by the MARSCHALS L2 team; if no change has been made to the source codes, to run the executable version a compilation is not required

The source files of the SBDART and RTM code can be compiled in the usual way by means of a whatever FORTRAN compiler. The computer delivered to ESA is provided with a FORTRAN compiler (from Portland Company) that is able to perform this compilation task.

Once the compilation is completed, the executable code has to be moved in the adequate directory, that is, in the proposed standard configuration, the *BIN* one.

The compilation procedure can be performed by using an adequate *makefile* file provided by the MARSCHALS L2 team together with the code files; this *makefile* file, residing in the *SBDART_SOURCE* and *RTM_SOURCE* subdirectory, can be executed by means of the usual *make* command.

Once the compilation is performed, , the *make install* command can be used to move the executable version.

To use the *makefile* file, please move to the directory in which the source files and the *makefile* file are stored (the *SBDART_SOURCE* and *RTM_SOURCE* directory in the standard configuration) and at the prompt type:

make

IFAC

and then press the "enter" button.

To use the *make install* command, after the compilation of the source files please move to the directory in which the compiled files are stored (the *BIN* directory in the standard configuration) and at the prompt type:

make install

and then press the "enter" button.

Please notice that the make and the make install commands works according to the standard arrangement of the file; the user can change this arrangement, but in this case, to use the make and the make install command, the makefile file have to be edited accordingly to the user defined arrangement of the files.

6.2 How to run the OFM

OFM is not a single self-standing code. To simulate the OCM measurement, two independent codes have to be sequentially used. First of all, SBDART code have to be run to simulates the source function and the extinction coefficient profile in a planeparallel atmosphere (see 6.2.1). Then the data produced by the SBDART code are used as input of the RTM code, that have to be run (see 6.2.2) on these data to simulate the OCM measurement in a spherical geometry.

6.2.1 How to run SBDART code

The settings of the SBDART code and the procedure to run it are described in Annex 1 (Chapter 0). Please notice that the SBDART code is a general tools, and in the MARSCHALS case it have to be set (by editing the *INPUT* file) in order to produced the desired source functions and the extinction atmospheric profiles.

The following suitable default INPUT file is provided with the MARSCHALS codes.

&INPUT

-		
idatm	=	Ο,
wlinf	=	0.855 ,
wlsup	=	0.855 ,
sza	=	39.6483 ,
isalb	=	0,
albcon	=	0.0 ,
zcloud	=	10.0, -12.0 ,
tcloud	=	0.0, 1.0 ,
nre	=	-10.0, -10.0 ,
iout	=	22 ,
nstr	=	40 ,
uzen	=	90. ,
nphi	=	10 ,
phi	=	0.0, 180.0 ,
imomc	=	3,
idb(8)	=	1 ,
/		

The SBDART code can be run in this way; at the prompt of the SBDART working directory (OFM/WORKING_DIR/SBDART in the default configuration) type:

../../BIN/sbdart > sbdart.dat

and then press the "enter" button.

The outputs are written, in the default configuration, in the **sbdart.dat** output file.

วคุาม	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_G Issue: 3 Revision: 1 Date: 10/04/07	A_2007_06_LS Page n. 132/10
-------	----------------------------------	---	--------------------------------

6.2.2 How to run the RTM code

The user can run RTM code by using the batch file *run_rtm*. At the prompt of the RTM working directory (OFM/WORKING_DIR/RTM in the default configuration) type:

run_rtm

and then press the "enter" button.

The user can change the default arrangements of the subdirectory by editing the batch file *run_rtm* and inserting the personalized organization.

6.3 Input files

6.3.1 <u>The input of the RTM code</u>

RTM code reads as input the file *atmosphere_rtm.dat* and the file *settings_rtm.dat*. The file *atmosphere_rtm.dat* contains data related to the vertical distribution of the pressure, temperature and water vapour; more on it contains the data elaborated by SBDART, such as the linear extinction coefficient and the radiance at a given altitude.

6.4 Settings file of RTM code

The user can set the procedure of the OFM by editing the setting file of RTM (called *atmosphere_rtm.dat*).

6.4.1 <u>How to define the altitude of the receiver</u>

The user can introduce a value to fix the altitude of the receiver.

[receiver_altitude] == real value (Km) to identify the altitude of the OCM
receiver

6.4.2 How to define the pointing angles

The user can introduce one or more pointing angles, at which the simulation is performed.

[n_angles] == an integer to define the number of pointing angles;

[pointing_angles] == an array (real values) used to define the zenithalpointing angles (degrees).

6.4.3 <u>How to define the receiver field of view</u>

The user can define an uniform field of view by entering an angular value.

[fov] == a real value which define the half-aperture of the antenna

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1 Date: 10/04/07 Page n. 137/169
-------	----------------------------------	---

6.4.4 How to define the latitude of the observations

The user can define the latitude at which the simulation is carried out. This information is used by RTM code to compute the local earth radius.

[latitude] == a real value used to define the latitude (degrees)

CIFAC	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2 Issue: 3 Revision: 1 Date: 10/04/07 Pa	2007_06_LS age n. 138/169
-------	----------------------------------	---	------------------------------

6.4.5 <u>How to insert an identifier of the computation</u>

The user can introduce a character string to identify the current setting file. The string is reported in the output file.

[setting_key] == a string (3 characters) used to identify the file.

6.5 Output files

6.5.1 <u>Output of RTM code</u>

The RT code returns as output the file *radiance_rtm.dat*

This file contains the radiance simulated by RTM code for each pointing angle of the instrument.

Data are arranged in rows and columns, with a row for each pointing angle of the RTM code.

In each row the data are arranged in columns labelled by the following key-words.

Key-words	related quantity	dim.	data type
Ind	Sequential index of the element.	-	int
Ang	Pointing angle.	deg	real
Rztang	Value of tangent altitude [referred to pointing angle (<i>ang</i>)].	Km	real
Rheta	Angular coordinate of the tangent point [referred to pointing angle (<i>ang</i>)].	deg	real
radiance	Value of radiance simulated for the pointing angle (<i>ang</i>).	W/(m ² *sr*nm)	real

Table 6-2. Parameters defined in the *radiance_rtm.dat* file, listed with their keywords.

วคุา	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC Issue: 3 Revision: Date: 10/04/07	C_GA_2007_06_LS 1 Page n. 140/169
------	----------------------------------	---	---

6.5.2 <u>Log file</u>

During the process, RTM elaborates a log-file, in which messages about the processing are reported. The content of the messages are self-explicative, and do not require further comments.

7 The visualization tool

IFAC

The MARSCHALS suite of codes is provided with a visualization tool that can be used to visualize in a easier way the results of the retrieval perform by the MARSCHALS code.

The visualization tool is constituted by an IDL code. It does not require any installation, but an existing IDL license for the computer in which the MARSCHALS code is installed is needed to run the tool. Please notice that this license is not provided by the MARSCHALS team for the delivered computer, and must be arranged by the user. In the default configuration, the files of the visualization tools are placed in the

subdirectory IDL of the main directory MARSCHALS_L2, as depicted in Figure 7-1.

Figure 7-1. The overall default arrangement in three main subdirectories of the files composing the MARSCHALS L2 suite (in blue the subdirectories).

7.1 How to run the visualization tool

The visualization tools must be run by directly using the executable file *run* (stored as a default in the *MARSCHALS_L2/IDL* subdirectory) in a IDL environment.

To run the visualization tool code please follow the above steps:

- 1. move to the subdirectory in which the *run* IDL executable code is placed (the *MARSCHALS_L2/IDL* in the default arrangement);
- 2. launch the IDL environment by typing at the system prompt:

idl

IFAC

and then press the "**enter**" button.

3. Inside the IDL platform, launch the visualization tool, by typing at the IDL prompt:

@run

and then press the "**enter**" button. A simple graphic user interface will be shown

4. In the graphic interface, by using the toolbar, choose the directory in which the MARSCHALS output data to be visualized are placed.

The visualization tool will produce a series of pictures (one for each retrieved target) with information about the related retrieved quantity. These picture are stored in files named [*target*]_col.TIFF, placed in the same directory of the considered MARSCHALS data.

The output of the visualization tool is described in a more detailed way the following paragraph.

7.2 The visualization tool output

The visualization tool is able to display information about all the MARC retrieved quantities. For each retrieved target the visualization tool automatically produces a picture containing the retrieved profile, its Expected Standard Deviation and the related quality parameters and averaging kernel.

An example of such a picture is depicted in Figure 7-2.

The aforementioned pictures are saved as a files named [*target*]_*col.TIFF* in the same directory of the considered MARC output data. These pictures are also directly shown in the default output (i.e. generally, the monitor of the computer).

Figure 7-2. The output of the visualization tool.

5	MARSCHALS Level 2	Prog. Doc. N.: IFAC_	A_2007_06_LS	
<u>IF</u> AC	User Manual	Issue: 3 Revision: 1 Date: 10/04/07	Page n. 144/169	
This page is intention	ally left blank.			

arac		01.7070	'	aron		01.0070	,	DP1CD		1.0
pbar	=	-1.0	,	sclh2o	=	-1.0	,	uw	=	-1.0
uo3	=	-1.0	,	o3trp	=	-1.0	,	ztrp	=	0.0
xrsc	=	1.0	,	xn2	=	-1.0	,	xo2	=	-1.0
xco2	=	-1.0	,	xch4	=	-1.0	,	xn2o	=	-1.0
xco	=	-1.0	,	xno2	=	-1.0	,	xso2	=	-1.0
xnh3	=	-1.0	,	xno	=	-1.0	,	xhno3	=	-1.0
xo4	=	1.0	,	isalb	=	0	,	albcon	=	0.0
SC	=	1.0,3*0.0	,	zcloud	=	5*0.0	,	tcloud	=	5*0.0
lwp	=	5*0.0	,	nre	=	5*8.0	,	rhcld	=	-1.0
krhclr	=	0	,	jaer	=	5*0	,	zaer	=	5*0.0
taerst	=	5*0.0	,	iaer	=	0	,	vis	=	23.0
rhaer	=	-1.0	,	wlbaer	=	47*0.0	,	tbaer	=	47*0.0
abaer	=	-1.0	,	wbaer	=	47*0.950	,	gbaer	=	47*0.70
pmaer	=	940*0.0	,	zbaer	=	50*-1.0	,	dbaer	=	50*-1.0
nothrm	=	-1	,	nosct	=	0	,	kdist	=	3
zgridl	=	0.0	,	zgrid2	=	30.0	,	ngrid	=	50
zout	=	0.0,100.0	,	iout	=	10	,	deltam	=	t
lamber	=	t	,	ibcnd	=	0	,	phi0	=	0.0
prnt	=	7*f	,	ipth	=	1	,	fisot	=	0.0
temis	=	0.0	,	nstr	=	4	,	nzen	=	0
uzen	=	20*-1.0	,	vzen	=	20*90	,	nphi	=	0
phi	=	20*-1.0	,	imomc	=	3	,	imoma	=	3
ttemp	=	-1.0	,	btemp	=	-1.0	,	spowder	=	f
idb	=	20*0								
/										
	===				===		===		===:	

NOTE: Unfortunately, many fortran compilers produce rather cryptic error messages in response to improper NAMELIST input files. Here are three common NAMELIST error messages and their meaning:

1. ERROR MESSAGE: invalid reference to variable in NAMELIST input

MEANING: you misspelled one of the NAMELIST variable names

6	MARSCHA	LS Level 2	Prog. Doc. N.: IFAC_G	A_2007_06_LS
UIF AC	User N	Ianual	Date: 10/04/07	Page n. 146/169
	•		I	
2. ERROR MESSAGE:	too many values for N	AMELIST variable		
MEANING:	you specified too man most likely because y more than one comma.	y values for a varia ou separated variabl	ble, es by	
2. ERROR MESSAGE:	end-of-file during re	ad		
	or namelist block INPUT	not found		
MEANING:	<pre>There are two possibi A) you didn't include (INPUT, DINPUT or B) You used the wrong namelist block nam namelist blocks to with /, but most F \$, \$END convention</pre>	lities: a NAMELIST block sp END) or you misspell character to signif e. FORTRAN90 expect start with & and en ORTRAN77 compilers u	ecifier ed it; or y a s the d sed the	
Other input files are so	ometimes required by S	BDART:		
atms.dat atmosphe aerosol.dat aerosol albedo.dat spectral filter.dat sensor f solar.dat solar sp usrcld.dat cloud ve	eric profile information surface albedo Eilter function pectrum ertical profile	(see input quantity (see input quantity (see input quantity (see input quantity (see input quantity (see input quantity	IDATM) IAER) ISALB) ISAT) NF) TCLOUD)	
device (i.e., the termin warnings issued by the I files named DISORT_WARNI message number. These f input file that triggere	al, if run interactiv DISORT radiative trans ING.?? where the quest iles contain a warnin ed the warning. General options (NAMEL	ely). However, some fer module are writt ion marks indicate a g message and a copy .IST &INPUT): =============	en to warning of the	
WAVELENC	TH LIMITS, FILTER FUN	CTION SPECIFICATION		
NF: SOLAR SE	PECTRUM SELECTOR			
-2 = use kdis	TOA solar irradiance st=-1. NF=-2 is not a	read from CKTAU file valid input when kd	when ist.ne1	
-1 = read data work foll	d from file solar.dat a file, "solar.dat" is sing directory. This A lowing free format rea	(user supplied) read from the curre SCII file is read wi d statements:	nt th the	
100	read(13,*,end=100) (continue	wlsun(i),sun(i),i=1,	5000)	
when	e, wlsun wavelength	sample points (micr	ons)	
	sun direct nor top of the	mal solar irradiance atmosphere (W/m2/mi	at the cron)	
The sola	number of wavelength ar.dat should be less	sample points read f than or equal to 500	rom O	
This Prev for filt is a ftp conv	s file format is new f vious versions of SBDA hat for spectral input ser.dat and solar.dat. available from ::/ftp.icess.ucsb.edu/ vert old data files to	or the SBDART_2002 v RT used a different files albedo.dat, A perl script 'new pub/esrg/sbdart to the new format.	ersion. form'	

		MAI	RSCHALS Level 2	Prog. Doc. N.: IFAC	C_GA_2007_06_LS
CIF AC			User Manual	Date: 10/04/07	Page n. 147/169
ISAT:	0 = spec 1 = 5s s 0.00 2 = LOWT. 20 cc 10 cc 3 = MODT. 20 cc FILTER F -4 Guass -3 Trian. -2 Flat -1 USER	trally uniform olar spectrum 5 micron resolu RAN_7 solar spen m-1 resolution, m-1 resolution, RAN_3 solar spen m-1 resolution, UNCTION TYPES ian filter, WLIN glar filter, WLIN filter, WLINF DEFINED, read fi	tion, .25 to 4 mics ctrum (default) 0. to 28780 d 28780. to 57490 d ctrum 100 - 49960 d NF-2*WLSUP to WLINF+ S*WLSUP to WLINF+.5 rom filter.dat	ron cm-1 cm-1 cm-1 +2*WLSUP WLSUP *WLSUP	r age n. 14//109
	0 WLINF NOTE:	TO WLSUP WITH I if ISAT=0 and 1 WLINF and WLSU have been chang such that WLINI wavelength sam the CKTAU file	FILTER FUNCTION = 1 KDIST=-1, then the open P only have an effect ged from their defau F .ne. WLSUP. Other ple points are as sp.	(default) values of ct if they ult values rwise the pecified in	
	 METEO GOES (GOES (AVHRR GTR-1 GTR-1 GTR-1 GTR-1 GTR-1 GTR-1 MFRSR <l< td=""><td>EAST) WEST) 1(NOAA8) 2(NOAA8) 1(NOAA9) 2(NOAA10) 2(NOAA10) 2(NOAA10) 1(NOAA11) 2(NOAA11) 00 ch1 00 ch2 00 410nm channel 500nm channel 610nm channel 665nm channel 862nm channel 862nm channel 940nm channel 5 (nominal) 4 (nominal) 5 (nominal) 5 (nominal) gical action spo 380-460nm 520-700nm 670-975nm 415-1110nm</td><td>l 1 ectra for DNA damage</td><td>e by UVB radiation</td><td></td></l<>	EAST) WEST) 1(NOAA8) 2(NOAA8) 1(NOAA9) 2(NOAA10) 2(NOAA10) 2(NOAA10) 1(NOAA11) 2(NOAA11) 00 ch1 00 ch2 00 410nm channel 500nm channel 610nm channel 665nm channel 862nm channel 862nm channel 940nm channel 5 (nominal) 4 (nominal) 5 (nominal) 5 (nominal) gical action spo 380-460nm 520-700nm 670-975nm 415-1110nm	l 1 ectra for DNA damage	e by UVB radiation	
	NOTE :	<pre>If ISAT=-1 a u; "filter.dat" i; directory. Thi; following free separated by sp read(13,*,end=)</pre>	ser supplied filter s read from the curr s ASCII file is read format read (number paces, commas or car 100) (wlfilt(i),filt	<pre>data file rent working d with the rs may be rriage returns); t(i),i=1,huge(0))</pre>	
	100	continue where, wlfilt	wavelength sample	points (microns)	
		filt The number of v filter.dat show	filter response va wavelength sample po uld be less than or	alue (unitless) oints read from equal to 1000	

Geoc	MARSCHALS Level 2 User Manual	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1
		Date: 10/04/07 Page n. 148/169
	This file format is new. Previous ver SBDART used a different format for sp input files albedo.dat, filter.dat an solar.dat. A perl script 'newform' : available from ftp::/ftp.icess.ucsb.edu/pub/esrg/sb convert old data files to the new for	rsions of pectral nd is dart to rmat.
WLINF:	ower wavelength limit when ISAT=0 (WLINF : entral wavelength when ISAT=-2,-3,-4	> .250 microns)
WLSUP:	upper wavelength limit when ISAT=0 (WLSUP · equivalent width when ISAT=-2,-3,-4	< 100.0 microns)
1	10TE:	
	f ISAT eq -2, a rectangular filter (constant avelength) is used, with central wavelength a and an equivalent width of WLSUP (full width :	with at WLINF = WLSUP)
	f ISAT eq -3 , a triangular filter function is the central wavelength at WLINF and an equival ILSUP (full width = $2*WLSUP$) (filter function points, and one at WLINF).	s used with lent width of is zero at end
	f ISAT eq -4, a gaussian filter function is w the central wavelength at WLINF and an equival MLSUP (full width = 4*WLSUP)	used with lent width of
	f output is desired at a single wavelength, s ILINF=WLSUP and ISAT=0. In this case, SBDART et WLINC=1 (the user specified value of WLINC and the output will be in units of (W/m2/um) s rradiance and (W/m2/um/sr) for radiance.	set will C is ignored) for
WLINC:	'his parameter specifies the spectral resolut: BDART run. Though the spectral limits of the ire always input in terms of wavelength, the s tep size can be specified in terms of constant .ncrements of wavelength, log(wavelength) [san constant increment of log(wavenumber)] or wave Thich one to choose depends on where in the sp pandpass you want to place the most resolution	ion of the e calculation spectral nt me as enumber. pectral n.
	ince SBDART is based on LOWTRAN7 band models have a spectral resolution of 20 cm-1, it woul overkill to allow spectral step size less that the other hand a spectral resolution coarser of also pretty useless. Therefore the way WLIN interpreted depends on whether it is less than between zero and one, or greater than 1.	, which ld be extreme n 1 cm-1. On than 1 um NC is n zero,
* 1	NLINC = 0 (the default) => wavelength increme equal to 0.005 um or 1/10 the wavelength range ever is smaller. If the WLINF=WLSUP then WLIN	ent is e, which NC=.001
* *	TLINC < 0 => wavelength increment is a constant of the current wavelength. WLINC is interpred a specified value of delta(lambda)/lambda and vavelength steps are adjusted so that wavelengupproximately the product of the current waves NLINC.	nt fraction ted as the gth step is length and
	pecifying the wavelength increment as a fractive size is useful when the wavelength range over more than an decade of wavelength. For a f the wavelength range is 0.5 to 20.0, specificonstant wavelength increment of .01 microns funder-resolve the low wavelengths and over-resolve the low wavelengths and over-resolve to use a wavelength increment of about .0 microns in the visible and about .2 micron in thermal infrared, which is a better compromise resolution and computer time.	tional extends example, fying a tends to solve the s the 005 the e of

6		MARSCHALS Level 2	Prog. Doc. N.: IFAC_C	GA_2007_06_LS
UIFAC		User Manual	Date: 10/04/07	Page n. 149/169
	* 1 >- WT.T	NC > 0 -> WI.INC is the wavelength step	size (11m)	
	if WIINC	> 1 then WINC is the step size in inver		
	centimet gaseous output, wavenumb	ers. If maximum fidelity is required and absorption is the primary influence on th then WLINC should be set to 20, which is er resolution of the LOWTRAN7 band models	e the	
	The tota	l number of wavelength steps, nwl, is giv	en by	
	nwl = 1	+ln(wlsup/wlinf)/ wlinc wlinc <	0	
	nwl = 1	+(wlsup-wlinf)/wlinc 1 >= wli	nc > 0	
	nwl = 1	+10000*(1/wlinf-1/wlsup)/wlinc wlinc >	1	
	SOLAR GE ======	OMETRY =====		
SZA:	solar ze Solar in SZA is i	nith angle (degrees) (default = 0.) put may be turned off by setting sza>90 gnored if CSZA is non-negative or IDAY is	non-zero.	
CSZA:	Cosine o zenith a	f solar zenith angle. If CSZA > 0, solar ngle is set to acos(CSZA) (default = -1.)		
IDAY:	If IDAY are comp coordina algorith of days lst of J if IDAY mod(IDAY	> 0, the solar illumination angles (SZA, uted from the specified time and geograph tes using an internal solar ephemeris m (see subroutine zensun). IDAY is the nu into a standard "year", with IDAY=1 and t anuary and IDAY=365 on the 31st of Decemb > 365, IDAY is replaced internally by -1,365)+1.	PHIO) ic mber he er	
	If IDAY alat,alo	< 0, the code writes the values of abs(id n,sza,azm, and solfac to standard output	ay),time, and exits.	
TIME : ALAT : ALON :	UTC time latitude east lon	(Grenwich) in decimal hours of point on earth's surface gitude of point on earth's surface		
	NOTE: TI	ME, ALAT and ALON are ignored if IDAY .eq	. 0	
SOLFAC:	solar di for seas If R is then SOL solar ge In this	stance factor. Use this factor to account onal variations of the earth-sun distance the earth-sun distance in Astronomical Unt FAC=1./R**2. SOLFAC is set internally wh ometry is set through IDAY, TIME, ALAT and case SOLFAC is set to,	t its en the d ALON.	
	SOLFAC =	<pre>(1eps*cos(2*pi*(IDAY-perh)/365))</pre>		
	where ep and pe	s = orbital eccentricity = 0.01673 rh = day of perihelion = 2 (jan 2)	
	NOTE: se pr fl ma me	asonal variations in earth-sun distance oduce a +/-3.4% perturbation in the TOA s ux. This factor should be included when king detailed comparisons to surface asurements.	olar	
NOSCT:	aerosol 0 nor 1 red 2 set 3 red	scattering mode used for boundary layer a mal scattering and absorption treatment uce optical depth by (1-ssa*asym), set ss ssa=0 uce optical depth by (1-ssa), set ssa=0	erosols: a=0	
	where ss	a=single scattering albedo, and asym=asym	metry factor	
	nosct do the iaer	es not affect the stratospheric aerosol m =6 boundary layer model.	odels or	

UIF AC			Usor Monuel	15	sue: 3 Revision: 1	
	-		User manual	D	ate: 10/04/07	Page n. 150/169
				I		
	SURFACE	REFLECTANCE PR	OPERTIES			
ISALB:	SURFACE	ALBEDO FEATURE	1			
	-1 -spect 0 -user 1 -snow	ral surface al specified, spe	bedo read from "albedo ctrally uniform albedo).dat") set w	ith ALBCON	
	2 -clear 3 -lake 4 -sea	r water water water				
	5 -sand 6 -veget	cation				
	7 -sungl 10 -combi	lint off of oce ination of snow	an, wind speed set wit , seawater, sand and v	h ALBC. regetat	ON Lion	
	NOTE: If fil dir fol ser	ISALB=-1 a use le "albedo.dat" rectory. This A llowing free fo parated by space	r supplied spectral re is read from the curr .SCII file is read with ormat read (numbers may res. commas or carriage	flecta ent wo the be retur	nce orking	
	100	<pre>read(13,*,end= continue</pre>	100) (wlalb(i),alb(i),	i=1,hu	ıge(0))	
		where, wlalb alb	wavelength sample poi spectral albedo (unit	.nts (m less)	icrons)	
		The number of albedo.dat sho	wavelength sample poin uld be less than or eq	ıts rea qual to	d from 0 1000	
	The user wavelengt This cont (sand, ve only spec resolutic	specified refl th range and ha trasts with the egetation, lake tified in in th on.	ectance may cover any ve arbitrarily high re standard reflectance water and sea water) e range .25 to 4 um at	soluti models which 5nm	on. are	
	This file a differe filter.da available to conver	e format is new ent format for at and solar.da e from ftp::/ft rt old data fil	. Previous versions of spectral input files a t. A perl script 'new p.icess.ucsb.edu/pub/e es to the new format.	SBDAR lbedo. form' srg/sb	T used dat, is dart	
ALBCON:	ISALB=0 - ISALB=7 -	a spectrall the wind sp	y uniform, surface alb eed (m/s)	oedo		
SC:	Composite SC(1) = f SC(2) = f SC(3) = f SC(4) = f	e albedo fracti iraction of sno iraction of oce iraction of san iraction of veg	ons (applies only when w an d retation	ι ISALB	:=10)	
	NOTE: S T k s t t c	SC(1)+SC(2)+SC(Thus, it is pos boost the overa surface type. cesults for a s twice that of s greater than on	3)+SC(4) need not sum sible to use the SC fa ll reflectance of a gi For example, SC=0,0,2, urface with spectral r and. Beware, total re e will produce unphysi	to 1. .ctor t .ven 0 yiel ceflect cflecta .cal re	.o .ds .ivity .nce .sults.	
	MODEL ATM	10SPHERES			<i></i>	
IDATM:	ATMOSPHEF	RIC PROFILE:	default water vapor (g/cm2)	ozone total	(atm-cm) below_10km	
	0 User Sr	pecified				
	1 TROPICA	AL PITUDE SUMMER	4.117	0.253	.0216	
	3 MID-LAT	CITUDE WINTER	0.854	0.403	.0336	
	4 SUB-ARC	CTIC SUMMER	2.085	0.350	.0346	
			0.418	0.486	.0340	
	5 SUB-AR(6 US62	JIC WINIER	1.418	0.349	.0252	

6	MARSCHALS Level 2	Prog. Doc. N.: IFAC_GA_2007_06_LS
UIF AC	User Manual	Issue: 3 Revision: 1 Date: 10/04/07 Page n. 151/169
If IDATM "atms.da directory free for separate	= 0, a user supplied atmospheric profile t", is read from the current working y. This ASCII file is read with the fol mat read statements (input values may be d by spaces, commas or carriage returns).	e, lowing ;
rea do r 10 con	d(13,*) nn 10 i=1,nn ead(13,*) z(i),p(i),t(i),wh(i),wo(i) tinue	
whe	re nn is the number atmospheric layers nn should be less or equal to than a parameter used in SBDART (see par to set the maximum number of levels vertical grids.	MXLY, cams.f) s in the
	<pre>z is the layer altitude in km (z must be monotonically decreasing p is the pressure in millibars t is the temperature is Kelvin wh water vapor density g/m3 wo ozone density g/m3</pre>	3)
If IDATM to -6 SB correspon quits.	is set to a negative number in the range DART prints the atmospheric model nding to abs(idatm) to standard out, and	e -1 then
AMIX: weighting how much with one IDATM. 70% weigi profile	g factor, when positive this factor cont of the atms.dat atmospheric profile to t of the standard internal profiles select For example IDATM=1 and AMIX=.7 specifies nting of atms.dat and a 30% weighting of IROPIC. No (default=-1)	crols mix in ced by s a
UW: integrat	ed water vapor amount (G/CM2)	
UO3: integrate above the so UO3 us (1 atm-cu	ed ozone concentration (ATM-CM) e level ZTRP. The default value of ZTRP: sally specifies the total ozone column. m = 1000 Dobson Units)	=0,
NOTE: Use UW or vapor or multipli that of The orig UW or UO	r UO3 to set the integrated amounts of wa ozone in the model atmosphere. Aside for cative factors the vertical profile will the original model atmosphere set by IDA? inal unmodified density profile is used w 3 is negative.	ater com be TM. when
O3TRP: integrat. i.e., for is used	ed ozone concentration (ATM-CM) in tropos z.lt.ZTRP. The original tropospheric de when O3TRP is negative. (default=-1.)	sphere. nsity
ZTRP: The alti O3TRP sets and tropos value of 2 ozone amo	tude of the tropopause. The parameters to s the total column ozone in the stratosph sphere, respectively. Note: since the de ZTRP is zero, UO3 normally sets the integ pount of the entire atmosphere (default=0	JO3 and Here Sfault grated).
XN2:volume mXO2:volume mXCO2:volume mXCH4:volume mXN20:volume mXC0:volume mXNH3:volume mXSO2:volume mXNO:volume mXHNO3:volume mXNO2:volume m	ixing ratio of N2 (PPM, default = 7810 ixing ratio of O2 (PPM, default = 2090 ixing ratio of CO2 (PPM, default = 2090 ixing ratio of CH4 (PPM, default = 2000 ixing ratio of CH4 (PPM, default = 2000 ixing ratio of CO (PPM, default = 20000 ixing ratio of N20 (PPM, default = 200000 ixing ratio of N43 (PPM, default = 20000000000 ixing ratio of SO2 (PPM, default = 200000000000000000000000000000000000	000.00) 000.00) 1.74) 0.32) 0.15) 5.0e-4) 3.0e-4) 3.0e-4) 5.0e-5) 2.3e-5)
NOTE: Se ati	tting any of these factors to -l causes to mospheric component to retain its nominal	l

6	MARSCHALS Level 2	Prog. Doc. N.: IFAC_GA_2007_06_LS
<u>(แเ</u> ย	User Manual	Date: 10/04/07 Page n. 152/169
	 ixing ratio defined in the US62 atmosphere as listed above). 	2
Th is it mu	ne volume mixing ratio (VMR) of a given sp s adjusted by specifying the surface value cs VMR in PPM. The entire altitude profil altiplied by the ratio of the user specifi AR and the nominal surface VMR.	pecies e of Le is Led
Th VM gr de be wh	here are no further re-normalizations of t AR. Thus, the total of all the VMRs may b ceater or less than 10 ⁶ . By the way, the efault set of VMRs do not add up to 10 ⁶ ecause of the exclusion of the noble gases hich do not have any radiative effects.	che De
XRSC: sensitiv This fac for sens	vity factor for Rayleigh scattering (defau ctor varies the strength of Rayleigh scatt sitivity studies.	ult=1) Cering
XO4 sensitiv oxygen o in subro	vity factor to adjust strength of absorpti collisional complexes (default=1, see comm putine o4cont)	on by ments
PBAR: surface If PBAR factor (original the dens and Rayl If PBAR	pressure in millibars. .gt. 0 then each pressure is multiplied b (PBAR/P0) where P0 is the surface pressure l atmosphere. At each height in the atmosp sity of all molecular species (sources of leigh scattering) is proportional to press .le. 0, the original pressure profile is	by the e of the ohere absorption sure. used.
ZPRES: Surface This par surface specific logarith atmosphe ZPRES do atmosphe large va dT/dz=0)	altitude in kilometers. cameter is just an alternate way of settir pressure, and should not be set when PBAR ed. When ZPRES is set PBAR is obtained by mic interpolation on the current model's ere pressure and altitude arrays. Changing bes not alter other parameters in the eric model in any way. Note that setting alue of ZPRES may push the tropopause (whe o to an unrealistically high altitude.	ng the k is / g a ere
SCLH2O: Water va	apor scale height in km. 20 .gt. 0, then water vapor is vertically	
distribu If SCLH2 is used. water va	ated as exp(-z/SCLH2O) 20 .le. 0, then the original vertical prof . Changing SCLH2O has no effect on the tot apor amount.	file cal
CLOUD PA	ARAMETERS	
ZCLOUD: Altitude layers m separate monotoni ZCLOUD w correspo	e of cloud layers (km) (up to 5 values), C may be specified in two ways. To specify a cloud layers, set ZCLOUD to a sequence of ically increasing altitudes. Each value of will set the altitude (above the surface) onding optical depth in the TCLOUD array.	Cloud of of the
To speci by cloud minus si	ify a range of altitudes which will be fil d, tag the second element of the range wit ign. Consider,	lled ch a
zcloud=1 tcloud=4 nre=6,6,	L,-3,10,-15 4,0,8,0,0 .8,9,10	
In this defined, a total 6um. Th has a to of effec	example two continuous cloud layers are , the lower one extends from 1 to 3 km and optical depth of 4 and an effective radiu he upper cloud layer extends from 10 to 15 stal optical thickness of 8 and a sliding etive radius which starts 8um at the botto	l has us of 5 km, value om of

6		MARSCHALS Level 2	Prog. Doc. N.: IFAC_GA_2007_06_LS
UIF AC		User Manual	Date: 10/04/07 Page n. 153/169
	the cloud that the	d and ramps up to 9um at 15km. However, 1 actual location of the cloud layers is	peware
	determin grid poi	ed by the resolution and placement of ver nts in SBDART, as explained below.	rtical
	SBDART p grid poin	uts the i'th cloud layer at the highest with the highest with the such that	vertical
	z(k)	.le. abs(ZCLOUD(i)+.001)	
	NOTE: A of one of th actually point. 1 affect th above) bu check th ZCLOUD=1 just above	cloud with a nominal altitude equal to the he computational layer altitudes, Z(K), extends from Z(k) to the next higher gr: For example, a cloud layer at Z(k) will n he direct beam flux at Z(k-1) (one layer ut will strongly affect it at Z(k). (You is out your self by setting IOUT=10 and and messing around with ZOUT to get outp we or below the cloud).	nat of id not u can puts
	Suppose	the bottom of your computational grid loo	oks like
	k 30 31 32 33 34 35	z(k) 2.5 2.0 1.5 1.0 0.5 0.0	
	If you wa set ZCLOI be obtain anything	ant a cloud to extend from 0.5 to 1.5 km UD= .5, -1.5. Actually the same result of ned by setting the second element of ZCLG between -(1.0+epsilon) and -1.5.	, then would DUD to
	Consider	,	
		TCLOUD= 6., 0.0, 12., 0.0, 0 ZCLOUD=1.0, -6.0, 4.0, -9.0, 0	
	Here two extending thickness total th thickness would hav deck and code adds region of yield 1 optical of depths po depth of	overlapping cloud decks are specified, or g from 1 to 6 km with a total optical s of 6, and the other from 4 to 9 km with ickness of 10. Since the total optical s is spread over the total altitude range ve 1 optical depth per km for the lower of 2 optical depths per km for the second. s the effects of both cloud decks in the f overlap. So the above specification we optical depth per km between 1 and 4 km, depths per km between 4 and 6 km and 2 op er km between 4 and 9 km for a total opti- 18.	one n a e we cloud The puld 3 optical ical
	NOTE: Whe negative range), f high alt: layers a: altitude computat: levels a: following	en a ZCLOUD range is being specified (i.e value is used to set the upper end of a the opacity appears only between the low itudes in the range. When individual clo re set, the opacity extends from the name to the altitude of the next higher ional level. Thus, if the computational re at lkm intervals starting from zero, to g inputs do exactly the same thing:	e., a and oud ed the
	TCLOUI	D=2,0 D=1,-3	
	TCLOUI ZCLOUI	D=1,1 D=1,2	
	If you hat the cloud print out	ave any doubt about where the code is put d, set IDB(8)=1 (see below) to get a diag t of cloud optical depth.	tting gnostic

6		М	ARSCHALS Level 2	Prog. Doc. N.: IFAC_C	GA_2007_06_LS		
Selation			User Manual	Date: 10/04/07	Page n. 154/169		
	NOTE: do clo (2 wol	not try to p oud layer rang le NRE le 12 n't work:	ut an ice cloud (NRE < 0) in ge which includes water clou 8). In other words this spe	a d cification			
	1	$\begin{aligned} \text{ZCLOUD} &= 1, -4 \\ \text{TCLOUD} &= 1, 0 \\ \text{NRE} &= 8, -1 \end{aligned}$					
TCLOUD:	Optical	thickness of (cloud layer, (up to 5 values	3)			
	TCLOUD s waveleng other way	pecifies the o th of 0.55um. velengths is o	cloud optical depth at a The cloud optical depth computed using the relation,	at			
	tau = TCI	LOUD*Q(wl)/Q(0.55um),				
	where Q is function discussic contains radii in a single The wave clouds an	is the extinct of effective on of LWP for a look-up tal the range 2 effective rad lengths range nd .29 to 20 to	tion efficiency, which is a radius and wavelength (see a definition of Q). The co ble of Q that covers effecti to 128um for water clouds an dius of 106um for ice clouds is 0.29 to 333.33 um for wa um for ice clouds.	ode ve d for s. uter			
	When spec levels, to cloud to produces altitude	cifying an op the second TC o altitude is a uniform dia range.	tical depth for a range of g LOUD entry corresponding to usually set to zero. This stribution of opacity over t	rid the he			
	For exam	ple,					
	ZCLOUD= 1 TCLOUD= 1 NRE= 1	1 ,-5,0,0,0 10, 0,0,0,0 10,20	<pre># uniformly distributed op # for a cloud of extent 4 # 2.5 optical depths per k # effective radius ramps f # 10 to 20 between 1 and 5</pre>	pacity km m irom ikm			
	A linear obtained factor wl the high	ly varying opa by setting th hich represent est layer to	acity distribution can be he second TCLOUD entry to a ts the ratio of the opacity that in the lowest layer	in			
	For exam	ple,					
	ZCLOUD= : TCLOUD= :	1 ,-5,0,0,0 10, 4,0,0,0	<pre># linearly distributed opa # for a cloud of extent 4 # between tau(1-2km)=1 # between tau(2-3km)=2 # between tau(3-4km)=3 # between tau(4-5km)=4 # # between tau(4-5km)=4</pre>	acity km			
			# tau(tota1)=10 # tau(4-5km)/tau(1-2km)=4				
	NOTE: if r is the ratio of the top to bottom and t is the average opacity per level then,						
		tau(top_le	vel)=t*2r/(1+r)				
		tau(bot_le	vel)=t*2/(1+r)				
	NOTE: a i at	linear increas the cloud bo	se in opacity, starting from ttom, is obtained by setting	n zero 4,			
		r=1 + 2*zd	iff/dz				
	whe alt fo: clo ZCI inc	ere dz is the titude range of rmula assumes bud altitude : LOUD= 1,-5 an crease from zo	grid spacing and zdiff is t over which the cloud extends constant grid spacing over range. Thus, if dz=1 then nd TCLOUD= 10,7 yeilds a li ero.	the total . This the .near			

		MARSCHALS Level 2	Prog. Doc. N.: IFAC_0 Issue: 3 Revision: 1	GA_2007_06_LS
UFAC			Date: 10/04/07	Page n. 155/169
NRE :	Cloud dro Default v	p effective radius (microns). (up to alue of NRE=8.	5 values)	
	The absol number in NRE < 0 s NRE > 0 s	ute value of NRE should be a floating po the range 2.0 to 128.0. elects mie scattering parameters for ice elects mie scattering parameters for wat	pint e particles ter droplets	
	The drop gamma dis	size distribution is assumed to follow a tribution:	2	
	N(r) = C	(p-1) (-r/Ro) * (r/Ro) e		
	where C i p=7, and i	s a normalization constant [C=1./(Ro*gar Ro=NRE/(p+2)	nma(p))],	
	The facto from the	r (p+2) relating Ro to NRE follows defining equation of NRE:		
	NRE = < r	3 2 N(r) > / < r N(r) >,		
	where the drop radi	angle brackets indicate integration ove i.	er all	
	Another f distribut as the ra drop size between R	requently used parameter to describe the ion is the mode radius, Rm, which is def dius at which $N(r)$ is maximized. For ou distribution $Rm=(p-1)*Ro$. Using the re o and NRE we find that, $Rm=(p-1)*NRE/(p-1)$	e size fined ur elation +2)	
	NOTE: If values of cloud spe The first lowest la surface a following atmospher is read w	the first element of NRE is zero, the TCLOUD, ZCLOUD, LWP and NRE are ignored cification records are read from file us record in this file corresponds to the yer in the atmosphere, that is between t nd the lowest cell boundary altitude. Es record sets values for the next higher ic layer in the model atmosphere. usrcl ith the following fortran statements:	d and srcld.dat. the ach ld.dat	
1	do i=1,nz read(13 enddo 00 continue	-1 ,*,end=100) lwp(i),re(i),fwp(i),rei(i),c	cldfrac(i)	
	where lwp	liquid water path in layer i. (default=0)	(g/m2)	
	re	effective radius of liquid water in layer i. (default=8um)	(um)	
	fwp	frozen water path in layer i. if fwp < 0 then scattering parameters are obtained from ccm3 cirrus model (see subroutine icepar), if fwp > 0 then scattering parameters are obtained from an internal mie scattering databas covering ice spheres with effective rad between 2 and 128 um. (default=0)	(g/m2) d se dii	
	rei	effective radius of frozen water in layer i. only active when fwp is non-zero. if fwp.lt.0 and rei.le.0 then effective radius of ice is taken from ccm3 cirrus model (see subroutine icepar) (default=-1)	(um)	
	cldfrac	cloud fraction in layer. this parameter reduces cloud optical depth by factor cldfrac**1.5 (default=1)	<u>c</u>	
	It is not layers ab forward s	necessary to provide input records for ove the highest cloud. In addition, a lash terminates interpretation of data v	values	

	MARSCHALS Level 2 Prog. Doc. N.: IFAC_GA_20 Issue: 3 Revision: 1	07_06_LS
ULLUC	User Manual Date: 10/04/07 Pag	e n. 156/169
	in a record. For example, the following records in usrcld.dat specify a cloud that extends from 2 to 4 km (assuming idatm>0 and no regridding):	
	<pre>/</pre>	
	Any input quantities that are left unspecified will retain their default values of lwp=0. reff=8, fwp=0, reice=-1, and cldfrac=1. The radiative properties of ice are computed from a CCM3 model (see subroutine ICEPAR).	
IMOMC:	Controls the phase function model used in cloud layers: 1 isotropic scattering 2 rayleigh scattering phase function 3 henyey_greenstein [a function of asymmetry factor, g(re)] 4 haze L as specified by garcia/siewert 5 cloud c.1 as specified by garcia/siewert	
	(default=3)	
TM5:	The liquid water path (or frozen water path if nre.le.0) of a cloud is specified in units of $g/m2$. This is another way to specify cloud optical depth.	
	A linearly varying opacity distribution can be obtained by setting the second LWP entry to a factor which represents the ratio of the opacity in the highest layer to that in the lowest layer For more details see the discussion of TCLOUD.	
	NOTE: a 1 mm column of liquid water = 1000 g/m2,	
	NOTE: LWP and TCLOUD cannot be used at the same time	
	NOTE: The aloud optical depth is related to LWD by	
	NOIL. The cloud optical depth is felated to two by	
	3 Q(wl) * LWP tau =	
	4 RHO * NRE	
	where Q is the scattering efficiency and RHO is the density of liquid water (1 g/cm3). The value of Q that applies to a distribution of cloud droplets can be expressed in terms of the extinction cross-section at a given wavelength and liquid drop radius.	
	Let sigma = extinction cross-section at a given wavelength and drop radius	
	$q = sigma/(pi*r^2)$ (dimensionless)	
	where $(pi*r^2)$ is the geometrical cross-section of the cloud drop	
	then Q is a weighted average over drop radius, given by:	
	2 = 2 Q = < r q N(r) > / < r N(r) >	
	for visible light Q is typically about 2 (dimensionless).	
	For example: NRE = 10um and LWP= 200g/m2 = 0.2mm => tau = 30	
RHCLD:	The relative humidity within a cloud layer (a floating point value between 0.0 and 1.0). RHCLD<0 disables the adjustment	

		MARSCHALS Level 2	Prog. Doc. N.: IFA	Prog. Doc. N.: IFAC_GA_2007_06_LS	
U F _A C		User Manual	Issue: 3 Revision Date: 10/04/07	: 1 Page n. 157/169	
	of relati the cloud water vap parameter	ve humidity, in which case the layer follows solely from the or density of the initial mode has no effect when KDIST<0	relative humidity in temperature and l atmosphere. This		
KRHCLR:	If zero, proportic path spec RHCLD is	water vapor mixing ratio in cl nately reduced to maintain the ified by WH. This option has n negative or TCLOUD is zero. (d	ear layers is water vapor o effect if efault)		
	if 1, the	relative humidity in clear la	yers is unchanged.		
	NOTE: if water vap On the ot may drive be unable effect wh	KRHCLR=1 and clouds are presen for path will differ from that her hand, if KRHCLR=0, the nor the water vapor in clear laye produce a given WVP. This pa en KDIST<0	t, the actual specified by WH. malization procedure rs to zero and still rameter has no		
	STRATOSPI	ERIC AEROSOLS (LOWTRAN 7 model) ==		
JAER:	5 element	array of stratospheric aeroso	l types		
	0-no aero 1-backgro 2-aged vo 3-fresh v 4-meteor	sol und stratospheric lcanic olcanic dust			
ZAER:	altitudes layers (} NOTE: eve aerosols, within th of how ae SBDART's	(above the surface) of strato m) Up to 5 layer altitudes may n though these models are for the scattering layer may be p e numerical grid. See ZCLOUD f prosol (cloud) layers are posit computational grid.	spheric aerosol be specified. stratospheric laced anywhere or a discussion ioned within		
TAERST:	optical o aerosol 1 specifieo	epth (at 0.55 microns) of each ayer. Up to 5 layer optical d 	epths may be		
	BOUNDARY	LAYER AEROSOLS (BLA)			
IAER:	Boundary	layer aerosol type selector			
	-1-read ac from ac	rosol optical depth and scatte rosol.dat. See subroutine AERE	ring parameters AD.		
	the fil	e format is readable by the fo	llowing Fortran code:		
	read(12 do k=1, read do i= rea enddo 100 continu	<pre>,*) nn, moma huge(0) 11,*,end=100) wl(k) nz-nn+1,nz d(11,*) dtau(i,k),waer(i,k),pm e</pre>	om(1:moma,i,k)		
	where nn	is the number of atmosp which aerosol informati layers 1 through nz-nn (nn should be less than	heric levels for on is specified. are unchanged. . MXLY)		
	moma	number of phase functio	n moments		
	wl(k)	is the wavelength [wl(k) < wl(k+1)]		
	dtau	i,k) is the optical depth in level i at wavelength k specified in top-down o	crement within , information is rder.		

6	MARSCHALS Level 2	Prog. Doc. N.: IFAC_G Issue: 3 Revision: 1	A_2007_06_LS
วค <mark>า</mark> ม	User Manual	Date: 10/04/07	Page n. 158/169
wae	r(i,k) is the single scattering albedo		
pmc	<pre>m(m,i,k) are legendre moments of the phase Note that zeroeth moment is not n is assumed to be 1.</pre>	e function. cead, it	
0-no bo	undary layer aerosols (all BLA parameters	ignored)	
1-rural			
2-urbar			
3-ocean	ic		
4-tropo	spheric		
5-user	defined spectral dependence of BLA		
The w param param 1 and	avelength dependence of the aerosol scatte eters are replaced by those read in from s eters wlbaer, tbaer, wbaer and gbaer. Bet 47 spectral values may be specified.	ering input cween	
NOTE: t n S	he spectral dependence of the boundary lay odels (IAER=1,2,3,4) vary with relative hu ee subroutine AEROSOL for details.	yer aerosol umidity.	
NOTE: E a w i d d e n v v c c w	on't be mislead by the term "boundary laye erosol". The BLA models, IAER=1,2,3,4 ere originally developed to describe aeros n the lower atmosphere. However in SBDART efault vertical density of BLA falls off xponentially, and affects regions above th ormal extent of the boundary layer. The ertical influence of these aerosols may be onfined to a specified boundary layer alti ith the optional parameters ZBAER and DBAR	er sols F, the ne e itude ER.	
RHAER: The spe scatter Use inp used in (the de humidit	ctral dependence of the boundary layer aer ing parameters are sensitive to relative h ut parameter RHAER to set the relative hu the boundary layer aerosol model. Set RHZ fault value) to use the ambient surface re y. RHAER has no effect when IAER = 5.	cosol numidity. nidity AER=-1 elative	
VIS: (Horizo due to not set model (the ver	ntal Path) Visibility (km) at 0.55 microns boundary layer aerosols. This parameter of the optical depth for the user defined ae IAER=5), but does affect that model throug tical structure (see below).	s does erosol gh	
NOTE: U 1 d v a	nlike the stratospheric aerosols, the bour ayer aerosols have predefined vertical der istributions. These vertical structure mo ary with visibility. (see discussion of 2 nd DBAER)	ndary nsity odels ZBAER	
NOTE: T (i	he boundary layer aerosol optical depth absorption + scattering) at 0.55 microns s given by		
t	auaero(0.55um) = $3.912 * integral (n(z)/r$	n(0) dz) / VIS	
d t r	here n(z) is the vertical profile of aeros ensity. For the 5 and 23 km visibility mo he indicated integral is 1.05 and 1.51 km, espectively. So,	sol odels	
t	auaero(0.55um) = 3.912*(1.05*w+1.51*(1-w)))/vis	
e	here w is a weighting factor between the t xtremes and is given by	EWO	

6	MARSCHALS Level 2	Prog. Doc. N.: IFAC_GA_2007_06_LS Issue: 3 Revision: 1
วคุาม	User Manual	Date: 10/04/07 Page n. 159/169
w	(1/vis-1/23) = , 5 < vis < 23 (1/5-1/23)	
w	= 1 , vis < 5	
W	= 0 , vis > 23	
NOTE: Vis in at	sibility is defined as the horizontal dis km at which a beam of light at 0.55um is tenuated by a factor of 0.02.	stance ;
n(0)*sigma*VIS = -ln(.02), or	
VI	S = 3.912/(n(0)*sigma)	
who cro Me	ere sigma is the aerosol absorption+scatt oss-section at 0.55 microns. See Glossar teorology, American Meteorology Society,	vering vy of 1959
ZBAER: Altitude Up to MXI active fo	grid for custom aerosol vertical profile LY altitude points may be specified. ZBA or all positive values of IAER.	e (km) AER is
DBAER: Aerosol of all positi may be sp match the aerosol of profile si optical of computati interpola normal vo unset.	density at ZBAER altitude grid points, ac tive values of IAER. Up to MXLY density pecified. The number of density values mu e number of ZBAER. The units used to spe density is arbitrary, since the overall is scaled by the user specified total ver depth. The aerosol density at all ional grid points is found through logari ation on the ZBAER and DBAER values. The ertical profile from 5s is used when DBAE	ctive for values sst ecify ctical .thmic ER is
For examp	ple	
ZBAER: DBAER:	=0,1,100 =1000,500,1	
specifie: factor 2 and then	s a aerosol density profile that drops by (exponential fall off) between 0 and 1km by a factor of 500 between 1 and 100 km.	/ a altitude
If DBAER of DBAER computat	is set but ZBAER is not set, then the el are used to set the aerosol density for ional layer, starting from the bottom lay	ements each Yer.
For exam	ple,	
DBAER	=10,0,1,0	
puts aero	osol in the first and third layer.	
If neither aerosols distribut scale het visibili used to a the resu ZBAER and optical of	er ZBAER or DBAER are set, the boundary 1 are assumed to follow a pre-defined vert tion which drops off exponentially with a ight between 1.05 and 1.51 km depending ty (see VIS). Thus, even if visibility i set the vertical optical depth it can aff lt through the vertical profile. Note tha d DBAER do not affect the total vertical depth of aerosols. (See discussion for VI	ayer Dical S not Diect It S).
TBAER: Vertical 0.55 um. IAER. Wh supersed input pa: structure	optical depth of boundary layer aerosols TBAER input is significant for all valu en IAER=1,2,3,4 the specified value of TE es the aerosol optical depth derived from rameter VIS (but VIS still controls verti e model unless DBAER and ZBAER are set).	s at les of MAER 1 .cal
QBAER: QBAER is when IAE dependent	the extinction efficiency. QBAER is onl R=5. When TBAER is set, QBAER sets the s ce of the extinction optical depth as,	y active pectral

6		MARSCHALS Level 2	Prog. Doc. N.: IFAC_GA_2007_06_LS
UIF AC		User Manual	Date: 10/04/07 Page n. 160/1
	tau=	<pre>tbaer * Qext(wave_length)/Qext(0.55um)</pre>	
	where Qe	xt(wave_length) = QBAER interpolated to w	ave_length
	If TBAER as extin	is not set, then the values of QBAER are ction optical depths at each wavelength W	interpreted LBAER.
	For exam Radiomet Plains A depth in be suppl	ple, the Multi Filter Rotating Shadowband er (MFRSR) installed at the Southern Grea RM site is able to retrieve aerosol optic 6 SW spectral channels. This informatio ied to SBDART by setting,	t al n may
	wlbaer qbaer= wbaer= gbaer=	= .414, .499, .609, .665, .860, .938 0.109, 0.083, 0.062, 0.053, 0.044, 0.041 6*.9 6*0.8	
	This spe all wave linear f display waveleng QBAER wi input da	ctral information is iterpolated or extra lengths using logarithmic fitting on QBAE itting on WBAER and GBAER. Many aerosol a power law dependence of extinction effi th. The logarithmic interpolation/extrapo ll reproduce this behavior if it exists i ta.	polated to R and types ciency on lation on n the
WLBAER:	Waveleng dependen not be s case the waveleng	ths points (um) for user defined aerosol ce. Only used when IAER=5. WLBAER (and Q pecified if a single spectral point is se aerosol optical depth is extrapolated to ths using a power law (see ABAER)	spectral BAER) need t. In this other
WBAER:	Single s	cattering albedo used with IAER=5.	
	WBAER re boundary	presents the single scattering albedo of layer aerosols at wavelengths WLBAER.	
GBAER:	Asymmetr	y factor used with IAER=5	
	GBAER re layer ae values m	presents the asymmetry factor of boundary rosols at wavelengths WLBAER. Number of ust match the number of WLBAER.	
	GBAER is IMOMA .n	ignored when parameter PMAER is set or w e. 3	hen
PMAER :	Legendre boundary Legendre the foll function	moments of the scattering phase function layer aerosols, only active for IAER=5. moments of the phase function are define owing integral over the scattering phase , f:	of The d as
	pmae	r(i) = f(mu) P(i,mu) d mu / f(mu) / / /	d mu
	where P(of the s from -1 one. He should n	i,mu) is the Legendre polynomial, mu is t cattering angle, and the range of the int to 1. The Legendre moment for i=0 is alw nce, the zero'th moment is assumed by SBD ot be specified.	he cosine egrals are ays ART and
	Unlike t need to point, f the numb specific most rap and 6 st	he previous boundary layer aerosol parame specify at least NSTR values for each wav or a total of NSTR*NAER values, where NAE er of wavelength points supplied. The or ation should be such that wavelength vari id. For example, here is a case with 4 w reams:	ters, you elength R is der of ation is avelengths
	nst wlb pma	r=6 aer=.400,.500,.600,.700 er= 0.80,0.70,0.60,0.50, 0.64,0.49,0.36,0.25, 0.51,0.34,0.22,0.12,	

6	MARSCHALS Level 2	Prog. Doc. N.: IFAC_GA_2007_06_LS
CIF AC	User Manual	Date: 10/04/07 Page n. 161/169
	0.41,0.24,0.13,0.06, 0.33,0.17,0.08,0.03, 0.26,0.12,0.05,0.02	
ABAER: Wavel BLA e range is or	<pre>ingth (Angstrom model) exponent used to ext tinction efficiency to wavelengths outside of WLBAER [Qext ~ (lambda)^(-abaer)]. Th: y operative when IAER=5.</pre>	trapolate e the is parameter
If AE is us extra less nn is not s last wlbae singl extir	ER is set to a positive number, then that d as a power-law wavelength dependence to colate the extinction efficiency for wavele than WLBAER(1) or greater than WLBAER(nn) (the number of specified values). If ABAEF et, the wavelength extrapolation is based of wo specified points (wlbaer(1),wlbaer(2) of (nn-1),wlbaer(nn)). If ABAER is not set a e wavelength is set, then a spectrally con-	value engths (where R is on the or and a stant
IMOMA: Contro The va specif specif	s phase function used for boundary layer a ue of IMOMA is ignored when IAER=5 and PMZ ed. Note that an asymmetry factor must be ed when IMOMA=3 (default=3).	aerosol AER is 9
l isc 2 ray 3 her 4 haz 5 clc	<pre>ropic scattering eigh scattering rey_greenstein(g(re)) < c L as specified by garcia/siewert d c.l as specified by garcia/siewert</pre>	default
SPOWDER: Settir extend the at effect by a g scatte either thin w snow g	SPOWDER to true causes an extra sub-surfa- ng between -1 and 0 km to be added to the cospheric grid. This layer may be used to a of surface reflection and thermal emission anular surface material (e.g., snow or sar ing properties of the surface layer may be with the cloud or aerosol inputs. For exa- ter cloud over a snow surface composed of cains may be modeled with the following inp	ace layer bottom of model the on caused hd). The e specified ample, a 100um put file:
&INPU sza wli tcl zcl nre /	230, idatm=4, spowder=t 1f=.3, wlsup=2, iout=1 10000, 10 101, 2 -100, 10	
Simila atmosp To mod depth 10000, optica given Thus, layer tcloud	ely, the scattering properties of the surfa- tere may be read from aerosol.dat with IAER el a semi-infinite granular surface layer to of the bottom layer should be made very land as indicated in the example. However, a sr depth may also be specified in conjuntion value of sub-surface albedo selected with i in the previous example the effect of a the covering a grass field may be modeled by se e100,10 and isalb=6	ace and R=-1. the optical crge, e.g., maller n with a ISALB. in snow etting,
NOTE: (skin) temper is ine ======	It present there is no way to set the surfate temperature to something other than the at ture of the bottom level, i.e. the paramet fective when SPOWDER is true.	ace mospheric ter BTEMP
NOTHRM: nothr	<pre>n=-1 => Thermal emission turned on only for greater than 2.0 um (default) (Note: During daylight hours solar radiation is a factor of about 1.e! greater than thermal radiation at it.</pre>	c wavelengths
nothr	n=0 => Thermal emission turned on for all	wavelengths

6	MARSCHALS Level 2	Prog. Doc. N.: IFAC_GA_2007_06_LS
(โคกต	User Manual	Issue: 3 Revision: 1 Date: 10/04/07 Page n. 162/169
	_1	
noth	=1 => No thermal emission	
NOTE	If thermal emission is desired, be sure that temperature steps in the atmospheric model enough to resolve changes in the Planck fur original version of the DISORT radiative to module issued a warning message if the temp difference between successive levels in the exceeded 20 K. All the standard atmosphere this condition for at least 1 stratospheri. This warning message has been disabled to a clutter in SBDART's standard output. If new emission from the stratosphere is important application, you should supply SBDART with atmosphere with higher resolution in the s (see ZGRID1, ZGRID2, an NGRID)	at the are small nction. The ransfer perature e atmosphere es violate c layer. avoid ar-IR thermal t to your a new model tratosphere.
KDIST: KDIS facto	-1 causes correlated-k optical depths and s to be read from files CKATM and CKTAU.	weighting
NOTE parat atmos parat XO2, XHNO PBAR	KDIST=-1 disables the effect of all input ters that control aspects of the gaseous heric profile. Thus, KDIST=-1 disables in ters AMIX, SCLH2O, UW, UO3, O3TRP, ZTRP, XI CO2, XCH4, XN2O, XCO, XNO2, XSO2, XNH3, XNV XO4, RHCLD, KRHCLR, NGRID, ZGRID1, ZGRID2 and ZPRES.	put N2,),
KDIS abso tran appro impo abso smal	O causes the optical depth due to molecular tion to be set to the negative log of the p ission function. This approximation is nor riate for cases in which multiple scattering ant, but is not very wrong when the molecu- tion is weak or the scattering optical dep	r LOWTRAN t ng is lar th is
KDIS k-di gase SBDA KDIS	<pre>1 causes SBDART to use the LOWTRAN7 ribution model of absorption by atmospheric Since a three term exponential fit is use execution times are up to 3 times longer > 0 compared to KDIST=0.</pre>	c ed, with
KDIS matcl direc surfa less cloud surfa	2 causes the k-fit transmissions to exactly the LOWTRAN transmission along the solar be ion. This option may be useful when comput e irradiance under clouds of optical thick han about 10. This is because in this this case much of the radiation which reaches the propagates along the direct beam direction	y eam ting ness n he on.
KDIS matcl direc layes l the LOWT is r where the o	3 causes the k-fit transmissions to exactly the LOWTRAN transmission along the solar be ion for parts of the atmosphere above a sca As the scattering optical depth increases k-fit factors are ramped back to there orig N values. The effect of the slant path co ped down to zero for wavelengths greater to solar energy input is less important. KDI fault.	y eam attering s above ginal rrection han 4um, ST=3 is
ZGRID1: These ZGRID2: reso NGRID: the ZGRID top o point spec: throw of 3	three parameters can be used to change the tion of the model atmosphere. ZGRID1 contr solution near the bottom of the grid while sets the maximum permissible step size (at the grid). NGRID sets the number of grid . For example ZGRID1=.5, ZGRID2=30, NGRID2 ies a 45 element grid with a resolution of hout the lower part of the grid and a large km.	grid rols t the =45 .5 km est step
The subro subro stand spec how t	gridding is performed after the call to tine ATMS. This allows regridding of the rd internal atmospheres as well as user ied atmospheres (read with IDATM=0). No ma ny grid points were used to specify the or	atter iginal

6		MARSCHALS Level 2	Prog. Doc. N.: IFAC_0	GA_2007_06_LS
วค า		User Manual	Issue: 3 Revision: 1 Date: 10/04/07	Page n. 163/169
	atmosphe NGRID ve ZGRID1 a The defa atmsophe MXLY, se NGRID>MX	re, the new regridded atmosphere will cor rtical array elements. The default value nd ZGRID2 are set to 1 and 30km, respecti ult value of NGRID=0, causes the initial ric model to be used. The internal paran ts the maximum number of levels allowed. LY causes NGRID to be set to MXLY.	ntain e of .vely. un-modified meter, Setting	
	If NGRID after pr to stand effect o values.	is negative SBDART terminates execution inting out the regridded values of Z,P,T, ard out. This option can be used to prev f a given set of ZGRID1,ZGRID2 and abs(NC	WH,WO view the RID)	
	OUTPUT O =======	PTIONS =====		
IDB:	DIAGNOSTI	C OUTPUT SELECTOR (integer array)		
	The IDB p for a var IDB(n)=m the diagn For some IDB(8)=2)	rint flag is used to select print diagnos iety of computational parameters. Settin where m is any non-zero integer, will pro ostics associated with array index n to b values of n, increasing the value of m (e will produce more detailed diagnostics.	stics ng oduce oe listed. 2.g., (default=0)	
	array			
	1 prin	t an explanation of quantities in IOUT ou	itput group	
	2 clou	d liquid water profiles		
	3 for inte for also idb(kdist>-1: atmospheric profile and gas abs grals kdist=-1: atmospheric profile read from (lists wavenumbers specified in CKTAU. 3)=2 causes sbdart to exit after diagnost	sorption XKATM tics.	
	4 sola	r ephemeris, grid parameters, atmospheric	c profiles	
	5 clou fact	d parameters, extinction efficiency, asym or and single scatter albedo	nmetry	
	6 aero opti laye is d	sol single scattering albedo assymetry fa cal depth increments of total (taua) and r aerosols (tauab). The total optical de isplayed on the final line of output.	actor boundary epth	
	7 gase	ous absorption integrals and optical dept	h	
	8 Opti mole and term	cal depth due to Rayleigh, aerosols, clou cular continuum and line, single scatteri asymmetry factor. Additional printouts fo in the k-fit are produced if KDIST=1.	nd Ing albedo or each	
zout:	2 elemen points (specifie surface layers f finding value of	t array specifying BOT and TOP altitude km) for IOUT output. For example ZOUT=0, s output information for 0 and 50 km. The is always set at zero. Note that the act or which output is generated is determine the atmospheric layers nearest the choser ZOUT(1) and ZOUT(2). (default = 0,100)	50 eual ed by	
IOUT: value	STANDARD	OUTPUT SELECTOR		
0.	no stand is not c absorpti	ard output is produced, DISORT subroutine alled, but diagnostics selected by idb in on or aerosol subroutines are active.	e 1 gas	
1.	one outp output q	ut record for each wavelength, uantities are,		
	WL,FF	V, TOPDN, TOPUP, TOPDIR, BOTDN, BOTUP, BOTDIR		
	WL	= wavelength (mi	crons)	

```
Prog. Doc. N.: IFAC GA 2007 06 LS
                                      MARSCHALS Level 2
                                                                     Issue: 3 Revision: 1
IFAC
                                           User Manual
                                                                     Date: 10/04/07
                                                                                       Page n. 164/169
                      FFV
                           = filter function value
                     TOPDN = total downward flux at ZOUT(2) km (w/m2/micron)
                     TOPUP = total upward flux at ZOUT(2) km
                                                               (w/m2/micron)
                     TOPDIR= direct downward flux at ZOUT(2) km (w/m2/micron)
                     BOTDN = total downward flux at ZOUT(1) km (w/m2/micron)
                     BOTUP = total upward flux at ZOUT(1) km (w/m2/micron)
                     BOTDIR= direct downward flux at ZOUT(1) km (w/m2/micron)
                     NOTE: When ISAT ne 1 these radiometric quantities
                            are each multiplied by the filter function,
                            To get the actual specific irradiance divide
                           by FFV(WL).
           2.
                  one output record per wavelength, not available for kdist=-1
                  output quantities are,
                 WL, TXH2O, TXCO2, TXO3, TXN2O, TXCO, TXCH4, TXO2N2, TXTRC, TXTOT, TXMOL
                      WL
                            = wavelength
                     TXH20 = -log transmission due to water vapor
                     TXCO2 = -log transmission due to co2
                     TXO3
                           = -log transmission due to ozone
                     TXN20 = -log transmission due to n20
                     TXCO = -log transmission due to co
TXCH4 = -log transmission due to ch4
                     TXO2N2 = -\log transmission due to o2 and n2
                     TXTRC = -log transmission due to trace gases
                     TXTOT = -log transmission due to all gases
                     TXMOL = optical depth due to rayleigh scattering
                     NOTE: if you define the optical depth as
                            transmission = exp(-tau) then
                            -log transmission = tau
           3.
                  Averaged gas absorption over solar spectrum and
                  filter function. Not available when kdist=-1.
                  Output format:
                  write(*,'(5x,11a13)') 'z','airmass','h2o','co2','o3',
                                'n2o','co','ch4','o2+n2','trace','total'
                 &
                  do i=nz.1.-1
                     write(*,'(i5,1p11e13.5)') j,z(j),airmass(j),
                 δ.
                      (-log(eps+trnsgas(i,j)/phidw),i=1,nta)
                  where j is the level index
                         z is the level height (km)
                         airmass = g * integral(rho dz/mu) / Pzero
                            where g=9.8m/s2, pzero 1013.25mb
                             rho is the mass desity of air, and
                            mu is the cosine of the solar zenith angle (SZA)
                         trnsgas is the transmission due to the species
                            listed in the title line
                  the output quantity is the negative log of the transmission
                  which, aside from non-Beer's law behaviour, is like
                  optical depth. If the input quantity NF is non-zero
                  then the transmission is averaged over the solar spectrum.
                  If NF=0 the average is over the filter function.
                  Remember to set NF=0 and SZA=0 when dealing with LW radiation.
          5.
                  nzen+3) records for each wavelength. Output format:
                       write(*,*) '"tbf' ; Block id (used in postprocessors)
                       do m=1,nw
                         write(*,*)
                          wl,ffv,topdn,topup,topdir,botdn,botup,botdir
                          write(*,*) nphi,nzen
                         write(*,*) (phi(j),j=1,nphi)
                          write(*,*) (uzen(j),j=1,nzen)
                         do i=nzen,1,-1
                           write(*,*) (uurs(i,k),k=1,nphi)
                          enddo
                       enddo
                  where,
```

		MARSCHALS Level 2		Prog. Doc. N.: IFAC Issue: 3 Revision:	_GA_2007_06_LS 1
ORA		Us	ser Manual	Date: 10/04/07	Page n. 165/169
	WL FFV TOPDN TOPDI BOTDN BOTDI NPHI NZEN PHI UZEN VZEN UURS	<pre>= wavelength = filter function = total downward = total upward fl R= direct downward = total upward fl R= direct downward = number of user = number of user = user specified = user specified = user specified = radiance at use altitude ZOUT(;</pre>	h value flux at ZOUT(2) km lux at ZOUT(2) km d flux at ZOUT(1) km lux at ZOUT(1) km lux at ZOUT(1) km d flux at ZOUT(1) km d flux at ZOUT(1) km azimuth angles zenith angles azimuth angles zenith angles nadir angles er angles at 2) (top)	<pre>(microns) (w/m2/micron) (w/m2/micron) (w/m2/micron) (w/m2/micron) (w/m2/micron) (w/m2/micron) (degrees) (degrees) (degrees) (degrees) (degrees) (w/m2/um/str)</pre>	Page n. 165/169
	NOTE: Th sc so re sa ir wi th (B	e radiance output attered radiation lar direct beam. presents the radia mple directions. radiance by an ang 11 not yield BOTDN e direct beam, and OTDN-BOTDIR) becau	from SBDART represes It does not include Also, keep in mind ance at the user spe Hence, computing the gular integration of N because of the neg d it will probably no use of under-sampling	nts e the that UURS cified e UURS lect of ot yield g.	
	NOTE :	if IDAY is set, t direction in whic	then PHI is the actu ch the radiation in p	al compass propagating	
6.	same as (bottom)	IOUT=5 except radi	iance is for ZOUT(1)	altitude	
7.	radiativ output o waveleng write	e flux at each lay ption can produce th sample points a (*.*) '"fzw'	yer for each waveleng a huge amount of ou are used ; block id (used i)	gth. This tput if many	
	<pre>write write do j= wri wri & (& (</pre>	<pre>(*,*) nz (*,*) nw 1,nw te(*,*) wl te(*,*) Z(i),i=nz,1,-1), fdird(i),i=1,nz), fdifd(i),i=1,nz), flxdn(i),i=1,nz), flxup(i),i=1,nz)</pre>	<pre>; number of z leve ; number of waveles ; altitude ; downward direct ; downward diffuse ; total downward f ; total upward flus</pre>	(km) flux (w/m2/um) flux (w/m2/um) lux (w/m2/um) x (w/m2/um)	
10.	one outp output q WLINF	ut record per run, uantities are, (ir ,WLSUP,FFEW,TOPDN	, integrated over way ntegrations by trape ,TOPUP,TOPDIR,BOTDN,	velength. zoid rule) BOTUP,BOTDIR	
	WLINF WLSUP FFEW TOPDN TOPDI BOTDI BOTUP BOTUP	<pre>= lower wavelengt = upper wavelengt = filter function = total downward = total upward fI R= direct downward = total downward f R= direct downward R= direct downward</pre>	th limit th limit flux at ZOUT(2) km lux at ZOUT(2) km d flux at ZOUT(2) km flux at ZOUT(1) km lux at ZOUT(1) km d flux at ZOUT(1) km	<pre>(microns) (microns) (w/m2) (w/m2) (w/m2) (w/m2) (w/m2) (w/m2) (w/m2)</pre>	
11.	radiant over wav write do i= wri enddo	fluxes at each atr elength. Output fo (*,*) nz,phidw 1,nz te(*,*) zz,pp,fxdr	mospheric layer inter prmat: n(i),fxup(i),fxdir(i	grated),dfdz,heat	

6	MARSCHALS Level 2	Prog. Doc. N.: IFAC_GA_2007_06_LS
UIF AC	User Manual	Date: 10/04/07 Page n. 166/169
where	<pre>, nz = number of atmospheric layers ffew = filter function equivalent width zz = level altitudes pp = level pressure fxdn = downward flux (direct+diffuse) fxup = upward flux fxdir = downward flux, direct beam only dfdz = radiant energy flux divergence</pre>	1(um) (km) (mb) (W/m2) (W/m2) (W/m2) (mW/m3)
NOTE: center:	<pre>dfdz(i) and heat(i) are defined at the lay s, i.e., halfway between level i-1 and leve</pre>	(K/day) /er el i.
20. radian	ce output at ZOUT(2) km.	
Output	format:	
wri & wri wri wri wri The fi: (WLINF additic	<pre>te(*,*) wlinf,wlsup,ffew,topdn,topup,topdi</pre>	.r, IOUT=10 BOTDIR)
NPH: NZEI PHI UZEI R	<pre>I = number of user azimuth angles N = number of user zenith angles = user relative azimuth angles (nphi val N = user zenith angles (nzen values) = radiance array (nphi,nzen) (W/m2/sr)</pre>	.ues)
NOT	5: if IDAY is set, then PHI is the actual of direction in which the radiation in prop	compass Dagating
21. same as	s IOUT=20 except radiance output at ZOUT(1)	km.
22. radiano over wa	ce and flux at each atmospheric layer integ avelength.	grated
Output wri wri wri wri wri wri wri wri wri wri	<pre>format: te(*,*) nphi,nzen,nz,ffew te(*,*) (phi(i),i=1,nphi) te(*,*) (uzen(j),j=1,nzen) te(*,*) (z(k),k=nz,1,-1) te(*,*) (fxdn(k),k=1,nz) te(*,*) (fxdir(k),k=1,nz) te(*,*) (fxdir(k),k=1,nz) te(*,*) (((uurl(i,j,k),i=1,nphi),j=1,nzen), nphi = number of user specified azimuth nzen = number of user specified zenith nz = number of user specified zenith nz = number of atmospheric levels ffew = filter function equivalent width phi = user specified anizmuth angles uzen = user specified zenith angles z = altitudes of atmospheric layers fxdn = downward flux (direct+diffuse)</pre>	<pre>k=1,nz) n angles angles n (um) (degrees) (degrees) (km) (W/m2)</pre>
NOT 23. same au lower l	<pre>fxup = upward flux fxdir = downward flux, direct beam only uurl = radiance at each layer : if IDAY is set, then PHI is the actual of direction in which the radiation in prop s IOUT=20 except nemisphere radiance output corresponds to Z pemisphere radiance output corresponds to Z</pre>	(W/m2) (W/m2) (W/m2/str) compass pagating
upper I Use th: and be and TCI above a	Tempsphere radiance output corresponds to 2 is output format to determine radiance abov low a scattering layer. For example, if ZC LOUD=10, you can get the scattered radiatic and below the cloud with, IOUT=23, ZOUT=1,2	re and LLOUD=1 nn field 2.

6	MARSCHALS Level 2	Prog. Doc. N.: IFAC_GA_2007_06_LS
ุ (โค	User Manual	Issue: 3 Kevision: 1 Date: 10/04/07 Page n. 167/169
N	DTE: if IDAY is set, then PHI is the ac direction in which the radiation i	tual compass n propagating
	DISORT options	
DELTAM: if se This appro	to true, use delta-m method (see Wisc method is essentially a delta-Eddington ximation applied to multiple radiation	ombe, 1977). streams.
In ge and f with TRUE. forwa accur this FALSE	heral, for a given number of streams, i luxes will be more accurate for phase f a large forward peak if 'DELTAM' is set Intensities within 10 degrees or so of rd scattering direction will often be l ate, however, so when primary interest so-called 'aureole region', DELTAM shou .(default=true)	ntensities unctions the ess centers in ld be set
NSTR: numbe be di requi compa accur true)	c of computational zenith angles used. visible by 2. Using NSTR=4 reduces the ced for flux calculations by about a fa ced to NSTR=16, with very little penalt acy (about 0.5% difference when DELTAM	NSTR must time ctor of 5 y in is set
CORINT: When delta 1988) In ge sourc is TR Howev and i accur impor Legen is be calcu which funct Legen aniso actua	set TRUE, correct intensities for -M scaling effects (see Nakajima and Ta . When FALSE, intensities are not correc- heral, CORINT should be set true when b a is present (FBEAM is not zero) and DE JE in a problem including scattering. er, execution is faster when CORINT is ntensities outside the aureole may stil ate enough. When CORINT is TRUE, it is cant to have a sufficiently high order dre approximation of the phase function cause the intensities are corrected by lating the single-scattered radiation, an adequate representation of the phass ion is crucial. In case of a low order dre approximation of an otherwise highl tropic phase function, the intensities lly be more accurate when CORINT is FAL	naka, cted. eam LTAM FALSE, l be of . This for e Y might SE.
Defau The i 1) in 2) th 3) th	lt value=.false. nput value of CORINT is ignored for: irradiance mode, i.e., iout ne (5,6,20 ere is no beam source (FBEAM=0.0), or ere is no scattering (SSALB=0.0 for all	,21,22) layers)
	Radiance output	
NZEN: Numbe speci zenit value	r of user zenith angles. If this param fied SBDART will output radiance values n angles, evenly spaced between the fir s of input array UZEN. For example,	eter is at NZEN st two
nzen uzen will	=9, =0,80 cause output at zenith angles 0,10,20,3	0,40,50,60,70,80.
UZEN: User inter and o is no speci	zenith angles. If NZEN is specified th preted as the limits of the zenith angl aly the first two elements are required specified then up to NSTR values of U fied. If neither NZEN nor UZEN is spec	en UZEN is e range, . If NZEN ZEN may be ified and

		MARSCHALS Level 2	Prog. Doc. N.: IFAC_GA_2007_06_LS		
UIF AC		User Manual	Date: 10/04/07	Page n. 168/169	
	a radiance (IOUT=5,6 is used, v * I(* I(* I(e calculation is requested ,20,21,22,23) a default set of zenith an which depends on the value IOUT as follo DUT=5 or 20: NZEN=18, UZEN=0,85 DUT=6 or 21: NZEN=18, UZEN=95,180 DUT=22 or 23: NZEN=18, UZEN=0,180	gles ws:		
	NOTE: UZEN radiation	<pre>specifies the zenith angle of at which is propagating:</pre>	the		
	UZEN = 0 UZEN < 90 UZEN > 90 UZEN = 180	<pre>=> radiation propagates directly up => radiation in upper hemisphere => radiation in lower hemisphere) => radiation propagates directly down</pre>			
VZEN:	user nadin specify th uzen=180-	r angles. This is just an alternate way he direction of user radiance angles, wh yzen	to ereby		
NPHI:	Number of specified azimuth ar values of phi=0,180 0,30,60,90	user azimuth angles. If this parameter SBDART will output radiance values at N ngles, evenly spaced between the first t input array PHI. For example, nphi=7, will cause output at zenith angles 0,120,150,180	is PHI WO		
PHI:	User relat PHI is inf and only f is not spe specified radiance of a default the case f	vive azimuth angles. If NPHI is specific compreted as the limits of the azimuth a che first two elements are required. If ecified then up to NSTR values of PHI ma . If neither NPHI nor PHI is specified calculation is requested (IOUT=5,6,20,21 set of azimuth angles is used, equivale NPHI=19, PHI=0,180.	ed then ngle range, NPHI y be and a ,22,23) nt to		
	NOTE: Azir Earth's su the forwar	muth increases clockwise looking down on arface. PHI is the relative azimuth angl rd scattering direction.	the e from		
	* PHI < 90 * PHI > 90) => forward scattered radiation) => backward scattered radiation			
	For examp radiation azimuth of	le, if the sun is setting in the West, propagating to the South-East has a rel E 45 degrees.	ative		
	NOTE: SBDJ with 40 a expp much runn peri scal 40. as 1	ART is currently configured to model rad 1 at most 40 computational zenith angles azimuthal modes. While these limits may anded, be aware that running SBDART with 1 larger number will significantly incre- ning time and memory requirements. In t formed on a DEC Alpha, the execution tim led roughly with NSTR ² , for NSTR less t The code's memory usage also scales ro NSTR ² .	iation and be a ase ests e han ughly		
PHI0:	azimuth an to relate headings. zenith=10 from due n cause PHI this examp at uzen=1' default va azimuth an direction	ngle of incident beam. Use this paramet the radiance output to fixed navigation For example if the sun is positioned a and azimuth=110 degrees (measured clock north) then setting PHI0=-70 degrees wil to be interpreted as a compass directio ple the forward scattering peak will be 70, phi=-70. Otherwise if PHI0 is zero alue), PHI is interpreted as a relative ngle (i.e., relative to the forward scat).	er al t wise l n. In found (the tering		
	NOTE: When to the com PHIO is ig	I IDAY is set, PHIO is automatically set crect solar azimuth, and the input value gnored.	of		
	radia =====	ation boundary conditions			

		М	ARSCHALS Level 2	Prog. Doc. N.: IFAC	C_GA_2007_06
F AC			User Manual	Date: 10/04/07	Page n. 16
TBCND:		•			
= () : general	case: boundary co	onditions any combinat	ion of:	
	* beam	illumination from	m the top (see F	BEAM)	
	* isot	ropic illumination	n from the top (see F	ISOT)	
	* ther	mal emission from	the top (see T	EMIS, TTEMP)	
	* inte	rnal thermal emis:	sion sources (see T	EMPER)	
	* ther	mal emission from	the bottom (see B	TEMP)	
= 1	l : isotrop	ic illumination fr	rom top and bottom, in	order to get	
	ALBEDO	and transmissivity	y of the entire medium	vs. incident	
	beam an	gle;			
	The only	y input variables	considered in this ca	se are	
	PRNT.HE	ADER, and the arra	av dimensions	EDO, DELIAM,	
	NOPLNK,	LAMBER are assumed	d TRUE, the bottom bou	ndary can have	
	any ALB	EDO. the sole out	tput is ALBMED, TRNMED.	UMU is	
	interpr	eted as the array	of beam angles in thi	s case.	
	II USRA	NG = TRUE they mus	st be positive and in	increasing	
	negativ	and will be feturi es of the HMH's ar	re added so MAXIMU mu	st be at least	
	2*NUMU.		ic added, so maximo ind	st be at reast	
	If USRA	NG = FALSE, UMU is	s returned as the NSTR	/2 positive	
	quadrat	ure angle cosines	, in increasing order.		
FISOT:	intensit	y of top-boundary	isotropic illuminatio	n. (units	
	w/sq m i	corresponding in	rident flux is pi (3.1	4159)	
	times 'F	ISOT'.	eracine fran ib pr (5.1	1100,	
TEMIS:	emissivi	ty of top layer. 1	not used if NOTHRM=1		
DEFINE .	Gunfara		in Velerin If net a		
BIEMD:	surface	(skin) temperature temperature is set	t to the temperature o	et, the	
	bottom 1	aver of the model	atmosphere. The surf	ace	
	emissivi	ty is calculated :	from the albedo (see I	SALB and	
	ALBCON).	The input value	of BTEMP is ignored w	hen	
	DISORT spe =======	cific output optic	ons: ======		
PRNT(k):	k 1	innut meniebles (DMON)		
	2	fluxes	except PMOM)		
	3	intensities at use	er levels and angles		
	4	planar transmissiv	vity and planar albedo		
		as a function sola	ar zenith angle (IBCN	D = 1)	
	5	phase function mor	ments PMOM for each la	yer	
		(ONLY 11 PRNT(1)	= TRUE, and only for	layers	
		with Stattering)			