

ECE Senior Design Project Final Documentation

for

Remote Recording System

6 May 2004

Sponsor: Leighton R. Wall, Advanced Input Devices

Team Dialect

 Justin M. Cassidy Ian D. Olson Thomas R. Stear
 cass0664@uidaho.edu olso4398@uidaho.edu stea7935@uidaho.edu

Instructor: Dr. Richard Wall

Project Advisor: Dr. Richard Wall

 1

mailto:cass0664@uidaho.edu
mailto:olso4398@uidaho.edu
mailto:stea7935@uidaho.edu

I. INTRODUCTION..1
A. BACKGROUND..1
B. INTENDED USE ...1
C. PROBLEM SOLUTION ..1
D. FUNCTIONAL AND NON-FUNCTIONAL PARTS OF THE PROJECT...1

II. OPERATIONAL SPECIFICATION ...2
A. OPERATIONAL OVERVIEW..2
B. OPERATIONAL METAPHOR...2

III. FUNCTIONAL SPECIFICATION ...3
A. FUNCTIONAL OVERVIEW..3
B. FUNCTIONAL METAPHOR ...3
C. FUNCTIONS ..4

IV. MANUFACTURING ..6
A. PRODUCT LIFECYCLE PLAN ..6
B. FAILURE RATE CALCULATIONS..9
C. FAILURE MODES AND EFFECT ANALYSIS ...10

V. SOCIAL IMPACT ...10
A. HEALTH AND SAFETY ISSUES ...10
B. ENVIRONMENTAL ISSUES ..11

VI. SPECIFICATIONS NOT YET MET ..11
VII. FUTURE MODIFICATIONS ..11

A. HOST..11
B. REMOTE ...11

VIII. APPENDICES ...2
A. USER’S MANUAL ..3

INTRODUCTION ..3
ABOUT THIS GUIDE...3
INSTALLATION..3
INITIAL SETUP ..4
USING THE SYSTEM..5
TROUBLESHOOTING ...5

B. SPECIFICATIONS..7
C. ORGANIZATION OF CODE AND DOCUMENTS ON ACCOMPANYING CD ...8
D. BILL OF MATERIALS ..9
E.1 WINDOWS DEVELOPMENT ENVIRONMENT DOCUMENTATION...10

E.1.1 INTRODUCTION...10
E.1.2 THE DIRECTX SOFTWARE DEVELOPMENT KIT (SDK) ...11
E.1.3 HOST DEVELOPMENT: MICROSOFT VISUAL C++ .NET...12
E.1.4 REMOTE DEVELOPMENT: MICROSOFT EMBEDDED C++ 4.0..14
E.1.5 WINDOWS CE PLATFORM BUILDER AND WINDOWS CE EMULATOR ...16

E.2 WINDOWS API DOCUMENTATION...17
E.2.1 INTRODUCTION...17

 2

E.2.2 DIRECTSHOW ...18
E.2.3 WINDOWS SOCKETS ...27
E.2.4 AFX OBJECTS CSOCKET, CCESOCKET, CSOCKETFILE, AND CARCHIVE ...34
E.2.5 DIRECTSOUND BUFFERS ...38
E.2.6 MICROSOFT WAVEFORM API..42
E.2.7 BENEFITS AND DISADVANTAGES OF WINDOWS PROGRAMMING ...49

F. TECHNICAL NOTES SHEETS...50
G. REFERENCES...64

 3

Remote Recording System using Wireless
Networking in Windows platforms (May 2004)

Justin M. Cassidy, Ian D. Olson, and Thomas R, Stear

Abstract—This paper describes in detail the process we

undertook to develop a system centering around a handheld
unit capable of transmitting voice and audio data over a
wireless network to a host computer for further processing,
including but not limited to voice recognition. Among the
named processes are a few technologies that could not be made
to function by us. They are included merely as reference.

Index Terms—Wireless Networking (Wi-Fi), Windows CE,
DirectX, Waveform API, Windows sockets.

I. INTRODUCTION

T
A. B

he Wi-Fi enabled Remote Recording System was
designed to transmit audio data over Wi-Fi networks
between a handheld Windows CE device and a

Windows XP desktop host computer. The user can transmit
audio over the Wi-Fi connection to the host computer that
can perform any of various audio tasks with the data:
archival, voice-recognition, or audio recording. The
purpose of this project was to replace an existing system
that is based on a USB connection, rather than a wireless
network connection. The trouble users have with the USB
system is that the user has to stay tied to a desk in order to
use the system.

ackground

B. Intended Use
The intention for this project was to replace the

existing system, which is being used in a hospital by
doctors. The users of the existing system primarily take
advantage of a voice recognition program to make notes in
electronic charts for their patients. With a wireless network
connection, users would be able to wander around a room

where the host is located, or perhaps even use the system in
an entirely faraway place, so long as the remote and host
can communicate with each other over the wireless
network.

C. Problem Solution
In solving this problem, we forged our way through

several different methods and Programming Interfaces
before finally settling on the Windows Waveform API.
Initially, we had thought it would do us all a favor to use a
simply interface for programming, such as DirectX.
Microsoft made the DirectX suite of API’s so that
programmers could have access to the speed and power of
hardware without worrying about manipulating the
hardware on their own. As a result, games, Internet
programs, and other multimedia rich applications use
generic calls to DirectX libraries.

After several months of developing for the handheld
unit our sponsor asked us to use, we discovered that the
libraries we were using were not installed on the handheld,
and there was no way for us to put those libraries on the
handheld device, a critical step in launching our application.
While our code worked very nicely on desktop computers,
we were unable to make it run on the handheld device. At
this point we looked to something much simpler.

The Waveform API is a low level interface that is
purportedly the lowest level of programming available that
will easily accommodate audio data transmission. With
some generic buffering for data collection, a touch of
Windows Sockets programming to make the connection,
and Waveform API for audio capture and playback, we had
constructed a system that accomplished our two major goals
in this project: audio capture and transmission from a
handheld device over Wi-Fi, and playback of the original
recorded sound from the host back to the remote unit.

D. Functional and Non-functional Parts of the Project
There were a few other goals we had set our minds on

in the planning stages of this project. We also wanted to tie
our program into a third-party voice recognition program
for dictation. Our sponsor recommended IBM’s ViaVoice
for this end, since that is what they use in their solutions.

This work was supported in part by the Electrical and Computer
Engineering department at the University of Idaho, Moscow, Idaho, and by
Advanced Input Devices, Coeur d’Alene, Idaho.

J. M. Cassidy is a graduating senior in Computer Engineering at the
University of Idaho, Moscow, Idaho, 83843, USA. (phone: 208-883-4455;
e-mail: cass0664@uidaho.edu).

I. D. Olson is a graduating senior in Computer Engineering at the
University of Idaho, Moscow, Idaho, 83843, USA. (e-mail:
olso4398@uidaho.edu).

We also had plans to control “tracks” or a history of
recorded or transmitted sound clips. Since no data is stored
on the remote, the archival or read-back would have to be
managed on the host end. We learned that we could likely

T. R. Stear is a graduating senior in Computer Engineering at the
University of Idaho, Moscow, Idaho, 83843, USA. (e-mail:
stea7935@uidaho.edu).

 1

control the host’s playback and recording operations from
the remote unit through message passing, a standard
Windows procedure that allows an application to perform
concurrent operations. To manage the tracks or sound
clips, we had planned on creating a small table of file
pointers every time the host application started. In this
manner, skipping tracks from the remote would simply
open a new sound file from the chronological listing and
begin to play it back over the network. This would need a
drastic modification to tie directly into the voice recognition
program and hear what the recognizer thought you just said,
so the pointer table would have been for the more musical
user, rather than the dictation user.

At this point, the only operations that are correctly
working are the recording of audio data and the playback of
that same audio data. The host is not yet automatic in that
someone has to also sit at the host computer and tell it to
start listening or sending. Another shortcoming in our
current system is that the operations have no graceful stop.
In order to switch from recording to playback, the users (of
both ends) must shut down the applications and restart
them, then change the modes they use by answering the
prompts differently.

We have not yet tried to attach voice recognition to the
host. Our audio data is sampled such that the fidelity
should be more than good enough to accommodate descent,
accurate voice recognition, but we cannot say that is true
with any certainty. This part of the project then is entirely
untested.

II. OPERATIONAL SPECIFICATION

A. Operational Overview
The driver program and the wireless remote sound

recording unit (SRU) work together to take audio recorded
on the device and provide it to the host computer as a
virtual microphone input. Together they create a Remote
Recording System (RRS).

The RRS starts with the host driver running in the
background on a host machine with a wireless network
adapter, and a SRU that is powered down. The SRU is
turned on, and it performs a quick diagnostic (battery life
check, connecting to the host). The SRU can then record or
play sound with the press of a button. When in record
mode, the microphone picks up sound and the sound is
transmitted via DirectShow over the network connection.
When in play mode, the host will stream audio to the device
for it to play through its internal speaker. Recent recorded
audio streams are stored on the host, and the driver can
track forward and backward through the stored streams
during playback.

B. Operational Metaphor
1) First Use: The driver software is installed on a

computer designated to listen to the SRU: a host computer.
An IT professional will run the driver software and
configure it with one or more SRU’s network addresses and

names. This will enable the SRU selected in the driver
software to communicate with the host when the unit is
powered on. While a host can be configured to
communicate with multiple remote units, note that only one
remote unit should be used at a given moment with the
same host.

2) Powering On/Off: The SRU unit has an on/off
switch for turning on the unit. A 3.7V rechargeable
Lithium-Ion battery powers the unit. When it is turned on,
it connects to the host computer via an ad hoc wireless
network connection. If it cannot find a host to
communicate with, the activity LED will flash red and the
SRU will need to be powered off.

3) Recording Sound: The SRU uses an internal
microphone to record audio. When the record button is
pressed once, the SRU will verify the host is ready to
receive audio. The activity LED will turn on, signaling the
user to begin talking into the SRU. Either the record or
stop buttons can be pressed to finish the record operation.

As the sound is recorded, it is streamed into the host
driver as a virtual sound card input, and simultaneously
saved as an audio file for playback by host programs or
later by the SRU. Ten of these recorded "audio sessions"
will be stored as files, numbered from 0 to 9, most recent to
least recently recorded. For every hardware address/name
pair the host driver is configured for, ten audio sessions will
be stored.

4) Playing Sound: The SRU has an internal speaker
used for playing back audio. When the play button is
pressed once, the SRU will verify the host is ready to send
the previously recorded audio session. The activity LED
will turn on, signaling the audio has begun playing on the
SRU. Either the play or stop buttons can be pressed to
finish the play operation.

The previous/next track buttons cycle through the
recorded sessions on the host session, selecting a different
session to be streamed back to the SRU for playback.
Pressing these buttons initiates the playback operations for
this audio session. Either the play or stop buttons can be
pressed to finish this play operation.

 2

SRU Interface III. FUNCTIONAL SPECIFICATION
The built-in speaker is on the back of the unit, and the

microphone is on the top. A. Functional Overview

The functionalities of the RRS system fall into three
categories: control, recording, and playback. Control
involves handshaking functions between SRU and host,
recording involves streaming recorded sound over the
network to the host, and playback involves streaming saved
sound files back over the network to the SRU. Logic
flowcharts can be seen below (see fig. 3: Host Flowchart,
and fig. 4: Remote Flowchart).

B. Functional Metaphor
The RRS ties the SRU and the host intimately

together—one cannot function without the other.
Therefore, although functions can be tied to either the SRU
or the host, the functions themselves fall into three
categories: control, recording, and playback.

Fig. 1: Remote Application Interface This image is what
the interface looks like for the remote application, which
runs and the handheld device.

Control functions for the system consist of the
handshaking signals sent between the SRU and Host in
order to either establish the initial connection between the
two units, or terminate the connection once one of the units
powers off.

For our implementation, the buttons will be on the

screen, and the user can use the pen to tap the buttons and
control playback, recording, and track skipping.
 Recording functions begin with a handshake between

the SRU and host, followed by initializing the audio stream
on the SRU side. As the host receives the stream, it routes
the data to both a file and a virtual sound input. A similar
handshaking method closes the stream, as well as the file
and input on the host side.

Host Interface

Playback functions begin with a handshake between
the SRU and host, after which the host begins a stream
audio to the SRU. The host receives the audio from either
the virtual audio device’s line input or a recorded file, and
the audio is streamed to the SRU. On the SRU, the audio is
sent to the on-board sound module, and played through the
internal speaker. On the SRU, the user has the ability to
cycle through 10 stored files on the host for streaming
playback. When the user chooses to play a different
recorded session, the SRU handshakes with the host, which
skips to the desired file.

Fig. 2: Host's Remote Unit Management Application
This is what the host’s SRU management application looks
like. There are fields for the nickname for a device, the
remote’s MAC and IP addresses, and the settings for the
host’s network and sound card.

The SRU Host Interface Terminal allows the user to

add SRUs of any name of choice, and the corresponding
network address information for that SRU. The user
chooses which SRU to listen for on the network by
selecting it from the SRU Name pulldown menu. The user
can also select which network interface adapter the program
will use to communicate to the SRU, and which sound
device to send the decoded audio stream to.

 3

Fig. 4: Remote Flowchart This chart outlines the logic
flow for the Handheld application. Through message
passing, the remote asks the host to perform control
procedures for recording or playback.

C. Functions
Fig. 3: Host Flowchart This chart shows the logic for the
host application running in the background. This
application would start with Windows, so that it is ready
and waiting for a remote unit all the time.

1) Control Functions
SRU:
Function: Host_Connect
Input: Host IP Address
Occurs: Upon SRU power up
Output: SRU is linked to a host machine
Description: Attempt to connect to the host at the given IP

Address over the network, waiting for the
listening host computer to respond. The unit
can begin normal operation once a host has
been found.

Function: Host_Disconnect
Input: none
Occurs: On SRU Power Off command
Output: none
Description: Sends a Disconnect control signal over the

network to the Host and powers down.

 4

Host: Function: Begin_Record
Function: Wait_for_SRU Input: record command from SRU.

Occurs: While the stream is being transmitted from
the SRU

Input: SRU IP Address
Occurs: Any time a connection between host and SRU

is not in place Output: Acknowledge message to SRU.
Description: The host sets up the record filter graph, sends

an acknowledge message to the SRU, and
then runs the filter graph to begin receiving
the audio stream and decoding it to the virtual
sound device input.

Output: If the input packet is a host request from the
SRU IP, send ACK

Description: Waits for a host request packet from the
specified SRU (whose IP address is selected
in the SRU Host Interface Terminal).

Function: End_Record Function: SRU_Power_Off
Input: none Input: none
Occurs: stop stream command received from SRU. Occurs: when the SRU sends a power off command
Output: none Output: none
Description: The record filter graph is stopped. Description: Host software goes into a power off state

where it waits for the SRU to reconnect.
3) Playback Functions

2) Recording Functions SRU:
SRU: Function: Start_Playback
Function: Start_record Input: none

Occurs: when user presses the Play button Input: none
Output: request for audio stream sent to host Occurs: When the user presses the record button.
Description: When the user presses the Play button on the

SRU, the playback filter graph is created, and
a play command is sent to the host to request
an audio stream of the last recorded track.

Output: Stream creation functions
Description: Creates and sets up the record filter graph and

sends a record command to the host and waits
for acknowledge from host.

Function: Play_Sound Function: Begin_stream
Input: streamed audio from host Input: Audio captured from microphone
Occurs: when the host responds to with a host ready

play
Occurs: After Start_Record, when acknowledge

is received from host.
Output: audio to the built in speaker or headset Output: audio data streamed out of network device.
Description: When the host confirms it is ready, the

playback filter graph is run and the audio
stream from the host begins. The audio is
played back through the SRU’s built in
speaker.

Description: Runs the record filter graph, which begins the
audio capture, encode, and network stream
process.

Function: End_stream
Input: none

Function: Change_Track_Forward Occurs: When the user presses stop or record.
Input: none Output: stop stream command to the host.
Occurs: during playback, when user presses the Track

Forward button
Description: The filter graph is stopped, and a stop stream

command is sent to the host.
Output: skip to file request sent to host
Description: When the user presses the Track Forward

button while an audio stream is playing back,
a request is sent to the host to stop streaming
of the current track and begin streaming of
the next recorded track.

Host:
Function: Host_ready
Input: none
Occurs: When the host PC has connected to the SRU

on the network
Function: Change_Track_Back Output: acknowledges signal to the SRU that the host

is ready Input: none
Occurs: during playback, when user presses the Track

Back button
Description: Sends a packet to the SRU over the network

that tells the SRU that the host connected and
ready to function. Output: skip to file request sent to host

Description: When the user presses the Track Back button
while an audio stream is playing back, a
request is sent to the host to stop streaming of
the current track and begin streaming of the
previously recorded track.

 5

Function: Stop_Playback
Input: none
Occurs: during playback, when user presses either the

Play or Stop button
Output: end stream command sent to host
Description: The playback filter graph is stopped and an

end stream command is sent to the host.

Host:
Function: Host_Ready_Play
Input: none
Occurs: when a playback stream request is received

from the SRU
Output: host ready play packet sent to SRU
Description: When the host receives a playback stream

request from the SRU, the host confirms to
the SRU that the request was received.

Function: Begin_Stream
Input: audio file stored on host machine
Occurs: immediately following the

Host_Ready_Play function
Output: audio stream to the SRU
Description: The host sets up and runs the playback filter

graph, which begins streaming audio from an
audio file to the SRU.

Function: Skip_To_File
Input: none
Occurs: when a skip to file request is received from

the SRU
Output: none
Description: When the SRU sends a skip to file request,

the host stops playback of the current file,
opens the previous or next recorded file
(specified in the request), and begins
streaming that file to the SRU.

Function: End_Stream
Input: none
Occurs: when the SRU sends an end stream command
Output: none
Description: The playback filter graph is stopped, and

streaming of the current audio file is
terminated.

IV. MANUFACTURING

A. Product Lifecycle Plan

1) Introduction
The Remote Recording System (RRS) utilizes three

main technologies: Windows CE, DirectX, and 802.11b
wireless Internet. Our solution incorporates all three
technologies to create a wireless microphone of sorts. With
a remote unit, we intend to record and playback audio with
help from a host computer that could be in the same room
or across the building on a different floor. A doctor can
easily make chart notes for a patient from the patient’s
room. A student could take notes in class on his dorm room
computer with the single click of a button. A musician can

record studio tracks for a new album from his bedroom at
home.

1.1) Overview of Hardware and Software

Technologies: The IEEE established 802.11 in 1997 to
standardize wireless communications. Since it is not a new
technology, it has been tested and revised since its inception
for reliability and speed. Wi-Fi is often used implement
large-building wide networks with hundreds of computers
and printers, or simple, small peer-to-peer networks with
just a few computers.

Windows CE is a version of Windows that is
lightweight. It is designed to run on many different
embedded architectures and RISC microprocessors.
Handheld devices, cellular phones, and other miniaturized
computers have been built on Windows CE. In spite of
being lightweight, it has a broad assortment of applications,
and libraries of all kinds have been developed to support
those applications.

DirectX has been a part of Windows since Windows
95, when game developers asked for a faster set of tools for
programming games in Windows. Since then, DirectX has
found other uses and gained APIs for input devices,
networking, graphics, audio, and other multimedia.

Since Wi-Fi, Windows CE, and DirectX are widely
used, there is plenty of documentation available. Though
our solution incorporates 802.11b, it never really directly
uses or manages the Wi-Fi connection or hardware. That
task is left to Windows. In that respect, we could use just
about any type of network connection and, as long as
Windows can support it, our solution will achieve similar
results. DirectX has long been a part of Windows, and
assuming it includes backwards compatibly with older
programming interfaces as it has done in the past, our
solution will still function with new versions of DirectX.
The same goes for new versions of Windows CE. These
benefits make the gauging the RRS system’s end-of-life
difficult (§6.1 and §6.2).

2) Design
2.1) Windows CE Platform Builder and DirectX: The

Windows CE toolkit includes a Platform Builder for
making custom versions of Windows CE that have only the
libraries and headers we need for our system. We are also
using eMbedded Visual C++ 4.0, a compiler that targets
several different embedded architectures, including MIPS,
x86, SH4, and ARM platforms. There is also an Emulator
that we can use to load custom OS images, and run and test
our application.

The DirectX toolkit includes plenty of sample
applications and source code that demonstrates the unique
features available to DirectX programmers, as well as the
libraries required to implement those features. While this
Software Development Kit is targeted at PC versions of
Windows rather than the embedded versions, like Windows
CE, we can still apply some of the principles demonstrated
in the SDK to our project since Windows CE does support a
limited set of DirectX tools and libraries, including
DirectShow.

 6

2.2) Learning Curve: Since we are new to all of the
technologies in our solution, there is a fair amount of
learning to do before we can program. The sample code
helps quite a bit with the steepness of our learning curve,
but it can only do so much. Apart from the Microsoft
website, there is little help on the Internet for us, and there
are only a few books that promise to offer us any assistance.
Many classes and utilities are left for us to learn on our
own.

3.1) SRU Playback and Recording Routines: Any time
the SRU initiates a playback or a recording session, data
will be streamed to and from the SRU and the host. Since
the data stream will consist of a DirectShow audio over
TCP/IP and 802.11b, we can abstract the network transfer
apart from the actual sound functions. Whether sending
from the host to the remote unit or vice versa, the transfer
code will be the same. Network routine testing is discussed
in §3.3. Ensuring audio fidelity for speech recognition is
discussed in §3.4. The documentation available for some of the tools we

are using is often difficult to understand. It seems that
some documentation is out of date or just inaccurate, so
when we read the help files, we have to then translate them
to apply the directions they give to our build environments.
For example, when we first started building Windows CE
images, we followed the directions in the help file.
Through frustrating experimentation, we learned that there
are a few libraries that cannot be included in the image for
emulators, along with other small discoveries that caused
big problems. Whenever we discover a problem or quirk in
the environment, the documentation, or the output of a
build, we fully document it for educational purposes and to
supply a complete list of instructions and "good"
documentation at the end of our project.

The playback and record routines need to be both
functional and responsive, and this can be verified through
step-by-step debugging in tandem with testing. Although
functionality can be tested on the emulator, its speed is a
limitation, so only the actual device will measure
responsiveness properly.

3.2) Host Software and Virtual Audio Device: The

host software consists of a front-end for storing SRU
profiles, a network driver for receiving streaming audio
from the host, and a Virtual Audio Driver. We are using a
3rd party VAD that hasn’t been tested explicitly on
Windows XP but appears to work for all our uses.
However, part of the testing process will be making sure the
received raw audio data finds its way to the virtual audio
driver and that the software works as advertised.

2.3) Software Technology Costs: Since we are

students, we were able to acquire Windows CE software
and development tools from the University of Idaho
Computer Science department at no cost.

The Host software will need to be tested initially on the
OS specified in the requirements document, Windows XP,
in an ad-hoc network configuration with the remote unit.
Initial Host software testing will be with a hardware audio
interface to eliminate possible problems related to the VAD
itself. Every functionality of the remote unit will be tested,
such as record, playback, track forward, track back, power
on and off, to ensure the host software responds in the
specified manner. After the Host software is verified, the
VAD will be selected in place of the hardware sound
device, and the same tests will be run on the Host software
using the VAD, using various different 3rd party packages
recording from the VAD audio interface, to ensure the
functionalities we require of the VAD work correctly.

However, this means we are using educationally

licensed tools to build this solution. At some point near the
end of the project, we will need to purchase licenses from
Microsoft to make the solution we have built available for
full use and for retail sale.

2.4) Networking: The 802.11b wireless standard we
are using is supported by the handheld unit we are targeting
for our solution. Our solution does not directly use Wi-Fi
networking, but it asks Windows to handle the transfer of
network data in that manner. In the future then, if the
standard changes for Wi-Fi networking, our solution will
still be able to ask Windows to handle the networking in the
that manner. The only changes will be to the Windows CE
image: we will have to build a new image that will support
the new standards and include all the libraries we need for
DirectX to function.

3.3) Networking: The job of the DirectX APIs is to

abstract the hardware, and in this sense once we have
verified the network code over Ethernet, we can take this
code and merely change the data-link layer transport
medium. Our emulator only has Ethernet capability, but if
we can step-by-step debug our routines on that medium, we
can simply change the network we’re using once we adapt
our routines for the PDA hardware. Our development suite
has remote step-through debug capability also, for testing
on the actual remote unit.

3) Implementation And Testing
Although this is a Computer Engineering Senior

Design project, the software nature of the design dictates
that most of the testing we will do relates to software. To
this end our testing and implementation methodology exists
not in hardware testing, but rather software validation and
instrumentation. All our instrumentation/verification
methods for the separate audio and networking routines will
be clearly documented in simple technical notes sheets.
These sheets also illustrate how the build environment is
created, along with the exact software used.

3.4) Fidelity and Latency Testing: DirectShow’s

Audio Compression Manager filter accepts the audio
compression format as one of its arguments. For particular
file formats and sample sizes, we can test transmission
performance versus recognition quality by simply changing
the argument to the ACM filter. Our goal is to get accurate
speech-to-text synthesis in real time, but if this proves
difficult we will optimize for fidelity rather than

 7

performance. Having an accurate transcription is the
highest priority at the hospital, more so than a quick
performance.

Latency testing will occur in a number of different
indoor and outdoor environments, in order to gauge the
usefulness of the RRS in a variety of situations. Our goal
for real-time operating distance is 100 feet, and we need to
be sure this goal is met under common operating
conditions.

3.5) System Testing: After the network and audio

routines are completed, we will need to validate our final
design. The RRS interfaces need to be easy to use for a
doctor, easy to quickly maintain on the host end by trained
IT staff, and intuitive enough such that someone who can
operate a portable CD player or PDA won’t have trouble
using the SRU. Although the scope of our senior-year
project dictates we may not be redesigning the GUI
interface and the hard PDA interface, we will at least
validate how well they suit the task.

3.6) Results of Testing: While presenting our project

at the University of Idaho’s Engineering Expo, we were
able to test out system in a crowded room with other Wi-Fi
projects also running in the same room. Mr. Cassidy
carried the handheld around the auditorium and reached an
approximate maximum distance of 150 feet from the host
with minor obstructions, and the host computer and the
handheld maintained constant connection and
communication. However, when Mr. Cassidy carried the
handheld unit through the auditorium entrance and began to
walk down the brick corridor, the two computers lost
communication. On the other hand, when the remote was
brought back within range of the host, they began
communicating again and transmitting data. We felt that
we had satisfied the network test over distances and “noisy”
network conditions.

We also tested latency of the system by snapping into
the microphone on the handheld unit and holding the
handheld close to the speakers on the host. In this manner,
we recorded a snap and its respective echo through the
system. We then looked at the waveform sample in a sound
editing program and measured half a second of total system
latency. We also calculated the total theoretical system
latency.

We are recording at about 44Kilobytes per second. On
the host computer, there is a 2Kilobyte buffer, and on the
handheld unit, there is a 6Kilobyte buffer. The total latency
due to audio buffering then is the total size of the buffers
divided by the data rate. This comes out to 187
milliseconds. Theoretically, in order for the system to keep
up with itself and remain in “Real-time” operation, the total
latency due to network must me less than the latency due to
audio buffering: it must take less time to send data over the
network than it does to record it or play it back. By this
calculation, our theoretical system latency is at most 374
milliseconds, which is 25% off the measured value. We
believe this discrepancy may come from other processes
running on either end of the system since Windows is made
for multitasking, but we have not verified that idea. This

delay may also come from the fact that the version of code
we were running on both ends were the debug versions of
the build, so they had the debugging symbols and extra
information that makes the program run inefficiently.

To verify that the handheld unit would meet our audio
specifications, we ran a few speaker and microphone
frequency response tests. For an accurate test, Mr. Stear
generated a sample of pink noise (the inverse of all
frequencies) and a sample of white noise (all frequencies).
To perform the speaker test, the noise samples were
recorded from the handheld unit’s speaker using a highly
sensitive microphone. The microphone test used a similar
technique. Using the speakers on the development
computer as the source, the white and pink noise samples
were recorded on the handheld unit’s microphone. Then,
using a Fast Fourier Transform program, the resulting
waveforms were analyzed on a third octave scale to
determine the range of active frequencies. Those
frequencies that fell outside a 10 dB drop were ignored.
The resulting frequency responses are given in the table
below (see Table 1: Handheld Speaker and Microphone
Frequency Response).

TABLE 1:

HANDHELD SPEAKER AND MICROPHONE FREQUENCY
RESPONSE

 Pink Noise
Vo(f)=1/f

White Noise
Vo(f)=f

PDA Speaker 20Hz—16KHz 25Hz-16KHz
PDA Microphone 16Hz—16KHz 16Hz-16KHz

3.7) Instruction Manual: Our instruction manual will

be based off our operational specifications and any usability
guidelines documented in our technical notes sheets. The
instruction manual will consist of two main sections: one
for setting up the device on a wireless network and one for
using the SRU and host software to record, play, and
manage audio. The wireless network section will be written
specifically for a trained IT professional, as this may be too
complicated for easy installation by a doctor, especially for
setting up the device for use over an entire WAN. It will
describe how to set up the wireless communications
between either a host and SRU, or a WAN and a SRU.

The usage manual will detail how to play, record,
change tracks, and use the host, on a level understandable to
someone who has never used a modern stereo.
Additionally, we will write a section to prime users of
previous USB units on the new SRU/host combination.

4) Release Plans
The release of our product will be a package that

includes a PDA with remote software preinstalled; a disk
with host software, remote image and remote image
installation program; and a set of documentation, either on
disk or in paper format. For use in hospitals, the IT
department will likely perform the installation and address
management setup. In the case of a private consumer, the

 8

user will likely be the installer, so the documentation needs
to be thorough enough to direct a person without formal
computer training. Our system is not overly complicated,
so the initial setup should be rather easy for any skill level.

To invite feedback on the new system, we could setup
an email address or phone number to collect opinions and
feedback from users of the system. Using the feedback we
can develop upgrades or patches to improve and expand the
operation of the system.

5) Maintenance
Once the Remote Recording System is released for

distribution, the maintenance process will begin. As with
any commercial software product, a large part of the
maintenance process will be fixing any software bugs that
were not found before product release. These bugs could
arise from compatibility issues with certain host systems
and OS versions that were not tested, incompatibility with
other software that may be running simultaneously on some
host systems, host OS updates that break compatibility with
some features used in the RRS, or simply bugs in the
release software that were not found during testing.

Product updates will also be a key part of the product
maintenance. Any new technology or functionality added
the Windows CE platform in the future that would be
beneficial to the product can be integrated into the RRS.
Some key technologies that may be integrated in the future
would be newer wireless networking standards that allow
for higher fidelity or longer operating range of the system,
newer compression algorithms better suited to the system,
or speech-to-text conversion directly on the remote unit.

6) End of Life
The end of life conditions for the Remote Recording

System will occur when maintenance of the software
becomes expensive or impossible. The main component of
this RRS project is the software, which can be reused on
other architectures with Windows and network support.
Also, writing for DirectShow dictates that we are writing
for general audio and network functions rather than specific
sound or network hardware. This makes figuring out when
this project’s lifecycle will end difficult to say. The table in
the next column gives estimates of end-of-support for the
key technologies in our project solution (see Table 1: End-
of-Life Estimates for Hardware and Software
Technologies).

6.1) Hardware: From a hardware perspective, on the

original PPT 8846 XScale architecture, a life cycle can be
guessed based on how long previous generations of
technology have lasted. If we consider the project’s
lifecycle to be tied to this architecture, then it would be the
factor that determines the project lifespan of the RRS.

However, writing for Windows CE dictates that we are
writing software for an operating system rather than an
underlying architecture. So although AID will likely
market actual screen-less devices with the SRU software on
them, the true end-of-life of the RRS will occur when they
cannot easily put the remote software on a standard newer

Windows CE device or update the software for newer
versions of Windows.

6.2) Software: The life of the system is also heavily

tied to the software and support availability of Windows.
We should consider the remote software’s end of life as tied
to the Windows CE .NET 4.2 platform, as we should
consider the host software’s end of life as tied to Windows
XP. Microsoft has strict end-of-life policies on its software
and operating systems. Below is a table of their product
lifecycle support dates. The most important of these is
probably the end of life date for the eMbedded C++ 4.0
IDE used to build this suite. We predict using a newer
Microsoft IDE will fail to build the software using the same
process we documented, and require copious amounts of
tedious testing and debugging.

TABLE 2

END-OF-LIFE ESTIMATES FOR HARDWARE AND SOFTWARE
TECHNOLOGIES[1]

Product Description End Support Date
Microsoft

Windows CE
.NET 4.2

Remote OS with
DirectX
Development
Kit

30 June 2008

Microsoft
Windows XP

Host Operating
System

31 December 2006

Microsoft
eMbedded
C++

Remote
Development
Environment

30 June 2007

Platform
Builder

Builds WinCE
OS Images

30 June 2007

Intel Xscale
Architecture

Remote Hardware
platform

Estimated 2-3 years

B. Failure Rate Calculations
The following scores are the product of using the Relex

program to compute hardware reliability scores. The use of
Relex is outlined in the appendix section titled “Using
Relex to Calculate Hardware Reliability Scores.” Since we
used a demonstration version of the program, there is a
limit to the number of parts that could be added into a
system. As a result, the host computer system is built of
three separate systems: the power supply; the mainboard,
CPU, RAM, I/O controllers, and chipsets; and the overall
PC with video, sound, modem, and network cards, as well
as input devices and a display. In a tree view, the PC
system is a root, and the power supply and mainboard
subsystems are the leaves.

The table below outlines the device tested, the Failure
Rate of the device in failures per million hours, and the
Mean Time Between Failure in hours (see Table 2:
Reliability Scores for Hardware Systems).

 9

5) Calculate the Risk Priority Number for each effect TABLE 3:
RELIABILITY SCORES FOR HARDWARE SYSTEMS

In the table below (Table 4: FMEA Table of Ratings),
we calculated the initial Risk Priority Numbers. The RPN
in the right-hand column gives a scale for judging which
risks are the highest priority, meaning that they are the most
severe, most likely to occur, and most detectable failure
modes we brainstormed for the system. The failure modes
with the highest RPN values are the most important failure
modes, and need to be addressed with some form of
safeguarding, or even eliminated.

Part Failure Rate MTBF (hours)
Host Computer 56.367 17,741
 Power Supply 20.992 47,637
 Mainboard/CPU 14.738 67,851
Handheld Unit 0.109 9,096,360

C. Failure Modes and Effect Analysis

1) Potential Failure Modes 6) Prioritize Failure modes for action.
Together, we brainstormed what we thought were
potential failure modes, however likely or unlikely
they might be. The list is below (see Table 3: List
of Potential Failure Modes).

Our top three failure modes are: microphone
malfunction, low battery life, and network devices out of
range. Obviously we can do nothing to safeguard the
operating system (without building a custom version of the
operating system and fixing the bugs we might encounter),
so there is nothing we can do to reduce or eliminate the risk
of the Host Operating System failing. Also, there is little
that can be done to reduce or eliminate the risk of physical
damage to the remote device. The remote unit that we have
been using for the development of this project is made to be
very rugged, so it will likely withstand a short fall once in a
while. An action we could take to help make the device
more rugged would be to make or purchase a padded case
for carrying the remote unit, but that might only protect it
while it is not being used.

TABLE 4:

LIST OF POTENTIAL FAILURE MODES
1) Unit out of network range or obstruction
2) Low battery life
3) Physical damage
4) Other systems down (WAP)
5) HD full on host
6) Microphone malfunction
7) DirectShow or library failure
8) Host OS not working
9) DLL doesn’t run at startup
10) No soundcard or network card detected
11) DirectX not installed
12) Other DirectX applications using

resources, libraries occupied
13) Memory leak or memory full
14) Tracks unavailable (deleted or pointer

corrupted)
15) Host OS not working

TABLE 5

FMEA TABLE OF RATINGS

 Severity Occurrence Detection RPN

Phys. Damage 7 4 9 252

Host OS failure 5 3 10 150

Mic Malfunction 3 2 7 42

Low Battery Life 5 8 1 40

Out of Range 5 6 1 30

Library failure 5 2 2 20

External failure 5 2 1 10

No soundcard 5 2 1 10

Memory fail 5 2 1 10

Auto Start fail 5 1 1 5

DirectX absent 5 1 1 5

Tracks unavailable 5 1 1 5

HD full 4 1 1 4

Resources in Use 3 1 1 3

2) Assign a Severity rating for each effect
Here, we decided on a number to scale how severe the

specified event would be if it were to occur. A higher
number on an event means such an event occurring would
have more severe or detrimental effects.

3) Assign an Occurrence rating for each failure mode
The following list outlines the occurrence rating we

assigned to each failure mode, based on how often the
failure mode would be likely to occur. In this case, higher
numbers mean that the event is more likely to occur.

4) Assign a Detection rating for each failure mode
Here, we assigned a number to each failure mode to

describe how easily a given failure mode would be to
detect, or how obvious it would be that that event occurred.
The higher the number, the more detectable the failure
mode.

V. SOCIAL IMPACT

A. Health and Safety Issues
As this speech recognition unit will be used in

hospitals as a transcription tool, there is the chance that it
could be a vehicle for the spread of infection. Recently

 10

cellular phones were found to spread dangerous strains of
bacteria in hospitals [2]. Apart from good hygiene
practices, our documentation will clearly outline effective
methods of sterilizing the wireless unit.

Cellular phones that operate in the 900MHz band as
well as other wireless devices have been known to disrupt
pacemakers, defibrillators, and hearing aids [3]. However,
higher frequency PCS phones operate on much lower power
than their predecessors and have an insignificant effect on
medical and life critical devices [4]. Devices that use
802.11b radios and technology are similar to PCS phones in
this regard.

With any portable audio device, there is an issue of
possible hearing loss when using headphones, particularly
bud earphones. The simplest option for mitigating the
problem of hearing loss with headphones is to set a safe
upper limit on headphone volume. Many portable music
devices employ an AVLS, or Automatic Volume Limiting
System, technology to protect the listener's hearing. We
could try to develop some method of AVLS in hardware, or
simply set a reasonable limit on the volume dial to which
the user will have access.

B. Environmental Issues
Two environmental factors are involved in the use of

this device: speaker volume and radio interference. The
external speaker should be limited to a reasonable volume
that won't disrupt a moderately loud conversation.

Interference is another important consideration; the
interference this device causes is discussed in relation to
FCC rules in the Regulatory Issues subsection. The remote
unit is also subject to environmental interference. Although
the orientation of the internal antenna is primarily
responsible for how well signals are received, factors such
as weather, interference, walls, and other physical
obstructions degrade wireless performance.

Furthermore, there is the issue of disposing or reusing
components of the device. Lithium-Ion batteries can be
recharged or recycled, and are safer to dispose of than other
common battery types such as Nickel-Cadmium. Services
exist to recycle and refurbish entire cell phones and PDAs
as well [5].

C. Legal Issues
Since we developed our project using academically

licensed software, we cannot release the applications for
commercial use. In the cost analysis however, we account
for the cost of the development tools such that a person
could develop the project further and for commercial use.

VI. SPECIFICATIONS NOT YET MET
The specifications we did not meet in our

implementation are listed below.
• Software command interface to control IBM’s

ViaVoice voice recognition software.
• Track management interface.
Given more time, and had we initially selected the

method of solution we finally used, these specifications

would likely be functional today. As it is, these may be
somewhat simple to implement for another team of
programmers.

VII. FUTURE MODIFICATIONS
Given more time for this project, this list of additional

features would likely have been completed.

A. Host
• Support for multiple simultaneous remote hosting.
• Support for WLAN in addition to ad hoc.
• Support for WEP keys.
• Create custom docking software to configure

remotes and their addresses.
• Advanced interface for controlling Voice

Recognition programs other than ViaVoice.

B. Remote
• Change to a headless device implementation.
• Support for WLAN in addition to ad hoc.
• Support for WEP keys.
• Manufacture a new plastic shell and rubber buttons

for the playback and record controls, as well as the
volume adjustment.

• Add support for other handheld computing
platforms (Axim, iPaq, Jornado, palmOS, etc.) that
are equipped with speakers and microphones.

• Include volume controls for the recording and
playback levels.

• Add voice command capabilities.
• Add headphone and microphone jacks for a

headset.
• Add support for sound effects filters (reverb, Darth

Vader, etc.).

 11

 1

VIII. APPENDICES

A. USER’S MANUAL 3

B. SPECIFICATIONS 7

C. ORGANIZATION OF CODE AND DOCUMENTS ON ACCOMPANYING CD 8

D. BILL OF MATERIALS 9

E. WINDOWS DEVELOPMENT AND API TUTORIALS 10

F. TECHNICAL NOTES SHEETS / BUILD INSTRUCTIONS

G. REFERENCES

 2

A. USER’S MANUAL

Introduction
Congratulations on purchasing the Remote Recording System. This system is one the most advanced
dictation system ever constructed. The features have been designed for ease of use and mobility to
make for responsiveness, an easy to use interface, and portability. We hope you find the system
powerful and useful.

About this guide
This guide describes how to install and use the Remote Recording System. The topics described
herein include:

• Host software installation
• Host setup
• Remote Management Application configuration
• Recording tracks for dictation
• Playback
• Skipping tracks
• Troubleshooting

Installation

Host Software

System Requirements
The host software has been tested for use on IBM-compatible computers running
Windows XP Professional. Follow these recommendations for your system:

Pentium III or Athlon 750 MHz
256 MB RAM
DirectX 9.0b Runtimes
Wireless Network Interface Card
Windows Compatible Sound Card
30 MB Free Hard Disk Space
Extra Hard Disk Space for Archival of Sound Files
Voice Recognition Program (For using Voice Recognition capabilities)

Step by Step Installation
1. Place the Installation CD into the CD-drive on your host computer. In the

dialog box that appears, choose to install the Host Application.
2. If the installation does not start automatically, click “Start,” “Run…,”

D:\host_setup.exe, where D:\ is the location of your CD-drive.
3. Choose a location on your computer’s hard drive for the program files.

After you have chosen a location, click “Next” to continue installing the
host application.

4. Wait for the files to copy to your computer.
5. Click “Finish” once the files are copied.
6. Shut down your computer, and begin installing the cradle according to the

Quick Start Guide supplied with your Remote Unit.
7. After the cradle is connected, restart your computer.
8. If it is not already in your computer’s CD-drive, insert the Installation CD.
9. In the dialog box that appears, choose to install the ActiveSync remote

software synchronization program. Follow the on screen directions to

 3

install it. When you are finished installing ActiveSync, your host computer
is ready to be configured for remote units.

Remote software

Before Using the Remote
Before using the remote, be sure to charge the batteries for the remote for the amount of
time specified by the Quick Start Guide supplied with your remote unit. This may take
up to 24 hours depending on the remote used for your system.

System Includes
The remote system should come with the proper operating system and remote unit
software preinstalled. If it seems that the device does not have the proper software
installed, see the Troubleshooting section of this guide. It is possible, though unlikely,
that you will need to reinstall the remote unit software on the remote unit.

Step By Step Installation
To install the software on the remote device, first install the cradle onto the host
computer, as described in the Quick Start Guide for your remote unit. The remote
software is contained on the Installation CD. Installing it on the remote involves simply
copying the executable file from the CD onto the remote unit’s flash memory, then
copying a shortcut to the device’s startup folder.

Copying the Executable.
1. Insert the Installation CD into your host computer’s CD-drive. Close the dialog

box that appears for host software installation. Open the CD by double clicking
on “My Computer.” Right-click on the icon for your CD-drive, and choose
“Open.”

2. Be sure the remote unit is properly connected to the cradle and that ActiveSync
is connected to the remote unit so that it can synchronize.

3. Click the “Explore” button on the toolbar at the top of the ActiveSync window.
4. A file browser will appear that shows the files on your remote unit.
5. In the file browser for your CD-drive, click on the file named “remoteapp.exe”

and then choose “Copy” from the “Edit” menu.
6. In the file browser for your remote unit, double click on “My Computer” and

“Paste” the file in that folder using the “Paste” command on the “Edit” menu.
Creating a Startup Shortcut

1. Right-click on the icon for “remoteapp.exe” and choose “Create Shortcut.”
Now, cut this shortcut using the “Cut” command on the “Edit” menu.

2. On the remote device, navigate to the “Windows” folder, then to the “Startup”
folder, and “Paste” the shortcut using the command on the “Edit” menu.

3. Close the ActiveSync program.

Initial Setup

Configuring the Host for Remote Devices
On the Host computer, run the Host’s Remote Management Application. The list of remote units
should be empty at first, since no remotes have been configured yet. Click the “Add Remote”
button next to the Remote Unit List drop-down. Give your remote unit a clever nickname, so that
you can keep it straight from any other remote units (for example, “Rodger,” “Kitten,” “Shane,” or
anything easy to remember). Also enter the MAC address for your remote. The MAC address is
usually on a sticker located on the back of the remote.

 4

Hosting Multiple Remotes
It is possible to host multiple remote units from the same host computer. Using the Host’s Remote
Management Application, you can easily choose the remote unit you want to host from the drop-
down list. Note that you can only host one remote at a time.

Using the System

Dictation
To use the dictation feature, simply press the “Rec” button once on the unit. When the Record
indicator light stops flashing and stays on steady, the system is ready to receive audio data and
transmit it to the host computer for processing. To stop recording, press the stop button on the
remote. On the host computer, you should be able to see the effects of your recording, either in
the voice recognition program, or in the audio application you are using, depending upon your
situation.

By pressing record, you started recording a new audio track, and by pressing stop, you signal the
end of the track. The number of tracks you can record and store at a time is controlled by the
Host’s Remote Management Application. The default number of tracks is set to ten, but this
number can be changed easily by opening the settings in the Remote Management Application.
The only limit on the size of audio data that can be stored is the size of your free hard disk space.
Please note that the size of tracks you record increases with the amount of time stored in the track.

If your host computer is out of hard disk space to take dictation, you may be unable to record new
audio data or translate voice into text. In this case, you will need to clear some disk space. Refer
to your computer’s help system for information on freeing some disk space.

Playback
To playback what you recorded, simply press the “Play” button once on the remote. You should
hear the audio you just recorded play back over the speaker on the remote unit. In the case of a
voice recognition program, you should hear the voice recognition program reading back the text
you spoke into the remote.

If you have not yet recorded audio with the remote unit, you will not be able to playback any
audio. This is also the case if you restarted your computer or closed the audio or voice recognition
program you were using to record audio data.

The playback feature always plays back the last track you recorded, unless you have used the track
skipping buttons to navigate among tracks you recorded. Note that if you record another track
after skipping among the tracks, the playback feature will again play back the last track you
recorded.

Skipping Tracks
To skip between tracks you have recorded, press the “Next” or “Prev” buttons on the remote unit.
Each press will skip one track in the specified direction. If you have not recorded any tracks, then
the skip buttons will not have any effect on the system.

The track skipping buttons work in a circular fashion. For example, if you recorded five tracks of
audio data, and you try to skip backward past the first track in the list, you will effectively return
to the top of the list and hear track five again. If you try to skip forward beyond the number of
tracks you have recorded, you will arrive back at the first track in the list.

Troubleshooting
If you have problems with the system, try to troubleshoot the problems with the following table. Steps you
take here will make it much easier to fix the system if you have to call Support for help

 5

.

Symptoms Possible Causes Solution
Device will not record. Dead Battery. Charge the batteries according to the

Quick Start Guide supplied with the
remote.

 Host has no free disk space. Free some disk space on the host
computer.

 Host and Remote unable to
communicate over network.

Ensure the host’s wireless card is
properly installed and configured,
and the remote and host are within
range of each other.

 Host’s Remote Management
Application not running.

Start the Remote Management
Application, and ensure it is in the
“Startup” folder, in “Programs” on
the Start menu.

 Remote is not configured to
communicate with Host.

Use the Host’s Remote Management
Application to add your Remote to
the list of known Remotes.

 Remote unit software not installed
properly.

Follow the directions in step ii. 3.
to install the remote software on the
remote unit.

Device will not playback. No tracks have been recorded. Record a track to playback.
 Dead Battery. Charge the batteries according to the

Quick Start Guide supplied with the
remote.

 Host and Remote unable to
communicate over network.

Ensure the host’s wireless card is
properly installed and configured.

 Host’s Remote Management
Application not running.

Start the Remote Management
Application, and ensure it is in the
“Startup” folder, in “Programs” on
the Start menu.

 Remote is not configured to
communicate with Host.

Use the Host’s Remote Management
Application to add your Remote to
the list of known Remotes.

 6

B. SPECIFICATIONS

1. Audio Characteristics
a. Sample rate: 44100 Hz
b. Bits per sample: 16
c. Number of Channels: 1 (monaural)
d. Compression: MPEG Layer 1 audio compression

2. Hardware Specifications
a. Internal Microphone:

i. Sensitivity: 65dB (0dB = 1V/0.1Pa @ 1kHz)
ii. Frequency Response: 100Hz - 15kHz

b. Internal Speaker:
i. Sensitivity: 88dB / 1 W

ii. Frequency Response: 600Hz - 10kHz 10dB
3. Remote Device Specifications:

a. Processor: Intel XScale (ARM) Processor
b. Operating System: Microsoft Windows CE .NET (Version 4.2)
c. Device Size: 7" * 5" * 2"
d. Weight: 2lbs
e. Battery Life: 3 hrs active use, 12 hrs standby use
f. Battery: 4.3V Li-Ion

4. Network Specifications:
a. Wireless Protocol: 802.11b
b. Frequency Band: 2.401 - 2.473GHz
c. Reception Distance: 100ft.
d. Network Buffering Time: 5s

5. Host PC Operating System: Windows NT Variant (XP, 2000 or newer)

 7

C. ORGANIZATION OF CODE AND DOCUMENTS ON ACCOMPANYING CD

The disc is divided into a tree to separate documents, code for the remote device, and code for the host.

 Folder Filename File Format
\ [root] Readme.txt ASCII text file
 Documentation
 Final Document.doc Microsoft Word Document (Word 2000)
 Presentation.ppt Microsoft PowerPoint
 Host\Sockets TCPConnect.sln Visual Studio Solution file
 Host\DirectSound NetTalker.sln Visual Studio Solution file
 Remote\WaveForm API DialogApp.vcw eMbedded Visual C++ 4.0 workspace file
 Remote\Sockets TCPConnect.vcw eMbedded Visual C++ 4.0 workspace file
 Remote\DirectShow DialogApp.vcw eMbedded Visual C++ 4.0 workspace file
 Remote\DirectSound DialogApp.vcw eMbedded Visual C++ 4.0 workspace file
 WavSamples White.wav Generated White noise waveform audio
 WavSamples Pink.wav Generated Pink noise waveform audio
 WavSamples Whitespkr.wav PDA Speaker White noise waveform audio
 WavSamples Pinkspkr.wav PDA Speaker Pink noise waveform audio
 WavSamples Whitemic.wav PDA mic White noise waveform audio
 WavSamples Pinkmic.wav PDA mic Pink noise waveform audio

Each directory for host or remote contains the source and the environment setup files for each of the methods we
had coded to find a solution. The source for each project is handled by the project files listed in the table above. For
each platform, the “WaveForm API” folder holds the solution that we finally developed for presentation.

The WavSamples folder on the root contains audio samples that were recorded or generated for frequency response
testing. The Generated sounds were created using NCH tone generator, available for free download [6]. The “PDA
spkr” samples were the result of playing the generated sound over the PDA’s spkr, and the “PDA mic” samples were
recorded on the PDA using the PDA’s microphone.

 8

D. BILL OF MATERIALS

This project required few materials for solution. They are listed below, along with a table that details the total costs
of this project, if the developer were to start from scratch and buy each component.

1. Microsoft Visual Studio .NET 2003
2. Microsoft Windows CE Platform Development Kit (includes eMbedded Visual C++ 4.0).
3. Microsoft eMbedded Visual C++ 4.0 SP3.
4. Microsoft DirectX Software Developer’s Kit
5. Development computer:

a. Windows XP Professional edition.
b. Pentium 4 or Athlon processor
c. 256 MB RAM
d. 3000 MB free hard disk space for Visual Studio .NET 2003 and documentation
e. 300 MB free hard disk space for Windows CE Platform Development Kit and service packs
f. 100 MB free hard disk space for project files and builds
g. 500 MB free hard disk space for DirectX SDK
h. Wireless network card, capable of transmitting over 802.11b Wi-Fi standard.

6. Windows CE 4.2 .NET based handheld computer. For our project, we used the Symbol PPT8846
handheld.

 Description Qty Unit Cost Extended Price

1. Visual Studio 1 $1,079.00 $1,079.00
2. WinCE Platform Kit 1 $995.00 $995.00
3. eVC4 SP3 1 $0.00 $0.00
4. DirectX SDK 1 $0.00 $0.00
5. Development computer* 1 ~$2000.00 ~$2000.00
6. Symbol PPT8846** 1 ~$2000.00 ~$2000.00
 Total Cost ~$6074.00

* We supplied our own personal computer to develop this project. For a developer just starting out,

this would be an anticipated cost for a development computer.
** Our sponsor requested that we use this handheld computer, and they supplied it and covered the

cost. In theory, this project could be developed on any handheld computer that is based on the
same ARM architecture, and that includes an audio device (speaker and microphone).

 9

E.1 WINDOWS DEVELOPMENT ENVIRONMENT DOCUMENTATION

E.1.1 Introduction
If you have never developed a Windows program before, buckle up and take notes! Windows development is a
completely different experience from the Unix terminal-editor-compiler experience that lower-level college
programming courses at colleges such as the University of Idaho teach. One must know object oriented
programming quite well before they can use Microsoft’s class-based tools effectively.

This section describes application development for Windows XP and Windows CE .NET using the Visual Studio
.NET and eMbedded C++ 4.0 development environments, along with the entire Windows CE SDK and multiple
versions of the DirectX SDK. This is a very broad overview of the processes used to develop this software. The
technical notes section of the appendix contains how-to information for using specific Visual Studio and eMbedded
C++ functionality.

All the software we used was obtained either from the University of Idaho CS department for educational use or
from the Internet. Commercial and educational licenses are available for Visual Studio .NET. eMbedded C++ is a
free download from the Microsoft Windows Embedded web site [source]. DirectX SDKs are available from
Microsoft’s DirectX web site for free as well [source].

The Windows CE SDK can either be obtained from Microsoft or a custom version can be created using their
Platform Builder tool. Vendors often supply their own versions of the Windows CE SDK. For development with a
Windows CE emulator we were required to build a custom Windows CE SDK with DirectX support. On the actual
Symbol PPT 8846 device, we used the PPT88xx SDK available from the Symbol Developer Zone at
http://devzone.symbol.com.

 10

E.1.2 The DirectX Software Development Kit (SDK)
DirectX is Microsoft’s multimedia platform that serves as both a toolkit and a hardware abstraction layer between a
program and a video or sound devices. All modern versions of Windows after Windows 95 Service Pack 1 (SP1)
include some form of DirectX runtime DLL. In order to develop DirectX applications, the entire DirectX software
development kit is necessary in order to obtain the correct static compile-time libraries.

Platform Windows Version SDK Used DirectX Version
Symbol PPT 8846 CE .NET 4.1 Symbol PPT 88xx 8.0 for CE
CE Emulator CE .NET 4.2 Custom (SRU-R) 8.1 for CE
Host PC XP DirectX 9 SDK 9.0b full

Table E.1 DirectX versions used on each platform and where they came from

The above table shows the version of DirectX that corresponds with the OS on each hardware platform. On the host
end, note that the DirectX 8 runtime (DLL) is installed with all versions of Windows XP, but DirectX 9 is the
newest version as of this writing. For software development on the host, a version of the DirectX SDK was
required. We decided to use the newer DirectX 9 SDK as it included DirectShow network sample code that was
useful for us. Newer versions of DirectX are backwards compatible with the older versions, though, and we were
careful to use methods and objects common to both DirectX 8 and 9 runtimes so our application would be
backwards compatible.

On the remote side, DirectX is included with the various versions of the Windows CE SDK. These versions lack
some of the features of the desktop versions, and are listed accordingly in the table.

 11

E.1.3 Host Development: Microsoft Visual C++ .NET
Visual Studio .NET is Microsoft’s unified development environment for Windows software, supporting a myriad of
compilers and tools under a single Integrated Development Environment (IDE). Visual C++ .NET is designed to
work with object-oriented program design, and emphasizes looking at code not by files but by classes with its class
selection menus and wizards. It is the only reasonable way to develop using Windows APIs.

1.3.1 Projects, Solutions, and Dependencies
In Visual Studio .NET terminology, a project is a .vcproj file containing a group of headers and source
code files that creates a single static library, DLL, or executable. A solution is a .sln file that contains
multiple projects. A solution and its component projects can be copied together between computers. To do
so, you must copy all files referenced by the solution and keep all the relative pathnames between the
solution, the project, and the source files intact.

Solutions are used because often times a project requires a library to be built by another project before it
can compile. In this case you have a list of dependencies between your projects. Not only can developers
specify which projects depend on one another, but they can also change the build order. Both these options
are available when you right-click the solution name on the class or file view in the IDE.

1.3.2 Project Wizards and Windows GUI Projects
Like with Microsoft Office, in Visual Studio a wizard is a way to create an empty Windows interface that
your program can be built off of. There are as many types of application wizards as there are Windows
user interface libraries, but the three primary types are document, dialog, and console.

Document applications have a menu bar at the top and usually a user either creates or modifies files within
the interface. They often call smaller dialog windows to set options – these dialogs can be full-featured
applications in themselves. The RRS remote application is simply a dialog with buttons for playback,
recording, and so on.

Console applications run within the Windows command prompt and resemble the Unix terminal
applications of old. They can use printf() and scanf() calls. For those experienced with Unix
programming as we were, a console app was the simplest way to test the Windows APIs we were learning.

1.3.3 Finding Variable/Function/Class/Method Declarations
Part of the power of Visual Studio is that developers are freed from their documentation and can rapidly
find class and variable definitions. The class-list drop-down and context menus help to navigate through
objects and their methods rapidly. Additionally, by placing your cursor on any function or method name
and pressing F12, you will be taken to where that variable or function is defined, even if that definition is
contained in a different file from the one you’re viewing.

When you type in a class name, followed by two colons, both Visual Studio and eMbedded C++ will show
a scrollable list of methods and variables for that class. This auto-completion list is very useful to help find
variables that your program might need, such as a window handle for sending the window’s memory
address to other functions.

Another handy tip is to switch between the IDE’s child editor windows by pressing CTRL+TAB or
CTRL+SHIFT+TAB. This can be used in most document-style applications that handle more than one
open document.

1.3.4 Static and Dynamic Libraries with Windows XP
Windows programs often work with both .lib format static libraries and .dll format runtime, or dynamically
linked libraries (DLLs). When building a DLL project, it will build a DLL and an “exports” .lib file. The
idea, without going into extreme detail, is that without the .lib file, the application won’t know what the
DLL file contains. Some programs solely use static libraries and build the final application with those, but

 12

this results in very large executables. DLLs also have the handy property of being reusable by more than
one program.

When working with Application Programming Interfaces such as Windows Sockets or DirectShow, you
need to go to your Linker Input settings and add the required .lib files, as per the API documentation. For
instance, when building sockets applications for XP, you need to add ws2_32.lib to the list of input libraries
to include, in addition to including the winsock2.h header file in your source code.

If your solution builds an application that relies on a DLL that is also built by your solution, the application
needs the output .lib file made by the DLL project, in addition to having the created DLL registered by the
system. DLLs are registered using the regsvr32 utility included with Windows XP. In the Project Settings
for a project, there is an option under Linker settings that will register your DLL automatically after it is
successfully built.

Finally, before you start playing with the Linker input list and start including exact pathnames to each and
every library file, note that Visual C++ .NET has directory lists it searches when it looks for everything
from include files to libraries and binaries. Go to the Tools menu, click Options, and click the Directories
tab. Sometimes library errors arise because the library search directories aren’t in the correct order and
you’re obtaining the wrong version of a particular library.

To reiterate: Windows libraries in four steps:

- Include the proper header files
- Find where the libraries you need are located and add those paths to the directory list
- Add the required static libraries to the Linker input list
- Make sure DLLs are registered

1.3.5 Step-Through Debugging
The real strength of any Microsoft IDE is its debugger, which allows the developer to step through the code
line-by-line as it is executing. In addition, there are tabs for watching local and user-specified variables as
the program is running, eliminating the need for numerous printf() or cout debugging statements.
Breakpoints are used to halt execution at specific points (F9), after which execution can be continued (F5)
or code can be stepped through one line at a time (F10). F11 will step into the currently highlighted
function.

Breakpoints may halt execution if a variable has a specific value, or alternatively every n times it is
reached. Right-click a breakpoint to set its options. This is extremely useful for debugging threads or
iterative algorithms that repeat many times.

1.3.6 Helper Tools
Two tools necessary for our Windows development with Visual C++ .NET are the Error Lookup tool and
the Registry editor.

The Error Lookup tool, accessible from the Tools menu, is used to correlate hex values with error
messages. When debugging an application, many API calls will return zero if successful, or one of
potentially thousands of error messages if not. In the debugger, by copying the value from the variable
watch tab into the Error Lookup tool, you can check what that error value means.

For debugging DLL files, it is necessary sometimes to check the registry to see if they were registered
correctly with the operating system. Each DLL has Globally Unique Identifiers and Class Identifiers in
their source code that will find their way into the Windows Registry if they were registered properly.
Usually they show up under the HKEY_CLASSES_ROOT\CLSID key.

 13

E.1.4 Remote Development: Microsoft eMbedded C++ 4.0
eMbedded C++ 4.0 is the standard IDE for developing C++ applications for Windows CE platforms. It would be
nice if it shared all the same features as Visual Studio .NET but in reality eMbedded C++ is a offshoot of the Visual
C++ 6.0 line, while Visual C++ .NET is another name for Visual C++ 7.0. The two IDEs have very different
interfaces and feature sets, in particular because eMbedded C++ 4.0 has to worry about compiling programs for each
architecture Windows CE runs on, including an emulator platform that runs on the host machine. That said, most of
the function keys for debugging and searching (F5, F10, etc) are the same.

1.4.1 Projects and Workspaces
Visual C++ .NET projects are incompatible with eMbedded C++ projects and vice versa. Developers
porting to Windows CE must create a new eMbedded C++ project and add all the files from the C++ .NET
project by hand. Projects in eMbedded C++ follow the same rules and have the same properties as those in
C++ .NET. Workspaces serve much the same function as solutions do in C++ .NET, grouping projects
together, handling dependencies, and building projects in developer-defined orders.

1.4.2 Platforms
For all versions of the Windows CE SDK installed (PPT 88xx, custom, STANDARD_SDK to name a few)
there will appear a platform profile. In addition, each profile will let the developer build programs for a
specific hardware architecture, such as the ARMVI, MIPS, or WinCE Emulator. Finally, the developer
can choose to send this code to any target Windows CE devices attached to the development machine.
Usually this is just a single PDA device and the Emulator. If the target is incompatible with the profile and
architecture combination, a warning message typically appears. Some combinations will allow the program
to be sent, but then any attempt to run the program will fail because the binary format is incorrect for that
architecture.

1.4.3 Configuring the Target Device using Platform Manager
All the Windows CE development tools use the Windows CE Platform Manager to configure the target
devices. The Emulator comes pre-configured, but other CE device profiles might not work off the bat due
to problems with serial or wireless communication. To access the platform manager, select the Tools menu
and then select ‘Configure Platform Manager’. Then select the profile you wish to modify – for the remote
device, choose “PPT 800 Device”.

In particular we had trouble communicating over the serial port, and the Symbol documentation was of no
help whatsoever. The Platform Manager settings that worked for us are as follows:

Transport Server: TCP/IP Transport for Windows CE
Configure Connection over Serial, defaults elsewhere

Startup Server: ActiveSync

The target device can also be configured to use a wireless connection if the device is currently connected to
your wireless network. Just put in the device’s wireless address in the TCP/IP Transport Server options.

1.4.4 Static and Dynamic Libraries with Windows CE
As with a DLL project in Visual C++ .NET, a DLL project for eMbedded C++ creates a DLL file and a .lib
file. Also, as with other Windows development, the .lib stub created by this DLL must be linked into
applications that want to call the DLL. Note that .lib files and DLL for the various CE architectures are
completely different from the ones compiled for Intel x86 architectures. Libraries used by eMbedded C++
must either be included with the Windows CE SDK or built from source code using the eMbedded C++
compiler.

1.4.5 Debugging, Helper Tools, and ActiveSync
Even if the IDE isn’t the same, the eMbedded C++ debugger shares all the same major functionality with
its Visual C++ counterpart. There is also an error lookup tool and a registry editor that work exactly like

 14

the XP counterparts. One important difference is that the Windows CE registry editor runs from the
development machine and must connect to the remote device using Microsoft ActiveSync.

Using ActiveSync with the PPT 8846 is a chore. It took random fumbling around with the COM port
settings in the Windows Device Manager. The final settings that worked for us were as follows:

115200 baud
8 data bits
No Parity
1 Stop Bit
Xon/Xoff flow control
FIFO disabled (this was the main problem… at the port settings tab, click ‘Advanced’).

 15

E.1.5 Windows CE Platform Builder and Windows CE Emulator
The purpose of the Windows CE platform builder is twofold: it is used to build Windows CE operating system
images from a user-selectable catalogue of features. It also builds a specialized SDK for your platform that includes
documentation and libraries for precisely the features you include in your platform build. Since the
STANDARD_SDK default platform didn’t include DirectX libraries, we needed to build a new one for the purpose
of testing remote-end code outside of the actual handheld.

Although the Windows CE Emulator has been mentioned before, it is for all intents and purposes its own Windows
CE Platform. It runs approximately 80% speed compared to a real device, and has no wireless Ethernet drivers.
However, it accepts socket connections, has 802.3 Ethernet functionality, and it loads and debugs compiled code
exactly like a real physical platform. Its major disadvantage outside of not being a real device is that building for
real platforms requires additional setup work due to building and including different libraries for different
architectures; and setting up linker input lists for each architecture can be a chore. In particular, if the linker
directories list is in the wrong order you might not build with the right libraries for your architecture.

 16

E.2 WINDOWS API DOCUMENTATION

E.2.1 Introduction
The Windows Application Programming Interfaces (APIs) used in the Remote Recording System (RRS) are just a
few out of the many hundreds Microsoft has developed to make Windows development and deployment happen
faster and sometimes easier. Although many Windows APIs support languages such as Visual Basic and the new
.NET runtime framework, all of the primary Windows APIs are designed with C++ object-oriented development in
mind.

This sections provides an overview of functions and class objects for each of the APIs we worked with during the
duration of our project. These are designed to supplement the reference material included with the API
documentation included with versions of Visual Studio. We assume readers have access to this documentation (also
available on the MSDN website), as well as a basic understanding of Windows drivers, processes and threads, C++
class syntax, and related terminology. It will help you to read our Windows Development documentation as well as
Table E.1 for the various versions of DirectX employed in the different versions of Windows.

 17

E.2.2 DirectShow
Microsoft DirectShow is a media-transport API that we believed was capable of implementing all audio
compression, network transfer and audio playback functionality on both the host side and the remote side. Although
most of our development time was spent trying to develop DirectShow sample code into a form suitable for host and
remote development, we ran into significant problems with how DirectShow transfers data between its component
objects that made rapid development of our RRS system impossible.

Regardless of its absence from our final solution, since we spent most of our time working with DirectShow, we
have gathered enough documentation to discuss how to develop DirectShow applications and describe how
DirectShow is useful in practice, rather than in theory.

Headers, Static, and Dynamic Libraries (All Platforms):
Headers:

dshow.h – Main DirectShow header
streams.h – Used for streaming applications

Static Libraries:
strmiids.lib – CLSIDs and error messages for DirectShow objects
strmbase.lib – Base classes: used to develop filters. For release builds only
strmbasd.lib – Same as above, but for debug builds only

Runtime: Installed DirectX 8.0 or later

2.2.1 The Microsoft Common Object Model (COM)
Just about everything in DirectShow is a class object. Microsoft has a standard for designing these objects
called the Common Object Model, or COM. The important things for application developers who use these
objects to know are how to initialize them and how they’re stored in memory. A quick and dirty summary:
use CoInitialize(NULL) to initialize the COM subsystem DLLs, and then use
CoCreateInstance to create instances of the objects you need. When you’re done, use the object’s
Release method to deallocate object memory and CoUninitalize(NULL) to shutdown COM.

Once the DLL is registered with Windows, it creates global values in the Windows Registry so other
programs know where to find it. This process will be described once we have described particular
DirectShow objects in more detail.

2.2.2 Filters, Pins, and the Filter Graph
DirectShow is based around the idea of software filters. These filters are objects that obtain data from
hardware, manipulate it in a vast variety of ways, and then write it to any sort of buffer such as a network
or audio buffer, or a file. These filters are allocated under a filter graph object, and then the filter’s pins are
connected together. Remember that even with the hardware metaphors DirectShow employs, these objects
are software code, and the process of using them doesn’t necessarily work like it would real hardware.

After the filter graph is allocated and the filters are connected, the main program calls a Run method and
the filter graph will run in its own thread, creating or collecting audio or video data, as the main program
continues doing other things. The main program must use some form of event handling to listen to any
messages the graph thread might send out in order to determine when it is done with its task.

2.2.2.a Filter Varieties
There are three main varieties of filter: transform filters, source filters, and sink filters. The
transform filter is what one might associate with the actual hardware concept of a signal filter – it
takes an input stream and manipulates each sample of that input stream in some way. Two sample
transform filters included in the DirectShow SDK are the Gargle filter and the WavDest filter.

 18

The Gargle filter manipulates sound samples to sound gargly, as one would expect. The WavDest
filter does no modifications to the stream of bytes it receives, but it does keep track of the samples
it obtains so that after all data has made it through the filter, it can append an appropriate wave file
header to the beginning of the stream. It doesn’t write to a file itself; it must be connected to a
separate file writer filter. In this sense it is a transform filter as well.

Source filters are specific for the device drivers on a Windows XP system. A sound card will have
an Audio Capture Filter and an Audio Renderer filter, a video capture card will have a Video
Capture filter, and so on. Any Windows-supported audio or video hardware can have a source
filter created for it by DirectShow. To use these sources in a program you must enumerate the
available devices in a particular category, and then grab the device you want and include its filter.
Source filters exist for capturing streamed network data as well; these require no device
enumeration by the main program, as they enumerate the network card within the filter itself.
Furthermore, a source filter could point to an input file, such as the File Renderer does.

Sink filters are the filters that take the input stream and write it to an output stream or buffer.
These might be enumerated devices in the same sense as the source filters described previously, or
they might be something as simple as a file writer. The DirectShow version of the RRS used a
network sender filter that essentially was a ‘sink’ to the network.

2.2.2.b Pins and Media Types
As described earlier, all DirectShow filters have pins. These pins have methods that are used to
connect themselves to other pins, or to other input or output data streams and buffers. Most
transform filters have one input pin and one output pin, while sound card source filters have any
number of inputs depending on what hardware functionality the device driver supports. If a filter
doesn’t have enough outputs, it is connected to an Infinite Tee filter which converts a single output
for a filter into any number of equivalent output pins.

DirectShow pins are either output pin objects or input pin objects, and they all have a
MEDIA_TYPE, a MEDIA_SUBTYPE, and a MEDIA_FORMAT variable. When filters connect to
each other, the combination of TYPE, SUBTYPE, and FORMAT must be compatible between the
output pin and the input pin. Alternatively, if the graph builder finds proper intermediary filters to
add that will convert the output pin to agree with the input pin’s type, it will add those in
transparently. For local file operations, auto-connection usually makes filter graph creation
extremely easy. Unfortunately, the same cannot be said of streaming operations such as those
needed for the RRS.

2.2.2.c Data Flow in a Filter Graph
The final point to note about DirectShow pins is that they are either synchronous, deriving from
the IMemInput class, or asynchronous, deriving from IAsyncInput. Most of the
Microsoft documentation refers to these as push mode and pull mode, respectively. The difference
between the two is that in pull mode the filter graph’s progress is determined by the “downstream”
sink filter, as it is the one that sends messages back up the graph to the “upstream” source to send
data. In push mode, the samples are sent and the filters act synchronously on the data as it is
moved down the graph.

2.2.3 A Poor Streaming Platform
Although DirectShow is designed for both synchronous streaming and asynchronous non-streaming
applications, Microsoft later designed Windows Media APIs which are centered around streaming their
proprietary formats, and as such DirectShow remains an immature platform for developing streaming
applications.

The problem is that the filters required to implement streaming and negotiation between IAsync and IMem
interfaces are non-existent. For example, it is relatively trivial to construct a graph that takes an input
WAV file and converts it to MP3 with the MP3 compressor filter. However, if that WAV data is streaming

 19

right off the Audio Capture filter, the developer cannot use the Microsoft MP3 compressor because the
Audio Capture filter operates in push mode while the MP3 compressor can only handle asynchronous reads
from a file (pull mode). To further complicate things, it is not readily apparent which data flow methods
and pin types a filter employs without jumping headlong into documentation.

Our group might have chosen to develop a sink-to-source “parser” filter that makes a buffer that the
downstream portion reads asynchronously. Unfortunately this would have taken more time than it would
take to implement the RRS outside of DirectShow due to the large number of methods needed to instantiate
the filter memory properly and set up all the component pins.

2.2.4 CLSIDs, GUIDs and the Windows Registry
When building a DirectShow filter for use in other applications, one aims to create a DLL file loaded by
Windows that other applications can use. When Windows loads the DLL file that a project builds
(remember to check the Register DLL option in your Build properties), it creates a new Class Identifier
(CLSID) in the Windows Registry. The Windows Registry is a huge table of values useable by any
program the OS is running, and the only way to read or write to it outside of the regsvr32 application is
with the regedit tool.

So when a DLL is registered with the operating system, the CLSID is stored in under the
HKEY_CLASSES_ROOT\CLSID key in regedit. The CLSID is a specific type of Globally Unique
Identifier (GUID) used by objects that are activated at run-time. Under the GUID key it might give the
object name and other properties, but it always lists in what DLL the object is found. So when the main
program wants to use that filter object, it instantiates it using the CoCreateInstance function
(malloc for class objects), with the CLSID of that object as one of its arguments.

static const GUID CLSID_DSNetReceive = { 0x319f0815, 0xacef,
0x45fe,
{ 0xb4, 0x97, 0xa2, 0xe5, 0xd9, 0xa, 0x69, 0xd7} };

CoInitialize(NULL);
CoCreateInstance(CLSID_DSNetReceive, NULL, CLSCTX_INPROC_SERVER,
 IID_IBaseFilter, (void**)&g_pSend);
Fig. E.3 Creating a CLSID_DSNetReceive variable and using it to allocate a filter into memory

How does the host program find the CLSID for the filter so it can use it? The answer is that it doesn’t—
you hard-code the value into your program after discovering it in the registry or in the filter DLL source.
The example above shows how a program stores the CLSID in a variable for use by
CoCreateInstance.

2.2.5 Creating The Filter Graph and its Filters in Memory
The filters we used in our DirectShow RRS include an Audio Network Receiver and an Audio Network
Sender. Both of these were derived from Microsoft sample code included in the Summer 2003 Update of
the DirectX 9 SDK, specifically the DSNetwork project. They originally used multicasting (see the
Windows Sockets documentation), but we modified them to send over a simpler peer-to-peer scenario.
Here is a step-by-step algorithm in order to do this:

1) Build the DLL project or set the solution’s build order such that the DLL is built and registered before

your main application project compiles. If this works it will send the appropriate CLSIDs into the
registry.

2) Declare your DLL’s CLSIDs somewhere in your main program, as was done in Figure E.3.
3) Initialize COM and create an instance of the Filter Graph object itself.

 20

CoInitialize(NULL);
CoCreateInstance(CLSID_FilterGraph, NULL, CLSCTX_INPROC_SERVER,
 IID_IGraphBuilder, (void **)&pFGraph);

Fig. E.4 Allocating space for a Graph Builder object in memory
It will make life much easier if you either make the pointer to the graph memory either global or in a
readily accessible class. Do the same for all of the filters you create.

4) Next create any filters you need, using the same technique as in step 3. If your filters are not homemade,
look up the CLSID_FilterName variable for that filter so you can call it with
CoCreateInstance. Pay attention in the API documentation to what classes this filter derives from,
i.e. IBaseFilter or IFileSinkFilter (the fourth argument of CoCreateInstance).
This determines what methods are available to your filter, and what methods are available to its pins.

5) Now you’ll need to set up each filter’s special parameters. Most filters have unique methods that need to
be called in order to find the right audio hardware, or to set the input or output file. For the network filters
you need to set their destination or source IP address. These methods and parameters are described in the
Microsoft DirectShow documentation under ‘DirectShow Reference’, as well as in our source code.

6) So you’ve created the filter graph and the filters but there’s one step left. If you have created all your
filters but have problems later this is a likely cause. Remember to associate these filters in memory with
the filter graph object by adding them to the filter graph:

pFGraph->AddFilter(g_pSend, "Network Send Filter");

The second argument is just the name that your filter is given within this filter graph. If g_pSend is not
pointing to a created filter in memory this statement will fail.

7) Remember to do error checking any time you allocate memory. In the IDE you can check the return
values of CoCreateInstance, AddFilter, and a host of others by creating a test value and
setting it equal to the return value of your function under test. Since these methods return a value of type
HRESULT, just do something like this:

hr = CoCreateInstance(CLSID_FilterGraph, NULL,
CLSCTX_INPROC_SERVER,
 IID_IGraphBuilder, (void **) &pFGraph);
if(FAILED(hr))
 // Return an error

Fig. E.5 Error checking with the return value of a memory allocation function

FAILED is a macro that simply checks if hr is greater than zero. The convention is that a HRESULT of 0
(also defined as S_OK) is the non-error condition, while anything else is an error.

Just to reiterate: Build your DLL, initialize COM, create the filter graph and the filters, set up the each
filter’s unique parameters, add the filters to the graph, and do error checking along the way to make sure
you didn’t forget anything.

So you’ve got your filters in a graph. Now what do you do?

 21

2.2.6 Connecting the Filters
You might have noticed we haven’t connected any of the filters together yet. No data can flow until we
have a source, a sink, and whatever transform filters connected together to form a graph. The basic idea of
this process is to enumerate an output pin on an upstream filter, an input pin on a downstream filter,
connect them together, and then deallocate the pin variables so we can use them to connect another pair of
filters.

Here’s a snippet of code that demonstrates the connection algorithm. The filters in this code must already
been created in memory or their methods will fail.

IEnumPins* PinList;
 IPin* OutPin;
 IPin* InPin;
 ULONG fetched;

 hr = g_pAudioCapFilter->EnumPins(&PinList);
 hr = PinList->Reset();

 // Find the output pin on the Audio Capture filter
 while(PinList->Next(1, &OutPin, &fetched)==S_OK)
 {
 PIN_DIRECTION PinDirThis;

OutPin->QueryDirection(&PinDirThis);
 if (PinDirThis == PINDIR_OUTPUT)
 break;
 OutPin->Release();
 }
 hr = PinList->Release();

 // Find input pin on Infinite Tee
 hr = g_pInfTee->EnumPins(&PinList);
 hr = PinList->Reset();
 PinList->Next(1, &InPin, &fetched);
 hr = PinList->Release();

 // Connect the Audio Capture filter to the Infinite Tee
 hr = g_pGraphBuilder->Connect(OutPin, InPin);
 InPin->Release();
 OutPin->Release();

Fig. E.6 Algorithm for Manually Connecting Filters

In order to get the correct pins from a filter you have to enumerate them all and do a quick search for the
proper pin by checking the pin’s direction as shown in the while loop above. Input pins are always the first
pins in the enumerated list, so for the Infinite Tee we just chose the first pin using the Next method. After
we connect the actual pins on the filter, they will remain connected even after we release the InPin and
OutPin variables we were using.

One line that might confuse you is the Reset method used by the PinList list. This resets the list
pointer to the head of the list just incase somehow PinList wasn’t released properly, and is just a safety
measure.

 22

The Connect method won’t work if you’re trying to connect a filter that hasn’t been added to the filter
graph, so you might want to check for errors with that hr value in your code. Remember to call
AddFilters to add the created filters to the graph in your allocation routines!
This process of connecting the filters is called manual connection. DirectShow has many methods for
automatically connecting filters together when it’s working with simpler tasks like pull-mode audio
compression or local playback operations. However, these could not be used for our project because of our
desire to use both push mode and pull mode filters. Look at the RenderFile method, which creates a
playback graph specifically tailored for its file argument, for more information.

2.2.7 Running the Graph
In terms of the main program’s logic the most important thing a programmer needs to plan on is event
handling. As soon as the filters and graph are created and connected, you grab an IMediaControl
pointer from the filter graph object and use its methods to Run and Stop the graph.

IMediaControl* g_pMediaControl;

hr = g_pGraphBuilder->QueryInterface(IID_IMediaControl,

reinterpret_cast<void**>(&g_pMediaControl));
hr = g_pMediaControl->Run();

Fig. E.7 Obtaining the controller for the filter graph and using it to run the graph

QueryInterface is a very important method used in many DirectShow objects. It is used to allocate
memory for a set of class methods used to operate on the calling object. Here we create a
IMediaControl object named g_pMediaControl to control the g_pGraphBuilder filter
graph object. As the variable name might suggest, it is useful to put the IMediaControl pointer into
protected class memory or global memory so you don’t have to worry about passing it during calls to the
event handling function.

Up to this point if you’ve made a program that implemented the filter creation and filter connection
techniques, created the media controller and called Run, you would have a working graph. It will simply
run until the stream ends. Chances are an application will wish to have the option to stop this stream before
it is over, however – this will require the main application to have an event handling strategy.

2.2.7 Detecting Events
The filter graph runs in its own execution thread, so your program can continue doing whatever else it
needs to do, such as print status or diagnostic information, while a graph is running. Being that the filter
graph is in its own thread, it is the main program’s responsibility to know what that thread is up to.
DirectShow has its own IMediaEvent interface that allows you to do precisely this. Using
IMediaEvent methods, you can tell the filter graph to send event messages to the main application.
Although very useful for sending events, IMediaEvent is a DirectShow-specific object, and cannot be
used in event handling for programs with no filter graph.

 23

// Constant representing the code for our filter graph message
#define WM_GRAPHNOTIFY WM_APP + 1

IMediaEvent* g_pMediaControl;

hr = pFGraph->QueryInterface(IID_IMediaEvent, (void **)&pMEvent);
hr = pMEvent->SetNotifyWindow((OAHWND)m_hWnd, WM_GRAPHNOTIFY, 0);

Fig. E.8 Obtaining the controller for the filter graph and using it to run the graph

Every Windows application has a window handle, named hwnd or something of that ilk. When building
GUI applications such as a simple dialog application or a more typical document application, this variable
is contained by one of the parent classes for your application’s window painting or display routines. Even
the visible windows themselves are described by class objects just like the filter graph.

If you build a dialog application as we did, the window handle variable will be m_hWnd but if you created
a different type of application, your window handle may have a different name. To find it, type the name
of your application class (ours was CDialogappDlg), followed by two colons, and watch the auto-
completion come up with all the potential methods and variables for that class. Chances are the variable
containing hwnd in it will be the one you’re looking for.

Unfortunately we’re not even close to done making an event handler. Our graph is set to send messages to
our main application window, but the main application doesn’t know how to deal with these events. The
Windows way of handling messages is to set up the WindowProc function from one of your application-
classes such as CDialogappDlg. WindowProc will handle any application level messages, and
send the rest of them to a lower-level handling routine (also named WindowProc, but within a lower-
level class).

You must create this WindowProc using the Class Wizard, selectable from the View menu or by
pressing Ctrl+W. Double-click ‘WindowProc’ from the list of “messages” found in the Class Wizard
window, under class name CDialogappDlg (replace with your application class name). It will create
an empty WindowProc function with the appropriate return call to the lower-level handler. Adding a
condition to check for WM_GRAPHNOTIFY messages will allow your application to handle the messages
from the filter graph. The final function looks like this:

LRESULT CDialogappDlg::WindowProc
(UINT message, WPARAM wParam, LPARAM lParam)
{
 switch(message)
 {
 case WM_GRAPHNOTIFY:
 HandleEvent();
 break;
 }

 return CDialog::WindowProc(message, wParam, lParam);
}

Fig. E.9 Our application’s WindowProc function

 24

WM_GRAPHNOTIFY only tells us that something has happened with the filter graph, not what that
something might be. So it calls a HandleEvent function we make to determine what really happened
in our filter graph, and make the appropriate decision. HandleEvent calls
IMediaEvent::GetEvent to obtain the filter graph’s state. We then take action based on what this
state is. All the following HandleEvent function acts upon is EC_COMPLETE, which determines if
the entire stream went through the graph, or EC_USERABORT, which would be sent if the
IMediaControl::Stop method was called somewhere.

HRESULT CDialogappDlg::HandleEvent()
{
 HRESULT hr;
 long evCode, param1, param2;

 hr = pMEvent->GetEvent(&evCode, ¶m1, ¶m2, 0);
 while(SUCCEEDED(hr))
 {
 hr = pMEvent->FreeEventParams(evCode, param1, param2);
 if ((evCode == EC_COMPLETE) || (evCode == EC_USERABORT))
 {
 CleanUp();
 break;
 }

 hr = pMEvent->GetEvent(&evCode, ¶m1, ¶m2, 0);
 }

 return hr;
}

Fig. E.10 Handling filter graph events

For simple event handling like we did, we didn’t need to worry about the specifics of what the event
parameters param1 and param2 were, other than they needed to be freed after every GetEvent call.

2.2.8 De-allocating Objects
After the graph is done running, and you’re done with all your DirectShow objects, call the Release
method on each one. The filter connection algorithm shown in Fig. E.6 demonstrates the PinList
pointer being released every time it contained a new value. Every time the filter graph needs to do a new
playback or recording session, it needs to be Released and recreated/connected in this same manner.

Failure to Release all the objects you create will result in memory leaks and runtime errors after your
DirectShow graph is done doing its job.

2.2.9 Concluding Remarks About DirectShow
The hardest parts about using DirectShow are setting up the filter graph correctly and verifying your event
handler works. It cannot be stressed enough that a programmer needs to do error checking on the return
value of each and every DirectShow method call, especially if they are just starting out. Look at Fig. E.5
or the RRS source code for examples of error checking. If the program doesn’t properly connect or create
filters, step-through debugging will almost always reveal a bad return value for some DirectShow method.

 25

Error checking makes this much easier to see, because you can watch the value of the hr variable as it is
assigned.

For extra advice on event handling, deadlock might occur between two threads if any system calls are made
in the WindowProc function. DirectShow methods don’t make system calls to my knowledge, so this
only comes into play if you try calls to lower-level APIs such as Windows Sockets or the Waveform API in
your WindowProc function.

The Microsoft documentation states that DirectX shouldn’t be used in high-security computing
environments, and the deadlock issue above might be one reason why. For high-security sound
programming, the Waveform API is more appropriate.

 26

E.2.3 Windows Sockets
The concept of sockets was created by Unix network programmers in the 80s, and has since been adopted by every
major operating system that uses networking in any form. A socket is a sort of network “jack” created by an
operating system. For instance, a TCP/IP socket is given a port number and an IP address. Any data sent to this
socket using the proper functions will be sent using the socket’s protocol, port, and address information. The socket
might be set to listen for incoming connections or to make a connection to a remote machine.

A good synopsis of a socket is that it contains all necessary addressing, connection, and state information for data
transfer between two computers. Once it is set up, the two computers can use a standard set of functions such as
send() and recv() to transmit data back and forth.

Windows Sockets, or Winsock, is the Microsoft adaptation of the earlier Berkeley Unix sockets program. Winsock
is a low-level API for programming network transfers between two Windows computers, and is standard across all
Windows platforms. Socket functions are actually OS system calls; in fact open sockets on ports within a certain
range (0 to 5000) are handled directly by the operating system and will remain open even after a program is shut
down.

There are two major versions of Winsock: version 1 and version 2. Version 2 is backwards-compatible with
version 1, but has a number of new Microsoft additions to the original set of Berkeley Unix socket functions. We
encountered build issues with Version 2 on the remote side, and most of the Microsoft additions didn’t seem useful
for our purposes. Therefore, we used solely version 1 functions on both platforms, and used version 1 libraries with
the remote program. Most (but not all) version 2 functions act similar to version 1, except with more parameters and
a “WSA” prefix: socket() and WSASocket(), send() and WSASend(), etc.

As this is a low-level API, the functions may be confusingly named but the method and code itself remains simpler
than object-oriented code. Anyone who knows C should understand how to create network programs that use
sockets after following the steps presented in this short overview of Winsock programming.

Headers, Static, and Dynamic Libraries (Windows XP):
Headers:

winsock2.h – Main Winsock 2 header
ws2tcpip.h – TCP/IP specific definitions and prototypes

Static Libraries:
Ws2_32.lib – Main static library for Winsock version 2

Runtime: Part of Windows XP

Headers, Static, and Dynamic Libraries (Windows CE .NET 4.1 and 4.2):
Headers:
 winsock.h – Main Winsock 1.1 header
Static Libraries:
 winsock.lib – Winsock 1.1 static library
Runtime: Part of Windows CE

2.3.1 Using Connection-State TCP/IP Sockets
TCP/IP sockets work much like a telephone call: one socket attempts to connect to a remote machine, hopefully the
remote machine answers, and then data can be moved back and forth in full-duplex fashion. If the remote machine
does answer, the connection state guarantees reliable data transmission (unless a hardware catastrophe occurs). The
following steps demonstrate what needs to be done for two sockets to talk to each other over TCP/IP.

 27

To a beginner many of the socket functions are named confusingly. It is just best to know when they need to be
called rather than understand precisely what their purpose is in order to create simple programs. Here’s the recipe –
after this we’ll dive into more detail. If the steps for the client and server diverge, we’ll describe these differences in
clear detail.

 Description Client (Sender) Function Server (Receiver) Function

1 Initialize the runtime library WSAStartup WSAStartup
2 Create the socket socket socket
3 Set Socket Options setsockopt setsockopt
4 Bind address to socket None (implicit bind) bind
5 Connect to server/Listen to client connect listen, accept
6 Send/receive data send recv
7 Monitor the socket state select Select
8 Disconnect/Close socket shutdown Shutdown
9 Shutdown runtime library WSACleanup WSACleanup

Table E.2 Steps to create and use a connection-state TCP/IP socket

1) Initialize the Runtime Library
Call WSAStartup with no arguments and Windows knows you are going to be using sockets. This is specific to
Windows Sockets programming, but it is not a version 2 function.

2) Create the Socket

// Create and initialize an actual socket and a return value holder
SOCKET sock, sockval;
sock = sockval = 0;

sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if(sock == SOCKET_ERROR)
{
 sockval = WSAGetLastError();
 // Handle the error or return/exit
}

Fig. E.11 Creating a socket and checking for errors

SOCKET is just a glorified way to specify an unsigned integer that describes a socket value. If this or any other
socket function fails, the version 1 function WSAGetLastError will give you a value to plug into the Error
Lookup tool to see what was wrong.

 28

3) Set Socket Options (SO_REUSEADDR)

char t = TRUE;
sock_val = setsockopt(
 sock,
 SOL_SOCKET,
 SO_REUSEADDR,
 (char *) & t,
 sizeof t
) ;

Fig. E.12 Setting socket options
The only socket option we care about is the one that lets us create multiple connecting sockets on the same port with
the same source address. By default calls to the bind or connect functions will fail if there is another socket on
this port with a connection already.

4) Bind Address to Socket
Binding is a strange thing. Some functions such as connect which we’ll use on the client side later just
automatically provide the socket with the client’s own address. This is called implicit binding. For the server we
need to bind the socket to the server’s own address explicitly. This involves a conversion step for putting the IP
address and port number into network-byte order:

struct sockaddr_in client; // Stores address in form for connect
struct sockaddr_in server; // Stores address for explicit bind

// Set up the Listener IP address and port
unsigned short usPort = htons(65074);
const char send_ip_address = “192.168.0.1”

// Translate these into network byte order
unsigned long myIP = INADDR_ANY;
unsigned long yourIP = inet_addr(send_ip_address);
if ((myIP == INADDR_NONE) || (yourIP == INADDR_NONE))
{

shutdown(sock, SD_RECEIVE);
shutdown(sock, SD_SEND);

 return -1;
}

client.sin_family = AF_INET ;
client.sin_port = usPort ;
client.sin_addr.S_un.S_addr = yourIP ;

server.sin_family = AF_INET ;
server.sin_port = usPort ;
server.sin_addr.S_un.S_addr = ADDR_ANY ;

sockval = bind(sock, my_ip, sizeof(my_ip));

Fig. E.13 Address conversion to network-byte order and binding to that address

 29

Network-byte order is the order in which the bits are sent over the network. The functions and structures above are
standard across most sockets implementations, and they convert the input from whatever form provided to a big-
endian form which is either an unsigned long (the IP address) or an unsigned short (the port number), depending on
how many bits are used to store the field in the IP header. bind and other functions expect a structure containing
the network-byte order form of the local address and port it is using.

5A) Connect to server (Client-Side)

struct sockaddr_in saddr;

// usPort and ulIP have been converted to network-byte
// order using htons and inet_addr respectively (OMITTED)

saddr.sin_family = AF_INET ;
saddr.sin_port = usPort ;
saddr.sin_addr.S_un.S_addr = ulIP ;

// Attempt to connect to the remote machine
sock_val = connect (

 sock,
 (LPSOCKADDR) & saddr,
 sizeof saddr
) ;

Fig. E.14 Connecting a socket to a remote computer

We are making the telephone call on this end, being implicitly bound to the local address. Remember that
connect also needs its port and address in network-byte order.

5B) Listen to client (Server-Side)

// The data transfer socket provided by accept()
SOCKET sock_trans = 0;

sock_val = listen(sock, SOMAXCONN) ;
// Check for errors (OMITTED)

sock_trans = accept(

sock, // Socket to accept connections on
 NULL, // Pointer to contain client's address
 NULL // Size of above
) ;
// Check for errors (OMITTED)

Fig. E.15 Listen and accept, and a new data socket

The receiver code is always trickier than the sending code in network programming. listen is analogous to
plugging a phone into the telephone jack, and accept is like picking up the phone when you hear the phone start
ringing. Notice that the accept function returns the value of a new socket which will be used to move data back

 30

and forth as the original socket continues listening for other connections. This behavior isn’t terribly useful for a
simple test program but it’s how sockets work so you just need to know it. Again, you must set up the addresses
you send these functions in a network-byte order struct as done in step 4.

An important fact to remember is that by default accept will block. This means that the program will wait for
incoming connections as long as it needs to or until a timeout value is reached rather than go on to the next
instruction.

6A) Send data to the server (Client-Side)

// Buffer consists of a message and its length
WSABUF sendbuf;
sendbuf.buf = message; // Some constant-length input string
sendbuf.len = strlen(message);

sock_val = sendto(

 sock, // Socket identifier
 sendbuf.buf, // Address of the list of buffers to send
 sendbuf.len, // Size of the list of buffers
 NULL,
 (LPSOCKADDR) & saddr,
 sizeof saddr
) ;

Fig. E.16 Listen and accept, and a new data socket

The send function can also be used, but our code uses sendto so we have the added power of specifying the IP
address we’re sending to over this socket regardless of whether it is bound or not to a specific IP address with
bind. Using the WSABUF object keeps the string and its length in one place, which is also convenient.

6B) Receive data from the client (Server-Side)

sock_val = recv(
 sock_trans, // Data socket
 message, // Some constant-length string
 strlen(message), // Its length
 0
) ;

Fig. E.17 Listen and accept, and a new data socket

On the receiving end, either this or recvfrom can be used. recvfrom looks like sendto while this looks
like send. Both are acceptable, but these figures show our code as it was originally written, in a form we’ve verified
that works. So even if it is inconsistent, at least both sides have been tested to work correctly.

When using dynamic buffers for the input string, make sure they are set up correctly. For test programs I find it
easier to make static arrays of the form const char[] than to use dynamic buffers, but your mileage may vary.

7) Monitor the Socket State
The select function is confusing, but it serves an important purpose – it will tell you the state of your socket.
Say the client has been sending data for a little while and decides to close the socket on its side. The server will

 31

continue listening and accepting data on this connection, oblivious to the fact that the client has closed its side of the
socket. There’s probably no reason to keep this socket open once either side has closed. So what you do is call
select to figure out the state of the socket after every send or recv and if either side has closed down, you’ll
do the same.

sock_val = select(NULL, &sockets, NULL, NULL, NULL);
sock_val = select(NULL, NULL, &sockets, NULL, NULL);

The first select function is checking a list of sockets to see if they are readable, while the other list is checking to see
if the sockets are writeable. Look up the FD_SET and FD_ZERO to see how to modify this special sockets list.

8) Disconnect/Close the Socket

sock_val = shutdown(sock, SD_RECEIVE);
sock_val = shutdown(sock, SD_SEND);
sock_val = closesocket(sock);

Fig. E.18 Shutdown procedure for closing the “sock” socket

9) Shutdown the Runtime Library
Just call WSACleanup with no arguments, and Windows will know you’re done using the sockets runtime
libraries for now. While you may start and shutdown sockets many times while your program runs, chances are
you’ll only initialize and shutdown the runtime libraries only when you first start your program and when your
program closes or exits with an error.

2.3.2 Using Datagram UDP Sockets
We considered using UDP, or datagram, sockets because they’re easier to set up than connection sockets.
Furthermore, because they have no overhead from a connection state, they transmit data faster than a TCP socket.
However, datagram sockets do not guarantee data gets from one computer to the next. It works more like the postal
service – information may be sent but not necessarily received. For purposes of transcription, it is critical to receive
all the data that was sent, so we chose to use TCP sockets rather than UDP.

While we won’t go into details about the code required, the following table is provided as a reference for the order
in which to call socket functions so that a simple program can send and receive data on these connectionless sockets.
Note the lack of connection steps, as they aren’t needed for datagram sockets.

 Description Client (Sender) Function Server (Receiver) Function

1 Initialize the runtime library WSAStartup WSAStartup
2 Create the socket socket socket
3 Set Socket Options setsockopt setsockopt
4 Send/Receive data sendto recvfrom
5 Shutdown runtime library WSACleanup WSACleanup

Table E.3 Steps to create and use a connectionless UDP socket

2.3.3 Practical Information
On our PPT 8846 PDA we were able to open a socket and do data transmission from server PC to the client PDA (in
other words, playback functionality in the RRS system) even when the PDA was turned off. When the PDA was
turned back on, the playback through the PDA speaker resumed as if nothing happened. However, the audio data
sent while the device was off was lost.
We’re not sure if the socket remains open and the PDA remains in a sleep state, or whether the host just sits and
waits for the device to turn back on.

 32

If we had more time we would have made an event handler for socket events such as turning off the PDA or host
computer. Windows does have event handling tools (outside of DirectShow’s special IMediaEvent interface)
but we didn’t have time to learn them. For a robust commercial application, event handling for sockets and media
streaming is essential – otherwise the socket routines will run and nothing will be tending to updating the GUI as it
paints or buttons that might be pressed.

As always, make sure error checking is done every time a socket function is called. Our strategy was to do this error
checking in a separate function that passed the sockval to be checked for the SOCKET_ERROR case, as in Fig.
E. 11.

 33

E.2.4 MFC Objects CSocket, CCeSocket, CSocketFile, and CArchive
The CSockets interface is built upon Windows Sockets, and is a higher level of abstraction than normal Windows
Sockets, making it simpler to use. CSockets uses a subset of the CAsycnSockets interface, and is a more
programmer-friendly interface. The advantages of CSockets over CAsyncSockets is that it is easier to use, and
guarantees all data sent will be received, and in the same order that it was sent. Using this type of socket
connection, the sending and receiving of data between client and host can happen asynchronously, and all received
data is stored in a buffer until the client or host reads the data out of it’s receiving buffer.

Headers, Static, and Dynamic Libraries (All Platforms):
Headers:

afxsock.h – Main AFX sockets header
Static Libraries:

none
Runtime: Part of Windows

2.4.1 Using CSockets
The basic steps of using the CSocket are to fist establish a connection for the CSocket between the server and client
applications. Then, bind a CSocketFile to the CSocket, then bind a CArchive(s) to the CSocketFile, and use the
CArchive(s) for sending and/or receiving data to and from the socket connection. The CSocket, CSocketFile, and
CArchive objects are all AFX based objects, which means that AFX must be initialized in the application before the
objects can be used.

 Description Client (Sender) Function Server (Receiver) Function

1 Initialize runtime lib AFXWinInit AFXWinInit
2 Construct a Socket CSocket sockSrvr CSocket sockClient
3 Create the Socket sockSrvr.Create() sockClient.Create()
4 Start Listening sockSrvr.Listen()
5 Seek a Connection sockClient.Connect()
6 Construct new socket CSocket sockRecv;
7 Accept Connection sockSrvr.Accept(sockRecv)
8 Construct file object CSocketFile

file(&sockRecv)
CSocketFile
file(&sockClient)

9 Construct Archive CArchive arIn(&file,
 CArchive::load)

CArchive arOut(&file,
 CArchive::store)

10 Use the Archive to pass
data

arIn >> dwValue arOut << dwValue;

Table E.4 Steps to create and use AFX CSocket interface

1) Initialize the Runtime Library
Call AFXWinInit, passing the HINSTANCE of the current module, and any command line parameters passed to the
console app when the executable was called. This can be done in an If statement with an error handler, because
AfxWinInit returns a FALSE if it fails.

if (!AfxWinInit(::GetModuleHandle(NULL), NULL, ::GetCommandLine(), 0))
{
 _tprintf(_T("Fatal Error: MFC initialization failed\n"));
 nRetCode = 1;
}

Fig. E.19 Initializing Afx

 34

2) Construct a Socket
Call the constructor CSocket and specify the name you wish to give the socket object. You can also construct
CSocket pointers and use the “new” command to construct the socket.

CSocket* m_pSocket = NULL;

m_pSocket = new CSocket();

Fig. E.20 Constructing a new CSocket pointer variable

3) Create the Socket
Call the Create member of the new CSocket object and specify the port (nPort), type of socket (SOCK_STREAM),
and IP address of the local computer’s network adapter you wish to create the socket on. The Create function
returns a zero on failure.

if (!m_pSocket->Create(nPort, SOCK_STREAM, myAddress))
{
 delete m_pSocket;
 m_pSocket = NULL;
 cout<<"Socket Create Failed\n";
 return 0;
}

Fig. E.21 Creating the socket on the specified network adapter and port

4) Start Listening
On the server application, call the Listen member of the CSocket to listen for incoming socket connection requests
on that port. The Listen function takes one parameter, which is the number of connection requests it is allowed to
queue up. Listen is a blocking function, meaning program execution halts on that call until a connection request is
received.

5) Seek a Connection
Once the server is listening for a connection, the client can request a connection using the Connect member of the
CSocket. The Connect member takes two passing arguments, the IP address of the server, and the port on which the
server is listening for a connection. The Connect function returns a zero on failure.

if(!m_pSocket->Connect(ServerAddress, nPort))
{
 delete m_pSocket;
 m_pSocket = NULL;
 cout<<"Connect to server failed\n";
 return 0;
}

Fig. E.22 Connecting the Client socket to the Server

6) Construct new Socket
Once the server has received a connect request, a new socket needs to be constructed to accept the incoming request
on. This way, the server always has one socket used for listening for new connection requests, and always creates a
new socket to connect to any socket connection requests.

 35

7) Accept Connection
Using the newly created socket (that has not yet been initialized or connected), the server calls the Accept member
of the original listening CSocket, and passes the newly created socket as it’s only parameter. Accept then connects
the newly created socket to the Client socket that requested the connection. The Accept function returns a zero on
failure.

if(!m_pSocket->Accept(*m_pConnectedSocket))
{
 delete m_pSocket;
 m_pSocket = NULL;
 cout<<"Server Accept Failed\n";

return 0;
}

Fig. E.23 Accepting an incoming client connection request

8) Construct File Object
Once a CSockets connection is established, a new CSocketFile object needs to be created and attached to the
connected CSocket. The CSocketFile object acts as both a buffer for storing sent and received data, and as a
standardized File type interface, so that reading and writing data to the CSocket connection is as simple as reading
and writing data to a file. You can construct the CSocketFile directly, or create a pointer and call the “new”
command to construct the object.

CSocketFile* m_pFile = NULL;

m_pFile = new CSocketFile(m_pConnectedSocket);

Fig. E.24 Constructing a CSocketFile object and connecting it to the CSocket

9) Construct Archive
The CArchive object is used as the interface for sending or receiving data to the CSocketFile. If one-way
communication over the socket is all that is necessary, then only one CArchive needs to be created, passing the
CSocketFile and the type of CArchive (load or store) as parameters. If two way communication over the socket is
necessary, then two CArchives must be created; one for storing, and the other for loading.

CArchive* m_pArchiveIn = NULL;
CArchive* m_pArchiveOut = NULL;

m_pArchiveIn = new CArchive(m_pFile,CArchive::load);
m_pArchiveOut = new CArchive(m_pFile,CArchive::store);

Fig. E.25 Constructing a CSocketFile object and connecting it to the CSocket

10) Use the Archive to pass data
The CArchive objects can now be used for sending or receiving data over the Socket connection. Data transmitting
and receiving can happen asynchronously between client and host. The CArchive accept or receive data through the
overloaded “<<” or “>>” operator, much like “cin” and “cout” are used. Or for larger chunks of data, the “write”
and “read” operators can be used, which accept a pointer to the address of the data to be sent, and the number of

 36

bytes to be sent. The “read” operator returns an integer value of the actual number of bytes read. This is useful if
the end of the buffer was reached before the requested number of bytes was read.

m_pArchiveOut.Write(lpData, nBytes);

nReadBytes = m_pArchiveIn.Read(lpData, nBytes);

Fig. E.26 Constructing a CSocketFile object and connecting it to the CSocket

 37

E.2.5 DirectSound Buffers
DirectSound is part of the Microsoft DirectX API, and is used for directly accessing audio playback and capture
buffers on any of the system’s hardware sound devices that support the DirectSound API. A sound buffer is a
memory location that can reside in system memory or directly in the sound hardware’s memory, that is used for
storing raw audio data. In a playback buffer, the application writes the audio data into the buffer, and calls the Play
function on the DirectSound device to playback the audio through the system’s sound hardware. In a capture buffer,
on the other hand, the sound hardware writes the audio data to the buffer, and the application pulls that data out of
the buffer for it’s own use. There are two types of playback buffers; Primary and Secondary. There is only one
Primary buffer, into which multiple Secondary buffer’s audio data can be combined (mixed) for playback. For most
applications, Secondary buffers should always be used for audio playback, in order to allow other applications that
are running simultaneously on the system to playback sound as well.

Headers, Static, and Dynamic Libraries (All Platforms):
Headers:

dsound.h – Main DirectSound header
dsutil.h – included in the DirectX SDK

Static Libraries:
dsound.lib – Main DirectSound library

Runtime: Installed DirectX 8.0 or later (not included on Symbol OS Image)

2.5.1 Using DirectSound Buffers
To use the DirectSound API, you must first initialize the COM library. Once this is done, you can create the
DirectSound device, and use the device to create a DirectSound buffer in the format specified in a DirectSound
Buffer Description structure. Once the buffer is created, you can then lock a portion of the buffer (or the entire
buffer) and using a memcopy routine, copy data into or out of the buffer. Using a Playback buffer, you must first
memcopy the data into the buffer, then “Play” the buffer. With a Capture buffer, you do the opposite, and first
“Play” the buffer to allow the sound device to capture audio into the buffer, then lock the captured portion of the
buffer and memcopy the data out of the buffer. Once the memcopy is complete, you Unlock the buffer which frees
that part of the buffer back to the sound device.

 Description Secondary Playback Buffer Capture Buffer

1 Initialize COM library CoInitialize() CoInitialize()
2 Construct Sound

Device
LPDIRECTSOUND pDS8 LPDIRECTSOUNDCAPTURE pDSC

3 Construct Buffer LPDIRECTSOUNDBUFFER pDSB LPDIRECTSOUNDCAPTUREBUFFER
pDSCB

4 Construct
WaveFormat

WAVEFORMATEX wfx WAVEFORMATEX wfx

5 Construct Buffer
Description

DSBUFFERDESC dsbd DSCBUFFERDESC dscbd

6 Create Sound Device DirectSoundCreate DirectSoundCaptureCreate
7 Set Priority Level* pDS8-

>SetCooperativeLevel

8 Create Buffer pDS8->CreateSoundBuffer pDSC->CreateCaptureBuffer
9 Begin Capture* pDSCB->Start

10 Lock Buffer Section pDSB->Lock pDSCB->Lock
11 Copy Buffer Data [memcopy function] [memcopy function]
12 Unlock Buffer pDSB->Unlock pDSCB->Unlock
13 Begin Playback* pDSB->Play
14 Stop Buffer pDSB->Stop pDSCB->Stop

Table E.5 Steps to create and use DirectSound buffers (* used only for capture or playback)

 38

1) Initialize the COM Library
Call CoInitialize(NULL) before doing any DirectSound code in order to initialize COM. CoInitialize returns an
HRESULT, which will indicate if the call completed successfully or failed.

2) Construct Sound Device
Call the constructor for the DirectSound or DirectSoundCapture device.

LPDIRECTSOUND pDS8 = NULL;
LPDIRECTSOUNDCAPTURE pDSC = NULL;

Fig. E.27 Constructing a DirectSound object

3) Construct Buffer
Call the constructor for the Secondary Buffer or Capture buffer.

LPDIRECTSOUNDBUFFER pDSB = NULL;
LPDIRECTSOUNDCAPTUREBUFFER pDSCB = NULL;

Fig. E.28 Constructing a DirectSound Buffer object

4) Construct WaveFormat Structure
The WAVEFORMATEX structure is used to specify the number of channels, sampling rate, and bit precision of the
sound buffer. For our purposes we stored these values in global variables, so that they could be reassigned in order
capture and playback and any supported wave audio format.

WAVEFORMATEX wfx =
 {WAVE_FORMAT_PCM, nChannels, SampleRate,
 BytesPerSec, BlockSize, SampleBits, 0};

Fig. E.29 Setting up the Wave Format structure

5) Construct Buffer Description Structure
The DirectSound Buffer Description structure is used in a similar way as the WaveFormat structure, but also
includes additional flags and settings because of the additional features available in a DirectSound buffer that a
normal WaveFormat buffer does not have. The Capture Buffer Description is slightly different than the Playback
Buffer Description in the types of sound effects flags that can be added to the buffer.

Capture Buffer:

dscbd.dwSize = sizeof(DSBUFFERDESC);
dscbd.dwFlags = DSBCAPS_GLOBALFOCUS;
dscbd.dwBufferBytes = CAPBUFFERSIZE;
dscbd.dwReserved = 0;
dscbd.lpwfxFormat = &wfx;
dscbd.guid3DAlgorithm = GUID_NULL;

Playback Buffer:

dsbd.dwSize = sizeof(DSCBUFFERDESC);
dsbd.dwFlags = 0;
dsbd.dwBufferBytes = CAPBUFFERSIZE;
dsbd.dwReserved = 0;
dsbd.lpwfxFormat = &wfx;
dsbd.dwFXCount = 0;

 39

dsbd.lpDSCFXDesc = NULL;

Fig. E.30 DirectSound Buffer Description Structures

6) Create Sound Device
The DirectSoundCreate and DirectSoundCaptureCreate system calls take a newly created DirectSound Device
object as a parameter, and return it as a configured and ready to use object.

hr = DirectSoundCreate(NULL, &pDS8, NULL);
hr = DirectSoundCaptureCreate(NULL, &pDSC, NULL);

Fig. E.31 DirectSound Create system call

7) Set Priority Level
When using a DirectSound Playback buffer, the application must first call the SetCooprerativeLevel member of the
DirectSound device. This function takes the handle to the current window, and a DirectSound defined flag to set the
priority level of the application’s sound playback. The most commonly used priority level is DSSCL_PRIORITY,
which allows the application to playback sound whether the window is active or inactive, but also does not give the
highest priority control over the sound device.

hr = pDS8->SetCooperativeLevel(hWnd,DSSCL_PRIORITY);

Fig. E.32 Setting the sound playback priority level

8) Create Buffer
Now that the sound device has been created and set up, the DirectSound Buffer now needs to be configured to use
that sound device. This is done by passing the buffer and buffer description to the CreateSoundBuffer member of
the DirectSound device.

hr = pDS8->CreateSoundBuffer(&dsbd, ppDSB, NULL);
hr = pDSC->CreateCaptureBuffer(&dscbd, ppDSCB, NULL);

Fig. E.33 Creating and configuring the DirectSound Buffer

9) Begin Capture
When using a DirectSound Capture buffer, once the buffer has been configured, the buffer contains no audio data,
and is ready to be filled by the sound device. Audio Capture begins one the Play member of the Capture Buffer is
called. The Play member takes one argument, which is a flag that can be set to DSCBSTART_LOOPING. This
flag allows the sound device to treat the buffer as a circular buffer, and infinitely capture audio to the buffer until the
Stop member of the buffer is called.

hr = pDSCB->Start(DSCBSTART_LOOPING);

Fig. E.34 Start audio capture to the Capture Buffer

10) Lock Buffer Section
In order to access any of the data contained in the DirectSound buffer, you must first call the Lock member of the
buffer to lock that memory space to allow read/write access of the application. The Lock member of both the
Capture and Playback buffers are identical. The first two parameters are integers that indicate the byte offset of
where to begin the locked portion of the buffer, and the number of bytes to lock after that offset. The last four
parameters are memory pointers and integers returned by the Lock command; a pointer to the first locked portion of
the buffer, and the number of bytes in that portion, and also a pointer to the second portion of locked buffer, and the
number of bytes in that portion. The reason two portions are returned is that if the buffer is circular and the number
of bytes requested in the Lock exceeds the end of the buffer, the locked section wraps to the beginning of the buffer.

 40

For instance, in a 1000 byte buffer, if I call Lock with an offset of 800 and a size of 300 bytes, the first pointer
would point to the location of byte 800 and number of bytes would be 200, and the second pointer would point to
zero (the beginning of the buffer) and the number of bytes in that portion would be 100. Special care should be
taken to not lock a portion of the buffer that is currently being played or captured to by the sound device. One way
to check for this condition is to poll the position of the playback or capture pointer using the GetCurrentPosition
member of the DirectSound Buffer.

hr = pDSB->Lock(dwBeginRead, PACKETSIZE, &pvAudioPtr1,
 &dwAudioBytes1, &pvAudioPtr2, &dwAudioBytes2, 0);

Fig. E.35 Locking a portion of the DirectSound Buffer

11) Copy Buffer Data
Once a section of the DirectSound buffer is locked, audio data can be written to the locked memory block for
playback, or copied from the block after being captured for the application to use. This can be done with a simple
memcopy command into an array in memory, or in the case of this project, the lock pointers and number of bytes
can be passed to the Read or Write members of a CArchive object, to send that audio data out of the socket, or read
audio data in from the socket and store it to the DirectSound Buffer.

m_pArchiveOut.Write(pvAudioPtr1, dwAudioBytes1);
if(dwAudioBytes2 > 0)
 m_pArchiveOut.Write(pvAudioPtr2, dwAudioBytes2);

Fig. E.36 Sending captured audio data out on a connected socket

12) Unlock Buffer
After copying the buffer data, the locked portion of the buffer needs to be given back to the sound device. This is
done using the Unlock member of the DirectSound Buffer. Unlock takes four parameters, which should be the same
two pointers and integers that the Lock command returned, so that the exact same portion of buffer is unlocked as
was previously locked.

hr = pDSB->Unlock(pvAudioPtr1, dwAudioBytes1, pvAudioPtr2,
 dwAudioBytes2);

Fig. E.37 Unlocking the locked portion of buffer

13) Begin Playback
Because the playback buffer starts out empty, it should not be played until sufficient audio data has first been written
into the buffer. Once enough audio data has been written to the playback buffer, begin audio playback using the
Play member of the DirectSound Buffer. The Play member takes three parameters. The first is reserved and should
always be NULL, the second is the priority of the sound playback (must be zero unless the DSBCAPS_LOCDEFER
flag was set in the buffer description), and a control flag.

hr = pDSB->Play(0,0,DSBPLAY_LOOPING);

Fig. E.38 Playing the playback buffer

14) Stop Buffer
The Playback and Capture buffers can be stopped at any time using the Stop member of the buffer.

 41

E.2.6 Microsoft Waveform API
Microsoft’s Waveform API is the lowest-level API that can be used to program I/O on a Windows-compatible
soundcard. It is an integral part of any version of Windows. It has functions that send buffers to and from the sound
device, and simple playback/recording functions. Unlike the DirectShow or DirectSound APIs, it doesn’t use object
oriented programming techniques. Rather, each function is an OS call to the sound hardware. It uses PCM
uncompressed audio formats for sending and receiving audio to and from the audio device.

For our code here we use two Microsoft Foundation Classes (MFC) helper objects to store bytes received from the
sound hardware. You’ll want to be comfortable with these objects for the final step where you write from the
buffers to a file or to the network.

Headers, Static, and Dynamic Libraries (All Platforms):
Headers:

mmsystem.h –The main Waveform API header, short for ‘multimedia system’.
Static Libraries: None
Runtime: Part of Windows

2.6.1 Recording Using the Waveform API
As with other low-level APIs, writing a working program is a matter of knowing which functions to call and when,
rather than understanding exactly what those functions do.

 Description Recording Function Playback Function

1 Check if Audio I/O devices
exist

waveInGetNumDevs waveOutGetNumDevs

2 Select a wave format** IsInputFormatSupported IsOutputFormatSupported
3 Open the Audio I/O device waveInOpen,

waveInStart
waveOutOpen

4* Allocate and Prepare buffers waveInPrepareHeader waveOutPrepareHeader
5* Send or receive audio data

using the buffer
waveInAddBuffer waveOutWrite

6* Un-prepare a buffer waveInUnprepareHeader waveOutUnprepareHeader
7 Read or write buffer to/from a

file or a socket interface**
CFile::Write or
CArchive::Write

CFile::Read or
CArchive::Read

8 Close the Audio I/O device waveInStop,
waveInClose

waveOutStop,
waveOutClose

* Described together as part of a buffering loop
** Our own functions: full source provided

Table E.6 Audio Recording and Playback using the Waveform API

Not only do the names of the corresponding record and playback functions look similar; they have the exact same
arguments! In fact, by changing the variable type names (i.e. HWAVEIN to HWAVEOUT) and function names (i.e.
waveInAddBuffer to waveOutWrite) in the record routine snippets shown in the following steps, you’ll
have a playback routine as well.

1) Check if Audio I/O devices exist

if(waveInGetNumDevs() < 1) // Are there audio input devices?
 // Error

 42

2) Select a Wave Format
The tricky part here is setting up the structure correctly. In our program we store the parameters for the
WAVEFORMATEX structure as global variables. The IsInputFormatSupported function is simply a
wrapper to the special case of waveInOpen with the WAVE_FORMAT_QUERY argument, which checks to see
if the device will support the given format.

UINT nChannels = 1;
UINT SampleRate = 22050;
// For 16-bit audio this will always be twice the sample rate
UINT BytesPerSec = 44100;
UINT SampleBits = 16;
UINT BlockSize = 2;
MMRESULT RetVal = 0;
DWORD dwBuffLength = 8192; // was 6000

WAVEFORMATEX wfx = {
 WAVE_FORMAT_PCM,
 nChannels,
 SampleRate,
 BytesPerSec,
 BlockSize,
 SampleBits,
 0};

RetVal = IsInputFormatSupported(& wfx, WAVE_MAPPER);
if(RetVal != MMSYSERR_NOERROR)
 // Error handling

MMRESULT IsInputFormatSupported
(LPWAVEFORMATEX pwfx, UINT uDeviceID)
{
 return waveInOpen(NULL, // ptr can be NULL for query
 uDeviceID, // The device identifier
 pwfx, // Defines the requested
 // format.
 NULL, // No callback
 NULL, // No instance data
 WAVE_FORMAT_QUERY); // Query only, do not open.
}

Fig. E.39 Checking to see if the wave format is supported by the audio device

3) Open the Audio I/O device
For a playback routine, the waveInStart that tells the microphone or line input to start recording sound is
unnecessary. The buffer allocation step is very important, and should be done before recording begins with
waveInStart. However, buffer allocation is a detailed process that is related more to the next step in our
algorithm, so it is omitted here.

HWAVEIN hwin; // Stores the identifier of the open wave device
 // after a call to waveInOpen

 43

RetVal = waveInOpen(

& hwin, // Will point to open wave device
 WAVE_MAPPER, // Device identifier
 & wfx, // Format request

NULL // Callback function (for event handling)
 NULL, // No instance data,
 CALLBACK_NULL // Flags
) ;

// Allocate buffers to the sound device (NOT SHOWN)

// Start recording
RetVal = waveInStart(hwin);

Fig. E.40 Opening the sound device for recording

4, 5, and 6) Allocating, Preparing, and Unpreparing Buffers: The Buffer-Loop
This is by far the most important part of the audio I/O process. These buffers are where the audio data is stored as it
is transported from memory to the audio device. Loops that read buffers from the audio device for recording follow
the same process as loops that write buffers to the audio device for playback. Don’t worry about what “preparing”
and “unpreparing” buffers means. Just know that these steps must be done every time a buffer is to be used by the
audio I/O device.

The following code snippet creates two buffers that wave data can be put into. Here’s a quick rundown of the steps
it follows after the WAVEHDR structs are created:

A) Initialize first_buffer and second_buffer for the first time.
 a) Prepare the buffer with waveInPrepareHeader
 b) Do a waveInAddBuffer (waveOutWrite if playing)
B) Start the recording process by calling waveInStart. first_buffer will start receiving wave data at
this point.
C) Start a while() buffer loop for filling buffers with recorded data

a) Wait for first_buffer to get done being filled (the nested while() loop)
b) Unprepare this buffer with waveInUnprepareHeader
c) Send the unprepared buffer to a file using a MFC object
d) Wait for second_buffer to get done being filled (the nested while() loop)
e) Unprepare this buffer with waveInUnprepareHeader
f) Send the unprepared buffer to a file using a MFC object

D) Re-initialize the first and second buffers with waveInPrepareHeader and waveInAddBuffer.

DWORD dwBuffLength = 8192; // Size of each sound buffer

WAVEHDR first_buffer;
first_buffer.dwBufferLength = dwBuffLength;
first_buffer.lpData = new char[dwBuffLength];
first_buffer.dwFlags = 0;

WAVEHDR second_buffer;
second_buffer.dwBufferLength = dwBuffLength;
second_buffer.lpData = new char[dwBuffLength];

 44

second_buffer.dwFlags = 0;

// Call waveInOpen HERE (Omitted)

//
// Setting up buffers for the first time

// Prepare the first buffer to receive audio
RetVal = waveInPrepareHeader(
 hwin, // Device handle
 & first_buffer, // WAVEHDR structure
 sizeof(WAVEHDR) // Size of the buffer structure
) ;

// Add buffer to the sound device
RetVal = waveInAddBuffer(
 hwin, // Device handle
 & first_buffer, // WAVEHDR structure
 sizeof(WAVEHDR) // Size of the buffer structure
) ;

RetVal = waveInPrepareHeader(
 hwin, // Device handle
 & second_buffer, // WAVEHDR structure
 sizeof(WAVEHDR) // Size of the buffer structure
) ;

RetVal = waveInAddBuffer(
 hwin, // Device handle
 & second_buffer, // WAVEHDR structure
 sizeof(WAVEHDR) // Size of the buffer structure
) ;

// Call waveInStart HERE (Omitted)

int cnt, nLoops;
cnt = 0;
nLoops = DESIRED_TIME_SECS * 3;

//////////////////
// The buffer loop

while(cnt < nLoops) // Capture a few seconds of audio
{

// Poll to see when the first buffer is done being written to
while((first_buffer.dwFlags & WHDR_DONE) != TRUE);

 waveInUnprepareHeader(hwin, &first_buffer, sizeof(WAVEHDR));

// Call MFC method to write first buffer to a file or socket
// right HERE (omitted)

// Prepare the first buffer while the second one is filling up

 45

RetVal = waveInPrepareHeader(
 hwin, // Device handle
 & first_buffer, // WAVEHDR structure
 sizeof(WAVEHDR) // Size of the buffer
) ;
 RetVal = waveInAddBuffer(
 hwin, // Device handle
 & first_buffer, // WAVEHDR structure
 sizeof(WAVEHDR) // Size of the buffer

) ;

 // Poll to see when buffer is done being written to

while((second_buffer.dwFlags & WHDR_DONE) != TRUE);
 waveInUnprepareHeader(hwin, &second_buffer, sizeof(WAVEHDR));

// Call MFC method to write first buffer to a file or socket
// right HERE (omitted)

 // Prepare the second buffer while the first one is filling up

RetVal = waveInPrepareHeader(
 hwin, // Device handle
 & second_buffer, // WAVEHDR structure
 sizeof(WAVEHDR) // Size of the buffer
) ;
 RetVal = waveInAddBuffer(
 hwin, // Device handle
 & second_buffer, // WAVEHDR structure
 sizeof(WAVEHDR) // Size of the buffer

) ;
 cnt++;
}

Fig. E.41 The buffer loop

Hopefully you see that this is just a typical while loop setup where you initialize a variable (in this case the buffer)
before entering the loop for the first time, and then you update the buffers every time the loop iterates. It really
simplifies down to something like this:

// Initialize buffers for the first time HERE

cnt = 0;
nLoops = DESIRED_TIME_SECS * 3;
while(cnt < nLoops)
{
 // Update, wait on, and then reinitialize buffers HERE
 cnt++;
}

Fig. E.42 Our buffer loop, itty witty baby version

 46

This easier loop makes the timing of our algorithm clearer. Each time we read in first_buffer and
second_buffer with a buffer size of 8k, we’ve read in 16k. Experimentally this gives us about 0.32 seconds
of audio every time we read in a buffer. This is where the nLoops value comes from, calculated from the number
of seconds we want. If our loop were in a function, we would want this time in seconds to be an argument to that
function.

For a smarter program this loop would run in its own thread and run indefinitely until the program received a
message that it should stop – like, say, from the network computer sending or receiving data using this loop. You
might be interested just how we would add file writing functionality or network functionality to a loop like this.
That step is next on our list!

7) Read or write a buffer to an outside interface
This is the other tricky part about writing record or playback routines. There are countless ways to read in
information from files, buffers, streams, or networks. The charm of using the MFC classes is that the objects we use
are relatively simple, and make way for short and easy helper functions if they are needed at all. The following code
initializes the objects and illustrates how they might be used to receive data from the network and write it to a file.

CFile myFile = NULL;
CSocket* m_pConnectedSocket = NULL;
CArchive* m_pArchiveIn = NULL;
void *pvAudioPtr1 = NULL;
UINT iTemp = 0;

m_pConnectedSocket = new CSocket();
// Create the socket as a sender or receiver with your own routine HERE
m_pFile = new CSocketFile(m_pConnectedSocket);
m_pArchiveIn = new CArchive(m_pFile,CArchive::load);

// Receive with this home-made function
iTemp = NetSendReceive(*m_pArchiveIn, pvAudioPtr1, dwAudioBytes1);

// Write void* wave memory to a file
myFile.Write(pvAudioPtr1, iTemp);

Fig. E.43 Receiving data over a socket with MFC objects

The example above initializes all the objects needed to create a MFC socket object, a MFC file object, and the
helpers needed to send buffers over a network interface. Information on creating connected or listening CSocket
objects is discussed in the MFC documentation in section E.2.4. Notice that our NetSendReceive can look at
the socket mode and figure out whether to send or receive data, using the same Read and Write method as the
CFile object does.

UINT NetSendRecieve(CArchive& m_pArData, void* Data, UINT nMax)
{
 if (m_pArData.IsStoring()) //send mode
 {
 m_pArData.Write(Data, nMax);
 m_pArData.Flush();
 return 1;
 }

 else //receive mode
 {

 47

 return m_pArData.Read(Data, nMax);
 }
}

Fig. E.44 Network data transfer code that checks the state of a CArchive object

Remember that the CSocket object is replaced in Windows CE by a CCeSocket object that has very minor
differences in how it handles its internal state.

8) Close the Audio I/O device

waveInStop(hwin);
waveInUnprepareHeader(hwin, &first_buffer, sizeof(WAVEHDR));
waveInUnprepareHeader(hwin, &second_buffer, sizeof(WAVEHDR));
waveInReset(hwin);
waveInClose(hwin);

Fig. E.45 Audio I/O shutdown code

If you are closing an audio stream for good, make sure to call the functions in this order. waveInReset may not
be necessary here as it just resets the audio device – this causes the audio device to go back to the head of whatever
buffer it was playing.

2.6.2 Hints, Tips, and Closing Remarks
The buffer loop is the most important part of your audio I/O routines. Every time you allocate a buffer for the audio
device, you should do error checking (which was omitted from the code samples above). Generally the I/O device
has very limited resources so don’t try to send 10 or so buffers with 8kB memory each to the device with
waveInAddBuffer because resources will run out and eventually these calls will start failing.

After running these routines it is important to deallocate the MFC objects you created in memory with the new
keyword. Objects left in memory are the source of memory leaks and they will cause your program to shut down
with an error after your audio operations have completed.

For debugging, make sure your program has the chance to call waveInClose after it opens the audio device for
I/O. If you fail to do so you might not be able to open the device later because it is still “in use”. On the PDA this
would require a soft reset to fix.

 48

E.2.7 Benefits and Disadvantages of Windows Programming
After discussing no less than six different Windows APIs, you might be curious about the overall strengths and
shortcomings of the “Windows way” of programming software. Even after months of reading through Microsoft
documentation and becoming more proficient in C and strange data types, we still aren’t experts in Windows
programming. Still, we’ve seen the ropes and also have special insight on porting between different versions of
Windows. So let’s take a look at the good and the bad of Windows programming.

2.7.1 Programming Environments
With cross-platform Windows development, the biggest strengths and weaknesses lie with the development tools.
The ability to debug your code step-by-step is crucial when developing GUI interfaces where it is impossible to use
debugging output statements like printf(). With adjustable breakpoints and quick searching for variable and
function definitions, it is the best debugging utility we have ever used.

On the flipside, the Visual Studio .NET project format is not compatible with the eMbedded C++ project format.
This caused hours of copying files from one directory to another, and adding them to a completely separate
eMbedded C++ project.

2.7.2 Microsoft APIs
Having the Windows APIs mostly supported across both Windows CE and Windows XP was very useful. For low-
level code such as Windows Sockets and the Waveform API, the code was completely portable between platforms.
The significance of this cannot be denied.

On the other hand, there were some irritating differences between platform-specific MFC objects such as
CSocket and CCeSocket. DirectShow on CE was a terrible problem, and we spent months of time porting
over sample code for network DirectShow filters. In that time we could have used the lower-level APIs to fully
implement the functionality we needed and used the extra time for testing and implementing WAP selection into the
RRS system.

This brings me to the biggest problem with Microsoft APIs. There are hundreds of them, and even though many of
them claim to be for a certain task, often times this object-oriented approach just has too much overhead and isn’t
worth the time to develop with. None of the Microsoft documentation will tell you that a certain task will take less
time using one API over another – unless you have help and supervision you’ll be left trying to find the best tool for
your job. If you’re like us, the first few tools (and months of work) just won’t cut it.

Of all the object-oriented work we did, we learned one thing – you can’t debug an object until you know how the
lower level functions and methods it calls works. Having a DirectShow network filter is wonderful, but you won’t
be able to debug it unless you know how it uses Winsock to create a socket and transfer network data. Objects can
be powerful tools, but they certainly aren’t crutches for the uninitiated like we originally presumed.

2.7.3 Object-Oriented Programming
As I mentioned previously, there are ways to take object-oriented programming to serious extremes as with
DirectShow. However, not all of Microsoft’s objects are bad – CFile, CSocket, and CArchive are
wonderful tools for encapsulating the functionality of a lower-level class into an object that will do most of the
tedious set-up for you. These objects are easier to work with in dynamic memory than many smaller variables, as
they can be allocated and deallocated together, as necessary.

API objects generally have a steep learning curve. This isn’t helped by the dense, brief documentation in the MSDN
library and the lack of sample source code demonstrating how the objects are used. Furthermore, the Microsoft way
of assigning CLSIDs to objects and storing them in runtime libraries (with references in static libraries) is very
confusing to work with at first. These libraries aren’t portable like the source code, and must be rebuilt (and
reorganized into new projects) when moving between C++ .NET and eMbedded C++.

 49

F. TECHNICAL NOTES SHEETS

Technical Notes: An Example
Dialog Applications
Instantiating the Filter Graph
Making ActiveSync Work
Creating A MFC Console Application Project
Platform Builder: Windows CE OS Images and Platform SDKs
Configuring a Wireless Network Between a Host and a PDA

Our technical notes describe in detail important steps we took to set up a working environment between a PC and a
PDA. These notes may not be necessary for you in setting up a build environment to duplicate our own results, but
they will certainly save you time if you do read them! They are written from a practical step-by-step perspective as
we were figuring out how to make our project work.

For those with the same amount of background experience and education as we have, these notes should prove
useful.

Justin Cassidy
5/04/2004

 50

Technical Notes: An Example
Justin Cassidy
Revision 0

Introduction
Over the course of our Senior Design project, we'll be working with a number of technologies
that we've never studied before elsewhere. The purpose of a short technical note paper such as
this is to compile the work and research you've done on a topic into a recipe-like form that is
easy to refer to after the fact. I envision our final documentation will have a section devoted to
categorically organized technical note sheets.

The goal of these papers is not to be a writing exercise; it is to put the information you are using
and are likely to forget or need to look up later into a easily referenced source that is easy to send
to others. I devised this format as an idea for describing the steps to making a Windows console
application with certain features.

Description

Format
The two main sections are the Introduction and the Description section, plus whatever other main
sections you feel are appropriate, such as a conclusion or results section. In order to keep all of
these documents perfectly consistent, I propose sticking to Times New Roman 12pt font, with
the exact same heading formatting for main sections and subsections as this document. The files
should be in the MSWord .doc format, and use the PNG format for inlaid images.

Content
The introduction is one or two short paragraphs, which summarize the goal behind the note sheet
and summarize the content of the paper.

The description should be concise and only contain what information is needed. Pictures,
graphs, tables, and lists of instructions are the name of the game. Think of a recipe that is easy to
refer to and communicate later. In terms of writing for an audience, write for people in the
following order of importance:

1) Yourself
2) Other members of Team Dialect
3) Sponsors at AID
4) Other Computer Engineers or Programmers not used to the concepts you’re describing

 51

Dialog Window Applications: Microsoft Windows CE .NET 4.2
Justin Cassidy
Revision 2

Introduction
Since the Sound Recording Unit we are using has no screen, we don’t need to make a full-
fledged Windows application on the remote end. These are technical notes on Windows
programming and event handling, targeted for someone with no prior Windows programming
experience, using the eMbedded Visual C++ 4.2 development environment.

The notes describe the development of a simple button-based dialog window application.
Although a console application was also considered, embedded Visual C++ does not document
how these are created, and for accepting simple keyboard scancodes dialog applications seem to
do just as well as the stdio/scanf solution.

Description

Project Creation
File -> New -> WCE Application -> Dialog -> Windows Sockets

The files created set up the dialog box with a default TODO message, which can be removed
using the Resource Viewer/Editor tools.

User Interface
By clicking the Resource Viewer and clicking on the dialog resources, you have access to what
the dialog window will look like and you can even add buttons or text simply by hand. These
changes are stored, along with accelerators, in resource files that are called by the C code. The
changes are not made in the C code itself, which can be confusing.

Double clicking on a created button will make a class method in the proper code file that can be
edited. Every new button created has an incremented ID and this can be changed with a right-
click… not sure if this matters. Each button and probably each GUI object has special events
associated with it and once they are defined to exist, a proper class method will be created that
can be lovingly coded.

Topics Related to Keypad Input

Accelerators: Windows Resource for Assigning Keystrokes to Actions
Since the final HW will have no screen, so all actions should be accessible with single
keystrokes. Accelerators are keystrokes that accomplish tasks defined in the user interface.
IBC_BUTTON1 seems to define a single button click to “Button1” and a key can be mapped to
do that same action. Two types of keys can be assigned: ASCII keys and VirtKeys. VirtKeys is
the naming system used internally by Windows CE. When you add a button and right-click it for
its properties, press the ‘Use next key pressed’ button to press a key and assign the proper VK.

This doesn’t seem to work when I test using breakpoints, although clicking on the buttons with
the mouse in the emulator works. So we’ll avoid accelerators for now.

 52

Accelerator Alternatives
Using a button with a name of &Play or Pl&ay makes the ‘P’ and ‘a’ keys, activate those
buttons, respectively, and this is a working alternative to accelerators.

(i) The PPT Keypad
On the PPT 8846, a key editor called “Keyboard Properties” will let you change the unit’s
buttons to correspond to different keyboard keys.

The default layout for the keys is as follows:

PDA Keypad Keyboard Scancode
Enter Enter
F1 Tab
F2 Left Cursor
F3 Right Cursor
F4 Escape

Working with a Windows button named &Play, the PDA ‘Enter’ key could be assigned to
keyboard scancode ‘P’, but these keystroke values are reset every time the PDA does a hard
reset. So reassigning PDA keys in CE isn’t recommended. Because Windows buttons have a
‘tab-order’ by default, the two PDA buttons F1 and Enter could be used to cycle between all the
functionality of the dialogue box. However, we want each button to have a function.

Since we wish to interrupt stopping and starting audio with these keys, our program will have to
worry about event handling. Our technical notes on event handling are discussed in the
DirectShow section of our final report.

Debugging Overview
I have not found a way to use printf or scanf or redirect stdin and stdout to a terminal
within the eMbedded C++ IDE. Not for lack of trying… I can’t find any documentation on how
the little output window at the bottom of the IDE works, although it does work with a .vcl file
(HTML-formatted) in the project top-level directory for its build log. I tried redirecting output to
that file but it doesn’t work.

 53

Breakpoints are useful for seeing where you are in the code, and assert statements in the
debugger can look at variable values as the program is running. This is the same sort of
functionality debugging printf statements provide, although there is no analogue for scanf.

 54

Instantiating The Filter Graph
Justin Cassidy
Revision 3

Introduction
DirectShow uses a Filter Graph paradigm, i.e. connect the decode filter to the playback filter to
play an encoded media file. This document describes how to build the filter graph in a Windows
CE application, the problems we faced, and the corrective measures we took to solve them. It is
written towards a group which is inexperienced in both DirectX and Windows programming.

Nomenclature
Microsoft’s sample programs use naming conventions that are sensible in a way. Their protected
pointers are named m_pGB, m_pCapture, etc. and these point to memory locations for the graph
builder, the capture filter graph, etc. “m” stands for memory while “p” probably stands for
protected.

Generally, when a Windows function is called to create something or do an event, the function
returns type HRESULT. This is an internally defined 32-bit value which Microsoft has defined
constants for, such as the values E_NOINTERFACE and NOERROR. You can easily trace their
definitions back to windows.h in the Microsoft IDEs by right-clicking -> Go To Definition.

So when this document mulls over code like the following (used to instantiate a DirectShow
filter graph), we can analyze it. Get used to arguments that are reserved or meaningless to most
programmers (such as that second NULL in the CoCreateInstance).

hr = CoCreateInstance(CLSID_FilterGraph, NULL, CLSCTX_INPROC,
 IID_IGraphBuilder, (void **)&m_pGB);
if (FAILED(hr) || !m_pGB)
 return E_NOINTERFACE;
return NOERROR;

Figure 1. Calling the Graph Builder

We’re trying to create a filter graph with the graph builder, allocating memory m_PGB and
checking to see if the operation worked. If it did, m_PGB will point to a non-zero memory
address and hr will be greater than zero, thus making the condition fail.

 55

Instantiating the Filter Graph
Whether doing audio playback or capture, when using DirectShow the first step is to initiate the
GraphBuilder. The sample code in Figure 1 was copied from the DirectShow audio sample
program. When put into a method, it was found that hr was failing and the pointer m_pGB was
NULL. The CoCreateInstance was failing in Figure 1. After putting the error code contained in
the hr value into Tools -> Error Lookup, I learned I was getting a “Class not registered” error.
What does this mean?

REGDB_E_CLASSNOTREG A specified class is not registered in the registration database.

Also can indicate that the type of server you requested in the
CLSCTX enumeration is not registered or the values for the
server types in the registry are corrupt.

Figure 2. Microsoft Help Description of the CoCreateInstance Registry error

I presumed this meant the default emulator image doesn’t have all the DirectX libraries installed
correctly. So we created a new one, a long and painful process. See the Platform Builder
technical notes on how to do this.

Hopefully Helpful Notes
m_pGB and other filter graph pointer variables are protected in DialogappDlg.h so they
can’t be called unless the function is a method in the DialogappDlg class. So, don’t use
HRESULT Record() but rather HRESULT DialogappDlg::Record().

 56

Making ActiveSync Work
Tommy Stear
Revision 1

Introduction
This paper tells how to install Microsoft ActiveSync file and database synchronization software
on the host computer, and to configure the host computer to connect with the remote unit.

What is it?
ActiveSync is a tool made by Microsoft that allows owners of handheld computing devices that
are based on the Embedded Windows platforms to synchronize files with a desktop computer
system running Windows. With this tool, users can synchronize their email and calendar
databases, to-do lists, and phone and address books and make them mobile on the handheld
device. The remote unit in the Remote Recording System is a device based on the Windows CE
embedded computing platform.

1. Download the latest version of ActiveSync from the Microsoft website, in the
“Downloads” area: http://download.microsoft.com.

2. Install ActiveSync on the host computer.
3. Install the cradle or cable (supplied with the remote unit) on the host computer.
4. Restart the host computer.
5. For USB cradles and cables,

a. After Windows is finished loading, turn on the handheld device, and plug it into
the cradle or cable firmly.

b. Windows will automatically find the handheld device and ask you to establish a
“Partnership” with the device. Here you can allow the device ability to connect to
more than one host computer for synchronization, or to sync with only one
computer, eliminating partnerships with other computers that are stored on the
handheld device.

c. Once you have a partnership established, you can connect to the remote device
much like a disk drive that is attached to your computer.

6. For Serial (COM:) port cradles and cables,
a. After Windows is finished loading, open the Properties Page for “My Computer.”

Make sure you have administrative privileges.
b. On the “Hardware” tab, click “Device Manager.”
c. In the hardware list that appears, find the “Ports” section of the hardware category

tree. Make sure you are viewing the devices by type, not by connection.
d. Double click the COM: port that your cradle or cable is attached to open the

properties for that port. Usually, this is COM1: or COM2: but your specific
setup may vary.

e. Now click the button for “Advanced” settings. In the dialog that appears, make
sure the box is unchecked for “Use FIFO buffers….”

f. Restart your computer. After Windows is finished reloading, turn on the
handheld device, and connect it to the cradle or cable firmly.

g. Click “Start,” “All Programs,” “ActiveSync.” Windows should automatically
find your device and ask you to establish a “partnership” between the host

 57

computer and the handheld device. Here you can allow the device ability to
connect to more than one host computer for synchronization, or to sync with only
one computer, eliminating partnerships with other computers that are stored on
the handheld device.

h. Once you have a partnership established, you can connect to the remote device
much like a disk drive that is attached to your computer.

In Closing
While the hard connection is not necessary for everyday use of the remote unit, it will allow for
testing and software repairs or updates later.

 58

Creating a MFC Console Application Project
Tommy Stear and Justin Cassidy
Revision 1

Introduction
This paper describes how to setup and start a new project in Visual Studio that uses the
Microsoft Foundation Classes.

What it is
The Host Application uses the Microsoft Foundation Classes (MFC) to set the basis for certain
Windows-specific types and other global objects. The MFC establishes objects, global
constants, and type definitions that programmers can use to make applications operate more
efficiently under Windows environments. This includes useful wrappers to Windows Sockets
(network connections) and writing files.

1. Open Microsoft Visual Studio.NET 2003.
2. Start a New Project from the “File” menu. Navigate through “Visual C++” to the

“Win32” category, and choose the “Win32 Console Application.”
3. Type a name for your project and click “Next.” Then click “Application Settings” to

define a few important properties for your project.
4. Click “Application Type,” “Console Application,” and choose to “Add Support for

MFC.”
5. Under “Additional Options,” uncheck the box for “Precompiled Headers.”
6. Click “Finish” to close and start the project.

You are now ready to start inserting code that uses the MFC base.

In Closing
The host application uses the Microsoft Foundation Classes to make functionality operate more
smoothly and more efficiently under Windows environments. Using MFC makes the host
application work well with the other common objects used by Windows.

 59

Platform Builder: Windows CE OS Images and Platform SDKs
Justin Cassidy
Revision 3

Introduction
The Platform Builder is used to create a fine-tuned version of Windows CE with exactly the
hardware support and protocols your embedded device needs. There are two important steps
most developers need to take in order to test applications that use APIs such as DirectX:

1) Create a Windows CE platform with the required DirectX libraries
2) Create a Software Development Kit (SDK) so you can use the OS image with the remote

device through the eMbedded C++ IDE.

Our team needed to make an image with DirectX support, as we were getting registry errors for
classes not included on our default emulator image. The platform builder can automatically
builds an OS image for the device, along with a SDK for the eMbedded IDE.

Steps

I. Build the Custom OS Image

1) Run Platform Builder, and select the New Platform Wizard from the File menu.
2) Choose the “Remote Media Server” build profile, and make sure 802.11 support is

included in the network options.
3) Look through the Catalog bar, docked on the right hand side of the IDE, and select the

features you wish to add to the operating system. The following is a list of features built
into the OS image we used, not all of which may be necessary.

DirectShow Core
DirectSound
ACM (Audio Compression Manager)

4) Build the image. This took 30 minutes on a 1.7GHz 512MB RAM system.

II. Build the SDK

1) Choose Platform -> Configure SDK, and make sure eMbedded C++ support is included,
as well as all library options (ATL, MFC, etc) except for the .NET framework.
Remember the name you give your new SDK (ours was SRU-R).

2) After this is done, choose Platform -> Build SDK. This takes 10-15 minutes on a 1.7GHz
512MB RAM system.

III. Set up the Emulator Image with eMbedded C++

In eMbedded C++, under the list of SDKs you should see an option for the SDK you
created. In our case, we were able to select SRU-R for the platform and SRU-Emulator
for the device from the drop-down menus. If you’ve added all the right features, you’ll
notice the ‘Class Not Registered’ errors disappear when you run and test your programs.

 60

IV. Set up the OS on an actual device
This is a matter of using Tools -> Configure Platform Manager, and setting up the
transport schemes properly. For our PPT 8846 PDA we believe Symbol makes it
impossible to flash the OS through Platform Builder. They have their own tool for this
task, requiring you to buy only supported binary images from Symbol. You may have
more luck with a different PDA.

If your device is set up correctly, you can use your SDK to build to your actual target
device in eMbedded C++, in exactly the same way described in part III above.

 61

Configuring a Wireless Network Between a Host and a PDA
Justin Cassidy
Revision 2

Introduction
It would be nice if wireless peer-to-peer networks were as simple as two computers together in a
room. Unfortunately it’s slightly more complicated. This process describes how to set up a
peer-to-peer wireless connection between a Windows XP host and an 802.11 wireless-equipped
Symbol PPT 8800 series PDA using static IP addresses.

Process

Host

1) Turn on your wireless network card, or if using a laptop, insert into your PCMCIA slot.
2) Go to Control Panel -> Network Connections.
3) Right-click the ‘Wireless Ethernet Connection’ icon and click ‘View Available Wireless

Networks’.
4) At the list of available networks, click ‘Advanced’.
5) Below the list of preferred networks, click ‘Add’
6) In the box that appears, do the following:

a. Give your network an arbitrary name. Ours was ‘Locus’.
b. Select WEP encryption and provide an arbitrary key. It will tell you how long

your key can be. Remember the key you used for this step, as you’ll need it when
configuring the remote unit. Our key was a ten-character hex key, i.e. characters
in the set {0-f}, which made it a 40-bit WEP key.

c. Make sure you check the option for ‘ad-hoc’ network.
7) Usually neither computer on a peer-to-peer network knows how to self-configure an IP

address using DHCP. So you’ll need to set a static IP address:
a. Right-click your ‘Wireless Ethernet Connection’ icon again, select ‘Properties’

and then find ‘Internet Protocol (TCP/IP)’ and click properties.
b. In the next window, tell it to use the address you specify. We chose an address

that wouldn’t likely be on the other networks the host may be connected to,
namely “192.168.0.108”.

Remote

1) Double tap the network card icon on the Windows CE taskbar, and select ‘WLAN
Profiles’

2) Create a new profile, and do the following:
a. Give the profile the same name you gave your host profile (Locus).
b. Click the check-box to set the connection to ad-hoc mode.
c. Click the encryption tab and provide the same key you did earlier. If you did

a 10-character key earlier as described, select ’40-bit Shared Key’ as the
encryption algorithm.

d. Click the IP Config tab and give yourself a static address. Ours was
“192.168.0.108”.

e. Back at the ‘WLAN Profiles’ window, connect to the new Locus profile.

 62

Remarks
Without a key, you may create a profile that doesn’t find the correct unprotected wireless
connection. So make sure you set up a key with your profile. Also, the profile on remote and
host ends must have the same name or they won’t know to talk to each other.

DO NOT BRIDGE YOUR WIRELESS CARD TO OTHER CONNECTIONS or you will pay a
huge performance penalty on your wireless network. We’re talking 2kB/sec transfers versus
20kB/s transfers. To avoid using a bridge, you can disable other network cards on your
computer, or set the wireless card as the preferred device in the settings for Windows
Networking. See your computer’s documentation for more details about preferred network
devices.

 63

G. REFERENCES

[1] “Microsoft End-Of-Life Support Cycle.” Visited: 02/25/04. Avail.:

http://support.microsoft.com/default.aspx?scid=fh;[ln];LifeEmbedded

[2]

[3]

[4]

[5]

[6] “NCH Tone Generator.” Visited: 4/13/04. Avail.:

http://www.afreego.com/Categories/Multimedia/Audio_and_Sound_Tools/016646.php

 64

 65

	Introduction
	Background
	Intended Use
	Problem Solution
	Functional and Non-functional Parts of the Project

	Operational Specification
	Operational Overview
	Operational Metaphor

	Functional Specification
	Functional Overview
	Functional Metaphor
	Functions
	Control Functions
	Recording Functions
	Playback Functions

	Manufacturing
	Product Lifecycle Plan
	Introduction
	Design
	Implementation And Testing
	Release Plans
	Maintenance
	End of Life

	Failure Rate Calculations
	Failure Modes and Effect Analysis
	Potential Failure Modes
	Assign a Severity rating for each effect
	Assign an Occurrence rating for each failure mode
	Assign a Detection rating for each failure mode
	Calculate the Risk Priority Number for each effect
	Prioritize Failure modes for action.

	Social Impact
	Health and Safety Issues
	Environmental Issues
	Legal Issues

	Specifications Not Yet Met
	Future Modifications
	Host
	Remote

	Appendices
	A. User’s Manual
	Introduction
	About this guide
	Installation
	Host Software
	System Requirements
	Step by Step Installation

	Remote software
	Before Using the Remote
	System Includes
	Step By Step Installation
	Creating a Startup Shortcut

	Initial Setup
	
	Configuring the Host for Remote Devices
	Hosting Multiple Remotes

	Using the System
	
	Dictation
	Playback
	Skipping Tracks

	Troubleshooting

	B. Specifications
	C. Organization of Code and Documents on Accompanying CD
	D. Bill Of Materials
	E.1Windows Development Environment Documentation
	E.1.1 Introduction
	E.1.2 The DirectX Software Development Kit (SDK)
	
	
	
	
	
	Platform

	E.1.3 Host Development: Microsoft Visual C++ .NET
	1.3.1Projects, Solutions, and Dependencies
	1.3.2Project Wizards and Windows GUI Projects
	1.3.3Finding Variable/Function/Class/Method Declarations
	1.3.4 Static and Dynamic Libraries with Windows XP
	
	
	
	
	
	Finally, before you start playing with the Linker input list and start including exact pathnames to each and every library file, note that Visual C++ .NET has directory lists it searches when it looks for everything from include files to libraries and bi

	1.3.5 Step-Through Debugging
	1.3.6 Helper Tools

	E.1.4 Remote Development: Microsoft eMbedded C++ 4.0
	1.4.1Projects and Workspaces
	1.4.2Platforms
	Configuring the Target Device using Platform Manager
	Static and Dynamic Libraries with Windows CE
	Debugging, Helper Tools, and ActiveSync

	E.1.5 Windows CE Platform Builder and Windows CE Emulator

	E.2Windows API Documentation
	E.2.1 Introduction
	E.2.2 DirectShow
	2.2.1The Microsoft Common Object Model (COM)
	2.2.2Filters, Pins, and the Filter Graph
	2.2.2.aFilter Varieties
	2.2.2.bPins and Media Types
	2.2.2.cData Flow in a Filter Graph
	2.2.3A Poor Streaming Platform
	2.2.4CLSIDs, GUIDs and the Windows Registry
	2.2.5Creating The Filter Graph and its Filters in Memory
	Connecting the Filters
	Running the Graph
	2.2.7Detecting Events
	2.2.8De-allocating Objects
	2.2.9Concluding Remarks About DirectShow

	E.2.3 Windows Sockets
	Using Connection-State TCP/IP Sockets
	Using Datagram UDP Sockets
	Practical Information

	E.2.4MFC Objects CSocket, CCeSocket, CSocketFile, and CArchive
	2.4.1 Using CSockets

	E.2.5DirectSound Buffers
	2.5.1Using DirectSound Buffers

	E.2.6 Microsoft Waveform API
	Recording Using the Waveform API
	Hints, Tips, and Closing Remarks

	E.2.7 Benefits and Disadvantages of Windows Programming
	Programming Environments
	2.7.2Microsoft APIs
	2.7.3Object-Oriented Programming

	F. Technical Notes Sheets
	
	
	
	
	
	
	
	The PPT Keypad
	Debugging Overview

	Figure 1. Calling the Graph Builder

	I. Build the Custom OS Image
	II. Build the SDK
	III. Set up the Emulator Image with eMbedded C++
	IV. Set up the OS on an actual device
	Host
	Remote

	G.References

