

EDK II Package Declaration (DEC)
File Format Specification

March 2015
Revision 1.24 w/Errata B

EDK II FDF File Spec.

Acknowledgements

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel products
are not intended for use in medical, life saving, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

A license is hereby granted to copy and reproduce this specification for internal use only.
No other license, express or implied, by estoppel or otherwise, to any other intellectual property rights is granted
herein.
Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in
this specification. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.
This specification is an intermediate draft for comment only and is subject to change without notice. Readers should
not design products based on this document.

*Other names and brands may be claimed as the property of others.

Copyright © 2007 - 2015 Intel Corporation. All rights reserved.

Revision History

Revision Revision History Date

1.0 Initial release. December 2007

1.1 Updated based on errata August 2008

1.2 Updated based on enhancement requests June 2009

1.21 Updated based on errata and for enhancement requests
• Standardized the format for common content.
• Added support for @Keyword Doxygen tag
• Added support for @ModuleType Doxygen tags
• Added support for @ValidList, @DefaultValue and

@ValidRange Doxygen tags for PCDs
• Added PKG_UNI_FILE element to [defines] section

January 2010

1.22 Errata and grammatical editing April 2010

2 March 2015 Version 1.24B

EDK II FDF File Spec.

1.22 w/
Errata A

Updates:
• Updated to support UEFI version 2.3.1 and updated spec

release dates in Introduction
• Clarify UEFI’s PI Distribution Package Specification
• Standardize Common data definitions for all specifications
• Grammatical, formatting and spelling changes
• Replaced “should” with wording saying that it is

“recommended”
• Added EBNF for <Extension>
• Added scoping rules for Macros, clarified MACRO

summary
• Added an example of a binary only DEC file
• Removed references to system environment variables in

the Macros section
• Specifically state where <MACROVAL> can be used, and

where it is prohibited; specifically state that MACROVAL
entries are expanded where they are used; clarify that
MACROS are only expanded, not evaluated during initial
parsing of the DEC file

• Added table that shows that every part of a path name can
be replaced by a MACROVAL

• Clarify that C data arrays must be byte arrays for PCD
value fields; prohibit C format and Registry Format GUID
structures in VOID* PCD value fields

• Update non-zero number is True, only 0 is consideered
False

• Prohibit specifying items as architecturally specific and
also common

• Changed <RegistryGuid> to <RegistryFormatGUID> in
3.4

• Defined <GuidValue> as a <CFormatGUID> for this
release (need to allow registry format in a future release)

• Update the [Includes], [Guids], [Protocols], [PPIs],
[LibraryClasses] and PCD sections to allow an empty
section

• Updated the format for <QuotedString>, <CString> and
<UnicodeString>

• Update PATH related EBNF
• Add <MacroDefinition> to [Defines], [Includes] and

[LibraryClasses] sections
• Provide rules in 2.2.6 for how macros can be shared

between different subsections

December 2011

1.22 w/
Errata B

Updates:
• Added a + after <Express> in the DoxComment

definition of PCDs, as more than one expression can be
specified in the UEFI PI Distribution Package
Specification.

• Added text describing the use of <HexDigit> for error
numbers as well as how they are scoped.

June 2012

Version 1.24B March 2015 iii

EDK II FDF File Spec.

1.22 w/
Errata B
(cont.)

Updates:
• Updated UEFI/PI Spec version in chapter 1.3 to include

Errata letters.
• In Section 3.10 modified the optional error number in

DoxComment definitions for PCDs from <HexDigit>+ to
<ErrorCode> and defined <ErrorCode> to be of type
<NumValUint32>; also added a “|” after the value to
separate the error code from numeric values

• Added AsBuilt entries for Abstract and Description
• Clarified that the file must use the DOS end-of-line

character sequence, 0x0D 0x0A

June 2012

1.22 w/
Errata C

Updates:
• Updated UEFI/PI Specification version support in chapter

1
• Modified examples to correct previous errors
• Removed errors from text
• Updated examples
• Modified EBNF to prevent using the architectural modifier

of common with any other architecture. Ensure that
wording specifically states that the architecture modifiers
are not case sensitive.

• Add description of PCD processing rules in section 3.10
• Allow registry format GUID values in GUIDs, Protocols,

PPIs sections instead of requiring C format GUID values
(which will continue to be allowed)

• The error codes are scoped to the TokenSpaceGUID, not
to the PCD

• Added reference to the EDK II Build Specification for PCD
processing rules.

August 2013

1.24 Updates;
• Change revision number of this specification from 1.22 to

1.24
• Updated DEC_SPECIFICATION to 0x00010017
• Added additional parameter definitions for clarification of

the comment content for PCDs
• Added the PACKAGE_UNI_FILE entry to the [Defines]

section
• Added reserved TianoCore user extension, for

“ExtraFiles”
• Added PCD comment type for # [Error] which is used to

map an error code for a given token space to a specific
string.

August 2014

1.24 w/
Errata A

Updates:
• Changed DEC_SPECIFICATION to 0x00010018 and

allow specifying it as a decimal, i.e., 1.24.
• Updated specification dates and added two new

specifications in section 1.2
• Removed expression EBNF as it has been replaced by

the EDK II Expression Syntax Specification.

December 2014

1.24 w/
Errata B

Updates:
• Update link to the EDK II Specifications, fixed the name of

the Multi-String .UNI File Format Specification

March 2015

4 March 2015 Version 1.24B

EDK II FDF File Spec.

Contents

1

Introduction ...1
1.1 Overview ... 1
1.2 Related Information ... 1
1.3 Terms .. 2
1.4 Target Audience .. 5
1.5 Conventions Used in this Document ..5

1.5.1 Data Structure Descriptions ... 5
1.5.2 Pseudo-Code Conventions ..6
1.5.3 Typographic Conventions ..6

2
DEC File Overview ...9
2.1 Usage Overview .. 9
2.2 Declaration File Format ... 10

2.2.1 Section Entries ...10
2.2.2 Comments ... 11
2.2.3 Valid Entries .. 13
2.2.4 Naming Conventions ... 13
2.2.5 !include Statements .. 14
2.2.6 Macro Statements .. 14
2.2.7 PCD Names ... 16
2.2.8 Conditional Directive Statements (!if...).. 16
2.2.9 Error Comment Block Usage ...16

2.3 EDK II DEC Format ... 16
2.4 [Defines] Usage ... 16
2.5 [Includes] Usage ... 17
2.6 [Guids] Usage ... 17
2.7 [Protocols] Usage .. 18
2.8 [Ppis] Usage .. 18
2.9 [LibraryClasses] Usage ... 18
2.10 PCD Usage ... 18
2.11 [UserExtensions] Usage ... 20

3
EDK II DEC File Format ...23
3.1 General Rules ... 23

3.1.1 Backslash .. 23
3.1.2 White space characters ...23
3.1.3 Paths for filenames ... 24

3.2 Package Declaration (DEC) Definitions .. 24
3.2.1 Common Definitions .. 24
3.2.2 MACROs ... 32

Version 1.24B March 2015 7

EDK II FDF File Spec.

3.2.3 Conditional Statements .. 33
3.2.4 !include Statement ...33
3.2.5 Error Comment Section ... 34

3.3 Header Comment Section ... 34
3.4 [Defines] Section ... 38
3.5 [Includes] Sections .. 39
3.6 [Guids] Sections .. 41
3.7 [Protocols] Sections .. 43
3.8 [PPIs] Sections .. 45
3.9 [LibraryClasses] Sections .. 47
3.10 PCD Sections .. 50
3.11 [UserExtensions] Sections .. 57

Appendix A
DEC Examples ..59

A.1 EDK II IntelFrameworkPkg Example ... 60
A.2 EDK II EmulatorPkg Example ... 69
A.3 ShellBinPkg.dec ... 72
A.4 UefiCpuPkg.dec .. 73

Appendix B
EDK II Module Types ..75

8 March 2015 Version 1.24B

EDK II FDF File Spec.

Tables

Table 1.MACRO Usages ... 33
Table 2. EDK II Module Types ... 75

Version 1.24B March 2015 9

EDK II FDF File Spec.

1

March 2015 Version 1.24B

EDK II FDF File Spec.

1

Introduction

This document describes the EDK II Declaration (DEC) file format. This format was
designed to support building packaging and distribution of EDK II modules, as well as
for building platforms and modules using the EDK II build infrastructure. EDK II
declaration files may be created during installation of a distribution that follows the
UEFI Platform Initialization Distribution Package Specification. They may also be
created manually.
The EDK II Build Infrastructure supports generation of UEFI 2.4 and PI 1.3 (Unified EFI,
Inc.) compliant binary images.

1.1 Overview

This document describes the format for DEC files with the following goals:

Compatible
The DEC Format must maintain backward compatibility with any existing DEC file formats.
This means that the changes made to this specification must not require changes to
existing DEC files.

Simplified platform build and configuration
One goal of this format is to simplify the build setup and configuration for a given platform.
It was also designed to simplify the process of developing EDK II firmware components.

1.2 Related Information
The following publications and sources of information may be useful to you or are
referred to by this specification:
• Unified Extensible Firmware Interface Specification, Version 2.4, Unified EFI, Inc,

2014, http://www.uefi.org.
• Platform Initialization Specification, Version 1.3, Unified EFI, Inc., 2013, http://

www.uefi.org.
• UEFI Platform Initialization Distribution Package Specification, Version 1.0 with

Errata B, Unified EFI, Inc., 2014, http://www.uefi.org.
• Intel® Platform Innovation Framework for EFI Specifications, Intel, 2007, http://

www.intel.com/technology/framework/.
• https://github.com/tianocore/tianocore.github.io/wiki/EDK-II-Specifications

— EDK II Module Writers Guide, Intel, 2010.
— EDK II User Manual, Intel, 2010.
— EDK II C Coding Standard, Intel, 2014.
— EDK II DSC Specification, Intel, 2015.
— EDK II INF File Specification, Intel, 2015.
— EDK II FDF Specification, Intel, 2015.
— EDK II Build Specification, Intel, 2015.
— Multi-String UNI File Format Specification, Intel, 2014.
— EDK II Expression Syntax Specification, Intel, 2014.

Version 1.24B March 2015 1

http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.intel.com/technology/framework/
http://www.intel.com/technology/framework/
http://www.intel.com/technology/framework/
http://edk2.tianocore.org/Documents%20%26%20files/General%20Documentation
http://edk2.tianocore.org/Documents%20%26%20files/General%20Documentation

Introduction EDK II FDF File Spec.

— VFR Programming Language, Intel, 2012.
— EDK II Platform Configuration Database Infrastructure Descriptions, Intel, 2009.

• INI file, Wikipedia, http://en.wikipedia.org/wiki/INI_file.
• C Now - C Programming Information, Langston University, Tulsa Oklahoma, J.H.

Young, 1999-2011, http://c.comsci.us/syntax/expression/ebnf.html.

1.3 Terms

BaseTools
The BaseTools are the tools required for an EDK II build.

BDS

BNF

Framework Boot Device Selection phase.

BNF is an acronym for “Backus Naur Form.” John Backus and Peter Naur introduced for the
first time a formal notation to describe the syntax of a given language.

Component
An executable image. Components defined in this specification support one of the defined
module types.

DEC
EDK II Package Declaration File. This file declares information about what is provided in the
package. An EDK II package is a collection of like content.

DEPEX
Module dependency expressions that describe runtime process restrictions.

Dist

DSC

DXE

This refers to a distribution package that conforms to the UEFI Platform Initialization
Distribution Package Specification.

EDK II Platform Description File. This file describes what and how modules, libraries and
components are to be built, as well as defining library instances which will be used when
linking EDK II modules.

Framework Driver Execution Environment phase.

DXE SAL
A special class of DXE module that produces SAL Runtime Services. DXE SAL modules differ
from DXE Runtime modules in that the DXE Runtime modules support Virtual mode OS calls
at OS runtime and DXE SAL modules support intermixing Virtual or Physical mode OS calls.

DXE SMM
A special class of DXE module that is loaded into the System Management Mode memory.

DXE Runtime
Special class of DXE module that provides Runtime Services

EBNF
Extended “Backus-Naur Form” meta-syntax notation with the following additional
constructs: square brackets “[…]” surround optional items, suffix “*” for a sequence of zero
or more of an item, suffix “+” for one or more of an item, suffix “?” for zero or one of an

2 March 2015 Version 1.24B

http://www.uefi.org/
http://c.comsci.us/syntax/expression/ebnf.html

EDK II FDF File Spec. Introduction

EDK

item, curly braces “{…}” enclosing a list of alternatives, and super/subscripts indicating
between n and m occurrences.

Extensible Firmware Interface Development Kit, the original implementation of the Intel®
Platform Innovation Framework for EFI Specifications developed in 2007.

EDK II
EFI Development Kit, version II that provides updated firmware module layouts and custom
tools, superseding the original EDK.

EDK Compatibility Package (ECP)
The EDK Compatibility Package (ECP) provides libraries that will permit using most existing
EDK drivers with the EDK II build environment and EDK II platforms.

EFI

FDF

Generic term that refers to one of the versions of the EFI specification: EFI 1.02, EFI 1.10
or any version of the UEFI specification.

EDK II Flash definition file. This file is used to define the content and binary image layouts
for firmware images, update capsules and PCI option ROMs.

FLASH
This term is used throughout this document to describe one of the following:

• An image that is loaded into a hardware device on a platform - traditional ROM
image

• An image that is loaded into an Option ROM device on an add-in card
• A bootable image that is installed on removable, bootable media, such as a

Floppy, CD-ROM or USB storage device.
• An image that is contains update information that will be processed by OS

Runtime services to interact with EFI Runtime services to update a traditional
ROM image.

• A UEFI application that can be accessed during boot (at an EFI Shell Prompt),
prior to hand-off to the OS Loader.

Foundation
The set of code and interfaces that glue implementations of EFI together.

Framework
Intel® Platform Innovation Framework for EFI consists of the Foundation, plus other
modular components that characterize the portability surface for modular components
designed to work on any implementation of the EFI architecture.

GUID
Globally Unique Identifier. A 128-bit value used to name entities uniquely. A unique GUID
can be generated by an individual without the help of a centralized authority. This allows
the generation of names that will never conflict, even among multiple, unrelated parties.
GUID values can be registry format (8-4-4-4-12) or C data structure format.
GUID also refers to an API named by a GUID.

HII

HOB

Human Interface Infrastructure. This generally refers to the database that contains string,
font, and IFR information along with other pieces that use one of the database components.

Hand-off blocks are key architectural mechanisms that are used to hand off system
information in the early pre-boot stages.

Version 1.24B March 2015 3

Introduction EDK II FDF File Spec.

IFR

INF

Internal Forms Representation. This is the binary encoding that is used for the
representation of user interface pages.

EDK II Module Information File. This file describes how the module is coded. For EDK, this
file describes how the component or library is coded as well as providing some basic build
information.

Library Class
A library class defines the API or interface set for a library. The consumer of the library is
coded to the library class definition. Library classes are defined via a library class .h file that
is published by a package.

Library Instance
An implementation of one or more library classes.

Module
A module is either an executable image or a library instance.

Module Type
All libraries and components belong to one of the following module types: BASE, SEC,
PEI_CORE, PEIM, DXE_CORE, DXE_DRIVER, DXE_RUNTIME_DRIVER, DXE_SMM_DRIVER,
DXE_SAL_DRIVER, UEFI_DRIVER, or UEFI_APPLICATION. These definitions provide a
framework that is consistent with a similar set of requirements. A module that is of module
type BASE, depends only on headers and libraries provided in the MDE, while a module that
is of module type DXE_DRIVER depends on common DXE components. The EDK II build
system also permits modules of type USER_DEFINED. These modules will not be processed
by the EDK II Build system. See Ta ble 2.

Package
A package is a container. It can hold a collection of files for any given set of modules.
Packages may be described as one of the following types of modules:

— source modules, containing all source files and descriptions of a module
— binary modules, containing EFI Sections or a Framework File System and a description

file specific to linking and binary editing of features and attributes specified in a Platform
Configuration Database (PCD,)

— mixed modules, with both binary and source modules
Multiple modules can be combined into a package, and multiple packages can be combined
into a single package.

PCD

PEI
Platform Configuration Database.

Pre-EFI Initialization Phase.

PEIM
An API named by a GUID.

PPI
A PEIM-to-PEIM Interface that is named by a GUID.

Protocol
An API named by a GUID.

4 March 2015 Version 1.24B

EDK II FDF File Spec. Introduction

Runtime Services
Interfaces that provide access to underlying platform-specific hardware that might be
useful during OS runtime, such as time and date services. These services become active
during the boot process but also persist after the OS loader terminates boot services.

SAL

SEC

SKU

SMM

System Abstraction Layer. A firmware interface specification used on Intel® Itanium®
Processor based systems.

Security Phase is the code in the Framework that contains the processor reset vector and
launches PEI. This phase is separate from PEI because some security schemes require
ownership of the reset vector.

Stock Keeping Unit.

System Management Mode. A generic term for the execution mode entered when a CPU
detects an SMI. The firmware, in response to the interrupt type, will gain control in physical
mode. For this document, "SMM" describes the operational regime for IA32 and x64
processors that share the OS-transparent characteristics.

UEFI Application
An application that follows the UEFI specification. The only difference between a UEFI
application and a UEFI driver is that an application is unloaded from memory when it exits
regardless of return status, while a driver that returns a successful return status is not
unloaded when its entry point exits.

UEFI Driver
A driver that follows the UEFI specification.

UEFI Specification Version 2.4
Current UEFI version.

UEFI Platform Initialization Distribution Package Specification Version 1.0
The current version of this specification includes Errata B.

UEFI Platform Initialization Specification 1.3
Current version of the PI specification.

Unified EFI Forum
A non-profit collaborative trade organization formed to promote and manage the UEFI
standard. For more information, see www.uefi.org.

VFR

VPD

Visual Forms Representation.

Vital Product Data that is read-only binary configuration data, typically located within a
region of a flash part. This data would typically be updated as part of the firmware build,
post firmware build (via patching tools), through automation on a manufacturing line as the
'FLASH' parts are programmed or through special tools.

1.4 Target Audience

This document is intended for persons doing EFI development and support for different

Version 1.24B March 2015 5

http://www.uefi.org/

Introduction EDK II FDF File Spec.

platforms, as well as development and support for distributable modules. It is most
likely only of interest in the event that there is a problem with a build or if a developer
needs to perform special customizations of a build for a platform.

1.5 Conventions Used in this Document

This document uses typographic and illustrative conventions described below.

1.5.1 Data Structure Descriptions

Intel® processors based on 32 bit Intel® architecture (IA 32) are "little endian"
machines. This distinction means that the low-order byte of a multi byte data item in
memory is at the lowest address, while the high-order byte is at the highest address.
Processors of the Intel® Itanium® processor family may be configured for both "little
endian" and "big endian" operation. All implementations designed to conform to this
specification will use "little endian" operation.
In some memory layout descriptions, certain fields are marked reserved. Software
must initialize such fields to zero and ignore them when read. On an update operation,
software must preserve any reserved field.
The data structures described in this document generally have the following format:

Summary:
A brief description of the data structure.

Prototype:
An EBNF-type declaration for the data structure.

Example:
Sample data structure using the prototype.

1.5.2 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the
algorithms in this document are intended to be compiled directly. The code is presented
at a level corresponding to the surrounding text.
In describing variables, a list is an unordered collection of homogeneous objects. A
queue is an ordered list of homogeneous objects. Unless otherwise noted, the ordering
is assumed to be FIFO.
Pseudo code is presented in a C-like format, using C conventions where appropriate.
The coding style, particularly the indentation style, is used for readability and does not
necessarily comply with an implementation of the Extensible Firmware Specification.

1.5.3 Typographic Conventions

This document uses the typographic and illustrative conventions described below:

Typographic
Convention

Plain text

Typographic convention description

The normal text typeface is used for the vast majority of the descriptive text in a
specification.

6 March 2015 Version 1.24B

EDK II FDF File Spec. Introduction

Typographic
Convention

Plain text (blue)

Typographic convention description

Any plain text that is underlined and in blue indicates an active link to the cross-
reference. Click on the word to follow the hyperlink.

Bold In text, a Bold typeface identifies a processor register name. In other instances, a
Bold typeface can be used as a running head within a paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new term or to
indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code segments use a
BOLD Monospace typeface with a dark red color. These code listings normally
appear in one or more separate paragraphs, though words or segments can also be
embedded in a normal text paragraph.

Bold Monospace Words in a Bold Monospace typeface that is underlined and in blue indicate
an active hyper link to the code definition for that function or type definition. Click on
the word to follow the hyper link.

$(VAR) This symbol VAR defined by the utility or input files.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder names for
variable information that must be supplied (i.e., arguments).

Note: Due to management and file size considerations, only the first occurrence of the reference on
each page is an active link. Subsequent references on the same page will not be actively linked to
the definition and will use the standard, non underlined BOLD Monospace typeface. Find the first
instance of the name (in the underlined BOLD Monospace typeface) on the page and click on
the word to jump to the function or type definition.

The following typographic conventions are used in this document to illustrate the
Extended Backus-Naur Form.

[item] Square brackets denote the enclosed item is optional.
{item} Curly braces denote a choice or selection item, only one of which may

occur on a given line.
<item> Angle brackets denote a name for an item.
(range-range) Parenthesis with characters and dash characters denote ranges of

values, for example, (a-zA-Z0-9) indicates a single alphanumeric
character, while (0-9) indicates a single digit.

“item” Characters within quotation marks are the exact content of an item, as
they must appear in the output text file.

? The question mark denotes zero or one occurrences of an item.
* The star character denotes zero or more occurrences of an item.
+ The plus character denotes one or more occurrences of an item.
item{n} A superscript number, n, is the number occurrences of the item that must

be used. Example: (0-9)8 indicates that there must be exactly eight digits,
so 01234567 is valid, while 1234567 is not valid.

item{n,} A superscript number, n, within curly braces followed by a comma “,”
indicates the minimum number of occurrences of the item, with no
maximum number of occurrences.

Version 1.24B March 2015 7

Introduction EDK II FDF File Spec.

item{,n} A superscript number, n, within curly braces, preceded by a comma
“,”indicates a maximum number of occurrences of the item.

item{n,m} A super script number, n, followed by a comma “,“ and a number, m,
indicates that the number of occurrences can be from n to m occurrences
of the item, inclusive.

8 March 2015 Version 1.24B

EDK II FDF File Spec.

2
DEC File Overview

This document describes the format of EDK II package declaration (DEC) files. The DEC
files are used by the EDK II utilities that parse EDK II DSC and EDK II INF files to
generate AutoGen.c and AutoGen.h files for the EDK II build infrastructure.
A DEC file describes content for a collection of ‘like’ modules located in a directory tree
in the EDK II WORKSPACE. This development workspace is a directory identified by the
system environment variable, WORKSPACE. Each collection of modules must be in a
unique directory tree in the WORKSPACE, and must contain only one DEC file.
EDK II modules are located in subdirectories below the directory containing this file. If a
module is a Library, the module directory must be created in the “Library” subdirectory.
An “Include” subdirectory is also required, with the header file for the Library class
placed in the sub-directory Include/Library/, and be called LibraryClassName.h. Additional
content for the Include directory may include header files and potentially another
Industry Standard directory.

Note: Path and Filename elements within the DEC are case-sensitive in order to support building on

UNIX style operating systems. Names that are used in C code are case sensitive as well as
MACRO names used as short-cuts within the DEC file. Use of “..”, “./” and “../” in path and filename
elements is prohibited.

Note: GUID values are used during runtime to uniquely map the C names of PROTOCOLS, PPIS, PCDS

and other variable names.

Note: The examples in this document use a backslash “\” character when the example line does not fit in

between the margins. This character is not permitted in the actual DEC file, as all valid entries
must appear on the same line.

Note: The the total path and file name length is limited by the operating system and third party tools. It is

recommended that for EDK II builds that the WORKSPACE directory be either a directory under a
subst drive in Windows (s:/build as an example) or be located in either the /opt directory or in the
user’s /home/username directory for Linux and OS/X.

2.1 Usage Overview

The DEC file supports EDK II module builds. The file is used to define specific
information that will be shared between different EDK II Modules. There are eight
possible major section types in the DEC file, Defines, Includes, LibraryClasses, Guids,
Protocols, Ppis, PCD and UserExtensions.
Within a DEC file, comments are encouraged, with the hash “#” character identifying a
comment. All text after a comment character must be ignored by any parsing tool.
Comment characters can be at the start of a line, or after a data element (there must
be one or more white space characters between the data element and the comment
character. Examples:

Version 1.24B March 2015 9

DEC File Overview EDK II FDF File Spec.

this is a comment line
[includes.common] # This is also a valid comment.

[includes.common # This is not valid]

The last example is not valid, as the section header data element format is [text] with
the square brackets included as part of the data element.

Note: All EDK II DEC files MUST use the forward slash character for all directory paths specified.

The remainder of this chapter discusses the different section content usage.

2.2 Declaration File Format

This section covers the content for the EDK II DEC files.

2.2.1 Section Entries

To simplify parsing, the EDK II meta-data files continue using the INI format. This style
was introduced for EDK meta-data files, when only the Windows tool chains were
supported. It was decided that for compatibility purposes, that INI format would
continue to be used. EDK II formats differ from the defacto format in that the semi-
colon “;” character cannot be used to indicate a comment.
Leading and trailing space/tab characters must be ignored.
Duplicate section names must be merged by tools.
This declaration file consists of sections delineated by section tags enclosed within
square [] brackets. Section tag entries are case-insensitive. The different sections and
their usage are described below. The text of a given section can be used for multiple
section names by separating the section names with a comma. For example:
[Includes.X64, includes.IPF]

The content below each section heading is processed by the parsing utilities in the order
that they occur in the file. The precedence for processing these architecture section
tags is from right to left, with sections defining an architecture having a higher
precedence than a section which uses common (or no architecture extension) as the
architecture.
It is not permissible to have an architectural modifier in the same section tag as an
entry with the common architectural modifier. Specifying entries as only for IA32 and
also valid for all other architectures ([Includes.common, Includes.IA32]) is not
valid.

Note: Content such as filenames, directory names, MACROs and C variable names within a section IS

case sensitive. IA32, Ia32 and ia32 within a section are processed as separate items.IA32, Ia32
and ia32 within a section in a directory or file name are processed as separate items. (Refer to
Naming Conventions below for more information on directory and/or file naming.)

Sections are terminated by the start of another section or the end of the file.
Comments are not permitted between square brackets of a section specifier.
Duplicate sections (two sections with identical section tags) will be merged by tools,
with the second section appended to the first.
If architectural modifiers are used in the section tag, the section is merged by tools with

10 March 2015 Version 1.24B

EDK II FDF File Spec. DEC File Overview

content from common sections (if specified) with the architectural section appended to
the first, into an architectural section. For example, given the following:
[Includes]
Includes/
[Includes.IA32]
Includes/Ia32
[Includes.X64]
Includes/X64

After the first pass of the tools, when building the module for IA32, the source files will
logically be:
[Includes.IA32]
Includes/
Includes/Ia32

When building the module for X64, the source files will logically be:
[Includes.X64]
Includes/
Includes/X64

The [Defines] section tag prohibits use of architectural modifiers. All other sections
can specify architectural modifiers.

2.2.2 Comments

The hash # character indicates comments in the Declaration (DEC) file. In line
comments terminate the processing of a line. In line comments must be placed at the
end of the line, and may not be placed within the section ([,]) tags.
Only gPkgTSGuid.PcdFoo|TRUE|BOOLEAN|0x00000015 in the following example is
processed by tools; the remainder of the line is ignored:
gPkgTSGuid.PcdFoo|TRUE|BOOLEAN|0x00000015 # EFI_COMPUTING_UNIT_MEMORY

Note: Blank lines and lines that start with the hash # character must be ignored by tools.

Hash characters appearing within a quoted string are permitted, with the string being
processed as a single token. The following example must handle the quoted string as
single element by tools.
UI = “# Copyright 2007, No Such, LTD. All rights reserved.”

The line extension character, “\”, cannot be used to extend a comment. Like the
comment character stops processing of a line, comments are always terminated by the
end of line. Doxygen tags are permitted in comment blocks preceding individual GUID,
Protocol, PPI and PCD entries. These tags are used as containers for content required
by the UEFI Packaging specification, and may also be used by tools. Each section will
define the valid Doxygen tags which apply.
If a hash “#” character is required in a value field, the value field must be encapsulated
by double quotation marks.

<CommentBlock> Entries

Various elements in the DEC file have a recommended format for comment information
regarding the header files, module types an item supports and other information. These
special comment blocks are processed by tools used to create a distribution package of
the code that conforms to the UEFI Distribution Package (UDP) Specification. Tools

Version 1.24B March 2015 11

DEC File Overview EDK II FDF File Spec.

used to install a distribution package that conforms to the UDP must add appropriate
type information in these comment blocks. The comment block formats are specified in
chapter 3 of this document.
The general format of these comment blocks in the [Guids], [Protocols] and [Ppis]
sections is:
“##” Path/To/HeaderFile.h
GUID_C_Name = <GUID> [“##” <ModuleTypeList>] [“#” <HelpText>]

Example:
Include/Guid/GlobalVariable.h
gEfiGlobalVariableGuid = {0x8BE4DF61,0x93CA,0x11D2, \
{0xAA,0x0D,0x00,0xE0,0x98,0x03,0x2B,0x8C}}

Include/Protocol/DebugPort.h
gEfiDebugPortDevicePathGuid = {0xEBA4E8D2, 0x3858, 0x41EC, \
{0xA2, 0x81, 0x26, 0x47, 0xBA, 0x96, 0x60, 0xD0}} ## UEFI_DRIVER

Guid for EFI_DISK_INFO_PROTOCOL.Interface to specify Ide interface.
Include/Protocol/DiskInfo.h
gEfiDiskInfoIdeInterfaceGuid = {0x5E948FE3, 0x26D3, 0x42B5, \

{0xAF, 0x17, 0x61, 0x02, 0x87, 0x18, 0x8D, 0xEC}} ## DXE_DRIVER,
UEFI_DRIVER

Include/Guid/SmmCommunicate.h gSmmCommunicateHeaderGuid
= {0xf328e36c, 0x23b6, 0x4a95, \
{0x85, 0x4b, 0x32, 0xe1, 0x95, 0x34, 0xcd, 0x75} \
} ## SMM_CORE, DXE_SMM_DRIVER

Note: In the above example, the line has been extended so that the field is continued to the last line (the

“}” character) so that the comment at the end of the line can be processed correctly by the Intel(r)
UEFI Packaging Tool.

Additional informational help text is also defined in the <CommentBlock> tag. The
format defined for comment blocks that are at the end of lines listed in all of the
examples must not continue on following lines. If the <CommentBlock> information is
long, the information is allowed to be split into multiple comment lines that immediately
precede the element. For example:
Include/Guid/DebugAgentGuid.h
PEIM, DXE_DRIVER, DXE_SMM_DRIVER
MdeModule Debug Agent GUID
gEfiDebugAgentGuid = \
{0x865a5a9b,0xb85d,0x474c,{0x84,0x55,0x65,0xd1,0xbe,0x84,0x4b,0xe2}}

Unlike GUIDs, Protocols and PPIs, the PCD entries are not associated with a header file,
so the general format is:

12 March 2015 Version 1.24B

EDK II FDF File Spec. DEC File Overview

CommentBlock
[# CommentBlockCont]
Entry [<ShortSingleCommentBlock>]

Example:
DXE_DRIVER, DXE_SMM_DRIVER # S3 support
The PCD is used to specify memory size with page number for a
pre-allocated ACPI NVS memory to be used by PEI in S3 phase.
The default size 32K.
When changing the value of this PCD, the platform developer should
make sure the memory size is large enough to meet PEI requirement in
S3 phase.
gEfiTModPkgTokenSpaceGuid.PcdS3AcpiReservedMemorySize | \

0x8000 | UINT32 | 0x30000007

2.2.3 Valid Entries

Processing of the line is terminated if a comment is encountered or by the end of the
line. Entries in this file (not comments) are not allowed to span multiple lines.
Items in quotation marks are treated as a single token and have the highest
precedence. All expressions must be written using in-fix notation (operators are written
between the operands). Parenthesis surrounding groups of operands and operators are
recommended to determine the order in which operations are to be performed to
remove ambiguity. All other processing occurs from left to right.
In the following example, B - C is processed first, then result is added to A followed by
adding 2; finally 3 is added to the result.
(A + (B - C) + 2) + 3

In the next example, A + B is processed first, then C + D is processed and finally the
two results are added.
(A + B) + (C + D)

Space and tab characters are permitted around field separators.

2.2.4 Naming Conventions

The EDK II build infrastructure is supported under Microsoft* Windows*, Linux* and
MAC OS/X* operating systems. As a result of multiple environment support, all
directory and file names must be treated as case sensitive.
• The use of special characters in directory names and file names is restricted to the

dash, underscore, and period characters, respectively "-", "_", and ".".
• Period characters must not be followed by another period character. File and

Directory names must not start with “./”, “.” or “..”.
• Directory names and file names must not contain space or tab characters.
• Directory Names must only contain alphanumeric, underscore, dash and period

characters (period characters must not be sequential) and it is recommended that
they start with an alpha character.

• All files must reside in the directory containing the DEC file or in sub-directories of
the directory containing the DEC file.

• It is recommended that filenames start with an alpha character.

Version 1.24B March 2015 13

DEC File Overview EDK II FDF File Spec.

• All EDK II directories that are architecturally dependent must use a name with only
the first character capitalized followed by lower case characters or numeric
characters. Ia32, Ipf, X64 and Ebc are valid architectural directory names. IA32, IPF
and EBC are not acceptable directory names, and may cause build breaks. From a
build tools perspective, an IA32 directory name is not equivalent to Ia32 or ia32.

• When an architecture is used in a directory name, the directory content must be
listed in a section that uses the matching architecture modifier. If a common section
contains filenames that have directories with architecture modifiers, the file will be
processed for all architectures, not just the architecture specified in the directory
name.

• Absolute paths are not permitted in EDK II DEC files. All paths specified are relative
to the WORKSPACE system environment variable, relative to the EDK II package
directory containing the DEC file.

Space Characters in filenames: The build tools must be able to process the tool
definitions file: tools_def.txt (describing the location and flags for compiler and user
defined tools), which may contain space characters in paths on Windows* systems.
The EDK II Coding Style specification covers naming conventions for use within C Code
files, and as well as specifying the rules for directory and file names. This section is
meant to highlight those rules as they apply to the content of the DEC files.
Architecture keywords (IA32, IPF, X64 and EBC) are used by build tools and in meta-
data files for describing alternate threads for processing of files. These keywords must
not be used for describing directory paths. Additionally, directory names with
architectural names (Ia32, Ipf, X64 and Ebc) do not automatically cause the build tools
or meta-data files to follow these alternate paths. Directories and Architectural
Keywords are similar in name only.
For clarity, this specification will use all upper case letters when describing architectural
keywords, and the directory names with only the first letter in upper case.
All directory paths within EDK II DEC files must use the “/” forward slash character to
separate directories as well as directories from filenames.

Example:

C:/Work/Edk2/edksetup.bat

File names must also follow the same naming convention required for directories. No
white space characters are permitted. The special characters permitted in directory
names are the only special characters permitted in file names.
Absolute paths or relative paths outside of the directory the DEC file resides must not
be used when specifying directories or filenames in any section of the DEC file.

2.2.5 !include Statements

The !include statement is NOT permitted in DEC files.

2.2.6 Macro Statements

Macro statements are permitted in the EDK II DEC files. Macro statements assign a
Value to a Variable Name, and are only valid during the processing of the DEC
specifying the value. Macro statements are local to the file - global macro values are
not permitted. Use of system environment variables is also prohibited in value fields;

14 March 2015 Version 1.24B

EDK II FDF File Spec. DEC File Overview

they may appear in comments, however during the build, comment content is ignored.
This decision was made in order to support UEFI’s PI Distribution Package Specification
requirements.
Macro Definition statements that appear within a section of the file (other than the
[Defines] section) are scoped to the section they are defined in. If the Macro
statement is within the [Defines] section, then the Macro is common to the entire file,
with local definitions taking precedence (if the same MACRO name is redefined in
subsequent sections, then the MACRO value is local to only that section).
Any defined MACRO definitions will be expanded by tools when they encounter the
entry in the section. All macros are local to the DEC file (this is a requirement for UEFI
distribution of source and binary content).
The macro statements are positional, in that only statements following a macro
definition are permitted to use the macro – a macro cannot be used before it has been
defined.
Macros defined the [Defines] section are common to all sections.
Macros defined in a common architectural section may be used in the architecturally
modified sections of the same section type. Macros defined in architectural sections
cannot be used in other architectural sections, nor can they be used in the common
section.
Macro expansion is done at the time the macro is used.

Example

[LibraryClasses.common]
Can use $(MDE)
Cannot use either $(SMM) or $(SAL)
DEFINE MDE = Include/Library
BaseLib|$(MDE)/BaseLib.inf

[LibraryClasses.X64, LibraryClasses.IA32]
Can use $(MDE) and local $(SMM)
Cannot use $(SAL)
DEFINE SMM = Include/Library
SmmLib|$(SMM)/SmmLib.h

[LibraryClasses.IPF]
Can use $(MDE) from the common section and local $(SAL)
Cannot use $(SMM)
DEFINE SAL = Include/Library
SalLib|$(SAL)/SalLib.h
PalLib|$(MDE)/PalLib.h

In the previous example, the directory and filename for a library instance is the header
file that can be used for all modules that provide the library implementations that
conform to the definitions in the file.

2.2.7 PCD Names

Unique PCD names are defined as PCD Token Space Guid C name and the PCD C name

Version 1.24B March 2015 15

DEC File Overview EDK II FDF File Spec.

- separated by a period “.” character:
PcdTokenSpaceGuidCName.PcdCName

The PCD's Name (PcdName) is defined as PCD Token Space Guid C name and the PCD C
name separated by a period "." character. PCD C names are used in C code and must
follow the C variable name rule.

2.2.8 Conditional Directive Statements (!if...)

Conditional statements are NOT permitted in EDK II DEC files.

2.3 EDK II DEC Format

EDK II DEC files can be created by package installation tools using the UEFI Distribution
Package description files that accompany a distribution package. They may also be
created manually.
All content (except section tag names) within the EDK II DEC file is case-sensitive.

2.4 [Defines] Usage

This is a required section.
The [Defines] section is used to track the package's GUID and version, which allows
multiple copies of the same package with different versions to exist within a single
workspace. Architectural modifiers are not permitted in the [Defines] section. If major
changes to a package occur, the GUID value of the package must also change.
Additionally, the package's version major number may change. Minor changes require
incrementing the package's version minor number. The PACKAGE_UNI_FILE entry points
to a UCS-2LE encoded file containing localization strings. The file path (if present) is
relative to the directory containing the INF file.
This section will use only one section header:
[Defines]

The format for entries in this section is:
Name = Value

The following is an example of this section.
[Defines]
DEC_SPECIFICATION = 0x00010018
PACKAGE_NAME = MdePkg
PACKAGE_GUID = 1E73767F-8F52-4603-AEB4-F29B510B6766
PACKAGE_VERSION = 1.02
PACKAGE_UNI_FILE = MdePkg.uni

2.5 [Includes] Usage
This is an optional section.
The [Includes] section is used to identify the “standard” location “include directories”
provide by this EDK II package. The [Includes] contains a list of package relative
directory names. These directories contain sub-directories or header files. If the

16 March 2015 Version 1.24B

EDK II FDF File Spec. DEC File Overview

Package directory contains the directories, and the Include, Include/Ppis, Include/
Protocol and Include/Guid, and header files exist in each of these directories, then all
four directories will be listed in this section.
This list of directories is used by the build tools to create the list of standard directory
locations required by compilers.
Also included in this section are the directories containing headers that may be required
for individual EDK II module types. Refer to Appendix, “EDK II Module Types”, for a list
of the valid types.
Refer to the [Includes] definition later in this document for a complete description of
this section and its contents.
The [Includes] section uses one of the following section definitions:
[Includes.common] [Includes.IA32] [Includes.X64] [Includes.IPF]
[includes.EBC] [Includes]

The format for entries in this section is one field, with an optional comment “#” field as
shown below:

Package_Relative/path # Comment such as Keyword List

The relative path is relative to the directory the DEC file is in. Use of “..”, “./” and “../”
in the directory path is not permitted.

Caution: Do not list individual files in the [Includes] section.

2.6 [Guids] Usage

This is an optional section.
This section is used to define the GUID Value for Guid C Names.
This section uses one of the following section definitions:
[Guids] [Guids.IA32] [Guids.X64] [Guids.IPF] [Guids.EBC]
[Guids.common] [Guids.IA32, Guids.X64] [Guids.X64, Guids.IPF]

Format for the entries in this section is two fields with an equal “=” character
separating the fields as shown below.
GuidCName = {C Format Guid Value} # Comment

The Comment section can be used to identify the list of supported module types.

2.7 [Protocols] Usage

This is an optional section.
This section is used to define the GUID Value for Protocol C Names.
This section use ones of the following section definitions:
[Protocols] [Protocols.IA32] [Protocols.X64] [Protocols.IPF]
[Protocols.EBC] [Protocols.common]

Format for the entries in this section is two fields with an equal “=” character
separating the fields as shown below.
ProtocolCName = {C Format Guid Value} # Comment

The Comment section can be used to identify the list of supported module types.

Version 1.24B March 2015 17

DEC File Overview EDK II FDF File Spec.

2.8 [Ppis] Usage

This is an optional section.
This section is used to define the GUID Value for PPI C Names.
This section use ones of the following section definitions:
[Ppis] [Ppis.IA32] [Ppis.X64] [Ppis.IPF] [Ppis.EBC] [Ppis.common]

Format for the entries in this section is two fields with an equal “=” character
separating the fields as shown below.
PpiCName = {C Format Guid Value} # Comment
PpiCname1 = RegistryFormatGUID # Comment

The Comment section can be used to identify the list of supported module types.

2.9 [LibraryClasses] Usage

This is an optional section.
This section is used to define the headers associated with the new EDK II library
classes. A library class is declared and its associated header file specified in this section.
The module library instances that satisfy a Library Class must use the Library Class
Header file, without modification.
Refer to the [LibraryClasses] definition later in this document for a complete
description of this section and its contents.
This section uses one of the following section definitions:
[LibraryClasses.common] [LibraryClasses.IA32] [LibraryClasses.X64]
[LibraryClasses.IPF] [LibraryClasses.EBC] [LibraryClasses]

Format for the entries in this section is two fields, with a pipe “|” character as the field
separator, as shown below.
LibraryClassName | Relative/path/and/header_filename.h

The relative path is relative to the directory the DEC file is in. Use of “..”, “../” or “./” in
the directory path is prohibited.

2.10 PCD Usage

These are optional sections.
These sections are used to declare basic information about PCDs. Refer to the PI
Specification as well as the EDK II Platform Configuration Database Infrastructure
Descriptions document for additional information regarding PCDs. Only the DynamicEx
access methods are defined in the PI Specification; the remaining types are specific to
this EDK II Build System.
Generally, the fixed and patchable PCDs are used to set static configuration elements
that can be determined at build time (or modified prior to inserting a module into a
flash image). Dynamic and DynamicEx PCDs are used for configuration knobs that may
be manipulated by setup screens (or other methods) during the boot process.
Information in this section is used to create entries in the AutoGen.c and AutoGen.h
files for EDK II modules.
The PCD is used for configuration when the PCD value is produced and consumed by
drivers during execution, the value may be user configurable from setup or the value is

18 March 2015 Version 1.24B

EDK II FDF File Spec. DEC File Overview

produced by the platform in a specified area. It is associated with modules that are
released in source code. The PatchableInModule and DynamicEx PCD access methods
are associated with modules that are released as binary only modules. The FeatureFlag
PCD is used to enable some code paths.
PCDs are usually defined by a specification that defines the name, token number, token
space guid, datum type. A default value and valid usages may also be given in the
industry specification. If a developer needs to create a new PCD, they can, following the
conventions listed in the PI specification. Only PCDs that will be shared between
multiple users need to be defined in published architectural specs. If a PCD is only
going to be used by a single organization, then a new PCD can be created within the
organization, keeping all modules that use the PCD internal to the organization.
Every PCD (PcdName) is identified by a two part definition - the PCD's Token Space Guid
CName and the PCD CName. These two parts are separated by a period “.” character.
Together, these two parts make up the first field in a PCD Entry.
Refer to the PCD Sections definition later in this document for a complete description of
this section and its contents.
This section resembles one of the following section definitions:
[PcdsFeatureFlag] [PcdsFeatureFlag.common] [PcdsFixedAtBuild.IA32]
[PcdsPatchableInModule.X64] [PcdsDynamic.IPF] [PcdsDynamicEx.EBC]

The EDK II build system supports five PCD types, Feature Flag, Fixed At Build,
Patchable In Module, Dynamic and DynamicEx. These types indicate access methods
for get/set operations. The PcdsDynamicEx method is defined by the PI specification. A
PCD may be listed under multiple PCD type sections, except Feature Flag PCDs. Listing
a PCD in multiple sections indicates that modules have been coded to use in any one of
the non-feature flag types.
It recommended that modules use either the FeatureFlag PCD or use the flexible (INF
file’s [Pcd] section) for access. If a module is coded for only one type of access, such as
FixedAtBuild, then it can only be used as a Fixed At Build in a platform, and therefore, it
must not be listed in any other section types in this file. Likewise, if the module is coded
as a DynamicEx form, then it can only be listed in the DynamicEx section. If a module is
coded for the Dynamic access method, then the platform integrator would be able to
choose how they want to use the PCD. It can then be specified as Fixed, Patchable,
Dynamic or DynamicEx in the platform description (DSC) file.
The EDK II build tools will automatically generate a const definition for the Feature Flag
and Fixed At Build PCDs, while the Patchable In Module and both Dynamic forms will
have a volatile definition generated.
The two recommended types that are commonly used in modules are: FeaturePcd and
the dynamic PCD form. For modules that will be distributed as binary modules, PCDs in
those modules that will be exposed by the binary must be of type Patchable In Module
or DynamicEx. The PCD is used for configuration when the PCD value is produced and
consumed by drivers during execution, the value may be user configurable from setup
or the value is produced by the platform in a specified area. It is associated with
modules that are released in source code. The dynamic form is the most flexible
method, as platform integrators may chose a to use a different type (such as fixed) for
a given platform without modifying the module’s INF file or the code for the module.
It is recommended that PCDs, that have a value associated with them, be listed in
PcdsFixedAtBuild, PcdsPatchableInModule, PcdsDynamic and PcdsDynamicEx sections.
Module developers need to check what sections a specific PCD is listed in, in order to

Version 1.24B March 2015 19

DEC File Overview EDK II FDF File Spec.

code the module using the correct access type. Also, PCDs may have different default
values for different architectures.
The format for entries in the PCDs sections is four fields, with a pipe “|” character as
the field separator, as shown below:
Comment
TokenSpaceGuidCname.PcdCname|DefaultValue|DatumType|Token

The Comment section can be used to identify the list of supported module types as well
as to contain conditional test statements for acceptable values.
Default values listed in this file can be overridden by the default values specified in INF
files (provided all INF files use the same value for a PCD) or by values specified in the
DSC or FDF files of a platform.
The Token value is used programmatically in code. The two PCD drivers use the token
number to locate a PCD’s value.

Feature Flag PCDs

Feature Flag PCDs can only be listed in Feature Flag sections. Only Feature Flag PCDs
can be listed in Feature Flag sections.

VOID* PCD DatumType

The declarations in this file do not include a maximum datum size for the “VOID*” PCDs.
It is recommended that the platform integrator allocate space for the content, rather
than depend on letting tools compute the maximum value based on the greater of the
lengths from the values in the DEC, DSC and INF files. However, if the platform
integrator does not specify a size in the DSC file, the data size is calculated by the tools
to be the greatest length of all values specified for this PCD listed in the DEC, INF, FDF
and DSC files.

2.11 [UserExtensions] Usage

This is an optional section.
The EDK II user extensions section allows for extending the DEC files with custom
processing. The format for a user extension is:

[UserExtensions.$(UserID).$(Identifier)]

Data elements under the section header are not required; this is an optional section.
Content of in this section is free form.
The EDK II build tools do not use this section and will ignore all content within a
[UserExtensions] section.
The following is an example of a User Extensions section.
[userextensions.NoSuchCorp."Script_1.0"]

NoSuch.bat

2.11.1 [UserExtensions.TianoCore."ExtraFiles"] Section

The EDK II [UserExtensions.TianoCore."ExtraFiles"] section allow for distributing
extraneous files that are associated with a package. Files listed in this section are not
processed by EDK II build tools. These files must exist in the directory or sub-
directories of the directory containing the DEC file.

20 March 2015 Version 1.24B

EDK II FDF File Spec. DEC File Overview

Note: The Intel® UEFI Packaging Tool will parse this section and for all files listed in this file, add the file

to the package distribution using the UEFI Distribution Package Distribution.

The section header must be:
[UserExtensions.TianoCore."ExtraFiles"]

Having data elements under the section header is not required.
The following is an example of a [UserExtensions.TianoCore."ExtraFiles"] section:
[UserExtensions.TianoCore."ExtraFiles"]
Readme.txt
UserManual.pdf

Version 1.24B March 2015 21

DEC File Overview EDK II FDF File Spec.

22 March 2015 Version 1.24B

EDK II FDF File Spec.

3
EDK II DEC File Format

This section of the document describes the EDK II DEC sections using an Extended
Backus-Naur Form.

3.1 General Rules

The general rules for EDK II INI style documents follow.

Note: Path and Filename elements within the DEC are case-sensitive in order to support building on

UNIX style operating systems. Additionally, names that are C variables or used as a macro are
case sensitive. Other elements such as section tags or hex digits, in the DEC file are not case-
sensitive. The use of "..", "../" and "./" in paths and filenames is strictly prohibited.

• Only one DEC file is permitted per directory.
• Text in section tags (text within square brackets) is not case sensitive.
• A section terminates with either another section definition or the end of the file.
• Entries terminate with either a comment or the end of line character sequence.
• To append comment information to any item, the comment must start with a hash

"#" character.
• All comments terminate with the end of line character sequence.
• Any comment not associated with a defined comment format is considered a global

comment.
• Global comments must be separated from formatted comments with a blank line.
• Comment lines cannot be extended using the line extension character.
• Field separators for lines that contain more than one field are pipe "|" characters.

This character was selected to reduce the possibility of having the field separator
character appear in a string, such as a filename or text string.

Note: The only notable exception is the PcdName which is a combination of the

PcdTokenSpaceGuidCName and the PcdCName that are separated by the period "." character.
This notation for a PCD name is used to uniquely identify the PCD.

• When processing numeric values, either integer or hex, leading zeros specified in
the entry may be ignored. For example, 0x00000000000000000000001 can be a
valid value for a UINT8 data type, as the actual value is 1.

3.1.1 Backslash

The backslash "\" character is used in this document when an example entry cannot fit
between the margins of this file. It must not be used in the DEC file to extend an entry.

3.1.2 White space characters

Whitespace (space and tab) characters are permitted between token and field

Version 1.24B March 2015 23

EDK II DEC File Format EDK II FDF File Spec.

separator elements for all entries.
Whitespace characters are not permitted between the PcdTokenSpaceGuidCName and
the dot, nor are they permitted between the dot and the PcdCName.

3.1.3 Paths for filenames

Note that for specifying the path for a file name, if the path value starts with a dollar
sign "$" character, a local MACRO is being specified. White space characters are not
permitted in path names.

Caution: The use of "..", "./" and "../" in a path element is prohibited.

For all EDK II DEC files, the directory path must use the forward slash character for
separating directories. For example, MdePkg/Include/ is Valid.
Unless otherwise noted, all file names and paths must be relative to the directory where
the DEC file is located.

3.2 Package Declaration (DEC) Definitions

This section defines content and format of a package declaration file. The [Defines]
section must appear before any other section except the <Header> comment block.
(The header, when specified, is always the first section of a DEC file.) The remaining
sections may be specified in any order within the DEC file.

Summary

The EDK II Package Declaration (DEC) file has the following format (using the EBNF).
<EDK_II_DEC> ::= <Header>?

<Defines>
<Includes>*
<LibraryClass>*
<Guids>*
<Protocols>*
<Ppis>*
<Pcd>*
<UserExtensions>*

3.2.1 Common Definitions

Summary
The following are common definitions used by multiple section types in EDK II meta-
data documents. Not all of the definitions below pertain to entries in the DEC file (for
example, <Expression> statements are not permitted).

24 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

Prototype

<Word> ::= (a-zA-Z0-9_)(a-zA-Z0-9_-.)* Alphanumeric
characters with optional period ".", dash "-"
and/or underscore "_" characters.
A period character may not be followed by
another period character.
No white space characters are permitted.

<SimpleWord> ::= (a-zA-Z0-9)(a-zA-Z0-9_-)* A word that cannot
contain a period character.

<ToolWord> ::= (A-Z)(a-zA-Z0-9)* Alphanumeric characters.
white space characters are not permitted.

<FileSep> ::= "/"

<Extension> ::= (a-zA-Z0-9_-)+ One or more alphanumeric
characters.

<File> ::= <Word> ["." <Extension>]

<PATH> ::= [<MACROVAL> <FileSep>] <RelativePath>

<RelativePath> ::= <DirName> [<FileSep> <DirName>]*

<DirName> ::= {<Word>} {<MACROVAL>}

<FullFilename> ::= <PATH> <FileSep> <File>

<Filename> ::= [<PATH> <FileSep>] <File>

<Chars> ::= (a-zA-Z0-9_)

<Digit> ::= (0-9)

<NonDigit> ::= (a-zA-Z_)

<Identifier> ::= <NonDigit> <Chars>*

<CName> ::= <Identifier> # A valid C variable name.

<AsciiChars> ::= (0x21 - 0x7E)

<CChars> ::= [{0x21} {(0x23 - 0x5B)} {(0x5D - 0x7E)}
{<EscapeSequence>}]*

<DblQuote> ::= 0x22

<EscapeSequence> ::= "\" {"n"} {"t"} {"f"} {"r"} {"b"} {"0"} {"\"}
{<DblQuote>}

Version 1.24B March 2015 25

EDK II DEC File Format EDK II FDF File Spec.

<TabSpace> ::= {<Tab>} {<Space>}

<TS> ::= <TabSpace>*

<MTS> ::= <TabSpace>+

<Tab> ::= 0x09

<Space> ::= 0x20

<CR> ::= 0x0D

<LF> ::= 0x0A

<CRLF> ::= <CR> <LF>

<WhiteSpace> ::= {<TS>} {<CR>} {<LF>} {<CRLF>}

<WS> ::= <WhiteSpace>*

<Eq> ::= <TS> "=" <TS>

<FieldSeparator> ::= "|"

<FS> ::= <TS> <FieldSeparator> <TS>

<Wildcard> ::= "*"

<CommaSpace> ::= "," <Space>*

<Cs> ::= "," <Space>*

<AsciiString> ::= [<TS>* <AsciiChars>*]*

<EmptyString> ::= <DblQuote><DblQuote>

<CFlags> ::= <AsciiString>

<PrintChars> ::= {<TS>} {<CChars>}

<QuotedString> ::= <DblQuote> <PrintChars>* <DblQuote>

<CString> ::= ["L"] <QuotedString>

<NormalizedString> ::= <DblQuote> [{<Word>} {<Space>}]+ <DblQuote>

<GlobalComment> ::= <WS> "#" [<TS> <AsciiString>] <EOL>+

<Comment> ::= "#" <TS> <AsciiString> <EOL>+

26 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

<UnicodeString> ::= "L" <QuotedString>

<HexDigit>

<HexByte>

<HexNumber>

<HexVersion>

<Major>

::=

::=

::=

::=

::=

(a-fA-F0-9)

{"0x"} {"0X"} [<HexDigit>] <HexDigit>

{"0x"} {"0X"} <HexDigit>+

"0x" [0]* <Major> <Minor>

<HexDigit>? <HexDigit>? <HexDigit>?
 <HexDigit>

<Minor> ::= <HexDigit> <HexDigit> <HexDigit> <HexDigit>

<DecimalVersion> ::= {"0"} {(1-9) [(0-9)]*} ["." (0-9)+]

<VersionVal> ::= {<HexVersion>} {(0-9)+ "." (0-99)}

<GUID> ::= {<RegistryFormatGUID>} {<CFormatGUID>}

<RegistryFormatGUID> ::= <RHex8> "-" <RHex4> "-" <RHex4> "-"
<RHex4> "-" <RHex12>

<RHex4> ::= <HexDigit> <HexDigit> <HexDigit> <HexDigit>

<RHex8> ::= <RHex4> <RHex4>

<RHex12> ::= <RHex4> <RHex4> <RHex4>

<RawH2> ::= <HexDigit>? <HexDigit>

<RawH4> ::= <HexDigit>? <HexDigit>? <HexDigit>?
<HexDigit>

<OptRawH4> ::= <HexDigit>? <HexDigit>? <HexDigit>?
<HexDigit>?

<Hex2> ::= {"0x"} {"0X"} <RawH2>

<Hex4> ::= {"0x"} {"0X"} <RawH4>

<Hex8> ::= {"0x"} {"0X"} <OptRawH4> <RawH4>

<Hex12> ::= {"0x"} {"0X"} <OptRawH4> <OptRawH4> <RawH4>

<Hex16> ::= {"0x"} {"0X"} <OptRawH4> <OptRawH4>
<OptRawH4> <RawH4>

<CFormatGUID> ::= "{" <Hex8> <CommaSpace> <Hex4> <CommaSpace>

<Hex4> <CommaSpace> "{"

Version 1.24B March 2015 27

EDK II DEC File Format EDK II FDF File Spec.

<Hex2> <CommaSpace> <Hex2> <CommaSpace>
<Hex2> <CommaSpace> <Hex2> <CommaSpace>
<Hex2> <CommaSpace> <Hex2> <CommaSpace>
<Hex2> <CommaSpace> <Hex2> "}" "}"

<CArray>

<NList>

::=

::=

"{" {<NList>} {<CArray>} "}"

<HexByte>

 [<CommaSpace> <HexByte>]*

<RawData> ::= <TS> <Number> [<Cs> <Number> [<EOL> <TS>]]*

<Integer> ::= {(0-9)} {(1-9)(0-9)+}

<Number> ::= {<Integer>} {<HexNumber>}

<TRUE> ::= {"TRUE"} {"true"} {"True"} {"0x1"}
{"0x01"} {"1"}

<FALSE> ::= {"FALSE"} {"false"} {"False"} {"0x0"}
{"0x00"} {"0"}

<BoolType> ::= {<TRUE>} {<FALSE>}

<MACRO> ::= (A-Z)(A-Z0-9_)*

<MACROVAL> ::= "$(" <MACRO> ")"

<PcdName> ::= <TokenSpaceGuidCName> "." <PcdCName>

<PcdCName> ::= <CName>

<TokenSpaceGuidCName> ::= <CName>

<UINT8> ::= {"0x"} {"0X"} (\x0 - \xFF)

<UINT16> ::= {"0x"} {"0X"} (\x0 - \xFFFF)

<UINT32> ::= {"0x"} {"0X"} (\x0 - \xFFFFFFFF)

<UINT64> ::= {"0x"} {"0X"} (\x0 - \xFFFFFFFFFFFFFFFF)

<UINT8z> ::= {"0x"} {"0X"} <HexDigit> <HexDigit>

<UINT16z> ::= {"0x"} {"0X"} <HexDigit> <HexDigit>
<HexDigit> <HexDigit>

<UINT32z> ::= {"0x"} {"0X"} <HexDigit> <HexDigit>

<HexDigit> <HexDigit> <HexDigit> <HexDigit>
<HexDigit> <HexDigit>

28 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

<UINT64z> ::= {"0x"} {"0X"} <HexDigit> <HexDigit>
<HexDigit> <HexDigit> <HexDigit> <HexDigit>
<HexDigit> <HexDigit> <HexDigit> <HexDigit>
<HexDigit> <HexDigit> <HexDigit> <HexDigit>
<HexDigit> <HexDigit>

<ShortNum> ::= (0-255)

<IntNum> ::= (0-65535)

<LongNum> ::= (0-4294967295)

<LongLongNum> ::= (0-18446744073709551615)

<NumValUint8> ::= {<ShortNum>} {<UINT8>}

<NumValUint16> ::= {<IntNum>} {<UINT16>}

<NumValUint32> ::= {<LongNum>} {<UINT32>}

<NumValUint64> ::= {<LongLongNum>} {<UINT64>}

<ModuleType> ::= {"BASE"} {"SEC"} {"PEI_CORE"} {"PEIM"}
{"DXE_CORE"} {"DXE_DRIVER"} {"SMM_CORE"}
{"DXE_RUNTIME_DRIVER"} {"DXE_SAL_DRIVER"}
{"DXE_SMM_DRIVER"} {"UEFI_DRIVER"}
{"UEFI_APPLICATION"} {"USER_DEFINED"}

<ModuleTypeList> ::= <ModuleType> [" " <ModuleType>]*

<IdentifierName> ::= <TS> {<MACROVAL>} {<PcdName>} <TS>

<Boolean> ::= {<BoolType>} {<Expression>}

<EOL> ::= <TS> 0x0D 0x0A

<OA> ::= (a-zA-Z)(a-zA-Z0-9)*

<arch> ::= {"IA32"} {"X64"} {"IPF"} {"EBC"} {<OA>}

Note: When using the characters "|" or "||" in an expression, the expression must be encapsulated in
open "(" and close ")" parenthesis.

Note: Comments may appear anywhere within a DEC file, provided they follow the rules that a comment

may not be enclosed within Section headers, and that in line comments must appear at the end of
a statement.

Parameters

Version 1.24B March 2015 29

EDK II DEC File Format EDK II FDF File Spec.

Expression
Expression syntax is defined the EDK II Expression Syntax Specification.

ExpressionVal
An expression that evaluates to a number that fits the datum types of the other
elements, For example, if one of the other elements is a UINT8, then the
expression must evaluate to a value that is byte. It is recommended that all
parameters be typecast to UINT64 values before any operation performed, then
the result can be tested to ensure that the datum size of the result is correct. PCD
names can be used as parameters, and the value of the PCD is used for evaluation
purposes. Any result that exceeds the size of the datum type must break the build.

Note: Circular references (self references are tight circular references) must cause a build break.

UnicodeString
When the <UnicodeString> element (these characters are string literals as
defined by the C99 specification: L"string", not actual Unicode characters) is
included in a value, the build tools may be required to expand the ASCII string
between the quotation marks into a valid UCS-2LE format string. The build tools
parser must treat all content between the field separators (excluding white space
characters around the field separators) as ASCII literal content when generating
the AutoGen.c and AutoGen.h files.

Comments
Strings that appear in comments may be ignored by the build tools. An ASCII string
matching the format of the ASCII string defined by <UnicodeString> (L"Foo"
for example,) that appears in a comment must never be expanded by any tool.

CFlags

OA

CFlags refers to a string of valid arguments appended to the command line of any
third party or provided tool. It is not limited to just a compiler executable tool.
MACRO values that appear in quoted strings in CFlags content must not be
expanded by parsing tools.

Other Architecture - One or more user defined target architectures, such as ARM or
PPC. The architectures listed here must have a corresponding entry in the EDK II
meta-data file, Conf/tools_def.txt.

FileSep
FileSep refers to either the back slash "\" or forward slash "/" characters that are
used to separate directory names. All EDK II DEC files must use the "/" forward
slash character when specifying the directory portion of a filename. Microsoft
operating systems, that normally use a back slash character for separating
directory names, will interpret the forward slash character correctly.

CArray
All C data arrays used in PCD value fields must be byte arrays. The C format GUID
style is a special case that is permitted in some fields that use the <CArray>
nomenclature.

EOL

The DOS End Of Line: "0x0D 0x0A" character sequence must be used for all EDK II
meta-data files. All *Nix based tools can properly process the DOS EOL characters.
Microsoft based tools cannot process the *Nix style EOL characters.

30 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

3.2.2 MACROs

Use of MACRO statements is optional.

Summary
Macro statements are characterize by a DEFINE line. Macro statements in DEC files are
only permitted to describe a path (shortcut name). If the Macro statement is within the
[Defines] section, then the Macro is common to the entire file, with local definitions
taking precedence (if the same MACRO name is used in subsequent sections, then the
MACRO value is local to only that section.)
Macro statements in comments must also be ignored by parsing tools.
Macros may not be referenced before they are defined.
A previously defined macro is permitted to be used as $(MACRO) in the right side of a
different Macro (in the value) statement.
Macro names must not use the name of the tokens defined in this file, such as
PACKAGE_GUID is defined as a token in the [Defines] section of this document, and
therefore cannot be used as the <MACRO> name in a <MacroDefinition> statements,
<MACRO> variable.
If the tools encounters a macroval, as in $(MACRO), that is not defined, the build tools
must break.

Prototype

<MacroDefinition> ::= <TS> "DEFINE" <TS> <MACRO> <Eq> [<Value>] <EOL>

<Value> ::= {<PATH>} {<Filename>}

Examples
DEFINE GEN_SKU_DIR = MyPlatformPkg/GenPei
DEFINE SKU1_Dir = MyPlatformPkg/Sku1/Pei
DEFINE LIB = Include/Library
DEFINE PROTO_HDRS = $(LIB)/Protocol

Parameters
<PATH>

Any part of the path line can be replaced by a MACRO as shown in the following
table.

Version 1.24B March 2015 31

EDK II DEC File Format EDK II FDF File Spec.

Table 1. MACRO Usages

MACRO DEFINITION MACRO USAGE

DEFINE MY_MACRO = test1 $(MY_MACRO)/test2/test3.inf

DEFINE MY_MACRO = test1/ $(MY_MACRO)test2/test3.inf

DEFINE MY_MACRO = test3.inf test1/test2/$(MY_MACRO)

DEFINE MY_MACRO = test3 test1/test2/$(MY_MACRO).inf

DEFINE MY_MACRO = test1/test2/test3.inf $(MY_MACRO)

3.2.3 Conditional Statements

The conditional statements are not permitted anywhere within the DEC file.

3.2.4 !include Statement

The !include statement is not permitted in an EDK II DEC file.

3.2.5 Special Comment Blocks

This section defines special format comment blocks that contain information about this
package. These command blocks are not required.
The UEFI Distribution Package Specification states the for a given PCD Token Space,
Error numbers must be unique. Since there may be multiple PCD that may have
identical error types, an error number with an associated error message may be
shared. The syntax described here can be used by tools to map these error numbers by
a token space GUID C name. These comment blocks must appear before content might
be used (in later sections of the DEC file).

Prototype

<ErrNoBlock> ::= <TS> "#" <EOL>
<TS> "#" <MTS> "[Error." <TSpaceGuidCName> "]" <EOL>
[<TS> "#" <MTS> <UINT32> <FS> <AsciiString> <EOL>]+
<TS> "#" <EOL>+

Example

[Error.gEfiIntelFrameworkModulePkgTokenSpaceGuid]
0x80000001 | Invalid value provided.
0x80000002 | Reserved bits must be set to zero.

3.3 Header Comment Section
This is an optional section for EDK II packages that will not be distributed using tools
that create UEFI Distribution Packages. It is required for EDK II packages that will be
distributed using tools that create UEFI Distribution Packages.

32 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

Summary
The Copyright and License notices for the DEC file are in the comments that start the
file. The format for the comment section is:
@file
Abstract

Description

Copyright

License

This information can be derived from an XML Distribution package file (UEFI Packaging
Specification) or from a developer creating a new package declaration (DEC) document.

Version 1.24B March 2015 33

EDK II DEC File Format EDK II FDF File Spec.

Prototype
<Header> ::= <SourceHeader>

[<BinaryHeader>]

<SourceHeader> ::= <Comment>*
"##" [<Space>] <Space> "@file" [<TS> <File>] <EOL>
[<Abstract>]
[<Description>]
<Copyright>+
"#" <EOL>
<License>
"##" <EOL>

<Filename> ::= <Word> "." <Extension>

<Abstract> ::= "#" <AsciiString> <EOL>

["#" <EOL>]

<Description> ::= ["#" <AsciiString> <EOL>]+
["#" <EOL>]

<Copyright> ::= "#" <TabSpace> <CopyName> <Date> "," <CompInfo>

<CopyName> ::= ["Portions" <MTS>] "Copyright (c)" <MTS>

<Date> ::= <Year> [<TS> {<DateList>} {<DateRange>}]

<Year> ::= "2" (0-9)(0-9)(0-9)

<DateList> ::= <CommaSpace> <Year> [<CommaSpace> <Year>]*

<DateRange> ::= "-" <TS> <Year>

<CompInfo> ::= (0x20 - 0x7e)* <MTS> <Arr>

<Arr> ::= "All rights reserved." [<TS> "
"] <EOL>

<License> ::= ["#" <TS> <AsciiString> <EOL>]+

["#" <EOL>]

<BinaryHeader> ::= "##" <Space> <Space> "@BinaryHeader" <EOL>
<BinaryAbstract>
"#" <EOL>
<BinDescription>
"#" <EOL>
<Copyright>+
"#" <EOL>
<BinaryLicense>
"#" <EOL>
"##" <EOL>

34 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

<Filename> ::= <Word> "." <Extension>

<BinaryAbstract> ::= "#" <TS> <AsciiString> <EOL>

<BinDescription> ::= ["#" <TS> <AsciiString> <EOL>]+

<Copyright> ::= "#" <MTS> <CopyName> <Date> "," <CompInfo>

<CopyName> ::= ["Portions" <MTS>] "Copyright (c)" <MTS>

<Date> ::= <Year> [<TS> {<DateList>} {<DateRange>}]

<Year> ::= "2" (0-9)(0-9)(0-9)

<DateList> ::= <CommaSpace> <Year> [<CommaSpace> <Year>]*

<DateRange> ::= "-" <TS> <Year>

<CompInfo> ::= (0x20 - 0x7e)* <MTS> <Arr>

<Arr> ::= "All rights reserved." [<TS> "
"] <EOL>

<BinaryLicense> ::= ["#" <TS> <AsciiString> <EOL>]+

Parameters
Abstract

A brief one line description of what the package provides.
BinaryAbstract

A brief one line description of what the packages provides that may be different
from a source abstract.

Description
A detailed description of what the package provides.

BinaryDescription
A detailed description of what the package provides that may be different from a
source description.

Copyright
The copyright date should be modified if there is a functional change to the source
code. Since binaries are constructed from source, the binary file uses the same
copyright date as the source DEC, however tools are not required to ensure that the
dates are identical.

License
One or more licenses that the package with source code is released under.

BinaryLicense
One or more licenses that the binary package is released under that may be
different from the licenses used for distributing the package with source code.

Version 1.24B March 2015 35

EDK II DEC File Format EDK II FDF File Spec.

Example
@file
Framework Module Development Environment Industry Standards

This Package provides headers and libraries that conform to
EFI/Framework Industry standards.

Copyright (c) 2006 - 2007, Intel Corporation.

All rights reserved.
This program and the accompanying materials are licensed and made
available under the terms and conditions of the BSD License which
accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED.

3.4 [Defines] Section

This section is required.

Summary
This describes the [Defines] section, which is required in all DEC files. This file is
created during installation of a UEFI distribution package or by the developer and is an
input to the EDK II build tool parsing utilities. Elements may appear in any order within
this section.
The code for this specification is "00010018" and new versions of this specification must
increment the minor (0018) portion of the specification code. This value may also be
specified as a decimal value, 1.24.
Existing DEC files are not required to update the DEC_SPECIFICATION version value.
This value may be used by tools to identify any new functionality introduced by this
specification version.
Tools are allowed to use the PACKAGE_GUID and PACKAGE_VERSION values for testing
dependencies. This is particularly import for creating UEFI Distribution Packages, as
they are required fields in the distribution package description file.
Note that comments may be appended to define statements as well as located
anywhere within the [Defines] section.

36 March 2015 Version 1.24B

http://opensource.org/licenses/bsd-license.php

EDK II FDF File Spec. EDK II DEC File Format

Prototype
<defines> ::= "[Defines]" <EOL>

<TS> "DEC_SPECIFICATION" <Eq> <SpecVer> <EOL>
<TS> "PACKAGE_NAME" <Eq> <UiNameType> <EOL>
<TS> "PACKAGE_GUID" <Eq> <RegistryFormatGUID> <EOL>
<TS> "PACKAGE_VERSION" <Eq> <DecimalVersion> <EOL>

 [<TS> "PACKAGE_UNI_FILE" <Eq> <Filename> <EOL>]

<UiNameType>

::=

<MacroDefinition>*

<Word>

<SpecVer> ::= {<HexVersion>} {(0-9))+ "." (0-9)+}

Parameters
UiNameType

The PACKAGE_NAME value may be used for creating directories.
DecimalVersion

This is a decimal number, and if not specified is assumed to be 0. Alpha characters
are not permitted.

SpecVer
For new DEC files, the version value must be set to 0x00010018. Tools that process
this version of the DEC file can successfully process earlier versions of the DEC file
(this is a backward compatible update). There is no requirement to change the
value in existing DEC files if no other content changes. This may also be specified
as decimal value, 1.24.

Filename
Filenames listed in the [Defines] section must be relative to the directory the
DEC file is in. Use of "..", "." and "../" in the directory path is not permitted. Use of
an absolute path is not permitted. The file name specified in the
PACKAGE_UNI_FILE entry must be a UCS-2LE encoded file with an extension of
.uni, .UNI or .Uni.

Example
[DEFINES]

DEC_SPECIFICATION = 0x00010018
PACKAGE_NAME = MdePkg
PACKAGE_GUID = 5e0e9358-46b6-4ae2-8218-4ab8b9bbdcec
PACKAGE_VERSION = 0.3
PACKAGE_UNI_FILE = MdePkg.uni

3.5 [Includes] Sections

These sections are optional.

Summary
Defines the [Includes] section tag in the DEC files. This section lists the "standard"

Version 1.24B March 2015 37

EDK II DEC File Format EDK II FDF File Spec.

include locations, not file names, provided in the package. Each include <PATH> entry
listed in a section must be unique to the section (duplicate entries within a section are
not permitted).
A path entry listed in an architectural section must not be listed in the common section.
The included path must not end with the <FileSep> character.
All paths must be relative to the directory that contains the DEC file. Use of absolute
paths, or WORKSPACE relative paths is prohibited.
It is permissible to use a <MACROVAL> entry in this section provided the above rules are
followed.
The ‘common’ architecture modifier in a section tag must not be combined with other
architecture type modifiers; doing so will result in a build break.

Prototype

<Include> ::= "[Includes" [<com_attribs>] "]" <EOL>
<IncEntries>*

<com_attribs> ::= {".common"} {<attribs>}

<attribs> ::= <attrs> ["," <TS> "Includes" <attrs>]*

<attrs> ::= "." <arch>

<IncEntries> ::= {<MacroDefinition>} {<HdrFile>}

<HdrFile> ::= <CommentBlock>*
<TS> <PATH>
{<CommentBlock>} {<EOL>}

<CommentBlock> ::= <TS> "##" <TS> <ModuleTypeList> <CmtOrEol>

<CmtOrEol> ::= {<Comment>} {<EOL>}

Parameters
PATH

Path statements listed in this section must be relative to the directory that contains
the DEC file. Use of "..", "../" or "./" in the directory path is prohibited.

Restrictions
It is NOT permissible to list an include directory under common and under a specific
architecture. It is permissible to specify include directory entries under all architectures
except "common" if different include directories are required for different architectures.

38 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

Example

Include section - list of Include Paths relative to the DEC file that
are provided by this package.
Comments are used for Keywords and Module Types.

[Includes.common]

Include # Includes for all processor architectures

[Includes.IA32]
Include/Ia32 # Includes specific to IA32

[Includes.X64]

Include/X64 # Includes specific to X64

[Includes.IPF]
Include/Ipf # Includes specific to IA64

[Includes.EBC]

Include/Ebc # Includes specific to EBC

[Includes.ARM]
Include/Arm # Includes specific to ARM

3.6 [Guids] Sections

These sections are optional.

Summary
Defines the [Guids] section tag of the DEC files.
GUID entries listed in architectural sections are not permitted to be listed in the
common architectural section.
The ‘common’ architecture modifier in a section tag must not be combined with other
architecture type modifiers; doing so will result in a build break.
The use of a <MACROVAL> element in this section is prohibited.
Each GUID entry must be listed only once per section.

Version 1.24B March 2015 39

EDK II DEC File Format EDK II FDF File Spec.

Prototype
<Guids>

::=

"[Guids" [<com_attribs>] "]" <EOL>

 <GuidEntries>*

<com_attribs> ::= {".common"} {<attribs>}

<attribs> ::= <attrs> ["," <TS> "Guids" <attrs>]*

<attrs> ::= "." <arch>

<GuidEntries> ::= [<GuidComment>]
<TS> <CName> <Eq> <CFormatGUID>
{<CommentBlock>} {<EOL>}

<GuidComment> ::= [<Description>]
<TS> "##" <TS> <GuidHeaderFile> <EOL>

<GuidValue> ::= <CFormatGUID>

<GuidHeaderFile> ::= <PATH> <Word> ".h"

<Description> ::= <TS> "##" <TS> <AsciiString> <EOL>
[<TS> "#" <TS> <AsciiString> <EOL>]*

<CommentBlock> ::= <TS> "##" <TS> <ModuleTypeList>
{<Comment>} {<EOL>}

Parameters
GuidHeaderFile

Path to the GUID header file statement listed in comments in this section must be
relative to the directory that contains the DEC file. Use of "..", "../" or "./" in the
directory path is prohibited.

Restrictions

It is not permissible to list a GUID entry under common and under a specific
architecture. It is permissible to specify GUID entries under all architectures except
"common" if different GUID values may be required for different architectures.

40 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

Example

Global Guid Definition section - list of Global Guid C Name
Data Structures that are provided by
this package.

[Guids.common]

gPcdHobGuid = { 0x582E7CA1, 0x68CD, 0x4D44, \
{ 0xB4, 0x3B, 0xF2, 0x98, 0xED, 0x58, 0x7B, 0xA6 }}

gEfiWinNtPassThroughGuid = { 0xCC664EB8, 0x3C24, 0x4086, \
{ 0xB6, 0xF6, 0x34, 0xE8, 0x56, 0xBC, 0xE3, 0x6E }}

gEfiWinNtCPUSpeedGuid = { 0xD4F29055, 0xE1FB, 0x11D4, \
{ 0xBD, 0x0D, 0x00, 0x80, 0xC7, 0x3C, 0x88, 0x81 }}

gEfiWinNtCPUModelGuid = { 0xBEE9B6CE, 0x2F8A, 0x11D4, \
{ 0xBD, 0x0D, 0x00, 0x80, 0xC7, 0x3C, 0x88, 0x81 }}

gEfiWinNtMemoryGuid = { 0x99042912, 0x122A, 0x11D4, \
{ 0xBD, 0x0D, 0x00, 0x80, 0xC7, 0x3C, 0x88, 0x81 }}

gEfiWinNtConsoleGuid = { 0xBA73672C, 0xA5D3, 0x11D4, \
{ 0xBD, 0x00, 0x00, 0x80, 0xC7, 0x3C, 0x88, 0x81 }}

gEfiWinNtUgaGuid = { 0xAB248E99, 0xABE1, 0x11D4, \
{ 0xBD, 0x0D, 0x00, 0x80, 0xC7, 0x3C, 0x88, 0x81 }}

gEfiWinNtGopGuid = { 0x4e11e955, 0xccca, 0x11d4, \
{ 0xbd, 0x0d, 0x00, 0x80, 0xc7, 0x3c, 0x88, 0x81 }}

gEfiWinNtSerialPortGuid = { 0x0C95A93D, 0xA006, 0x11D4, \
{ 0xBC, 0xFA, 0x00, 0x80, 0xC7, 0x3C, 0x88, 0x81 }}

gEfiWinNtFileSystemGuid = { 0x0C95A935, 0xA006, 0x11D4, \
{ 0xBC, 0xFA, 0x00, 0x80, 0xC7, 0x3C, 0x88, 0x81 }}

gEfiWinNtPhysicalDisksGuid = { 0x0C95A92F, 0xA006, 0x11D4, \
{ 0xBC, 0xFA, 0x00, 0x80, 0xC7, 0x3C, 0x88, 0x81 }}

gEfiWinNtVirtualDisksGuid = { 0x0C95A928, 0xA006, 0x11D4, \
{ 0xBC, 0xFA, 0x00, 0x80, 0xC7, 0x3C, 0x88, 0x81 }}

gEfiEdkNt32PkgTokenSpaceGuid = { 0x0D79A645, 0x1D91, 0x40a6, \
{ 0xA8, 0x1F, 0x61, 0xE6, 0x98, 0x2B, 0x32, 0xB4 }}

3.7 [Protocols] Sections

These sections are optional.

Summary
Defines the [Protocols] section tag. This is a list of the global PROTOCOL C Names
and their C Guid values that are declared in the EDK II package (.DEC) file.
Protocol entries listed in architectural sections are not permitted to be listed in the

Version 1.24B March 2015 41

EDK II DEC File Format EDK II FDF File Spec.

common architectural section.
The ‘common’ architecture modifier in a section tag must not be combined with other
architecture type modifiers; doing so will result in a build break.
The use of a <MACROVAL> element in this section is prohibited.
Each Protocol entry must be listed only once per section.

Prototype

<Protocols> ::= "[Protocols" [<com_attribs>] "]" <EOL>
<ProtocolEntries>*

<com_attribs> ::= {".common"} {<attribs>}

<attribs> ::= <attrs> ["," <TS> "Protocols" <attrs>]8

<attrs> ::= "." <arch>

<ProtocolEntries> ::= [<ProtocolComment>]
<TS> <CName> <Eq> <CFormatGUID>
{<CommentBlock>} {<EOL>}

<ProtocolComment>

<ProtoHdrFile>

::=

::=

[<Description>]
<ProtoHdrFile>
<TS> "##" <TS> <PATH> <Word> ".h"

<Description> ::= <TS> "##" <TS> <AsciiString> <EOL>
[<TS> "#" <TS> <AsciiString> <EOL>]*

<CommentBlock> ::= [<TS> "##" <TS> <ModuleTypeList>]
{<Comment>} {<EOL>}

Parameters
ProtocolHeaderFile

Path to the Protocol header file statement listed in comments in this section must
be relative to the directory that contains the DEC file. Use of "..", "../" or "./" in the
directory path is prohibited.

Restrictions

It is NOT permissible to list a Protocol entry under common and under a specific
architecture. It is permissible to specify Protocol entries under all architectures except
"common" if different Guid values may be required for different architectures.

42 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

Example

Global Protocols Definition section - list of Global Protocols C Name
Data Structures that are provided by
this package.

[Protocols.common]

gEfiWinNtThunkProtocolGuid = { 0x58C518B1, 0x76F3, 0x11D4, \
{ 0xBC, 0xEA, 0x00, 0x80, 0xC7, 0x3C, 0x88, 0x81 }}

gEfiWinNtIoProtocolGuid = { 0x96EB4AD6, 0xA32A, 0x11D4, \
{ 0xBC, 0xFD, 0x00, 0x80, 0xC7, 0x3C, 0x88, 0x81 }}

3.8 [PPIs] Sections

These sections are optional.

Summary
Defines the optional [Ppis] section tag. This is a list of the global PPI C Names that are
referenced in the EDK II package’s module C code.
PPI entries listed in architectural sections are not permitted to be listed in the common
architectural section.
The ‘common’ architecture modifier in a section tag must not be combined with other
architecture type modifiers; doing so will result in a build break.
The use of a <MACROVAL> element in this section is prohibited.
Each PPI entry must be listed only once per section.

Version 1.24B March 2015 43

EDK II DEC File Format EDK II FDF File Spec.

Prototype

<Ppis> ::= "[Ppis" [<com_attribs>] "]" <EOL>
<PpiEntries>*

<com_attribs> ::= {".common"} {<attribs>}

<attribs> ::= <attrs> ["," <TS> "Ppis" <attrs>]*

<attrs> ::= "." <arch>

<PpiEntries> ::= [<PpiComment>]
<TS> <CName> <Eq> <CFormatGUID>
{<CommentBlock>} {<EOL>}

<PpiComment> ::= [<Description>]
<TS> "##" <TS> <PpiHeaderFile> <EOL>

<Description> ::= <TS> "##" <TS> <AsciiString> <EOL>
[<TS> "#" <TS> <AsciiString> <EOL>]*

<PpiHeaderFile> ::= <PATH> <Word> ".h"

<CommentBlock> ::= [<TS> "##" <TS> <ModuleTypeList>]
{<Comment>} {<EOL>}

Parameters
PpiHeaderFile

Path to the PPI header file statement listed in comments in this section must be
relative to the directory that contains the DEC file. Use of "..", "../" or "./" in the
directory path is prohibited.

Restrictions

It is NOT permissible to list a PPI entry under common and under a specific
architecture. It is permissible to specify PPI entries under all architectures except
"common" if different Guid values may be required for different architectures.

44 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

Example

Global Ppis Definition section - list of Global Ppis C Name
Data Structures that are provided by
this package.

[Ppis.common]

gPeiNtThunkPpiGuid = { 0x98C281E5, 0xF906, 0x43DD, \
{ 0xA9, 0x2B, 0xB0, 0x03, 0xBF, 0x27, 0x65, 0xDA }}

gNtPeiLoadFilePpiGuid = { 0xFD0C65EB, 0x0405, 0x4CD2, \
{ 0x8A, 0xEE, 0xF4, 0x00, 0xEF, 0x13, 0xBA, 0xC2 }}

gNtFwhPpiGuid = { 0x4E76928F, 0x50AD, 0x4334, \
{ 0xB0, 0x6B, 0xA8, 0x42, 0x13, 0x10, 0x8A, 0x57 }}

gPeiNtAutoScanPpiGuid = { 0x0DCE384D, 0x007C, 0x4BA5, \
{ 0x94, 0xBD, 0x0F, 0x6E, 0xB6, 0x4D, 0x2A, 0xA9 }}

3.9 [LibraryClasses] Sections

These sections are optional.

Summary
Defines the [LibraryClasses] tag in the DEC files.
The [LibraryClasses] section maps the location, relative to the DEC file, of library
ClassName to the header file for the library class specified by the ClassName.
ClassName entries listed in architectural sections are not permitted to be listed in the
common architectural section.
The ‘common’ architecture modifier in a section tag must not be combined with other
architecture type modifiers; doing so will result in a build break.
All paths must be relative to the directory that contains the DEC file. Use of absolute
paths, or WORKSPACE relative paths is prohibited.
It is permissible to use a <MACROVAL> entry in this section provided the above rules are
followed.
Each ClassName entry must be listed only once per section.

Version 1.24B March 2015 45

EDK II DEC File Format EDK II FDF File Spec.

Prototype

<LibraryClasses> ::= "[LibraryClasses" [<com_attribs>] "]" <EOL>
<LcEntries>*

<com_attribs> ::= {".common"} {<attribs>}

<attribs> ::= <attrs> ["," <TS> "LibraryClasses" <attrs>]*

<attrs> ::= "." <arch>

<LcEntries> ::= {<LcEntry>} {<MacroDefinition>}

<LcEntry> ::= [<LcDoxygenHelp>]
<TS> <ClassName> <FS> <Filename>
{<CommentBlock>} {<EOL>}

<LcDoxygenHelp> ::= <TS> "##" <TS> "@LibraryClasses" <TS>
<AsciiString> <EOL>

<ClassName> ::= <ToolWord>
A User Defined Keyword consisting of
alphanumeric characters. No special
characters are permitted.

<Filename> ::= <PATH> <File> ".h"

<CommentBlock> ::= <TS> "##" <TS> <ModuleTypeList>
{<Comment>} {<EOL>}

Parameters
Filename

Path portion of the header file statements in this section must be relative to the
directory that contains the DEC file. Use of "..", "../" or "./" in the directory path is
prohibited.

Restrictions

It is NOT permissible to list a Library Class entry under common and under a specific
architecture. It is permissible to specify Library Class entries under all architectures
except "common" if different header filename values are required for different
architectures.

46 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

Example

Library Class Header section - list of Library Class header
files that are provided by
this package.

[LibraryClasses.common]
UefiRuntimeServicesTableLib | \
Include/Library/UefiRuntimeServicesTableLib.h

UefiLib | Include/Library/UefiLib.h
UefiDriverModelLib | Include/Library/UefiDriverModelLib.h
UefiDriverEntryPoint | Include/Library/UefiDriverEntryPoint.h
UefiDecompressLib | Include/Library/UefiDecompressLib.h
UefiBootServicesTableLib | Include/Library/UefiBootServicesTableLib.h
TimerLib|Include/Library/TimerLib.h
SmbusLib|Include/Library/SmbusLib.h
ResourcePublicationLib|Include/Library/ResourcePublicationLib.h
PostCodeLib|Include/Library/PostCodeLib.h
ReportStatusCodeLib|Include/Library/ReportStatusCodeLib.h
PrintLib|Include/Library/PrintLib.h
PerformanceLib|Include/Library/PerformanceLib.h
PeiServicesTablePointerLib| \
Include/Library/PeiServicesTablePointerLib.h

PeimEntryPoint|Include/Library/PeimEntryPoint.h
PeiServicesLib|Include/Library/PeiServicesLib.h
PeiCoreEntryPoint|Include/Library/PeiCoreEntryPoint.h
PeCoffLib|Include/Library/PeCoffLib.h

BaseLib|Include/Library/BaseLib.h

[LibraryClasses.IA32]
UefiApplicationEntryPoint | \
Include/Library/UefiApplicationEntryPoint.h # UEFI_APPLICATION

[LibraryClasses.X64]
UefiApplicationEntryPoint| \

Include/Library/UefiApplicationEntryPoint.h # UEFI_APPLICATION
[LibraryClasses.IPF]
UefiApplicationEntryPoint| \
Include/Library/UefiApplicationEntryPoint.h # UEFI_APPLICATION

[LibraryClasses.EBC]
UefiApplicationEntryPoint| \
Include/Library/UefiApplicationEntryPoint.h # UEFI_APPLICATION

Version 1.24B March 2015 47

EDK II DEC File Format EDK II FDF File Spec.

3.10 PCD Sections
These are optional sections. However, if modules in this package’s directory tree use a
PCD that is not declared in other DEC files, then the package creator must list the PCD
in this file.

Summary

Defines the PCDs section tags in the DEC files.
There are five defined PCD access method types. Do not confuse these access types
with the data types of the PCDs. The five access method types are: PcdsFeatureFlag,
PcdsFixedAtBuild, PcdsPatchableInModule, PcdsDynamic and PcdsDynamicEx.
The PCD is used to define potential values that a module might be coded against, and if
a module uses the access methods for PcdsDynamic, then the platform can define the
final usage. PCDs listed as PcdsDynamic or PcdsDynamicEx will only have one value in
the final binary image - the PEI and DXE PCD Drivers that maintain these values use a
single database for all architectures, with a unique value for a PCD (identified by the
Token Space GUID value and the Token Number).
If a PCD is only listed under a PcdsFixedAtBuild or PcdsPatchableInModule, then
modules are restricted, and cannot be coded to use either of the dynamic PCD access
methods.
Using the ”common” architectural modifier is exactly the same as specifying a PCD
section type without an architectural modifier. A PCD listed in an INF or DSC file which
uses an architectural modifier may be listed in the 'common' section in the DEC file; it is
not required to list PCDs in architectural sections in the DEC. If a PCD is only listed
under a section with an architectural modifier that is not 'common', then it may only be
used by modules build for that specific architecture.
Each PCD entry must be listed only once per section. If a PCD is listed more than once
within one section, the last entry takes precedence.
The PCD values in this file are the default values. Default values listed in architectural
sections override default values specified in a 'common' architectural section. The EDK
II build system allows these values may be overridden by default values in the INF files
(provided all INF files use the same default value for PCDs that are used by multiple
modules) and by values specified in the DSC or FDF file. A PCD's Datum type cannot be
changed for different access methods, only one datum type is permitted.
PCD entries may be put into any or all PCD section types except PcdsFeatureFlag
sections.
The use of a <MACROVAL> element in this section is prohibited.
The Token number specified in a PCD entry is used in code (auto-generated files by the
EDK II build system), along with the Token Space GUID value to uniquely identify a
given PCD. The Token number must be identical for every entry of a PCD in this file
(using a different token number for a PCD listed in PcdsDynamic and PcdsDynamicEx
sections for example, will result in a build break).
PCDs listed in PcdsFeatureFlag sections must only be listed in PcdsFeatureFlag
sections.

48 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

Prototype
<PCDs> ::= <PcdSections>*

<PcdSections> ::= {<PcdFeature>} {<PcdOther>}

<PcdFeature> ::= <FFSectionTag> <FFEntries>*

<FFEntries> ::= ["##" <TS> <PcdDescription>]

[<TS> <Prompt>]
[{<List>} {<Express>}]
<TS> <PcdBool>

<FFSectionTag> ::= "[" "PcdsFeatureFlag" [<com_FFattribs>} "]" <EOL>

<com_FFattribs> ::= {".common"} {<FFattribs>}

<FFattribs> ::= <attrs> ["," <TS> "PcdsFeatureFlag" <attrs>]*

<PcdOther> ::= "[" <PcdType> [<com_or_attribs>] "]" <EOL>

<PcdEntries>*

<PcdType> ::= {"PcdsPatchableInModule"} {"PcdsFixedAtBuild"}
{"PcdsDynamic"} {"PcdsDynamicEx"}

<com_or_attribs> ::= {<com_attribs>} {<attribs>}

<com_attribs>

<attribs>

<attrs>

<PcdEntries>

::=

::=

::=

::=

[".common"] ["," <TS> <PcdType> [".common"]]*

<attrs> ["," <TS> <PcdType> <attrs>]*

"." <arch>

["##" <TS> <PcdDescription>]
 [<TS> <Prompt>]

[<DoxComment>]
<PcdEntry>

<PcdEntry> ::= <TS> {<PcdBool>} {<PcdNumEntry>} {<PcdPtr>}

<PcdNumEntry> ::= {<Pcd8>} {<Pcd16>} {<Pcd32>} {<Pcd64>}

<PcdBool> ::= <PcdName> <FS> <BoolPcd> <FS> <Token> <CbOrEol>

<BoolPcd> ::= <BoolType> <FS> "BOOLEAN"

<CbOrEol> ::= {<CommentBlock>} {<EOL>}

<Pcd8> ::= <PcdName> <FS> <PcdUint8> <FS> <Token> <CbOrEol>

<PcdUint8> ::= <NumValUint8> <FS> "UINT8"

Version 1.24B March 2015 49

EDK II DEC File Format EDK II FDF File Spec.

<Pcd16> ::= <PcdName> <FS> <PcdUint16> <FS> <Token> <CbOrEol>

<PcdUint16> ::= <NumValUint16> <FS> "UINT16"

<Pcd32> ::= <PcdName> <FS> <PcdUint32> <FS> <Token> <CbOrEol>

<PcdUint32> ::= <NumValUint32> <FS> "UINT32"

<Pcd64> ::= <PcdName> <FS> <PcdUint64> <FS> <Token> <CbOrEol>

<PcdUint64> ::= <NumValUint64> <FS> "UINT64"

<PcdPtr> ::= <PcdName> <FS> <PcdPtrVal> <FS> <Token> <CbOrEol>

<PcdPtrVal> ::= <PtrVal> <FS> "VOID*"

<PtrVal> ::= {<CString>} {<CArray>}

<Token> ::= <NumValUint32>

<DoxComment> ::= <TS> {<Range>+} {<List>} {<Express>+}

<Prompt> ::= "#" <TS> "@Prompt <MTS> <AsciiString> <EOL>

<Range> ::= "#" <TS> "@ValidRange" <TS> <ERangeValues> <EOL>

<ERangeValues> ::= [<ErrorCode> <TS>] <RangeValues>

<List> ::= "#" <TS> "@ValidList" <TS> <EValidValueList> <EOL>

<EValidValueList> ::= [<ErrorCode> <TS>] <ValidValueList>

<Express> ::= "#" <TS> "@Expression" <TS> <EExpression> <EOL>

<EExpression> ::= [<ErrorCode> <TS>] <Expression>

<ErrorCode> ::= <NumValUint32> <FS>

<PcdDescription> ::= <AsciiString> <EOL>
[<TS> "#" <AsciiString> <EOL>]*

<CommentBlock> ::= <TS> "##" <TS> <ModuleTypeList>

{<Comment>} {<EOL>}

<RangeValues> ::= {<ValidRange>} {<RangeExpress>}

<RngOp> ::= <TS> {"AND"} {"and"} {"OR"} {"or"} <TS>

<RangeExpress> ::= {"(" <ValidRng> ")" <RngOp> "(" <ValidRng> ")"}
{"NOT" <TS> "(" <ValidRng> ")"}

50 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

<ValidRng> ::= ["NOT" <TS>] "(" <ValidRangeIn> ")"

<ValidRangeIn> ::= ["NOT" <TS>] {<Integer> <TS> "-" <TS> <Integer>}
{<HexValue> <TS> "-" <TS> <HexValue>}
{"LT" <TS> {<Integer>} {<HexValue>}}
{"GT" <TS> {<Integer>} {<HexValue>}}
{"LE" <TS> {<Integer>} {<HexValue>}}
{"GE" <TS> {<Integer>} {<HexValue>}}
{"XOR" <TS> {<Integer>} {<HexValue>}}
{"EQ" <TS> {<Integer>} {<HexValue>}}

<ValidValueList> ::= <Number> ["," <TS> <Number>]*

Parameters
Expression

The expression in the @Expression entry must evaluate to True in order for the
value to be valid.

RangeExpressions
This is required to be an in-fix logical expression, evaluated left to right, for a range
of values, using Relational, Equality and Logical Operators (LT, LE, GT, GE.) The
forms PcdCName and/or PcdTokenSpaceGuidCName.PcdCName are permitted.
Parentheses are recommended for clarity. Since there may be different error
numbers associated with valid ranges (one for less than, another for greater than)
more than one ValidRange entry is permitted.

HexDigit
This value, if specified corresponds to the ErrorNumber of an Error Message defined
in a UEFI PI Distribution Package. Each error number is related to a single error
message (translations of message text are not considered as separate error
messages), with the text of error messages included in the Unicode file specified in
the PACKAGE_UNI_FILE element in the [Defines] section.

TokenNumber
Each PCD declared within a token space (defined by the Token Space GUID) must
be assigned a unique 32-bit value. This token number and an optional token space
GUID are used in code for accessing a PCD's value.

ErrorCode
This value, if specified corresponds to the ErrorNumber of an Error Message defined
in a UEFI PI Distribution Package. Each error number is related to a single error
message.

Token

Each PCD declared within a token space (defined by the Token Space GUID) must
be assigned a unique 32-bit value. This token number and an optional token space
GUID are used in code for accessing a PCD’s value.

Restrictions
It is permissible to list a PCD entry under common and under a specific architecture.
It is permissible to specify PCD entries under all architectures except "common" if
different default values may be required for different architectures. The tools must use

Version 1.24B March 2015 51

EDK II DEC File Format EDK II FDF File Spec.

architectural specific recommended values over recommended values listed in the
common sections. This technique is permitted to allow unique recommendations for
individual architectures.
It is not permissible to list command modifier and an architectural modifier in a section
header. The following example is not permitted:
[PcdsPatchableInModule.IA32, PcdPatchableInModule.common]

It is permissible to specify multiple architectures for like PcdType items in the same
section header. For example:
[PcdsFeatureFlag.IA32, PcdsFeatureFlag.X64]

It is permissible to mix PcdsPatchableInModule, PcdsFixed, PcdsDynamic and
PcdsDynamicEx PcdType elements within an architecture section. For example:
[PcdsPatchableInModule.IA32, PcdsFixedAtBuild.IA32]

The PcdsFeatureFlag PcdType may not be mixed with any other PcdType elements in
the section header. The following example is NOT VALID:
[PcdsFeatureFlag.IA32, PcdsFixedAtBuild.IA32]

While allowed by this specification, it is not recommended to mix different
PcdType.architecture values in a single section. The following example is valid, but not
recommended:
[PcdsDynamicEx.IA32, PcdsFixedAtBuild.X64, PcdPatchableInModule.IPF]

Refer to the PI Specification for more information.

52 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

Example

PCD Declarations section - list of all PCDs Declared by this package
Only this package should be providing the
declaration, other packages should not.

[PcdsFeatureFlag.common]
If TRUE, the component name protocol will not be installed.
gEfiMdePkgTokenSpaceGuid.PcdComponentNameDisable | FALSE | \
BOOLEAN | 0x0000000d

If TRUE, the driver diagnostics protocol will not be installed.
gEfiMdePkgTokenSpaceGuid.PcdDriverDiagnosticsDisable | FALSE | \
BOOLEAN | 0x0000000e

[PcdsFixedAtBuild.common]
Indicates the maximum length of unicode string
gEfiMdePkgTokenSpaceGuid.PcdMaximumUnicodeStringLength | \
1000000 | UINT32 | 0x00000001

Indicates the maximum length of ascii string
gEfiMdePkgTokenSpaceGuid.PcdMaximumAsciiStringLength | 1000000 | \
UINT32 | 0x00000002

Indicates the maximum node number of linked list
gEfiMdePkgTokenSpaceGuid.PcdMaximumLinkedListLength | 1000000 | \
UINT32 | 0x00000003

[PcdsFixedAtBuild.common, PcdsPatchableInModule.common]
This flag is used to control the printout of DebugLib
gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel | 0x80000000 | \
UINT32 | 0x00000006

Indicates the allowable maximum number in extract handler table
gEfiMdePkgTokenSpaceGuid.PcdMaximumGuidedExtractHandler | 0x10 | \
UINT32 | 0x00000025

[PcdsFixedAtBuild.IPF]
This flag is used to control the printout of DebugLib
gEfiMdePkgTokenSpaceGuid.PcdIoBlockBaseAddressForIpf | \

Version 1.24B March 2015 53

EDK II DEC File Format EDK II FDF File Spec.

0x0ffffc00000 | UINT64 | 0x0000000c

[PcdsFixedAtBuild, PcdsPatchableInModule, PcdsDynamic, PcdsDynamicEx]
This value is used to set the base address of pci express hierarchy
gEfiMdePkgTokenSpaceGuid.PcdPciExpressBaseAddress | 0xE0000000 | \
UINT64 | 0x0000000a

Default current ISO 639-2 language: English & French
gEfiMdePkgTokenSpaceGuid.PcdUefiVariableDefaultLangCodes | \
"engfraengfra" | VOID* | 0x0000001c

Default current ISO 639-2 language: English
gEfiMdePkgTokenSpaceGuid.PcdUefiVariableDefaultLang | "eng" | \
VOID* | 0x0000001d

Note: In the above example, the backslash character is used to show a line continuation for readability.
Use of a backslash character in the actual DEC file is not permitted.

3.11 [UserExtensions] Sections

These sections are optional.

Summary
Defines the optional EDK II DEC file [UserExtensions] tag. The build tools must have
an a priori knowledge of how to process any items in this section. EDK II build tools
ignore this section.
Each [UserExtensions] section must have a unique set of UserId and IdString
values. This means that the same UserId can be used in more than one section,
provided the IdString values are different. The same IdString values can be used if
the UserId values are different. The same IdString and UserId values can be used if
specifying architecture specific content.
The use of a <MACROVAL> element in this section is prohibited.
The "common" architecture modifier in a section tag must not be combined with other
architecture type modifiers; doing so may result in a build break.

54 March 2015 Version 1.24B

EDK II FDF File Spec. EDK II DEC File Format

Prototype
<UserExtensions> ::= "[UserExtensions" <com_attribs> "]" <EOL>

<statements>*

<com_attribs> ::= {<UserId> <IdString> [".common"]} {<atttribs>}

<attribs> ::= <attrs> ["," <TS> ""UserExtensions" <attrs>]*

<attrs> ::= <UserId> <IdString> ["." <arch>]

<UserId> ::= "." (a-zA-Z)(a-zA-Z0-9_.)*

<IdString> ::= "." {<NormalizedString>} {<SimpleWord>}

<statements> ::= Content is build tool chain specific.

Parameters
UserId

Words that contain period "." must be encapsulated in double quotation marks.

IdString
Normalized strings that contain period "." or space characters must be
encapsulated in double quotation marks. It is recommended that the IdString start
with a letter.

Example

[UserExtensions.NoSuchCorp."MyScript_1"]
MyBatch.bat

3.11.1 [UserExtensions.TianoCore."ExtraFiles"] Section
This is an optional section.
Defines the optional EDK II DEC file [UserExtensions.TianoCore."ExtraFiles"]
section tag. The EDK II build tools must not process any files listed in this section.

Summary

This section is used by the Intel® UEFI Packaging Tool that is distributed as part of the
EDK II BaseTools, to locate files listed under this section header and add them to the
UEFI distribution package. When installing a UEFI distribution package, these files will
be installed in the package's directory tree.

Version 1.24B March 2015 55

EDK II DEC File Format EDK II FDF File Spec.

Prototype
<UserExtensions> ::= "[UserExtensions" <TcEf> "]" <EOL> <FileNames>*

<TcEf> ::= ".TianoCore." <DblQuote> "ExtraFiles" <DblQuote>

<FileNames> ::= <TS> [<RelativePath>] <File> <EOL>

Parameters
FileNames

Paths listed in the filename elements of the this section must be relative to the
directory the DEC file resides in. Use of "..", "." and "../" in the directory path is not
permitted.

Example

[UserExtensions.TianoCore."ExtraFiles"]
Readme.txt

56 March 2015 Version 1.24B

EDK II FDF File Spec.

Appendix A
DEC Examples

The following are examples of EDK II package declaration (DEC) files. Line extension
characters are not permitted in the DEC file, they are used here for readability.
The first example shows a DEC file for a package that provides only library class
definitions and library instances. The second example shows a DEC file that provide
library class definitions, library instances and drivers. The third example shows the
format of a DEC file for binary only content within the directory structure.

Note: In the all of the following examples, the backslash “\” character at the end of a line is used to show

a line continuation for readability. Use of a backslash character in the actual DEC file is not
permitted.

Version 1.24B March 2015 59

EDK II FDF File Spec.

A.1 EDK II IntelFrameworkPkg Example
@file
Intel Framework Module Package.

This package contains the definitions and module implementation
which follows Intel EFI Framework Specification.

Copyright (c) 2007 - 2012, Intel Corporation. All rights reserved.

This program and the accompanying materials are licensed and made
available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may
be found at:
http://opensource.org/licenses/bsd-license.php

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED.

[Defines]

DEC_SPECIFICATION = 0x00010018
PACKAGE_NAME = IntelFrameworkModulePkg
PACKAGE_UNI_FILE = IntelFrameworkModulePkg.uni
PACKAGE_GUID = 88894582-7553-4822-B484-624E24B6DECF
PACKAGE_VERSION = 0.92

[Includes]

Include # Root include for the package

[LibraryClasses]
@libraryclass Platform BDS library definition about platform
specific behavior.
PlatformBdsLib|Include/Library/PlatformBdsLib.h

@libraryclass Generic BDS library definition, include the data
structure and function.
GenericBdsLib|Include/Library/GenericBdsLib.h

[Guids]
IntelFrameworkModule package token space guid
Include/Guid/IntelFrameworkModulePkgTokenSpace.h
gEfiIntelFrameworkModulePkgTokenSpaceGuid = { 0xD3705011, 0xBC19, \

0x4af7, { 0xBE, 0x16, 0xF6, 0x80, 0x30, 0x37, 0x8C, 0x15 }}

60 March 2015 Version 1.24B

http://opensource.org/licenses/bsd-license.php

EDK II FDF File Spec.

GUID identifies Data Hub records logged by Status Code Runtime
Protocol.
Include/Guid/DataHubStatusCodeRecord.h
gEfiDataHubStatusCodeRecordGuid = { 0xD083E94C, 0x6560, 0x42E4, { \

0xB6, 0xD4, 0x2D, 0xF7, 0x5A, 0xDF, 0x6A, 0x2A }}

GUID indicates the tiano custom compress/decompress algorithm.
Include/Guid/TianoDecompress.h
gTianoCustomDecompressGuid = { 0xA31280AD, 0x481E, 0x41B6, \
{ 0x95, 0xE8, 0x12, 0x7F, 0x4C, 0x98, 0x47, 0x79 }}

GUID indicates the LZMA custom compress/decompress algorithm.
Include/Guid/LzmaDecompress.h
gLzmaCustomDecompressGuid = { 0xEE4E5898, 0x3914, 0x4259, \
{ 0x9D, 0x6E, 0xDC, 0x7B, 0xD7, 0x94, 0x03, 0xCF }}

Include/Guid/AcpiVariable.h
gEfiAcpiVariableCompatiblityGuid = { 0xc020489e, 0x6db2, 0x4ef2, \
{ 0x9a, 0xa5, 0xca, 0x6, 0xfc, 0x11, 0xd3, 0x6a }}

Include/Guid/LegacyBios.h
gEfiLegacyBiosGuid = { 0x2E3044AC, 0x879F, 0x490F, \
{ 0x97, 0x60, 0xBB, 0xDF, 0xAF, 0x69, 0x5F, 0x50 }}

Include/Guid/LegacyDevOrder.h
gEfiLegacyDevOrderVariableGuid = { 0xa56074db, 0x65fe, 0x45f7, \
{ 0xbd, 0x21, 0x2d, 0x2b, 0xdd, 0x8e, 0x96, 0x52 }}

Include/Guid/CapsuleDataFile.h
gEfiUpdateDataFileGuid = { 0x283fa2ee, 0x532c, 0x484d, \
{ 0x93, 0x83, 0x9f, 0x93, 0xb3, 0x6f, 0xb, 0x7e }}

Include/Guid/BlockIoVendor.h
gBlockIoVendorGuid = { 0xcf31fac5, 0xc24e, 0x11d2, \
{0x85, 0xf3, 0x0, 0xa0, 0xc9, 0x3e, 0xc9, 0x3b }}

Include/Guid/BdsHii.h
gFrontPageFormSetGuid = { 0x9e0c30bc, 0x3f06, 0x4ba6, \
{0x82, 0x88, 0x9, 0x17, 0x9b, 0x85, 0x5d, 0xbe }}

gBootManagerFormSetGuid = { 0x847bc3fe, 0xb974, 0x446d, \
{0x94, 0x49, 0x5a, 0xd5, 0x41, 0x2e, 0x99, 0x3b }}

gDeviceManagerFormSetGuid = { 0x3ebfa8e6, 0x511d, 0x4b5b, \
{0xa9, 0x5f, 0xfb, 0x38, 0x26, 0xf, 0x1c, 0x27 }}

gDriverHealthFormSetGuid = { 0xf76e0a70, 0xb5ed, 0x4c38, \
{0xac, 0x9a, 0xe5, 0xf5, 0x4b, 0xf1, 0x6e, 0x34 }}

Version 1.24B March 2015 61

EDK II FDF File Spec.

gBootMaintFormSetGuid = { 0x642237c7, 0x35d4, 0x472d, \
{0x83, 0x65, 0x12, 0xe0, 0xcc, 0xf2, 0x7a, 0x22 }}

gFileExploreFormSetGuid = { 0x1f2d63e1, 0xfebd, 0x4dc7, \
{0x9c, 0xc5, 0xba, 0x2b, 0x1c, 0xef, 0x9c, 0x5b }}

Include/Guid/BdsLibHii.h
gBdsLibStringPackageGuid = { 0x3b4d9b23, 0x95ac, 0x44f6, \
{0x9f, 0xcd, 0xe, 0x95, 0x94, 0x58, 0x6c, 0x72 }}

Include/Guid/LastEnumLang.h
gLastEnumLangGuid = { 0xe8c545b, 0xa2ee, 0x470d, \
{0x8e, 0x26, 0xbd, 0xa1, 0xa1, 0x3c, 0xa, 0xa3 }}

Include/Guid/HdBootVariable.h
gHdBootDevicePathVariablGuid = { 0xfab7e9e1, 0x39dd, 0x4f2b, \

{0x84, 0x8, 0xe2, 0xe, 0x90, 0x6c, 0xb6, 0xde }}

[Protocols]
Vga Mini port binding for a VGA controller
Include/Protocol/VgaMiniPort.h
gEfiVgaMiniPortProtocolGuid = { 0xc7735a2f, 0x88f5, 0x4882, \
{ 0xae, 0x63, 0xfa, 0xac, 0x8c, 0x8b, 0x86, 0xb3 }}

ISA I/O Protocol is used to perform ISA device Io/Mem operations.
Include/Protocol/IsaIo.h
gEfiIsaIoProtocolGuid = { 0x7ee2bd44, 0x3da0, 0x11d4, \
{ 0x9a, 0x38, 0x0, 0x90, 0x27, 0x3f, 0xc1, 0x4d }}

ISA Acpi Protocol is used to operate and communicate with ISA
device.
Include/Protocol/IsaAcpi.h
gEfiIsaAcpiProtocolGuid = { 0x64a892dc, 0x5561, 0x4536, \
{ 0x92, 0xc7, 0x79, 0x9b, 0xfc, 0x18, 0x33, 0x55 }}

PS/2 policy protocol abstracts the specific platform initialization
and setting.
Include/Protocol/Ps2Policy.h
gEfiPs2PolicyProtocolGuid = { 0x4DF19259, 0xDC71, 0x4D46, \
{ 0xBE, 0xF1, 0x35, 0x7B, 0xB5, 0x78, 0xC4, 0x18 }}

OEM Badging Protocol defines the interface to get the OEM badging
image with the dispaly attribute.
Include/Protocol/OEMBadging.h
gEfiOEMBadgingProtocolGuid = { 0x170E13C0, 0xBF1B, 0x4218, \
{ 0x87, 0x1D, 0x2A, 0xBD, 0xC6, 0xF8, 0x87, 0xBC }}

60 March 2015 Version 1.24B

EDK II FDF File Spec.

Include/Protocol/ExitPmAuth.h
gExitPmAuthProtocolGuid = { 0xd088a413, 0xa70, 0x4217, \
{ 0xba, 0x55, 0x9a, 0x3c, 0xb6, 0x5c, 0x41, 0xb3 }}

[Error.gEfiIntelFrameworkModulePkgTokenSpaceGuid]
0x80000001 | Invalid value provided.
0x80000002 | Reserved bits must be set to zero.

[PcdsFeatureFlag]
Indicates if OEM device is enabled as StatusCode report device.
It is only used in Framework StatusCode implementation.

TRUE - Enable OEM device.

FALSE - Disable OEM device.

@Prompt Report StatusCode via OEM Device.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdStatusCodeUseOEM|FALSE| \
BOOLEAN|0x00010024

Indicates if StatusCode report is loged into DataHub.

TRUE - Log StatusCode report into DataHub.

FALSE - Does not log StatusCode report into DataHub.

@Prompt Log StatusCode into DataHub.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdStatusCodeUseDataHub| \
FALSE|BOOLEAN|0x00010029

Indicates if Serial device uses half hand shake.

TRUE - Serial device uses half hand shake.

FALSE - Serial device doesn't use half hand shake.

@Prompt Enable Serial device Half Hand Shake.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.\
PcdIsaBusSerialUseHalfHandshake|FALSE|BOOLEAN|0x00010043

Indicates if Legacy support is needed for ACPI S3 Save.

TRUE - Support Legacy OS with S3 boot.

FALSE - Does not support Legacy OS with S3 boot.

@Prompt Turn on Legacy Support in S3 Boot.

gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdPlatformCsmSupport \
|TRUE|BOOLEAN|0x00010044

Indicates if PS2 keyboard does a extended verification during start.
Extended verification will take some performance. It can be set to
FALSE for boot performance.

TRUE - Turn on PS2 keyboard extended verification.

FALSE - Turn off PS2 keyboard extended verification.

@Prompt Turn on PS2 Keyboard Extended Verification.

Version 1.24B March 2015 63

EDK II FDF File Spec.

gEfiIntelFrameworkModulePkgTokenSpaceGuid. \
PcdPs2KbdExtendedVerification|TRUE|BOOLEAN|0x00010045

Indicates if Framework Acpi Support protocol is installed.

TRUE - Install Framework Acpi Support protocol.

FALSE - Doesn't install Framework Acpi Support protocol.

@Prompt Enable Framework Acpi Support.
gEfiIntelFrameworkModulePkgTokenSpaceGuid. \
PcdInstallAcpiSupportProtocol|TRUE|BOOLEAN|0x00010046

Indicates if PS2 mouse does a extended verification during start.
Extended verification will take some performance. It can be set to
FALSE for boot performance.

TRUE - Turn on PS2 mouse extended verification.

FALSE - Turn off PS2 mouse extended verification.

@Prompt Turn on PS2 Mouse Extended Verification
gEfiIntelFrameworkModulePkgTokenSpaceGuid. \
PcdPs2MouseExtendedVerification|TRUE|BOOLEAN|0x00010047

Indicates if only Boot logo is showed and all message output is
disabled in BDS.

TRUE - Only Boot Logo is showed in boot.

FALSE - All messages and Boot Logo are showed in boot.

@Prompt Enable Boot Logo only.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdBootlogoOnlyEnable| \
FALSE|BOOLEAN|0x00010048

[PcdsFixedAtBuild, PcdsPatchableInModule]
FFS filename to find the default BMP Logo file.
@Prompt FFS Name of Boot Logo File.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdLogoFile |{ 0x99, 0x8b, \
0xB2, 0x7B, 0xBB, 0x61, 0xD5, 0x11, 0x9A, 0x5D, 0x00, 0x90, 0x27, \
0x3F, 0xC1, 0x4D }|VOID*|0x40000003

FFS filename to find the shell application.
@Prompt FFS Name of Shell Application.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdShellFile|{ 0xB7, 0xD6, \
0x7A, 0xC5, 0x15, 0x05, 0xA8, 0x40, 0x9D, 0x21, 0x55, 0x16, \
0x52, 0x85, 0x4E, 0x37 }|VOID*|0x40000004

ISA Bus features to support DMA, SlaveDMA and ISA Memory.

BIT0 indicates if DMA is supported

BIT1 indicates if only slave DMA is supported

BIT2 indicates if ISA memory is supported

Other BITs are reseved and must be zero.

64 March 2015 Version 1.24B

EDK II FDF File Spec.

If more than one features are supported, the different BIT will be
enabled at the same time.
@Prompt ISA Bus Features.
@Expression 0x80000002 | \
(gEfiIntelFrameworkModulePkgTokenSpaceGuid. \
PcdIsaBusSupportedFeatures & 0xF8) == 0

gEfiIntelFrameworkModulePkgTokenSpaceGuid.\
PcdIsaBusSupportedFeatures|0x05|UINT8|0x00010040

[PcdsDynamic, PcdsDynamicEx]
Indicates if the machine has completed one boot cycle before.
After the complete boot, BootState will be set to FALSE.

TRUE - The complete boot cycle has not happened before.

FALSE - The complete boot cycle has happened before.

@Prompt Boot State Flag.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdBootState|TRUE| \
BOOLEAN|0x0001002f

Timeout value for displaying progressing bar in before boot OS.
According to UEFI 2.0 spec, the default TimeOut should be 0xffff.
This PCD should be set as HII type PCD by platform integrator mapped
to UEFI global variable L"TimeOut".
@Prompt Boot Timeout (s).
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdPlatformBootTimeOut| \
0xffff|UINT16|0x40000001

Error level for hardware recorder.
If value 0, platform does not support feature of hardware error
record.
This PCD should be set as HII type PCD by platform integrator mapped
to UEFI global variable L"HwErrRecSupport".
@Prompt Error Level For Hardware Recorder.
gEfiIntelFrameworkModulePkgTokenSpaceGuid. \

PcdHardwareErrorRecordLevel|0|UINT16|0x40000002

[PcdsPatchableInModule, PcdsDynamic, PcdsDynamicEx]
The 4 PCDs below are used to specify the video resolution and text
mode of text setup.
To make text setup work in this resolution,
PcdVideoHorizontalResolution, PcdVideoVerticalResolution,
PcdConOutColumn and PcdConOutRow in MdeModulePkg.dec should be
created as PcdsDynamic or PcdsDynamicEx
in platform DSC file. Then BDS setup will update these PCDs defined
in MdeModulePkg.dec and reconnect console drivers (GraphicsConsole,
Terminal, Consplitter) to make the video resolution and text mode
work for text setup.

Version 1.24B March 2015 65

EDK II FDF File Spec.

Specify the video horizontal resolution of text setup.
@Prompt Video Horizontal Resolution of Text Setup.
gEfiIntelFrameworkModulePkgTokenSpaceGuid. \
PcdSetupVideoHorizontalResolution|800|UINT32|0x50000001

Specify the video vertical resolution of text setup.
@Prompt Video Vertical Resolution of Text Setup.
gEfiIntelFrameworkModulePkgTokenSpaceGuid. \
PcdSetupVideoVerticalResolution|600|UINT32|0x50000002

Specify the console output column of text setup.
@Prompt Console Output Column of Text Setup.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdSetupConOutColumn| \
80|UINT32|0x50000003

Specify the console output row of text setup.
@Prompt Console Output Row of Text Setup.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdSetupConOutRow|25| \
UINT32|0x50000004

[PcdsFixedAtBuild, PcdsDynamic, PcdsDynamicEx, PcdsPatchableInModule]
I/O Base address of floppy device controller.
@Prompt I/O Base Address of Floppy Device Controller.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdFdcBaseAddress| \
0x3f0|UINT16|0x30000000

Indicates if BiosVideo driver will switch to 80x25 Text VGA Mode
when exiting boot service.

TRUE - Switch to Text VGA Mode.

FALSE - Does not switch to Text VGA Mode.

@Prompt Switch to Text VGA Mode on UEFI Boot.
gEfiIntelFrameworkModulePkgTokenSpaceGuid. \
PcdBiosVideoSetTextVgaModeEnable|FALSE|BOOLEAN|0x30000001

Indicates if BiosVideo driver will check for VESA BIOS Extension
service support.

TRUE - Check for VESA BIOS Extension service.

FALSE - Does not check for VESA BIOS Extension service.

@Prompt Enable Check for VESA BIOS Extension Service.
gEfiIntelFrameworkModulePkgTokenSpaceGuid. \
PcdBiosVideoCheckVbeEnable|TRUE|BOOLEAN|0x30000002

Indicates if BiosVideo driver will check for VGA service support.
NOTE: If both PcdBiosVideoCheckVbeEnable and
PcdBiosVideoCheckVgaEnable are set to FALSE,

66 March 2015 Version 1.24B

EDK II FDF File Spec.

that means Graphics Output protocol will not be installed, the VGA
miniport protocol will be installed instead.

TRUE - Check for VGA service.

FALSE - Does not check for VGA service.

@Prompt Enable Check for VGA Service.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.\
PcdBiosVideoCheckVgaEnable|TRUE|BOOLEAN|0x30000003

Indicates if memory space for legacy region will be set as
cacheable.

TRUE - Set cachebility for legacy region.

FALSE - Does not set cachebility for legacy region.

@Prompt Enable Cachebility for Legacy Region.
gEfiIntelFrameworkModulePkgTokenSpaceGuid. \
PcdLegacyBiosCacheLegacyRegion|TRUE|BOOLEAN|0x00000004

Specify memory size with bytes to reserve EBDA below 640K for OPROM.
The value should be a multiple of 4KB.
@Prompt Reserved EBDA Memory Size.
@Expression 0x80000001 | \
(gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdEbdaReservedMemorySize \
< 0xA0000) AND \
((gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdEbdaReservedMemorySize \
& 0x1000) == 0)
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdEbdaReservedMemorySize| \
0x8000|UINT32|0x30000005

Specify memory size with page number for a pre-allocated ACPI NVS
memory to be used
by PEI in S3 phase. The default size 32K. When changing the value of
this PCD, the platform developer should make sure the memory size is
large enough to meet PEI requiremnt in S3 phase.
@Prompt Reserved S3 Boot ACPI Memory Size.
gEfiIntelFrameworkModulePkgTokenSpaceGuid. \
PcdS3AcpiReservedMemorySize|0x8000|UINT32|0x30000006

Specify memory size for boot script executor stack usage in S3
phase.
The default size 32K. When changing the value of this PCD, the
platform developer should make sure the memory size is large enough
to meet boot script executor requiremnt in S3 phase.
@Prompt Reserved S3 Boot Script Stack ACPI Memory Size.
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdS3BootScriptStackSize| \
0x8000|UINT32|0x30000007

Specify the end of address below 1MB for the OPROM.

Version 1.24B March 2015 67

EDK II FDF File Spec.

The last shadowed OpROM should not exceed this address.
@Prompt Top Address of Shadowed Legacy OpROM.
@Expression 0x80000001 | \
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdEndOpromShadowAddress \
< 0x100000

gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdEndOpromShadowAddress| \
0xdffff|UINT32|0x30000008

Specify the low PMM (Post Memory Manager) size with bytes below 1MB.
The value should be a multiple of 4KB.
@Prompt Low PMM (Post Memory Manager) Size.
@Expression 0x80000001 | \
(gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdLowPmmMemorySize <
0x100000) AND \
((gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdLowPmmMemorySize & \
0x1000) == 0)
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdLowPmmMemorySize| \
0x10000|UINT32|0x30000009

Specify the high PMM (Post Memory Manager) size with bytes above 1MB.
The value should be a multiple of 4KB.
@Prompt High PMM (Post Memory Manager) Size.
@Expression 0x80000001 | \
(gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdHighPmmMemorySize & \
0x1000) == 0
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdHighPmmMemorySize| \
0x400000|UINT32|0x3000000a

68 March 2015 Version 1.24B

EDK II FDF File Spec.

A.2 EDK II EmulatorPkg Example
@file

This is the Emu Emulation Environment Platform

Copyright (c) 2008 - 2011, Intel Corporation. All rights reserved.

Portions copyright (c) 2011, Apple Inc. All rights reserved.

This program and the accompanying materials are licensed and made
available under the terms and conditions of the BSD License which
accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED.

[Defines]

DEC_SPECIFICATION = 0x00010018
PACKAGE_NAME = EmulatorPkg
PACKAGE_GUID = 36E48BD7-7D92-5A47-A2CD-513F072E3300
PACKAGE_VERSION = 0.1

[Includes]

Include

[LibraryClasses]
ThunkPpiList|Include/Library/ThunkPpiList.h
ThunkProtocolList|Include/Library/ThunkProtocolList.h
EmuThunkLib|Include/Library/EmuThunkLib.h
KeyMap|Include/Library/KeyMapLib.h
PpiListLib|Include/Library/PpiListLib.h
SmbiosLib|Include/Library/SmbiosLib.h

[Protocols]

gEmuThunkProtocolGuid = { 0x5CF32E0B, 0x8EDF, 0x2E44, \
{ 0x9C, 0xDA, 0x93, 0x20, 0x5E, 0x99, 0xEC, 0x1C } }

gEmuIoThunkProtocolGuid = { 0x453368F6, 0x7C85, 0x434A, \
{ 0xA9, 0x8A, 0x72, 0xD1, 0xB7, 0xFF, 0xA9, 0x26 } }

gEmuGraphicsWindowProtocolGuid = { 0x30FD316A, 0x6728, 0x2E41, \
{ 0xA6, 0x90, 0x0D, 0x13, 0x33, 0xD8, 0xCA, 0xC1 } }

gEmuThreadThunkProtocolGuid = { 0x3B1E4B7C, 0x09D8, 0x944F, \
{ 0xA4, 0x08, 0x13, 0x09, 0xEB, 0x8B, 0x44, 0x27 } }

Version 1.24B March 2015 69

http://opensource.org/licenses/bsd-license.php

EDK II FDF File Spec.

gEmuBlockIoProtocolGuid = { 0x6888A4AE, 0xAFCE, 0xE84B, \
{ 0x91, 0x02, 0xF7, 0xB9, 0xDA, 0xE6, 0xA0, 0x30 } }

gEmuSnpProtocolGuid = { 0xFD5FBE54, 0x8C35, 0xB345, \
{ 0x8A, 0x0F, 0x7A, 0xC8, 0xA5, 0xFD, 0x05, 0x21 } }

[Ppis]

gEmuThunkPpiGuid = { 0xE113F896, 0x75CF, 0xF640, \
{ 0x81, 0x7F, 0xC8, 0x5A, 0x79, 0xE8, 0xAE, 0x67 } }

[Guids]

gEmulatorPkgTokenSpaceGuid = { 0x4F792E68, 0xE8C8, 0x794E, { 0xB1, \
0xD8, 0x37, 0x03, 0xF3, 0xF2, 0xD5, 0xA5 } }

gEmuSystemConfigGuid = { 0xF8626165, 0x6CEB, 0x924A, { 0xBA, \
0xFC, 0xF1, 0x3A, 0xB9, 0xD6, 0x57, 0x28 } }

gEmuVirtualDisksGuid = { 0xf2ba331a, 0x8985, 0x11db, { 0xa4, \
0x06, 0x00, 0x40, 0xd0, 0x2b, 0x18, 0x35 } }

gEmuPhysicalDisksGuid = { 0xf2bdcc96, 0x8985, 0x11db, { 0x87, \
0x19, 0x00, 0x40, 0xd0, 0x2b, 0x18, 0x35 } }

[PcdsFeatureFlag]
If TRUE, if symbols only load on breakpoints and gdb entry
gEmulatorPkgTokenSpaceGuid.PcdEmulatorLazyLoadSymbols|TRUE|BOOLEAN| \
0x00020000

[PcdsFixedAtBuild]
gEmulatorPkgTokenSpaceGuid.PcdEmuFlashNvStorageVariableBase|0x0| \
UINT64|0x00001014

gEmulatorPkgTokenSpaceGuid.PcdEmuFlashNvStorageFtwSpareBase|0x0| \
UINT64|0x00001015

gEmulatorPkgTokenSpaceGuid.PcdEmuFlashNvStorageFtwWorkingBase|0x0| \
UINT64|0x00001016

gEmulatorPkgTokenSpaceGuid.PcdEmuFdBaseAddress|0x0|UINT64|0x00001017
gEmulatorPkgTokenSpaceGuid.PcdEmuFlashNvStorageEventLogBase|0x0| \
UINT64|0x0000100e

gEmulatorPkgTokenSpaceGuid.PcdEmuFlashNvStorageEventLogSize|0x0| \
UINT32|0x0000100f

gEmulatorPkgTokenSpaceGuid.PcdEmuFlashFvRecoveryBase|0x0|UINT64| \
0x00001010

gEmulatorPkgTokenSpaceGuid.PcdEmuFlashFvRecoverySize|0x0|UINT32| \
0x00001011

gEmulatorPkgTokenSpaceGuid.PcdEmuFirmwareFdSize|0x0|UINT32| \
0x00001012

gEmulatorPkgTokenSpaceGuid.PcdEmuFirmwareBlockSize|0|UINT32|0x00001013

Number of Application Processors (APs) in the system 0 means
Uniprocessor mode

70 March 2015 Version 1.24B

EDK II FDF File Spec.

gEmulatorPkgTokenSpaceGuid.PcdEmuApCount|L"0"|VOID*|0x00001019

Magic page to implement PEI Services Table Pointer Lib
gEmulatorPkgTokenSpaceGuid.PcdPeiServicesTablePage|0x1003000000| \
UINT64|0x0000101b

Size of the packet filter
gEmulatorPkgTokenSpaceGuid.PcdNetworkPacketFilterSize|524288| \
UINT32|0x0000101c

[PcdsFixedAtBuild, PcdsPatchableInModule]
gEmulatorPkgTokenSpaceGuid.PcdEmuBootMode|1|UINT32|0x00001006
gEmulatorPkgTokenSpaceGuid.PcdEmuFirmwareVolume| \
L"..\\Fv\\Fv_Recovery.fd"|VOID*|0x00001009

gEmulatorPkgTokenSpaceGuid.PcdEmuMemorySize| \
L"64!64"|VOID*|0x0000100c

filename[:[R|F][O|W]][:BlockSize]
filename can be a device node, like /dev/disk1
R - Removable Media F - Fixed Media
O - Write protected W - Writable
Default is Fixed Media, Writable
For a file the default BlockSize is 512, and can be overridden via
BlockSize, for example 2048 for an ISO CD image. The block size for a
device comes from the device and is not configurable.
Device Size comes from file or device.
On Mac OS X you can use Disk Utility to create .dmg files and mount
them like disks
gEmulatorPkgTokenSpaceGuid.PcdEmuVirtualDisk|L"disk.dmg:FW"| \
VOID*|0x00001001

gEmulatorPkgTokenSpaceGuid.PcdEmuGop|L"GOP Window"|VOID*|0x00001018
gEmulatorPkgTokenSpaceGuid.PcdEmuFileSystem| \
L".!../../../../../EdkShellBinPkg/bin/ia32/Apps"|VOID*|0x00001004

gEmulatorPkgTokenSpaceGuid.PcdEmuSerialPort| \
L"/dev/ttyS0"|VOID*|0x00001002

gEmulatorPkgTokenSpaceGuid.PcdEmuNetworkInterface|L"en0"|VOID*| \
0x0000100d

gEmulatorPkgTokenSpaceGuid.PcdEmuCpuModel| \
L"Intel(R) Processor Model"|VOID*|0x00001007

gEmulatorPkgTokenSpaceGuid.PcdEmuCpuSpeed|L"3000"|VOID*|0x00001008
gEmulatorPkgTokenSpaceGuid.PcdEmuMpServicesPollingInterval|0x100| \
UINT64|0x0000101a

Version 1.24B March 2015 71

EDK II FDF File Spec.

A.3 ShellBinPkg.dec
The following is an example of a DEC file where only binary modules are provided; no
libraries or source code is present in the package’s directory tree.

72 March 2015 Version 1.24B

EDK II FDF File Spec.

@file
UEFI 2.0 Shell Binary Package

This package contains binary shell application that follows
UEFI specification and UEFI Shell 2.0 specification.

Copyright (c) 2011, Intel Corporation. All rights reserved.

This program and the accompanying materials are licensed and made
available under the terms and conditions of the BSD License which
accompanies this distribution.
The full text of the license may be found at:
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS"
BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER
EXPRESS OR IMPLIED.

[Defines]

DEC_SPECIFICATION = 0x00010005
PACKAGE_NAME = ShellBinPkg
PACKAGE_GUID = 4B34AD9D-1324-41e5-8B1D-359AA7BCA62C
PACKAGE_VERSION = 0.1

A.4 UefiCpuPkg.dec
@file UefiCpuPkg.dec
This Package provides UEFI compatible CPU modules and libraries.

Copyright (c) 2007 - 2012, Intel Corporation. All rights reserved.

This program and the accompanying materials are licensed and made
available under the terms and conditions of the BSD License which
accompanies this distribution.
The full text of the license may be found at:
http://opensource.org/licenses/bsd-license.php

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED.

[Defines]

Version 1.24B March 2015 73

http://opensource.org/licenses/bsd-license.php
http://opensource.org/licenses/bsd-license.php

EDK II FDF File Spec.

DEC_SPECIFICATION = 0x00010018
PACKAGE_NAME = UefiCpuPkg
PACKAGE_UNI_FILE = UefiCpuPkg.uni
PACKAGE_GUID = 2171df9b-0d39-45aa-ac37-2de190010d23
PACKAGE_VERSION = 0.2

[Includes]

Include

[LibraryClasses]

@libraryclass Defines some routines that are generic for IA32
family CPU to be UEFI specification compliant.

UefiCpuLib|Include/Library/UefiCpuLib.h

[LibraryClasses.IA32, LibraryClasses.X64]

@libraryclass Provides functions to manage MTRR settings on IA32
and X64 CPUs.

MtrrLib|Include/Library/MtrrLib.h

@libraryclass Provides functions to manage the Local APIC on IA32
and X64 CPUs.

LocalApicLib|Include/Library/LocalApicLib.h

[Guids]

gUefiCpuPkgTokenSpaceGuid = { 0xac05bf33, 0x995a, 0x4ed4, \
{ 0xaa, 0xb8, 0xef, 0x7a, 0xe8, 0xf, 0x5c, 0xb0 }}

[Error.gUefiCpuPkgTokenSpaceGuid]
0x80000001 | Invalid value provided.

[PcdsFixedAtBuild, PcdsPatchableInModule]
This value is the CPU Local Apic base address, which aligns the
address on a 4-KByte boundary.
@Prompt Configure base address of CPU Local Apic
@Expression 0x80000001 | \
(gUefiCpuPkgTokenSpaceGuid.PcdCpuLocalApicBaseAddress & 0xfff) == 0
gUefiCpuPkgTokenSpaceGuid.PcdCpuLocalApicBaseAddress|0xfee00000| \
UINT32|0x00000001

74 March 2015 Version 1.24B

EDK II FDF File Spec.

Appendix B
EDK II Module Types

Table 2. EDK II Module Types

MODULE_TYPE Supported
Architecture

Types

Description

BASE Any Modules or Libraries can be ported to any execution
environment. This module type is intended to be used
by silicon module developers to produce source code
that is not tied to any specific execution environment.

SEC Any Modules of this type are designed to start execution at
the reset vector of a CPU. They are responsible for
preparing the platform for the PEI phase.

PEI_CORE Any This module type is used by PEI Core implementations
that are compliant with the PI Specification.

PEIM Any This module type is used by PEIMs that are compliant
with PI Specification.

DXE_CORE Any This module type is used by DXE Core
implementations that are compliant with the PI
Specification.

DXE_DRIVER Any This module type is used by DXE Drivers that are
compliant with the PI Specification.

DXE_RUNTIME_DRIVER Any This module type is used by DXE Drivers that are
compliant to the PI Specification. These modules
execute in both boot services and runtime services
environments.

DXE_SAL_DRIVER IPF This module type is used by DXE Drivers that can be
called in physical mode before SetVirtualAddressMap()
is called and either physical mode or virtual mode
after SetVirtualAddressMap() has been called. This
module type is only available for IPF processor types.

DXE_SMM_DRIVER IA32, X64 This module type is used by DXE Drivers that are
loaded into SMRAM.

SMM_CORE Any This is the SMM core.

UEFI_DRIVER Any This module type is used by UEFI Drivers that are
compliant with the EFI 1.10 and UEFI specifications.
These modules provide services in the boot services
execution environment. UEFI Drivers that return
EFI_SUCCESS are not unloaded from memory. UEFI
Drivers that return an error are unloaded from
memory.

UEFI_APPLICATION Any This module type is used by UEFI Applications that are
compliant with the EFI 1.10 and EFI 2.0 specifications.
UEFI Applications are always unloaded when they exit.

Version 1.24B March 2015 75

EDK II FDF File Spec.

76 March 2015 Version 1.24B

	EDK II Package Declaration (DEC) File Format Specification
	Contents
	1
	Appendix A
	DEC Examples 59
	Appendix B
	EDK II Module Types 75
	Tables

	1
	Introduction
	1.1 Overview
	Compatible
	Simplified platform build and configuration

	1.2 Related Information
	1.3 Terms
	BaseTools
	BDS BNF
	Component
	DEC
	DEPEX
	Dist
	DXE SAL
	DXE SMM
	DXE Runtime
	EBNF
	EDK
	EDK II
	EDK Compatibility Package (ECP)
	EFI
	FLASH
	Foundation
	Framework
	GUID
	HII
	IFR
	Library Class
	Library Instance
	Module
	Module Type
	Package
	PCD PEI
	PEIM
	PPI
	Protocol
	Runtime Services
	SAL
	UEFI Application
	UEFI Driver
	UEFI Specification Version 2.4
	UEFI Platform Initialization Distribution Package Specification Version 1.0
	UEFI Platform Initialization Specification 1.3
	Unified EFI Forum
	VFR VPD

	1.4 Target Audience
	1.5 Conventions Used in this Document
	1.5.1 Data Structure Descriptions
	1.5.2 Pseudo-Code Conventions
	1.5.3 Typographic Conventions

	2
	DEC File Overview
	2.1 Usage Overview
	2.2 Declaration File Format
	2.2.1 Section Entries
	[Includes.X64, includes.IPF]

	2.2.2 Comments
	gPkgTSGuid.PcdFoo|TRUE|BOOLEAN|0x00000015 # EFI_COMPUTING_UNIT_MEMORY
	UI = “# Copyright 2007, No Such, LTD. All rights reserved.”
	<CommentBlock> Entries
	“##” Path/To/HeaderFile.h
	## CommentBlock

	2.2.3 Valid Entries
	2.2.4 Naming Conventions
	Example:
	C:/Work/Edk2/edksetup.bat

	2.2.5 !include Statements
	2.2.6 Macro Statements
	Example

	2.2.7 PCD Names
	PcdTokenSpaceGuidCName.PcdCName

	2.2.8 Conditional Directive Statements (!if...)

	2.3 EDK II DEC Format
	2.4 [Defines] Usage
	[Defines]
	Name = Value

	2.5 [Includes] Usage
	2.6 [Guids] Usage
	[Guids] [Guids.IA32] [Guids.X64] [Guids.IPF] [Guids.EBC]

	2.7 [Protocols] Usage
	[Protocols] [Protocols.IA32] [Protocols.X64] [Protocols.IPF]

	2.8 [Ppis] Usage
	[Ppis] [Ppis.IA32] [Ppis.X64] [Ppis.IPF] [Ppis.EBC] [Ppis.common]

	2.9 [LibraryClasses] Usage
	2.10 PCD Usage
	Feature Flag PCDs
	VOID* PCD DatumType

	2.11 [UserExtensions] Usage
	[UserExtensions.$(UserID).$(Identifier)]
	[UserExtensions.TianoCore."ExtraFiles"]

	3
	EDK II DEC File Format
	3.1 General Rules
	3.1.1 Backslash
	3.1.2 White space characters
	3.1.3 Paths for filenames

	3.2 Package Declaration (DEC) Definitions
	Summary
	<EDK_II_DEC> ::= <Header>?

	3.2.1 Common Definitions
	Prototype
	<TabSpace> ::= {<Tab>} {<Space>}

	Parameters

	3.2.2 MACROs
	Summary
	Prototype
	<MacroDefinition> ::= <TS> "DEFINE" <TS> <MACRO> <Eq> [<Value>] <EOL>

	Parameters
	Table 1. MACRO Usages

	3.2.4 !include Statement
	3.2.5 Special Comment Blocks
	Prototype
	<ErrNoBlock> ::= <TS> "#" <EOL>

	3.3 Header Comment Section
	Summary
	## @file

	Prototype
	<Header> ::= <SourceHeader> [<BinaryHeader>]

	Example

	3.4 [Defines] Section
	Summary
	Prototype
	<defines> ::= "[Defines]" <EOL>

	Example

	3.5 [Includes] Sections
	Summary
	Prototype
	Restrictions
	Example

	3.6 [Guids] Sections
	Summary
	{<Comment>} {<EOL>}

	Restrictions
	Example

	3.7 [Protocols] Sections
	Summary
	Prototype
	Restrictions
	Example

	3.8 [PPIs] Sections
	Summary
	Prototype
	PpiHeaderFile

	Restrictions
	Example

	3.9 [LibraryClasses] Sections
	Summary
	Prototype
	# A User Defined Keyword consisting of

	Restrictions
	Example

	3.10 PCD Sections
	Summary
	Prototype
	<PCDs> ::= <PcdSections>*
	<Pcd16> ::= <PcdName> <FS> <PcdUint16> <FS> <Token> <CbOrEol>

	Restrictions
	Example

	3.11 [UserExtensions] Sections
	Summary
	Prototype
	<UserExtensions> ::= "[UserExtensions" <com_attribs> "]" <EOL>

	Example
	Summary
	Prototype
	<UserExtensions> ::= "[UserExtensions" <TcEf> "]" <EOL> <FileNames>*

	Example

	Appendix A DEC Examples
	A.1 EDK II IntelFrameworkPkg Example
	A.2 EDK II EmulatorPkg Example
	A.3 ShellBinPkg.dec
	A.4 UefiCpuPkg.dec

	Appendix B EDK II Module Types
	Table 2. EDK II Module Types

